
AuCPace: Efficient verifier-based PAKE protocol
tailored for the IIoT

Björn Haase and Benoît Labrique

Endress+Hauser Conducta GmbH&Co. KG, Germany
bjoern.haase@endress.com

Abstract.
Increasingly connectivity becomes integrated in products and devices that previously
operated in a stand-alone setting. This observation holds for many consumer ap-
plications in the so-called "Internet of Things" (IoT) as well as for corresponding
industry applications (IIoT), such as industrial process sensors. Often the only
practicable means for authentication of human users is a password. The security of
password-based authentication schemes frequently forms the weakest point of the
security infrastructure.
In this paper we first explain why a tailored protocol designed for the IIoT use case
is considered necessary. The differences between IIoT and the conventional Internet
use-cases result in largely modified threats and require special procedures for allowing
both, convenient and secure use in the highly constrained industrial setting.
Specifically the use of a verifier-based password-authenticated key-exchange (V-PAKE)
protocol as a hedge against public-key-infrastructure (PKI) failures is considered
important. Availability concerns for the case of failures of (part of) the communication
infrastructure makes local storage of access credentials mandatory. The larger threat
of physical attacks makes it important to use memory-hard password hashing.
This paper presents a corresponding tailored protocol, AuCPace, together with a
security proof within the Universal Composability (UC) framework considering fully
adaptive adversaries. We also introduce a new security notion of partially augmented
PAKE that provides specific performance advantages and makes them suitable for a
larger set of IIoT applications.
We also present an actual instantiation of our protocol, AuCPace25519, and present
performance results on ARM Cortex-M0 and Cortex-M4 microcontrollers. Our
implementation realizes new speed-records for PAKE and X25519 Diffie-Hellman for
the ARM Cortex M4 architecture.
Keywords: Password Authenticated Key Exchange, V-PAKE , PAKE, elliptic curves,
Cryptographic Protocols, Universal Composability, IEC-62443, Industrial Control,
Curve25519, X25519

1 Introduction
Since recently, wireless and networking technology becomes integrated in products and
devices that previously operated in a stand-alone setting, both in consumer applications
in the so-called "Internet of Things" (IoT) as well as in the corresponding industry setting,
the "Industrial IoT" (IIoT). Often communication technology and security protocols are
employed that were not originally tailored and designed for the resource-constrained setting
and the specific threat model.

In comparison to conventional un-connected devices, security becomes a crucial aspect
to consider, specifically in the IIoT. Often, users tend to use short and easily memorable
passwords. For this reason emerging industry standards, such as from the IEC-62443

mailto:bjoern.haase@endress.com


2 AuCPace: Efficient verifier-based PAKE protocol tailored for the IIoT

family, rightfully require two-factor authentication for higher security levels (SL-3, SL-4).
Still then, however, suitable protection of the second factor "password" remains important.

Today, in most Internet communication and many IIoT applications protocols such as
TLS based web servers are used, that were not originally designed for the IIoT use-case.
Mostly, a trustworthy and failure-free Public-Key-Infrastructure (PKI) is indispensable for
providing even basic protection of passwords, e.g., against phishing or man-in-the-middle
attacks. However in the IIoT setting, specifically for industrial installations not fully
operating according to standards such as IEC-62443, today integration of the devices in a
PKI is not always available.

1.1 Note on the current standardization activities for industrial instal-
lations

Security is a new topic for most industry installations and component suppliers. For the
project of securing industrial installations, suppliers and implementers currently seem to
first concentrate on standardizing the security protocols of the machine-machine interfaces.
User authentication tends to be addressed in a second step only.

One example is the Common Industrial Protocol (CIP Security) standard family which
forms the base for the EtherNet/IP(tm) and DeviceNet(tm) standards. Here, while the
standardization of security mechanisms for the machine-machine interfaces is widely settled,
the standardization of user authentication as part of the "CIP Authorization Profile" is
still a work in progress.

In our assessment, we consider user authentication to be as critical as machine-machine
authentication. In many settings the attacker is given equivalent power over an installation
by gaining control over human machine interfaces. With this paper we also aim at
contributing to the project of resolving this issue.

1.2 Differences between conventional web security and IIoT
One of the most remarkable differences between the conventional web server setting (here
referred to as "web shop" use case) and the typical IIoT setting corresponding, e.g., to an
industrial plant is illustrated in Figure 1. In the former case few servers, e.g., web servers,
interface to many clients, e.g., web browsers which come with pre-installed configuration
for certificate authorities trusted by the browser supplier. In the latter case, one single
client, e.g., a tablet-computer based human machine interface (HMI), might be used for
configuring many servers, e.g., sensors or control valves.

Unlike in the "web shop" use case, in the IIoT setting a dramatically larger number of
server certificates needs to be configured and maintained. Often self-signed certificates are
used for servers, leading to the significant risk that the essential corresponding configurations
on the client side (e.g., browsers) are omitted. Operators and system administrators used
to the more convenient "web shop" setting might not even be aware that such configuration
is mandatory for security.

As a consequence, the threat of PKI failures should be considered very carefully for
remote HMI access to (I)IoT units. This is one of the reasons, why since recently strategies
for password protection as a hedge against PKI failures have regained academic and
industrial interest [JKX18, PW17, HL17].

Moreover many IIoT devices, notably battery-driven devices, will not be permanently
"online". Availability concerns for the case of (partial) failure of networking infrastructure
often make it mandatory to locally store user credentials, typically in unprotected memory.
Furthermore, IoT devices might be much more exposed to physical attacks. For all of
these reasons, protection of passwords forms a crucial point of any (I)IoT security solution.



Björn Haase and Benoît Labrique 3

Server

Client Client Client Client

Client

ServerServerServerServer

Web-Shop use-case IIoT use-case

Figure 1: Use-cases for conventional Internet applications and IIoT.

1.3 Strategies for protecting passwords
For the protection of passwords two complementary approaches could be distinguished.
On the one hand, memory-hard password hash algorithms such as scrypt [PJ12] and
Argon2 [BDKJ16] aim at increasing the cost of offline dictionary attacks. On the other
hand password-based key exchange (PAKE) protocols allow for establishing a secure,
high-entropy shared session key over an insecure communication channel. This holds even
if only a low-entropy secret key, the password pw is shared (see, e.g., [Gre18] for a recent
gentle introduction to the concept of PAKE).

One of the important advantages of PAKE protocols published since the early works
by Bellovin and Merritt and Jablon [BM92, Jab96] is the fact that neither a public-key
infrastructure (PKI) nor a trusted hardware component capable of securely storing high-
entropy keys is required as prerequisite. PAKE protocols, thus, match very closely the
needs of the IIoT use-case.

PAKE protocols essentially come in two variants. Firstly, so-called balanced or symmet-
ric PAKE protocols, for instance [BM92, CHK+05, BFK09, Jab96, BMP00], are designed
such that both parties, initiator and responder, require that the same password pw is
available on both sides. Secondly, so-called verifier-based PAKE protocols (also known
as V-PAKE, asymmetric or augmented PAKE) protocols could be distinguished, where
the server is given access only to a password-verifier W and the clear-text password is
only available to the client party, e.g., [Wu98, PW17, GMR06, Jab97]. V-PAKE allows for
some limited additional protection for the case that the attacker gets access to the server’s
password-verifier database. The additional protection due to augmentation should not be
over-estimated but still could make the task significantly more difficult for the attacker.
In all known protocols V-PAKE comes with significant additional computational overhead
in comparison to PAKE.

A peculiarity in the industrial IIoT setting is that we should be expecting to find the
very same password in use on many small devices. Due to password re-use the compromise
of one small server might affect the security of a larger infrastructure. On the other hand,
availability concerns for the case of failures of (part of) the network infrastructure often
make it mandatory to locally store this sensitive data and often no protected storage
media, such as smart-card circuits, are available. For this reason verifier-based PAKE
using memory hard password hashing usually should be considered to provide the best
practically feasible security strategy regarding HMI authentication for IIoT applications.

1.4 Why industrial instrumentation needs a specially tailored V-PAKE
protocol

Unfortunately, it is not uncommon that IoT and industrial devices have only very limited
energy and computational resources available, specifically if they have to be conformable
with the constraint set that applies for intrinsically safe explosion protection (IEC60079-11)



4 AuCPace: Efficient verifier-based PAKE protocol tailored for the IIoT

Central PW database server

HMI Client HMI Client

ServerServerServerServer

Figure 2: IIoT setting with central password distribution infrastructure.

[HL17].
For important classes of devices, use of memory-hard password hashing is precluded due

to the limited memory and computational capacities. Also the computational complexity
of some established V-PAKE protocols that were originally developed for office information
technology might prevent actual use in the IIoT. Note that all of the most efficient known
augmented protocols (requiring three exponentiations) or components of the protocols,
such as AugPake [SKI10] or OPAQUE [JKX18] are covered by patents. It is important
to consider that also devices even smaller than typical IIoT devices need sound password
protection, such as, e.g., legacy fieldbus systems with bluetooth-based wireless HMI
interfaces [HL17].

In all of these settings, efficiency considerations and pending patents will be a crucial
factor ultimately deciding upon whether or not sound password protection could actually
be implemented by manufacturers. Note that specifically for the smallest devices such as,
e.g., temperature sensors, a significant commercial cost constraint applies. Power efficiency,
code size and ease-of-implementation are crucial factors that will be decisive for actual
roll-out of a more secure or insecure solution, i.e., efficiency is of utmost importance.

Regarding efficiency of V-PAKE solutions, optimizations need to apply on all levels
of the security implementation, protocol design, algorithmic optimizations (e.g., group
operations on elliptic curves) and low-level arithmetic. Unfortunately, most protocols
today were mainly designed with typical office environments in mind.

It is also important to consider that authentication protocols are often embedded in
a larger system, involving, e.g., protocols allowing for distributing password verifiers to
server entities from a central management infrastructure as sketched in figure 2. Note
that in the IEC-62443-4-2 draft standard, centralized user account management systems
are declared mandatory even at the lowest security level SL-1. This provides significant
challenges for all devices that are not permanently "on-line" or isolated by purpose from
the main company network, i.e., in settings where a direct network connection to a central
password database server may be not reliably available.

1.5 Contribution of this paper
This paper aims at contributing to the project of securing IIoT applications by comprehen-
sively addressing all of efficiency, implementation and patent issues. We aim at doing so by
introducing an efficiency-optimized V-PAKE protocol "Augmented Composable Password
Authenticated Connection Establishment" (AuCPace) and an actual instantiation AuC-
Pace25519 that is, to the best of our knowledge, freely usable without inflicting intellectual
property rights and specifically tailored for the exact subset of devices where security is
most likely to be discarded: Small extremely resource-constrained and/or low-cost devices
where integrating sound security is particularly difficult.

The project of protecting industry installations clearly requires considering a larger
scope, such as sketched in figure 2. For the scope of this work, however, we identified the



Björn Haase and Benoît Labrique 5

need to concentrate in a first step on the sub-component of the authentication protocol
running between the HMI server and client units, i.e., leaving out the significant complexity
of the user credential distribution process for local password registration.

Our scheme arranges for use of memory-hard password hashes also on smallest devices
with little memory, since it is deferring the costly password hashing to the client entities.

Our work builds up upon the work in [HL17] by explicitly providing formal security
proofs for the specific optimized design choices therein, e.g., regarding the cheaper alterna-
tive to conventional point verification employing twist security [BL19] and avoidance of
costly and memory-consuming point compression. Note that such aspects are usually not
relevant for the conventional office IT setting.

