
Updatable and Universal Common Reference
Strings with Applications to zk-SNARKs

Jens Groth1 and Markulf Kohlweiss23 and Mary Maller12? and Sarah
Meiklejohn1 and Ian Miers??2

1 University College London
{j.groth,mary.maller.15,s.meiklejohn}@ucl.ac.uk

2 Microsoft Research Cambridge
3 University of Edinburgh

markulf.kohlweiss@ed.ac.uk
4 Cornell Tech

imiers@cs.jhu.edu

Abstract. By design, existing (pre-processing) zk-SNARKs embed a
secret trapdoor in a relation-dependent common reference strings (CRS).
The trapdoor is exploited by a (hypothetical) simulator to prove the
scheme is zero knowledge, and the secret-dependent structure facilitates
a linear-size CRS and linear-time prover computation. If known by a
real party, however, the trapdoor can be used to subvert the security
of the system. The structured CRS that makes zk-SNARKs practical
also makes deploying zk-SNARKS problematic, as it is difficult to argue
why the trapdoor would not be available to the entity responsible for
generating the CRS. Moreover, for pre-processing zk-SNARKs a new
trusted CRS needs to be computed every time the relation is changed.
In this paper, we address both issues by proposing a model where a
number of users can update a universal CRS. The updatable CRS model
guarantees security if at least one of the users updating the CRS is hon-
est. We provide both a negative result, by showing that zk-SNARKs
with private secret-dependent polynomials in the CRS cannot be updat-
able, and a positive result by constructing a zk-SNARK based on a CRS
consisting only of secret-dependent monomials. The CRS is of quadratic
size, is updatable, and is universal in the sense that it can be specialized
into one or more relation-dependent CRS of linear size with linear-time
prover computation.

1 Introduction

Since their introduction three decades ago, zero-knowledge proofs have been
constructed in a variety of different models. Arguably the simplest setting is

? This work was done in part while Mary Maller was an intern at Microsoft Research
Cambridge, and she is funded by Microsoft Research Cambridge.

?? This work was done in part while Ian Miers was visiting Microsoft Research Cam-
bridge.

the Uniform Random String (URS) model, introduced by Blum, Feldman, and
Micali [BFM88] and used heavily since [FLS99, Dam92, SP92, KP98, SCP00,
GO14, Gro10a, GGI+15]. In the URS model both the prover and verifier have
access to a string sampled uniformly at random and it enables the prover to
send a single non-interactive zero-knowledge (NIZK) proof that convinces the
verifier. This model is limited, however, so many newer NIZK proof systems are
instead in the Common Reference String (CRS) model [CF01, Dam00, FF00,
GOS12, GS12]. Here, the reference string must have some structure based on

secret random coins (e.g., be of the form Gs, Gs
2

, Gs
3

, . . .) and the secret (e.g.,
the value s) must be discarded after generation. This makes CRS generation an
inherently trusted process.

Until recently, little consideration had been given to how to generate com-
mon reference strings in practice, and it was simply assumed that a trusted
party could be found. The introduction of zk-SNARKs (zero-knowledge Suc-
cinct Non-interactive ARguments of Knowledge) in the CRS model [Gro10b],
however, and subsequent academic and commercial usage has brought this issue
front and center. In particular, zk-SNARKs are of considerable interest for cryp-
tocurrencies given their usage in both Zcash [BCG+14], which relies on them in
order to preserve privacy, and Ethereum, which recently integrated support for
them [Buc17]. In these decentralized settings in which real monetary value is at
stake, finding a party who can be widely accepted as trusted is nearly impossible.

Ben-Sasson et al. [BCG+15] and subsequently Bowe et al. [BGG17] examined
the use of multi-party computation to generate a CRS, where only one out of n
parties needs to be honest but the participants must be selected in advance. In
concurrent work, Bowe et al. [BGM17] propose a protocol that avoids the pre-
selection requirement and as a result scales to more participants. Both protocols,
however, result in a CRS for a fixed circuit with a fixed set of participants.
This raises issues about who the participants are and how they were selected,
which are compounded by the fact that upgrades for increased performance or
functionality require a new circuit and thus a new invocation of the protocol.
This offers both renewed opportunities for adversarial subversion and loss of
faith in the integrity of the parameters. Despite multi-party CRS generation,
CRS setup (and particularly the cost it imposes on upgrading protocols), is thus
a major obstacle to the practical deployment and usage of zk-SNARKs.

Motivated by this issue of trusted setup, several works have recently examined
alternatives to CRS-based pre-processing SNARKS in the URS and random or-
acle model, despite the associated performance disadvantages. Current proposed
alternatives either have proofs that even for modest circuit sizes, range into the
hundreds of kilobytes [BSBHR18, WTas+17, AHIV17], or can take more than 13
minutes to verify a single SHA-256 preimage [BBB+18, BCC+16]. In contrast,
(Quadratic Arithmetic Program) QAP-based zk-SNARKs offer quasi-constant-
size proofs and verification times in the tens of milliseconds. Thus, modulo the
barrier of having a trusted CRS setup, they are ideally suited to applications such
as blockchains where space and bandwidth are highly constrained and proofs are
expected to be verified many times in a performance-critical process.

2

Our contributions. To provide a middle ground between the fully trusted and
fully subverted CRS models, we introduce and explore a new setup model for
NIZK proofs: the updatable CRS model. In the updatable CRS model, any user
can at any point choose to update the common reference string, provided that
they also prove they have done the update correctly. If the proof of correctness
verifies, then the new CRS resulting from the update can be considered trust-
worthy (i.e., uncorrupted) as long as either the old CRS or the updater was
honest. If multiple users participate in this process, then it is possible to get a
sequence of updates by different people over a period of time. If any one update
is honest at any point in the sequence, then the scheme is sound.

We introduce our model for updatable zero-knowledge proofs in Section 3,
where we also relate it to the classical CRS model (which we can think of as
weaker) and the models for subversion-resistant proofs [BFS16, ABLZ17] (which
we can think of as stronger).

Since Bellare et al. showed that it was impossible to achieve both subversion
soundness and even standard zero-knowledge, it follows that it is also impossible
to achieve subversion soundness and updatable zero-knowledge. With this in
mind, we next explore the space of NIZK proofs that achieve subversion zero-
knowledge (and thus updatable zero-knowledge) and updatable soundness.

We first observe that the original pairing-based zk-SNARK construction due
to Groth [Gro10b] can be made updatably sound. His construction, however, has
a quadratic-sized reference string, resulting in quadratic prover complexity. Our
positive result in Section 5 provides a construction of an updatable QAP-based
zk-SNARK that uses a quadratic-sized universal CRS, but allows for the deriva-
tion of linear-sized relation-dependent CRSs (and thus linear prover complexity).
Because our universal CRS consists solely of monomials, our construction gets
around our negative result in Section 6, which demonstrates that it is impossible
to achieve updatable soundness for any pairing-based NIZK proof that relies
on embedding non-monomials in the reference string (e.g., uses terms Gs

2+s). In
particular, this shows that QAP-based zk-SNARKs such as Pinocchio [PHGR13]
do not satisfy updatable soundness.

Applications. Updatable common reference strings are a natural model for pa-
rameter generation in a cryptocurrency, or other blockchain-based settings. In-
formally, in a blockchain, blocks of data are agreed upon by peers in a global
network according to some consensus protocol, with different blocks of data be-
ing contributed by different users.

If each block (or one out of every n blocks) contains an update to the CRS
performed by the creator of the block, then assuming the blockchain as a whole
is correct, the CRS is sound. Indeed, we achieve a stronger property than the
blockchain itself: assuming one single block was honestly generated, then the
CRS is sound even if all other blocks are generated by dishonest parties.

While updatable security thus seems to be a natural fit for blockchain-based
settings, there would be considerable work involved in making the construction
presented in this paper truly practical. As our construction is compatible with
several techniques designed to achieve efficiency (e.g., pruning of the blockchain)

3

and does not require replication of the entire sequence of updated CRSs in order
to perform verification, we believe this is a promising avenue for future research.

Knowledge assumptions. Our approach to proving that the updates are car-
ried out correctly is to prove the existence of a correct CRS update under a
knowledge extractor assumption. Knowledge assumptions define conditions un-
der which extractors can retrieve the internal ‘knowledge’ of the adversary, in
this case secret randomness used to update the CRS correctly. While less reas-
suring than standard model assumptions, the security of zk-SNARKs typically
rely on knowledge assumptions anyway (and must be based on non-falsifiable
assumptions [GW11]), and our construction is proven updatably sound under
the same assumptions as those that are used to prove standard soundness. We
assume that an adversary does not subvert our scheme by hiding a trapdoor in
the groups. Choosing such elliptic curve groups is a contentious affair [BCC+14]
and outside the scope of this paper, but one option for guaranteeing the ad-
versary does not implant a trapdoor is to use a deterministic group generation
algorithm.

Updatable CRS vs. URS model. The updatable CRS model is closer to the URS
model than the CRS model, but it is important to acknowledge the differences.
In the URS model, given a valid proof and a URS, a verifier only needs to be
convinced that the URS was sampled at random (e.g. via a hash function in the
random oracle model). An updatable CRS, in contrast, allows a skeptical verifier
to trust proofs made with respect to a CRS that they themselves updated (or
contributed to via a previous update). This is a weaker property than the URS
model, as it cannot help with proofs formed before this update. On the other
hand, updatable CRS schemes inherit the efficiency and expressiveness of the
CRS model, without fully inheriting its reliance on a trusted setup.

2 Related Work

In addition to the works referenced in the introduction, we compare here with
the research most closely related to our own.

In terms of acknowledging the potential for an adversary to compromise the
CRS, Bellare, Fuchsbauer and Scafuro [BFS16] ask what security can be main-
tained for NIZK proofs when the CRS is subverted. They formalise the differ-
ent notions of subversion resistance and then investigate their possibility. Using
similar techniques to Goldreich et al. [GOP94], they show that soundness in
this setting cannot be achieved at the same time as (standard) zero-knowledge.
Building on the notions of Bellare et al., two recent papers [ABLZ17, Fuc17] dis-
cuss how to achieve subversion zero-knowledge for zk-SNARKs. None of these
schemes, however, can avoid the impossibility result and they do not simultane-
ously preserves soundness and zero-knowledge under subversion.

The multi-string model by Groth and Ostrovsky [GO14] addresses the prob-
lem of subversion by designing protocols that require only the majority of the

4

Scheme Universal CRS Circuit CRS Size Prover comp Verifier comp

[Gro10b] (F2) O(n2) G — 42 G O(n2) Ex 36P + nMG
[PHGR13] (Fq) — O(n× +m− `) G 8 G O(n× +m− `) Ex 12P + ` Ex
[Gro16] (Fq) — O(n× +m) G 3 G O(n× +m− `) Ex 3P + ` Ex

This work (Fq) O(n2
×) G O(n× +m− `) G 3 G O(n× +m− `) Ex 5P + ` Ex

Table 1: Comparison for pairing-based zk-SNARKs for boolean and arithmetic circuit
satisfiability with `-element known circuit inputs, m wires, and n gates, of which n×
are multiplication gates. G means group elements, Ex means group exponentiations,
MG means group multiplications, and P means pairings.

parties contributing multiple reference strings to be honest. The disadvantage
of this approach is that unless reference strings can be efficiently compressed in
an off-line computation, protocols in the multi-string model have a running time
that is linear in the number of reference strings.

In terms of zk-SNARKs, some of the most efficient constructions in the litera-
ture [Lip13, PHGR13, BCTV14, DFGK14, Gro16, GM17] use the quadratic span
program (QSP) or quadratic arithmetic program (QAP) approach of Gennaro
et al. [GGPR13]. The issue with this approach when it comes to updatability is
that it requires embedding arbitrary polynomials in the exponents of group ele-
ments in the common reference string. However, we show in Section 6 that if it is
possible to update these polynomial embeddings, then it is possible to compute
all the constituent monomials in the polynomials. Uncovering the underlying
monomials, however, would completely break those zk-SNARKs, so QSP-based
and QAP-based updatable zk-SNARKs require a fundamentally new technique.

Two early zk-SNARKs by Groth [Gro10b] and Lipmaa [Lip12] do, however,
use only monomials. Lipmaa suggested the use of progression-free sets to con-
struct NIZK arguments with a CRS consisting of n(1+(1)) group elements and
only of monomials. It uses progression-free sets to give an elegant product ar-
gument and a permutation argument, which are then combined to give a circuit
satisfiability argument. The main drawback of [Gro10b] is that it has a quadratic-
sized CRS and quadratic prover computation, but it has a CRS that consists
solely of monomials, and thus is updatable.

We give a performance comparison of pairing-based zk-SNARKs in Table 1,
comparing the relative size of the CRS and the proof, and the computation
required for the prover and verifier. We compare Groth’s original zk-SNARK,
two representative QAP-based zk-SNARKs, and our updatable and specializ-
able QAP-based zk-SNARK. As can be seen, our efficiency is comparable to
the QAP-based schemes, but our universal reference string is not restricted to
proving a pre-specified circuit. One could use Valiant’s universal circuit con-
struction [Val76, LMS16] to achieve universality but this would introduce an
additional log n overhead. We pose as an interesting open question whether up-
datable zk-SNARKs with a shorter universal CRS exist.

