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Abstract

We present a worst case decoding problem whose hardness reduces to that of solving the
Learning Parity with Noise (LPN) problem, in some parameter regime. Prior to this work, no
worst case hardness result was known for LPN (as opposed to syntactically similar problems
such as Learning with Errors). The caveat is that this worst case problem is only mildly hard
and in particular admits a quasi-polynomial time algorithm, whereas the LPN variant used in
the reduction requires extremely high noise rate of 1/2 − 1/poly(n). Thus we can only show
that “very hard” LPN is harder than some “very mildly hard” worst case problem.

Specifically, we consider the (n,m,w)-nearest codeword problem ((n,m,w)-NCP) which ta-
kes as input a generating matrix for a binary linear code in m dimensions and rank n, and a
target vector which is very close to the code (Hamming distance at most w), and asks to find
the codeword nearest to the target vector. We show that for balanced (unbiased) codes and
for relative error w/m ≈ log2 n/n, (n,m,w)-NCP can be solved given oracle access to an LPN
distinguisher with noise ratio 1/2− 1/poly(n).

Our proof relies on a smoothing lemma for codes which we show to have further implications:
We show that (n,m,w)-NCP with the aforementioned parameters lies in the complexity class
Search-BPPSZK (i.e. reducible to a problem that has a statistical zero knowledge protocol)
implying that it is unlikely to be NP-hard. We then show that LPN with very low noise rate
log2(n)/n implies the existence of collision resistant hash functions (our aforementioned result
implies that in this parameter regime LPN is also in BPPSZK).
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1 Introduction

The hardness of noisy learning problems such as learning parity with noise (LPN) [BFKL93,
BKW03] and learning with errors (LWE) [Reg05] have proved to be a goldmine in modern crypto-
graphy. The hardness of LWE has been instrumental in solving long-standing problems such as fully
homomorphic encryption [Gen09,BV11]. Both LPN and LWE have given us efficient and plausibly
quantum-proof cryptographic constructions [KPC+11,BCD+16,ADPS16]. However, while we know
several structural results about LWE, relatively little is known about the 25-year old LPN problem.

Before we proceed, let us define the LPN and LWE problems. In the (search version of the)
LPN problem, the algorithm is given access to an oracle that produces samples (ai, s

Tai + ei)
where s ∈ Zn2 is the “secret” vector, ai ∈ Zn2 are uniformly distributed and ei ∈ Z2 come from the
Bernoulli distribution (that is, it is 1 with probability ε and 0 otherwise). The goal is to recover
s. The (search version of the) LWE problem is the same but for two key changes: first, the vectors
ai ∈ Znq are uniformly random with entries from some large enough finite field Zq and second, each
error term ei is chosen from the discrete Gaussian distribution over the integers. The exact choice
of the error distribution does not matter much: what is important is that in LWE, each sample has
an error with bounded absolute value. These seemingly minor differences seem to matter a great
deal: we know worst-case to average-case reductions for LWE [Reg05,Pei09,BLP+13] which no such
result is known for LPN; we know that (a decisional version of) LWE is in the complexity class
SZK [MV03] (statistical zero-knowledge) while no such result is known for LPN; and we can build
a dizzying array of cryptographic primitives assuming the hardness of LWE while the repertoire of
LPN is essentially limited to one-way functions and public-key encryption (and primitives that can
be constructed generically from it). In particular, we do not know how to construct even simple,
seemingly “unstructured”, primitives such as a collision-resistant hash function from the hardness
of LPN, even with extreme parameter choices. Can we bridge this puzzling gap between LWE and
LPN?

In a nutshell, the goal of this paper is to solve all three of these problems. Our main tool is
a smoothing lemma for binary linear codes. We proceed to describe our results and techniques in
more detail.

1.1 Overview of Our Results and Techniques

Worst-case to Average-case Reduction. We consider the promise nearest codeword problem
(NCP), a worst-case analog of the learning parity with noise problem. Roughly speaking, in the
search version of the (n,m,w)-promise nearest codeword problem, one is given the generator matrix
C ∈ Zn×m2 of a linear code, along with a vector t ∈ Zm2 such that t = sTC + x for some s ∈ Zn2 and
x ∈ Zm2 with the promise that wt(x) = w. The problem is to find s. The non-promise version of this
problem (which is commonly called the nearest codeword problem) is known to be NP-hard, even
to approximately solve [ABSS93] and the promise problem is similarly NP-hard in the large-error
regime (that is, when the Hamming weight of x exceeds (1/2+ε)d where d is the minimum distance
of the code and ε > 0 is an arbitrarily small constant) [DMS99].