We do so by providing a security proof for AuCPace in the UC framework with joint
state [CR03]. We base our analysis on the UC-based security model of [GMR06]. We
show that our protocol, unlike most Diffie-Hellman-based constructions, could be proven
secure in the UC model, even when considering fully adaptive adversaries. We extend
this model for allowing a new operation mode that we coined partially augmented PAKE.
We show how it is possible to implement AuCPace in its partially augmented variant
without any computational overhead in comparison to conventional "balanced" PAKE
for the resource-constrained server, while maintaining all of the most relevant security
guarantees in the IIoT setting.

Our protocol could be clearly modularized into 1.) a balanced sub-protocol coined
CPace (Composable Pace) which shares important design features with PACE [BFK09]
and 2.) an augmentation layer allowing for both conventional augmentation and our newly
introduced partial augmentation.

As one concrete instantiation we present a protocol AuCPace25519 which adds further
optimizations also on the group arithmetic and field arithmetic level. We present perfor-
mance results for both, AuCPace and Diffie-Hellman protocols for ARM Cortex M0 and
Cortex M4 microcontrollers.

We hope that the new speed-records for constant-time implementation of both, PAKE
and the X25519 Diffie-Hellman Protocol on the ARM Cortex M4, that we report in this
paper will make it possible to enlarge the set of targets that could afford integrating
state-of-the-art security technology.

1.6 Organization of this paper
For this paper we consider different groups of readers being more or less inclined to
theoretical analysis and actual implementation on constrained targets respectively. For
this reason, this paper is organized as follows.

In section 2 we first review related work on PAKE protocols and the definitions of
security used for their respective analysis. Since AuCPace may be considered a SPEKE
[Jab96] variant, we will explain, why we chose SPEKE as basis despite the fact that
for SPEKE no proof is available, when used with elliptic curves. We then give a short
introduction to the concepts and methods used for proofs in the framework of Universal
Composability (UC). In section 2 we also will give a short introduction to the concept of
"partial augmentation" which will be introduced more formally only later as part of the
security proofs. We do so in order to make the paper self-contained also for readers willing
to skip the security proofs in a first step.

Subsequently, in section 3 we will introduce the full protocol AuCPace. There we will
also explain the design guidelines that motivated specific choices and constructions.

We then present the proofs, first handling the case of the balanced component CPace
(section 4). In section 5 we then use the composition theorem for proving security of our
V-PAKE construction. In the subsequent section 6 we introduce the concept of "partial
augmentation" and show how to essentially halve the server’s computational complexity.
In section 7 we compare our proposal AuCPace with other efficient PAKE constructions.



6 AuCPace: Efficient verifier-based PAKE protocol tailored for the IIoT

Subsequently in section 8 we describe the implementation strategy on Cortex M0 and
M4 microcontrollers for our reference implementation AuCPace25519. We conclude the
paper by presenting actual performance benchmarks on different microcontrollers and
embedded bluetooth-transceiver platforms in section 9.

Major parts of the optimized low-level code presented in this paper will be made freely
available under a CC0 license at [HL18].

In the appendix we present an outline, how a variant of our protocol could also be
implemented on conventional elliptic curves in short Weierstrass form and how the very
similar balanced protocol from [HL17] could be proven secure in the UC model.

2 Review of PAKE protocols and their security analysis
2.1 Overview on PAKE protocols
Despite the clear-cut security advantages, there are a couple of reasons that hampered
use of PAKE protocols in a number of applications [EKSS09]. Here patent pitfalls did
play a major role. Notably, EKE [BM92] and SPEKE [Jab96] were patented until very
recently and also some of the most efficient protocols in the IEEE 1363 standard family
are patented. This resulted in protocols such as SRP[Wu98], J-PAKE [HR10] and PACE
[BFK09] which did include additional complexity solely for patent circumvention.

As a result of patent circumvention, a large number of different PAKE protocols have
been presented. This did hamper thorough security analysis. Firstly proofs became more
complex or impractical because of the additional complexity for patent circumvention.
Secondly the number of protocol variants grew, reducing the amount of analysis effort
spent on each candidate.

Since the SPEKE patent has expired recently, some of the circumventions used for
PACE [BFK09] became obsolete. CPace, as presented in this paper, has been developed
in the process of removing patent circumvention steps. We did observe that the resulting
changes allowed for a natural way of agreeing on a session id before entering the protocol
and thus opened a path for a proof strategy within the UC framework.

Many protocols, including EKE and SPEKE, have been first suggested without a formal
security proof. Doing so comes at the risk of accidentally including serious design-flaws.
Many PAKE protocols have later been shown to be insecure. A recent example showing
the need of thorough security analysis is the case of zkPAKE presented in [MRA15] that
has been shown vulnerable to offline guessing attacks in [BRSS18].

For a recent comprehensive overview over different PAKE protocols and proof strategies
see, e.g., [SOAA15].

2.2 Security guarantees of PAKE and V-PAKE protocols
All types of PAKE and V-PAKE protocols base security on a low-entropy secret, the
password. The direct consequence is that they could not unconditionally be proven secure
because in any case exhaustive or dictionary searches by so-called "online attacks" could
not be prevented. For each "online" session with a server an attacker always could test
at least one password. Due to the low entropy this attack should always be assumed to
succeed.

Online attacks could however be mitigated by rate-limiting countermeasures, e.g., by
wait times after observing failed login attempts. This countermeasure could not be applied
if the authentication protocol allows for "offline" password tests, as, e.g., in case of weak
challenge-response protocols.

The security models for PAKE and V-PAKE, thus aim at proving that the "online
attack" is the best available attack strategy and that at most one password per online



Björn Haase and Benoît Labrique 7

session could be tested by the adversary.
V-PAKE goes one step further than balanced PAKE by additionally considering the case

that an attacker might get access to the password database of a server by "compromising"
it. This type of attack should be considered highly relevant for (I)IOT devices because
often the password database is stored in unprotected memory. Unlike in a "server-room
setting" an attacker might more easily gain physical access.

In the event of a server compromise it is technically infeasible to prevent offline attacks.
Here V-PAKE protocols aim at forcing the adversary to additionally mount an offline
search, i.e., the attacker is required to successfully mount both, server compromise and
offline dictionary attacks for a successful impersonation.

As a consequence a real security improvement could actually be realized only if the
V-PAKE protocol is used in conjunction with dedicated (specifically with memory-hard)
password hashes that slow down an offline search.

For most augmented PAKE protocols, it is possible to interleave the substep of offline
dictionary attack with the substep of server compromise, e.g., by pre-computing so-called
rainbow tables. In [JKX18] Jarecki, Krawczyk and Xu have introduced the notion of
"pre-computation attack resistance" of a so-called strong V-PAKE protocol that allows an
attacker to mount the offline search only after having successfully compromised the server.

In this paper we additionally introduce the notion of a "partially augmented" PAKE
protocol. This notion becomes meaningful in a setting where several servers share the
same password database. While for the compromised server, a partially augmented
protocol provides guarantees similar to a balanced PAKE protocol, it preserves the security
guarantees of a V-PAKE protocol for the remaining subset of servers.

2.3 Security models
One important approach for analyzing a PAKE is the game-based "real-or-random" (ROR)
model by Bellare, Pointcheval and Rogaway (BPR) [BPR00]. This was later extended to
the so-called "find-then-guess" (FTG) model [AFP05]. Simulation-based proof techniques,
were established, e.g., by Boyko, MacKenzie and Patel (BMP) in [BPR00].

In 2005 Canetti, Halevi, Katz, Lindell and MacKenzie [CHK+05] have suggested an
alternative approach, based on the framework of Universal Composability (UC) [Can01],
specifically in its joint-state version [CR03]. It has been shown that UC-secure PAKE
constructions could not be realized without either, idealized assumptions, such as random
oracles or a common reference string [CHK+05]. One of the advantages of analyzing PAKE
protocols in the UC framework is that no assumptions regarding the password distribution
apply. Related passwords or mistyped related passwords and forward secrecy are inherently
also considered. For this reason, the UC-based approach is considered to be providing
particularly strong security guarantees [PW17, JKX18].

2.4 Review of SPEKE and SPEKE variants
SPEKE [Jab96] was one of the earliest published protocols. The first security analysis of
SPEKE has been given by MacKenzie within the BMP simulation based model [Mac01].
Later it has been shown that in fact multiple password guessing with one impersonation is
actually feasible [Zha04].

SPEKE variants inherit the property from Diffie-Hellman key exchange, that a man-
in-the-middle attacker has the possibility to modify both honest parties’ resulting DH
keys unless the whole transcript of the communication is used for generating the session
key [HS14]. If the attacker replaces both intermediate exponentiations Ba and Bb of the
honest participants by a fixed power (Ba)c and (Bb)c both parties will still obtain the
same key. Note that this "attack" does not actually affect security in practice [HS14].



8 AuCPace: Efficient verifier-based PAKE protocol tailored for the IIoT

The original SPEKE protocol suffers from a weakness allowing for simultaneously
testing more than one password per online connection [Zha04]. As a mitigation, hashing
of the password was suggested in [Jab97], however without fully resolving the problem
[LW15].

Unfortunately, the security proofs for SPEKE do not cover the case of elliptic curves.
However, SPEKE-related constructions TBPEKE [PW17] and PACE [BFK09] have been
proven secure, however those require more exponentiations. It was sometimes conjectured
that SPEKE provides forward secrecy, but according to our knowledge this has not been
formally proven.

One notable advantage of SPEKE and some SPEKE variants such as PACE [BFK09]
when implemented on elliptic curves with integrated mapping [CGIP12] is that no full group
operations are required, e.g., allowing also for so-called x-coordinate-only implementations.
This feature provides some advantages of SPEKE and SPEKE variants in comparison with,
e.g., SPAKE [AP05] and its variants and PAK[BMP00]. This way no full group operations
are required for implementations but only a less-strict notion of a group modulo negation,
that allows for scalar multiplication and differential addition but not for arbitrary point
additions.

Verifier-based variants of SPEKE have been suggested already in 1997 [Jab97], unfor-
tunately without a corresponding proof.

2.5 Review of the UC framework
In this paper we assume some familiarity with the framework of Universal Composability
(UC). As a short introduction, we will give a summary of the essence here. For more
details, we refer the reader to [Can00].

The general idea of UC is to define security in terms of idealized functionalities F which
provide services to a set of players Pi. Moreover the framework considers an adversary
A and an environment Z and a real-world protocol π whose security is to be analyzed. In
the context of UC all of the algorithmic strategy of A, Z and π are provided in form of
code for an interactive Turing machine (ITM). In an actual real-world execution, a plurality
of interactive Turing machine instances (ITI) is generated upon request of the environment
Z. For instance several ITI may execute the ITM algorithm π for the parties Pi. Also the
environment Z and the adversary A are given their respective ITI instance.

In the UC framework this "real-world" case is compared with an "ideal-world" case
where the protocol π is replaced with the ideal functionality F and the real-world adversary
A with an ideal-world adversary S. The security model is based on the observation that if
any (polynomially bounded) environment algorithm Z cannot distinguish between the
"real" and "ideal" world executions with any significant advantage, then using instances of
protocol π is just as secure as using the ideal functionality F .

From the perspective of the players Pi, F provides a set of subroutine calls that
calculate a given function. For instance the subroutine call of the ideal functionality of a
PAKE protocol FpwKE returns a session key.

