
AuCPace: Efficient verifier-based PAKE protocol
tailored for the IIoT

Björn Haase and Benoît Labrique

Endress+Hauser Conducta GmbH&Co. KG, Germany
bjoern.haase@conducta.endress.com

Abstract.
Increasingly connectivity becomes integrated in products and devices that previously
operated in a stand-alone setting. This observation holds for many consumer ap-
plications in the so-called "Internet of Things" (IoT) as well as for corresponding
industry applications (IIoT), such as industrial process sensors. Often the only
practicable means for authentication of human users is a weak password. The security
of password-based authentication schemes frequently form the weakest point of the
security infrastructure.
In this paper we first expose, why a tailored protocol designed for the IIoT use case is
considered necessary. The differences between IIoT and to the conventional Internet
use-cases result in largely modified threats and require special procedures for allowing
both, convenient and secure use in the highly constrained industrial setting.
Specifically the use of a verifier-based password-authenticated key-exchange (V-PAKE)
protocol as a hedge against public-key-infrastructure (PKI) failures is considered
important. Availability concerns for the case of failures of (part of) the communication
infrastructure makes local storage of access credentials mandatory. The larger threat
of physical attacks makes it important to use memory-hard password hashing.
This paper presents a corresponding tailored protocol AuCPace together with a
security proof within the Universal Composability (UC) framework considering fully
adaptive adversaries. We also introduce a new security notion of partially augmented
PAKE that provides specific performance advantages and allows, thus, for suitability
for a larger set of IIoT applications.
We also present an actual instantiation of our protocol, AuCPace25519, and present
performance results on ARM Cortex-M0 and Cortex-M4 microcontrollers. Our
implementation realizes new speed-records for PAKE and X25519 Diffie-Hellman for
the ARM Cortex M4 architecture.
Keywords: Password Authenticated Key Exchange, V-PAKE , PAKE, elliptic curves,
Cryptographic Protocols, Universal Composability, IEC-62443, Industrial Control,
Curve25519, X25519

1 Introduction
Since recently, wireless and networking technology becomes integrated in products and
devices that previously operated in a stand-alone setting, both in consumer applications
in the so-called "Internet of Things" (IoT) as well as in the corresponding industry setting,
the "Industrial IoT" (IIoT). Often communication technology and security protocols are
employed that were not originally tailored and designed for the resource-constrained setting
and the specific threat model.

In comparison to conventional un-connected devices, security becomes a crucial aspect
to consider, specifically in the IIoT. Often the only practicable means for authentication of
human users still is a weak password. In fact, the security of password-based authentication

mailto:bjoern.haase@conducta.endress.com


2 AuCPace: Efficient verifier-based PAKE protocol tailored for the IIoT

Server

Client Client Client Client

Client

ServerServerServerServer

Web-Shop use-case IIoT use-case

Figure 1: Use-cases for conventional Internet applications and IIoT.

schemes frequently form the weakest point of the security infrastructure. Users tend to
use short and easily memorable passwords. For this reason emerging industry standards,
such as from the IEC-62443 family rightfully require two-factor authentication for higher
security levels (SL-3, SL-4). Still then, however, suitable protection of the second factor
"password" remains important.

Today, in most Internet communication and many IIoT applications protocols such as
TLS based web servers are used, that were not originally designed for the IIoT use-case.
Mostly, a trustworthy and failure-free Public-Key-Infrastructure (PKI) is indispensable for
providing even basic protection of passwords, e.g. against phishing or man-in-the-middle
attacks. However in the IIoT setting, specifically for industrial installations not fully
operating according to standards such as IEC-62443, today integration of the devices in a
PKI is not always available.

1.1 Differences between conventional web security and IIoT
One of the most remarkable difference between the conventional web server setting (here
referred to as "web shop" use case) and the typical IIoT setting corresponding, e.g. to an
industrial plant is illustrated in Figure 1. In the former case few servers, e.g. web servers,
interface to many clients, e.g. web browsers which come with pre-installed configuration
for certificate authorities trusted by the browser supplier. In the latter case, one single
client, e.g. a tablet-computer based human machine interface (HMI), might be used for
configuring many servers, e.g. sensors or control valves.

Unlike in the "web shop" use case, in the IIoT setting a dramatically larger number of
server certificates needs to be configured and maintained. Often self-signed certificates are
used for servers, leading to the significant risk that the essential corresponding configurations
on the client side (e.g. browsers) are omitted. Users used to the more convenient "web
shop" setting might not even be aware that such configuration is mandatory for security.

As a consequence, the threat of PKI failures should be considered very carefully for
remote HMI access to (I)IoT units. This is one of the reasons, why since recently strategies
for password protection as a hedge against PKI failures have regained academic and
industrial interest [JKX18, PW17, HL17].

Moreover many IIoT devices, notably battery-driven devices, will not be permanently
"online". Availability concerns for the case of (partial) failure of networking infrastructure
often make it mandatory to locally store user credentials, typically in unprotected memory.
Furthermore, IoT devices might be much more exposed to physical attacks. For all of
these reasons, protection of passwords forms a crucial point of any (I)IoT security solution.

1.2 Strategies for protecting passwords
For the protection of passwords two complementary approaches could be distinguished.
On one hand, memory-hard password hash algorithms such as scrypt [PJ] and Argon2



Björn Haase and Benoît Labrique 3

[BDKJ16] aim at increasing the cost of offline dictionary attacks. They do so by designing
the hashing algorithm such that a large, parametrisable amount of memory, e.g. 32
Megabytes or more, is mandatory for efficiently calculating the password hash. This
prevents important classes of accelerating techniques based on parallelisation on low-
cost and low-power hardware such as application specific integrated circuit (ASICs),
field-programmable gate arrays (FPGA) and graphic processing units (GPU).

On the other hand password-based key exchange (PAKE) protocols allow for establishing
a secure, high-entropy shared session key over an insecure communication channel. This
holds even if only a low-entropy secret key, the password pw is shared.

One of the important advantages of PAKE protocols published since the early works
by Bellovin and Merritt and Jablon [BM92, Jab96] is the fact that neither a public-key
infrastructure (PKI) nor a trusted hardware component capable of securely storing high-
entropy keys is required as prerequisite. PAKE protocols, thus, match very closely the
needs of the IIoT use-case.

PAKE protocols essentially come in two variants. Firstly, so-called balanced or symmet-
ric PAKE protocols, for instance [BM92, CHK+05, BFK09, Jab96, BMP00], are designed
such that both, initiator and responder parties require that the same password pw is
available on both sides. Secondly, so-called verifier-based PAKE protocols (also known
as V-PAKE, asymmetric or augmented PAKE) protocols could be distinguished, where
the server entity is given access only to a password-verifier W and the clear-text password
is only available to the client party, e.g. [W+98, PW17, GMR06, Jab97]. In all known
protocols V-PAKE comes with significant additional computational overhead in comparison
to PAKE.

A peculiarity in the industrial IIoT setting is that we should be expecting to find the
very same password in use on many small devices. Due to password re-use the compromise
of one small server might affect the security of a larger infrastructure. On the other hand,
availability concerns for the case of failures of (part of) the network infrastructure often
make it mandatory to locally store this sensitive data and often no protected storage
media, such as smart-card circuits, are available. For this reason verifier-based PAKE
using memory hard password hashing should be considered to provide the best possible
security strategy regarding HMI authentication for IIoT applications.

1.3 Why industrial instrumentation needs a specially tailored V-PAKE
protocol

Unfortunately, it is not uncommon that IoT and industrial devices have only very limited
energy and computational resources available, specifically regarding battery-driven wireless
devices or if they have to be conformable with the constraint set that applies for intrinsically
safe explosion protection (IEC60079-11) [HL17].

For important classes of devices, use of memory-hard password hashing is precluded due
to the limited memory and computational capacities. Also the computational complexity
of some established V-PAKE protocols that were originally developed for office information
technology might prevent actual use in the IIoT. Note that all of the most efficient known
augmented protocols (requiring three exponentiations) or components of the protocols,
such as AugPake [SKI10] and OPAQUE [JKX18] are covered by patents. It is important
to consider that also devices even smaller than typical IIoT devices need sound password
protection, such as e.g. legacy fieldbus systems with bluetooth-based wireless HMI interfaces
[HL17].

In all of these settings, efficiency considerations and pending patents will be a crucial
factor ultimately deciding upon whether or not sound password protection could actually
be implemented by manufacturers. Note that specifically for the smallest devices such as
e.g. temperature sensors, a significant commercial cost constraint applies. All of, power
efficiency, code size and ease-of-implementation are crucial factors that will decisive for



4 AuCPace: Efficient verifier-based PAKE protocol tailored for the IIoT

actual roll-out of a more secure or more insecure solution. I.e. efficiency is of utmost
importance.

Regarding efficiency of V-PAKE solutions, optimisations need to apply on all levels
of the security implementation, protocol design, algorithmic optimisations (e.g. group
operations on elliptic curves) and low-level arithmetics. Unfortunately, most protocols
today were mainly designed with typical office environments in mind.

Regarding the optimisation of V-PAKE on the protocol level for both, security and
efficiency, the framework used for the security analysis is of major importance. More
idealised assumptions regarding the cryptographic primitives, such as specifically the
random-oracle model [BR93], often allow for significantly more efficient constructions. It
is also important to consider that authentication protocols are often embedded in a larger
system, involving, e.g., protocols allowing for distributing password verifiers to server
entities from a central management infrastructure. Note that in the IEC-62443-4-2 draft
standard, centralised user account management systems are declared mandatory even at
the lowest security level SL-1, providing significant challenges for all devices that are not
permanently "on-line" or isolated by purpose from the main company network.

Another example for such an application is given in [KM16] where as mitigation against
dishonest server units the clear-text password never leaves the client party. While it is
out of the scope of this paper, we consider it highly desirable to prepare a path for formal
security proofs for more complex composed solutions such as V-PAKE in conjunction with
centrally distributed user credentials. One of the proof strategies simplifying analysis of
inclusion of a PAKE substep in a larger system is the Universal Composability framework
(UC) by Canetti [Can01], specifically because it allows for modular re-use of reduction
proofs.

1.4 Contribution of this paper
This paper aims at contributing to the project of securing industrial IoT applications
by comprehensively addressing the efficiency, implementation and patent issues that,
today, often still hamper resolution of the prevalent and notorious pitfalls regarding
password-based human operator authentication.

We aim at doing so by introducing an efficiency-optimised V-PAKE protocol "Aug-
mented Composable Password Authenticated Connection Establishment" (AuCPace) and
an actual instantiation AuCPace25519 that is, to the best of our knowledge, freely usable
without inflicting intellectual property rights and specifically tailored for the exact subset of
devices where security is most likely to be discarded: Small extremely resource-constrained
and/or low-cost devices where integrating sound security is particularly difficult.

Our scheme arranges for use of memory-hard password hashes also on smallest devices
with little memory, since it is deferring the costly password hashing to the client entities.

Our work builds up upon the work in [HL17] by explicitly providing formal security
proofs for the specific optimised design choices therein, e.g. regarding the cheaper point
verification techniques employing twist security and avoidance of costly and memory-
consuming point compression. Note that such aspects were just not relevant for the
conventional office IT setting for which most PAKE protocols so far have been designed.

We do so by providing a security proof for AuCPace in the UC framework with joint
state [CR03]. We base our analysis on the UC-based security model of [GMR06]. We
show that our protocol, unlike most Diffie-Hellman-based constructions, could be proven
secure in the UC model, even when considering fully adaptive adversaries. We extend
this model for allowing a new operation mode that we coined partially augmented PAKE.
Partial augmentation allows for significant efficiency advantages in comparison to the
conventional "full" verifier-based PAKE. We show, how it is possible to implement AuCPace
in its partially augmented variant without any computational overhead in comparison to



Björn Haase and Benoît Labrique 5

conventional "balanced" PAKE for the resource-constrained server, while maintaining all
of the most relevant security guarantees in the IIoT setting.

Our protocol could be clearly modularised into a balanced sub-protocol that we coined
CPace (Composable Pace) since it shares important design features with the PACE protocol
from [BFK09] and an augmentation layer allowing for both conventional augmentation
and our newly introduced partial augmentation.

As one concrete instantiation we present a protocol AuCPace25519 which adds up
further optimisations also on the group arithmetics and field arithmetics level. We present
performance results for both, AuCPace and Diffie-Hellman protocols for ARM Cortex M0
and Cortex M4 microcontrollers. We hope that the new speed-records for constant-time
implementation of both, PAKE and the X25519 Diffie-Hellman Protocol on the ARM
Cortex M4, that we report in this paper will make it possible to enlarge the set of targets
that could afford integrating state-of-the-art security technology.

1.5 Organisation of this paper
This paper is organised as follows. In section 2 we first review related work on PAKE
protocols and review the definitions of security used for their respective security analysis.
Since AuCPace may be considered a SPEKE [Jab96] variant, we will concentrate on this
protocol family in more detail. We then give a short introduction to the concepts and
methods used for security proofs in the framework of Universal Composability (UC) and
describe our proof strategy.

Subsequently, in section 3 we will explain the full protocol AuCPace. There we will
also explain the design guidelines that motivated specific choices.

We then present our modular security proof of indistinguishability, first handling the
case of the balanced sub-protocol CPace without explicit authentication (section 4). In
section 5 we then use the composition theorem for proving security of the verifier-based
PAKE protocol in an UC hybrid model. In the subsequent section 6 we expose how to
halve the computational complexity of the login process of our protocol when discarding
security guarantees of only minor practical relevance in the IIoT setting. For this purpose
we introduce the concept of "partial augmentation" with a corresponding ideal functionality
FpapwKE . In section 7 we compare our proposal AuCPace with other efficient PAKE
protocols from the IIoT perspective.

Subsequently in section 8 we describe the implementation strategy on Cortex M0 and
M4 microcontrollers for our reference implementation AuCPace25519. We conclude the
paper by presenting actual performance benchmarks on different microcontrollers and
embedded bluetooth-transceiver microcontroller platforms in section 9.

In the appendix we present an outline, how a variant of our protocol could also be
implemented on conventional elliptic curves in short Weierstrass form and how the very
similar balanced protocol in [HL17] could be proven secure in the UC model.

2 Review of PAKE protocols and their security analysis
2.1 Overview on PAKE protocols
Despite the clear-cut security advantages, there are a couple of reasons that hampered use
of PAKE protocols in a number of applications [EKSS09]. Among the many reasons patent
pitfalls did play a major role. Notably, protocols such as EKE [BM92] and SPEKE [Jab96]
were patented until very recently and also some of the most efficient protocols in the
IEEE 1363 standard family are patented. This resulted in protocols such as SRP[W+98],
J-PAKE [HR10] and PACE [BFK09] which did include additional complexity solely for
patent circumvention.



6 AuCPace: Efficient verifier-based PAKE protocol tailored for the IIoT

Many protocols, including EKE and SPEKE, have been first suggested without a formal
security proof. Doing so comes at the risk of accidentally including serious design-flaws.
Many PAKE protocols have later been shown to be insecure. A recent example showing
the need of thorough security analysis is the case of zkPAKE presented in [MRA15] that
has been shown vulnerable to offline guessing attacks in [BSv17].

As a result of patent circumvention, a large number of different PAKE protocols has
been presented. This did hamper thorough security analysis. Firstly proofs became more
complex or impracticable because of the additional complexity of patent circumvention
steps. Secondly the number of protocol variants grew significantly, reducing the amount of
analysis effort spent on each individual variant.

As a general observation, protocols with a security proof that relies on random oracles
are more efficient than protocols whose security is based on standard assumptions. Some
of the additional complexity may be attributed to technical aspects of the proof strategy.
The efficiency difference is significant. For instance, SPEKE [Jab96] requires only two
exponentiations for generating the session key, while the KOY protocol [KOY01] requires
15 exponentiations for the server. For a recent comprehensive overview over different
PAKE protocols and proof strategies see, e.g. [SOAA15].

Many of the most efficient protocols base security on the conventional computational
Diffie-Hellman (CDH) problem or decisional Diffie-Hellman (DDH) problem. When staying
in the random-oracle model, this simplifies the security analysis in comparison to other
efficient constructions, such as AugPace [SKI10] whose security is based on problems that
are not as well understood and studied.

