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Abstract

The quantum random oracle model (QROM) has become the standard model in which to
prove the post-quantum security of random-oracle-based constructions. Unfortunately, none of
the known proof techniques allow the reduction to record information about the adversary’s
queries, a crucial feature of many classical ROM proofs, including all proofs of indifferentiability
for hash function domain extension.

In this work, we give a new QROM proof technique that overcomes this “recording barrier”.
Our central observation is that when viewing the adversary’s query and the oracle itself in the
Fourier domain, an oracle query switches from writing to the adversary’s space to writing to
the oracle itself. This allows a reduction to simulate the oracle by simply recording information
about the adversary’s query in the Fourier domain.

We then use this new technique to show the indifferentiability of the Merkle-Damgard domain
extender for hash functions. Given the threat posed by quantum computers and the push
toward quantum-resistant cryptosystems, our work represents an important tool for efficient
post-quantum cryptosystems.

1 Introduction
The random oracle model [BR93] has proven to be a powerful tool for heuristically proving the
security of schemes that otherwise lacked a security proof. In the random oracle model (ROM), a
hash function H is modeled as a truly random function that can only be evaluated by querying
an oracle for H. A scheme is secure in the ROM if it can be proven secure in this setting. Of
course, random oracles cannot be efficiently realized; in practice, the random oracle is replaced with
a concrete efficient hash function. The hope is that the ROM proof will indicate security in the real
world, provided there are no structural weaknesses in the concrete hash function.

Meanwhile, given the looming threat of quantum computers [IBM17], there has been considerable
interest in analyzing schemes for “post-quantum” security — security against quantum attack[NIS17,
Son14, ATTU16, CBH+17, YAJ+17, CDG+17, CDG+15]. Many of the proposed scheme are random
oracle schemes; Boneh et al. [BDF+11] argue that the right way of modeling the random oracle in
the quantum setting is to use the quantum random oracle model, or QROM. Such a model allows
a quantum attacker to query the random oracle on a quantum superposition of inputs. The idea
is that a real-world quantum attacker, who knows the code for the concrete hash function, can
evaluate the hash function on superposition in order to perform tasks such as Grover search [Gro96]
or collision finding [BHT98]. In order to accurately capture such real-world attacks, it is crucial
to model the random oracle to allow for such superposition queries. The quantum random oracle
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model has been used in a variety of subsequent works to prove the post-quantum security of
cryptosystems [BDF+11, Zha12b, Zha15, TU16, Eat17].

The Recording Barrier. Unfortunately, proving security in the random oracle model can be
extremely difficult. Indeed, in the classical random oracle model, one can copy down the adversary’s
queries as a means to learning what points the adversary is interested in. Many classically security
proofs crucially use this information in order to construct a new adversary which solves some hard
underlying problem, reaching a contradiction. In the quantum setting, such recording is impossible,
by the quantum no-cloning theorem. One can try to record some information about the query, but
this amounts to a measurement of the adversary’s query state which can be detected by the adversary.
A mischievous adversary may refuse to continue if it detects such a measurement, rendering the
adversary useless for solving the underlying hard problem. Because of the difficulty in reading an
adversary’s query, it also becomes hard to adaptively program the random oracle, another very
common proof technique.

This difficulty has led authors to develop new quantum-sound proof techniques to replace classical
techniques, such as Zhandry’s small-range distributions [Zha12a]. These proof techniques choose
the oracle from a careful distribution that allows for proofs to go through. However, every such
proof technique always chooses a classical oracle at the beginning of the experiment, and never
changes it afterward. This seems to limit what can be proved using such non-recording techniques.
For example, Dagdelen, Fischlin, and Gagliardoni [DFG13] show that such natural proof techniques
are likely incapable of proving the security of Fiat-Shamir1. This leads to a natural question:

Is it possible to record information about an adversary’s query without the adversary detecting

Enter Indifferentiability. The random oracle model (quantum or otherwise) assumes the ad-
versary treats the hash function as a monolithic object. Unfortunately, hash functions in practice
are usually built from smaller building blocks, called compression functions. If one is not careful,
hash functions built in this way are vulnerable to attacks such as length-extension attacks. Coron
et al. [CDMP05] show that a hash function built from a compression function can be eas good as
a monolithic oracle in many settings if it satisfies a notion of indifferentiability, due to Maurer,
Renner, and Holenstein [MRH04]. Roughly, in indifferentiability, an adversary A has oracle access
to both h and H. In one case, h is a random function, and H is built from h according to the hash
function construction. In the other case, H is a random function, and h is simulated so as to be
consistent with H. A hash function is indifferentiable from a random oracle if no efficient adversary
can distinguish the two cases.

Coron et al.’s proof of indifferentiability for Merkle-Damgard requires the simulator to remember
the queries that the adversary has made. This is actually inherent for any domain extender, by
a simple counting argument discussed below. In the quantum setting, such recording presents a
serious issue, as recording a query is equivalent (from the adversary’s point of view) to measuring the
query. As any measurement will disturb the quantum system, such measurement may be detectable
to the adversary. Note that in the case where A is interacting with a truly random h, there is no
measurement happening. Therefore, if such a measurement can be detected, the adversary can
distinguish the two cases, breaking indifferentiability.

1We note that if the underlying building blocks are strengthened, Fiat-Shamir was proven secure by Unruh [Unr16]
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Example. To illustrate what might go wrong, we will use the simple example from Coron et
al. [CDMP05]. Here, we will actually assume access to two independent compression functions
h0, h1 : {0, 1}2n → {0, 1}n. We will define H : {0, 1}3n → {0, 1}n as H(x, y) = h1(h0(x), y), where
x ∈ {0, 1}2n, y ∈ {0, 1}n.

To argue that H is indifferentiable from a random oracle, Coron et al. use the following simulator
S, which has access to H, and tries to implement the oracles h0, h1. S works as follows:

• S keeps databases D0, D1, which will contain tuples (x, y). Db containing (x, y) means that S
has set the hb(x) = y.

• h0 is implemented on the fly: every query on x looks up (x, y) ∈ D0, and returns y if it is
found; if no such pair is found, a random y is chosen and returns, and (x, y) is added to D0.

• h1 is more interesting. By default, h1 is answered randomly on the fly as in h0. However, it
needs to make sure that h1(h0(x), y) always evaluates to H(x, y), else it is trivial to distinguish
the two words. Therefore, on a query (z, y), h1 will check if there is a pair (x, z) in D0. If
so, it will reasonably guess that the adversary is trying to evaluate H(x, y), and respond by
making a query to H(x, y). Otherwise it will resort to the default simulation.