The definition of the algorithm of the ITM F makes sure that sensitive information is
hidden from the adversary as long as no "corruption" of parties occurs. Thus, the security
targets are inherently guaranteed. With corruptions, we model the case that the adversary
gets control over some of the protocol partners and, e.g., is able to retrieve data from
that partner’s internal memory. In the literature different types of corruption could be
distinguished. In so-called "static corruptions" the adversary may gain control only just
before starting with an actual protocol execution. In the so-called adaptive or Byzantine
corruption models we give the attacker more power by allowing him to corrupt parties
at any time during protocol execution. In this paper we consider the stronger Byzantine
corruption.



Björn Haase and Benoît Labrique 9

The original UC theorem from [Can01] allows to analyze the security of a system
viewed as a single unit, but it does not guarantee anything if different protocols share
some amount of state and randomness, such as, e.g., a hash function functionality. For
this reason for our application, the UC theorem cannot be used as-is. Our analysis, just as
the strongly related work in [ACCP08] is thus implemented in the framework of universal
composition with joint state [CR03].

2.6 Advantages and drawbacks of security proofs within the UC frame-
work

When comparing the UC framework with alternative approaches, notably the game-based
methodology a number of conceptional differences could be distinguished.

One of the most important advantages is that in the UC framework it is possible
to follow a modular approach where more complex solutions could be composed of UC
secure submodules by use of the composition theorem [Can00]. This avoids the need for
detailed reduction-proofs of composed systems. This fact is strongly linked to the special
role of the session id sid individually identifying one of possibly many copies of the ideal
functionalities. Within the UC framework, the session id needs to be established prior to
entering the protocol.

Note that depending on the actual publication, the session id generation is treated with
more or less rigor. In this paper we consider this complexity and include the corresponding
two additional messages for sid establishment in our protocol specification. In other work,
this aspect seems to be treated with somewhat less rigor.

It is worth noting, that the integration of Diffie-Hellman in composable frameworks
typically generates technical challenges [KR17], specifically when considering Byzantine
adversaries. It is often infeasible for the simulator to provide the adversary secret scalars
being consistent with the previously published group elements. Many previous security
proofs were, thus, forced to restrict the analysis to the weaker static adversary model (e.g.,
[GMR06]). We consider it to be a somewhat exceptional fact that in our proof we were
able to circumvent this challenge.

Finally it is worth noting that in the UC framework, the advantage of composability
often comes at the expense of somewhat less quantitative formulas regarding computational
complexity bounds. Commonly in the UC approach probabilities of algorithmic substeps
are qualitatively assumed to be either negligible or not negligible. On this basis it is
derived that the real-world protocol could be distinguished from the ideal functionality with
negligible or non-negligible probability, often without giving explicit formulas regarding
the exact bounds regarding the individual complexity assumptions. It is worth noting that
there exist more elaborate composable frameworks considering this aspect with more rigor,
see, e.g., [KR17]. This aspect, however, is out of the scope of this paper.

2.7 Overall proof strategy used in this paper
In this paper we try to avoid the introduction of new security notions and new ideal
functionalities where possible. We first prove that the balanced sub-protocol CPace
securely implements the ideal functionality FpwKE from [CHK+05] (repeated for reference
in figure 6).

We then show by using the UC composition theorem that the combination of the
sub-protocols securely implements FapwKE from [GMR06] and thus provides conventional
"full" augmentation.

We then show that when the ephemeral Diffie-Hellman step within AuCPace is replaced
by a long-term key variant, the computational complexity for the server is essentially
halved, while preserving the most important guarantee. We will present the corresponding



10 AuCPace: Efficient verifier-based PAKE protocol tailored for the IIoT

idealized functionality FpapwKE together with the security proof for partially augmented
AuCPace.

3 The AuCPace protocol
3.1 Design rationales for the AuCPace protocol
Our dominating guideline for the protocol development was server-side efficiency. In a
typical use case of a remote human-machine interface (HMI) for a resource-constrained
target, the HMI client-side has much more powerful computing capabilities.

We assessed power consumption to be one major issue in line with the results of [HL17].
Note that this goes beyond just minimizing the number of exponentiations. Also the
choice of a suitable curve, and the need for point compression and point verification
sub-steps should be considered. We observed, e.g., that x-coordinate-only Diffie-Hellman
implementations could provide significant advantages, regarding all of speed, ease-of-
implementation and memory-consumption. We therefore searched for constructions not
requiring full group operations, because this could inherently avoid the need for point
compression and verification. Specifically on curves with twist security this could allow for
more efficient methods against small-subgroup[LL97] attacks.

We also tried to minimize the number of required primitives in the protocols. E.g. we
aimed at avoiding the digital signature scheme needed for some constructions, such as the
Ω-Method from Gentry, MacKenzie and Ramzan [GMR06].

For AuCPace, we also aimed at aggressively minimizing memory requirements. E.g., it
was considered highly desirable, to try to avoid storage for full communication transcripts.
Actually as a side-effect of the proof strategy used for AuCPace we don’t execute many
protocol substeps in parallel and, thus don’t require large memory buffers for temporaries
and state. Throughout the calculation, we aimed also at minimizing the memory require-
ment for temporary variables. E.g. for calculating scalar multiplications on elliptic curves
we searched for efficient strategies not requiring large pre-computed tables, as e.g. required
for window-based speedup techniques. We assumed also that often the ROM limitation
might not allow for the tables typically needed for fixed-base point speedups.

3.2 Parameters of the AuCPace protocol
The AuCPace protocol is depicted in figures 3 and 4. The protocol is parametrized by

• A password based key derivation function PBKDFσ that is itself parametrized by
algorithm settings σ, specifying e.g. the memory consumption for the password
hash or an iteration count. PBKDFσ calculates a string from the password pw, a
username and a so-called "salt" value. For our reference implementation of AuCPace,
we use the memory-hard script [PJ12] password hash parametrized for a memory
consumption of 32 MByte.

• A (hyper-)elliptic curve C with a group J with co-factor cJ and a Diffie-Hellman
(DH) protocol operating on both, C and its quadratic twist C′. We denote the DH
base point in J with B. We don’t require full group structure in J but could
also instantiate AuCPace if only group operations modulo negation are available.
This can result in more efficient implementations. (For more details regarding this
efficiency aspect see the corresponding discussion for the qDSA/EdDSA signature
schemes in [RS17].). For our reference implementation, we use Curve25519 [Ber06]
and the x-coordinate-only Diffie-Hellman protocol X25519. In this paper we follow
the recommendation in [Ber14] and reserve the name Curve25519 for the curve and
X25519 for the protocol. For the DH protocol we mostly use a simple exponentiation



Björn Haase and Benoît Labrique 11

notation, even if additional co-factor handling and clamping might apply for the
scalars for guaranteeing that the result of any exponentiation is always in J . (The
exception from this rule is that we decided explicitly detail the co-factor cJ complexity
in figures 3 and 4 because this handling is actually crucial for security.)

• An encoding that represents either a point Y on J or on the quadratic twist in a
fixed-size bit stream. In our reference implementation we make use of an encoding
of the x-coordinate of the point on Curve25519.

• A verification algorithm that checks whether the order of an encoded element Y
within C or C′ is large enough for the security target specified by the complexity
of the computational Diffie-Hellman problem (CDH) for security parameter k. In
our reference implementation we make use of Curve25519’s twist security and the
integrated co-factor of 8 for X25519 scalars, i.e., we just verify that X25519(x, Y ) 6= 0.

• A Map2Point operation and its inverse map Map2Point−1. Map2Point(s) is required
to map a string s to a point from a cryptographically large subgroup Jm of C,
such that the discrete logarithm of the point is unknown. The inverse map s =
Map2Point−1(X, l) is required to map a point X ∈ Jm to a bit string s of length l
bits such that for any randomly sampled X ∈ Jm the string s is indistinguishable
from a random bit string of length l. For our reference implementation we use
Elligator2 introduced by Bernstein, Hamburg, Krasnova and Lange in [BHKL13] on
Curve25519, where the sign of the inverse map result is chosen at random.

• Hash functions H0 . . .H4. For our reference implementation we use SHA512 where the
hash function index is prepended as little-endian four-byte word. (We chose SHA512
for having a high security margin. Imperfections of the hash function for proofs
using the random-oracle model, should be considered to be particularly critical.)

We will refer to our reference implementation of AuCPace using the actual choices
above as AuCPace25519. While denying any legal responsibility, the authors declare
that they are not aware of any intellectual property right or patent limiting the use of
AuCPace25519.

3.3 Configuring the password verifier on the server
Two basic sub-protocols could be distinguished. In a first sub-protocol the server is given
a password-verifier W = Bw for storage in its database. This protocol is depicted in figure
3. The second sub-protocol, shown in figure 4, uses the available password verifier for
establishing a session key.

The configuration of password verifiers requires one message. We assume, that the
specific group J and the permissible set of PBKDF parametrizations σ of the server are
known to the client. The client chooses a fresh "salt" value and hashes the password pw
to yield a secret scalar w. Then a password verifier W = Bw is calculated and sent to
the server for storage in the database. Optionally user authorization data (uad) is also
transmitted. The server then checks whether the parametrization σ and the authorization
setting to attribute to the user are acceptable and stores the verifier W in the database
together with the salt and the authorization settings.

Note that all of the protocols in this paper choose ephemeral fresh "salt" values upon
password changes. In some settings, though, we see reasons for using a fixed "pepper"
that is chosen once and for all users and servers of a specific plant. When using an
ephemeral salt value, we could not avoid some leakage of information. Specifically, with
ephemeral "salts" it could not completely be hidden whether or not a user entry is available
in the server’s database and that a user has changed his password. On the other hand,



12 AuCPace: Efficient verifier-based PAKE protocol tailored for the IIoT

Store password operation for AuCPace

Server Client

salt←$ {0, 1}l

w = PBKDFσ(pw, username, salt)
W = Bw cJ

username, salt,
uad, W , σ

Upon successful verification, record
(username, salt, uad, W,σ)
in the password file.

Figure 3: Protocol for password configuration. The optional data element uad represents
application data associated with this specific user account, e.g. specifying the granted
authorization level on the server.

using a fixed "pepper" known to many parties has the disadvantage that an attacker can
pre-compute so-called rainbow-tables.

In line with other V-PAKE papers ([PW17, CHK+05, JKX18]) for the scope of this
paper we concentrate on the security proof for the session establishment only, i.e., for this
first sub-protocol we assume that communication is using a confidential channel. We also
assume that the client is properly authenticated and has sufficient privileges. More formally,
we do not consider adversaries A that read or modify messages of this sub-protocol.

It is important to note that the password is never passed in clear-text to the server.
This also implies that the computationally complex PBKDF function is calculated on the
client. Note also that by letting the client choose the "salt" value, we provide a path for
distributing password verifiers from a centralized user credential server by use of an offline
ticket mechanism, i.e., using a single unidirectional message.

With respect to the generation of the password verifier W our protocol shares some
similarities with AugPake [SKI10] and VTBPEKE [PW17] which also use a group element
W = Bξ as verifier where a password-derived key ξ is used as a secret exponent.