In concurrent work, Bowe et al. [BGM17] propose a two-phase protocol for the
generation of a zk-SNARK reference string that is player-replaceable [GHM+17].

5

Like our protocol, the first phase of their protocol also computes monomials with
parties operating in a similar one-shot fashion. However, there are several differ-
ences. First, their protocol does so under the stronger assumption of a random
beacon and a random oracle, whereas we prove the security of our updatable
zk-SNARK directly under the same assumptions as a trusted setup zk-SNARK.
More significantly, to create a full CRS which does not have quadratic prover
time, Bowe et al. require a second phase. As one party in each phase must be
honest and the second phase depends on the first, the final CRS is not updatable.
There is no way to increase the number of parties in the first phase after the
second phase has started and, restarting the first phase means discarding the
participants in the second phase. As a result, the protocol is still a multi-party
computation to produce a fixed CRS with a fixed set of participants, albeit with
the set of participants fixed midway through the protocol instead of at the start.
In contrast, we produce a CRS with linear overhead from a quadratic-sized uni-
versal updatable CRS via an untrusted specialization process. Thus our CRS can
be continuously updated without discarding past participation.

3 Defining Updatable and Universal CRS Schemes

In this section, we begin by presenting some notation and revisiting the basic def-
initions of non-interactive zero-knowledge proofs in the common reference string
model, in which the reference string must be run by a trusted third party. We
then present our new definitions for an updatable CRS scheme, which relaxes the
CRS model by allowing the adversary to either fully generate the reference string
itself, or at least contribute to its computation as one of the parties perform-
ing updates. In this our model is related to subversion-resistant proofs [BFS16],
which we also present and compare to our own model.

3.1 Notation

If x is a binary string then |x| denotes its bit length. If S is a finite set then

|S| denotes its size and x
$←− S denotes sampling a member uniformly from S

and assigning it to x. We use λ ∈ N to denote the security parameter and 1λ to
denote its unary representation. We use ε to denote the empty string.

Algorithms are randomized unless explicitly noted otherwise. “PPT” stands
for “probabilistic polynomial time” and “DPT” stands for “deterministic poly-
nomial time.” We use y ← A(x; r) to denote running algorithm A on inputs

x and random coins r and assigning its output to y. We write y
$←− A(x) or

y
r←− A(x) (when we want to refer to r later on) to denote y ← A(x; r) for r

sampled uniformly at random. For an adversry A(1λ), we refer to the length of

its randomness as A.rt(λ), and sample r
$←− {0, 1}A.rl(λ).

We use code-based games in security definitions and proofs [BR06]. A game
SecA(λ), played with respect to a security notion Sec and adversary A, has a
main procedure whose output is the output of the game. The notation Pr[SecA(λ)]
is used to denote the probability that this output is 1.

6

3.2 NIZK proofs in the CRS model

Let Setup be a setup algorithm that takes as input a security parameter 1λ

and outputs a common reference string crs sampled from some distribution
D. Let R be a polynomial time decidable relation with triples (crs, φ, w). We
say w is a witness to the instance φ being in the relation defined by crs when
(crs, φ, w) ∈ R.

Non-interactive zero-knowledge (NIZK) proofs and arguments in the CRS
model are comprised of three algorithms (Setup,Prove,Verify), and satisfy com-
pleteness, zero-knowledge, and (knowledge) soundness. Perfect completeness re-

quires that for all reference strings output by setup crs
$←− Setup(1λ), whenever

(crs, φ, w) ∈ R we have that Verify(crs, φ,Prove(crs, φ, w)) = 1 . Soundness
requires that an adversary cannot output a proof that verifies with respect to an
instance not in the language, and knowledge soundness goes a step further and
requires that there exists an extractor X that can extract a valid witness from
any proof that verifies. Finally, zero knowledge requires that there exists a pair
(SimSetup,SimProve) such that an adversary cannot tell if it is given an honest
CRS and honest proofs, or a simulated CRS and simulated proofs (in which
the simulator does not have access to the witness, but does have a simulation
trapdoor τ). We present these notions more formally below.

3.3 Updating common reference strings

In our definitions we relax the CRS model by allowing the adversary to either
fully generate the reference string itself, or at least contribute to its computation
as one of the parties performing updates. Informally, we can think of this as
having the adversary interact with the Setup algorithm. More formally, we can
define an updatable CRS scheme that consists of PPT algorithms Setup,Update
and a DPT algorithm VerifyCRS. These behave as follows:

– (crs, ρ)
$←− Setup(1λ) takes as input the security parameter and returns a

common reference string and a proof of correctness.

– (crs′, ρ′)
$←− Update(1λ, crs, (ρi)

n
i=1) takes as input the security parameter,

a common reference string, and a list of update proofs for the common
reference string. It outputs an updated common reference string and a proof
of the correctness of the update.

– b ← VerifyCRS(1λ, crs, (ρi)
n
i=1) takes as input the security parameter, a

common reference string, and a list of proofs. It outputs a bit indicating
acceptance, b = 1, or rejection b = 0.

Definition 1. An updatable CRS scheme is perfectly correct if

– for all (crs, ρ)
$←− Setup(1λ) we have VerifyCRS(1λ, crs, ρ) = 1;

– for all (λ, crs, (ρi)
n
i=1) such that VerifyCRS(1λ, crs, (ρ)ni=1) = 1 we have for

(crs′, ρn+1)
$←− Update(1λ, crs, (ρi)

n
i=1) that VerifyCRS(1λ, crs′, (ρ)n+1

i=1) =
1.

7

Please observe that a standard trusted setup is a special case of an updatable
setup with ρ = ε as the update proof where the verification algorithm accepts
anything. For a subversion setup the proof rho can be considered as the extra
elements included in the CRS solely to make the CRS verifiable.

3.4 Security properties

We recall the notions of zero-knowledge, soundness, and knowledge soundness
associated with NIZK proof systems. In addition to considering the standard
setting with a trusted reference string, we also capture the subversion-resistant
setting, in which the adversary generates the reference string [BFS16, ABLZ17,
Fuc17], and introduce our new updatable reference string setting.

For each security property, the game in the left column of Figure 1 resembles
the usual security game for zero-knowledge, soundness, and knowledge sound-
ness. The difference is in the creation of the CRS crs, which is initially set to ⊥.
We then model the process of generating the CRS as an interaction between the
adversary and a setup oracle Os, at the end of which the oracle sets this value
crs and returns it to the adversary.

In principle, this process of creating the CRS can look like anything: it could
be trusted, or even a more general MPC protocol. For the sake of this paper,
however, we focus on three types of setup: (1) a trusted setup (T) where the
setup generator ignores the adversary when generating crs; (2) a subvertible
setup (S) where the setup generator gets crs from the adversary and uses it
after checking that it is well formed; and (3) a model in between that we call an
updatable setup (U). In this new model, an adversary can adaptively generate
sequences of CRSs and arbitrarily interleave its own malicious updates into them.
The only constraints on the final CRS are that it is well formed and that at least
one honest participant has contributed to it by providing an update.

In the definition of zero-knowledge, we require the existence of a PPT simu-
lator consisting of algorithms (SimSetup,SimUpdate,SimProve) that share state
with each other. The idea is that it can be used to simulate the generation of
common reference strings and simulate proofs without knowing the correspond-
ing witnesses.

Definition 2. Let P be a NIZK argument for the relation R. Then the argument
is X-secure, for X ∈ {T,U,S}, if it satisfies each of the following:

– P is X-zero-knowledge, if for all probabilistic polynomial time (PPT) algo-
rithms A the advantage |2 Pr[X-ZKA(1λ) = 1]− 1| is negligible in λ.

– P is X-sound if for all PPT algorithms A the probability Pr[X-SNDA(1λ) = 1]
is negligible in λ.

– P is X-knowledge-sound if for all PPT algorithms A there exists a PPT
extractor XA such that the probability |Pr[X-KSNDA,XA(1λ)| is negligible
in λ.

Moreover, if a definition holds with respect to an adversary with unbounded com-
putation, we say it holds statistically, and if the advantage is exactly 0, we say
it holds perfectly.

8

main COMPA(λ)

(crs, (ρi)
n
i=1, φ, w)← A(1λ)

b← VerifyCRS(1λ, crs, (ρi)
n
i=1)

if b = 0 or (crs, φ, w) /∈ R return 1

π
$←− Prove(crs, φ, w)

return Verify(crs, φ, π)

main X-ZKA(λ)

b
$←− {0, 1}

if b = 0
Setup← SimSetup
Update← SimUpdate

crs← ⊥; Q← ∅
r

$←− {0, 1}A.rl(λ)
b′ ← AX-Os,Opf (1λ; r)
return 1 if b′ = b else return 0

Opf(φ,w)

if (crs, φ, w) 6∈ R return ⊥
if b = 0 return SimProve(crs, r, φ)
else return Prove(crs, φ, w)

main X-SNDA(λ)

crs← ⊥
(φ, π)

$←− AX-Os (1λ)
return Verify(crs, φ, π) ∧ φ 6∈ LR

main X-KSNDA,XA(λ)

crs← ⊥
(φ, π)

r←− AX-Os (1λ)

w
$←− XA(crs, r)

return Verify(crs, φ, π) ∧ (φ,w) 6∈ R

T-Os(x)

if crs 6= ⊥ return ⊥
(crs, ρ)

$←− Setup(1λ)
return (crs, ρ)

U-Os(intent, crsn, (ρi)
n
i=1)

if crs 6= ⊥ return ⊥
if intent = setup

(crs, ρ)
$←− Setup(1λ)

Q← Q ∪ { ρ}
return (crs, ρ)

if intent = update
b ← VerifyCRS(1λ, crsn, (ρi)

n
i=1) = 0

if b = 0 return ⊥
(crs′, ρ′)

$←− Update(1λ, crsn, (ρi)
n
i=1)

Q← Q ∪ { ρ′}
return (crs′, ρ′)

if intent = final
b← VerifyCRS(1λ, crsn, (ρi)

n
i=1)

if b = 0 or Q ∩ { ρi}i = ∅ return ⊥
set crs← crsn and return crs

else return ⊥

S-Os(crsn, (ρi)
n
i=1)

if crs 6= ⊥ return ⊥
b← VerifyCRS(1λ, crsn, (ρi)

n
i=1) = 0

if b = 0 return ⊥
set crs← crsn and return crs

Fig. 1: The left games define zero-knowledge (X-ZK), soundness (X-SND), and knowl-
edge soundness (X-KSND). The right oracles define the notions X ∈ {T,U, S}; i.e.,
trusted, updatable, and subvertible CRS setups. A complete game is constructed by
using an oracle from the right side in the game on the left side.

9

One of the main benefits of our model is its flexibility. For example, a slightly
weaker but still trusted setup could be defined that would allow the adversary
to pick some parameters (e.g., the number of gates in an arithmetic circuit or a
specific finite field) and then run the setup on those. In addition to different types
of setup assumptions, it also would be easy to incorporate additional security
notions into this framework, such as simulation soundness.

Our definition of subvertible security is adapted from that of Abdolmaleki
et al. [ABLZ17], and our definition of update security is itself adapted from this
definition. We stress that this new notion of setup security is necessary: while we
prove that our construction in Section 5 satisfies subvertible zero-knowledge, this
is known to be mutually exclusive with subvertible soundness [BFS16], so update
security provides the middle ground in which we can obtain positive results. In
terms of relating these notions, it is fairly straightforward that updatable security
implies trusted security, and that subvertible security implies updatable security
(for all security notions).

Lemma 1. A proof system that satisfies a security notion with updatable setup
also satisfies the security notion with trusted setup.

Proof. To prove this, we must show that an adversary A against a trusted setup
can be used to construct an adversary B against an updatable setup. On all
queries to the T-Os oracle, B queries its U-Os oracle on input (setup, ε, ε) to get
back a value (crs, ρ). It then queries the oracle again on input (final, (crs, {ρ}),
and then returns (crs, ρ) to A whenever the output is not ⊥ (else it returns ⊥).
In all other interactions, B behaves in a manner identical to A, and if A queries
any other oracles (as in the ZK game) B responds using its own oracles.

As B behaves identically to A and directly simulates the challenger every-
where except on queries to T-Os, it suffices to show that in this interaction B
also produces a distribution identical to the one expected by A. To show this,
(crs, ρ) is the honest one output by Setup, and when it is generated by U-Os

ρ also gets added to the set Qc. By completeness, both of the checks when
U-Os runs on B’s second input thus pass, meaning the overall CRS gets set to

(crs, ρ)
$←− Setup(1λ), as expected by A. ut

Lemma 2. A proof system that satisfies a security notion with subvertible setup
also satisfies the security notion with updatable setup.

Proof. To prove this, we must show that an adversary A against an updatable
setup can be used to construct an adversary B against an subvertible setup.
On all types of queries to the U-Os oracle, B behaves honestly in running its
code. At the end, if A queries on (final, crsn, S = {ρi}ni=1), B checks that
VerifyCRS(1λ, crsn, S) = 1 and Qc ∩ S 6= ∅. If not, it returns ⊥. If so, B queries
its own oracle S-Os on input crsn and returns the resulting crs to A. In all
other interactions, B behaves in a manner identical to A, and if A queries any
other oracles B responds using its own oracles.