For the scope of this present paper targeting resource-constrained applications, we
saw the need to focus on the most-efficient constructions that are not covered by patents.
For efficiency and patent reasons, we did concentrate our research on SPEKE and one
of its variants, PACE [BFK09]. Since the SPEKE patent has expired recently, some of
the circumvention strategies used for PACE became obsolete. The protocol CPace, as
presented in this paper, has been developed in the process of removing some of the patent
circumvention steps. We did observe that the resulting protocol changes allowed for a
natural way of agreeing on a session id before entering the protocol, and opened a path
for a proof strategy within the UC framework. We will elaborate on the specific design
objectives and corresponding advantages of AuCPace in the section presenting the protocol.

It is worth noting that a very interesting recent and highly efficient construction
for PAKE augmentation using oblivious pseudo-random functions OPAQUE has been
presented in [JKX18]. OPAQUE is particularly interesting for elliptic curves having an
efficient integrated mapping available. We will come back to the respective advantages
and disadvantages in of this construction in actual applications in the discussion sections.

2.2 Security models
Probably one of the most widely used security models used for analysing PAKE protocols is
the game-based approach introduced in the early work of Bellare, Pointcheval and Rogaway
(BPR) [BPR00]. This model later has been extended to the so-called "find-then-guess"
(FTG) model[AFP05]. Other groups have used simulation-based proof techniques, such as
introduced by Boyko, MacKenzie and Patel (BMP) in [BPR00].

In 2005 Canetti, Katz, Lindell and MacKenzie [CHK+05] have introduced an alternative
approach, based on the framework of Universal Composability (UC) [Can01], specifically in
its joint-state version [CR03]. Unfortunately, it has been proven that PAKE constructions
being secure in in the UC model could not be realised without either, idealised assumptions,
such as random oracles or a common reference string [CHK+05]. One of the advantages
of analysing PAKE protocols in the UC framework is that no assumptions regarding
the password distribution apply. Related passwords or mistyped related passwords and



Björn Haase and Benoît Labrique 7

forward secrecy are inherently also considered. For this reason, the UC-based approach is
considered to be providing particularly strong security guarantees.

2.3 Review of SPEKE and SPEKE variants
SPEKE [Jab96] is one of the earliest published protocols. Over time it has been analysed
in a number of papers. The first security analysis of SPEKE has been given by MacKenzie
within the BMP simulation based model [Mac01]. As a result of the analysis at most two
passwords may be guessed for one on-line impersonation attack. Later it has been shown
that in fact multiple password guessing with one impersonation is feasible [Zha04] when
instantiating SPEKE on large-characteristic prime fields (as in the original 1996 SPEKE
paper).

SPEKE variants inherit the property from Diffie-Hellman key exchange, that a man-in-
the-middle attacker has the possibility to modify both honest party’s resulting DH key
unless the whole transcript of the communication is used for generating the session key (or
authenticator messages respectively) [HS14]. If the attacker replaces both intermediate
exponentiations Ba and Bb of the honest participants by a fixed power (Ba)c and (Bb)c
both parties will calculate the same session key. Note that this "attack" does not actually
affect security in practice [HS14]. In fact, preventing it might result in some overhead with
respect to storage for the transcript and computation.

SPEKE variants operating on large characteristic prime fields suffer from exponential
equivalence of passwords and also hashing of the password as suggested in [Jab97] does
not fully resolve this issue [LW15]. Note that the length of the bit stream generated by
commonly used hash functions is way shorter than the length of the prime.

In principle, SPEKE could also be implemented using groups on (hyper)-Elliptic curves.
However, until very recently [PW17] we are not aware of any security analysis where
SPEKE derivates (except for PACE [BFK09]) have been proven to be secure in this
setting.

It was long conjectured that SPEKE and its variants inherit the property of forward
secrecy from Diffie-Hellman. However we are only aware of one protocol, VTBPEKE, for
which this has been analysed in detail [PW17].

One notable advantage of SPEKE and some SPEKE variants such as PACE [BFK09]
when implemented on elliptic curves with integrated mapping [CGIP12] is that no full group
operations are required, e.g. allowing also for so-called x-coordinate-only implementations.
This feature provides some advantages of SPEKE and SPEKE variants in comparison
with, e.g., SPAKE [AP] and its variants and PAK[BMP00]. I.e. this way no full group
operations are required for implementations but only a less-strict notion of a group modulo
negation, that allows for scalar multiplication and differential addition but not for arbitrary
point additions.

Verifier-based variants of SPEKE have been suggested already in 1997 [Jab97]. However
the first verifier-based SPEKE variant VTBPEKE that came with a formal security proof
dates to our best knowledge from 2017 [PW17].

2.4 Review of the UC framework
In this paper we assume some familiarity with the framework of Universal Composability
(UC). As a short introduction, we will give a summary of the essence here. The reader
interested in more details is referred to the updated version of [Can01] in [Can00].

The general idea of UC is to define security in terms of idealised functionalities F which
provide services to a set of players Pi. Moreover the framework considers an adversary
A and an environment Z and a real-world protocol π whose security is to be analysed.
In the context of UC all of the algorithmic strategy of A , Z and π are provided in form
of code for an interactive Turing machine (ITM ). In an actual real-world execution, a



8 AuCPace: Efficient verifier-based PAKE protocol tailored for the IIoT

plurality of interactive Turing machine instances (ITI ) is generated upon request of the
environment Z . For instance several ITI may execute the ITM algorithm π for the parties
Pi. Also the environment Z and the adversary A are given their respective ITI instance.

In the UC framework this "real-world" case is compared with an "ideal-world" case
where the protocol π is replaced with the ideal functionality F and the real-world adversary
A with an ideal-world adversary S . The security model is based on the observation that
if any (polynomially bounded) environment algorithm Z cannot distinguish between the
"real" and "ideal" world executions with any significant advantage, then using instances of
protocol π is just as secure as using the ideal functionality F .

From the perspective of the players Pi, F provides a set of subroutine calls that
calculate a given function. For instance the subroutine call of the ideal functionality of a
PAKE protocol FpwKE returns a session key.

The definition of the algorithm of the ITM F makes sure that sensitive information is
hidden from the adversary as long as no "corruption" of parties occurs. Thus, the security
targets are inherently guaranteed. With corruptions, we model the case that the adversary
gets control over some of the protocol partners and, e.g., is able to retrieve data from its
internal memory. In the literature different types of corruption could be distinguished.
Unlike in so-called static corruption models where corruptions are only allowed before
starting with an actual protocol execution, the so-called adaptive or Byzantine corruption
models give the attacker more power by allowing him to corrupt parties at any time during
protocol execution. In this paper we consider the stronger Byzantine corruption model.

In the UC framework there may be many copies of the ideal functionality running in
parallel, each one being uniquely characterised by a session id sid. Every time a message
has to be sent to a specific copy of F , such a message should contain the sid of the copy it
is intended for. We follow here the approach of [CHK+05] and assume that each protocol
that implements F expects to have the session id included in each message.

The original UC theorem from [Can01] allows to analyse the security of a system viewed
as a single unit, but it does not guarantee anything if different protocols share some amount
of state and randomness, such as a hash function functionality for instance. For this reason,
for our application in mind, the UC theorem cannot be used as-is. Our analysis, just as
the strongly related work in [ACCP08] is thus implemented in the framework of universal
composition with joint state [CR03]. Unfortunately the alternative approach of [CJS14]
for modelling a global random oracle FgRO functionality could not be used, because we
need to program the random oracle to chosen values in our proof.

It is worth noting, that the integration of a Diffie-Hellman substep typically provides
significant technical difficulties in the UC framework [KR17]. Specifically, when considering
adaptive adversary models allowing for corruptions at any time, it is often infeasible for the
simulator to provide the adversary secret scalars that are consistent with the previously
published group elements. For this reason, many security proofs previously were forced to
restrict the analysis to the weaker static adversary model, for instance, in [GMR06].

2.5 Overall proof strategy
In this paper we follow a modular approach and try to avoid the introduction of new
security notions and new ideal functionalities where possible.

For this reason, we first prove that the balanced sub-protocol CPace securely implements
the ideal functionality FpwKE from [CHK+05] which we repeat for reference in figure 4.

We finally show by using the UC composition theorem that the combination of the
sub-protocols securely implements FapwKE from [GMR06] and thus provides conventional
"full" augmentation.

We then show that when the ephemeral Diffie-Hellman secret scalar x within the
AuCPace augmentation layer is replaced by a static scalar value x̃ that is re-used over
several protocol instances, the computational complexity for the server is essentially halved,



Björn Haase and Benoît Labrique 9

while preserving most of the security guarantees. We will present the corresponding
idealised functionality FpapwKE together with the security proof for partially augmented
AuCPace.

3 The AuCPace protocol
3.1 Design rationales for the AuCPace protocol
One major guideline for the protocol choices beside the security targets already introduced
above has been server-side efficiency. In a typical use case of a remote human-machine-
interface for a resource-constrained target, we could assume the client-side units to have
much more powerful computing capabilities.

There is no simple means for performance assessment of cryptographic protocols. A
large number of competing objectives are involved. The assessment needs, e.g., to consider
computational resources, RAMmemory requirements, ROMmemory requirements, message
transport latency, maximum transport-layer packet size and power consumption. For
different target hardware the relative importance varies.

Often, PAKE protocols were assessed with respect to performance in a simplified
way by counting the number of required exponentiations (sometimes also distinguishing
fixed-based and variable base cases) and by counting the number of communication rounds.

With AuCPace, we target the industrial IoT use-case, where a large set of servers is
assumed to be operating with the same passwords. For integrating these servers into a
larger user-credential distribution framework, it is mandatory to meet the computational
constraints also of the smallest devices. Therefore, the design should focus on this specific
subset, assuming that larger devices could then implement the corresponding mechanisms
without any difficulty.

We assessed power consumption to be one major issue in line with the results of [HL17].
We observed that not only minimising the number of required group exponentiations
is important. Beside the choice of a high-speed elliptic curve, a number of further
parameters influence the efficiency. Also point compression and point verification sub-
steps should be considered. We observed, e.g., that x-coordinate-only Diffie-Hellman
implementations could provide significant advantages, both, regarding speed, ease-of-
implementation and memory-consumption. We therefore searched for protocols compatible
with implementations not requiring full group operations. One possible advantage of
using x-coordinate-only implementations of an elliptic curve is, that the complexity of
point compression/decompression and verification could be drastically reduced, specifically
on curves offering twist security (allowing for efficient strategies for fending off small-
subgroup attacks [LL97]). Otherwise point decompression typically requires one costly
field exponentiation for implementing a square root.

We also tried to minimise the number of required primitives in the protocols. E.g. we
aimed at avoiding the digital signature scheme needed within some constructions, such as
the Ω-Method from Genry, MacKenzie and Ramzan [GMR06].

For AuCPace, we also aimed at minimising memory requirements. E.g., it was considered
desirable, not to require that a full transcript of all communication is to be kept in memory
until the termination of the protocol. Throughout the calculation, we aimed also at
minimising the memory requirement for temporary variables. E.g. for calculating scalar
multiplications on elliptic curves we searched for efficient strategies not requiring large
pre-computed tables, such as are typically required for window-based algorithms. Also
storage in Flash memory, e.g. for password database entries was considered important. As
one example the Ω-Method from [GMR06] needs to store a full public-private key pair in
addition to the hashed password and the salt. We aimed to improve on this in our solution.
For constrained servers, we assumed also that the ROM limitation might not allow for easy



10 AuCPace: Efficient verifier-based PAKE protocol tailored for the IIoT

integration of tables typically needed for fixed-base point scalar multiplication speedups.
On the other hand, we assessed that in comparison to memory and power consumption,

the number of message rounds might not be of primary importance, specifically if content
of messages from different protocol levels (protocol handshake, authentication protocol,
secured channel protocol) could be combined. Typically the main objective of reducing
communication rounds is reduction of the impact of networking latency. However, for
constrained servers, the main issue for the user-experienced delay might not be packet
transmission latency but lacking power or lacking computational resources respectively
[HL17].

3.2 Parameters of the AuCPace protocol
The AuCPace protocol is depicted in figures 2 and 3. The protocol is parametrised by

• A password based key derivation function PBKDFσ that is itself parametrised by
algorithm settings σ, specifying e.g. the memory consumption for the password
hash or an iteration count. PBKDFσ calculates a random string from the password
pw, a username and a so-called "salt" value. For reasons to detail in the following
paragraphs, AuCPace alternatively also considers use of a server-specific so-called
"pepper" that never changes for a specific server instead of ephemeral "salt" values that
are chosen randomly upon each password change. For our reference implementation
of AuCPace, we use the memory-hard script [PJ] password hash parametrised for a
memory consumption of 32 MByte.

• A (hyper-)elliptic curve C with a group J and a Diffie-Hellman (DH) protocol
operating on both, J and its quadratic twist J ′. We denote the DH base point
with B. We don’t require full group structure but could also instantiate AuCPace
if only group operations modulo negation are available. This might result in more
efficient implementations. (For more details regarding this efficiency aspect see the
corresponding discussion for the qDSA/EdDSA signature schemes in [RS17].). For
our reference implementation, we use the Curve25519 [Ber06] and the x-coordinate-
only Diffie-Hellman protocol X25519. In this paper we follow the recommendation in
[Ber14] and reserve the name Curve25519 for the curve and X25519 for the protocol.
For the DH protocol we use a simple exponentiation notation (even if, as in the case
of X25519, additional co-factor handling and clamping might apply for the scalars to
guarantee operations to take place in the appropriate sub-groups).

• An encoding that represents either an element Y in J or on its quadratic twist J ′ in
a fixed-size bit stream. In our reference implementation we make use of a little-endian
encoding of the x-Coordinate of the point on Curve25519 or its quadratic twist.

• A verification algorithm that checks whether the order of a point Y within J or J ′ is
large enough for the security target specified by the complexity of the computational
Diffie-Hellman problem (CDH) for security parameter k. In our reference implemen-
tation we make use of Curve25519’s twist security and the integrated co-factor of 8
for X25519 scalars. I.e. we just verify that X25519(x, Y ) 6= 0.

• A Map2Point operation and its inverse map Map2Point−1. Map2Point(s) is required
to map a string s on a point from a cryptographically large subgroup Jm of J ,
such that the discrete logarithm of the point is unknown. The inverse map s =
Map2Point−1(X, l) is required to map a point X ∈ Jm on a bit string s of length l
bits such that for any randomly sampled X ∈ Jm the string s is indistinguishable
from a random bit string of length l. For our reference implementation we use
Elligator2 introduced by Hamburg, Bernstein, Krasnova and Lange in [BHKL13] on
Curve25519, where the sign of the inverse map result is chosen at random and the



Björn Haase and Benoît Labrique 11

Elligator2 inverse map’s result is padded with random bits to yield the required total
length l.

• Hash functions H0 . . .H4. For our reference implementation we use SHA512 where
the hash function index is prepended as four-byte word.

We will refer to our reference implementation of AuCPace using the actual choices
above as AuCPace25519. While denying any legal responsibility, the authors declare
that they are not aware of any intellectual property right or patent limiting the use of
AuCPace25519.

3.3 Configuring the password verifier on the server
Two basic sub-protocols could be distinguished. In a first sub-protocol the server is given
a password-verifier W = Bw for storage in its database. This protocol is depicted in figure
2. The second sub-protocol is shown in figure 3 uses the available password verifier for
establishing a session key.

The configuration of password verifiers requires one message. We assume, that the
specific group J and the permissible set of PBKDF parametrisations σ of the server are
known to the client. The client chooses a fresh "salt" value and hashes the password pw to
yield a secret scalar w. Then a password verifier W = Bw is calculated and sent to the
server for storage in the database. Possibly authorisation information is also transmitted.
The server then checks whether the parametrisation σ and the authorisation setting to
attribute to the user are acceptable and stores the verifier W in the database together
with the salt and the authorisation settings.

While all of the protocols in this paper allow for choosing ephemeral fresh "salt" values
upon password changes, in some settings we see reasons for using a fixed "pepper" that
is chosen once for each server and otherwise fixed. Firstly, when using an ephemeral salt
value, we could not avoid some leakage of information. Specifically, we could not hide
whether or not a specific username entry is available in the server’s database or whether
a user has changed his password. For some applications, this information might provide
real-world attackers more advantage than a facilitated offline attack. Note also that an
additional or alternative "pepper" could serve as kind of common reference string for honest
parties. Specifically, if the "pepper" value required for the password hash is not openly
communicated over the vulnerable channel, some attackers might not be able to mount an
online attack.