3.4 Establishing session keys based on the password pw and the pass-
word verifier W

Establishment of the session key sk is realized by a sequence of several steps shown in
figure 4. First a subsession id ssid is established as required by the UC framework prior
to entering the protocol. (An alternative option would have been to obtain ssid just by
concatenating the two random nonces s and t. [BLR04])

Secondly, a password related string PRS is calculated. We refer to this sub-protocol
as the AuCPace augmentation layer. Establishing PRS involves one message round. After
learning the user name, the server fetches the "salt" value from the database. In case that
no entry is available for the user name, we suggest to hash a server-specific secret constant
together with the username in order to yield a dummy salt value.

The server then transmits its "salt" string together with the value σ required for
parameterizing the password hash PBKDFσ and an ephemeral public key P = Bp cJ and
the group representation J to use for the Diffie-Hellman protocol. Both, server and client
entity then calculate a password-derived string PRS. While the server uses the password
verifier W from its database, the client has to calculate PBKDFσ. We neither expect to
have permanent storage available on the client, nor do we recommend any permanent
caching of "w". If no entry is available for W in the server’s password file, or if the



Björn Haase and Benoît Labrique 13

AuCPace

Server Client
Agree on ssid

s←$ {0, 1}k1 t←$ {0, 1}k1

s

t

ssid = H0(s||t) ssid = H0(s||t)

AuCPace Augmentation layer
x←$ {1 . . .mJ }
X = Bx cJ

username

W ,salt = lookupW (user)

J , X, salt, σ

w = PBKDFσ(pw, user, salt)

if lookup failed PRS ←$ {0, 1}k2 , abort if X invalid
else PRS = W x cJ PRS = Xw cJ

CPace substep
g′ = H1(ssid||PRS||CI) g′ = H1(ssid||PRS||CI)
G = Map2Point(g′) G = Map2Point(g′)
ya ←$ {1 . . .mJ } yb ←$ {1 . . .mJ }
Ya = Gya cJ Yb = Gyb cJ

Ya

Yb

K = Y
ya cJ
b K = Y

yb cJ
a

abort if Yb invalid abort if Ya invalid
sk1 = H2(ssid||K) sk1 = H2(ssid||K)

Explicit mutual authentication
Ta = H3(ssid||sk1) Ta = H3(ssid||sk1)
Tb = H4(ssid||sk1) Tb = H4(ssid||sk1)

Tb

Ta

verify Tb verify Ta
sk = H5(ssid||sk1) sk = H5(ssid||sk1)

Figure 4: Protocol AuCPace.



14 AuCPace: Efficient verifier-based PAKE protocol tailored for the IIoT

point verification on the client fails, the protocol is continued with a randomly sampled
PRS string instead of aborting. Our approach somewhat mitigates the fact that the
openly communicated "salt" value leaks some information on the server’s password file
contents. (At the same time we have to accept more workload when facing some types of
denial-of-service attacks.)

Then client and server enter the balanced sub-protocol CPace with the password-derived
string PRS as password. There, first an ephemeral generator G is calculated by use of the
Map2Point algorithm.

Calculation of G involves a "channel identifier" CI which is hashed together with the
PRS. In the context of TCP/IP, the CI might be constructed by concatenating unique
representations of the server’s and client’s IP address and TCP port numbers. Hashing CI
into G allows us to fend off certain types of relay attacks.

Incorporating the ssid into the calculation guarantees the generator G to be ephemeral
also in the partially augmented setting from section 6.1. Note that prefixing the session
id is also suggested in section 10.3 of [KTR13] for a security analysis in the IITM model
[KTR13] in case that one global random oracle is to be used for an unlimited numbers of
subsessions.

After determining G the two parties implement a Diffie-Hellman protocol by exchanging
group elements Ya and Yb and deriving a shared secret point K. Note that it is mandatory
for the receiving party to verify the points Ya and Yb. Then a first session key sk1 is
derived from K.

As last sub-protocol, optionally explicit authentication is added by exchange of two
authenticator messages Ta and Tb. Finally the session key sk1 is refreshed to yield the
final session key sk.

With respect to the mandatory point verification, we do not impose the conventional
requirement that the implementation has to verify that the points X, Ya and Yb are ∈ J .
Instead we impose a less strict requirement that could be implemented more efficiently on
some curves, notably if they have secure twists: We require the verification that the order
of the respective points is large with respect the required complexity assumption for the
CDH problem, such as to prevent collisions in the resulting points K and Xw due to small
subgroup attacks.

3.5 Key difference between AuCPace and previously known SPEKE-
based constructions

The main difference between SPEKE and the balanced CPace subprotocol shown here lies
in the fact that CPace works with an ephemeral generator that depends on the session id
and the channel identifier CI. This allows for both, a natural way for proving security in
the UC framework and a memory-optimized approach for implicitly authenticating data
such as the CI.

The feature of the ephemeral generator is shared between CPace and PACE. Unlike
PACE, CPace does not need an additional block cipher most certainly employed for
patent circumvention only. Note that this reduces both, implementation complexity and
the number of assumptions required for the proof. For CPace there is no need for the
ideal-cipher assumption.

Most importantly, AuCPace allows for two different levels of augmentation. If an
ephemeral key pair (x,X) is used, we obtain the conventional security guarantees of an
augmented PAKE protocol. Additionally, AuCPace allows for a "partially augmented"
mode where the key pair (x,X) is of long-term type and generated once during password
registration. The security guarantee of partial PAKE augmentation will be formally
introduced in section 6. For this reason we will continue the more detailed comparison
between AuCPace and other protocols only in section 7. We invite readers wishing to



Björn Haase and Benoît Labrique 15

The protocol CPace is parametrized by a security parameter k. CPace implements the hashes
with output size 2k H1 and H2 by the functionality FRO . The protocol also uses a Diffie-
Hellman key exchange protocol (written in exponentiation notation Xy) operating on points X
on a group modulo negation J of order mJ and its twist. It also uses a Map2Point primitive
mapping a string of length 2k on an element Y where Y r generates J . It finally uses a
Verify(Y ) algorithm checking for the subgroup order of a given Y on either J or the twist.
Protocol:

1. When Pj receives input (NewSession, sid, Pi, Pj , pw, responder role), he calculates g′ =
H1(sid||Pi||Pj ||pw) and G = Map2Point(g′). He then samples a fresh nonzero
scalar yb with 0 < yb < mJ and calculates Yb = Gyb . He sets up a session
record (sid, Pi, yb, Yb, responder role) and marks it as fresh. He then waits for a
(CPace initiator, sid, Pi, Ya) message.

2. When Pi receives input (NewSession, sid, Pi, Pj , pw, initiator role), he calculates g′ =
H1(sid||Pi||Pj ||pw) and G = Map2Point(g′). He then samples a fresh nonzero scalar
ya with 0 < ya < mJ and calculates Ya = Gya . He sets up a session record
(sid, Pj , ya, initiator role) and marks it as fresh. He then sends (CPace initiator, sid, Pi, Ya)
to Pj .

3. When Pj receives input (CPace initiator, sid, Pi, Ya) and finds a fresh session record
(sid, Pi, yb, Yb, responder role) it sends message (CPace responder, sid, Pj , Yb) message to
Pi. He then calculates Verify(Ya). If the point order is sufficient for security parameter
2k it calculates K = Y

yb
a and sk = H2(sid||K) and outputs (sid, sk). It aborts otherwise.

In either case it marks the session record as completed.

4. When Pi receives input (CPace responder, sid, Pj , Yb) and finds a fresh session record
(sid, Pj , ya, initiator role) he calculates Verify(Yb). If the point order is sufficient for
security parameter 2k it calculates K = Y ya

b and sk = H2(sid||K) and outputs (sid, sk).
It aborts otherwise. In either case it marks the session record as completed.

Figure 5: CPace Protocol definition for the proof of indistinguishability.

directly continue with this discussion to skip the rather technical proof sections 4 to 6 for
a first reading.

4 Proof of indistinguishability for the balanced sub-protocol
CPace

In this section we will deal with the balanced PAKE protocol CPace corresponding to the
middle part of figure 4. We formalize this sub-protocol in figure 5.

In this proof we show that the protocol in figure 5 emulates the functionality FpwKE (fig-
ure 6) from [CHK+05]. FpwKE receives the passwords pw from the environment-controlled
parties Pi and Pj and returns upon a NewKey request the same random session key sk if
and only if (iff) the passwords match.

In [CHK+05] FpwKE has been used in the context of static adversaries only. Here
we observed the need to more clearly specify the behavior of FpwKE in case of adaptive
corruptions. As in the static corruption model used in [CHK+05], we let FpwKE give
party Pi’s password to S upon corruption. In addition, we need to handle the case that
S corrupts a party Pj after a session key sk has been already sent to party Pi. If Pi and
Pj use the same password pw, we send S the honest party’s session key sk, otherwise
(different passwords) we send S a randomly sampled key sk′. This is required for giving
S the possibility to continue behaving as a honest party.

For the security analysis in this section we need to map the inputs and outputs of the
protocol from figure 4 to the notation used for defining the ideal functionality FpwKE in



16 AuCPace: Efficient verifier-based PAKE protocol tailored for the IIoT

The functionality FpwKE is parametrized by a security parameter k. It interacts with
an adversary S and a set of parties via the following queries:

Upon receiving a query (NewSession,sid, Pi, Pj , pw,role) from party Pi :
Send (NewSession,sid, Pi, Pj ,role) to S. In addition, if this is the first NewSession query,
or if this is the second NewSession query and there is a record (Pj , Pi, pw′), then record
(Pi, Pj , pw) and mark this record fresh.

Upon receiving a query (TestPwd,sid, Pi, pw′) from the adversary S :
If there is a record of the form (Pi, Pj , pw) which is fresh, then do: If pw = pw′, mark
the record compromised and reply to S with "correct guess". If pw 6= pw′, mark the
record interrupted and reply with "wrong guess".

Upon receiving a query (NewKey,sid, Pi, sk) from S where |sk| = k:
If there is a record of the form (Pi, Pj , pw), and this is the first NewKey query for Pi,
then:

• If this record is compromised, or either Pi or Pj is corrupted, then output (sid, sk)
to player Pi.

• If this record is fresh, and there is a record (Pj , Pi, pw′) with pw′ = pw, and a key
sk′ was sent to Pj and (Pj , Pi, pw) was fresh at the time, then output (sid, sk′) to
Pi.

• In any other case, pick a new random key sk′ of length k and send (sid, sk′) to Pi.

Either way, mark the record (Pi, Pj , pw) as completed.

Figure 6: Ideal functionality FpwKE from [CHK+05] re-presenting balanced PAKE without
explicit authentication.

figure 6. The password related components (W x and Xw respectively) correspond to the
passwords pw and the resulting session key sk from figure 6 corresponds to sk1 in figure 4.
We define the channel identifier CI to be the concatenation of Pi and Pj .

4.1 Proof strategy
Our proof closely follows the strategy from [ACCP08]. We also use a sequence of games
G0 to G4 in which the simulator algorithms S0 to S4 are executed. We organize these
algorithms Sn as a combination of independent ITI that only interact through their well-
defined APIs and have internal state (tape) that is not accessible from the outside. Initially
we have one such ITI for each simulated honest party Pi, the hash functionality FRO and
one ITI executing the algorithm of the real-world adversary A. We let Sn invoke the other
ITI during the course of the execution, i.e., we treat the real-world adversary algorithm
A as a black box subroutine library for Sn .