As B behaves identically to A and directly simulates the challenger every-
where except on queries to U-Os, it suffices to show that in this interaction B

10

also produces a distribution identical to the one expected by A. In all queries
except those that finalise the CRS sequence, B behaves honestly. In these types
of queries, B outputs ⊥ if VerifyCRS(1λ, S) = 0 or Qc ∩ S = ∅, as expected.
Otherwise, B outputs crsn if its own oracle doesn’t return ⊥, which it does
only if VerifyCRS(1λ, crsn, ε) = 0. By completeness, this would imply that
VerifyCRS(1λ, crsn, S) = 0, which means that B returns a meaningful crs to
A if and only if it gets a meaningful crs from its own oracle. ut

3.5 Specializing common reference strings

Consider a CRS for a universal relation that can be used to prove any arithmetic
circuit. Instances of the relation specify both wiring and inputs freely. For a
specific arithmetic circuit it is desirable to use the large CRS to derive a smaller
circuit-specific CRS for a relation with fixed wiring but flexible inputs, as this
might lead to more efficient prover and verifier algorithms. This can be seen as
a form of pre-computation on the large CRS to get better efficiency, but there
are conceptual advantages in giving the notion a name so in the following we
formalize the idea of specializing a universal CRS.

Let Φ be a DPT decidable set of relations, with each relation Rφ ∈ Φ being
itself DPT decidable. The universal relation R for Φ defines a language with
instances φ = (Rφ, u) such that ((Rφ, u), w) ∈ R if and only if Rφ ∈ Φ and
(u,w) ∈ Rφ. We say that a setup generates specializable universal reference
strings crs for R if there exists a DPT algorithm crsRφ ← Derive?(crs, Rφ)
and algorithms Prove and Verify can be defined in terms of algorithms π ←
Prove?(crsRφ , u, w) and b← Verify?(crsRφ , u, π) as follows:

– Prove(crs, φ, w) parses φ = (Rφ, u), asserts Rφ ∈ Φ, derives crsRφ ←
Derive?(crs, Rφ), and if so returns the proof generated by Prove?(crsRφ , u, w).

– Verify(crs, φ, π) first parses φ = (Rφ, u), checks Rφ ∈ Φ, derives crsRφ ←
Derive?(crs, Rφ), and returns Verify?(crsRφ , u, π).

Existing zk-SNARKs for boolean and arithmetic circuit verification have dif-
ferent degrees of universality. Groth [Gro10b] is universal and works for any
boolean circuit, i.e., the wiring of the circuit can be specified in the instance,
while subsequent SNARKs such as [GGPR13] and descendants have reference
strings that are for circuits with fixed wiring.

Schemes with a specializable CRS derivation aim to achieve the generality of
the former and the performance of the latter. As the Derive algorithm operates
only on public information, it can be executed by protocol participants whenever
necessary. This has two advantages. First, one can transform any attack against a
prover and verifier employing a specialized CRS into an attack on the universal
CRS and we thus do not need any special security notions. Second, it makes
it easier to design efficient updatable schemes as one can update the universal
CRS that does not yet have a relation-dependent structure, but publicly derive
an efficient circuit-specific CRS after the update. We will exploit this in the
second half of the paper, where we present an updatable zk-SNARK that avoids

11

our own impossibility result in Section 6. We will employ a quadratic-size CRS
that is universal for all QAPs, but then specialize it to obtain a linear-size CRS
and linear-time prover computation.

4 Background

Let G(1λ) be a bilinear group generator that given the security parameter 1λ

produces bilinear parameters bp = (p,G1,G2,GT , e,G,H), where G1,G2,GT are
groups of order prime p with generators G ∈ G1, H ∈ G2 and e : G1×G2 → GT
is a non-degenerative bilinear map. That is e(Ga, Hb) = e(G,H)ab and e(G,H)
generates GT .

4.1 Knowledge and computational assumptions

The knowledge-of-exponent assumption (KEA) introduced by Damg̊ard [Dam91]
says that given G, Ĝ = Gα it is infeasible to create C, Ĉ such that Ĉ = Cα

without knowing an exponent c such that C = Gc and Ĉ = Ĝc. Bellare and
Palacio [BP04] extended this to the KEA3 assumption, which says that given
G,Gα, Gs, Gαs it is infeasible to create C,Cα without knowing c0, c1 such that
C = Gc0(Gs)c1 . This assumption has been used also in symmetric bilinear groups
by Abe and Fehr [AF07], who called it the extended knowledge-of-exponent
assumption.

The bilinear knowledge of exponent assumption (B-KEA), which Abdolmaleki
et al. [ABLZ17] refer to as the BDH-KE assumption, generalizes further to
asymmetric groups. It states that it is infeasible to compute C, Ĉ such that
e(C, Ĝ) = e(G, Ĉ) without knowing s such that (C, Ĉ) = (Gs, Ĝs). It corre-
sponds to the special case of q = 0 of the q-power knowledge of exponent (q-PKE)
assumption in asymmetric bilinear groups introduced by Groth [Gro10b].

We introduce the q-monomial knowledge assumption, as a generalization of
q-PKE to multi-variate monomials. We note that our construction in Section 5
could be made uni-variate by employing higher powers which would allow the
use of the ungeneralised q-PKE assumption.

Assumption 1 (The q-Monomial Knowledge Assumption (q-MK)) Let
a = {ai(X)}nai=1 and b = {ai(X)}nbi=1 be sets of n-variate monomials with the de-
gree, the number of monomials na, nb, and the number of variables n all bounded
by q. Let A be an adversary and XA be an extractor. Define the advantage
AdvMK

G,q,a,b,A,XA(λ) = Pr[MKG,q,a,b,A,XA(1λ)] where MKG,q,a,b,A,XA is defined as

main MKG,q,a,b,A,XA(1λ)

bp = (p,G1,G2,GT , e,G,H)
$←− G(1λ)

x
$←− Fsp

Ga, Hb, st← A(bp, {Gai(x)}n1
i=1, {Hbi(x)}n2

i=1)
c0, c1, . . . , cnb ← XA(st)
return a = b and b 6= c0 +

∑
i ci · bi(x)

12

The MK assumption holds relative to G if for all PPT adversaries A we have
AdvMK

G,q,a,b,A,XA(λ) is negligible in λ.

The corresponding multi-variate computational assumption is closely related
to the uni-variate q-bilinear gap assumption of Ghadafi and Groth [GG17]. It is
implied by the computational polynomial assumption of Groth and Maller [GM17].

Assumption 2 (The q-Monomial Computational Assumption (q-MC))
Let a = {ai(X)}nai=1 and b = {ai(X)}nbi=1 be sets of n variate monomials
with the degree, the number of monomials na, nb, and the number of vari-
ables n all bounded by q. Let A be a PPT algorithm, and define the advantage
AdvMC

G,q,a,b,A(λ) = Pr[MCG,q,a,b,A(1λ)] where MCG,q,a,b,A is defined as

main MCG,q,a,b,A(1λ)

bp = (p,G1,G2,GT , e,G,H)← G(1λ)
x← Fnp
(A, a(X))← A(bp, {Gai(x)}n1

i=1, {Hbi(x}n2
i=1)

return 1 if A = Ga(x) and a(X) /∈ span{1, a1(X), . . . , an1
(X)}

else return 0

The MC assumption holds relative to G if for all PPT adversaries A we have
AdvMC

G,q,a,b,A(λ) is negligible in λ.

4.2 A QAP-based zk-SNARK recipe

Here we describe a generalised approach for using QAPs to construct a SNARK
scheme for arithmetic circuit satisfiability. The QSP approach is similar. In both
cases, zero-knowledge is obtained by ensuring that all of the commitments are
randomised. We show in Section 6 that the recipe is unlikely to lead to updatable
zk-SNARKS. We adapt it for our positive result in Section 5.

Fix the circuit: Consider an arithmetic circuit over a field F with n multipli-
cation gates and m wires (addition gates do not affect efficiency). Arithmetic
circuits have wire values in a field F and the gates are either addition or multi-
plication. The circuit can have split wires i.e. the same wire leads into multiple
gates. We refer to the n multiplication gates using constant field elements. Thus
we assign the n gates unique values (r1, . . . , rn). These values can be seen as
points on which formal polynomials representing the circuit will be evaluated.
For efficiency purposes these values are often chosen to be roots of unity.

The instance is described by the values of a small number of wires which are
made public to both the prover and the verifier. The witness is the values of the
remaining wires, and these should be known only by the prover. In a zk-SNARK
the proofs should reveal no information about the provers witness.

Commit to wire values: We use group exponentiation as a homomorphic
encoding scheme, although the QAP apporach works for any homomorphic en-
coding scheme. Suppose there are m wires with values (a1, . . . , am). Describe

13

all m wires using three sets which contain m degree n − 1 polynomials. These
polynomials determine which gates the wires lead into/ out of, whether the wires
have been split, and whether there are any addition gates before the multipli-
cation gate. Here we denote the three sets of polynomials by: U = {ui(X)}mi=0

describes the left input wires; V = {vi(X)}mi=0 describes the right input wires;
and W = {wi(X)}mi=0 describes the output wires5. The polynomials are sums
of Lagrange polynomials, designed such that they are equal to 1 at each of the
values of the multiplication gates which they lead into/ out of and 0 at all other
gate values. Suppose that the witness wires run from {`+1, . . . ,m}. The common
reference string includes the values

{Gui(x), Gvi(x), Gwi(x)}mi=`+1

for some x chosen at random (or possibly linear combinations of the three values
for each i). The commitment to the left input, right, and output wires will include
the values

CL = G
∑m
i=`+1 aiui(x), CR = G

∑m
i=`+1 aivi(x), CO = G

∑m
i=`+1 aiwi(x).

Prove that repeated wires are consistent: If a wire is split into two left
inputs, there is no need to do anything because of the design of the Lagrange
polynomials. However, it is necessary to check that split wires that split into at
least one left input wire and at least one right input wire are consistent. This is
done by including terms in the common reference string of the form{

Gαuui(x)+αvvi(x)
}m
i=`+1

for some unknown αu, αv, and then requiring the prover to provide an element
Y such that αuCL + αvCR = Y . For some schemes α0 = α1.

Prove that output wires are consistent with input wires: This can be
done together with proving consistency of repeated wires. The common reference
string includes terms of the form{

Gαuui(x)+αvvi(x)+αwwi(x)
}m
i=`+1

for some unknown αu, αv, αw. The prover is required to provide an element
Y such that αuCL + αvCR + αwCO = Y .

Prove the commitments are well formed: There are values in the com-
mon reference string that should not be included in the commitments generated
by the prover, such as {aiui(x)}`i=1 values related to the instance. This can be

5 Set u0(X) = v0(X) = w0(X) = 1 and a0 = 1

14

checked using the same approach as descried above for the consistency proof.

Prove that gates are evaluated correctly: Determine a quadratic poly-
nomial equation that checks that the gates are evaluated correctly. There is a
unique degree n polynomial t(X) which is equal to 0 at each of the gate values
(r1, . . . , rn). Suppose that a1, . . . , am are the wire values. Then(

m∑
i=0

aivi(X)

)
·

(
m∑
i=0

aiwi(X)

)
−

m∑
i=0

aiyi(X)

is equal to 0 when evaluated at the gate values if and only if the addition and
multiplication gates are evaluated correctly (if there is an addition gate between
a wire and the next multiplication gate, then it is deemed to be a left/right input
wire if it is a left/right input wire into that multiplication gate). This polynomial
expressions shares its zeros with t(X), which means that t(X) divides it. Hence
the prover is required to show that at the unknown point x,(

G
∑`
i=0 aiui(x)CL

)
⊗
(
G

∑`
i=0 aivi(x)CR

)
= Gt(x)+

∑`
i=0 aiwi(x)CO

for ⊗ a function that finds the product of the values inside the two encodings.

5 An Updatable QAP-Based zk-SNARK

In this section we give a construction for an updatable QAP-based zk-SNARK
that makes use of a universal reference string. We then prove it satisfies subvert-
ible zero knowledge and updatable knowledge soundness under the knowledge-
of-exponent assumptions introduced in Section 4.

The setup generates parameters

par = (1λ, d,m, `, bp),

where bp = (p,G1,G2,GT , e,G,H), with G1,G2,GT groups of order prime p
with generators G ∈ G1, H ∈ G2 and e : G1 × G2 → GT a non-degenerative
bilinear map. Here d is the degree of the QAP, m is number of input variables,
out of which ` are part of the instance formed of public field elements to a QAP.

Recall from Section 4.2, a QAP relation relative to the parameters is defined
by polynomials {ui(x), vi(x), wi(x)}mi=0 of degree less than d and t(x) of degree d.
An instance and witness in the QAP is of the form (a1, . . . , a`) and (a`+1, . . . , am)
such that, with a0 = 1,(
u0(x) +

m∑
i=1

aiui(x)

)
·

(
v0(x) +

m∑
i=1

aivi(x)

)
≡ w0(x) +

m∑
i=1

aiwi(x) mod t(x).

The parameters define a universal relation R for all QAPs of maximum degree
d with coefficients in Fp.