Note that by defining the simulator in this way, if the adversary ever tries to evaluate H on (x, z)
by first making a query x to h0 to get y, and then making a query (y, z) to h1, the simulator will
correctly set the output of h1 to H(x, z), so that the adversary will get a result that is consistent
with H. However, note that it is crucial that S wrote down the queries made to h0, or else it will
not know which point to query H when simulating h1.

Now consider a quantum adversary. A quantum query to, say, h0 has the form∑
x∈{0,1}2n,u∈{0,1}n

αx,u|x, u〉

In response, the oracle for h0 will perform the map |x, u〉 7→ |x, u⊕ h0(x)〉. This will transform
the query state to ∑

x∈{0,1}2n,u∈{0,1}n

αx,u|x, u⊕ h0(x)〉

Now, imagine our simulator trying to answer queries to h0 in superposition. For simplicity,
suppose this is the first query to h0, so D0 is empty. The natural approach is to just have S store
it’s database D0 in superposition, performing a map that may look like |x, u〉 7→ |x, u⊕ y〉 ⊗ |x, y〉,
where y is chosen randomly, and everything to the left of the ⊗ is the simulators state.

But now consider the following query by an adversary. It sets up the uniform superposition∑
x,u |x, u〉 and queries. In the case where h0 is a classical function, then this state becomes∑

x,u

|x, u⊕ h0(x)〉 =
∑
x,u

|x, u〉

Namely, the state is unaffected by making the query. In contrast, the simulated query would result
in ∑

x,u

|x, u⊕ y〉 ⊗ |x, y〉

Here, the adversary’s state is now entangled with the simulator’s. It is straightforward to detect
this entanglement by applying the Quantum Fourier Transform (QFT) to the adversary’s x registers,
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and then measuring the result. In the case where the adversary is interacting with a random h0,
the QFT will result in a 0. In the simulated case, the QFT will result in a random string. These
two cases are therefore easily distinguishable.

One natural way to try to remedy the issue is to not store a database for h0 or h1. This might
be achieved by setting h0(x) to be a quantum pseudorandom function [Zha12a] evaluated at x. Such
a function will be indisitnguishable from a truly random h0(x) 2. This will certainly fix the issue
above, but introduce new problems. Now when the adversary makes a query to h1, the simulator
needs to decide if the query represents an attempt at evaluating H, and if so, it must program the
output of h1 accordingly. However, without knowing what inputs the adversary has queried to h0,
it seems impossible for the simulator to determine which point the adversary is interested in. For
example, if the adversary queries h1 on (y, z), there will be roughly 2n possible x that gave rise to
this y (since h0 is compressing). Therefore, the simulator must choose from one of 2n inputs of the
form (x, z) on which to query H.

To make matters even more complicated, an adversary can submit the uniform superposition∑
x |x, 0〉, resulting in the state ∑x |x, h0(x)〉, which causes it to “learn” h0(x). At this point, the

simulator should be ready to respond to an h1 query using x, meaning the simulator must be
entangled with x. Then, at some later time, the adversary can query again on the state∑x |x, h0(x)〉,
resulting in the original state ∑x |x, 0〉 again. The adversary can test that it received the correct
state using the quantum Fourier transform. Therefore, after this later query, the simulator must be
un-entangled with x. Even more complex strategies are possible, where the adversary can compute
and un-compute h0 in stages, so as to try to hide what it is doing from any potential simulator.

These issues are apparent in every construction of a hash function from a compression function.
Indeed, it is easy to show the following: suppose there is a hash function H : {0, 1}M → {0, 1}N built
from a compression function h : {0, 1}m → {0, 1}n, and suppose it holds thatM+log2N > m+log2 n.
Then it must be that any simulator for classical indifferentiability cannot answer the queries with the
same exact function each time. This follows from the simple fact that in the simulated world, there
are 2N×2M choices for H, while in the real world there are only 2n×2m . If the simulator simulates
using a fixed function SH , then we have that CSH = H in all but a negligible fraction of positions.
However, since SH is a function, and so there are only 2n×2m possibilities. And yet it must match a
random function on most of its inputs, which is clearly impossible. Therefore, any simulator must
actually answer queries dependent on previous queries — in other words, it must keep some state.

We therefore ask:

Is it possible to build large hash functions from small compression
functions such that the hash functions are indifferentiable from a quantum-accessible random oracle?

1.1 This Work

In this work, perhaps surprisingly, we answer the question above in the affirmative. Namely, we
give a new compressed oracle technique, which allows for recording the adversary’s queries in a way
that the adversary can never detect. The intuition is surprisingly simple: an adversary interacting
with a random oracle can be thought of as being entangled with a uniform superposition of oracles.
As entanglement is symmetric, if the adversary every has any information about the oracle, the

2Zhandry [Zha12b] shows that actually, a t-wise independent function will suffice, for an appropriate choice of t
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oracle must also have information about the adversary. Therefore a simulator can always get away
with recording some information about the adversary.

We then use the technique to prove the indifferentiability of the Merkle-Damqård construction.
We believe our new technique will be of independent interest; for example our technique also gives
very simple proofs of several quantum query lower bounds.

The Compressed Oracle Technique. In order to prove indifferentiability, we devise a new way
of analyzing quantum query algorithms

Consider an adversary interacting with an oracle h : {0, 1}m → {0, 1}n. It is well established
that the usual quantum oracle mapping |x, y〉 7→ |x, y ⊕ h(x)〉 is equivalent to the “phase” oracle,
which maps |x, u〉 7→ (−1)u·h(x)|x, u〉 (we discuss this equivalence in Section 3). For simplicity, in
this paper we will focus on the phase oracle, which is without loss of generality.

Next, we note that the oracle h being chosen at random is equivalent (from the adversary’s
point of view) to h being in uniform superposition ∑h |h〉. This is because the superposition can be
reduced to a random h by measuring, and measuring the h registers (which it outside of A’s view)
is undetectable to A.

Therefore, we will imagine the h oracle as actually containing ∑h |h〉. When A makes a query
on ∑x,u αx,u|x, u〉, the joint system of the adversary and oracle are∑

x,u

αx,u|x, u〉 ⊗
∑
h

|h〉

The query introduces a phase term (−1)u·h(x), so the joint system becomes∑
x,u

αx,u|x, u〉 ⊗
∑
h

|h〉(−1)u·h(x)

We normally think of the phase as being returned to the adversary, but the phase really affects
the entire system.

Now, we will think of h as a vector of length 2m × n by simply writing down all of the outputs
of h as a list. We will think of each x, u pair as a a point function Px,u which outputs y on x and 0
elsewhere. Using our encoding of functions as vectors, we can write u · h(x) as Px,y · h.