In this paper we concentrate on the security proof for the session establishment only. I.e.
for this first sub-protocol we assume that communication is using a confidential channel.
We also assume that the client is properly authenticated and that the authorisation for
writing password file entries has been verified (as well as the authorisations to be attributed
to the user). More formally, we do not consider adversaries A that read or modify messages
of this sub-protocol or impersonate parties.

Within the protocol, the password is never given in clear-text to the server. This also
implies that the computationally complex PBKDF function is only calculated on the client
entity. Note also that by letting the client choose the "salt" value, we provide a path for
distributing password verifiers from a centralised user credential server by use of an offline
ticket mechanism.

Note that with respect to the generation of the password verifier W our protocol shares
some similarities with the AugPake scheme by Shin and Kobara [SKI10] and VTBPEKE
by Pointcheval and Wang [PW17]. In all of these constructions a group element W = Bξ

is used as verifier where password-derived key ξ is used as secret exponent for a known
base point.



12 AuCPace: Efficient verifier-based PAKE protocol tailored for the IIoT

Store password operation for AuCPace

Server Client

salt←$ {0, 1}l

w = PBKDFσ(pw, username, salt)
W = Bw

username, auth.,W, σ

Upon successful verification, record
(username, salt, auth., W,σ)
in the password file.

Figure 2: Protocol for password configuration.

3.4 Establishing session keys based on the password pw and the pass-
word verifier W

Establishment of the session key sk is realised by a sequence of several steps shown in
figure 3. First a subsession id ssid is established. This is done by hashing together client
and server-side generated random values s, t.

Secondly, a password related string PRS is established. We refer to this sub-protocol
as the AuCPace Augmentation layer. Establishing PRS involves one message round. After
learning the user name, the server transmits its "salt" string together with the value σ
required for parametrising the password hash PBKDFσ and an ephemeral public key P
and the group representation J to use for the Diffie-Hellman protocol. Both, server and
client entity then calculate a password-derived string PRS. While the server uses the
password verifier W from its database, the client party has to calculate PBKDFσ. If no
entry is available forW in the server’s password file, or if the point verification on the client
fails, the protocol is continued with a randomly sampled PRS string. Doing so somewhat
mitigates the fact that the openly communicated "salt" value leaks some information on
the server’s password file contents. (At the same time we have to accept more workload
when facing some types of denial-of-service attacks.)

Then client and server enter the balanced sub-protocol CPace with the password-derived
string PRS. There, first an ephemeral generator G is calculated by use of the Map2Point
algorithm.

Calculation of G involves a "channel identifier" CI which is hashed together with the
PRS. In the context of a TCP/IP based communication, the channel identifier CI might
be constructed by concatenating unique representations of the server’s and client’s IP
address and TCP port numbers. Incorporating the channel identifier into G allows us to
fend off certain types of relay attacks. By incorporating the ssid into the calculation, the
generator G is guaranteed to be ephemeral.

After deterimining G the two parties implement a Diffie-Hellman protocol by exchanging
two messages Ya and Yb and derive a shared Diffie-Hellmann secret point K. Note that
it is essential for the receiving party to verify the points Ya and Yb to be on a large
prime-order subgroup of J or its twist. Then a first session key sk1 is derived from the
shared Diffie-Hellman secret K.

As last sub-protocol, optionally explicit authentication is added by exchange of two
authenticator messages Ta and Tb. Finally the session key sk1 is refreshed to yield the
final session key sk.

With respect to the mandatory point verification, we do not impose the conventional
requirement that the implementation has to verify that the points X, Ya and Yb are ∈ J .



Björn Haase and Benoît Labrique 13

AuCPace

Server Client
Agree on ssid

s←$ {0, 1}k1 t←$ {0, 1}k1

s

t

ssid = H0(s||t) ssid = H0(s||t)

AuCPace Augmentation layer
do until X 6= 0:

x←$ {0, 1}k2 , X = Bx

user

W = lookupW (user)

J , X, salt, σ

w = PBKDFσ(pw, user, salt)

if lookup failed PRS ←$ {0, 1}k2 , abort if X invalid
else PRS = W x PRS = Xw

CPace substep
g′ = H1(ssid||PRS||CI) g′ = H1(ssid||PRS||CI)
G = Map2Point(g′) G = Map2Point(g′)
do until Ya 6= 0: do until Yb 6= 0:

ya ←$ {0, 1}k2 , Ya = Gya yb ←$ {0, 1}k2 , Yb = Gyb

Ya

Yb

K = Y ya
b K = Y yb

a

abort if Yb invalid abort if Ya invalid
sk1 = H2(ssid||K) sk1 = H2(ssid||K)

Explicit mutual authentication
Ta = H3(ssid||sk1) Ta = H3(ssid||sk1)
Tb = H4(ssid||sk1) Tb = H4(ssid||sk1)

Tb

Ta

verify Tb verify Ta
sk = H5(ssid||sk1) sk = H5(ssid||sk1)

Figure 3: Protocol AuCPace.



14 AuCPace: Efficient verifier-based PAKE protocol tailored for the IIoT

Instead we impose a less strict requirement that could be implemented more efficiently on
some curves, notably if they have secure twists: We require that it has to be verified that
the order of the respective points is large with respect the required complexity assumption
for the CDH problem for the security parameter k, such as to prevent collisions in the
result points K and Xw due to small subgroup attacks.

4 Proof of indistinguishability for the balanced sub-protocol
CPace

In this section we will deal with the balanced PAKE protocol CPace corresponding to the
middle part of figure 3.

In this proof we show that this sub-protocol emulates the functionality FpwKE from
[CHK+05]. FpwKE (repeated in figure 4) receives the passwords pw from the environment-
controlled parties Pi and Pj and returns upon a NewKey request the same random session
key sk if and only if the passwords match. In case that any party gets corrupted or
messages were modified by the adversary, the adversary is given control over the party’s
session key sk.

In [CHK+05] FpwKE has been used in the context of static adversaries only. Here,
in the context of adaptive adversaries we observed the need to more clearly specify the
behaviour of FpwKE in case of adaptive corruptions. As in the static corruption model used
in [CHK+05], we let FpwKE give party Pi’s password to S upon corruption. In addition,
we need to handle the case that S corrupts a party Pj after a session key sk has been
already sent to party Pi. If Pi and Pj use the same password pw, we send S the honest
party’s session key sk, otherwise (in case of different passwords) we send S a randomly
sampled key sk′. This is required for giving S the possibility to continue behaving just as
a honest party.

The sub-protocol CPace from figure 3 receives password-related strings PRS as input
and returns session keys sk1 as result. Note that PRS is formed as the concatenation of
the subsession id and a password-related component (W x and Xw respectively).

For the security analysis in this section we need to map the inputs and outputs of the
protocol from figure 3 to the notation used for defining the ideal functionality FpwKE in
figure 4. The password related components (W x and Xw respectively) correspond to the
passwords pw and the resulting session key sk from figure 4 corresponds to the intermediate
session key sk1 from figure 3. For the purpose of the proof, we define the channel identifier
CI to be the concatenation of the identifiers of the parties Pi and Pj . (Note that in order
to have both sides work with the same CI, we place the party with the smaller index (i, j)
first.)

4.1 Proof strategy
Our proof closely follows the strategy from [ACCP08]. Here we also use a sequence of
games G0 to G4 where the simulator algorithms S0 to S4 are executed. We organise
these algorithms Sn as a combination of independent ITI that only interact through their
well-defined APIs and have internal state (tape) that is not accessible from the outside.
Initially we have one such ITI for each simulated honest party Pi, the hash functionality
FRO and one ITI executing the algorithm of the real-world adversary A . We let Sn invoke
the other ITI during the course of the execution. I.e. we treat the real-world adversary
algorithm A as a black box subroutine library for Sn .

When A decides to corrupt a party Pi, we need to provide it all of the corrupted ITI ’s
internal accessible state. The subsequent behaviour of this party is then controlled by A .
The adversary is also given the secret scalars used in the real-world protocol. Finally, we



Björn Haase and Benoît Labrique 15

give Sn also access to an ITM Fn in each game, where F0 is initially not providing any
service. In each game we extend the functionality of Fn until it implements FpwKE .

In the games in our proof we re-factor the algorithms Sn such that each change is
indistinguishable for the environment Z .

At the end of the game sequence, we end up with an algorithm S4 that makes only
calls to F4 which itself implements exactly the ideal functionality FpwKE .

4.2 Game-based proof
4.2.1 Game G0 : Real Game

G0 is the real game in the random-oracle model using the functionality FRO from figure 5.
The parties Pi receive NewSession queries from all simulated honest parties. These queries
contain the passwords provided by the environment Z . Pi then executes the actions of
initially honest parties in the protocol. In the event of corruptions, the internal state of
the parties is passed to the real-world adversary algorithm A . The subroutine library
F0 is empty.

4.2.2 Game G1 : Simulation of the random oracle

Here we modify the previous game by replacing the calls Hn(q) to the original FRO hash
ITI by an own implementation. We let S1 maintain an initially empty list Λ of value pairs
(n, q, g, r). For any hash query Hn(q) such that (n, q, ∗, r) appears in Λ from any of the
ITI libraries, the returned answer is r. In case that no query q has yet occurred, we handle
separately the cases of n = 1 and n 6= 1. In case of n 6= 1 we implement the conventional
random-oracle model by choosing a new random r of length k, by storing (n, q, 0, r) in Λ
and by returning r to the calling ITI .

For n = 1 instead, we aim at generating a random string r such that the discrete
logarithm of the point Map2Point(r) is known. For this purpose we first generate a random
point G whose discrete logarithm is known and use the inverse map Map2Point−1(G, k)
for converting it into a bit string of length k. We use the guarantee, that for any random
point G the string r = Map2Point−1(G, k) is indistinguishable from a random value.

For calculating the random point G, we first choose a random nonzero value g being
smaller than the order of the group. We calculate the point on J , G = Bg. We then
test whether G is in the image of Map2Point, Jm. If G is not in the image, we restart
with a new random value g until G ∈ Jm. This is guaranteed to succeed in probabilistic
polynomial time because Jm is required to be a large subset of J .

Then we calculate r = Map2Point−1(G, k), record (1, q, g, r) in Λ and return r.
Since the inverse map returns a string indistinguishable from a random string by the

guarantees of Map2Point and due to the birthday paradox, G0 and G1 are indistinguishable
for the environment.

4.2.3 Game G2 : Handle the case that an impersonating adversary wins by chance

Here we handle the case that an impersonating adversary succeeds in calculating the
session key sk without querying the hash oracle H2. In this case we let S2 abort. This
case occurs with negligible probability. G2 is, thus, indistinguishable from G1 .

4.2.4 Game G3 : Restrict the access to the password.

Here, when receiving the passwords for party Pi from the environment, we let Pi pass
them directly to the subroutine library F3 and allow the rest of the program S3 no longer
access the password unless the simulated party Pi get’s corrupted. We let S3 inform F3 in
case that a party got corrupted such that F3 returns the password in this case. We add



16 AuCPace: Efficient verifier-based PAKE protocol tailored for the IIoT

also an implementation of the TestPwd query to F3 and implement it according to the
spec. of FpwKE . In this game, we preliminarily also add a SamePwd query to F3 that
returns true if the passwords match.

As a result, the password-derived generator G from figure 3 is no longer known to the
ITI Pi . We therefore cannot start the original protocol from the beginning and need to
refactor the ITM for the parties as well.

Instead we let the ITI Pi calculate the protocol messages Ya and Yb to be random
multiples of the group’s base point B, Ya = Bza and Yb = Bzb . We also let Pi main-
tain an initially empty list Γ and store the secret scalars of simulated honest parties
(sid, ssid, Pi, y unknown , za) and (sid, ssid, Pj , y unknown , zb) in this list together with
the respective session id.

Since G from game G2 was a generator of the whole cryptographic group J , the
resulting points Ya, Yb take any value on J with equal probability (except for the neutral
element) for honest parties. So do the points generated in G3 . The public messages in
G2 and G3 are, thus, indistinguishable for the environment.

As soon as both messages Ya and Yb have been delivered by A we calculate the
Diffie-Hellman results using the received points and the local exponents za and zb. If the
respective result points differ, we know that A has modified the messages in a destructive
way and record for this session a flag DHFails .

In case that a party Pi gets corrupted before calculating K, we need to hand over
A something being consistent with the internal state from Pi in G2 , notably the values y
(ya or yb respectively for client and server).

In the case of corruption, F3 grants us access to the secretly stored pw from its internal
state. S3 may then take the password and the session id and make a corresponding hash
query to H1. We then retrieve the secret scalar value g from Λ. We fetch the party Pi’s
secret scalar z from Γ and calculate y = z/g. We add the party’s secret scalar z to the
record in Γ with y and hand over y, pw to A .

In case that any party gets corrupted after calculating K but before calculating the
final H2, we perform the secret scalar correction above and recalculate a new K = Y yr by
using the received point value Yr and pass K to A .

The code for the verification handling for the received points Yr can remain unchanged
in comparison to Game G2 .

In case that the point verification fails for any party, we do not generate a session
key and do not need to calculate the final hash H2(ssid||K). In case that the final hash
H2 needs to be calculated for the first of the parties Pi and Pi is still honest, we need to
provide a session key to Pi. (Note that this could be either server or client.) We distinguish
three cases.

• If the other party was corrupted earlier, we know the other party’s password pw′.
We then may issue a TestPwd query to F3 . If the guess was correct, we learn the
local secret scalar value y by the method described above and calculate K = Y yr
with the received remote point Yr. We query H2(sid||K) for the corrected value of
K and return the result to Pi. If the guess was wrong, we sample a new random key
sk and return it to Pi.

• If the other party is still honest, we sample a new random key sk and send it to
Pi and record this session key together with the session id and the party identifier
(sid, Pi, Pj , sk).

• If the other party is impersonated by A we also sample a new random key sk and
send it to Pi and record this session key together with the session id and the party
identifier (sid, Pi, Pj , sk). Note that (according to the previous game), we will be
returning a distinguishable key sk iff A somehow managed to guess the value K = Y yr .
We will calculate the corresponding probability GuessK in section 4.3.



Björn Haase and Benoît Labrique 17

The remaining task is to calculate the session key sk for a second party Pj if it is
not corrupted until the very end or corrupted before calculating sk. In any of these two
cases, we know that two messages Ya and Yb must have been delivered by A , and we,
thus, have access to the DHFails marker and that the received points are not from a low
order sub-group (or the neutral element). Also, because we know that we have to simulate
session key generation for the second time, we know that the first party was honest until
the end of the protocol.

If the second party is also honest until the very end, we make a SamePwd query
introduced temporarily to F3 . If the passwords match and if the session is not marked as
DHFails , we return the same sk value to Pj as for the first party, otherwise we sample a
new random key sk′ and return this one to Pj .

In case that the second party Pj gets corrupted after calculating K we first correct
K using the secret exponent g retrieved from Λ. In case that we recognised destructive
modification of the Diffie-Hellman points by the DHFails marker for the session, we just
sample a new value for sk′ by the interface of the random oracle sk′ = H2(sid||K) and
pass sk′ to A . There is only a negligible chance of collision with the key sk sent to
the first party, since both sk and sk′ have been randomly sampled. There is also only a
negligible chance that A managed to make both parties issue the same session key despite
different passwords by modification of the transmitted points. For this reason G3 and
G2 are indistinguishable for this case.

If the Diffie-Hellman points have not been modified in a destructive way (DHFails not
recognised), the session key issued in G2 depends on the password. We learn the party’s
password pw from F3 . We then may issue a TestPwd query to F3 . If the guess was
correct, we have to provide the same session key to A as for the first party if DHFails is
not recognised. For this purpose, we program the value H2(sid||K) := sk to the session
key returned to the first party. This could fail only, if the oracle H2 already has been
queried for (sid||K), again corresponding to the probability GuessK that we deal with in
section 4.3. (Note that it is for this re-programming operation that we will later need to
be granted access to the session key issued to the client by the ideal functionality FpwKE .
Otherwise we could not give S access to the session key that would have been calculated
by honest parties for corruptions occurring just after executing the hash function.)

The messages Ya, Yb generated in Game G2 and G3 are indistinguishable for the
environment because they come from the same distribution. Also the session keys are
sampled from an un-distinguishable uniform distribution in both cases. Session keys
delivered to parties Pi and Pj match under the same conditions as in G2 . Inserting points
on the group’s twist by the adversary always leads to different session keys for both parties,
just as in G2 . G2 and G3 are, thus, indistinguishable for the environment Z .