15

5.1 Reworking the QAP recipe

Our final scheme is formally given in Figures 2 and 3. In this section we describe
some of the technical ideas behind it. Due to our impossibility result in Section 6,
many of the usual tricks behind the QAP-based approach are not available to
us, which means we need something new. To obtain this we first switch to a
poly-variate scheme, where the proof elements need to satisfy equations in the
indeterminates X, Y , Z. We can then prove the well-formedness of our proof
elements using a subspace argument for our chosen sums of witness QAP poly-
nomials. Once we have that the proof elements are well formed, we show that the
exponents of two of them multiply to get an exponent in the third proof element
such that (1) the sum of all the terms where Y has given power j is equal to
the QAP expression in the X indeterminate, and (2) the value Y j is not given
in the universal CRS. For our final scheme, we use j = 7. For the homomorphic
encoding Ec we encode values on as exponents in the groups G1 and G2.

Fix the circuit: The circuit need only be fixed upon running the CRS derivation
algorithm. At this point, the circuit is described as a QAP like that described
in Section 4; i.e., for a0 = 1, the field elements (a1, . . . , am) ∈ R if and only if(

m∑
i=0

aiui(X)

)
·

(
m∑
i=0

aivi(X)

)
=

m∑
i=0

aiwi(X) + q(X)t(X)

for some degree (m− 1) polynomial q(X).

Prove the commitments are well formed: In our scheme an honest prover outputs
group elements (A,B,C) such that

log(A) = log(B) = q(x)y +

m∑
i=0

ai(wi(x)y2 + ui(x)y3 + vi(x)y4)− y5 − t(x)y6.

Ensuring that log(A) = log(B) can be achieved with a pairing equation of the
form e(A,H) = e(G,B). Thus we need to show only that A is of the correct
form.

Usually, as described in Section 4, this is done by encoding only certain
polynomials in the CRS and forcing computation to use linear cominations of
elements in the CRS. Since we cannot do this and allow updates, we instead
construct a new subspace argument. First we subtract out the known elements
in the instance using a group element S which the verifier computes in order to
obtain a new group element with the exponent

q(x)y +

m∑
i=`+1

ai(wi(x)y2 + ui(x)y3 + vi(x)y4).

Set M be the (m+d−`)×4d matrix that contains the coefficients of {(wi(x)y2 +

ui(x)y3 + vi(x)y4)}mi=`+1, {xiy}
d−1
i=0 with respect to monomials {xiyj}(d−1,4)

(i,j)=(0,1).

16

We denote these coefficients by ml(x, y) =
∑
i,jMl,(i,j) · xiyj , e.g., m1(x, y) =(

w`+1(x)y2 + u`+1(x)y3 + v`+1(x)y4
)
. Then we set the corresponding null-matrix

be N such that MN = 0. We address the rows of N by the corresponding mono-
mial degrees in M . The columns of this matrix defines polynomials nk(x, y) =∑
i,j N(i,j),k · xd−iy4−j , such that in the convolution of ml(x, y) · nk(x, y) the

(d, 4) degree terms disappear. If we introduce the variable z, and set N̂ =

H
∑
k nk(x,y)zk , then the pairing e(AS, N̂) yields a target group element with

0 coefficients for all xdy4zk terms exactly when A is chosen from the right sub-
space. Thus, given a CRS that does not contain any xdy4zk terms for k > 1,
and a verification equation that checks that, (logA+logS) · log(N̂) = logC1 the
prover can only compute the component C1 if A is correctly formed.

Prove that the QAP is satisfied: Assuming that A and B are of the correct form,
we have that log(A) · log(B) is equal to(

q(x)y +

m∑
i=0

ai(wi(x)y2 + ui(x)y3 + vi(x)y4)− y5 − t(x)y6

)2

.

which, for terms involving y7, yields

t(x)q(x)−
m∑
i=0

aiwi(x) +

(
m∑
i=0

aiui(X)

)
·

(
m∑
i=0

aivi(X)

)
.

The terms in other powers of y can be considered as computable garbage and
are cancelled out in other proof components. The equation above is satisfied for
some polynomial q(X) if and only if the QAP is satisfied. Thus, given a CRS
that does not contain any y7 terms, and a verification equation that checks that,
logA · logB = logC2 we ensure that the proof element C2 is computable if and
only if the QAP is satisfied.

Remark 1. It is always possible to make everything univariate in x by choosing
y, z as suitable powers of x, but we find it conceptually easier and more readable
to give them different names.

Derivation of a Linear Common Reference String Astute readers may
note that these techniques require the CRS to have quadratic set of monominals
in order to compute the null matrix. We resolve this by providing an untrusted
derive function which can be seen as a form of precomputation in order to find
the linear common reference string for a fixed relation. Using the linear common
reference string, our prover also makes a linear number of group exponentiations
in the circuit size.

5.2 Updatability of the universal common reference string

In this section we describe the universal common reference string and how to
update it. We then prove that for any adversary that computes a valid common

17

reference string, either through setup or through updates, we can extract the
randomness it used. We then show, in Section 5.3, that – for our construction –
proving security for an adversary that makes one update to a freshly generated
CRS is equivalent to proving the full version of updatable security, in which an
adversary makes all but one update in the sequence.

The universal CRS contains base G exponents {xiyjzk}(i,j,k)∈S1
where

S1 =

{(1, 0, 0), (0, 1, 0), (0, 0, 1)}

∪{(i, j, 0) : i ∈ [0, 2d], j ∈ [1, 12], j 6= 7}
∪{(i, j, k) : i ∈ [0, 2d], j ∈ [1, 6], k ∈ [1, 3d], (i, j) 6= (d, 4)}

∪{(i, j, 6d) : i ∈ [0, d], j ∈ [1, 4]}

and base H exponents {xiyjzk}(i,j,k)∈S2

where

S2 =

 {(1, 0, 0), (0, 1, 0), (0, 0, 1), (0, 0, 6d)}
∪{(i, j, 0) : i ∈ [0, d], j ∈ [1, 6]}

∪{(i, j, k) : i ∈ [0, d], j ∈ [0, 2], k ∈ [1, 3d]}

 .

Lemma 3 (Correctness of the CRS generation). The scheme is perfectly
correct in the sense that

Pr[(crs, ρ)← Setup(1λ) : VerifyCRS(1λ, crs, ρ) = 1] = 1;

Pr

[
(crs′, ρn+1)← Update(1λ, crs, {ρi}ni=1) :
VerifyCRS(1λ, crs, {ρi}ni=1) = 1 ∧ VerifyCRS(1λ, crs′, {ρi}n+1

i=1) 6= 1

]
= 1

.

Proof. We first show that the output of Setup always verify. Since n = 1, the
verifier does not check the proof against previous proofs in the chain {ρi}ni=1.

Where the exponents of A1, Ā1 = Gx and Â1 = Hx are equal and non-trivial, and
likewise for B1, B̄1, B̂1, C1, C̄1, Ĉ1 the proof will pass. For each element (i, j, k) ∈
S1 ∩ S2, the verifier checks that the exponent of Gi,j,k is equal to the exponent
of Hi,j,k. For each element (i, j, k) ∈ S1, the verifier sets (i0, j0, k0) ∈ S2 to be
an element such that (i− i0, j − j0, k− k0) ∈ S1, and checks that e(Gi,j,k, H) =
e(Gi−i0,j−j0,k−k0 , Hi0,j0,k0). For the remaining elements (i, j, k) ∈ S2/S1, the
verifier sets (i0, j0, k0) ∈ S1 to be an element such that (i− i0, j − j0, k − k0) ∈
S2, and checks that e(G,Hi,j,k) = e(Gi0,j0,k0 , Hi−i0,j−j0,k−k0). If all of these
conditions pass then the verifier accepts the reference string. Since proofs output

by the setup have the structure Gi,j,k = Gx
iyjzk

(i,j,k)∈S1
and Hi,j,k = Hxiyjzk

(i,j,k)∈S2
for

some non-trivial x, y, z, these checks will pass.
We now show that an update on a valid crs and set of proofs {ρ}ni=1 always

passes. The verifier checks that Ān+1, Ân+1, and B̄n+1, B̂n+1, and C̄n+1 and
B̂n+1 all have the same (secret) exponents α, β, γ. The verifier also checks that

An+1 = G′1,0,0 = Gα1,0,0, Bn+1 = G′0,1,0 = Gβ0,1,0, and Cn+1 = G′0,0,1 = Gγ0,0,1.
These checks always pass for the outputs of the update algorithm. Thus the
string of proofs passes verification if and only if the old string of proofs passes

verification. Since G′i,j,k = Gα
iβjγk

i,j,k and H ′i,j,k = Hαiβjγk

i,j,k , the new reference
string passes verification if and only if the old reference string passes. ut

18

Setup(1λ)

x, y, z
$←− F∗p; ρ← (Gx, Gy, Gz, Gx, Gy, Gz, Hx, Hy, Hz)

crs←

(
G, Gx, Gz, {Gx

iyj}2d,12i=0,j=1,j 6=7, {Gx
iyjzk}2d,6,3di=0,j=1,k=1,(i,j)6=(d,4),

{Gx
iyjz6d}d,4i=0,j=1 H, Hx,{Hxiyj}d,6i=0,j=1,{Hxiyjzk}d,2,3di=0,j=0,k=1, Hz6d

)
Update(1λ, crs, {ρi}ni=1)

parse

 G, G1,0,0, G0,0,1, {Gi,j,0}2d,12i=0,j=1,j 6=7,

{Gi,j,k}2d,6,3di=0,j=1,k=1,(i,j)6=(d,4), {Gi,j,6d}
d,4
i=0,j=1

H, H1,0,0,{Hi,j,0}d,6i=0,j=1,{Hi,j,k}d,2,3di=0,j=0,k=1, H0,0,6d

← crs

α, β, γ
$←− F∗p

crs′ ←

G, Gα1,0,0, Gγ0,0,1, {Gα

iβj

i,j,0 }
2d,12
i=0,j=1,j 6=7, {Gα

iβjγk

i,j,k }2d,6,3di=0,j=1,k=1,(i,j)6=(d,4),

{Gα
iβjγ6d

i,j,6d }d,4i=0,j=1, H, Hα
1,0,0,{Hαiβj

i,j,0 }
d,6
i=0,j=1,{Hαiβjγk

i,j,k }d,2,3di=0,j=0,k=1,

Hγ6d

0,0,6d

ρ← (Gα1,0,0, G

β
0,1,0, G

γ
0,0,1, G

α, Gβ , Gγ , Hα, Hβ , Hγ)

VerifyCRS(1λ, crs, {ρi}ni=1)

parse

 G, G1,0,0, G0,0,1, {Gi,j,0}2d,12i=0,j=1,j 6=7,

{Gi,j,k}2d,6,3di=0,j=1,k=1,(i,j)6=(d,4), {Gi,j,6d}
d,4
i=0,j=1 H,

H1,0,0,{Hi,j,0}d,6i=0,j=1,{Hi,j,k}d,2,3di=0,j=0,k=1 ,H0,0,6d

← crs

parse {(Ai, Bi, Ci, Āi, B̄i, C̄i, Âi, B̂i, Ĉi)}ni=1 ← {ρ}ni=1

assert the proofs are correct:
A1 = Ā1, B1 = B̄1, C1 = C̄1

for 2 ≤ i ≤ n : e(Ai, H) = e(Ai−1, Âi)

∧ e(Bi, H) = e(Bi−1, B̂i) ∧ e(Ci, H) = e(Ci−1, Ĉi)

e(Ān, H) = e(G, Ân) ∧ e(B̄n, H) = e(G, B̂n) ∧ e(C̄n, H) = e(G, Ĉn)
An = G1,0,0 6= 1 ∧ Bn = G0,1,0 6= 1 ∧ Cn = G0,0,1 6= 1

assert the exponents supposed to be yj are correct:
for 1 ≤ j ≤ 6 : e(G0,j,0, H) = e(G,H0,j,0)
for 1 ≤ j ≤ 5 : e(G,H0,j+1,0) = e(G0,1,0, H0,j,0)
for 8 ≤ j ≤ 12 : e(G0,j,0, H) = e(G0,6,0, H0,j−6,0)

assert the exponents supposed to be xiyj are correct:
e(G1,0,0, H) = e(G,H1,0,0)
for 1 ≤ i ≤ d, 1 ≤ j ≤ 6, 8 ≤ j ≤ 12 : e(Gi,j,0, H) = e(Gi−1,j,0, H1,0,0)
for 1 ≤ i ≤ d, 1 ≤ j ≤ 6 : e(Gi,j,0, H) = e(G,Hi,j,0)

assert the exponents supposed to be xiyjzk are correct:
e(G0,0,1, H) = e(G,H0,0,1)
for 1 ≤ k ≤ 3d : e(G0,1,k) = e(G0,1,0, H0,0,k)
for 0 ≤ i ≤ d, j = 0, 1, 2, k = 1 ≤ k ≤ 3d : e(Gi,j,0, H0,0,k) = e(G,Hi,j,k)
for 0 ≤ i ≤ d, 1 ≤ j ≤ 6, 1 ≤ k ≤ 3d, (i, j) 6= (d, 4) :

e(Gi,j,k, H) = e(Gi,j,0, H0,0,k)
for d+ 1 ≤ i ≤ 2d, 1 ≤ j ≤ 6, 1 ≤ k ≤ 3d : e(Gi,j,k, H) = e(Gi−d,0,k, Hd,j,0)
e(G0,1,3d, H0,0,3d) = e(G0,1,0, H0,0,6d)
for 0 ≤ i ≤ d, 1 ≤ j ≤ 4 : e(Gi,j,0, H0,0,6d) = e(Gi,j,6d, H)

Fig. 2: The setup process, along with the algorithms to create updates, and verify the
setups and updates.