When A decides to corrupt a party Pi, we need to provide it all of the corrupted ITI’s
internal accessible state. The subsequent behavior of this party is then controlled by A.
The adversary is also given the secret scalars used in the real-world protocol. Finally, we
give Sn also access to an ITM Fn in each game, where F0 is initially not providing any
service. In each game we extend the functionality of Fn until it implements FpwKE.

In the games in our proof we re-factor the algorithms Sn such that each change is
indistinguishable for the environment Z.

At the end of the game sequence, we end up with an algorithm S4 that makes only
calls to F4 which itself implements exactly the ideal functionality FpwKE.



Björn Haase and Benoît Labrique 17

4.2 Game-based proof
Theorem 1. The protocol CPace from figure 5 securely realizes FpwKE in the FRO hybrid
model in the presence of adaptive adversaries under the assumptions

• of the hardness of the computational Diffie-Hellman problem in J (A0)

• that for any given randomly sampled group element X ∈ Jm the inverse map
Map2Point−1(X, l) is indistinguishable from a random string of length l (A1)

• that for any base point B and random string s the probability for finding an exponent
y such that By = Map2Point(s) is negligible (A2).

Note that the assumption A1 is covered by the security guarantees of maps such as
Elligator2 [BHKL13] and will allow us for covering the case of fully adaptive adversaries.
Without this assumption we would not be able to resolve the commitment problem linked
to the Diffie-Hellman substep for adaptive adversaries. (Note that without A1 a proof
considering only static corruption still remains possible.). Assumption A2 matches the
requirements from [BFK09] for the Map2Point operation in PACE.

4.2.1 Game G0 : Real Game

G0 is the real game in the random-oracle model using the functionality FRO from figure 7.
The parties Pi receive NewSession queries from all simulated honest parties. These queries
contain the passwords provided by the environment Z. Pi then executes the actions of
initially honest parties in the protocol. In the event of corruptions, the internal state of
the parties is passed to the real-world adversary algorithm A. The subroutine library F0 is
empty.

4.2.2 Game G1 : Simulation of the random oracle

Here we modify the previous game by replacing the calls Hn(q) to the original FRO hash
ITI by a separate implementation. We let S1 maintain an initially empty list Λ of value
pairs (n, q, g, r). For any hash query Hn(q) such that (n, q, ∗, r) appears in Λ from any
of the ITI libraries, the returned answer is r. In case that no query q has yet occurred,
we handle separately the cases of n = 1 and n 6= 1. In case of n 6= 1 we implement the
conventional random-oracle model by choosing a new random r of length k, by storing
(n, q, 0, r) in Λ and by returning r to the calling ITI.

For n = 1 instead, we aim at generating a random string r such that the discrete
logarithm of the point Map2Point(r) is known. For this purpose we first generate a random
point G whose discrete logarithm is known and use the inverse map Map2Point−1(G, k)
for converting it into a bit string of length k. We use the guarantee, that for any random
point G the string r = Map2Point−1(G, k) is indistinguishable from a random value.

For calculating the random point G, we first choose a random nonzero value g being
smaller than the order of the group. We calculate the point on J , G = Bg. We then
test whether G is in the image of Map2Point, Jm. If G is not in the image, we restart
with a new random value g until G ∈ Jm. This is guaranteed to succeed in probabilistic
polynomial time because Jm is large by assumption A2.

Then we calculate r = Map2Point−1(G, k), record (1, q, g, r) in Λ and return r.
Since the inverse map returns a string indistinguishable from a random string by the

assumption A1 G0 and G1 are indistinguishable for the environment.



18 AuCPace: Efficient verifier-based PAKE protocol tailored for the IIoT

4.2.3 Game G2 : Handle the case that an impersonating adversary wins by chance

Here we handle the case that an impersonating adversary succeeds in calculating the
session key sk without querying the hash oracle H2 for K. In this case we let S2 abort.
This case occurs with negligible probability. G2 is, thus, indistinguishable from G1 .

4.2.4 Game G3 : Restrict the access to the password.

Here, when receiving the passwords for party Pi from the environment, we let Pi pass
them directly to the subroutine library F3 and allow the rest of the program S3 no longer
access the password unless the simulated party Pi gets corrupted. We let S3 inform F3 in
case that a party got corrupted such that F3 returns the password in this case. We add
also an implementation of the TestPwd query to F3 and implement it according to the
spec. of FpwKE. In this game, we preliminarily also add a SamePwd query to F3 that
returns true if the passwords match.

As a result, the password-derived generator G from figure 4 is no longer known to the
ITI Pi . We therefore cannot start the original protocol from the beginning and need to
refactor the ITM for the parties as well.

Instead we let the ITI Pi calculate the protocol messages Ya and Yb to be random
multiples of the group’s base point B, Ya = Bza and Yb = Bzb . We also let Pi main-
tain an initially empty list Γ and store the secret scalars of simulated honest parties
(sid, Pi, y unknown, za) and (sid, Pj , y unknown, zb) in this list together with the respective
session id.

Since powers of G from game G2 generate J , the resulting points Ya, Yb take any value
on J with equal probability (except for the neutral element) for honest parties. So do
the points generated in G3 . The public messages in G2 and G3 are, thus, indistinguishable
for the environment.

As soon as both messages Ya and Yb have been delivered by A we calculate the
Diffie-Hellman results using the received points and the local exponents za and zb. If the
respective result points differ, we know that A has modified the messages in a destructive
way and record for this session a flag DHFails.

In case that a party Pi gets corrupted before calculating K, we need to hand over
A something being consistent with the internal state from Pi in G2 , notably the values y
(ya or yb respectively for client and server).

In the case of corruption, F3 grants us access to the secretly stored pw from its internal
state. S3 may then take the password and the session id and make a corresponding hash
query to H1. We then retrieve the secret scalar value g from Λ. We fetch the party Pi’s
secret scalar z from Γ and calculate y = z/g. We add the party’s secret scalar z to the
record in Γ with y and hand over y, pw to A.

In case that any party gets corrupted after calculating K but before calculating the
final H2, we perform the secret scalar correction above and recalculate a new K = Y yr by
using the received point value Yr and pass K to A.

The code for the verification handling for the received points Yr can remain unchanged
in comparison to Game G2 .

In case that the point verification fails for any party, we do not generate a session key
and do not need to calculate the final hash H2(sid||K). In case that the final hash H2 needs
to be calculated for the first of the parties Pi and Pi is still honest, we need to provide a
session key to Pi. (Note that this could be either server or client.) We distinguish three
cases.

• If the other party was corrupted earlier, we know the other party’s password pw′.
We then may issue a TestPwd query to F3 . If the guess was correct, we learn the
local secret scalar value y by the method described above and calculate K = Y yr
with the received remote point Yr. We query sk = H2(sid||K) for the corrected value



Björn Haase and Benoît Labrique 19

of K and return the result to Pi. If the guess was wrong, we sample a new random
key sk and return it to Pi.

• If the other party is still honest, we sample a new random key sk and send it to
Pi and record this session key together with the session id and the party identifiers
(sid, Pi, Pj , sk).

• If the other party is impersonated by A we also sample a new random key sk and
send it to Pi and record this session key together with the session id and the party
identifiers (sid, Pi, Pj , sk). Note that (according to the previous game), we will be
returning a distinguishable key sk iff A somehow managed to guess the value K = Y yr
in G2 . We will calculate the corresponding probability GuessK in section 4.3.

The remaining task is to calculate the session key sk for a second party Pj if it is
not corrupted until the very end or corrupted before calculating sk. In any of these two
cases, we know that two messages Ya and Yb must have been delivered by A, and we,
thus, have access to the DHFails marker and that the received points are not from a low
order sub-group (or the neutral element). Also, because we know that we have to simulate
session key generation for the second time, we know that the first party was honest until
the end of the protocol.

If the second party is also honest until the very end, we make a SamePwd query
introduced temporarily to F3 . If the passwords match and if the session is not marked as
DHFails, we return the same sk value to Pj as for the first party, otherwise we sample a
new random key sk′ and return this one to Pj .

In case that the second party Pj gets corrupted after calculating K we first correct
K using the secret exponent g retrieved from Λ. In case that we recognized destructive
modification of the Diffie-Hellman points by the DHFails marker for the session, we just
sample a new value for sk′ by the interface of the random oracle sk′ = H2(sid||K) and
pass sk′ to A. There is only a negligible chance of collision with the key sk sent to the
first party, since both sk and sk′ have been randomly sampled. There is also only a
negligible chance that A managed to make both parties issue the same session key despite
different passwords by modification of the transmitted points. For this reason G3 and
G2 are indistinguishable for this case.

If the Diffie-Hellman points have not been modified in a destructive way (DHFails not
recognized), the session key issued in G2 depends on the password. We learn the party’s
password pw from F3 . We then may issue a TestPwd query to F3 . If the guess was
correct, we have to provide the same session key to A as for the first party if DHFails is
not recognized. For this purpose, we program the value H2(sid||K) := sk to the session
key returned to the first party. This could fail only, if the oracle H2 already has been
queried for (sid||K), again corresponding to the probability GuessK that we deal with in
section 4.3. (Note that it is for this re-programming operation that we will later need to
be granted access to the session key issued to the client by the ideal functionality FpwKE.
Otherwise we could not give S access to the session key that would have been calculated
by honest parties for corruptions occurring just after executing the hash function.)

The messages Ya, Yb generated in Game G2 and G3 are indistinguishable for the
environment because they come from the same distribution. (Note that for this precise
aspect, the appropriate co-factor handling was mandatory!) Also the session keys are
sampled from an indistinguishable uniform distribution in both cases. Session keys delivered
to parties Pi and Pj match under the same conditions as in G2 . Inserting points on the
group’s twist by the adversary always leads to different session keys for both parties, just
as in G2 . G2 and G3 are, thus, indistinguishable for Z.



20 AuCPace: Efficient verifier-based PAKE protocol tailored for the IIoT

4.2.5 Game G4 : Merge the key generation procedures to the functionality F4 .

In this game we essentially only do code-refactoring and move the code responsible for
session key generation to the ITM F4 . We make F4 implement exactly the functionality
FpwKE. Note that we need maintain the queries within F4 that give access to the passwords
pw in case of corruptions. We also need to add a query returning the session key delivered
to the client in case of late adaptive corruptions of the second party (server), as discussed
above. We remove the SamePwd query from the list of queries for F4 because now, F4 could
easily check itself for password identity in its internal storage. Within S4 we finally replace
the sampling of the session keys by calls to the NewKey query of the ideal functionality.

Since between G3 and G4 no functionality change is present, G3 and G4 are indistin-
guishable for Z.

4.3 Proof that probability GuessK in G3 is negligible

In G2 an eavesdropping adversary has access to the published points Ya and Yb generated by
honest parties. In G2 he could make guesses for the password and derive the corresponding
generator G from the known sid. Successfully guessing K for a given password is equivalent
to the CDH problem, and is of negligible probability by assumption A0.

G3 can be distinguished by Z from G2 iff the impersonating adversary succeeds in
obtaining the real-world protocol’s honest party point K = Y yb

a in G2 without knowing
the honest player’s password. The reasoning is identical for both, server and client, so we
consider that A impersonates the server.

Note that Ya is under control of the adversary and may be either on the curve or on
its twist. We know, however, that irrespective of the curve the order of the point Ya is
large, making CDH untraceable by assumption A0.