In terms of algorithms, Berman and Karpinski [BK02] show that how to find an O(n/ log n)-
approximate nearest codeword in polynomial time. In particular, this means that if the Hamming
weight of x in the promise version is at most O(m·log n/n), their algorithm finds the unique nearest
codeword s efficiently. To the best of our knowledge, this result is the current limit of polynomial-
time solvability of the promise nearest codeword problem. Alon, Panigrahy and Yekhanin [APY09]
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show a deterministic nearly-polynomial time algorithm with the same parameters. In this work, we
consider the promise NCP for balanced codes, where all codewords have Hamming weight between
(1/2−β)m and (1/2+β)m for some balance parameter β > 0. We are not aware of improved NCP
algorithms that apply to balanced codes.

Our first result (in Section 4) shows a reduction from the worst-case promise NCP for balanced

codes where w/m ≈ log2 n
n to the average-case hardness of LPNnε with very high error-rate ε =

1/2 − 1/O(n4). We note that a random linear code is β-balanced with overwhelming probability
when β ≥ 3

√
n/m so for a sufficiently large m the restriction on β is satisfied by most codes. Thus,

qualitatively speaking, our result shows that solving LPN with very high error on the average
implies solving NCP with very low error for most codes. While the parameters we achieve are
extreme, we emphasize that no worst-case to average-case reduction for LPN was known prior to
our work.

The worst-case to average-case reduction is a simple consequence of a smoothing lemma for
codes that we define and prove in Section 3. In a nutshell, our smoothing lemma shows a simple
randomized procedure that maps a worst-case linear code C and a vector t to a random linear code
C′ and a vector t′ such that if t is super-close to C, then t′ is somewhat close to C′. Our worst-case
to average-case reduction then follows simply by applying the smoothing lemma to the worst-case
code and vector. We show a simple Fourier-analytic proof of the smoothing lemma, in a way that is
conceptually similar to analogous statements in the context of lattices [MR04]. Similar statements
have been shown before in the list-decoding high-error regime [KS10], whereas our setting for NCP
is in the unique decoding (low error) regime.

Statistical Zero-Knowledge. Another consequence of our smoothing lemma is a statistical zero-

knowlege proof for the NCP problem for balanced codes with low noise, namely where w/m ≈ log2 n
n .

In particular, we show that the search problem is in BPPSZK. Membership in BPPSZK should
be viewed as an easiness result: a consequence of this result and a theorem of Mahmoody and
Xiao [MX10] is that NCP with low noise cannot be NP-hard unless the polynomial hierarchy
collapses. Our result is the first non-NP-hardness result we know for NCP, complementing the
NP-hardness result of Dumer, Micciancio and Sudan [DMS99] for noise slightly larger than half
the minimum distance, namely where w/m ≈ 1/2 (but leaves a large gap in between). This is the
LPN/codes analog of a result for LWE/lattices that we have known for over a decade [MV03]. We
refer the reader to Section 5 for this result.

Collision-Resistant Hashing. Finally, we show a new cryptographic consequence of the hard-
ness of LPN with low noise, namely a construction of a collision-resistant hash (CRH) function.
Again, collion-resistant hashing from LWE/lattices has been known for over two decades [Ajt96,
GGH96] and we view this result as an LPN/codes analog. The construction is extremely simple:

the family of hash functions is parameterized by a matrix A ∈ Zn×n
1+c

2 for some c > 0, its domain

is the set of vectors x ∈ Zn1+c

2 with Hamming weight 2n/(c log n) and the output is simply Ax
(mod 2). This is similar to a CRH construction from the recent work of Applebaum et al. [AHI+17]
modulo the setting of parameters; what is new in our work is a reduction from the LPN problem
with error rate O(log2 n/n) to breaking this CRH function.

Related Work. Our LPN-based collision-resistant hash function was used in [BLSV17] as a
basis for constructing an identity based encryption scheme based on LPN with very low noise.
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Concurrently with, and independently from, our work, Yu et al. [YZW+17] constructed a family
of collision-resistant hash functions based on the hardness of LPN using the same main idea as
in Section 6 of the present work. While the core ideas of the construction in the two works
is identical, [YZW+17] further discusses different parameter settings and some heuristics upon
whose reliance one can obtain a tighter connection between the hardness of the CRH and the LPN
problem.

2 Preliminaries

2.1 Notation

Throughout the paper, we will be working with elements in the additive group Z2 with the usual
addition operation. We will denote by bold lower-case letters vectors over Zn2 for n > 1, and by
bold upper-case letters matrices over Zm×n2 for m,n > 1. We will make the assumption that all
vectors are column vectors and write aT to denote the row vector which is the transpose of a. The
Hamming weight of a ∈ Zn2 , written as wt(a), denotes the number of 1’s in a. For a set S, we
write s← S to denote that s is chosen uniformly at random from S. When D is some probability
distribution, then s← D means that s is chosen according to D.