19

We now give two lemmas used to prove the full security of our construction
and the update security of each component. These lemmas prove that even a
dishonest updater needs to know their contribution to the trapdoor.

Lemma 4 (Trapdoor extraction for subvertible CRSs). Suppose that there
exists a PPT adversary A that outputs a crs, ρ such that VerifyCRS(1λ, crs, ρ) =
1 with non-negligible probability. Then, by the 0-MK assumption (equivalent to
the B-KEA assumption) there exists a PPT extractor X that, given the random
tape of A as input, outputs (x, y, z) such that (crs, ρ) = Setup(1λ; (x, y, z)).

Proof. A reference string and proof crs, ρ that passes verification is structured
as if it were computed by Setup(1λ); i.e., there exist values (x, y, z) ∈ F3

p such

that ρ = (A,B,C, Ā, B̄, C̄, Â, B̂, Ĉ) and crs contains

G, {Gi,j,k}(i,j,k)∈S1
∈ G100and00 H, {Hi,j,k}(i,j,k)∈S2

∈ G2

where
A = G1,0,0, B = G0,1,0, C = G0,0,1,

Gi,j,k = Gx
iyjzk , Hi,j,k = Hxiyjzk .

LetA be a subverter that outputs (crs, ρ). We then define algorithmsAx,Ay,

Az that each run (crs, ρ)
$←− A(1λ), parse ρ as above, and returns (Ā, Â), (B̄, B̂),

and (C̄, Ĉ) respectively. By the 0-MK assumption, there exist PPT extractors
Xx, Xy, Xz that, given the randomness of their corresponding adversary, output

some x, y, z ∈ Fp such that Â = Hx, B̂ = Hy, and Ĉ = Hz. By combining these
extractors, we obtain a full extractor for A. ut

This lemma proves that even when given an honestly generated CRS as input,
updaters need to know their contribution to the trapdoor. In this way security
against the updater is linked to an honest CRS.

Lemma 5 (Trapdoor extraction for updatable CRSs). Suppose that there

exists a PPT adversary A such that given (crs, ρ1)
$←− Setup(1λ), A queries

U-Os on (final, crs′, {ρ1, ρ2}) where VerifyCRS(R, crs′, {ρ1, ρ2}) = 1 with non-
negligible probability. Then, with a = {XiY jZk : (i, j, k) ∈ S1} and b =
{XiY jZk : (i, j, k) ∈ S2}, the q-MK and the q-MC assumptions imply that there
exists a PPT extractor X that, given the randomness of A as input, outputs
(α, β, γ) such that Ā2 = Gα, B̄2 = Gβ, and C̄2 = Gγ .

Proof. Parse ρ1 as containing (A1, B1, C1, Ā1, B̄1, C̄1, Â1, B̂1, Ĉ1) and parse crs

as containing

{Gi,j,k}(i,j,k)∈S1
∈ G100and00 {Hi,j,k}(i,j,k)∈S2

∈ G2 .

We consider an adversary A(crs) that queries U-Os on (final, crs′, {ρ1, ρ2}),
where crs′ contains

{Xi,j,k}(i,j,k)∈S1
∈ G1 and {Yi,j,k,`}(i,j,k)∈S2

∈ G2

20

and ρ2 = (A2, B2, C2, Ā2, B̄2, C̄2, Â2, B̂2, Ĉ2).
If VerifyCRS(R, crs′, {ρ1, ρ2}) returns 1 on A’s query, then

e(Ā2, H) = e(G, Â2) e(B̄2, H) = e(G, B̂2) e(C̄2, H) = e(G, Ĉ2)

so by the q-MK assumption, there exist extractors Xα,Xβ ,Xγ that output a, b, c
such that

Â2 = Ha0,0,0+
∑

(i,j,k)∈S2
ai,j,kx

iyjzk B̂2 = Hb0,0,0+
∑

(i,j,k)∈S2
bi,j,kx

iyjzk

Ĉ2 = Hc0,0,0+
∑

(i,j,k)∈S2
ci,j,kx

iyjzk .

By the q-MC assumption, all the non-zero terms ai,j,k, bi,j,k, ci,j,k, must be
included in {0, 0, 0} ∩ S1 ∩ S2 which is equal to

{0, 0, 0} ∩ S1 ∩ S2 =

 {(0, 0, 0), (1, 0, 0), (0, 1, 0), (0, 0, 1)}
∪{(i, j, 0) : i ∈ [0, d], j ∈ [1, 6]}

∪{(i, j, k) : i ∈ [0, d], j ∈ [1, 2], k ∈ [1, 3d]}.

Now, because VerifyCRS(1λ, crs′, {ρ1, ρ2}) returns 1, we have that

X2d,6,3d = Gα
2dβ6γ3d

2d,6,3d .

If ai,j,k, bi,j,k, ci,j,k are non-zero for i ∈ [1, d] or j ∈ [1, 6] or k ∈ [1, 3d], then
X2d,12,0 contains a factor of xIy6z3d or x2dyJz3d or x2dy6zK for I > 2d, J > 6,
K > 3d. This is not in the span of monomials that A is given in G1, and thus
A can be used to break the q-MC assumption. Hence α = a0,0,0, β = b0,0,0 and
γ = c0,0,0. ut

5.3 Single adversarial updates imply updatable security

The following lemma relates updatable security to a model in which the adver-
sary can make only a single update after an honest setup. This is because it is
much cleaner to prove the security of our construction in this latter model (as
we do in Theorem 4), but we would still like to capture the generality of the
former.

We already know from Lemma 4 that it is possible to extract the adversary’s
contribution to the trapdoor when the adversary generates the CRS itself, and
from Lemma 5 that it is possible to extract it when the adversary updates an
honest CRS. To collapse chains of honest updates into an honest setup it is
convenient that the trapdoor contributions of Setup and Update commute in our
scheme. As the trapdoor in our scheme consists of all the randomness used by
these algorithms, we will from now on refer to chains of honest updates and
(single) honest setups interchangeably.

Trapdoor contributions cannot just be commuted but also combined; that is,
for τ , τ ′ and τ ′′, Update′(1λ,Update′(1λ,Setup′(1λ; τ); τ ′); τ ′′) = Setup′(1λ; τ ⊗
τ ′ ⊗ τ ′′) = Update′(1λ,Update′(1λ,Setup′(1λ; τ ′′); r′); r). Moreover, in our con-
struction the proof ρ depends only on the relation and the randomness of the

21

update algorithm. In particular it is independent of the reference string being
updated. This enables the following simulation: Given the trapdoor τ̃ = (x, y, z)
of crs, and the elements (G1,0,0, G0,1,0, G0,0,1, H1,0,0, H0,1,0, H0,0,1) of crs′ we

can simulate a proof ρ2 = (A2, B2, C2, Ā2, B̄2, C̄2, Â2, B̂2, Ĉ2) of crs′ being an

update of crs using A2 ← G1,0,0, B2 ← G0,1,0, C2 ← G0,0,1, Ā2 ← Gx
−1

1,0,0,

B̄2 ← Gy
−1

0,1,0, C̄2 ← Gz
−1

0,0,1, Â2 ← Hx−1

1,0,0, B̂2 ← Hy−1

0,1,0, Ĉ2 ← Hz−1

0,0,1. We refer to

this as ρ(crs′)τ
−1

in our reduction.

These properties together allow us to prove the result. We here give a detailed
proof for knowledge soundness, as this is the most involved notion. Moreover,
given that knowledge soundness implies soundness and we prove subvertible
zero-knowledge directly, it is the only notion we need.

Lemma 6 (Single adversarial updates imply full updatable knowledge
soundness). If our construction is U-KSND secure for adversaries that can
query on (Setup, ∅) only once and then on (final, S) for a set S such that |S| ≤ 2,
then under the assumptions of Lemma 4 and Lemma 5 it is (fully) U-KSND-
secure.

Proof. We need to show that when the advantage is negligible for all PPT ad-
versaries B with knowledge extractors XB in the restricted game, then the ad-
vantage is negligible for all adversaries A with knowledge extractors XA in the
unrestricted game.

In our representation we split A into two stages A1 and A2, where the first
stage ends with the successful query with intent final (i.e., the query that sets
crs). Let A1,A2 be an adversary against the U-KSND game. Let B be the
following adversary against the restricted U-KSND game.

BU-Os (1λ)

(crsh, ρh)
$←− U-Os(Setup, ∅)

st
r←− AO

sim
s

1 (1λ)
{ρi, crsi}ni=1 ← Sfinal

find largest ` such that (ρ`, τ`) ∈ Qc
for all i ∈ [`+ 1, n]

τi ← XDi(1λ, r‖t)
S ← {(crsh, ρh),Update(1λ, crsh, {ρh};

∏n
i=` τi)}

crs
$←− U-Os(final, S)

return A2(st)

Osim
s ((intent, S))

if crs 6= ⊥ return ⊥
if intent = setup // initialise a CRS sequence

(crs′, ρ′)
τ←− Update(1λ, crsh, {ρh})

t← t‖τ ; Qc ← Qc ∪ {(ρ′, τ)}
return (crs′, ρ′)

if intent = update // update a sequence

τ̃ ← XC(1λ, r‖t)
crs′

τ←− Update(1λ, crsh, {ρh})
ρ′ ← ρ(crsh)τ/τ̃

t← t‖τ ; Qc ← Qc ∪ {(ρ′, τ)}
return (crs′, ρ′)

// intent = final finalise sequence

b← VerifyCRS(1λ, S) ∧
Qc ∩ {(ρi, ∗)}i 6= ∅

if b: crs← crsn
Sfinal ← S; return crsn

return ⊥

22

Our adversary B can query its own oracle U-Os only once on the empty set,
so it does this upfront to receive an honest reference string crsh. It then picks
randomness r and runs A in a simulated environment in which B itself answers
oracle queries. We keep track of the randomness B uses in the simulation in t.
B embeds the honest reference string in every query with intent 6= final. For

this we exploit the fact that CRSs in our scheme are fully re-randomizable. On
setup queries (i.e., when S = ∅), we simply return a randomized crsh.

On general update queries, B additionally needs to compute a valid update
proof ρ. To do this, let C be the algorithm that, given crsh, runs A and the
simulated oracles up to the update query and returns crsn. To extract the
trapdoor for the set S, we use either the subversion trapdoor extractor XC for
adversary C that is guaranteed to exist by Lemma 4 (if S does not contain
randomized honest reference strings), or the update trapdoor extractor that is
guaranteed to exist by Lemma 5 (if it does). This latter extractor provides the
update trapdoor, with respect to crsh, of the reference string crsn provided by
the adversary. While A can make use of values returned in prior queries, the
randomness used by these queries is contained in t and thus also available to XC .

Next, A finalizes n reference strings. Now, the goal of B is to return a sin-
gle update of crsh, so it needs to compress the entire sequence of updates
{ρi}ni=`+1 into one. To extract the randomness that went into each individ-
ual update, B builds adversaries Di, i ∈ [` + 1, n], from A that return only
(crsi, ρi). By Lemma 5 there exist extractors XDi that extract only the ran-
domness that went into these individual updates; i.e., δi = (xi, yi, zi) such
that ρi−1, crsi = Update(1λ, crsi−1; δi). Using these extractors, B computes
(crs′h, ρ

′
h)← Update(1λ, crsh, {ρh};

∏n
i=`+1 δi), sets S ← {crs′h, {ρh, ρ′h})}, and

calls Os(final, S) to finalize its own CRS. By construction, crs′h = crsn. In the
rest of the game B behaves like A.

We build extractor XA from the extractor XB which is guaranteed to exist.
In our definitions, knowledge extractors share state with setup algorithms. Here
the main implication of this is that the extractor has access to the challenger’s
randomness, and thus can re-execute the challenger to retrieve its internal state.
XA(r, t‖τ) runs XB(r‖t, τ). Thus the construction of XA simply uses XB but
shifts the randomness of the simulation into the randomness of the challenger.
As the simulation is perfect, A will behave identically. Furthermore, r‖t is a
valid randomness string for B and XB receives input that is consistent with a
restricted game with B. From this point onward B behaves exactly like A2. As B
has negligible success probability against XB in the restricted U-KSNDB,XB(1λ)
game, A thus has negligible success probability against XA in the unrestricted
U-KSNDA,XA(1λ) game. ut

5.4 The zk-SNARK Scheme

In this section we construct a zk-SNARK for QAP satisfiability given the univer-
sal common reference string in Section 5.2. First we derive a QAP specific CRS
from the universal CRS with which we can construct efficient prove and verify
algorithms.