We can therefore write the post-query state as∑
x,u

αx,u|x, u〉 ⊗
∑
h

|h〉(−1)h·Px,u

In general, the state after making q queries can be written as∑
x1,...,xq ,u1,...,uq

αx1,...,xq ,u1,...,uq |ψx1,...,xq ,u1,...,uq〉 ⊗
∑
h

|h〉(−1)h·(Px1,u1 +···+Pxq,uq )

Another view of the above is that we can view the oracle as a purification of the adversary’s
state, and the purification can be updated through the adversary’s queries by following simple
update rules.

Next, notice that by applying the Quantum Fourier transform to h, the h registers will now
contain (Px1,u1 + · · ·+Pxq ,uq ) mod 2. Working in the Fourier domain, we see that each query simply
adds Px,u (modulo 2) to the result. In the Fourier domain, the initial state is 0.

Therefore, from A’s point of view, it is indistinguishable whether the oracle for h is implemented
as above, or it is implemented as follows:
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• The oracle keeps as state a vector D ∈ {0, 1}n×2m , initially set to 0.

• On any oracle query, the oracle performs the map |x, u〉 ⊗ |D〉 7→ |x, u〉 ⊗ |D ⊕ v(x, u)〉

In other words, the oracle can actually be implemented by recording and updating phase
information about the queries being in made.

We can now take this a couple steps further. Notice that after q queries, D is non-zero on at
most q inputs. Therefore, we can store the database in an extremely compact form, namely the
list of (x, y) pairs where y = D(x) and y 6= 0. Notice that this allows us to efficiently simulate a
random oracle, without an a priori bound on the number of queries. Previously, simulating random
oracles exactly and efficiently required 2q-wise independent functions [Zha12b] and hence required
knowing q up front. We therefore believe this simulation will have independent applications for the
efficient simulation of quantum oracles. We will call this the compressed Fourier oracle.

We can then take our compressed Fourier oracle, and convert it back into a primal-domain oracle.
Namely, for each (x, y) pair, we perform the QFT on the y registers. The result is a superposition
of databases of (x,w) pairs, where w represents h(x). For any pair not in the database, h(x) is
implicitly a uniform superposition of inputs. We call this the compressed standard oracle. It
represents what the adversary knows about the function h: if (x, y) is in the database then the
adversary “knows” h(x) = y, and otherwise, the adversary “knows” nothing about h(x).

Applying Compressed Oracles to Indifferentiability. The compressed standard oracle offers
a simple way to keep track of the queries the adversary has made. In particular, it tracks exactly
the kind of information needed in the classical indifferentiability proof above, namely whether or
not a particular value has been queries by the adversary, and what the value of the query at that
point is. We use this to give a quantum indifferentiability proof for Merkle-Damgård construction
using prefix-free encodings [CDMP05].

To illustrate our ideas, consider our simple example above with h0, h1 and H. Our simulator
will simulate h0 as in the compressed standard oracle, keeping a list D0 of (x, y) pairs. Next, our
simulator must handle h1 queries. When given a phase query |y, z〉, the simulator does the following.
If first looks for a pair (x, y′) in D0 with y′ = y. If one is found, it reasonably guesses that the
adversary is interested in computing H(x, z), and so it makes a query on x, z to H. Otherwise, it is
reasonable to guess that the adversary is not trying to compute H on any input, since the adversary
does not “know” any inputs to h0 that would result in a query to h1 on y, z.

While the above intuition appears to work, we need to make sure the simulator does not disturb
the compressed oracle. Unfortunately, some disturbance is inherent. This is because testing whether
an element is contained in D0 amounts to a measurement in the Fourier domain; meanwhile,
determining the value of h0(x) is a measurement in the primal. These two measurements do not
commute, so by the uncertainty principle it is impossible to perform both measurements perfectly.

Nonetheless, we show that the errors are small. Intuitively, we implement the simulator where it
only performs a polynomial number of measurements of the form “is h0(x) = y”. Indeed, the classical
simulator can easily be implemented using such tests, and we just use the same implementation.
Meanwhile, testing whether an element is contained in D0 is simply a Fourier-domain test of the
form “is h0(x) = 0”. These primal and Fourier measurements still do not commute, but it is
straightforward to show that they “almost” commute. Thus, the simulator can perform these
measurements without perturbing the state significantly.
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This shows that h0 queries are correctly simulated; we also need to show that h1 queries are
correctly simulated and consistent with H. The intuition above suggests that h1 should be consistent
with H, and indeed we show this using a careful sequence of hybrids.

The Power of Forgetting. Surprisingly, our simulator ends up strongly resembling the classical
simulator. It is natural to ask, therefore, how the simulator gets around the difficulties outlined
above.

First, notice that the query ∑x,u |x, u〉 in our example, when implemented as a phase query,
simply becomes ∑x |x, 0〉. Since u = 0, this query has no effect on the oracle’s state. This means
the oracle remains un-entangled with the adversary, as desired.

Second, a query ∑x |x, 0〉 becomes ∑x,u |x, u〉 for a phase query. After applying the query, the
joint quantum system of the adversary and simulator becomes∑

x

|x, u〉
∑
y

|{(x, y)}〉(−1)y·u

Thus, the simulator can clearly tell that the adversary has queried on x. Later, when the
adversary queries on the same state a second time, the query will erase the phase term. Then the
simulator will actually remove the (x, y) pair from it’s database. This is because in the Fourier
domain, the compressed Fourier oracle now contains (x, 0), which gets removed. Thus, after this
later query, the database contains no information about x. Hence, the adversary is un-entangled
with x, and so it’s tests will output the correct value.

Ultimately then, the key difference between our simulator and the natural quantum analog of
the classical simulator is that our simulator must be ready to forget some of the oracle points it
simulated previously. By implementing h0 as a compressed oracle, it will forget exactly when it
needs to so that the adversary can never detect that it is interacting with a simulated oracle.

Simple Quantum Query Complexity Lower Bounds. We also show that our compressed
oracles can be used to give very simple quantum query complexity lower bounds for problems for
random functions, such as pre-image search, collision finding, k-SUM, and k-collision.

Our proof strategy is roughly as follows. First, since intuitively the adversary has no knowledge
of values of h outside of D, except with very small probability any successful algorithm will output
points in D. Therefore it suffices to bound the number of queries required to get D to contain a
pre-image/collision/k-sum/k-collision.

For pre-image search, we re-prove the optimal lower bound of Ω(2n/2) queries of [BBBV97], but
for random functions; note that pre-image search for random functions and worst-case functions is
equivalent using simple reductions. The proof appears superficially similar to [BBBV97]: we show
that each query can increase the “amplitude” on “good” databases by a small O(2−n/2) amount.
After q queries, this amplitude becomes O(q/2n/2), which we then square to get the probability of a
“good” database. The proof is only slightly over a page once the compressed oracle formalism has
been given.