4.2.5 Game G4 : Merge the key generation procedures to the functionality F4 .

In this game we essentially only do code-refactoring and move the code responsible for
session key generation to the ITM F4 . We make F4 implement exactly the functionality
FpwKE . Note that we need maintain the queries within F4 that give access to the passwords
pw in case of corruptions. We also need to add a query returning the session key delivered
to the client in case of late adaptive corruptions of the second party (server), as discussed
above. We remove the SamePwd query from the list of queries for F4 because now, F4 could
easily check itself for password identity in its internal storage. Within S4 we finally replace
the sampling of the session keys by calls to the NewKey query of the ideal functionality.

Since between G3 and G4 no functionality change is present, G3 and G4 are indistin-
guishable for the environment Z .



18 AuCPace: Efficient verifier-based PAKE protocol tailored for the IIoT

4.3 Proof that probability GuessK in G3 is negligible
For the proof we did use the conjecture that an impersonating adversary that has no access
to the password of a honest party pw is not able to predict the honest party’s calculated
point K.

The reasoning is identical for both, server and client, so we consider the case of the
server here. G3 can be distinguished by Z from G2 iff the impersonating adversary succeeds
in obtaining the real-world protocol’s honest party point K = Y yb

a in G2 without knowing
the honest player’s password. Note that Ya is publicly known and may be either on J or
on it’s twist J ′. We know, however, that the order of the point Ya is large, thus DLP and
CDH could be conjectured to be difficult.

In G2 and under the assumption of the hardness of the discrete logarithm problem DLP,
A can derive K iff he knows yb. The only information that he disposes of is the remote
side’s sent point Yb = Gyb . If we assume that the password-derived generator G = Bg

used by the honest party is unknown because the password is unknown, the problem of
calculating the honest party’s secret ephemeral scalar yb from the known Yb = Bg×yb

is simply undefined, since one equation cannot be used for two unknowns (g and yb).
Note that the secret scalar g is known to exist, but known to no party according to the
security guarantees required for the Map2Point primitive. I.e. even an attacker being able
to solve the discrete log problem could not solve it. If one more conservatively assumes
that the adversary managed to control the generator G, possibly by biasing the sid and
by exploiting two simultaneous flaws in both, the hash and the Map2Point primitive, we
obtain the PACE-DH problem from [BFK09]. In the very same paper this one is shown to
be as hard as the DH problem in the generic model of Shoup [Sho97] and conjectured to
be as hard as the computational Diffie-Hellman problem.

In any case the probability GuessK is, thus, negligible.

4.4 Remarks regarding the ordering of the messages and efficiency
Note that in this proof we have assumed that the server party starts with the communication
round. In fact, since the services provided to the two parties by the ideal functionality are
identical and since the protocol is perfectly symmetric, we could interchange the server
and client roles for the balanced PAKE sub-protocol CPace. The ordering of the message
exchange of Ya and Yb is, thus, irrelevant for the security. Note that this could be used
for speedups for actual implementations, specifically in case that the scalar multiplication
takes comparable time as message delivery.

5 Proof for the augmented protocol AuCPace
5.1 Technical details
For implementing the actual proofs we need to consider a number of technical details. We
aim at re-using functionalities from previous papers wherever possible, specifically the
ideal functionality FapwKE from [GMR06].

However, for our protocol we could not use it as-is because firstly, FapwKE aborts in
case that the server does not find a password entry in its file. In our protocol, we aim at
keeping the information which users have a database entry somewhat more confidential by
continuing the protocol with a random string. This confidentiality could be fully realised
only when using a server-specific "pepper". If a random "salt" is transmitted for the
password hashing, we could, e.g., not hide the information that a user has changed the
password. On the other hand, by using a random string, we could hide the information
whether an entry is available in the database at least for the low-motivation and low-skill
attacker. Secondly, AuCPace supports password changes, while FapwKE only allows for



Björn Haase and Benoît Labrique 19

The functionality FpwKE is parametrised by a security parameter k. It interacts with
an adversary S and a set of parties via the following queries:

Upon receiving a query (NewSession ,sid, Pi, Pj , pw,role) from party Pi :
Send (NewSession ,sid, Pi, Pj ,role) to S . In addition, if this is the first NewSession query,
or if this is the second NewSession query and there is a record (Pj , Pi, pw′), then record
(Pi, Pj , pw) and mark this record fresh .

Upon receiving a query (TestPwd ,sid, Pi, pw′) from the adversary S :
If there is a record of the form (Pi, Pj , pw) which is fresh , then do: If pw = pw′, mark
the record compromised and reply to S with "correct guess". If pw 6= pw′, mark the
record interrupted and reply with "wrong guess".

Upon receiving a query (NewKey ,sid, Pi, sk) from S where |sk| = k:
If there is a record of the form (Pi, Pj , pw), and this is the first NewKey query for Pi,
then:

• If this record is compromised , or either Pi or Pj is corrupted, then output (sid, sk)
to player Pi.

• If this record is fresh , and there is a record (Pj , Pi, pw′) with pw′ = pw, and a key
sk′ was sent to Pj and (Pj , Pi, pw) was fresh at the time, then output (sid, sk′) to
Pi.

• In any other case, pick a new random key sk′ of length k and send (sid, sk′) to Pi.

Either way, mark the record (Pi, Pj , pw) as completed .

Figure 4: Ideal functionality FpwKE from [CHK+05] re-presenting balanced PAKE without
explicit authentication.

The functionality FRO proceeds as follows, running on security parameter k with parties
P1, . . . , Pn and an adversary S :

FRO keeps a list L (which is initially empty) of pairs of bit strings.
Upon receiving a value (sid,m) with (m ∈ {0, 1}∗) from some party Pi or from S , do:

• If there is a pair (m, (h̃)) for some h̃ ∈ {0, 1}k in the list L, set h := h̃.

• If there is no such pair, choose uniformly h ∈ {0, 1}k and store the pair (m,h) ∈ L.

Once h is set, reply to the activating machine (i.e., either Pi or S ) with (sid, h).

Figure 5: Ideal functionality FRO .



20 AuCPace: Efficient verifier-based PAKE protocol tailored for the IIoT

The functionality FapwKE is parametrised by a security parameter k. It interacts with an
adversary S and a set of parties via the following queries:
Password storage and authentication sessions
Upon receiving a query (StorePWfile ,sid, Pi, Pj , pw) from party Pi :
If this is the first StorePWfile query, store password data record (file , Pi, Pj , pw) and mark it
uncompromised .
Upon receiving a query (CltSession ,sid, ssid, Pi, pw) from party Pi :
Send (CltSession , sid, ssid, Pj , Pj) to S , and if this is the first CltSession query for ssid, store
session record (ssid, Pi, Pj , pw) and mark it fresh .
Upon receiving a query (SvrSession ,sid, ssid) from party Pj :
If there is a password data record (file ,Pi, Pj , pw) then send (SvrSession ,sid, ssid, Pi, Pj) to
S , and if this is the first SvrSession query for ssid, store session record (ssid, Pj , Pi, pw′) and
mark it fresh .
Stealing password data
Upon receiving a query (StealPWfile ,sid) from adversary S :
If there is no password data record, reply to S with "no password file". Otherwise do the
following. If the password data record (file ,Pi, Pj , pw) is marked uncompromised , mark it as
compromised . if there is a tuple (offline ,pw′) stored with pw = pw′, send pw to S , otherwise
reply to S with "password file stolen".
Upon receiving a query (OfflineTestPwd ,sid, pw′) from adversary S :
If there is no password data record, or if there is a password record (file ,Pi, Pj , pw) that is
marked uncompromised , then store (offline ,pw′). Otherwise, do: If pw = pw′, reply to S with
"correct guess". If pw 6= pw′, reply with "wrong guess".
Active session attacks
Upon receiving a query (TestPwd ,sid, ssid, P, pw′) from adversary S :
If there is a session record of the form (ssid, P, P ′, pw) which is fresh , then do: If pw = pw′,
mark the record compromised and reply to S with "correct guess". Otherwise, mark the session
record interrupted and reply with "wrong guess".
Upon receiving a query (SvrImpersonate ,sid, ssid) from adversary S :
If there is a session record of the form (ssid, Pi, Pj , pw) which is fresh , then do: If there
is a password data record (file , Pi, Pj , pw) that is marked compromised , mark the session
record compromised and reply to S with "correct guess", else mark the the session record
interrupted and reply with "wrong guess".
Key Generation and Authentication
Upon receiving a query (NewKey ,sid, ssid, P, key) from adversary S , where |key| = k:
If there is a record of the form (ssid, P, P ′, pw) that is not marked completed , then:

• If this record is compromised , or either P or P ′ is corrupted, then output (sid, ssid, key)
to P .

• If this record is fresh , there is a session record (ssid, P ′, P, pw′),pw′ = pw, a key key′

was sent to P ′, and (ssid, P ′, P, pw) was fresh at the time, then let key′′ = key′, else
pick a random key key′′ of length k. Output (sid, ssid, key′′) to P .

• In any other case, pick a random key key′′ of length k and output (sid, ssid, key′′) to P.

Finally, mark the record (ssid, P, P ′, pw) as completed .
Upon receiving a query (TestAbort ,sid, ssid, P ) from adversary S :
If there is a session record of the form (ssid, P, P ′, pw) that is not marked completed , then:

• If this record is fresh , there is a record (ssid, P ′, P, pw′),and pw′ = pw, let b′ = succ .

• In any other case let b′ = fail

Send b′ to S . If b′ = fail, send (abort ,sid, ssid) to P , and mark record (ssid, P, P ′, pw)
completed .

Figure 6: Ideal functionality FapwKE for verifier-based PAKE with explicit authentication
from [GMR06]. Note that we applied a single wording change (underlined) by replacing
Impersonate with SvrImpersonate for making it more explicit that this message models
impersonation of the server.



Björn Haase and Benoît Labrique 21

configuring passwords once for each session id sid. f We first considered re-phrasing the
functionality to our needs, but finally refrained from doing so. E.g. regarding the mitigated
information leakage when transmitting the "salt" would have added significant complexity.
We came to the conclusion that it is best to try to avoid this complexity by rather slightly
modifying our protocol for the purpose of the security proof. Specifically, for the purpose
of the proof we don’t continue the protocol if no password database entry is available for
the given username by a random password related string PRS, but abort instead and
allow for setting the password only once (in line with [GMR06, JKX18]). This change in
the protocol allows for carrying out the proof with an un-modified functionality FapwKE .

The second technical aspect to consider is the handling of the PBKDFσ(pw,username,salt)
function. For the purpose of the UC proof, we treat PBKDF as a separate hash function
H6 and model it as a random oracle PBKDFσ(pw,username,salt) = H6(pw||σ|| username ||
salt).

The third technical aspect stems from the fact, that the UC simulation model based
on Turing machines does not naturally allow for the concept of human users with "user
names" and authorisations. Instead we assume that the client’s identifier Pi takes over the
role of the user name and ignore the concept of authorisation here. The full protocol used
for the proof is shown in figure 7.

We adhere to the convention from [GMR06] where we use the terminology "server
compromise" for the event of stealing the server’s persisted state, while we use the
terminology denote "corruption" for events where the adversary gains full control over a
party during session establishment.

5.2 Proof strategy for the augmented protocol
With respect to simulation, we need to distinguish password storage and session establish-
ment. During password storage we don’t actually give the adversary A any power. We
allow A for compromising the server after configuration of the password. For this reason,
the simulation of this sub-step does not provide any difficulty. We let S just forward
the StorePWfile query to the FapwKE functionality and send an empty StorePWfileSvr
message to the server.

With respect to the session establishment, we again consider fully-adaptive adversaries.
The most complex part of the proof will be handling of compromise of the server database.
Just as for the proof of the balanced sub-protocol CPace, we proceed by using a sequence
of games where G0 corresponds to the real world and G4 corresponds to the ideal world.
In each of these games, we consider simulators S0 to S4 which implement part of their
functionality in a subroutine library F0 to F4 , where F4 exactly implements the ideal
functionality FapwKE . Throughout this proof, we show that all of the individual games
are indistinguishable for Z .

5.3 Game-based proof
5.3.1 Game G0 : Real Game

G0 is the real game in the random-oracle model using the functionality FRO from figure 5
for calculating the password hash PBKDF. Honest parties Pi execute the actions of the
real-world protocol until eventually getting corrupted. Specifically client entities Pi receive
StorePWfile and CltSession queries from the environment Z and return session keys upon
success. Server entities Pj receive SvrSession queries. On the event of corruptions, all the
internal state of the parties is passed to the real-world adversary algorithm A , specifically
for server corruptions, the password verifier W is returned. The subroutine library F0 is
empty.



22 AuCPace: Efficient verifier-based PAKE protocol tailored for the IIoT

The Asymmetric AuCPace protocol

Setup: This protocol uses a random oracle functionality FRO for all of the hash
functions H3, H4, H5 and the password hash PBKDFσ (H6) with a parametrisation σ and
salt size of ms bits. The protocol also uses a balanced PAKE functionality FpwKE as
well as a Diffie-Hellman key exchange protocol (written in exponentiation notation Xy)
operating on base point B and group order mJ working on a cryptographic sub-group
J of an elliptic curve and its quadratic twist J ′.

Password storage protocol:
When Pi (who is a client) is activated using StorePWfile (sid, Pj , pw) for the first time,
he does the following. He samples a fresh value salt ←$ {0, 1}ms , calculates the password
hash w = H6(salt||σ||pw||Pi) by using FRO . He then calculates a Diffie-Hellman point
W = Bw.
He sends a message (StorePWfileSvr , sid, Pi,salt, σ,W ) to Pj . When Pj which is a
server receives (StorePWfileSvr , sid, Pi,salt, σ,W ) from Pi for the first time, he sets
file [sid] = (sid,salt, σ,W, Pi).

Protocol steps for session establishment:

1. When Pj receives input (SvrSession , sid, ssid, Pi), he sets up a session record
(sid, ssid, Pi) and marks it as fresh . He then waits for a (username , sid, ssid, Pi)
message.

2. When Pi receives input (CltSession , sid, ssid, Pj , pw) he sets up a session
record (sid, ssid, Pj) and marks it as fresh . He then sends message
(username , sid, ssid, Pi) to Pj and awaits a response.

3. When Pj receives input (username , sid, ssid, Pi), he obtains the tuple stored
in file [sid] (aborting and marking the session record as completed if this
value is not properly defined). He then samples a fresh nonzero expo-
nent x with 0 < x < mJ and calculates X = Bx. Pj then sends
(hashingParams , sid, ssid, σ,salt, X) to Pi. Pj then calculates W x. He then sends
(NewSession , (sid, ssid), Pj , Pi, (sid, ssid,W x)) to FpwKE and awaits a response.

4. When Pi receives input (hashingParams , sid, ssid, σ,salt, X) he verifies X and
calculates w = H6(salt||σ||pw||Pi). He then calculates Xw. He then sends
(NewSession , (sid, ssid), Pi, Pj , (sid, ssid,Xw)) to FpwKE and awaits a response.

5. When Pj receives input ((sid, ssid), sk1) he calculates Ta = H3(sk1), T ′b = H4(sk1)
and sk = H5(sk1) and adds Ta, T ′b, sk to the session record. He then sends
(Authenticator , sid, ssid, Ta) to Pi and awaits a response.

6. When Pi receives input ((sid, ssid), sk1) he calculates T ′a = H3(sk1), Tb = H4(sk1)
and sk = H5(sk1) and adds T ′a, Tb, sk to the session record. Then he sends
(Authenticator , sid, ssid, Tb) to Pj and outputs (sid, ssid, sk). He then waits for a
response.

7. When Pi receives a message (Authenticator , sid, ssid, Ta) he compares T ′a with Ta
and aborts in case of differences. Else Pi outputs (sid, ssid, sk).

8. When Pj receives a message (Authenticator , sid, ssid, Tb) he compares T ′b with Tb
and aborts in case of differences. Else Pj outputs (sid, ssid, sk).

Stealing the password file: When Pj (who is a server) receives a message
(StealPWfile , sid, Pj , Pi) from the adversary A , if file [sid] is defined, Pj sends it
to A .

Figure 7: AuCPace Protocol definition for the proof of indistinguishability.