23

Derive(crs,QAP)

parse (`, {ui(X), vi(X), wi(X)}mi=0, t(X))← QAP

assert Gy−t(x)y
2

6= 1
let si(X,Y) = wi(X)Y 2 + ui(X)Y 3 + vi(X)Y 4 for i = 0, . . . ,m
let sm+j(X,Y) = t(X)Y j+1 for j = 1, 2, 3
compute polynomials n1(X,Y), . . . , n3d−m+`(X,Y) such that

for all i = {`+ 1, . . . ,m+ 3}, k ∈ {1, . . . , 3d−m+ `} the product
si(X,Y) · nk(X,Y) has coefficient 0 for the term XdY 4

for all p(X,Y) · Y 2 /∈ span{si(X,Y)}m+3
i=`+1 there exists k ∈ {1, . . . , 3d−m+ `}

such that the product p(X,Y) · Y 2 · nk(X,Y) has non-zero coefficient for the
term XdY 4

let n(X,Y, Z) = Z6d +
∑3d−m+`
k=1 nk(X,Y)Zk

crsQAP ←

QAP, G, {Gx

iyj}2d,12i=0,j=1,j 6=7, G
y−t(x)y2 ,

{Gwi(x)y
2+ui(x)y

3+vi(x)y
4

}mi=0, G
y5 , Gt(x)y

6

, {Gx
iy·n(x,y,z)}di=0,

G(y−t(x)y2)·n(x,y,z), {G(wi(x)y
2+ui(x)y

3+vi(x)y
4)·n(x,y,z)}mi=`+1 H,

{Hxiy}di=0, H
y−t(x)y2 , {Hwi(x)y

2+ui(x)y
3+vi(x)y

4

}mi=0, H
y5 ,

Ht(x)y6 , Hn(x,y,z)

Prove(crsQAP, u, w)

assert Hy5 6= Ht(x)y6

set a0 = 1 and parse (a1, . . . , a`)← u and (a`+1, . . . , am)← w

let q(X) =
∑m
i=0 aiui(X)·

∑m
i=0 aivi(X)−

∑m
i=0 aiwi(X)

t(X)

pick r
$←− Fp and compute A← Ga(x,y), B ← Hb(x,y), C ← Gc(x,y,z), where

a(x, y) = b(x, y)
= q(x)y + r(y − t(x)y2) +

∑m
i=0 ai(wi(x)y2 + ui(x)y3 + vi(x)y4)− y5 − t(x)y6,

c(x, y, z) =
a(x, y) · b(x, y)+(
q(x) · y + r · (y − t(x)y2) +

∑m
i=`+1 ai(wi(x)y2 + ui(x)y3 + vi(x)y4)

)
· n(x, y, z).

return π = (A,B,C)

Verify(crsQAP, u, π)

set a0 = 1 and parse (a1, . . . , a`)← u and (A,B,C)← π
assert e(A,H) = e(G,B)

assert e(A,B) · e(AGy
5+t(x)y6−

∑`
i=0 ai(wi(x)y

2+ui(x)y
3+vi(x)y

4), Hn(x,y,z))
assert = e(C,H)

Fig. 3: An updatable and specializable zk-SNARK for QAP

24

Lemma 7. The derive algorithm is computable in polynomial time and the proof
system has perfect completeness if QAP is such that t(x) 6= y−1.

Proof. Given a relation R and a well formed common reference string crs, con-
sider the deriver. In G1 the deriver must compute elements with the exponents

– {wi(x)y2 + ui(x)y3 + vi(x)y4}mi=0 which is in the span {xiyj : i ∈ [0, d], j ∈
[2, 4]};

– t(x)y6 which is in the span {xiyj : i ∈ [0, d], j = 6};
– {xiy · n(x, y, z)}di=0 which is in the span {xiyjzk : i ∈ [0, 2d], j ∈ [1, 3], k ∈

[1, 3d−m+ `] or i ∈ [0, 2d], j = 1, z = 6d};
– (y− t(x)y2) ·n(x, y, z) which is in the span {xiyjzk : i ∈ [0, 2d], j ∈ [1, 4], k ∈

[1, 3d − m + `], (i, j) 6= (d, 4) or i ∈ [0, d], j =∈ [1, 2], z = 6d} due to the
choice of n(X,Y, Z).;

–
{

(wi(x)y2 + ui(x)y3 + vi(x)y4) · n(x, y, z)
}m
i=`+1

which is in the span {xiyjzk :

i ∈ [0, 2d], j ∈ [2, 6], k ∈ [1, 3d − m + `], (i, j) 6= (d, 4) or i ∈ [0, d], j =∈
[2, 4], z = 6d}.

All of these elements are in the span of the universal CRS.
In G2 the deriver must compute elements with the exponents

– y − t(x)y2 which is in the span {xiyj : i ∈ [0, d], j = 2 or i = 0, j = 1}
– {wi(x)y2 + ui(x)y3 + vi(x)y4}mi=0 which is in the span {xiyj : i ∈ [0, d], j ∈

[2, 4]};
– t(x)y6 which is in the span {xiyj : i ∈ [0, d], j = 6};
– n(x, y, z) which is in the span {xiyjzk : i ∈ [0, d], j ∈ [0, 2], k ∈ [1, 3d−m+
`] or (i, j, k) = (0, 0, 6d)}.

All of these elements are in the span of the universal CRS. Hence the deriver
can compute all of the elements in the derived CRS.

Given that the prover gets a satisfying witness we have that q(X) is a
polynomial of maximal degree d − 1 satisfying

∑m
i=0 ai(X) ·

∑m
i=0 aivi(X) =∑m

i=0 aiwi(X) + q(X)t(X). It can be deduced that A,B can be computed from
crsQAP as specified in the scheme and that they will satisfy the first verification
equation. It is also possible to deduce that if C can be computed as specified,
then A,B,C satisfy the second verification equation. What remains to prove is
that C = Gc(x,y,z) can be computed from crsQAP.

First, we look at the product a(x, y) ·b(x, y). Observe that a(X,Y) ·b(X,Y) ∈
span{XiY j}2d,12

i=0,j=2. From the structure of crsQAP we see that it is possible to

compute Ga(x,y)·b(x,y) if a(X,Y) · b(X,Y) have no terms of the form XiY 7 for
i = 0, . . . , 2d. By construction of q(X) it turns out this is indeed the case, the
product

a(X,Y)2 =
(
q(X)Y + r(Y − t(X)Y 2) +

m∑
i=0

ai(wi(X)Y 2 + ui(X)Y 3 + vi(X)Y 4)− Y 5 − t(X)Y 6
)2

25

has the coefficient

2

(
−q(X)t(X)− r(t(X)− t(X))−

m∑
i=0

aiwi(X) +

m∑
i=0

aiui(X) ·
m∑
i=0

aivi(X)

)
= 0

for Y 7. It can now be seen that crsQAP has been constructed such that the rest
of Gc(x,y,z) can be computed. ut

Theorem 3. The proof system has perfect subvertible zero-knowledge if QAP is
such that t(x) 6= y−1.

Proof. To prove subvertible zero-knowledge, we need to both show the exis-
tence of an extractor XA, and describe a SimProve algorithm that produces
indistinguishable proofs when provided the extracted trapdoor (which it can
compute given the randomness of both A and the honest algorithms). The sim-
ulator knows x, y, z and picks r ← Fp and sets A = Gr, B = Hr and C =

Gr
2+(r+y5+t(x)y6−

∑`
i=0 ai(wi(x)y2+ui(x)y3+vi(x)y4))·n(x,y,z). The simulated proof has

the same distribution as a real proof, since y 6= 0 and t(x) 6= y−1 and thus the
randomisation of A given in r(y − t(x)y2) makes A uniformly random. Given A
the verification equations uniquely determine B,C. So both real and simulated
proofs have uniformly random A and satisfy the equations. Consequently, sub-
vertible zero-knowledge follows from the extraction of the trapdoor, which can
be extracted by Lemma 4. ut

Theorem 4. The proof system has update knowledge soundness assuming the
q-MK and the q-MC assumptions hold with a = {XiY jZk : (i, j, k) ∈ S1} and
b = {XiY jZk : (i, j, k) ∈ S2}.

Proof. To prove this it suffices, by the results in Section 5.3, to prove secu-
rity in the setting in which the adversary makes only one update to the CRS.
Imagine we have a PPT adversary AU-Os that after querying U-Os on (Setup, ∅)
to get crs, then queries on (final, crs′, {ρ, ρ′})) that gets accepted; i.e., such that
VerifyCRS(R, crs′, {ρ, ρ′}) = 1, crsQAP ← Derive(crs′,QAP), and Verify(crsQAP,
u, π) = 1. Set a0 = 1 and parse the instance as u = (a1, . . . , a`) and the proof as
(A,B,C). By Lemma 5, because the updated CRS verifies, there exists an extrac-
tor XA that outputs τ = (α, β, γ) such that Update(1λ, crs, {ρ}; τ) = (crs′, ρ′).

From the first verification equation we have e(A,H) = e(G,B), which means
there is an a ∈ Fp such that A = Ga and B = Ha. From the q-MK as-
sumption there exists a PPT extractor XA for A that outputs field elements
{ai,j,k}(i,j,k)∈{(0,0,0)}∪S1

defining a formal polynomial a(X,Y, Z) equal to

a0,0,0 + a1,0,0X +

d,6∑
i=0,j=1

ai,j,0X
iY j +

2d,3,3d∑
i=0,j=0,k=1

ai,j,kX
iY jZk + a0,0,6dZ

6d

such that B = Ha(x,y,z).
Taking the adversary and extractor together, we can see them as a combined

algorithm that outputs A,B,C and the formal polynomial a(X,Y, Z) such that

26

A = Ga(x,y,z). By the q-MC assumption this has negligible probability of hap-
pening unless a(X,Y, Z) is in the span of {0, 0, 0} ∪ S1 ∩ S2{

1, X, Z, {XiY j}2d,12
i=0,j=1,j 6=7, {X

iY jZk}2d,6,3di=0,j=1,k=1,(i,j)6=(d,4), {X
iY jZ6d}d,4i=0,j=1

}
.

This means

a(X,Y, Z) = a0,0,0 + a1,0,0X +

d,6∑
i=0,j=1

ai,j,0X
iY j +

d,3,3d∑
i=0,j=1,k=1

ai,j,kX
iY jZk.

From the second verification equation we get C = Gf(x,y,z) where f(x, y, z)
is given by

a(x, y, z)2 +
(
a(x, y, z) + β5y5 + t(αx)β6y6

−
∑̀
i=0

ai(wi(αx)β2y2 + ui(αx)β3y3 + vi(αx)β4y4)
)
· n(αx, βy, γz).

By the q-MC assumption this means

a(X,Y, Z)2 +
(
a(X,Y, Z) + β5Y 5 + t(αX)β6Y 6

−
∑̀
i=0

ai(wi(αX)β2Y 2+ui(αX)β3Y 3+vi(αX)β4Y 4)
)
·(γ6dZ6d+

3d−m+`∑
k=1

nk(αX, βY)γkZk)

also belongs to the span of{
1, X, Z, {XiY j}2d,12

i=0,j=1,j 6=7, {X
iY jZk}2d,6,3di=0,j=1,k=1,(i,j)6=(d,4), {X

iY jZ6d}d,4i=0,j=1

}
.

Set a′i,j,k =
ai,j,0
αiβjγk

and observe that

a(X,Y, Z) =
∑
i,j,k

ai,j,kX
iY jZk =

∑
i,j,k

a′i,j,k(αX)i(βY)j(γZ)k = a′(αX, βY, γZ).

W.l.o.g. we can then rename the variables αX, βY , γZ by X,Y, Z to get that

a′(X,Y, Z)2 +
(
a′(X,Y, Z) + Y 5 + t(X)Y 6

−
∑̀
i=0

ai(wi(X)Y 2 + ui(X)Y 3 + vi(X)Y 4)
)
· (Z6d +

3d−m+`∑
k=1

nk(X,Y)Zk)

The span has no monomials of the form XiY jZk for k > 6d. Looking at the
sub-part a′(X,Y, Z)Z6d we deduce that a′i,j,k = 0 for all k 6= 0, which means

a′(X,Y, Z) = a′0,0,0 + a1,0,0X
′ +

d,6∑
i=0,j=1

a′i,j,0X
iY j .

27

There is also no Z6d or XZ6d monimials in the span, so we get a′0,0,0 = 0 and
a′1,0,0 = 0. We are now left with

a′(X,Y, Z) =

d,6∑
i=0,j=1

a′i,j,0X
iY j .

Define q(X), p(X,Y) such that

q(X) · Y + p(X,Y) · Y 2 =

d,6∑
i=0,j=1

a′i,j,0X
iY j + Y 5 + t(X)Y 6

−
∑̀
i=0

ai(wi(X)Y 2 + ui(X)Y 3 + vi(X)Y 4).

Looking at the remaining terms of the form XiY jZk we see that for k =
0, . . . , 3d−m+ `(

q(X) · Y + p(X,Y) · Y 2
)
· nk(X,Y) ∈ span{XiY j}2d,6i=0,j=1,(i,j) 6=(d,4).

Since nk(X,Y) has at most degree 2 in Y this implies p(X,Y) ·Y 2 ·nk(X,Y)
has coefficient 0 for the term XdY 4. Recall the nk(X,Y) polynomials had been
constructed such that this is only possible if p(X,Y) · Y 2 can be written as

m∑
i=`+1

ai(wi(X)Y 2 + ui(X)Y 3 + vi(X)Y 4) + r1t(X)Y 2 + r2t(X)Y 3 + r3t(X)Y 4.