We then re-prove the optimal collision lower bound of Ω(2n/3) queries for random functions,
matching the worst case bound [AS04] and the more recent average case bound [Zha15]. Remarkably,
our proof involves only a few lines of modification to the pre-image lower bound. We show that
the amplitude on “good” databases increases by O(√q × 2n/2) for each query, where the extra √q
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intuitively comes from the fact that the database has size at most q, giving q opportunities for a
collision every time a new entry is added to the database3.

In contrast to our very simple proof, the prior bounds involved very different techniques and
were much more complicated. Also note that prior works could not prove directly that finding
collisions were hard. Instead, they show that distinguishing a function with many collisions from an
injective function was hard. This then only works directly for expanding functions, which are of little
interest to cryptographers. Zhandry [Zha15] shows for random functions a reduction from expanding
functions to compressing functions, giving the desired lower bound for compressing functions. Our
proof, in contrast, works directly with functions of arbitrary domain and range. These features
suggests that our proof technique is fundamentally different than those of prior works.

By generalizing our collision bound slightly, we can obtain an Ω(2n/(k+1)) lower bound for finding
a set of distinct points x1, . . . , xk such that ∑iH(xi) = 0. This bound is tight by adapting the
collision-finding algorithm of [BHT98] to this problem. Again, our proof is obtained by modifying
just a few lines of the pre-image search proof.

This problem is usually called the k-SUM problem. However, k-SUM is typically described as a
decisional problem, deciding whether a set of such points exists. This decisional problem is usually
stated to have a query complexity of Θ(2m

k
(k+1) ) [BS13], where m is the number of input bits. By

setting n = mk — which is the setting where a random function will have approximately a single
k-SUM solution — we coincide with the existing lower bounds. The prior proof [BS13] actually only
works in the setting where n & km and does not apply to settings where there are many k-SUM
solutions. In contrast, our lower bound works for any setting of m and n.

With simple modifications, we can also get new bounds for the quantum query complexity of
finding k-collisions — that is, k distinct inputs that all map to the same output. Intuitively, we
observe that if adding a point to a database caused it to contain a k-collision, then it must already
have a (k − 1)-collision. By inductively using the lower bound for (k − 1)-collisions, we can get
stronger bounds for the amplitude increase of each query. Ultimately, we obtain a Ω(2n×

k−1
2k−1 ) query

lower bound for finding k-collisions. This is tight for k = 2 (that is, for regular collisions), though
we do not know of any matching upper bound for k ≥ 3.

1.2 Related Works

Ristenpart, Shacham, and Shrimpton [RSS11] shows that indifferentiability is insufficient for replacing
a concrete hash function with a random oracle in the setting of multi-stage games. Nonetheless,
Mittelbach [Mit14] shows that indifferentiability can still be useful in these settings. Exploring the
quantum analogs of these results is an interesting direction for future research.

1.3 Independent Work

Independently and concurrently, Carstens et al. [CETU18] also discuss the difficulties of quantum
indifferentiability. They present a very similar argument for the difficulty of proving indifferentiability
as we do. They then conclude that “quantum indifferentiability is probably impossible to achieve in
many situations”, and state a formal conjecture regarding such an impossibility. Finally, they prove
concretely an impossibility for perfect simulation for certain protocols.

3and the square root comes from the fact that the norm of the sum of q unit vectors of disjoint support is √
q
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Our work demonstrates that Carstens et al.’s conjecture is false, as their conjecture would apply
to Merkle-Damgård. Note also that our simulator is imperfect as it perturbs the state slightly with
every query, and therefore the formal impossibility does not apply.

2 Preliminaries

2.1 Quantum

A quantum system Q is defined over a finite set B of classical states. We will generally consider
B = {0, 1}n. A pure state over Q is an L2-normalized vector in C|B|, which assigns a (complex)
weight to each element in B. Thus the set of pure states forms a complex Hilbert space. A qubit is
a quantum system defined over B = {0, 1}. Given a quantum system Q0 over B0 and a quantum
system Q1 over B1, we can define the product system Q = Q0 ×Q1 over B = B0 ×B1 = {(b0, b1) :
b0 ∈ B0, b1 ∈ B1}. Given a state v0 ∈ Q0 and v1 ∈ Q1, we define the product state v0 ⊗ v1 in the
natural way. An n-qubit system is then Q = Q⊕n0 where Q0 is a single qubit.

Bra-ket notation. We will think of pure states as column vectors. The pure state that assigns
weight 1 to x and weight 0 to each y 6= x is denoted |x〉. The set {|x〉} therefore gives an orthonormal
basis for the Hilbert space of pure states. We will call this basis the “computational basis.” If a
state |φ〉 is a linear combination of several |x〉, we say that |φ〉 is in “superposition.” For a pure
state |φ〉, we will denote the conjugate transpose as the row vector 〈φ|.

Entanglement. In general, a pure state |φ〉 over Q0 ×Q1 cannot be expressed as a product state
|φ0〉 ⊗ |φ1〉 where |φb〉 ∈ Qb. If |φ〉 is not a product state, we say that the systems Q0, Q1 are
entangled. If |φ〉 is a product state, we say the systems are un-entangled.

Evolution of quantum systems. A pure state |φ〉 can be manipulated by performing a unitary
transformation U to the state |φ〉. We will denote the resulting state as |φ′〉 = U |φ〉.

Basic Measurements. A pure state |φ〉 can be measured; the measurement outputs the value x
with probability |〈x|φ〉|2. The normalization of |φ〉 ensures that the distribution over x is indeed
a probability distribution. After measurement, the state “collapses” to the state |x〉. Notice that
subsequent measurements will always output x, and the state will always stay |x〉.

If Q = Q0 × Q1, we can perform a partial measurement in the system Q0 or Q1. If
|φ〉 = ∑

x∈B0,y∈B1 αx,y|x, y〉, partially measuring inQ0 will give x with probability px = ∑
y∈B1 |αx,y|

2.
|φ〉 will then collapse to the state ∑y∈B1

αx,y√
px
|x, y〉. In other words, the new state has support only

on pairs of the form (x, y) where x was the output of the measurement, and the weight on each pair
is proportional to the original weight in |φ〉. Notice that subsequent partial measurements over Q0
will always output x, and will leave the state unchanged.

The above corresponds to measurement in the computational basis. Measurements in other
bases are possible to, and defined analogously. We will generally only consider measurements in
the computational basis; measurements in other bases can be implemented by composing unitary
operations with measurements in the computational basis.
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Efficient Computation. A quantum computer will be able to perform a fixed, finite set G of
unitary transformations, which we will call gates. For concreteness, we will use so-called Hadamard,
phase, CNOT and π/8 gates, but the precise choice is not important for this work, so long as the
gate set is “universal” for quantum computing.