In G2 A could successfully run guesses on K if he knew the exponent of the generator
G = Bg for a given password pw. For this purpose, A could transmit Ya = Bya and could
exploit the knowledge on Yb by guessing K = Y

1/g
b . By assumption A2 the probability

that A knows g happens with negligible probability.
In case that both scalars g and yb are unknown to A the problem of calculating K = Y yb

a

from known Yb = Bg∗yb is intracable for any base point B. Note that the secret scalar g is
known to exist, but known to no party according to assumption A2.

Note that if one more conservatively assumes that the adversary managed to control
the generator G somehow, possibly by biasing the sid and by exploiting two simultaneous
flaws in both, the hash and the Map2Point primitive, one would obtain the PACE-DH
problem from [BFK09]. In the very same paper this one is shown to be as hard as DH in
the generic model of Shoup [Sho97] and conjectured to be as hard as CDH.

In any case the probability GuessK is, thus, negligible. This makes the real-world
execution of the CPace protocol indistinguishable from the ideal world.

4.4 Remarks regarding the ordering of the messages and efficiency

Note that in this proof we have assumed that the server party starts with the communication
round. In fact, since the services provided to the two parties by the ideal functionality are
identical and since the protocol is perfectly symmetric, we could interchange the server and
client roles for the balanced PAKE sub-protocol CPace. This might be useful, specifically
in case that the scalar multiplication takes comparable time as message delivery.



Björn Haase and Benoît Labrique 21

The functionality FRO proceeds as follows, running on security parameter k with parties
P1, . . . , Pn and an adversary S:

FRO keeps a list L (which is initially empty) of pairs of bit strings.
Upon receiving a value (sid,m) with (m ∈ {0, 1}∗) from some party Pi or from S, do:

• If there is a pair (m, (h̃)) for some h̃ ∈ {0, 1}k in the list L, set h := h̃.

• If there is no such pair, choose uniformly h ∈ {0, 1}k and store the pair (m,h) ∈ L.

Once h is set, reply to the activating machine (i.e., either Pi or S) with (sid, h).

Figure 7: Ideal functionality FRO .

5 Proof for the augmented protocol AuCPace
5.1 Technical details
For carrying out the proof, we aim at re-using functionalities from previous papers wherever
possible, specifically the ideal functionality FapwKE from [GMR06].

However, for our protocol we could not use it as-is because FapwKE aborts in case that
the server does not find a password entry in its file. In our protocol, we aim at keeping the
information which users have a database entry as confidential as possible. Therefore we
continue with a random PRS string instead of aborting, thus concealing the information
at least from the low-motivation and low-skill attacker. Note that full confidentiality for
database contents could be fully realized only when using a server-specific "pepper". With a
transmitted "salt" we also couldn’t hide the events of password changes. We first considered
re-phrasing FapwKE but finally decided to stick with the established functionality which
aborts if no password database entry is available (in line with [GMR06, JKX18]).

The second technical aspect to consider is the handling of the PBKDFσ(pw,username,salt)
function. In the proof, we treat PBKDF as a separate hash function H6 and model it as a
random oracle PBKDFσ(pw,username,salt) = H6(pw||σ|| username || salt).

The third technical aspect stems from the fact, that the UC simulation model based
on Turing machines does not naturally allow for the concept of human users with "user
names" and authorizations. Instead we assume that the client’s identifier Pi takes over the
role of the user name and ignore the concept of authorization here. The full protocol as
used for the proof is shown in figure 9.

We adhere to the convention from [GMR06] and use "server compromise" for the event
of stealing the server’s persisted state. We use the terminology denote "corruption" for
events where the adversary gains control over a party during session establishment.

5.2 Proof strategy for the augmented protocol
With respect to simulation, we need to distinguish password storage and session estab-
lishment. During password storage we proceed as in [GMR06] and do not actually give
the adversary A any power. We allow A to compromise the server after receiving the
message configuring the password. For this reason, here the simulation of message trans-
mission does not provide any difficulty. We let S just forward the StorePWfile query to
the FapwKE functionality and send an empty StorePWfileSvr message to the server.

With respect to the session establishment, we again consider fully-adaptive adversaries
which are able to read and modify the messages. The most complex part of the proof will
be handling of compromise of the server database. Just as for the proof of the balanced
sub-protocol CPace, we proceed by using a sequence of games where G0 corresponds to
the real world and G4 corresponds to the ideal world. In each of these games, we consider



22 AuCPace: Efficient verifier-based PAKE protocol tailored for the IIoT

The functionality FapwKE is parametrized by a security parameter k. It interacts with an
adversary S and a set of parties via the following queries:
Password storage and authentication sessions
Upon receiving a query (StorePWfile,sid, Pi, Pj , pw) from party Pi :
If this is the first StorePWfile query, store password data record (file, Pi, Pj , pw) and mark it
uncompromised.
Upon receiving a query (CltSession,sid, ssid, Pi, pw) from party Pi :
Send (CltSession, sid, ssid, Pj , Pj) to S, and if this is the first CltSession query for ssid, store
session record (ssid, Pi, Pj , pw) and mark it fresh.
Upon receiving a query (SvrSession,sid, ssid) from party Pj :
If there is a password data record (file,Pi, Pj , pw) then send (SvrSession,sid, ssid, Pi, Pj) to S,
and if this is the first SvrSession query for ssid, store session record (ssid, Pj , Pi, pw′) and mark
it fresh.
Stealing password data
Upon receiving a query (StealPWfile,sid) from adversary S:
If there is no password data record, reply to S with "no password file". Otherwise do the
following. If the password data record (file,Pi, Pj , pw) is marked uncompromised, mark it as
compromised. if there is a tuple (offline ,pw′) stored with pw = pw′, send pw to S, otherwise
reply to S with "password file stolen".
Upon receiving a query (OfflineTestPwd,sid, pw′) from adversary S:
If there is no password data record, or if there is a password record (file,Pi, Pj , pw) that is
marked uncompromised, then store (offline ,pw′). Otherwise, do: If pw = pw′, reply to S with
"correct guess". If pw 6= pw′, reply with "wrong guess".
Active session attacks
Upon receiving a query (TestPwd,sid, ssid, P, pw′) from adversary S:
If there is a session record of the form (ssid, P, P ′, pw) which is fresh, then do: If pw = pw′,
mark the record compromised and reply to S with "correct guess". Otherwise, mark the session
record interrupted and reply with "wrong guess".
Upon receiving a query (SvrImpersonate,sid, ssid) from adversary S:
If there is a session record of the form (ssid, Pi, Pj , pw) which is fresh, then do: If there is a
password data record (file, Pi, Pj , pw) that is marked compromised, mark the session record
compromised and reply to S with "correct guess", else mark the the session record interrupted and
reply with "wrong guess".
Key Generation and Authentication
Upon receiving a query (NewKey,sid, ssid, P, key) from adversary S, where |key| = k:
If there is a record of the form (ssid, P, P ′, pw) that is not marked completed, then:

• If this record is compromised, or either P or P ′ is corrupted, then output (sid, ssid, key)
to P .

• If this record is fresh, there is a session record (ssid, P ′, P, pw′),pw′ = pw, a key key′

was sent to P ′, and (ssid, P ′, P, pw) was fresh at the time, then let key′′ = key′, else
pick a random key key′′ of length k. Output (sid, ssid, key′′) to P .

• In any other case, pick a random key key′′ of length k and output (sid, ssid, key′′) to P.

Finally, mark the record (ssid, P, P ′, pw) as completed.
Upon receiving a query (TestAbort,sid, ssid, P ) from adversary S:
If there is a session record of the form (ssid, P, P ′, pw) that is not marked completed, then:

• If this record is fresh, there is a record (ssid, P ′, P, pw′),and pw′ = pw, let b′ = succ.

• In any other case let b′ = fail

Send b′ to S. If b′ = fail, send (abort,sid, ssid) to P , and mark record (ssid, P, P ′, pw)
completed.

Figure 8: Ideal functionality FapwKE for verifier-based PAKE with explicit authentication
from [GMR06]. Note that we applied a single wording change (underlined) by replacing
Impersonate with SvrImpersonate for making it more explicit that this message models
impersonation of the server.



Björn Haase and Benoît Labrique 23

The Asymmetric AuCPace protocol

Setup: This protocol uses a random oracle functionality FRO for all of the hash
functions H3, H4, H5 and the password hash PBKDFσ (H6) with a parametrization σ
and salt size ofms bits. The protocol also uses a balanced PAKE functionality FpwKE as
well as a Diffie-Hellman key exchange protocol (written in exponentiation notation Xy)
operating on base point B and group order mJ working on a cryptographic sub-group
J of an elliptic curve and its quadratic twist J ′.

Password storage protocol:
When Pi (who is a client) is activated using StorePWfile(sid, Pj , pw) for the first time, he
does the following. He samples a fresh value salt ←$ {0, 1}ms , calculates the password
hash w = H6(salt||σ||pw||Pi) by using FRO . He then calculates a Diffie-Hellman point
W = Bw.
He sends a message (StorePWfileSvr, sid, Pi,salt, σ,W ) to Pj . When Pj which is a
server receives (StorePWfileSvr, sid, Pi,salt, σ,W ) from Pi for the first time, he sets
file[sid] = (sid,salt, σ,W, Pi).

Protocol steps for session establishment:

1. When Pj receives input (SvrSession, sid, ssid, Pi), he sets up a session record
(sid, ssid, Pi) and marks it as fresh. He then waits for a (username, sid, ssid, Pi)
message.

2. When Pi receives input (CltSession, sid, ssid, Pj , pw) he sets up a session record
(sid, ssid, Pj) and marks it as fresh. He then sends message (username, sid, ssid, Pi)
to Pj and awaits a response.

3. When Pj receives input (username, sid, ssid, Pi), he obtains the tuple stored
in file[sid] (aborting and marking the session record as completed if this
value is not properly defined). He then samples a fresh nonzero expo-
nent x with 0 < x < mJ and calculates X = Bx. Pj then sends
(hashingParams, sid, ssid, σ,salt, X) to Pi. Pj then calculates W x. He then sends
(NewSession, (sid, ssid), Pj , Pi, (sid, ssid,W x)) to FpwKE and awaits a response.

4. When Pi receives input (hashingParams, sid, ssid, σ,salt, X) he verifies X and
calculates w = H6(salt||σ||pw||Pi). He then calculates Xw. He then sends
(NewSession, (sid, ssid), Pi, Pj , (sid, ssid,Xw)) to FpwKE and awaits a response.

5. When Pj receives input ((sid, ssid), sk1) he calculates Ta = H3(sk1), T ′b = H4(sk1)
and sk = H5(sk1) and adds Ta, T ′b, sk to the session record. He then sends
(Authenticator, sid, ssid, Ta) to Pi and awaits a response.

6. When Pi receives input ((sid, ssid), sk1) he calculates T ′a = H3(sk1), Tb = H4(sk1)
and sk = H5(sk1) and adds T ′a, Tb, sk to the session record. Then he sends
(Authenticator, sid, ssid, Tb) to Pj and outputs (sid, ssid, sk). He then waits for a
response.

7. When Pi receives a message (Authenticator, sid, ssid, Ta) he compares T ′a with Ta
and aborts in case of differences. Else Pi outputs (sid, ssid, sk).

8. When Pj receives a message (Authenticator, sid, ssid, Tb) he compares T ′b with Tb
and aborts in case of differences. Else Pj outputs (sid, ssid, sk).

Stealing the password file: When Pj (who is a server) receives a message
(StealPWfile, sid, Pj , Pi) from the adversary A, if file[sid] is defined, Pj sends it to
A.