Björn Haase and Benoît Labrique 23

5.3.2 Game G1 : Modeling the random oracle for the hash

In G1 we replace calls to FRO by an own implementation of the random oracle for
PBKDF and the hash functions in a straight-forward way. Again we maintain an initially
empty list Λ of value pairs (n, q, r). For any hash query Hn(q) such that (n, q, r) appears in
Λ from any of the ITI , the returned answer is r. In case that no query q has yet occurred
we implement the conventional random-oracle model by choosing a new random r of length
k, by storing (n, q, 0, r) in Λ and by returning r to the calling ITI .

This game is indistinguishable from game G0 due to the birthday paradox.

5.3.3 Game G2 : Getting rid of the case where the adversary A wins by chance.

This game is almost as the previous, only we allow the simulator to abort in case that
the adversary manages to guess one of the authenticator messages Ta or Tb or the final
session key sk without querying the random oracles for sk1. This happens with negligible
probability, so Game G1 and G2 are indistinguishable for the environment Z .

5.3.4 Game G3 : Handle mutual authentication.

In this game we deal with mutual authentication but still allow the simulator access
to the clear-text password pw upon server compromise events. I.e., in this game, we
don’t give the simulator access to the password but instead pass the password from a
StorePWfile and CltSession query to code within F3 with an implementation according
to FapwKE . Temporarily, we allow F3 to return the clear-text password upon the
StealPWfile query.

This way, the simulator may no longer access the password for the message StorePW-
file sent from the client to the server. Since we assume that neither impersonation nor
eavesdropping or message modification is feasible for A in this sub-step, simulation of the
message provides no difficulties. We just sample a new random salt value and let the client
send a message (StorePWfile , sid,salt, σ, Pj) with only the hashing parameter but without
password verifier W . Since A is not allowed to eavesdrop this is indistinguishable from
game G2 for the environment Z .

Simulation of the (username , sid, ssid, Pi), does only include publicly known information
and is simulated as in the real world protocol. The same holds for the server’s reply
(hashingParams , sid, ssid, σ,salt, X) we sample a fresh random secret scalar x and salt
value and calculate the public key in the message as X = Bx. Point verification for X
may be implemented just as in G2 .

In case of compromising the server’s password file, we have to return password verifiers
W in order to maintain indistinguishability with game G2 . In game G3 we do so, by
retrieving the clear-text password pw from F3 and by calculating the password verifier as
in the original protocol.

For simulating the authenticator messages Ta and Tb we sample two random values and
transmit these. Since also in game G2 these values came from a uniform distribution, the
authenticator messages from game G3 are indistinguishable from G2 for the environment
Z .

After sending the authenticator messages, we call the TestAbort queries of F3 for both
parties and call a NewKey query upon success. In case that the adversary did destructively
modify the hashingParams or the authenticator messages, we let protocol parties abort.

Games G2 and G3 are indistinguishable for the environment. In both games, the client
aborts, if the group order of the point X is small. The Diffie-Hellman points W x and
Xw match, thus, iff W has been calculated from Bw and X has been calculated from
Bx. Therefore any modification of X by A leads to different PRS strings. I.e. the
input to FpwKE matches iff the passwords used for the StorePWfile request for the client
match the one from the CltSession request. As a consequence the session keys returned by



24 AuCPace: Efficient verifier-based PAKE protocol tailored for the IIoT

FpwKE match only if the very same passwords match. Verification of the authenticators in
G2 succeeds iff FpwKE returned the same session key to both parties. Upon any modification
of the authenticator messages by A the parties abort in both games.

5.3.5 Game G4 : Keeping the password secret

In this game we disallow the simulator to access the clear-text password upon server
compromise events. In this game, we add a re-program-offline-query list Λ1 to the imple-
mentation of the random oracle in addition to it’s list Λ. We change the implementation
as follows. Upon a query q to the hash oracle, if no corresponding entry is found in Λ, we
first parse salt value Pi, pw and σ from the query q’s encoding. For all entries (sid, Pj , w)
contained in Λ1 we execute a OfflineTestPwd query on F4 for all Pj in case of a "correct
guess" result, we program the record in Λ for the query to the value w from Λ1, remove the
entry (sid, Pj , w) from Λ1 and return w. If after parsing the full list Λ1 no "correct guess"
result is returned, we sample a fresh random value r′, program it to Λ and return r′.

Upon server compromise, we proceed as follows. We first make a StealPWfile query to
F4 . Subsequently, we iterate through the PBKDF’s random oracle list entries in Λ, parse the
stored queries for the client id, salt, σ and the password and execute OfflineTestPwd queries
to F4 . In case of a "correct guess" reply, we learned the password pw and can, thus,
calculate the password verifierW and send it to the adversary A . Otherwise, the password
hash oracle has not yet been queried. In this case, we sample a new random hash result w,
setup a new re-program-offline-query entry (sid, Pj , w) for the hash oracle Λ1. In this case
we calculate the password verifier as W = Bw and send it to the adversary.

This procedure allows us to later on arrange for matching password verifiers W and
password hashes w.

We also have to handle the case of impersonation. If A uses the stolen password
verifier in his attack strategy for impersonating a server, we let the simulator make calls
to SvrImpersonate .

The only difference to game G3 shows up with respect to the way that the password
verifier W is calculated. Irrespectively, whether the adversary had queried the hash oracle
before the server compromise operation or after, the simulator always returns (w,W ) pairs
matching to the respective passwords. Also in both games the distribution of password
hashes and verifiers w and W is the same. Game G3 and G4 are, thus, indistinguishable
for the environment Z .

The real-world protocol AuCPace, thus emulates the ideal functionality FapwKE in the
FpwKE , FRO hybrid model.

6 Partial augmentation
6.1 The ideal functionality FpapwKE for modeling partial augmentation.
In order to allow for the proof we introduce a new concept for partial augmentation of a
PAKE protocol. The corresponding functionality is depicted in figure 8. In comparison
to FapwKE partial augmentation (FpapwKE ) gives the attacker the possibility to also
impersonate the client after having succeeded in compromising the server.

In the partially augmented variant of our protocol, we replace the server-chosen
ephemeral key-pair (x,X) by a long-term key pair that is re-used over several login sessions
(same sid, different ssid). We would have liked to choose the key-pair only once at the
point, where the server’s Turing machine is first instantiated and not upon each password
configuration. Unfortunately this is technically not possible in the UC framework, since
this would correspond to a shared state over several sid, which is not possible. For this
reason, we need to let the server choose (x,X) upon password configuration and store W x

together with X in the password file. I.e., just as the password verifier, the public key X



Björn Haase and Benoît Labrique 25

becomes part of the shared state for session sid. Note that using a long-term public key
essentially halves the computational complexity of AuCPace for the server for the case of
the login sessions.

At first glance, since after a server Pj ’s compromise, none of the security guarantees
with respect to the adversary are maintained, it might be argued that FpapwKE does not
actually provide any meaningful advantage in comparison to FpwKE .

The advantage, however, becomes obvious when considering the IIoT setting with
many servers sharing the same user credentials and passwords. In fact after executing a
StealPWfile query on server Pj the adversary has full control over Pj . Note, however that
the adversary is not given the clear-text password pw from Pj upon server compromise.
He is only granted the capability to execute OfflineTestPwd queries.

In settings where the adversary may expect other server entities Pk to operate with the
same password pw as Pj , client impersonation for connections with Pk is still precluded.

Note that this is occurring exactly in the use-case of industrial control plants. There
user credentials (password verifiers) may be shared by many small server entities, which
may be comparably easily stolen/compromised. In this setting, server compromise might
most likely be implemented by invasive attacks on the hardware, e.g. by stealing a first
server, un-soldering microcontroller or memory chips and by side-channel attacks that
re-open debug ports. In this setting FpapwKE provides very meaningful protection to the
honest subset of servers. It might be likely to detect theft of the device and the partial
augmentation feature might provide a sufficiently large time-window allowing for changing
user credentials on the plant.

Also undetected re-insertion of a compromised server in a plant might not be a relevant
attack scenario, such that the additional capability of the adversary to impersonate the
client on this specific server might not actually degrade the security in practice. Moreover,
as we will show, the AuCPace scheme allows for a server-specific configuration for partial
and full augmentation. A server entity where non-invasive attacks allowing for a re-insertion
into an installation should be considered feasible might choose to implement FapwKE using
AuCPace with ephemeral key pair (x,X) while a server where a more invasive attack is
presumed necessary in order to compromise the database (leading to device destruction)
might choose to use a long-term secret x and as a consequence FpapwKE .

Similar security guarantees of FpapwKE could also be realised if any server uses a
different "salt" value for each client, e.g. by letting the server provide a random salt value
upon password configuration. This, however precludes mechanisms offering an off-line user
credential distribution. In such a setting a central user credential database server is storing
password verifiers for all users. (We refer to this other type of server as "the database" in
order to avoid confusion with the V-PAKE server entities that receive password verifiers
from the database). Note, however that this way upon password changes, the complex
PBKDFσ password hash would have to be calculated once for each server, significantly
reducing the feasible strength of the workload parametrisation σ.

Finally, we would like to mention that it might be possible to relax the requirement
that a new key pair has to be chosen upon each password configuration within the server’s
file. In fact it would be desireable to choose a key pair only once and forever for one
specific server. In the UC model, however, we presently see the need for new key pairs
upon each password configuration in order to avoid common state in concurrent executions.
This aspect might be worth to be further analysed, specifically regarding the real-world
case of a server implementation being restricted to one single concurrent login instance by
resource-constraints.

6.2 Proof
We implement the proof for the partially augmented protocol in the UC hybrid model,
just as for the fully augmented variant. However, here leave the black-box model for A for



26 AuCPace: Efficient verifier-based PAKE protocol tailored for the IIoT

The functionality FpapwKE is an extension to the functionality FapwKE from figure 6. It
implements all of the FapwKE queries and extends the capabilities of the adversaries by
the following query:
Upon receiving a query (CltImpersonate ,sid, ssid) from adversary S :
If there is a session record of the form (ssid, Pi, Pj , pw) which is fresh , then do: If
there is a password data record (file , Pi, Pj , pw) that is marked compromised , mark
the session record compromised and reply to S with "correct guess", else mark the the
session record interrupted and reply with "wrong guess".

Figure 8: Ideal functionality FpapwKE for partial verifier-based PAKE with explicit au-
thentication.

simplicity.
Since we assume that the key pair (x,X) is used for several protocol runs, we give the

adversary access to the secret exponent x upon server compromise. For this reason, we
also have to consider adversaries A which base their attack strategy on this knowledge. In
this case, the adversary is able to calculate the password related string PRS and, thus,
impersonate the client. In case of such an attack strategy, we let the simulator use the
CltImpersonate query of FpapwKE in order to make the ideal and real world indistinguishable
for the environment Z .

7 Performance assessment of the AuCPace protocol
In this section, we will discuss the properties of AuCPace in comparison to other verifier-
based protocols and aim to assess the respective suitability for resource-constrained servers
for industrial applications. Regarding suitability a number of aspects is to be considered.
In our opinion, all of server-side efficiency, ease-of implementation, code-size, intellectual
property rights, flexibility regarding password registration, memory requirements for
password-verifier storage, number of communication rounds, message length and security
guarantees are important parameters.

Our analysis is based on own literature research and the recent comparison regarding
efficiency and proven security guarantees in [PW17]. Since the work of [PW17] one new
interesting construction, OPAQUE, has been presented in [JKX18].

Giving the conclusion of our assessment result already at the beginning, we believe
that AuCPace overall is best suited for constrained servers in comparison a very small
set of other possibly suitable V-PAKE constructions, which is formed essentially only by
VTBPEKE [PW17], OPAQUE [JKX18] and augmented versions of PAK [GMR06].

7.1 Security guarantees
Typically the confidential channel used for password verifier registering for a V-PAKE
protocol is setup by the V-PAKE protocol itself. For this reason, we consider forward
secrecy to be crucial and restrict our analysis here to protocols specifically coming with
a corresponding security proof. Unfortunately some otherwise interresting constructions,
such as AugPake [SKI10] don’t offer this feature.

To some extend, the security guarantees depend on the framework used for the security
analysis. E.g. in the UC model approach used here and in [GMR06, JKX18] no assumptions
regarding password distribtions apply unlike for with the game-based approach used, e.g.,
in [PW17]. Also for AuCPace, we did consider fully adaptive adversaries during session
establishment, while in the other UC-based approaches [GMR06, JKX18] only static server



Björn Haase and Benoît Labrique 27

corruptions were considered. However, according to our assessment in the view of practical
relevance for real-world applications all of these differences are of minor importance.

Within the group of augmented protocols, we only identified two specific feature
differences. Firstly, the unique feature of OPAQUE is that it allows for starting with
the offline attack only after compromising the server (referred to as pre-computation
resistance). OPAQUE, thus provides somewhat stronger guarantees than all of the other
protocols. Secondly, the unique feature of AuCPace is that it optionally allows for partial
augmentation, i.e. a somewhat weaker security guarantee.

7.2 Computational efficiency for servers
With respect to the fully augmented setting we come to the conclusion that OPAQUE
allows for the lowest known computational complexity on the server by needing only three
scalar multiplications. Moreover one of these scalar multiplications could be pre-computed
prior to login sessions and uses a fixed base-point.

According to [PW17] and in line with our own analysis, the most efficient known
conventional verifier-based PAKE protocol that allows for forward-secrecy within the
analysis [PW17] is VTBPEKE, requiring four exponentiations in total, just as the fully
augmented variant of AuCPace. However unlike VTBPEKE, for AuCPace one of these four
(X = Bx) could be pre-calculated before the login starts. The perceived delay on the HMI
interface due to the complex scalar multiplications will correspond, thus, to only three
scalar multiplications in the case of AuCPace in contrast to four in the case of VTBPEKE.

In comparison to AuCPace, VTBPEKE and OPAQUE on the one side, UC-secure
constructions based on [GMR06] on the other side should be computationally somewhat
more complex due to the required digital signature verification substep (specifically when
discarding speedup strategies based on large RAM-tables).

For important applications in the IIoT setting, we conjecture that conventional full
augmentation is not essential and that suitable security could be obtained when implement-
ing partial augmentation. Specifically here we consider settings where server compromise
involves stealing of hardware and highly invasive physical attacks likely to destroy hard-
ware. In the partially augmented setting, AuCPace has a computational complexity of two
exponentiations and provides the most efficient solution among all known verifier-based
PAKE protocols. Attacks on un-compromised servers are prevented even if these are
working with the same password verifier W as, e.g. distributed by a centralised database
server.

When considering efficiency to be one of the most important parameters, we concluded
that the remaining subset of suitable known augmented protocols beside AuCPace are
OPAQUE [JKX18], augmented variants of PAK using [GMR06] and VTBPEKE [PW17].

7.3 Implementation effort
All of these protocols in contrast to AuCPace require the full group structure for actual
implementation. I.e. both, X and Y coordinates are necessary and implementations have
to deal with the conventional point compression and point verification issues if they aim at
reducing the message and/or password verifier length. AuCPace, in contrast could also be
implemented by using x-coordinate-only Diffie-Hellman algorithms such as X25519. This
could be used for sparing both code-ROM and RAM memories and could facilitate secure
(e.g. efficient constant-time) implementation.

Unlike the other considered protocols [GMR06] requires implementation of a digital
signature primitive and, thus, needs larger implementation effort. While beside the elliptic-
curve operations AuCPace only requires a cryptographic hash, the other protocols also all
require a symmetric encryption primitive. AuCPace is, thus, somewhat simpler, however,



28 AuCPace: Efficient verifier-based PAKE protocol tailored for the IIoT

this is only a very minor advantage, since most application based on PAKE protocols
might anyway require symmetric authenticated encryption.

VTBPEKE and constructions based on [GMR06] have the advantage that they could
be implemented without requiring hashing to elliptic curve points. Note that in the light
of intellectual property rights, this could be a significant advantage, specifically regarding
standardized curves in short-Weierstrass form. Note, however, that when discarding the
aspect of patents, hashing to elliptic curves could be implemented with little effort since
the field arithmetics used for the elliptic curve operations could be re-used.

For VTBPEKE, unlike AuCPace, the server also needs to implement inversions with
respect to the group order. I.e. in addition to the field arithmetics a second set of modulo
reductions needs to be implemented also for the server.