Let Q be a quantum system on n qubits. Each gate costs unit time to apply, and each partial
measurement also costs unit time. Therefore, an efficient quantum algorithm will be able to make a
polynomial-length sequence of operations, where each operation is either a gate from G or a partial
measurement in the computational basis. Here, “polynomial” will generally mean polynomial in n.

Examples of Quantum Computations.
• Quantum Fourier Transform. Let Q0 be a quantum system over B = Zq for some integer
q. Let Q = Q⊗n0 . The Quantum Fourier Transform (QFT) performs the following operation
efficiently:

QFT|x〉 = 1√
qn
ωx·yq

∑
y∈{0,1}n

|y〉

where ωq = e2πi/q.
In this paper, we will always consider q = 2, so that ωq = (−1).

• Efficient Classical Computations. Any function that can be computed efficiently classically
can be computed efficiently on a quantum computer. More specifically, if f is computable by
a polynomial-sized circuit, then there is a efficiently computable unitary Uf on the quantum
system Q = Qin ⊗Qout ⊗Qwork with the property that: Uf |x, y, 0〉 = |x, y + f(x), 0〉.
Here, Qin is a quantum system over the set of possible inputs, Qout is a quantum system
over the set of possible outputs, and Qwork is another quantum system that is just used for
workspace, and is reset after use.

2.2 Almost Commuting Measurements

Lemma 2.1. Consider a quantum state |ψ〉 on n qubits. Let P be the measurement that checks if
|ψ〉 is zero in the computational basis. Let Q be the measurement that checks if |ψ〉 is zero in the
Fourier basis. Let ρP,Q.....

2.3 Indifferentiability

Let h : {0, 1}m → {0, 1}n be a random oracle, and let Ch : {0, 1}M → {0, 1}N be a polynomial-sized
circuit that makes oracle queries to h.
Definition 2.2. Ch is quantum indifferentiable from a random oracle H : {0, 1}M → {0, 1}N if, for
any polynomial-time distinguisher D, there exists a polynomial-time simulator S such that S makes
queries to H and:

|Pr[Dh,Ch() = 1]− Pr[DSH ,H() = 1]| < negl
Here, D is given quantum oracle access to h and H. On the left hand size, H = Ch and h is a

random oracle, while on the right-hand side h = SH and H is a random oracle.
It is also straightforward to adapt this definition to handle the case of many random compression

functions h1, . . . , hn.
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3 Oracle Variations
Here, we describe several oracle variations.

Standard Oracle. Here, the oracle H : {0, 1}m → {0, 1}n is represented as its truth table: a
vector of size 2m where each component is an n-bit string.

The oracle takes as input a tuple |x, y〉 ⊗ |H〉. Here, x, y is the query, and H is the truth-table
of the function, as above. It performs the map

|x, y〉 ⊗ |H〉 7→ |x, y ⊕H(x)〉 ⊗ |H〉

We will call this oracle StO.

Phase Oracle. This oracle takes as input a tuple |x, z〉 ⊗ |H〉. Here, x, z is the query, and H is
the truth-table of the function. It performs the map

|x, z〉 ⊗ |H〉 7→ (−1)y·H(x)|x, z〉 ⊗ |H〉

We will call this oracle PhO. Notice that PhO and StO are equivalent by applying the Fourier
transform to the y registers. That is,

PhO = (Id⊗ H⊗n ⊗ Id) · StO · (Id⊗ H⊗n ⊗ Id)

Fourier Oracle. This oracle takes as input a tuple |x, z〉 ⊗ |D〉, and D is the truth-table of the a
function. It performs the map:

|x, z〉 ⊗ |D〉 7→ |x, z〉 ⊗ |D ⊕ Px,z〉

Here, Px,z is the point function Px,z(x′) =
{
z if x′ = x

0 if x′ 6= n
, and D ⊕ Px,z is the function (D ⊕

Px,z)(x′) = D(x′)⊕ Px,z(x′).
We will call this oracle FourierO. Notice that FourierO and PhO are equivalent by applying the

Fourier transform to the H registers. That is,

FourierO = (Id⊗ Id⊗ H⊗n×2m) · PhO · (Id⊗ Id⊗ H⊗n×2m)

Notice that whether the Fourier or Phase oracle is simply a change of basis on the oracle side.
This means it is completely inconsequential to the adversary which oracle is used.

Whether the oracle is implemented in the computational of Fourier domains is orthogonal to
whether queries are made in the computational or phase domains. Therefore, we actually get
four different oracle types: StO,PhO,FourierStO,FourierPhsO, where FourierPhsO is the PhO oracle
described above, and FourierStO is the standard oracle, except that the oracle is represented in the
Fourier domain.
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Compressed Fourier Oracle. Typically, the oracleH will be chosen at random. We can simulate
this by initially setting the oracle registers to be the uniform superposition over all truth tables. In
the Fourier domain, this corresponds to the all-zeros function. Therefore, when we implement the
Fourier Oracle, the oracle will typically start off containing just D = 0n2m .

Notice furthermore that after q queries, D will be the sum of q point functions — in particular,
it will be zero in all but q locations. Therefore, we can actually compress D into an unordered list
of (x, z) pairs such that z 6= 0.

Using this encoding, we get the compressed Fourier oracle CFourierO. It performs the map:

|x, z〉 ⊗ |D〉 7→ |x, z〉 ⊗ |D ⊕ (x, z)〉

where D ⊕ (x, z) is the procedure that does the following:

• If z = 0 it outputs D.

• If there is a pair (x, z′) ∈ D for some z′, it does the following:

– If z = z′, it removes (x, z) from D, and outputs the new D

– if z 6= z′, it replaces (x, z′) with (x, z ⊕ z′) and outputs the new D.

• Finally, if there is no such pair (x, z′) ∈ D, it adds the pair (x, z) to D and outputs the new
D.

Note that as described above, the compressed Fourier oracle takes implements a phase query
to the adversary. We can also imagine it implementing a standard query. Thus we can actually
get two compressed Fourier oracles CFourierStO and CFourierPhsO. We will typically only use
CFourierO = CFourierPhsO.

Compressed Standard and Phase Oracles. Finally, we can also compress the oracle in the
computational basis, though more care is required. The compressed standard oracle will work by
taking the compressed Fourier oracle, and simply performing the Fourier transform on all of the
z terms. Thus, the state of the Compressed Standard Oracle will be an unordered list D of pairs
(x, y). Note here that y can potentially be zero, but we still require that y is non-zero in the Fourier
domain.

As always, this representation is independent of the adversary’s view, and we can choose to give
the adversary either a phase or standard oracle by appropriate change of basis on query registers.
We will label these two oracles as CStO,CPhsO.