The Berε distribution over Z2 is the Bernoulli distribution that outputs 1 with probability ε and
0 with probability 1− ε. Let Smk be the set of all the elements s ∈ Zm2 such that wt(s) = k.

A negligible function negl(n) is any function that grows slower than inverse polynomial in n. In
particular, for every polynomial p there is an n0 ∈ N such that for every n > n0, negl(n) < 1/p(n).

2.2 The Learning Parity with Noise (LPN) Problem

For an s ∈ Zn2 , and an ε ∈ [0, .5] let Ons,ε be an algorithm that, when invoked, chooses a random

a ← Zn2 and e ← Berε and outputs (a, sTa + e). An algorithm A is said to solve the search LPNnε
problem with probability δ if

Pr[AO
n
s,ε ⇒ s ; s← Zn2 ] ≥ δ.

Let Un be an algorithm that, when invoked, chooses random a ← Zn2 and b ← Z2 and outputs
(a, b). We say that an algorithm A has advantage δ in solving the decisional LPNnε problem if∣∣Pr[AO

n
s,ε ⇒ 0; s← Zn2 ]− Pr[AU

n ⇒ 0]
∣∣ ≥ δ.

The LPN problem has a search to decision reduction (c.f. [KS06]). Namely, if there is an
algorithm that runs in time t and has advantage δ in solving the decisional LPNnε problem, then
there is an algorithm that runs in timeO(nt/δ) that solves the search LPNnε problem with probability
≈ 1.

The following fact is known in some contexts as The Piling-Up Lemma [Mat93].

Lemma 2.1. For all ε ∈ [0, 1
2 ] it holds that Pr[e1 + . . .+ ek = 0; ei ← Berε] = 1

2 + 1
2 · (1− 2ε)k.

2.3 The Nearest Codeword Problem

An (binary) (n,m, d)-code C is a subset of {0, 1}m such that |C| = 2n and for any two codewords
x,y ∈ C, wt(x ⊕ y) ≤ d. The code is linear (denoted [n,m, d]-code) if C is the row span of some
matrix C ∈ {0, 1}n×m.
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Definition 2.1 (Nearest Codeword Problem (NCP)). The nearest codeword problem NCPn,m,w is
characterized by n,m,w ∈ Z and is defined as follows. The input consists of a matrix C ∈ Zn×m
which is the generator of a code, along with a vector t ∈ Zm such that t = sTC + x for some
s ∈ Zn2 ,x ∈ Zm2 with wt(x) = w. The problem is to find s.

Note that our definition requires wt(x) = w, as opposed to the more relaxed requirement
wt(x) ≤ w. However since w comes from a polynomial domain {0, . . . ,m} the difference is not
very substantial (in particular, to solve the relaxed version one can go over all polynomially-many
relevant values of w and try solving the exact version).

In this work, we consider a variant of the problem which is restricted to balanced codes, which
are codes where all non-zero codewords have hamming weight close to 1/2. We start by defining
balanced codes and then present balanced NCP.

Definition 2.2. A code C ⊆ {0, 1}m is β-balanced if its minimum distance is at least 1
2(1 − β)m

and maximum distance is at most 1
2(1 + β)m.

Definition 2.3 (balanced NCP (balNCP)). The balanced nearest codeword problem balNCPn,m,w,β
is characterized by n,m,w ∈ Z and β ∈ (0, 1), and is defined as follows. The input consists of a
matrix C ∈ Zn×m which is the generator of a β-balanced code, along with a vector t ∈ Zm such
that tT = sTC + xT for some s ∈ Zn2 ,x ∈ Zm2 with wt(x) = w. The problem is to find s.

The balNCPn,m,w,β problem has a unique solution when w ≤ 1
2(1− β)m.

Standard decoding algorithms allow to solve NCP in polynomial time with success probability
(1 − w

m)n [BK02] or even deterministically in time (1 − w
m)−n · poly(n,m) [APY09]. We are not

aware of improved methods that apply to balanced codes.

2.4 Statistical Zero Knowledge

Statistical zero-knowledge (SZK) is the class of all problems that admit a zero-knowledge proof
[GMR89] with a statistically sound simulation. Sahai and Vadhan [SV03] showed that the following
problem is complete for SZK.