AuCPace, thus, allows in comparison to the other candidates for significantly improved
ease-of-implementation.

7.4 Bandwidth and latency aspects
At a first glance, AuCPace requires a comparably large number of communication rounds,
specifically regarding the initial establishment of the session id (ssid) by exchange of the
messages t and s. The security model of the UC framework assumes that the ssid is fixed
prior to initiating the protocol. This requirement should also apply for other UC-secure
constructions such as OPAQUE and augmented protocols based on [GMR06].

Note, however, that any reasonable communication protocol needs a mandatory protocol
handshake phase and that the message exchanges for generating the ssid could be integrated
in this phase for optimisation.

Also the typical use-case of a PAKE protocol is establishment of a secure (encrypted and
authenticated) channel using the session key. In this case, the final authenticator messages
are optional, just as for OPAQUE. (Note, that in both cases the two explicit authentication
messages are not mandatory for UC-securely implementing the FapwKE functionality.)

If using explicit mutual authentication, Ta and Tb messages may alternatively be
prepended to the first encrypted payload data or "change cipher spec." packet respectively.
Also note, that in case that the optional mutual authentication is desired, no specific
ordering requirement is imposed on the Ta and Tb messages.

In comparison to AuCPace, OPAQUE and VTBPEKE require one and two messages
less, respectively. As a result, message latency will add up more significantly for AuCPace.
However, in comparison to OPAQUE and [GMR06], messages used for AuCPace and
VTBPEKE are significantly shorter. Specifically, it is not necessary to transfer encrypted
(and authenticated) versions of public-private key pairs. Note that this provides an
advantage, when using the PAKE protocol over a low-bandwidth wireless link, specifically
if very small packets are used on the physical layer, such as characteristic, e.g., for the
bluetooth-low-energy standard.

Note also, that the shorter messages allow for reduced buffer sizes and all-over reduced
RAM memory requirements.

AuCPace allows for pipelining message transfer and cryptographic calculation, improv-
ing upon user-experienced latency. For instance, the server may interleave transmission of
the last message from the augmentation layer (X,σ, salt) and calculation of the public
point Ya, such that Ya is transmitted later in a separate message. In settings where message
delivery latency is significant and computation is fast, however, the server may choose to
include Ya in the earlier message.

7.5 Intellectual property rights
We believe that pending patents on algorithms and algorithmic substeps might seriously
hamper actual use of a crptographic protocol. AuCPace was specifically designed for



Björn Haase and Benoît Labrique 29

avoiding all patents known to the authors. The only aspect where we are aware of the
potential of conflicts is the Map2Point substep where efficient algorithms might possibly
have to be analyzed in detail, specifically for curves in short Weierstrass form. (For this
case, we will sketch a circumvention approach in the appendix.)

Unfortunately, an important part of the efficiency advantage of OPAQUE could be
attributed to the use of the highly efficient HMQV [Kra05] construction, for which unfor-
tunately according to the author’s knowledge patents apply in some countries. We believe
that for patent reasons, important applications might not be considering use of OPAQUE,
specifically regarding industrial installations where identically-constructed plants might be
constructed in various countries throughout the world.

7.6 Registering verifiers
Regarding password verifier registration on the server we identify two main aspects: Size of
the password verifiers on the server and flexibility regarding password-verifier registration
protocols.

AuCPace is characterized by requiring only very little persistent storage for the password
verifiers. I.e. in addition to the user identifiers, the encoding of the user’s authorization
and the salt value (which might require roughly 32 bytes), only one (two) group elements
requiring typically 32 bytes need to be stored for full (partial) augmentation. In total
an amount of 64 (96) bytes sufficies. (Possibly further future analysis, specifically in a
game-based BPR model could reduce the verifier size also for partially augmented variants
to 64 bytes.)

The other protocols, specifically [GMR06, JKX18] require significantly longer verifiers.
E.g. OPAQUE requires two group elements in addition to two secret scalars in an encrypted
authenticated strucure (typically requiring additional nonce and mac fields). Even when
considering point compression, this could easily add up to a total verifier size of 180 bytes.

Note that the size of password verifiers is important. Some microcontrollers include
small amounts (e.g. 1 kByte) of somewhat protected memory (e.g. tamper-protected
RAM) meant to be used for storing sensitive information such as cryptographic keys or
password-related information. Excessive size of password verifiers might require additional
complexity in the application or make implementers be tempted to use conventional
unprotected memory also on devices that might be exposed to physical attacks.

Regarding OPAQUE, it is worth to draw attention to a side-effect of the security
property of pre-computation attack resistance. This desirable feature is realised by
executing the complex password hash after finishing the protocol step of the oblivious
pseudo-random function (OPRF). This requires as a consequence to maintain an online
connection to the server entity upon password changes. First an interaction is required
between client and server for calculating the OPRF which is required as pre-requisite
for calculating the computationally complex PBKDF password hash. In other words,
for OPAQUE password registration requires at least three messages and bi-directional
communication.

Otherwise we would have to let the client entity choose the secret server scalar for
the OPRF upon password configuration, which we do not consider ideal from a security
perspective (in line with the suggestion of the authors of [JKX18]). As a consequence,
if the server is not capable of calculating the PBKDF this effectively precludes user
credential distribution protocols based on offline ticket generation allowing for only one
single (uni-directional) message.

For this reason, we conclude that OPAQUE might probably not be best-suited for
applications, where online connections to the server are not guaranteed to be permanently
available. We assess, that in this case offline password database update protocols become
helpful, notably for battery-driven devices and devices operating in separated industrial
sub-networks that have been intentionally isolated (i.e. no bi-directional communication)



30 AuCPace: Efficient verifier-based PAKE protocol tailored for the IIoT

for security reasons from the office IT network where the user credential database server is
located.

7.7 Summary regarding the protocol assessment
Summing up, we conclude that overall AuCPace provides significant advantages for
constrained IIoT servers in comparison to other candidate protocols for V-PAKE for
resource-constrained industrial installations.

While we do acknowledge some clear advantages of other candidate protocols, notably
OPAQUE, for some isolated sub-aspects, in our opinion AuCPace fares at least reasonably
well for all of the metrics discussed above and provides the best overall figure-of-merit.

8 Implementation on ARM Cortex M0 and M4 microcon-
trollers

One important target platform for resource-constrained (I)IoT devices are 32 bit microcon-
trollers, such as from the ARM Cortex M0 and Cortex M4 series. We have implemented
AuCPace25519 in its partially augmented variant on nRF51 and nRF52 microcontrollers
from the company Nordic Semiconductors and three different microcontrollers from the
manufacturer ST Microelectronics.

In this section we first describe the high-level strategy for implementing the X25519
Diffie-Hellman protocol and Elligator2. Then we will elaborate on our strategy for
implementing the field arithmetics.

8.1 Implementation of X25519
AuCPace uses X25519 for generating the password verifier and the session key sk1. We
make use of the constant-time Montgomery ladder algorithm from [DHH+15]. Both fixed-
point and variable-point scalar multiplication require 1287 field multiplications and 1274
field squarings. We did implement two variants. Firstly for the sake of comparison with
related work, we implemented a synchronous version of the X25519 function. Secondly, we
implemented a second, asynchronous version of X25519. For this second implementation,
we defined an asynchronous cryptographic engine (ACE) object that stores the intermediate
state of the scalar multiplication. This allows our implementation to suspend and resume
calculations after each ladder step in case that the power budget requires the microcontroller
to enter a sleep mode.

We came to the conclusion, in line with findings from [Ham12], that the constant-
time Montgomery ladder is, most probably the most efficient known algorithmic choice
available for Diffie-Hellman on Curve25519, if we aim at avoiding at the same time memory
consuming pre-computed tables.

8.2 Implementation of Elligator2
In order to remain consistent with the notation used in [BHKL13] we denote the Legendre
symbol that records quadratic residuosity of a mod q (with q being an odd prime number)
with χ:

χ(a) ,
(
a

q

)
≡ a

q−1
2 (1)

Remember that the Elligator2’s decoding function for a Weierstrass curve E : y2 =
x3 + Ax2 + Bx is the function ψ : R → E(Fq) defined as follows: ψ(0) = (0, 0); if r 6= 0



Björn Haase and Benoît Labrique 31

then ψ(r) = (x, y) (see [BHKL13]). For a set R defined as

R , {r ∈ Fq : 1 + ur2 6= 0, A2ur2 6= B(1 + ur2)2} (2)

the following elements of Fq are defined (we use only X coordinates):

v = −A
1 + ur2 (3)

ε = χ(v3 +Av2 +Bv) (4)

x = εv − (1− ε)A2 (5)

In case of Curve25519, q = 2255 − 19, A = 486662 and B = 1. We take u = 2. If we would
calculate x directly, we would need two exponentiations, one for the inversion (3) and one
for the Legendre symbol χ (4). We will show that computing a single exponentiation is
enough, using the inverse square root algorithm. Let us substitute v in v3 + Av2 + Bv.
We obtain, in a projective representation, the fraction

a

b
,
A3ur2 +AB(1 + ur2)2

(1 + ur2)3 (6)

As a property of the Legendre symbol we have:

χ(a
b

) = χ(ab) (7)

since χ(ab ) ≡ a
q−1

2 b
−(q−1)

2 ≡ a
q−1

2 b
q−1

2 ≡ χ(ab) with 1 ≡ aq−1 (mod q) (Fermat’s little
theorem). Now let’s define

c , ab (8)
d , 1 + ur2 (9)

s , (cd2)
q−3

2 (10)

We have s2cd2 = (cd2)q−2 = 1
cd2 using Fermat’s little theorem again. So the inverse is

given by:
1
d

= s2cd2cd (11)

iff c 6= 0 and d 6= 0. If c = 0 then the point is (0, 0) or ∞. If d = 0 the point is ∞
and we return 0 in whatever case. On the other hand we can write scd2 = (cd2)

q−1
2 ≡

χ(cd2).Furthermore it holds that by definition of the Legendre symbol:

χ(ab) = χ(a)χ(b) (12)

and

χ(d2) = 1 (13)

unless d = 0. So

scd2 ≡ χ(cd2) = χ(c) = χ(ab) = χ(a
b

) (14)

By placing (14) into (11) we get
1
d

= χ(a
b

)scd (15)

This means that we have calculated the Legendre symbol and the inverse (and finally
Elligator2) by means of a single exponentiation (10). In case of Elligator2 for Curve25519
the algorithm requires a total of 254 field squarings and 23 field multiplications.



32 AuCPace: Efficient verifier-based PAKE protocol tailored for the IIoT

8.3 Implementation of the field arithmetics

The implementations for Cortex M0 and M4 share all of the group arithmetics and high-
level algorithms but rely on separate field arithmetics for addition, subtraction, negation,
multiplication and squaring.

Our implementation for the Cortex M0 uses the same highly optimised field arithmetics
as in [DHH+15, HL17]. Here register pressure and the limited capability of the multiplier
engine providing only 32 bits of a result make it beneficial to employ three cascaded
Karatsuba stages.

The implementation for the Cortex M4 makes use of a new, yet unpublished optimised
implementation. Just as for the M0, we use a packed radix 32 representation. Throughout
the implementation we reduce field elements modulo 2256 − 38.

Our implementation on the M4 uses the much more powerful MULAL and MLAAL instruc-
tions allowing for simultaneously multiplying two 32 bit words and accumulating up to two
32 bit words. Due to the significant advantage of using several stages of Karatsuba multi-
plication for the M0, we have implemented several variants of Karatsuba multiplication
also for the Cortex M4. Experiments, however, have shown that here the reduced register
pressure (the "upper" registers R8 . . . R12 and R14 may be used without restrictions)
in addition to the fact that accumulation comes essentially for free made schoolbook
multiplication faster when register-allocation is carefully tuned. Based on our experiments,
we presume that for carefully optimised code on the M4, Karatsuba techniques might
become beneficial again for integer sizes above 512 bits.

In order to optimise the register allocation, we have generated the assembly sources
by a code generator handling register allocation and spill register storage on the stack.
For the accumulation of intermediate results during the multiplication we also make
use of the MULAL and MLAAL instructions. Note that when one register with the value
1 is available, MLAAL allows for implementing three 32 bit additions in one single cycle
(r := a+ b+ 1 ∗ c) yielding a 64 bit result. For subtraction (and for squaring), we made
use of a specific architectural property of the M4 architecture. There two distinct ways
of handling addition carries are possible. In addition to the MLAAL -based method above,
flag-based add and add-with-carry (ADDS ,ADCS ) and subtract-with-borrow (SUBS ,SBCS )
instructions are available. The multiplication instructions are specified not to modify the
addition/subtraction carry flag. We did use this for merging reduction with subtraction
of field elements. We first do accumulate both the value to subtract and a multiple of
the prime (that stems from reduction) by using multiply-accumulate instructions. Then
we use subtract with borrow to simultaneously subtract both results. Note that this will
result in remarkable speed differences between addition and subtraction. Addition could
be implemented very efficiently by using the powerful multiplication engine. Subtraction
is somewhat slower because SUBS and SBCS have to be used.

For addition and subtraction, we did use the powerful inline assembly capabilities of
both, GCC and CLANG, that allowed us to avoid a significant amount of call overhead.
In order to avoid operand fetches and stores wherever possible, we also made use of an
inline assembly function that merges addition of a first operand with the curve-constant’s
multiple of a second operand (r := a + b ∗ 121666). Addition and subtraction of field
elements follows the strategy from [DHH+15] by first processing the most significant word
and then merging reduction of the two most significant bits and addition(subtraction)
operation for the remaining seven words. I.e. we make use of the available carry bit 255 to
obtain an implementation with only one single carry chain.

One additional optimisation strategy was to bundle load and store operations together
as much as possible in blocks. This way the pipeline latency on the M4 could be reduced.
Isolated load and store operations account for two clock cycles each, while a sequence of n
such operations only accounts for n+ 1 cycles.



Björn Haase and Benoît Labrique 33

Table 1: Sequence of executing the 64 partial products of words Ai×Bj used for schoolbook
multiplication of 256 bit operands.

A0 A1 A2 A3 A4 A5 A6 A7
B0 1 5 10 15 20 25 28 48
B1 0 6 11 16 21 26 29 31
B2 2 7 12 17 22 27 30 32
B3 3 8 13 18 23 49 50 51
B4 4 9 14 19 24 52 53 54
B5 33 36 39 42 45 55 56 57
B6 34 37 40 43 46 58 59 60
B7 35 38 41 44 47 61 62 63

8.3.1 Field multiplication for ARM Cortex M4

Table 1 depicts the sequence (0 . . . 63) in which each of the 64 partial products of the
schoolbook multiplication of the input operand words A0 . . . A7 and B0 . . . B7 is executed.
Our optimisation of the multiplication strategy does not seem to follow a regular pattern
at first sight.

We use this sequence several reasons. Firstly, we observed that keeping as many input
operands in registers as possible is equally important as avoiding stack spills of intermediate
multiplication results. Secondly, it is worth noting that a multiplication actually costs less
instructions if two intermediate results are to be accumulated at the same time. If only
one intermediate result is to be accumulated, a MULAL instruction has to be used, which
typically requires clearing of a scratch register (+1 instruction).

Basically four subblocks may be distinguished. Initially input operands B0 to B4 are
cached in registers and multiplied one after the other with input operands A0 to A4. In the
process of multiplication increasingly more registers were required for holding intermediate
multiplication results. Completed result words that had been fully accumulated were
spilled on the stack in order to free registers for more temporary results. Still starting with
the multiplication with input A5, the input operand registers B3 and B4 were required as
scratch registers for storing temporaries (multiplication steps 25 to 32). Ultimately also
B0 had to be discarded. Then, in order to complete words 5 to 6 of the multiplication
results (for freeing completed result words by writes to the stack), multiplication of input
operands B5 to B7 with A0 to A4 is performed (33 to 47). Subsequently the multiplication
result word 7 could be completed after the multiplication of A7 and B0 (Step 48). Finally
the multiplications of input words A6 to A7 with B3 to B7 is calculated. Here the values
A5 to A7 were cached in registers.

During the multiplication only 8 register spills were necessary for storing the lower-most
result words temporarily on the stack. After multiplication the upper 8 result words of
the 512 bit multiplication result were reduced within the register set before storing the
reduced result back to memory.