Figure 9: AuCPace Protocol definition for the proof of indistinguishability.



24 AuCPace: Efficient verifier-based PAKE protocol tailored for the IIoT

simulators S0 to S4 which implement part of their functionality in a subroutine library
F0 to F4 , where F4 exactly implements the ideal functionality FapwKE. Throughout this
proof, we show that all of the individual games are indistinguishable for Z.

5.3 Game-based proof
Theorem 2. The protocol from figure 9 securely realizes FapwKE in the (FRO ,FpwKE)
hybrid model in the presence of adaptive adversaries under the assumption of the hardness
of the computational Diffie-Hellman problem in J (A3).

5.3.1 Game G0 : Real Game

G0 is the real game in the random-oracle model using the functionality FRO from figure 7
for calculating the password hash PBKDF. Honest parties Pi execute the actions of the
real-world protocol until eventually getting corrupted. Specifically client entities Pi receive
StorePWfile and CltSession queries from the environment Z and return session keys upon
success. Server entities Pj receive SvrSession queries. On the event of corruptions, all the
internal state of the parties is passed to the real-world adversary algorithm A, specifically
for server corruptions, the password verifier W is returned. The subroutine library F0 is
empty.

5.3.2 Game G1 : Modeling the random oracle for the hash

In G1 we replace calls to FRO by a separate implementation of the random oracle for
PBKDF and the hash functions in a straight-forward way. Again we maintain an initially
empty list Λ of value pairs (n, q, r). For any hash query Hn(q) such that (n, q, r) appears
in Λ from any of the ITI, the returned answer is r. In case that no query q has yet occurred
we implement the conventional random-oracle model by choosing a new random r of length
k, by storing (n, q, 0, r) in Λ and by returning r to the calling ITI.

This game is indistinguishable from game G0 since the hash results both come from
the same uniform distribution.

5.3.3 Game G2 : Getting rid of the case where the adversary A wins by chance.

This game is almost as the previous, only we allow the simulator to abort in case that
the adversary manages to guess one of the authenticator messages Ta or Tb or the final
session key sk without querying the random oracles for sk1. This happens with negligible
probability, so Game G1 and G2 are indistinguishable for Z.

5.3.4 Game G3 : Handle mutual authentication.

In this game we deal with mutual authentication but still allow the simulator access to
the clear-text password pw upon server compromise events, i.e., in this game, we do not
give the simulator access to the password but instead pass the password from a StorePW-
file and CltSession query to code within F3 with an implementation according to FapwKE.
Temporarily, we allow F3 to return the clear-text password upon the StealPWfile query.

This way, the simulator may no longer access the password for the message StorePW-
file sent from the client to the server. Since we assume that neither impersonation nor
eavesdropping or message modification is feasible for A in this sub-step, simulation of the
message provides no difficulties. We just sample a new random salt value and let the client
send a message (StorePWfile, sid,salt, σ, Pj) with only the hashing parameter but without
password verifier W . Since A is not allowed to eavesdrop this is indistinguishable from
game G2 for Z.



Björn Haase and Benoît Labrique 25

Simulation of the (username, sid, ssid, Pi), does only include publicly known information
and is simulated as in the real world protocol. The same holds for the server’s reply
(hashingParams, sid, ssid, σ,salt, X) we sample a fresh random secret scalar x and salt value
and calculate the public key in the message as X = Bx. Point verification for X may be
implemented just as in G2 .

In case of compromising the server’s password file, we have to return password verifiers
W in order to maintain indistinguishability with game G2 . In game G3 we do so, by
retrieving the clear-text password pw from F3 and by calculating the password verifier as
in the original protocol.

For simulating the authenticator messages Ta and Tb we sample two random values
and transmit these. Since also in game G2 these values came from a uniform distribution,
the authenticator messages from game G3 are indistinguishable from G2 for Z.

After sending the authenticator messages, we call the TestAbort queries of F3 for both
parties and call a NewKey query upon success. In case that the adversary did destructively
modify the hashingParams or the authenticator messages, we let protocol parties abort.

Games G2 and G3 are indistinguishable for the environment. In both games, the
client aborts, if the group order of the point X is small. The Diffie-Hellman points W x

and Xw match, thus, iff W has been calculated from Bw and X has been calculated
from Bx. Therefore any modification of X by A leads to different PRS strings, i.e., the
input to FpwKE matches iff the passwords used for the StorePWfile request for the client
match the one from the CltSession request. As a consequence the session keys returned by
FpwKE match only if the very same passwords match. Verification of the authenticators
in G2 succeeds iff FpwKE returned the same session key to both parties. Upon any
modification of the authenticator messages by A the parties abort in both games.

5.3.5 Game G4 : Keeping the password secret

In this game we disallow the simulator to access the clear-text password upon server
compromise events. In this game, we add a "re-program-offline-query" list Λ1 to the
implementation of the random oracle in addition to its list Λ. We change the implementation
as follows. Upon a query q to the hash oracle, if no corresponding entry is found in Λ, we
first parse salt value Pi, pw and σ from the query q’s encoding. For all entries (sid, Pj , w)
contained in Λ1 we execute a OfflineTestPwd query on F4 for all Pj in case of a "correct
guess" result, we program the record in Λ for the query to the value w from Λ1, remove the
entry (sid, Pj , w) from Λ1 and return w. If after parsing the full list Λ1 no "correct guess"
result is returned, we sample a fresh random value r′, program it to Λ and return r′.

Upon server compromise, we proceed as follows. We first make a StealPWfile query to
F4 . Subsequently, we iterate through the PBKDF’s random oracle list entries in Λ, parse the
stored queries for the client id, salt, σ and the password and execute OfflineTestPwd queries
to F4 . In case of a "correct guess" reply, we learned the password pw and can, thus,
calculate the password verifier W and send it to the adversary A. Otherwise, the password
hash oracle has not yet been queried. In this case, we sample a new random hash result w,
setup a new re-program-offline-query entry (sid, Pj , w) for the hash oracle Λ1. In this case
we calculate the password verifier as W = Bw and send it to the adversary.

This procedure allows us to later on arrange for matching password verifiers W and
password hashes w.

We also have to handle the case of impersonation. If A uses the stolen password
verifier in his attack strategy for impersonating a server, we let the simulator make calls
to SvrImpersonate.

The only difference to game G3 shows up with respect to the way that the password
verifier W is calculated. Irrespectively, whether the adversary had queried the hash oracle
before the server compromise operation or after, the simulator always returns (w,W ) pairs
matching to the respective passwords. Also in both games the distribution of password



26 AuCPace: Efficient verifier-based PAKE protocol tailored for the IIoT

hashes and verifiers w and W is the same. Game G3 and G4 are, thus, indistinguishable
for the environment Z.

The real-world protocol AuCPace, thus emulates the ideal functionality FapwKE in the
FpwKE, FRO hybrid model.

6 Partial augmentation
6.1 The ideal functionality FpapwKE for modeling partial augmentation.
For the proof we introduce a new concept for partial augmentation of a PAKE protocol.
The corresponding functionality is depicted in figure 10. In comparison to FapwKE partial
augmentation (FpapwKE) gives the attacker the possibility to also impersonate the client
after having succeeded in compromising the server.

In the partially augmented variant of our protocol, we replace the server-chosen
ephemeral key-pair (x,X) by a long-term key pair that is re-used over several login sessions
(same sid, different ssid). We would have liked to choose the key-pair only once at the
point, where the server’s Turing machine is first instantiated and not upon each password
configuration. Unfortunately this is technically not possible in the UC framework, since
this would correspond to a shared state over several sid. For this reason, we need to let
the server choose (x,X) upon password configuration and store W x together with X in
the password file, i.e., just as the password verifier, the public key X becomes part of the
shared state for session sid. Note that using a long-term public key essentially halves the
computational complexity of AuCPace for the server for the case of the login sessions.

At a first glance, since after a server Pj ’s compromise, none of the security guarantees
with respect to the adversary are maintained, it might be argued that FpapwKE does not
actually provide any meaningful advantage in comparison to FpwKE.

The advantage, however, becomes obvious when considering the IIoT setting with
more than two servers sharing the same user credentials. In fact after executing a
StealPWfile query on server Pj the adversary has full control over Pj . Note, however that
the adversary is not given the clear-text password pw from Pj upon server compromise.
He is only granted the capability to execute OfflineTestPwd queries.

In settings where the adversary may expect other server entities Pk to operate with the
same password pw as Pj , client impersonation for connections with Pk is still precluded.

Note that this is occurring exactly in the use-case of industrial control plants. There
user credentials (password verifiers) may be shared by many small server entities, which
may be comparably easily stolen/compromised. In this setting, server compromise might
most likely be implemented by invasive attacks on the hardware, e.g., by stealing a first
server, un-soldering microcontroller or memory chips and by side-channel attacks that
re-open debug ports. In this setting FpapwKE provides very meaningful protection to the
honest subset of servers. It might be likely to detect theft of the device and the partial
augmentation feature might provide a sufficiently large time-window allowing for changing
user credentials on the plant.

Also undetected re-insertion of a compromised server in a plant may not be a relevant
attack scenario, such that the additional capability of the adversary to impersonate the
client on this specific server does not actually degrade the security in practice. Moreover, as
we will show, the AuCPace scheme allows for a server-specific configuration for partial and
full augmentation. A server entity where non-invasive attacks allowing for a re-insertion
into an installation should be considered feasible might choose to implement FapwKE using
AuCPace with ephemeral key pair (x,X) while a server where a more invasive attack is
presumed necessary in order to compromise the database (leading to device destruction)
might choose to use a long-term secret x and as a consequence FpapwKE.

Similar security guarantees of FpapwKE could also be realized if any server uses a



Björn Haase and Benoît Labrique 27

The functionality FpapwKE is an extension to the functionality FapwKE from figure 8.
It implements all of the FapwKE queries and extends the capabilities of the adversaries
by the following query:
Upon receiving a query (CltImpersonate,sid, ssid) from adversary S:
If there is a session record of the form (ssid, Pi, Pj , pw) which is fresh, then do: If there
is a password data record (file, Pi, Pj , pw) that is marked compromised, mark the session
record compromised and reply to S with "correct guess", else mark the the session record
interrupted and reply with "wrong guess".

Figure 10: Ideal functionality FpapwKE for partial verifier-based PAKE with explicit
authentication.

different "salt" value for each client, e.g., by letting the server provide a random salt value
upon password configuration. This, however precludes mechanisms offering an off-line user
credential distribution because all server identities need to be known at the time when
the user configures his password. It would not allow for the flexibility to asynchronously
add further servers to a plant after password registration. Note also that this way upon
password changes, the complex PBKDFσ password hash would have to be calculated once
for each server, significantly reducing the feasible strength of the workload parameters σ.

For the same reason "personalizing" a password hash for a server by hashing it together
with the server ID provides weaker security guarantees than partially augmented AuCPace.
Either the capability to add new servers to a plant after password registration is lost or a
central password distribution server would be required to hold information allowing for
impersonating any user. In the AUcPace context the distribution server would only hold
information on W not allowing for impersonation attacks without offline dictionary attacks
because entering the protocol in client role requires the password-derived scalar w.

6.2 Proof
Theorem 3. The protocol from figure 9 with using a long-term key-pair (x,X) instead of the
ephemeral key pair from step 3 in figure 9 securely realizes FpapwKE in the (FRO ,FpwKE)
hybrid model in the presence of adaptive adversaries under the assumption of the hardness
of the computational Diffie-Hellman problem in J and J ′.