Definition 2.4. The promise problem Statistical Distance (SD) is defined by the following YES and
NO instances. For a circuit C : {0, 1}n → {0, 1}m, we let C(Un) denote the probability distribution
on m-bit strings obtained by running C on a uniformly random input. Let SD(D0, D1) denote the
statistical (variation) distance between the distributions D0 and D1.

ΠY ES := {(C0, C1) : C0, C1 : {0, 1}n → {0, 1}m and SD(C0(Un), C1(Un)) ≥ 2/3}
ΠNO := {(C0, C1) : C0, C1 : {0, 1}n → {0, 1}m and SD(C0(Un), C1(Un)) ≤ 1/3}

By BPPSZK, we mean decision problems that can be reduced to the statistical distance problem
using randomized reductions. While in general such reduction could query the SD oracle on inputs
that violate the promise (namely, a pair of circuits/distributions whose statistical distance lies
strictly between 1/3 and 2/3), the reductions we present in this paper will respect the SD promise.
Search-BPPSZK is defined analogously.
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3 A Smoothing Lemma for Noisy Codewords

Let C ⊆ Zm2 be a binary linear code with generating matrix C ∈ Zn×m2 . We say that a distribution
R over Zm2 smooths C if the random variable Cr for r ← R is statistically close to uniform over
Zn2 . We say that R also smooths noisy codewords if for every vector x of sufficiently low Hamming
weight, it holds that (Cr,xT r) is statistically close to the distribution UZn2 × Berε for some ε.

The notion of smoothing will play an important role in our reductions in this work. In particular,
we would like to characterize families of codes that are smoothed by distributions supported over
low Hamming weight vectors. To this end, we show that for balanced codes, there exist such
smoothing distributions. (Similar statements have been shown before in the high-error regime,
e.g., by Kopparty and Saraf [KS10].)

We start by defining balanced codes (also referred to as unbiased codes in the literature) and
the distribution Rd,m.

Definition 3.1. A code C ⊆ Zm2 is β-balanced if its minimum distance is at least 1
2(1 − β)m and

maximum distance is at most 1
2(1 + β)m.

We start by showing that most sparse linear codes are indeed balanced.

Lemma 3.1. A random linear code C ⊆ Zm2 of dimension n is β-balanced with probability at least

1−2n−β
2m/4+1. In particular, when β ≥ 3

√
n/m a random linear code is β-balanced with probability

1− negl(n).

Proof. Let C ← Zn×m2 be a randomly chosen generator matrix. Then the associated code C fails

to be β-balanced if and only if there exists some s 6= 0 ∈ Zn2 such that |wt(sTC)− m
2 | >

β
2m. For

any fixed s 6= 0 the vector sTC is uniformly random in Zm2 and therefore by the Chernoff bound:

Pr
[∣∣∣ wt(sTC)− m

2

∣∣∣ > βm
2

]
≤ 2 exp

(
−β

2m

4

)
By the union bound, the probability that the code is not β-balanced is at most

2n+1 exp

(
−β

2m

4

)
≤ 2n−

β2m
4

+1.

This is negligible in n when β ≥ 3
√
n/m.

We now define our family of smoothing distributions.

Definition 3.2. Let d,m ∈ N. The distribution Rd,m over Zm2 is defined as follows. Sample (with
replacement) d elements t1, . . . , td uniformly and independently from [m]. Output x = ⊕di=1uti,
where uj is the j-th standard basis vector. One can easily verify that Rd,m is supported only over
vectors of Hamming weight at most d.

Finally, we state and prove our smoothing lemma for noisy codewords.

Lemma 3.2. Let β ∈ (0, 1) and let C ∈ Zn×m2 be a generating matrix for a β-balanced binary linear
code C ⊆ Zm2 . Let c ∈ Zm2 be a word of distance w from C. Let s,x be s.t. cT = sTC + xT and
wt(x) = w.
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Consider the distribution (a, b) generated as follows. Sample r ← Rd,m and set a = Cr,
b = cT r. Then it holds that the joint distribution of (a, b− sTa) is within statistical distance δ from
the product distribution UZn2 × Berε, where

δ ≤ 2(n+1)/2 · (β + w
m)d and

ε = 1
2 −

1
2(1− 2w

m )d.