8.3.2 Field squaring for ARM Cortex M4

For squarings we again make use of a special property of the Cortex-M4 instruction set which
allows for two different types of carry chain. Either the ADDS and ADCS instructions may
be employed (storing the carry bit in the status register) or MULAL and MLAAL instructions
(which do not modify the carry bit). The latter instructions store carries in full registers.
We make use of this by using addition instructions for doubling the off-diagonal parts
(with the exception of the product term A1*A0), while we make use of integrated multiply-



34 AuCPace: Efficient verifier-based PAKE protocol tailored for the IIoT

Table 2: Sequence of executing the partial product words Ai × Aj used for schoolbook
squaring of 256 bit operands .

A0 A1 A2 A3 A4 A5 A6 A7
A0 1 2
A1 0 3
A2 5 6 15
A3 4 11 12 19
A4 8 9 16 23 32
A5 7 13 20 24 27 34
A6 10 17 21 25 28 30 35
A7 14 18 22 26 29 31 33 36

accumulate operations everywhere else.
In comparison to multiplication, we were able to hold more input operands in registers.

The following table depicts the sequence (0..36) in which the partial products were
calculated.

Throughout the calculation we distinguish between off-diagonal multiplication results
(which require subsequent doubling) and diagonal multiplication results which were ac-
cumulated by use of multiplication instructions. Just as for multiplication, squaring is
merged with reduction. This way only 5 register spills to the stack were required for
storing intermediate multiplication results.

8.4 Implementation of the hash functions
For the calculation of SHA512 we use the optimised assembly code for the Cortex M0
architecture on both targets. This code fully unrolls the inner loop of the add-rotate-xor
algorithm. We also make use of the special instructions for endianness-change. For the
Cortex M4, a further speedup would be possible, when exploiting the availability of the
"upper" registers.

9 Experimental results
In the following sections we will report on experimental results obtained from several
different microcontroller targets, nRF51822, nRF52832, STM32F407, STM32F411 and
STM32L476. We decided to include figures for all of these instead of selecting one particular
chipset since in the course of our analysis, we observed that for the Cortex M4 architecture
a major difficulty arises regarding speed benchmarking. Unlike for smaller architectures
we observed that the highly target-specific performance of the flash memory subsystem
plays a major role for the actual speed.

We did observe the most remarkable effect for the microcontroller STM32L476 targeting
specifically ultra-low-power applications. Note that for ultra-low-power operation a suitable
compromise between increased microcontroller speed and increased power consumption
due to speculative flash accesses has to be found. We attribute our finding that the cycle
counts for the analysed primitives (depending on the power-consumption configuration)
could increase by almost 40% when increasing the clock frequency from 16 MHz to 80
MHz mainly to such type of optimisation. Obviously this makes fair speed benchmarking
very difficult.

For the high-performance-family devices STM32F411 and STM32F407 from the same
manufacturer, we observed that the influence of the clock frequency on performance is still



Björn Haase and Benoît Labrique 35

present, but much smaller. Specifically for the STM32F411 almost no speed reduction was
observed also at its highest clock frequency. In addition to flash timing issues, it is worth
noting that for the STM32F407 device we observed some further dependence on the RAM
memory configuration. This device disposes of so-called core-coupled memory (CCM). The
timings reported here were obtained when placing the execution stack to CCM. Speed
figures were observed to be somewhat faster than when placing the stack in conventional
RAM region.

As a result, we conclude that for speed benchmarking for cryptography implementations
it is best to compare results obtained at lower clock frequencies. According to our results
then some variations between different microcontroller suppliers still do exist, however
the resulting values are at least of the same order of magnitude. We suggest, that the
STM32F411 as a typical medium-size implementation for IIoT applications might be well
suited as kind of reference platform for speed benchmarking.

9.1 Field arithmetics
In table 3 the speed results for the field arithmetics are summarised. Despite the mentioned
difficulties regarding benchmarking, we come to the conclusion that our field arithmetics
is significantly more efficient than the previously best published results on the Cortex
M4 microcontroller in [FA17], specifically regarding multiplication and squaring of field
elements.

The speedup obtained for the field arithmetics in comparison to reports from D. Aranha
and H. Fujii in [FA17] in our opinion might stem from the following differences. Firstly
for multiplication and squaring we did merge multiplication and squaring functions with
reductions. This allowed us to hold more operands in registers. Secondly with the realised
level of optimisation regarding multiplication and squaring, the performance of addition
and subtraction within the X25519 calculations starts becoming important as well. For
these simpler operations call overhead becomes significant and use of inline assembly
functions highly beneficial.

For the purpose of comparison, we also did add timings for the field F(2127−1)2 as used in
the construction FourQ in [LLP+18]. Note that our timings for F(2255−19) are significantly
faster despite the fact that the group order is comparable. As a result, we expect that
a large fraction of the algorithmic speedup that is made possible by the endomorphisms
of FourQ is lost by less efficient field arithmetics. Note, that the most relevant figure for
the speed of Diffie-Hellman on FourQ is field multiplication, where the difference to our
results is particularly large.

9.2 X25519 Diffie-Hellman
In table 4 we summarise the results for the X25519 function for different microcontrollers
and different clock frequencies. Our fastest result for X25519 on the M4 executes in as
little as 609.779 cycles and is, thus, roughly 3 and 2.5 times faster than the reports in
[dG15] (1816351) and [DSS16] (1563852) respectively and also significantly faster than the
previously fastest result (907.240 cycles) from [FA17]. It is worth noting that in contrast
to [FA17] we did use (in line with [HL17]) constant-time swaps of pointers instead of
swapping full field elements. Note that for internal memories of Cortex M4 and M0 access
timing is deterministic. When swapping pointers we expect both, more speed and less
side-channel leakage. Note however, that our implementation requires (unlike [FA17]) to
be run with using internal RAM memory with constant access times. Our implementation
optionally also allows for swapping field elements instead of pointers. According to our
own measurements the penalty of doing so accounts roughly for additional 50.000 clock
cycles.



36 AuCPace: Efficient verifier-based PAKE protocol tailored for the IIoT

Table 3: Field arithmetics on different targets at different frequencies f (/MHz). Columns
∗A0 (+ ∗A0) contain clock cycles for multiplication with the field constant A0 = 121666
and merged addition and multiplication x + y ∗ A0. Cycle count for the nRF51 target
was obtained with the CLANG compiler with compile switch -O2 while for the ST
Microelectronics microcontroller we did use GCC 4.9.2 with optimisation setting -O2.

Target f x+ y x− y ∗A0 + ∗A0 x2 x ∗ y
nRF51822 16 120 147 193 - 998 1478 F(2255−19), this work
STM32F411 ? 73 77 129 - 563 631 F(2255−19), [DSS16]
MK20DX 72 86 86 76 - 252 276 F(2255−19), [FA17]
STM32F411 16 55 72 - 58 153 222 F(2255−19), this work
STM32L476 16 52 65 - 55 153 220 F(2255−19), this work
STM32L476 80 95 124 - 95 168 237 F(2255−19), this work
STM32F407 84 86 - - - 215 358 F(2127−1)2 [LLP+18]

Table 4: Speed of X25519 scalar multiplication (FourQ) (on different targets, clock and
memory configurations. The timings marked with (p) were obtained with enabled flash
pre-fetch engines which increase current consumption.

Target f / MHz X25519
nRF51822 16 3.474.201 this work
STM32F411 ? 1.816.351 [dG15]
STM32F411 ? 1.563.852 [DSS16]
MK20DX 72 907.240 [FA17]
STM32L476 16, 80(p), 80 609.779, 857.002, 971.272 this work
nRF52832 64 634.567 this work
STM32F411 16, 100(p), 100 625.347, 625.449, 734.554 this work
STM32F407 16, 168(p), 168 625.358, 655.891, 847.048 this work
STM32F407 84(p) 560.500 (FourQ) [LLP+18]

Again we also have added speed benchmarks for FourQ from [LLP+18] for reference.
Note that comparing of the fundamentally different algorithms X25519 and Diffie-Hellman
on FourQ is difficult. For instance, when using the endomorphisms in FourQ quite
large tables in RAM are required (required stack size is unfortunately not reported in
[LLP+18]). Also note that the code size is about a factor of three larger than for our
X25519 implementation. Despite the fact that our X25519 implementation (ca. 625.500
cycles) is much more adapted to small targets, our observed speed is very competitive in
comparison to the reported result for Diffie-Hellman on FourQ (560.500 cycles including
point decompression).

9.3 Partially augmented AuCPace25519
We have implemented AuCPace by using an asynchronous execution engine as suggested
in [HL17]. Table 5 summarises the speed results for individual substeps for the Cortex M0
(nRF51822) and different Cortex M4 microcontrollers.

We observed a speedup of roughly a factor of two in comparison to the results of
[HL17] regarding the Elligator2 substep. In [HL17] the Elligator2 mapping algorithm
was calculated by use of two separate exponentiations for inversion and calculation of
the Legendre symbol χ. In our work, we make use of the inverse square root algorithm



Björn Haase and Benoît Labrique 37

Table 5: Cycle counts for the nRF51822 Cortex M0 (STM32F411 Cortex M4) microcon-
trollers running at 16 MHz for SHA512, Elligator2, a X25519 Montgomery ladder step
(LS), Inversion (1/x) and a complete partially augmented AuCPace protocol run.

Target SHA512 Elligator2 LS 1/x AuCPace
nRF51822 21.564 289.276 13.521 258.291 7.345.820

STM32F411 21.130 46.032 3.163 42.590 1.351.381

Table 6: Memory consumption in bytes for asynchronised implementation of AuCPace
(ACE) and X25519 for Cortex M0 and M4 microcontrollers. Results were obtained with
arm-none-eabi-gcc -O2 (gcc version 4.9.3). RAM consumption is separated in static memory
(stack memory) respectively.

Target RAM ROM RAM ROM
Target ACE ACE X25519 X25519
Cortex-M0 264 (396) 11252 0 (572) 6108 this work
Cortex-M4 264 (268) 8896 0 (444) 3324 this work
Cortex-M4 4152 [FA17]
Cortex-M4 3786 [DSS16]

for calculating Elligator2 with one single field exponentiation. In total this accounts for
roughly 4 percent of a speedup regarding the balanced PACE (CPace) protocol runs on
the Cortex M0.

Our results for the Cortex-M4 microcontroller family are faster by a factor of 5.4 in
comparison to the Cortex M0, showing that this microcontroller architecture with its signal-
processing instructions is by far better suited and likely also much more power-efficient for
implementing complex asymmetric cryptography.

In table 6 the memory consumptions for the asynchronous execution object ACE
from [HL17] and the stand-alone algorithm X25519 are summarised. The figures for the
ACE object also include a salsa20-20 based pseudo-random-number generator and the
implementation for SHA512. For the Cortex M4 version, the total RAM requirement
amounts to 532 bytes including static memory and stack. The stand-alone synchronous
X25519 implementation (no state in static memory) for the Cortex M4 needs 444 bytes of
stack memory and 3.324 bytes of flash and improves, thus upon previous work [DSS16,
FA17].

All of our code avoids secret-dependent branches and is, thus, executing in constant
time on target-platforms with deterministic RAM memory access timings, such as typically
found in ARM Cortex M0 and M4 microcontrollers.

10 Discussion and conclusion
In this paper we have presented a comprehensive analysis regarding possible optimisa-
tions for verifier-based password-authenticated key exchange for the setting of resource-
constrained servers. Our analysis did cover all of, protocol design, protocol security
proof, algorithmic optimisation regarding group operations and field arithmetics and
assembly-level fine-tunings.

Our construction allows for particular advantages in IIoT settings where a large number
of small server nodes should be expected to operate with the same passwords, such as e.g.
the case in industrial plants. In addition to the conventional notion of verifier-based PAKE,
our construction also allows for a partial augmentation operation mode that essentially



38 AuCPace: Efficient verifier-based PAKE protocol tailored for the IIoT

halves the computational complexity of the password verification step.
Our construction with full augmentation imposes a complexity of four exponentiations

in total on the server, one of which could be pre-computed prior to each login. The
user-perceived login delay, thus is governed by the time consumed for calculating three
scalar multiplications.

Our construction, is one exponentiation faster for the server than all previously known
verifier-based PAKE constructions when instantiated in its partially augmented variant. In
the setting of [HL17] where one scalar multiplication accounts for about two seconds this
results in a clearly perceivable usability gain in comparison to previously known protocols
requiring at least three scalar multiplications.

Moreover our construction inherently allows for using strong memory-hard password
hashing also on small servers since the costly memory-consuming operations are deferred
to the clients.

The composability of the AuCPace security guarantees facilitates security analysis for
use of AuCPace, e.g. as a building block in larger constructions, such as a centralised
ticket-based user-credential distribution framework for industrial plants.

In contrast to most previous Diffie-Hellman based V-PAKE constructions with anal-
ysis in the UC framework, our security proof provides guarantees also in the stronger
fully adaptive adversary model which allows for corruptions at any time during session
establishment.

Finally, we have presented performance benchmarks of an instantiation targeting
common microcontroller platforms coined AuCPace25519 which instantiates our protocol
with using the primitives X25519, Elligator2 and SHA512.

The protocol runs in only 1.351.381 (7.345.820) cycles for a partially augmented protocol
run on an ARM Cortex-M4 (M0) microcontroller respectively. On the M4 AuCPace requires
only 8896 (532) bytes of flash (RAM) memory. There the X25519 Diffie-Hellman protocol
sub-step executes in as little as 609.779 cycles. Our implementation, thus, sets up new
speed records for both, (V)-PAKE protocols and X25519 Diffie-Hellman key exchange
on this important embedded CPU architecture platform. This illustrates also that on
the Cortex M4 X25519 could be implemented very competitively, even in comparison to
constructions that exploit additional structure in elliptic curves, such as endomorphisms.

Summing up, we believe that all of the individual components presented in this paper
in combination might yield a solution particularly tailored for the needs of real-world
resource-constrained IIoT environments, such as notably explosion protected industrial
instrumentation.

11 Acknowledgements
The authors acknowledge inspiring discussions with Daniel Rausch, Ralf Küsters, Denis
Kügler, Marc Fischlin, Mike Hamburg and Peter Schwabe.

References
[ACCP08] Michel Abdalla, Dario Catalano, Céline Chevalier, and David Pointcheval.