Note that in the compressed standard or phase oracle, each (x, y) in D pair corresponds to two
statements: (1) x has been queries by the adversary, and (2) the value of H(x) = y. Unlike the
standard oracle in which we can measure H(x) to get y, here we cannot measure the y part of x,
as this will destroy the invariant that the y registers must be non-zero in the Fourier domain. In
particular, if we perform such a measurement, we will not be able to correctly remove (x, y) from D
in future queries if needed.

For completeness, we specify the Compressed Standard Oracle CStO. Initially, the database D
is empty. To answer a query on |x, y〉, do the following:

• Look for a tuple (x, y′) ∈ D. If one is found, respond with |x, y ⊕ y′〉

12



• If no tuple is found, create new registers initialized to the state 1√
2n

∑
y′ |y′〉. At the registers

(x, y′) to D. Then respond with |x, y ⊕ y′〉.

• Finally, regardless of whether the tuple was found or added, there is now a tuple (x, y′) in D,
which may have to be removed. To do so, measure whether the registers containing y′ contain
0 in the Fourier basis. If so, remove the tuple from D. Otherwise, leave the tuple in D.

4 Quantum Query Lower Bounds Using Compressed Oracles
In this section, we re-prove several known query complexity lower bounds, as well as provide some
new bounds. All these bounds follow from simple applications of our compressed oracles

4.1 Optimality of Grover Search

Here, we re-prove that the quadratic speed-up of Grover search is optimal. Specifically, we prove
that for a random function H : {0, 1}m → {0, 1}n, any q query algorithm has a success probability
of at most O(q2/2n) for finding a pre-image of 0n. We will actually prove a stronger statement,
namely that:

Theorem 4.1. After q queries, if the compressed (standard or phase) oracle for H is measured,
the resulting database will contain a pair of the form (x, 0) with probability at most O(q2/2n)

Since the adversary only has information about the points in the compressed oracle, the only
way for it to achieve a non-trivial success probability is to output an element in the compressed
oracle’s database. Theorem 4.1 bounds the probability such points can be a pre-image of zero.

Proof. We will prove the theorem for the compressed phase oracle, the compressed standard oracle
following from the fact that they are equivalent by applying a unitary to the adversary’s registers.

Clearly, at the beginning, the compressed oracle’s database is empty, so the probability the
database contains an (x, 0) is 0. Let 0 ∈ D mean that D contains a pair of the form (x, 0). Let
D(x) be the function that outputs y if there is a pair (x, y) in D, and outputs ⊥ if there is no such
pair.Now, we will show that the probability cannot rise too much with each query. Consider the
joint state of the adversary and oracle just before the qth query:

|ψ〉 =
∑

x,y,z,D

αx,y,z,D|x, y, z〉 ⊗ |D〉

Where D represents the compressed phase oracle, x, y as the query registers, and z as the
adversary’s private storage. We will write |ψ〉 = |ψ0〉 + |ψ1〉 + |ψ2〉 + |ψ3〉 for three orthogonal
unnormalized states:

• |ψ0〉 is the state where all vectors have y = 0

• |ψ1〉 is the state where y 6= 0 and D(x) = ⊥. This means under the query, D will grow by a
pair of the form (x,w)

• |ψ2〉 is the state such that y 6= 0 and, after applying the query, D(x) = ⊥. This means that
D(x) 6= ⊥ originally. In other words, it is the pre-image of the query over the state |ψ′2〉, which
contains only registers with y 6= 0 and D(x) = ⊥.
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• |ψ3〉 is the state such that y 6= 0, D(x) 6= ⊥, and D(x) remains not equal to ⊥ after the query.

Let |ψ′i〉 be the image of |ψi〉 under the query. Let P be the projection onto the space spanned
by states containing D with 0 ∈ D.

We notice the following:

• |ψ′0〉 = |ψ0〉.

• For a basis state |x, y, z〉 ⊗ |D〉 in the support of |ψ1〉, its image under the query will by
|x, y, z〉 ⊗ 1√

2n

∑
w(−1)y·w|D ∪ (x,w)〉. Therefore, if we project onto P , we have |x, y, z〉 ⊗

1√
2n

∑
w(−1)y·w|D ∪ (x,w)〉 if 0 ∈ D, and 1√

2n |x, y, z〉 ⊗ |D ∪ (x, 0)〉 if 0 /∈ D.

This means that P |ψ′1〉 = UP |ψ1〉 + 1√
2nV (I − P )|ψ1〉, where U is the unitary that maps

|x, y, z〉 ⊗ |D〉 7→ |x, y, z〉 ⊗ 1√
2n

∑
w(−1)y·w|D ∪ (x,w)〉, I − P is the projection onto the space

spanned byD with 0 /∈ D, and V is the unitary that maps |x, y, z〉⊗|D〉 7→ |x, y, z〉⊗|D∪(x, 0)〉.

• By symmetry, we have that P |ψ2〉 = UP |ψ′2〉+ 1√
2nV (I − P )|ψ′2〉.

• Finally, for |ψ3〉, since the query cannot change D(x) except by changing ⊥ to something or
something to ⊥, all D in |ψ3〉 remain unchanged.
Therefore, P |ψ′3〉 = P |ψ3〉.

Putting this all toegher, we have that ‖P |ψ′〉‖ = ‖P |ψ〉‖ + 1√
2n ‖V (I − P )(|φ1〉 − |φ′2〉)‖ ≤

‖P |ψ〉‖+ 2√
2n .

Therefore, after q queries, we have that ‖P |ψ〉‖ ≤ 2q√
2n . Now, the probability the database in

|ψ〉 contains a 0 is ‖P |ψ〉‖2 ≤ 4q2

2n .

4.2 Collision Lower Bound

We can also adapt the above proof for the Collision lower bound. If we define P to project onto
databases D containing a collision, we have that if we project |x, y, z〉 ⊗ 1√

2n

∑
w(−1)y·w|D ∪ (x,w)〉

in |φ′1〉 onto P , we will get |z, y, z〉 ⊗ 1√
2n

∑
w∈D |D ∪ (x,w)〉〉

This allows us to write P |ψ′1〉 = UP |ψ1〉+ 1√
2n |φ〉 where

|φ〉 =
∑

x,y 6=0,z,D:D(x)=⊥,w∈D
αx,y,z,D|x, y, z〉 ⊗ |D ∪ (x,w)〉

Notice that |φ〉 is the sum of |φi〉 for i ∈ q, where w is set to be the ith image point in D. Notice
that after q queries, the total size of D is at most q. Each of the |φi〉 have norm at most 1, and
have disjoint support, so ‖|φ〉‖ ≤ √q.