Finally, we look at terms of the form XiY 7. These do not exist in the span,
so all the terms of that form in a(X,Y, Z)2 should sum to zero. This implies(

q(X) · Y +
∑m
i=0 ai(wi(X)Y 2 + ui(X)Y 3 + vi(X)Y 4)

+r1t(X)Y 2 + r2t(X)Y 3 + r3t(X)Y 4 − Y 5 − t(X)Y 6

)2

should have no xiY 7 terms. This in turn implies

2

(
(r3

∑m
i=0 aiui(X) + r2

∑m
i=0 aivi(X)− r1 − q(X)) · t(X)

−
∑m
i=0 aiwi(X) +

∑m
i=0 aiui(X) ·

∑m
i=0 aivi(X)

)
= 0

By definition of QAP we now have that (a`+1, . . . , am) is a witness for the instance
(a1, . . . , a`). ut

6 Updating a Reference String Reveals the Monomials

In this section we show a negative result; namely, that for any updatable NIZK
with polynomials encoded into the common reference string, it must also be al-
lowed (which often it isn’t) for an adversary to know encodings of the monomials

28

that make up the polynomials. The reason for this is that from the encodings of
the polynomials, we can construct an adversary that uses the update algorithm
in order to extract the monomials. After describing our monomial extractor, we
give one example (for the sake of brevity) of how to use our monomial extractor
to break a QAP-based zk-SNARK, namely Pinocchio [PHGR13]. Due to the
similarity in the approaches, however, we believe that the same techniques could
be used to show that most other QSP/QAP-based zk-SNARKs in the literature
also cannot be made updatable. As our universal CRS does consist of monomi-
als, we can avoid this impossibility result yet still achieve linear-size specialized
CRSs for proving specific relations.

6.1 Matrix notation, multi-variate polynomials, and encodings

We denote matrices by capital letters M̂ and column vectors by x. We use the
typical notation M̂x for matrix multiplication, x ◦ y for an element-wise vector
product, and xTy for a dot product. We use M̂ [i][j] to denote the entry in the
i-th row and j-th column of M̂ . We assume there is a homomorphic encoding
function Ec. In practice encodings usually take the form of group exponentiation.
We write Ec(x) for vectors of encodings, and M̂ Ec(x), Ec(x)◦Ec(y) and xT Ec(y)
for matrix and vector operations on encodings. The homomorphism works across
these operations; e.g., M̂ Ec(x) = Ec(M̂x).

6.2 The monomial extractor

Suppose that a NIZK scheme has an update algorithm Update, and that its
common reference strings crs are sampled from the distribution X̂Ec(τ) for X̂
a matrix of known field elements, Ec a homomorphic encoding scheme, and τ an
unknown vector of (known) monomials. Suppose that for some i we have that
X̂[i][j] 6= 0. Then there exists an algorithm MonoExtract that can extract the
component Ec(τi) from the common reference string crs.

Without loss of generality assume that X̂ is in reduced row echelon form (if
not the algorithm can apply elementary matrices to X̂ and crs). Also without
loss of generality, assume X̂ is a square matrix (by adding some all-zero rows if
necessary). Write X̂ =

∑r
j=1 X̂j where X̂j has at most 1 non-zero element in

each column and row. For example
1 0 2 0
0 1 0 0
0 0 0 1
0 0 0 0

 =

1 0 0 0
0 1 0 0
0 0 0 1
0 0 0 0

+

0 0 2 0
0 0 0 0
0 0 0 0
0 0 0 0

 .

If r > 1 then we will show that it is possible to extract encodings of monomials
that are not given in the common reference string. This means that for any
updatable NIZK with polynomials encoded into the common reference string, it
must be okay for an adversary to know encodings of the monomials that make
up the polynomials. For our construction in Section 5 we have that r = 1; i.e.,
the CRS already contains all the monomials anyway.

29

We use an inductive algorithm. We start by showing that there is a probabilis-
tic algorithm Base that can compute vectors Ec(u), along with a corresponding

set of diagonal matrices
{
Âj

}r
j=2

, that satisfy the equation

X̂1Ec(τ) = Ec(u) +

r∑
j=2

ÂjX̂jEc(τ).

We give a second algorithm Induct that, upon input of r− i vectors {Ec(u`)}r−i`=1,

and (r − i)2 matrices
{
Â`,j

}r,r−i
j=i+1,`=1

, such that

X̂iEc(τ) = Ec(u`) +

r∑
j=i+1

Â`,jX̂jEc(τ)

outputs r − i − 1 vectors {Ec(z)}r−i−1
`=1 and (r − i − 1)2

{
D̂`,j

}r−i−1,r

`=1,j=i+2
such

that

X̂i+1Ec(τ) = Ec(z`) +

r∑
j=i+2

D̂`,jX̂jEc(τ).

We will then inductively find X̂rEc(τ) in the algorithm FinalMonoExtract. We
can then backwards compute in the algorithm MonoExtract to find X̂jEc(τ) for
1 ≤ j ≤ r.

Base case algorithm The base case algorithm Base works as follows, for mono-
mials a such that crs0 = X̂Ec(τ ◦a) (note that crs0 = X̂Ec(T̂τ) = X̂T̂Ec(τ)).

Base(crs, X̂1, . . . , X̂r)

crs0
a←− Update(crs)

T̂ ←

a1 0
. . .

0 am

T̂i ← FindTk

Ec(u)← T̂−1
1 crs0

Âi ← −T̂−1
1 T̂i

return Ec(u), Â2, . . . , Âr

It can be seen that

Ec(u) +
∑r
j=2 ÂjX̂jEc(τ) = T̂−1

1 crs0 −
∑r
j=2 T̂

−1
1 T̂jX̂jEc(τ)

= T̂−1
1

[
X̂T̂τ −

∑r
j=2 X̂j T̂Ec(τ)

]
= T̂−1

1

[
X̂ −

∑r
j=2 X̂j

]
T̂Ec(τ)

= T̂−1
1 X̂1T̂Ec(τ)

= T̂−1
1 T̂1X̂1Ec(τ)

= X̂1Ec(τ)

30

so Base outputs correct values of Ec(u) and Âj . Moreover, the matrices X̂j

have at most a single non-zero entry in each row and column, and T̂ is an
invertible diagonal matrix, so there exists invertible diagonal matrices T̂j such

that T̂jX̂j = X̂j T̂ .

We shall describe now how to choose the diagonal matrices Tk such that
X̂kT̂ = T̂kX̂k. Note that this is only possible because the matrices X̂j have
at most one entry in each row and column. Essentially what we are doing is
permuting any entry of T̂k that X̂k acts on to the correct place, and then filling
the rest of the diagonal with random entries.

FindTk(X̂k, T̂)

for 1 ≤ i, j ≤ m: if X̂k[i][j] 6= 0 then T̂k[i, i] = T̂ [j, j]

for 1 ≤ i ≤ m: if T̂k[i][i] == 0 then T̂k[i][i]
$←− F∗

The inductive algorithm The inductive algorithm Induct works as follows.

Induct(U,A, r, i)

Ec(u1), . . . , Ec(ur−i)← parse(U)

{Â1,j}rj=i+1, . . . , {Âr−i,j}rj=i+1 ← parse(A)
for 1 ≤ ` ≤ r − i− 1:

M̂` =
[
Â1,1 − Â`+1,1

]−1

Ec(z`) = M̂` [Ec(u`+1)− Ec(u1)]

for 1 ≤ ` ≤ r − i− 1:
for i+ 2 ≤ j ≤ r:

D̂`,j = M̂`

[
Â`+1,j − Â1,j

]
return {z`}r−i−1

`=1 , {D̂`,j}r−i−1,r
`=1,j=i+2

For each 1 ≤ ` ≤ r − i− 1, we have that Ec(u1), Ec(u`+1) are such that

X̂iEc(τ) = Ec(u1) +

r∑
j=i+1

Â1,jX̂jEc(τ)

and

X̂iEc(τ) = Ec(u`+1) +

r∑
j=i+1

Â`+1,jX̂jEc(τ).

Putting the two equations together yields

Ec(u1) +

r∑
j=i+1

Â1,jX̂jEc(τ) = Ec(u`+1) +

r∑
j=i+1

Â`+1,jX̂jEc(τ).

31

We then rearrange to get

(
Â1,i+1 − Â`,i+1

)
Xi+1Ec(τ) = Ec(u`+1)−Ec(u1)+

r∑
j=i+2

(
Â`+1,j − Â1,j

)
X̂jEc(τ).

With the diagonal matrix M̂` =
(
Â1,i+1 − Â`+1,i+1

)−1

we have that

Xi+1Ec(τ) = M̂

Ec(u`+1)− Ec(u1) +

r∑
j=i+2

(
Â`+1,j − Â1,j

)
X̂jEc(τ)

 .
If M̂` does not exists then the probabilistic algorithm FinalMonoExtract can be
rerun. Hence we have that

Xi+1Ec(τ) = z` +

r∑
j=i+2

D̂`,jX̂jx

as required.

Extractor of the final monomial Our monomial extractor first runs an al-
gorithm to extract the final monomial, and from there can backwards compute.
We use the notation U [i] to denote sampling the ith component from the set U .

FinalMonoExtract(crs, X̂1, . . . , X̂r)

U = ∅; A = ∅; B = ∅
for 1 ≤ i ≤ r:
Ec(u), {Âj}rj=2

$←− Base(crs, X̂1, . . . , X̂r)
B = B ∪ {U [1], A[1]}

U = U ∪ Ec(u); A = A ∪ {{Âj}rj=2}
for 1 ≤ i ≤ r − 1

(U,A)← Induct(U,A, r, i)
B = B ∪ {U [1], A[1]}

return B

This algorithm outputs a set B consisting of pairs, where each pair contains a

vector and a sets of matrices. The i-th entry is B[i] = {u,
{
Âj

}r
j=i+1

} such that

X̂iEc(τ) = Ec(u) +

r∑
j=i+1

ÂjX̂jEc(τ).

For the final entry B[r], the set of matrices is empty, so the right-hand side of
the above equation is simply Ec(u). Hence this final Ec(u) is equal to X̂rEc(τ).

32

Monomial Extractor We are now in a position to define an algorithm that
takes the output of FinalMonoExtract and then backwards computes to find{
X̂iEc(τ)

}r
i=1

. This algorithm is our monomial extractor.

MonoExtract(crs, X̂1, . . . , X̂r)

B
$←− FinalMonoExtract(crs, X̂1, . . . , X̂r)

parse {Ec(vr), ∅} ← B[r]
for r − 1 ≥ i ≥ 1:

parse {Ec(u), {Âj}rj=i+1} ← B[i]

Ec(vr−1)← Ec(u) +
∑r
j=i+1 ÂjEc(vj)

return Ec(v1), . . . , Ec(vr)

6.3 Pinocchio is not updatable

Intuitively, the existence of this monomial extractor would break most schemes
using QAPs or QSPs. This is because these arguments typically depend on the
instance polynomials and the witness polynomials being linearly independent
from each other. Here we give a solid example by demonstrating how to break
the knowledge soundness of Pinocchio [PHGR13].
Example 1 (We cannot update the common reference string for Pinocchio). Con-
sider the zk-SNARK in Pinocchio [PHGR13]. The scheme runs over a QAP
relation described by

R = {(p,G,GT , e), {vk(X), wk(X), yk(X)}mk=0, t(X)}

where t(X) is a degree n polynomial, uk(X), vk(X), wk(X) are degree n − 1
polynomials and (p,G,GT , e) is a bilinear group. The instance (c1, . . . , c`) is in
the language if and only if there is a witness of the form (c`+1, . . . , cm) such that,
where c0 is set to 1,(

m∑
i=0

ckuk(X)

)
·

(
m∑
i=0

ckvk(X)

)
=

m∑
i=0

ckwk(X) + h(X)t(X)

for h(X) some degree n− 1 polynomial.
The common reference string is given by G,GαwGγ , Gβγ , Grurvt(s), {Gsi}ni=1

{
Gruuk(s), Grvvk(s), Grurvwk(s)

}m
k=0

,{
Gruαuuk(s), Grvαvvk(s), Grurvαwwk(s), Gβ(ruuk(s)+rvvk(s)+rurvwk(s))

}m
k=`+1

where ru, rv, s, αu, αv, αw, β, γ are random field elements and G ∈ G. Hence, for
Ec(x) = Gx, there exists a matrix X̂ such that crs = X̂Ec(τ) for

τ =

(
αw, γ, βγ,

{
rurvs

i, si
}n
i=0

,{
rus

i, rvs
i, ruαus

i, rvαvs
i, rurvαws

i, ruβs
i, rvβs

i, rurvβs
i
}n−1

i=0

)
. (1)

33

Lemma 8. For crs = Gτ where τ is as in (1), there exists an adversary that
can find a verifying proof for any instance (c1, ..., c`) ∈ Fp.