Efficient two-party password-based key exchange protocols in the uc framework.
In Topics in Cryptology–CT-RSA 2008, pages 335–351. Springer, 2008. 8, 14

[AFP05] Michel Abdalla, Pierre-Alain Fouque, and David Pointcheval. Password-based
authenticated key exchange in the three-party setting. In International Work-
shop on Public Key Cryptography, pages 65–84. Springer, 2005. 6



Björn Haase and Benoît Labrique 39

[AP] Michel Abdalla and David Pointcheval. Simple password-based encrypted key
exchange protocols. In CT-RSA, volume 3376, pages 191–208. Springer. 7

[BDKJ16] Alex Biryukov, Daniel Dinu, Dmitry Khovratovich, and Simon Josefsson. The
memory-hard argon2 password hash and proof-of-work function. Technical
report, Internet-Draft draft-irtf-cfrg-argon2-00, Internet Engineering Task Force,
2016. Work in Progress, 2016. 2

[Ber06] Daniel J. Bernstein. Curve25519: new Diffie-Hellman speed records. In Moti
Yung, Yevgeniy Dodis, Aggelos Kiayias, and Tal Malkin, editors, Public Key
Cryptography – PKC 2006, volume 3958 of Lecture Notes in Computer Science,
pages 207–228. Springer-Verlag Berlin Heidelberg, 2006. http://cr.yp.to/
papers.html#curve25519. 10

[Ber14] Daniel J. Bernstein. 25519 naming. Posting to the CFRG mailing list,
2014. https://www.ietf.org/mail-archive/web/cfrg/current/msg04996.
html. 10

[BFK09] Jens Bender, Marc Fischlin, and Dennis Kügler. Security analysis of the pace
key-agreement protocol. In ISC, volume 5735, pages 33–48. Springer, 2009. 3,
5, 6, 7, 18, 43

[BHKL13] Daniel J Bernstein, Mike Hamburg, Anna Krasnova, and Tanja Lange. Elligator:
Elliptic-curve points indistinguishable from uniform random strings. In Pro-
ceedings of the 2013 ACM SIGSAC conference on Computer & communications
security, pages 967–980. ACM, 2013. 10, 30

[BM92] Steven M Bellovin and Michael Merritt. Encrypted key exchange: Password-
based protocols secure against dictionary attacks. In Research in Security
and Privacy, 1992. Proceedings., 1992 IEEE Computer Society Symposium on,
pages 72–84. IEEE, 1992. 3, 5

[BMP00] Victor Boyko, Philip MacKenzie, and Sarvar Patel. Provably secure password-
authenticated key exchange using diffie-hellman. In Advances in Cryptol-
ogy—Eurocrypt 2000, pages 156–171. Springer, 2000. 3, 7

[BPR00] Mihir Bellare, David Pointcheval, and Phillip Rogaway. Authenticated
key exchange secure against dictionary attacks. In Advances in Cryptol-
ogy—EUROCRYPT 2000, pages 139–155. Springer, 2000. 6

[BR93] Mihir Bellare and Phillip Rogaway. Random oracles are practical: A paradigm
for designing efficient protocols. In Proceedings of the 1st ACM conference on
Computer and communications security, pages 62–73. ACM, 1993. 4

[BSv17] José Becerra, Petra Sala, and Marjan Škrobot. An offline dictionary attack
against zkpake protocol. Cryptology ePrint Archive, Report 2017/961, 2017.
https://eprint.iacr.org/2017/961. 5

[Can00] Ran Canetti. Universally composable security: A new paradigm for cryp-
tographic protocols. Cryptology ePrint Archive, Report 2000/067, 2000.
https://eprint.iacr.org/2000/067. 7

[Can01] Ran Canetti. Universally composable security: A new paradigm for crypto-
graphic protocols. In Foundations of Computer Science, 2001. Proceedings.
42nd IEEE Symposium on, pages 136–145. IEEE, 2001. 4, 6, 7, 8

http://cr.yp.to/papers.html#curve25519
http://cr.yp.to/papers.html#curve25519
https://www.ietf.org/mail-archive/web/cfrg/current/msg04996.html
https://www.ietf.org/mail-archive/web/cfrg/current/msg04996.html
https://eprint.iacr.org/2017/961
https://eprint.iacr.org/2000/067


40 AuCPace: Efficient verifier-based PAKE protocol tailored for the IIoT

[CGIP12] Jean-Sébastien Coron, Aline Gouget, Thomas Icart, and Pascal Paillier. Supple-
mental access control (pace v2): security analysis of pace integrated mapping.
In Cryptography and Security: From Theory to Applications, pages 207–232.
Springer, 2012. 7

[CHK+05] Ran Canetti, Shai Halevi, Jonathan Katz, Yehuda Lindell, and Phil MacKenzie.
Universally composable password-based key exchange. In Annual International
Conference on the Theory and Applications of Cryptographic Techniques, pages
404–421. Springer, 2005. 3, 6, 8, 14, 19

[CJS14] Ran Canetti, Abhishek Jain, and Alessandra Scafuro. Practical uc security with
a global random oracle. In Proceedings of the 2014 ACM SIGSAC Conference
on Computer and Communications Security, pages 597–608. ACM, 2014. 8

[CR03] Ran Canetti and Tal Rabin. Universal composition with joint state. In Crypto,
volume 2729, pages 265–281. Springer, 2003. 4, 6, 8

[dG15] Wouter de Groot. A Performance Study of X25519 on Cortex-M3 and M4.
PhD thesis, Master thesis, Eindhoven University of Technology (Sep 2015),
2015. 36

[DHH+15] Michael Düll, Björn Haase, Gesine Hinterwälder, Michael Hutter, Christof
Paar, Ana Helena Sánchez, and Peter Schwabe. High-speed curve25519 on
8-bit, 16-bit, and 32-bit microcontrollers. Designs, Codes and Cryptography,
77(2-3):493–514, 2015. 30, 32

[DSS16] Fabrizio De Santis and Georg Sigl. Towards side-channel protected x25519 on
arm cortex-m4 processors. In SPEED-B Software performance enhancement
for encryption and decryption, and benchmarking, 2016. 35, 36, 37

[EKSS09] John Engler, Chris Karlof, Elaine Shi, and Dawn Song. Is it too late for pake?
indicators, 5(9):17, 2009. 5

[FA17] Hayato Fujii and Diego F Aranha. Curve25519 for the cortex-m4 and beyond.
Progress in Cryptology-LATINCRYPT, 2017. 35, 36, 37

[GMR06] Craig Gentry, Philip MacKenzie, and Zulfikar Ramzan. A method for making
password-based key exchange resilient to server compromise. Advances in
Cryptology-CRYPTO 2006, pages 142–159, 2006. 3, 4, 8, 9, 18, 20, 21, 26, 27,
28, 29, 43

[Ham12] Mike Hamburg. Fast and compact elliptic-curve cryptography. volume 2012,
page 309, 2012. 30

[HL17] Björn Haase and Benoît Labrique. Making password authenticated key exchange
suitable for resource-constrained industrial control devices. In International
Conference on Cryptographic Hardware and Embedded Systems, pages 346–364.
Springer, 2017. 2, 3, 4, 5, 9, 10, 32, 36, 37, 38, 44

[HR10] Feng Hao and Peter Ryan. J-pake: authenticated key exchange without pki.
In Transactions on computational science XI, pages 192–206. Springer, 2010. 5

[HS14] Feng Hao and Siamak F Shahandashti. The speke protocol revisited. In
International Conference on Research in Security Standardisation, pages 26–38.
Springer, 2014. 7

[Jab96] David P Jablon. Strong password-only authenticated key exchange. ACM
SIGCOMM Computer Communication Review, 26(5):5–26, 1996. 3, 5, 6, 7



Björn Haase and Benoît Labrique 41

[Jab97] David P Jablon. Extended password key exchange protocols immune to
dictionary attack. In Enabling Technologies: Infrastructure for Collaborative
Enterprises, 1997. Proceedings., Sixth IEEE Workshops on, pages 248–255.
IEEE, 1997. 3, 7

[JKX18] Stanislaw Jarecki, Hugo Krawczyk, and Jiayu Xu. Opaque: An asymmetric
pake protocol secure against pre-computation attacks. Cryptology ePrint
Archive, Report 2018/163, 2018. https://eprint.iacr.org/2018/163. 2, 3,
6, 21, 26, 27, 29, 43

[KM16] Franziskus Kiefer and Mark Manulis. Blind password registration for verifier-
based pake. In Proceedings of the 3rd ACM International Workshop on ASIA
Public-Key Cryptography, pages 39–48. ACM, 2016. 4

[KOY01] Jonathan Katz, Rafail Ostrovsky, and Moti Yung. Efficient password-
authenticated key exchange using human-memorable passwords. In Interna-
tional Conference on the Theory and Applications of Cryptographic Techniques,
pages 475–494. Springer, 2001. 6

[KR17] Ralf Küsters and Daniel Rausch. A framework for universally composable diffie-
hellman key exchange. In Security and Privacy (SP), 2017 IEEE Symposium
on, pages 881–900. IEEE, 2017. 8

[Kra05] Hugo Krawczyk. Hmqv: A high-performance secure diffie-hellman protocol. In
Annual International Cryptology Conference, pages 546–566. Springer, 2005. 29

[LL97] Chae Hoon Lim and Pil Joong Lee. A key recovery attack on discrete log-based
schemes using a prime order subgroup. In Annual International Cryptology
Conference, pages 249–263. Springer, 1997. 9

[LLP+18] Zhe Liu, Patrick Longa, Geovandro Pereira, Oscar Reparaz, and Hwajeong Seo.
Fourq on embedded devices with strong countermeasures against side-channel
attacks. IEEE Transactions on Dependable and Secure Computing, 2018. 35,
36

[LW15] Hanwook Lee and Dongho Won. Prevention of exponential equivalence in
simple password exponential key exchange (speke). Symmetry, 7(3):1587–1594,
2015. 7

[Mac01] Philip MacKenzie. On the security of the speke password-authenticated key
exchange protocol. Cryptology ePrint Archive, Report 2001/057, 2001. https:
//eprint.iacr.org/2001/057. 7

[MRA15] Karina Mochetti, Amanda C Davi Resende, and Diego F Aranha. zkpake: A
simple augmented pake protocol. In Brazilian Symposium on Information and
Computational Systems Security (SBSeg), 2015. 5

[PJ] C Percival and S Josefsson. The scrypt password-based key derivation function.
2012. URL http://tools. ietf. org/html/josefsson-scrypt-kdf-00. txt. 2, 10

[PW17] David Pointcheval and Guilin Wang. Vtbpeke: Verifier-based two-basis pass-
word exponential key exchange. In Proceedings of the 2017 ACM on Asia
Conference on Computer and Communications Security, pages 301–312. ACM,
2017. 2, 3, 7, 11, 26, 27, 43

https://eprint.iacr.org/2018/163
https://eprint.iacr.org/2001/057
https://eprint.iacr.org/2001/057


42 AuCPace: Efficient verifier-based PAKE protocol tailored for the IIoT

[RS17] Joost Renes and Benjamin Smith. qdsa: Small and secure digital signatures
with curve-based diffie–hellman key pairs. In International Conference on the
Theory and Application of Cryptology and Information Security, pages 273–302.
Springer, 2017. 10

[Sho97] Victor Shoup. Lower bounds for discrete logarithms and related problems.
In International Conference on the Theory and Applications of Cryptographic
Techniques, pages 256–266. Springer, 1997. 18

[SKI10] SeongHan Shin, Kazukuni Kobara, and Hideki Imai. Security proof of augpake.
IACR Cryptology ePrint Archive, 2010:334, 2010. 3, 6, 11, 26

[SOAA15] Stanislav V. Smyshlyaev, Igor B. Oshkin, Evgeniy K. Alekseev, and Liliya R.
Ahmetzyanova. On the security of one password authenticated key exchange
protocol. Cryptology ePrint Archive, Report 2015/1237, 2015. https://
eprint.iacr.org/2015/1237. 6

[W+98] Thomas D Wu et al. The secure remote password protocol. In NDSS, volume 98,
pages 97–111, 1998. 3, 5

[Zha04] Muxiang Zhang. Analysis of the speke password-authenticated key exchange
protocol. IEEE Communications Letters, 8(1):63–65, 2004. 7

https://eprint.iacr.org/2015/1237
https://eprint.iacr.org/2015/1237


Björn Haase and Benoît Labrique 43

A Notes regarding short Weierstrass curves
Our construction shares with [JKX18] the requirement that an efficient hashing to group
elements must be available for the elliptic curve’s point group. Unfortunately, this is not
always the case for important established curves, namely regarding standards using the
short Weierstrass form. In order to circumvent this problem, as an alternative in [PW17]
a construction TBPEKE based on two base points and an additional scalar multiplication
has been suggested by Pointcheval and Wang. Note that this construction is very similar
to the balanced sub-protocol CPace presented in this paper.

In this appendix we deal with the question, whether the TBPEKE construction could
also be used instead of CPace as a balanced sub-protocol component for AuCPace. I.e.
the question is whether the TBPEKE construction could also be proven secure in the UC
model. In our opinion, this answer could be given affirmatively. However, unfortunately,
our UC security proof technique that allowed for fully adaptive adversaries could probably
not be carried out for TBPEKE because of a technical commitment problem within the
Diffie-Hellman step. However, we come to the conclusion, that the balanced sub-step of
TBPEKE could be proven secure also in the UC framework, when considering a weaker
static adversary model as used for most other security proofs of efficient constructions in
the UC framework such as [GMR06].

I.e. for implementations forced to use older short Weierstrass curves, we suggest
to replace our technique for the calculation of the ephemeral generator G as G =
Map2Point(H1(PRS)) by the TBPEKE equivalent of G = A + CH1(PRS). The essen-
tial property (as pointed out also in [BFK09]) is that the discrete logarithm of G must be
unknown for both, honest parties and the adversaries.

Note that for any TBPEKE-based construction we see as important pre-requisite that
the "nothing-upon-my-sleeve" problem related to the secrecy of the discrete log of the
points C and A needs to be resolved in a trustworthy way.

Here we make the following suggestion. For any of the older short Weierstrass form
elliptic curves we suggest to determine the curve points A and C by the following algorithm.
For the point A (C) we suggest to first take the packed little-endian encoding of the
standardised curve’s base point x (y) coordinate and calculate x̃A = SHA512(x) (x̃C =
SHA512(y)). When doing so, there is a non-negligible probability that the x-coordinates
x̃A and x̃C actually correspond to the x-coordinate of a point on the twist or possibly on
a small subgroup. In this case we suggest to increment the coordinates step by step by
one until a point on the cryptographic group is returned. We then suggest to choose the
one out of two y-coordinate candidates yA and yC such that the least-significant bit 0 of
the y-coordinate is zero.

Based on the assumption that no common mathematical structure is shared between
the respective short Weierstrass curve and the Add-Rotate-XOR (ARX) algorithm SHA512,
we conclude that it is justified to conjecture the secrecy of the discrete logarithms of A
and C.



44 AuCPace: Efficient verifier-based PAKE protocol tailored for the IIoT

B Notes regarding UC security of the PACE protocol vari-
ant from [HL17]

The protocol in [HL17] is closely related to the protocol CPace presented in this paper.
This protocol and the specific optimisation steps were yet not analysed within the UC
framework. The main difference to CPace stems from the strategy used for circumventing
the patents on SPEKE.

While we do not detail a full UC security proof for this protocol, we never the less would
like to sketch the necessary steps for executing it. In the notation of [HL17] the password
pw corresponds to a password-based key π generated, e.g. by hashing the password. The
difference of [HL17] to CPace essentially is that the calculation of the password related
string PRS involves an additional symmetric encryption, not actually needed for securely
implementing the protocol. In order to cover the patent circumvention protocol, we suggest
to proceed as follows:

• Firstly we use the encrypted version of the messages s together with the nonce value
and the message t that are exchanged at the beginning of the protocol for deriving
the session id needed for the UC framework.

• We then use the symmetric salsa20-20 primitive on the password in order to generate
the XOR pad used in [HL17] and modify the definition of the password-related string
PRS according to the patent circumvention construction s||t.

• In order to fend off relay attacks, it will be mandatory to incorporate identifiers
for the parties (corresponding to the CI of CPace) into the input to the Map2Point
function (H(s||t)) such that not only the password is authenticated but also the client
and server identities. This could e.g. be done by incorporating a channel identifier
component into input parameter π (the password-derived key) used in [HL17].

• We then prove that the password dependent string (s||t) generated this way matches
iff the same password parameter π was used by both, server and client, ensuring
that the password and the identities match. For this step, we essentially need the
property that the entropy of π is preserved when extracting a random stream from
π and nonce value by using salsa20-20.

• The rest of the proof could then be executed by the same procedures as used in
this paper. (Note that the explicit authentication step involving generation of
several authenticators by one single run of SHA512 is not mandatory for securely
implementing FpwKE .)


	Introduction
	Differences between conventional web security and IIoT
	Strategies for protecting passwords
	Why industrial instrumentation needs a specially tailored V-PAKE protocol
	Contribution of this paper
	Organisation of this paper

	Review of PAKE protocols and their security analysis
	Overview on PAKE protocols
	Security models
	Review of SPEKE and SPEKE variants
	Review of the UC framework
	Overall proof strategy

	The AuCPace protocol
	Design rationales for the AuCPace protocol
	Parameters of the AuCPace protocol
	Configuring the password verifier on the server
	Establishing session keys based on the password pw and the password verifier W

	Proof of indistinguishability for the balanced sub-protocol CPace
	Proof strategy
	Game-based proof
	Proof that probability GuessK in G3 is negligible
	Remarks regarding the ordering of the messages and efficiency

	Proof for the augmented protocol AuCPace
	Technical details
	Proof strategy for the augmented protocol
	Game-based proof

	Partial augmentation
	The ideal functionality FpapwKE for modeling partial augmentation.
	Proof

	Performance assessment of the AuCPace protocol
	Security guarantees
	Computational efficiency for servers
	Implementation effort
	Bandwidth and latency aspects
	Intellectual property rights
	Registering verifiers
	Summary regarding the protocol assessment

	Implementation on ARM Cortex M0 and M4 microcontrollers
	Implementation of X25519
	Implementation of Elligator2
	Implementation of the field arithmetics
	Implementation of the hash functions

	Experimental results
	Field arithmetics
	X25519 Diffie-Hellman
	Partially augmented AuCPace25519

	Discussion and conclusion
	Acknowledgements
	Notes regarding short Weierstrass curves
	Notes regarding UC security of the PACE protocol variant from haase2017making