Proof. Let e denote the value b− sTa. We bound the distance of [ ae ] =
[

C
xT

]
r from U{0,1}n × Berε

using simple harmonic analysis. Let f be the probability density function of [ ae ], and consider its
(binary) Fourier Transform:

f̂(y, z) = E
a,e

[(−1)y
T a+ze] = E

r
[(−1)(yTC+zxT )r] , (1)

It immediately follows that f̂(0, 0) = 1. Moreover

f̂(0, 1) = E
r
[(−1)x

T r] . (2)

Recalling that r = ⊕di=1uti we have

E
r
[(−1)x

T r] =

d∏
i=1

E
ti

[(−1)x
Tuti ] = (1− 2w

m )d ,

since each ti is sampled uniformly and independently in [m] and thus has a w
m probability to hit a

coordinate where x is one. Recalling the definition of ε, we have f̂(0, 1) = 1− 2ε.
Now let us consider the setting where y 6= 0. In that case, let us denote v = yTC, a nonzero

codeword in C. Since C is balanced it follows that wt(v) ∈ [1
2(1− β)m, 1

2(1 + β)m]. Let us further
denote (v′)T = yTC + zxT , since wt(x) ≤ w it follows that wt(v′) ∈ 1

2(1 ± β′)m for β′ = β + w
m .

For y 6= 0 we thus get

f̂(y, z) = E
r
[(−1)(v′)T r] =

d∏
i=1

E
ti

[(−1)(v′)Tuti ] . (3)

Since each ti is sampled uniformly from [m], it follows that v′uti (mod 2) = 0 with probability
εi = 1/2(1± β′). Therefore for all i ∈ [d] it holds that∣∣∣∣Eti [(−1)v

′uti ]

∣∣∣∣ = |1− 2εi| ≤ β′ . (4)

We conclude that ∣∣∣f̂(y, z)
∣∣∣ ≤ (β′)d . (5)

Now we are ready to compare with UZn2 × Berε. Let g be the probability density function of
UZn2 × Berε, and let ĝ be its Fourier Transform. Then ĝ(0, 0) = 1, ĝ(0, 1) = 1− 2ε and ĝ(y, z) = 0
for all y 6= 0. Therefore∥∥∥f̂ − ĝ∥∥∥2

2
=
∑
y,z

∣∣∣f̂(y)− ĝ(y)
∣∣∣2 ≤ ∑

y∈Zn2 \{0}
z∈Z2

(β′)2d ≤ 2n+1(β′)2d . (6)
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By Parseval’s theorem, we have that

‖f − g‖22 =
1

2n+1

∥∥∥f̂ − ĝ∥∥∥2

2
≤ (β′)2d , (7)

and going to `1 norm we have

‖f − g‖1 ≤ 2(n+1)/2 ·
∥∥∥f̂ − ĝ∥∥∥

2
≤ 2(n+1)/2 · (β′)d , (8)

which completes the proof.

4 A Worst Case Balanced NCP to Average Case LPN Reduction

Theorem 4.1. Assume there is an algorithm that solves the search LPNnε problem with success
probability α in the average case by running in time T and making q queries. Then, for every
d ≤ m ∈ Z there is an algorithm that solves search balNCPn,m,w,β in the worst case in time
T · poly(n,m) with success probability at least α− q · δ where

δ ≤ 2(n+1)/2 · (β + w
m)d

ε = 1
2 −

1
2(1− 2w

m )d

Proof. Assume A is an algorithm for the LPN problem as in the theorem. Define B as follows:

• Input: C ∈ Zn×m2 , t ∈ {0, 1}m. By assumption C is the generator of a β-balanced code and
tT = sTC + xT for some s ∈ Zn2 ,x ∈ Zm2 with wt(x) ≤ w.

1. Sample s′ ← Zn2 and set cT = tT + (s′)TC = (s + s′)TC + xT .

2. Run the algorithm A. Every time A request a new LPN sample, choose r ← Rd,m and set
a = Cr, b = cT r and give a, b to A.

3. If at some point A outputs s∗ ∈ Zn2 then output s∗ − s′.

By Lemma 3.2 each of the values (a, b) given to A during step 2 is δ-close to a fresh sample from
Ons∗,ε where s∗ = s + s′ is uniformly random over Zn2 . By assumption, if A were actually given
samples from Ons∗,ε is step 2 it would output s∗ in step 3 with probability α. Therefore if A makes
q queries in step 2, the probability that it outputs s∗ in step 3 is at least α − qδ where α. This
proves the theorem.

Corollary 4.2. Let m = nc for some constant c > 1, β = 1√
n
, w = dm log2 n

n e. Assume that

search balNCPn,m,w,β is hard in the worst case, meaning that for every polynomial time algorithm
its success probability on the worst case instance is at most negl(n). Then for some ε < 1

2 −
1

O(n4)

search LPNnε is hard in the average case, meaning that for every polynomial time algorithm its
success probability on a random instance is at most negl(n).