Applying the above arguments, this means ‖P |ψ′〉‖ ≤ ‖P |ψ〉‖+ 2√q√
2n . Therefore, after q queries,

‖P |ψ〉‖ ≤
∑q
i=1

2√q√
2n ≤

2q3/2
√

2n . Thus, the probability that D contains a collition is at most 4q3/2n.
Then we get the theorem:

Theorem 4.2. After q queries, if the compressed (standard or phase) oracle for H is measured,
the resulting database will contain a collision with probability at most O(q3/2n)
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4.3 More General Settings

The above proof technique is very general. Suppose we have a relation R such that, for any input x,
if R is not satisfied on a database D of size q, then there are at most k(q) possible pairs (x,w) that
can be added to D to make R satisfied. Then we have that the total probability R is satisfied on D
after q queries is at most 4(∑q

i=1
√
k(q))2/2n.

This can be used to easily show optimal bounds for the k-sum problem for a random oracle:

Theorem 4.3. After q queries to a random oracle, D will contain k distinct tuples (xi, yi) such
that

∑
i yi = 0 with probability at most O(qk+1/2n), matching the optimal algorithm.

Furthermore, in many situations, |φ〉 can be further bounded. For example, in the setting of
3-collisions, |φ〉 must contain terms with a standard 2-collision; using the collision lower bound, we
have that the magnitude of |φ〉 is at most O(

√
q3/2n). This then implies that the probability of

finding a 3-collision is at most O(q5/22n)). More generally,

Theorem 4.4. After q queries to a random oracle, D will contain k distinct tuples (xi, yi) such
that yi = yj∀i, j with probability at most O(q2k−1/2(k−1)n). In other words, the quantum query
complexity is at least Ω((2n)(k−1)/(2k−1)).

As far as we know, no such lower bounds were previously known other than the trivial collision
bound.

5 Quantum Indifferentiability of Merkle-Damgård
In this section, we use our recorded phase technique to prove the indifferentiability of hash functions.
Specifically, we will prove the indifferentiability of the Merkle-Damgård construction when using a
pre-fix free encoding.

Pre-fix free encoding. A prefix-free code over {0, 1}∗ is a set S such that, for all x 6= y ∈ S, x
is not a prefix of y.

Merkle-Damgård. We briefly recall the Merkle-Damgård construction. Let h : {0, 1}2n → {0, 1}n
be a compression function. Let S be a prefix-free code over ({0, 1}n)∗. Given an input x ∈ S, define
MDh(w) as follows. First, write w as (w1, . . . , w`), where each wi ∈ {0, 1}n. Then:

• Let z1 = w1.

• For each i = 2, . . . , `, let zi = h(zi−1, wi).

• Output y`.

Our Simulator. We now consider an adversary interacting with h,H. In the real world, h
is a uniformly random function, and H = MDh. In the ideal world, H is chosen uniformly at
random, and we must construct a simulator Sim for h. We must show that these two worlds are
indisitnguishable.

Our simulator is defined as follows. The simulator implements h as the compressed standard
oracle CStO, but will make occasional exceptions in order to make sure the oracle is “consistent
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with” H. Sim maintains an unordered database D of (x, y) pairs, in superposition. D is initially
empty.

First, after every query, Sim will check that D contains no collision. That is, it will initialize
an auxiliary qubit, and flip the bit if there is a collision. Then it measures the qubit. If the result
is 1, Sim immediately aborts. Otherwise, the qubit contains 0, so it can be discarded and Sim
continues. This ensures that the state of D never contains collisions.

We describe how Sim operates on basis states |x, y〉, though Sim will actually operate in
superposition. Sim first looks for a “completion of” x in D. A completion is defined in the same
was as in the classical case. A completion is a list of entries ((z′i−1, wi), zi) ∈ D for i = 2, . . . `− 1
such that, if we write x = (z′`−1, w`):

• z′i = zi

• If we let w1 = z1, then (w1, . . . , w`) is in the prefix-free code S.

If Sim finds a single completion, let w = (w1, . . . , w`). Then Sim will make the query |w, y〉 to
the oracle H by splicing together the w it just computed with the y registers from the adversary’s
query. The response will be |w, y ⊕H(w)〉. Then it uncomputes the completion and w, and finally
returns |x, y ⊕H(w)〉 to the adversary by reconstituting the x and y registers from the original
query.

The fact that there are no collisions in D and that S is a prefix-free code implies that there is
only a single completion, so we do not need to worry about what happens if Sim finds multiple
completions (though for concreteness, imagine that S chooses the first such completion).

If Sim finds no completions, then it proceeds as if it was just the oracle CStO (it does not
perform a CStO operation in either of the above two cases).

Security Analysis. We now prove the efficacy of our simulator.

Theorem 5.1. For any distinguisher A making at most q queries, A cannot distinguish the real
from ideal world except with probability O(q42−n/2)

Proof. We will prove security using a sequence of hybrids.

Hybrid 0. This hybrid is the real world where h is random and H is implemented as MDh. Here,
we will think of h as implemented using the compressed standard oracle CStO with database D.

Hybrid 1. In this hybrid, we will implement H as MDh, but we will tweak the implementation of
h. After every query, h will look at its database D, and search for a collision: two tuples (x, y), (x′, y′)
such that x 6= x′ but y = y′. It will initialize an auxiliary bit to 0. If it finds any such collision, it
will flip the bit to 1.

Then, it measures the auxiliary bit. If the bit is 0, it discards the bit and continues. Otherwise,
if the bit is 1 it will immediately abort.

By the collision bound (Theorem 4.2), the probability that D contains a collision is negligible,
so the probability of abort is negligible. This means the measurement negligibly affects the state.
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Hybrid 2. In this hybrid, we will change h again, while keeping H as MDh. Here, instead of
storing the state for h as a single database D, we will store the state in “encoded” form as two
databases D,E. To process each query, we will decode, apply h as in Hybrid 1, and then re-encode.

To encode, start with an empty E and do the following. First, for each tuple (x, y) ∈ D, test if
(x, y) has a completion amongst the remaining tuples of D. If a completion is found for (x, y) with
string w, then add the tuple (w, y) to E. We need this operation to be reversible, so we actually
toggle whether (w, y) is in E. If no completion is found for (x, y), do nothing

Then for each (w, y) ∈ E, test if (w, y) corresponds to some tuple (x, y) ∈ D that has a
completion in D. Concretely, do the following: first set z1 = w1. Then, for i = 2, . . . `− 1, test if
there is a tuple ((zi−1, wi), zi) ∈ D. If not, stop, and report that no completion is found. Otherwise
continue. Finally, let x = (z`−1, w`), and report that there is a tuple with a completion.

If so, remove (x, y) from D (as before, we want this to be reversible, so we toggle whether (x, y)
is in D). Otherwise, do nothing.