Proof. The verifier in Pinocchio

0/1← Verify(crs; c1, . . . , c`;A1, A2, A3, B1, B2, B3, H, Z)

returns 1 if and only the following equations are satisfied

e(Gru
∑`
k=0 ckuk(s)A1, G

rv
∑`
k=0 ckvk(s)A2) = e(Grurvt(s), H)e(Grurv

∑`
k=0 ckwk(s)A3, G)

e(B1, G) = e(A1, G
αu)

e(B2, G) = e(A2, G
αv)

e(B3, G) = e(A1, G
αw)

e(Z,Gγ) = e(A1A2A3, G
βγ).

Suppose the adversary sets the degree n− 1 polynomials ν(X), ω(X), ξ(X) as

ν(X)←
∑`
k=0 ckvk(X)

ω(X)←
∑`
k=0 ckwkX

ξ(X)←
∑`
k=0 ckyk(X)

It then sets the components H, A1, A2, A3 by

H = G, A1 = GrusG−ruν(s), A2 = Grvs
n−1

G−rvω(si),

A3 = G−rurv(t(s)−sn)−rurvξ(s)

Direct verification shows that A1, A2, A3 satisfy the first verification equation.
Note that τ does not include the value αwrurvs

n, so the final coefficient of
t(s) cannot be included in A3, else the algorithm could not satisfy the fifth
verification equation. Instead we include rus in A1 and rv in A2, so that the
LHS of the first verification equation returns the sole component not cancelled
on the RHS: e(G,G)rurvs

n

.
To satisfy verification equations 2-4 the algorithm sets

B1 = GαurusG−αuruν(s), B2 = Gαvrvs
n−1

G−αvrvω(s),

B3 = G−αwrurv(t(s)−sn)−αwrurvξ(s)

and to satisfy the fifth and final verification equation the algorithm sets

Z = GβrusGβrvs
n−1

G−βruν(s)G−βrvω(s)G−βrurv(t(s)−sn)−βrurvξ(s).

We then have that Verify(crs; c1, . . . , c`;A1, A2, A3, B1, B2, B3, H, Z) = 1. ut

Theorem 5. If there exists an update algorithm for Pinocchio, then either the
relation is easy or the scheme is not knowledge-sound.

34

Proof. Suppose that crs← Setup(1λ); i.e., crs = X̂Gτ for τ as in Equation 1.
Suppose that (c1, . . . , c`) ∈ Fp.

The polynomials uk(X), vk(X), wk(X) are Lagrange polynomials, meaning
that each and every one of the components τ are used in the crs. This means
that the RREF of X̂, which we shall call R̂, is such that for 1 ≤ i ≤ length(R̂),
there exists some j such that R̂[i][j] 6= 0. Hence by running MonoExtract, an
adversary A can calculate Gτ . By Lemma 8, the adversary A can continue, and
calculate a verifying proof for (c1, . . . , c`). Hence either there is a PPT extractor
that can output a valid witness for any instance (meaning the language is easy),
or there is no extractor and A breaks knowledge-soundness. ut

References

[ABLZ17] Behzad Abdolmaleki, Karim Baghery, Helger Lipmaa, and Michal Zajac.
A subversion-resistant SNARK. In Proceedings of Asiacrypt 2017, 2017.

[AF07] Masayuki Abe and Serge Fehr. Perfect NIZK with adaptive soundness. In
TCC, 2007.

[AHIV17] Scott Ames, Carmit Hazay, Yuval Ishai, and Muthuramakrishnan Venkita-
subramaniam. Ligero: Lightweight sublinear arguments without a trusted
setup. In Proceedings of ACM CCS, 2017.

[BBB+18] Benedikt Bünz, Jonathan Bootle, Dan Boneh, Andrew Poelstra, and Greg
Maxwell. Bulletproofs: Short proofs for confidential transactions and more.
In Proceedings of the IEEE Symposium on Security & Privacy, 2018.

[BCC+14] Daniel J. Bernstein, Tung Chou, Chitchanok Chuengsatiansup, Andreas
Hülsing, Tanja Lange, Ruben Niederhagen, and Christine van Vredendaal.
How to manipulate curve standards: a white paper for the black hat. Cryp-
tology ePrint Archive, Report 2014/571, 2014. http://eprint.iacr.org/
2014/571.

[BCC+16] Jonathan Bootle, Andrea Cerulli, Pyrros Chaidos, Jens Groth, and
Christophe Petit. Efficient zero-knowledge arguments for arithmetic cir-
cuits in the discrete log setting. In EUROCRYPT, 2016.

[BCG+14] Eli Ben-Sasson, Alessandro Chiesa, Christina Garman, Matthew Green,
Ian Miers, Eran Tromer, and Madars Virza. Zerocash: Decentralized
anonymous payments from Bitcoin. In Proceedings of the IEEE Sympo-
sium on Security & Privacy, 2014.

[BCG+15] Eli Ben-Sasson, Alessandro Chiesa, Matthew Green, Eran Tromer, and
Madars Virza. Secure sampling of public parameters for succinct zero
knowledge proofs. In Proceedings of the IEEE Symposium on Security &
Privacy, 2015.

[BCTV14] Eli Ben-Sasson, Alessandro Chiesa, Eran Tromer, and Madars Virza. Scal-
able zero knowledge via cycles of elliptic curves. In CRYPTO, 2014.

[BFM88] Manuel Blum, Paul Feldman, and Silvio Micali. Non-interactive zero-
knowledge and its applications (extended abstract). In STOC, pages 103–
112, 1988.

[BFS16] Mihir Bellare, Georg Fuchsbauer, and Alessandra Scafuro. NIZKs with
an untrusted CRS: security in the face of parameter subversion. In ASI-
ACRYPT, pages 777–804, 2016.

35

[BGG17] Sean Bowe, Ariel Gabizon, and Mathew Green. A multi-party protocol for
constructing the public parameters of the Pinocchio zk-SNARK. Cryptol-
ogy ePrint Archive, Report 2017/602, 2017.

[BGM17] Sean Bowe, Ariel Gabizon, and Ian Miers. Scalable multi-party compu-
tation for zk-SNARK parameters in the random beacon model. Cryptol-
ogy ePrint Archive, Report 2017/1050, 2017. https://eprint.iacr.org/
2017/1050.

[BP04] Mihir Bellare and Adriana Palacio. Towards plaintext-aware public-key
encryption without random oracles. In ASIACRYPT, pages 48–62, 2004.

[BR06] Mihir Bellare and Phillip Rogaway. The security of triple encryption and
a framework for code-based game-playing proofs. In EUROCRYPT, pages
409–426, 2006.

[BSBHR18] Eli Ben-Sasson, Iddo Bentov, Yinon Horesh, and Michael Riabzev. Scal-
able, transparent, and post-quantum secure computational integrity. Cryp-
tology ePrint Archive, Report 2018/046, 2018. https://eprint.iacr.

org/2018/046.

[Buc17] Jon Buck. Ethereum upgrade Byzantium is live, verifies
first ZK-Snark proof. https://cointelegraph.com/news/

ethereum-upgrade-byzantium-is-live-verifies-first-zk-snark-proof,
September 2017.

[CF01] Ran Canetti and Marc Fischlin. Universally composable commitments.
Cryptology ePrint Archive, Report 2001/055, 2001. http://eprint.iacr.
org/2001/055.

[Dam91] Ivan Damg̊ard. Towards practical public key systems secure against chosen
ciphertext attacks. In CRYPTO, pages 445–456, 1991.

[Dam92] Ivan Damg̊ard. Non-interactive circuit based proofs and non-interactive
perfect zero-knowledge with proprocessing. In EUROCRYPT, pages 341–
355, 1992.

[Dam00] Ivan Damg̊ard. Efficient Concurrent Zero-Knowledge in the Auxiliary
String Model, pages 418–430. Springer Berlin Heidelberg, Berlin, Heidel-
berg, 2000.

[DFGK14] George Danezis, Cédric Fournet, Jens Groth, and Markulf Kohlweiss.
Square span programs with applications to succinct NIZK arguments. In
ASIACRYPT, pages 532–550, 2014.

[FF00] Marc Fischlin and Roger Fischlin. Efficient non-malleable commitment
schemes. In CRYPTO, pages 413–431, 2000.

[FLS99] Uriel Feige, Dror Lapidot, and Adi Shamir. Multiple noninteractive zero
knowledge proofs under general assumptions. SIAM J. Comput., 29(1):1–
28, 1999.

[Fuc17] Georg Fuchsbauer. Subversion-zero-knowledge SNARKs. Cryptology
ePrint Archive, Report 2017/587, 2017.

[GG17] Essam Ghadafi and Jens Groth. Towards a classification of non-interactive
computational assumptions in cyclic groups. In Advances in Cryptology
- ASIACRYPT 2017 - 23rd International Conference on the Theory and
Applications of Cryptology and Information Security, Hong Kong, China,
December 3-7, 2017, Proceedings, Part II, pages 66–96, 2017.

[GGI+15] Craig Gentry, Jens Groth, Yuval Ishai, Chris Peikert, Amit Sahai, and
Adam D. Smith. Using fully homomorphic hybrid encryption to minimize
non-interative zero-knowledge proofs. J. Cryptology, 28(4):820–843, 2015.

36

[GGPR13] Rosario Gennaro, Craig Gentry, Bryan Parno, and Mariana Raykova.
Quadratic span programs and succinct nizks without pcps. In EURO-
CRYPT, pages 626–645, 2013.

[GHM+17] Yossi Gilad, Rotem Hemo, Silvio Micali, Georgios Vlachos, and Nickolai
Zeldovich. Algorand: Scaling Byzantine agreements for cryptocurrencies.
In SOSP, 2017.

[GM17] Jens Groth and Mary Maller. Snarky signatures: Minimal signatures of
knowledge from simulation-extractable SNARKs. In CRYPTO, pages 581–
612, 2017.

[GO14] Jens Groth and Rafail Ostrovsky. Cryptography in the multi-string model.
J. Cryptology, 27(3):506–543, 2014.

[GOP94] Oded Goldreich, Rafail Ostrovsky, and Erez Petrank. Computational com-
plexity and knowledge complexity. Electronic Colloquium on Computa-
tional Complexity (ECCC), 1(7), 1994.

[GOS12] Jens Groth, Rafail Ostrovsky, and Amit Sahai. New techniques for nonin-
teractive zero-knowledge. J. ACM, 59(3):11:1–11:35, 2012.

[Gro10a] Jens Groth. Short non-interactive zero-knowledge proofs. In ASIACRYPT,
pages 341–358, 2010.

[Gro10b] Jens Groth. Short pairing-based non-interactive zero-knowledge argu-
ments. In ASIACRYPT, pages 321–340, 2010.

[Gro16] Jens Groth. On the size of pairing-based non-interactive arguments. In
EUROCRYPT, pages 305–326, 2016.

[GS12] Jens Groth and Amit Sahai. Efficient noninteractive proof systems for
bilinear groups. SIAM J. Comput., 41(5):1193–1232, 2012.

[GW11] Craig Gentry and Daniel Wichs. Separating succinct non-interactive argu-
ments from all falsifiable assumptions. In STOC, pages 99–108, 2011.

[KP98] Joe Kilian and Erez Petrank. An efficient noninteractive zero-knowledge
proof system for NP with general assumptions. J. Cryptology, 11(1):1–27,
1998.

[Lip12] Helger Lipmaa. Progression-free sets and sublinear pairing-based non-
interactive zero-knowledge arguments. In TCC, pages 169–189, 2012.

[Lip13] Helger Lipmaa. Succinct non-interactive zero knowledge arguments from
span programs and linear error-correcting codes. In Advances in Cryp-
tology - ASIACRYPT 2013 - 19th International Conference on the Theory
and Application of Cryptology and Information Security, Bengaluru, India,
December 1-5, 2013, Proceedings, Part I, pages 41–60, 2013.

[LMS16] Helger Lipmaa, Payman Mohassel, and Seyed Saeed Sadeghian. Valiant’s
universal circuit: Improvements, implementation, and applications. IACR
Cryptology ePrint Archive, 2016:17, 2016.

[PHGR13] Bryan Parno, Jon Howell, Craig Gentry, and Mariana Raykova. Pinoc-
chio: Nearly practical verifiable computation. In Proceedings of the IEEE
Symposium on Security & Privacy, 2013.

[SCP00] Alfredo De Santis, Giovanni Di Crescenzo, and Giuseppe Persiano. Nec-
essary and sufficient assumptions for non-iterative zero-knowledge proofs
of knowledge for all NP relations. In 27th International Colloquium on
Automata, Languages and Programming (ICALP), pages 451–462, 2000.

[SP92] Alfredo De Santis and Giuseppe Persiano. Zero-knowledge proofs of knowl-
edge without interaction (extended abstract). In 33rd Annual Symposium
on Foundations of Computer Science, pages 427–436, 1992.

37

[Val76] Leslie G. Valiant. Universal circuits (preliminary report). In Proceedings of
the 8th Annual ACM Symposium on Theory of Computing, pages 196–203,
1976.

[WTas+17] Riad S. Wahby, Ioanna Tzialla, abhi shelat, Justin Thaler, and Michael
Walfish. Doubly-efficient zk-SNARKs without trusted setup. Cryptol-
ogy ePrint Archive, Report 2017/1132, 2017. https://eprint.iacr.org/
2017/1132.

38