Proof. Follows directly from the theorem by setting d = d2n/ log ne and noting that:

δ ≤ 2(n+1)/2 · (β + w
m)d ≤ 2(n+1)/2−(d/2) logn+O(1) ≤ 2−n/2+O(1) = negl(n)

ε = 1
2 −

1
2(1− 2w

m )d ≤ 1

2
− 2−(4 w

m
d+1) ≤ 1

2
− 1/O(n4)
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The above says that the wost-case hardness of balNCP with very low error-rate w/m ≈ log2 n
n

implies the average-case hardness of LPNnε with very high error-rate ε = 1/2− 1/O(n4). Note that
a random linear code is β-balanced with overwhelming probability when β ≥ 3

√
n/m so for a

sufficiently large m the restriction on β is satisfied by most codes.
Other choices of parameters may also be interesting. For example, we can set the error-rate to be

w/m ≈ 1/
√
n and d = 2n/ log n while keeping m = nc for some c > 1, β = 1/

√
n the same as before.

Then if we assume that balNCPn,m,w,β is (T (n), δ(n)) hard in the worst case (meaning that for every
T (n) time algorithm the success probability on the worst case instance is at most δ(n)) this implies
LPNnε is (T ′(n), δ′(n)) hard in the average where ε(n) = 1/2 − 2−

√
n/ logn, T ′(n) = T (n)/poly(n)

and δ′(n) = δ(n) +T ′(n)2−(n−1)/2. Note that, as far as we know, the balNCPn,m,w,β with noise rate

w/m = 1
√
n may be (T (n), δ(n)) hard for some T (n) = 2Ω(

√
n), δ(n) = 2−Ω(

√
n), which would imply

the same asymptotic hardness for LPNnε . Although the error-rate ε = 1/2− 2−
√
n/ logn is extremely

high, it is not high enough for the conclusion to hold statistically and therefore this connection may
also be of interest.

5 Statistical Zero Knowledge for Balanced NCP and LPN

In this section, we show that for certain parameter regimes, balNCP ∈ Search-BPPSZK and is thus
unlikely to be NP-hard [MX10]. Towards this end, we use a decision to search reduction analogous
to the canonical one known for the LPN problem. We consider the following randomized samplers
(with an additional implicit parameter d):

• Randomized sampler Samp0(C, t) takes as input a matrix C ∈ {0, 1}n×m and a word t ∈
{0, 1}m. It samples r

$← Rd,m and outputs (Cr, tT r).

• Randomized sampler Sampi,σ(C, t) is parameterized by i ∈ [n], σ ∈ {0, 1}, takes as input a

matrix C ∈ {0, 1}n×m and a word t ∈ {0, 1}m. It samples r
$← Rd,m and ρ ∈ {0, 1} and

outputs (Cr + ρui, t
T r + ρσ).

Lemma 5.1. Consider a generating matrix C ∈ {0, 1}n×m for a β-balanced code, and let t =
sTC + x for some s ∈ {0, 1}n and x with hamming weight w. Then the following hold:

1. The sampler Samp0(C, t) samples from a distribution that is δ-close to U{0,1}n × Berε.

2. If si = σ then Sampi,σ(C, t) samples from a distribution that is δ-close to U{0,1}n × Berε.

3. If si 6= σ then Sampi,σ(C, t) samples from a distribution that is δ-close to U{0,1}n × U{0,1}.

Here, ε = 1
2 −

1
2(1− 2w

m )d, δ = 2(n+1)/2 · (β + w
m)d.

Proof. Assertion 1 follows directly from Lemma 3.2.
For Assertion 2 we note that if si = σ then

(Cr + ρui, t
T r + ρσ) = (Cr, tT r) + ρ(ui, σ) = (Cr, tT r) + (ρui, s(ρui)) .

By Lemma 3.2 this distribution is within δ statistical distance to

(a, sTa + e) + (ρui, s
T (ρui)) ,
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with (a, e) distributed U{0,1}n × Berε. Finally, we can write

(a, sTa + e) + (ρui, s
T (ρui)) = ((a + ρui), s

T (a + ρui) + e) ,

and since a′ = a + ρui is also uniformly distributed, the assertion follows.
For Assertion 3 we note that when si 6= σ, i.e. σ = si + 1 then

(Cr + ρui, t
T r + ρσ) = (Cr, tT r) + ρ(ui, σ) = (Cr, tT r) + (ρui, s

T (ρui)) + (0, ρ) .