We note that, since by Hybrid 1 D has no collisions and since S is a prefix-free code, we have
that:

• Any tuple (x, y) has at most one completion

• If (x, y) has a completion, then (x, y) not a part of any other completion

• No two completions correspond to the same w

• This means that it does not matter which completion we use (since there will only be one), or
the order in which we process completions

• This also means that whenever we are processing a (w, y), there will be exactly one pair (x, y)
corresponding to w that has a completion in D.

• This finally means that encoding is a reversible process. To decode, iterate over all (w, y) in
E. Search for the completion corresponding to w (it is guaranteed to exist and be unique).
Write the corresponding (x, y) tuple to D. After processing all (w, y) ∈ E, iterate over all
(x, y) and see if (x, y) has a completion with string w. If so, remove (w, y) from E.

The initial state of h is D,E are both empty, which corresponds to encoding an empty D.

Hybrid 3. In this hybrid, we will change h again, while keeping H as MDh. Here, however, we
will modify the encoding/decoding procedure above slightly.

During encoding, consider processing a pair (w, y) ∈ E, which resulted in removing some pair
(x = (z`−1, w`), y) from D. Let {((zi−1, wi), zi)}i=2,...`−1 in D be the completion of (x, y). After
removing (x, y), we then do the following for i = `− 1, . . . , 2:

• Take the pair ((zi−1, wi), zi), and measure if zi is 0 in the Fourier domain.

• If zi is 0 in the Fourier domain, then remove the pair ((zi−1, wi), zi) from D

• If zi is non-zero in the Fourier domain, stop and move on to the next (w, y) pair in E

It is important to process the completion in reverse order, since if ((zi−1, wi), zi) ∈ D, then
almost certainly measuring ((zi−2, wi−1), zi−1) in the Fourier basis will result in non-zero, since zi−1
is still in use.
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Similarly, during decoding, when processing a (w, y) ∈ E, if we would abort the completion
finding process, instead gradually create a completion in D. That is, when testing if there is a tuple
((zi−1, wi), zi) ∈ D, if we don’t find one, we instead do the following: for j = i, . . . , `−: create a
tuple ((zj−1, wj), zj) where zj is the uniform superposition over all possible zj and add this tuple to
D. Finally, let x = (z`−1, w`), and report that there is a tuple with a completion.

Notice that if we ever remove a tuple from D during encoding, we will be guaranteed to add it
back in during decoding. Therefore, the only difference between Hybrid 2 and Hybrid 3 is that
introduce some extra measurements (namely, measuring whether a pair is 0 in the Fourier domain).
However, we claim that these measurements have negligible effect on the state. Indeed, define Px,y
as the measurement that looks up the pair (x, y′) ∈ D and (provided it exists), outputs 1 if and only
if y′ = y. Similarly, define Tx as the measurement that looks up the pair (x, y′) ∈ D, and (provided
it exists), outputs 1 if and only if y′ is 0 in the Fourier domain.

We claim that Tx and Px,y almost commute. Indeed, the operator that corresponds to measuring
Tx and getting 1 is just |ψ〉〈ψ| where |ψ〉 is the uniform superposition over all points. Similarly, Px,y
giving 1 corresponds to the projection |y〉〈y|. If we compute the commutator, we get

1
2n

|y〉∑
y′

〈y′| −
∑
y′

|y′〉〈y|

 =

|y〉∑
y′ 6=y
〈y′| −

∑
y′

|y′〉〈y|

 =
√

2n − 1
2n

(
|y〉〈φ′| − |φ′〉〈y|

)
where |φ′〉 is the uniform superposition over all points other than 0.

This is a rank-2 matrix, and since |ψ′〉, |0〉 are unit vectors, the norm of the eigenvalues of this
matrix are at most 2×

√
2n−1
2n , which is negligible. Thus, for any state, swapping the order of Tx

and Px,y has a negligible affect on the resulting state.

Notice that Tx, Px,y are projections. Moreover, for every point x added to D, the measurement Tx
is already applied at least once when x is first added. Finally, it is straightforward to implementing
all of the testing for completions as a sequence of polynomially-many applications of Px,y. Piecing
this all together, we can move every Tx measurements performed in Hybrid 3 to occur exactly
when x is added to D, and then absorb it with the Tx that already exists there. By the near
commutativity of Tx and Px,y, this incurs only a negligible affect on the final state.

Hybrid 4. Notice that in Hybrid 3, if we pretended that Tx and Px,y actually commuted, the
ultimate effect of decoding, handling the query |x, y〉, and then re-encoding is that most of the
D,E tuples will be unaffected. The only tuples that may be affected are (x, y) ∈ D, or the tuple
(w, y) ∈ E if w corresponds to a completion of x.

Therefore, in Hybrid 4, we do not decode or encode anything except tuples relating to |x, y〉.
By the near commutativity of Tx and Px,y, this will only negligibly affect the state.

At this point, an equivalent way of describing Hybrid 4 is as follows. We implement h as Sim,
which makes queries to an oracle H ′. The state of Sim will be D, and H ′ will be implemented
using the compressed standard oracle with database E. H will still be MDh.

Hybrid 5. Finally, we describe the ideal world, which is the same as Hybrid 4, except that we
set H to be the same as H ′. h is still implemented as Sim, which makes oracle queries to H ′ = H.
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We now verify that Hybrid 4 and Hybrid 5 are identical. Since h is implemented the same
way in both hybrids, we only need to verify that a query to MDh is identical to making a query
directly to H ′.

Indeed, it is straightforward to verify that after making the initial `− 1 calls to h, the final query
will detect in a completion, resulting in the desired query to H ′. Moreover, it is straightforward to
verify that any effect on h the queries leading up to the final call have will be uncomputed when
MDh un-computes its intermediate values.

We can make all of the above steps quantitative, using the following lemma of [BBBV97]:

Lemma 5.2 ([? ]). Let |ϕ〉 and |ψ〉 be quantum states with Euclidean distance at most ε. Then,
performing the same measurement on |ϕ〉 and |ψ〉 yields distributions with statistical distance at
most 4ε.

The only transitions that cause any change are:

• Hybrid 0 to Hybrid 1. Here, the error caused by each step is a vector of norm O(√q2−n/2).
The overall error is therefore O(q3/22−n/2)

• Hybrid 2 toHybrid 3. Here, we can implement the completion check using q2 primal-domain
tests. Re-ordering these tests with the Fourier domain tests with the Fourier domain test
results in an error vector of norm O(q22−n/2). The overall error is O(q32−n/2)

• Hybrid 3 to Hybrid 4. Here, the only difference is re-ordering up to q tests in the Fourier
domain with the up to q2 primal tests. This results in an error vector of norm O(q32−n/2).
The overall error is O(q42−n/2)

Piecing everything together, we find that the total error is at most O(q42−n/2).
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