As above, by Lemma 3.2, this distribution is within δ statistical distance to

(a, sTa + e) + (ρui, s
T (ρui)) = ((a + ρui)︸ ︷︷ ︸

a′

, sT (a + ρui) + e) + (0, ρ) = (a′, sTa′ + e+ ρ) ,

with (a, e) distributed U{0,1}n×Berε, and thus also (a′, e) distributed U{0,1}n×Berε and independent

of ρ. Since ρ is uniform and independent of (a′, e) it follows that (a′, sTa′ + e + ρ) is distributed
U{0,1}n × U{0,1}.

The following is an immediate corollary of Lemma 5.1.

Corollary 5.2. If si = σ then the distributions generated by Sampi,σ(C, t) and Samp0(C, t) are
within statistical distance at most 2δ.

If si 6= σ then the distributions generated by Sampi,σ(C, t) and Samp0(C, t) are within statistical
distance at least (1− 2ε)− 2δ.

Proof. A direct calculation shows that the statistical distance between Berε and U{0,1} is 1 − 2ε.
Plugging in Lemma 5.1, the result follows.

We define the notion of a tensored sampler. This is just a sampler that outputs multiple
samplers.

Definition 5.1. Let D be a distribution and let k ∈ N, then D⊗k is the distribution defined by k
independent samples from D.

Lemma 5.3. Consider distributions D1,D2 and values 0 ≤ δ1 ≤ δ2 ≤ 1 s.t. dist(D1,D2) ∈ (δ1, δ2).
Let k ∈ N then dist(D⊗k1 ,D⊗k2 ) ∈ (1− c1e

−c2δ21k, kδ2). For some positive constants c1, c2.

Proof. The upper bound follows by union bound and the lower bound from the Chernoff bound.

Theorem 5.4. There exists a Search-BPPSZK algorithm for solving balNCP on instances of the
following form. Letting C ∈ {0, 1}n×m, t ∈ {0, 1}m, w ∈ [m] denote the balNCP input, we require
that the code generated by C is β-balanced and that n,m,w, β are such that there exist d ∈ [m] and
k ≤ poly(n,m) for which

2δk < 1/3 (9)

for δ = 2(n+1)/2 · (β + w
m)d, and

c1e
−c2(1−2ε−2δ)2k < 1/3 (10)

for δ as above, ε = 1
2 −

1
2(1− 2w

m )d, and c1, c2 are the constants from Lemma 5.3.

9



Proof. We recall the problem Statistical Distance (SD) which is in SZK. This problem takes as
input two sampler circuits and outputs 0 if the inputs sample distributions that are within statistical
distance < 1/3 and 1 if the distributions are within statistical distance > 2/3. We will show how
to solve balNCP for the above parameters using an oracle to SD.

Specifically, for all i = 1, . . . , n and σ ∈ {0, 1}, the algorithm will call the SD oracle on input
(Samp⊗k0 (C, t), Samp⊗ki,σ (C, t)), where Samp⊗k(·) is the algorithm that runs the respective Samp k

times and outputs all k generated samples.
Let αi,σ denote the oracle response on the (i, σ) call. Then if for any i it holds that αi,0 = αi,1,

then return ⊥. Otherwise set si to the value σ for which αi,σ = 0. Return s.
By definition of our samplers, they run in polynomial time, so if k is polynomial then our inputs

to SD are indeed valid. Combining Corollary 5.2 and Lemma 5.3, it holds that αi,σ = 0 if and only
if s∗i = σ, where s∗ is the vector for which tT = (s∗)TC + xT and wt(x) = w. The correctness of
the algorithm follows.

Corollary 5.5. Let m = nc for some constant c > 1, β = 1√
n
, w = dm log2 n

n e. Then search

balNCPn,m,w,β ∈ Search-BPPSZK.

Proof. In Theorem 5.4 set d = d2n/ log ne and k = n9. By the same calculation as in Corollary 4.2
we have δ = negl(n) and ε ≤ 1

2 − 1/O(n4). Therefore for large enough n we have 2δk < 1/3 and

c1e
−c2(1−2ε−2δ)2k = e−Ω(n) < 1/3 as required by the theorem.

On Statistical Zero Knowledge and LPN. We notice that since sparse random codes are
balanced with overwhelming probability (Lemma 3.1), our results in this section also imply that

the LPN problem is in Search-BPPSZK for error value log2 n
n . We note that even though in LPN

the weight of the noise vector (the distance from the code) is not fixed as in our definition of
balNCP, the domain of possible weights is polynomial and thus the exact weight can be guessed
with polynomial success probability. Once a successful guess had been made, it can be verified once
a solution had been found.

6 Collision-Resistant Hashing

In this section, we describe a collision-resistant hash function family whose security is based on the
hardness of the (decisional) LPNn

O(log2 n/n)
problem. For any positive constant c ∈ R+ and a matrix

A ∈ Zn×n
1+c

2 , define the function

hA : Sn1+c

2n/(c logn) → Zn2 as hA(r) := Ar. (11)

Notice that because∣∣∣Sn1+c

2n/(c logn)

∣∣∣ =

(
n1+c

2n/(c log n)

)
>

(
n1+c

2n/(c log n)

)2n/(c logn)

> 22n

and the size of Zn2 is exactly 2n, the function hA is compressing.
We now relate the hardness of finding collisions in the function hA, for a random A, to the

hardness of the decisional LPNnε problem.
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Theorem 6.1. If there exists an algorithm A1 running in time t such that

Pr
[
A1(hA)⇒ (r1, r2) ∈ Sn1+c

2n/(c logn) s.t. r1 6= r2 and hA(r1) = hA(r2) ; A← Zn×n
1+c

2

]
≥ δ,

then there exists an algorithm A2 that runs in time ≈ t and solves the decisional LPNnε problem for
any ε ≤ 1

4 with advantage at least δ · 2−16nε/(c logn)−1.
In particular, for ε = O(log2 n/n) and any δ = 1/poly(n), the advantage is 1/poly(n).

Proof. The algorithm A2 has access to an oracle that is either Ons,ε or Un. He calls the oracle n1+c

times to obtain samples of the form (ai, bi). He arranges the ai and bi into a matrix A and vector
b as

A =
[

a1 | · · · | an1+c

]
∈ Zn×n

1+c

2 , b =

 b1
· · ·
bn1+c

 ∈ Zn
1+c

2

and sends A to A1. If A1 fails to return a valid answer, then A2 outputs ans ← {0, 1}. If A1

does return valid distinct r1 and r2 such that hA(r1) = hA(r2), then A2 returns ans = bT (r1− r2).
We first look at the distribution of ans when the oracle that A2 has access to is Un. In this case

it’s easy to see that regardless of whether A1 returns a valid answer, we’ll have Pr[ans = 0] = 1
2

because b is completely uniform in Zn1+c

2 .
On the other hand, if the oracle is Ons,ε, then we know that for all i, bi = sTai + ei,

where ei ← Berε. This can be rewritten as sTA + eT = bT where e =

 e1

· · ·
en1+c

. Therefore

bT (r1 − r2) = A(r1 − r2) + eT (r1 − r2) = eT (r1 − r2).

Since wt(ri) = 2n/(c log n), we know that wt(r1 − r2) ≤ 4n/(c log n). Since the A that is sent
to A1 is independent of e, we have that

Pr[eT · (r1 − r2) = 0 ; ei ← Berε] ≥
1

2
+

1

2
(1− 2ε)4n/(c logn) ≥ 1

2
+ 2−16nε/(c logn)−1, (12)

where the first inequality follows from Lemma 2.1 and the second inequality is due to the assumption
that ε ≤ 1

4 and the fact that 1− x ≥ 2−2x for x ≤ 1/2.
Thus when the oracle is Ons,ε, we have

Pr[ans = 0] ≥ 1

2
· (1− δ) +

(
1

2
+ 2−16nε/(c logn)−1

)
· δ =

1

2
+ δ · 2−16nε/(c logn)−1.

6.1 Observations and Other Parameter Regimes.

As far as we know, the best attack against the hash function in (11) with c = 1 requires 2Ω(n) time,
whereas the LPNn

log2 n/n
problem, from which we can show a polynomial-time reduction, can be

solved in time 2O(log2 n). Thus there is possibly a noticeable loss in the reduction for this parameter
setting. It was observed in [YZW+17, Theorem 2, Theorem 3] that there are other ways to set the
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parameters in Theorem 6.1 which achieve different connections between the hash function and the
underlying LPN problem. For example, defining n = log2m and c = logm/ log logm − 1 implies

that there exists a hash function defined by the matrix A ∈ Zlog2m×2m
2 such that succeeding with

probability δ in finding collisions in this hash function is at least as hard as solving LPNlog2m
ε problem

with advantage δ ·m−O(κε) for a constant κ. This is exactly the parameter setting in [YZW+17,
Theorem 3].1

Based on the state of the art of today’s algorithms, it’s clear that using a hash function defined
by an n × n2 matrix A is more secure than one defined by a log2 n × 2n matrix (since one can

trivially find collisions in the latter in time 2O(log2 n)). There is, however, no connection that we’re
aware of between the LPN problems on which they are based via Theorem 6.1. In particular, we
do not know of any polynomial-time (in n) reductions that relate the hardness of the LPNn

log2 n/n

problem to the LPNlog2 n
ε problem for a constant ε.
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