We implement the proof for the partially augmented protocol in the UC hybrid model,
just as for the fully augmented variant. However, here leave the black-box model for A for
simplicity.

Since we assume that the key pair (x,X) is used for several protocol runs, we give the
adversary access to the secret exponent x upon server compromise. For this reason, we
also have to consider adversaries A which base their attack strategy on this knowledge.
In this case, the adversary is able to calculate the password related string PRS and,
thus, impersonate the client. In case of such an attack strategy, we let the simulator
use the CltImpersonate query of FpapwKE in order to make the ideal and real world
indistinguishable for the environment Z.

7 Performance assessment of the AuCPace protocol
In this section, we will discuss the properties of AuCPace and other V-PAKE constructions
from the perspective of extremely resource-constrained servers for industrial installations.

Fairly benchmarking algorithms and protocols often is a difficult task since many
aspects need to be considered. Advantages regarding one side could often be obtained only
at the cost of disadvantages elsewhere.



28 AuCPace: Efficient verifier-based PAKE protocol tailored for the IIoT

Since a large number of PAKE protocols have previously been suggested (see, e.g.,
[SOAA15, PW17] for a larger overview), we saw the need to focus here on a reduced
subset of constructions considered suitable according to clear criteria. Our findings are
summarized in table 1. For this discussion we concentrated on protocols fulfilling the
following constraints.

• We restricted our analysis to constructions coming with explicit security proofs.

• We concentrated on constructions requiring "few" exponentiations because in our
setting everything but the most efficient constructions were considered impractical.
Essentially this requirement is equivalent to only considering constructions proven
to be secure in the random oracle model. For the very same reason, we did not
consider protocols that mandatorily require comparably costly large-characteristic
field operations or pairings (or were only proven secure in this setting).

• We only considered V-PAKE schemes because we believe server compromise to be
a highly relevant attack, specifically for plants with large outdoor installations. In
this case in our opinion the additional mitigations provided by V-PAKE could prove
beneficial, particularly when considered in conjunction with strong password hashes
and password policies enforcing minimum entropy levels.

• We also considered proven forward secrecy to be mandatory for future-proof concepts
since in important settings the secure channel established by the V-PAKE protocol
will be used for securely changing passwords.

Specifically the requirement of proven forward secrecy turned out to be quite restrictive.
Unfortunately many otherwise very interesting constructions, such as notably AugPake
[SKI10] and SPAKE2+ [CKS08] do not offer this feature [PW17].

7.1 Discussion of the comparison overview
In table 1 we summarize our results. For a fair comparison, the message count does not
include the initial messages for session-id generation that we believe mandatory for all of the
UC-secure protocols and only consider variants providing explicit mutual authentication.

Message counts for password registration consider the recommended procedure from
the respective authors. The computational complexity comparison distinguishes fixed (f)
and variable-point (v) scalar multiplications as well as group order field inversions (i).

The size estimate of password verifiers to store in the server’s database assumes 32
bytes (B) for each of username, associated data for granted user authorizations and salt
and compressed elliptic curve points for the 128 bit security level. We estimated 32 byte
storage overhead for the overhead for symmetric authenticated encryption.

7.2 Security guarantees
While AuCPace and OPAQUE were both analyzed within the UC framework, the security
proof for VTBPEKE relies on the BPR model and derives somewhat more quantitative
upper bounds for the possible adversary advantage.

To some extend, the security guarantees depend on the framework used for the security
analysis. For instance, unlike for the BPR-model, in the UC model used here and in
[GMR06, JKX18] no assumptions regarding password distributions apply.

One minor difference might be that for AuCPace, we did consider fully adaptive
adversaries during session establishment, while the other UC-based approaches [GMR06,
JKX18] only considered static server corruptions.

However, according to our assessment in the view of practical relevance for real-world
applications, we believe that these differences among the filtered candidates within table



Björn Haase and Benoît Labrique 29

Table 1: Comparison of different V-PAKE constructions.

AuCPace AuCPace VTBPEKE OPAQUE
(part.)

message count 4 4 3 3
message count pw-Registr. 1c 1c 1c 1s + 2c

precomp. res. no no no yes
proof UC UC BPR(ROR) UC

comp. complexity server 2v 3v+1f 3v+1f+1i 3v+1f
comp. complexity client 3v 3v 3v+1f 4v+1f

x-coordinate only possible possible - -
simplified point ver. possible possible - -

pw-verifier size estimate ≈ 96B ≈ 64B ≈ 64B ≈ 280B
total message size estimate ≈ 160B ≈ 160B ≈ 160B ≈ 280B

Map2Point necessary yes yes no yes

1 might be of somewhat minor importance. Among these four constructions, we only
identified two significant security guarantee differences.

Firstly, the unique feature of OPAQUE is that it allows for starting with the offline
attack only after compromising the server (pre-computation resistance). With respect
to this feature OPAQUE, provides stronger guarantees. However this, as will be derived
below, comes at the cost of reduced flexibility in the password registration phase.

Secondly, the unique feature of AuCPace is that it optionally allows for partial augmen-
tation allowing for significantly less computational complexity than the other candidate
protocols. This comes at the cost that in case of a corrupted server, the security guarantees
correspond only to those of a balanced PAKE, while the V-PAKE guarantees are only
maintained for other, yet uncompromised servers, sharing the same password database.

7.3 Computational efficiency for constrained servers
When considering the fully augmented setting all of the protocols in table 1 require four
exponentiations per session for the constrained server. In case of OPAQUE and the fully
augmented AuCPace one of these is a fixed-base point operation and could be pre-computed.
The perceived delay on the HMI interface due to the complex scalar multiplications will
correspond, thus, to only three scalar multiplications in the case of AuCPace and OPAQUE
in contrast to four in the case of VTBPEKE.

It is worth noting, that an important part of the efficiency of OPAQUE could be
attributed to the use of the highly efficient HMQV [Kra05] construction. Unfortunately
HMQV is covered by patents in some important countries. When replacing HMQV with an
alternative AKE not covered by patents, such as, e.g., NAXOS [LLM07], a corresponding
OPAQUE-like construction would likely require five exponentiations. The problem of
HMQV patents has been identified and possibly in the future HMQV might be freely
usable [Kra18] for OPAQUE at least for some applications but, unfortunately, this is
presently still uncertain.

We believe that many applications might be scared away from algorithms using patented
components, not only because of the cost but also when considering complex licensing
agreements and reporting duties.

For important applications in the IIoT setting, we conjecture that adequate security
could be obtained also when implementing partial augmentation. Specifically here we



30 AuCPace: Efficient verifier-based PAKE protocol tailored for the IIoT

consider settings where server compromise involves stealing of hardware and highly invasive
physical attacks likely to destroy hardware.

In the partially augmented setting, AuCPace has a computational complexity of two
exponentiations and provides the most efficient solution among all known verifier-based
PAKE protocols. Attacks on yet un-compromised servers are prevented even if these are
working with the same password verifier W as, e.g., distributed by a centralized database
server.

7.4 Implementation effort
Both, OPAQUE and VTBPEKE require, in contrast to AuCPace, a full group structure
for actual implementation, i.e., both, x and y coordinates of points are necessary and
implementations have to deal with the point compression and point verification issues
(and possibly patent trouble) if they aim at reducing the message and/or password verifier
length.

AuCPace, in contrast could also be implemented by using x-coordinate-only Diffie-
Hellman algorithms such as X25519. This could be used for saving both, code-ROM and
RAM memories and could facilitate secure (e.g., efficient constant-time) implementation.

While beside the elliptic-curve operations AuCPace only requires a cryptographic hash,
the other protocols also all require a symmetric encryption primitive. AuCPace is, thus,
somewhat simpler to implement. This, however, might be only a rather minor advantage
in many settings, since most application based on PAKE protocols might anyway require
symmetric authenticated encryption after successful generation of the session key.

VTBPEKE and constructions based on [GMR06] have the advantage that they could
be implemented without requiring hashing to elliptic curve points. Note that in the light of
intellectual property rights, this could be an advantage, specifically regarding standardized
curves in short-Weierstrass form. For instance for the application in travel documents the
PACE protocol [BFK09] often is implemented in it’s computationally complex "generic
mapping" variant. The reason for this approach, in our opinion, is the fact that this avoids
any need of hashing to curve groups and thus the mere risk of patent conflicts. Note
that regarding patents it is, in our opinion, not the main question whether a method is
actually rightfully covered by a patent or not. In fact already uncertainty and the merely
potential risk of conflicts (and possibly large costs), might often motivate users to select
circumvention techniques.

For VTBPEKE, unlike AuCPace, the server also needs to implement inversions with
respect to the group order, i.e., in addition to the field arithmetic a second set of modulo
reductions needs to be implemented.

AuCPace, thus, allows in comparison to the other candidates for significantly improved
ease-of-implementation. This possibly might reduce the risk of implementation errors.

7.5 Bandwidth and latency aspects
At a first glance, AuCPace requires a comparably large number of communication rounds.
When considering also the initial establishment of the (sub-) session id (ssid) by exchange
of the messages t and s, we come up with a total message count of 5. Without counting
the ssid establishment, the message count amounts to 4 messages only.

Both OPAQUE and VTBPEKE require 3 messages. However in the case of OPAQUE
this does not account for messages required for session id establishment. It is worth noting
that according to our best knowledge and in line with the conclusions from the analysis of
Fischlin, Bender and Kügler [BFK09], the security model of the UC framework assumes
mandatorily that the ssid is fixed prior to initiating the protocol. Specifically, this was
identified as one obstacle preventing security analysis of PACE in an UC context. The
requirement of sid establishment should in fact also apply for other UC-secure constructions



Björn Haase and Benoît Labrique 31

such as OPAQUE and protocols based on [GMR06]. However unlike here the corresponding
message count is not considered in the respective papers. Note that for AuCPace, actually
the first usage of the ssid occurs only when entering the CPace protocol steps.

We believe that the typical use-case of a PAKE protocol is establishment of a secure
(encrypted and authenticated) channel using the session key. In this case, the final two
authenticator messages are optional, just as for OPAQUE, reducing the message count
to 3 and 2 respectively for AuCPace and OPAQUE when disregarding sid establishment.
Note that for both, OPAQUE and AuCPace the two explicit authentication messages are
not mandatory for UC-securely implementing the FapwKE functionality.

In comparison to AuCPace, OPAQUE and VTBPEKE require one and two messages
less, respectively, when considering sid generation. As a result, message latency will add
up a bit more for AuCPace. However, in comparison to OPAQUE and [GMR06], messages
used for AuCPace and VTBPEKE are significantly shorter. Specifically, it is not necessary
to transfer encrypted (and authenticated) versions of public-private key pairs. Note that
this provides an advantage when using the PAKE protocol over a low-bandwidth wireless
link, specifically if very small packets are used on the physical layer, such as in case, e.g.,
for the bluetooth-low-energy standard. Note also, that the shorter messages allow for
reduced buffer sizes and all-over reduced RAM memory requirements.

AuCPace allows for pipelining message transfer and cryptographic calculation, improv-
ing upon user-experienced latency. For instance, the server may interleave transmission of
the last message from the augmentation layer (X,σ, salt) and calculation of the public
point Ya, such that Ya is transmitted later in a separate message. In settings where message
delivery latency is significant and computation is fast, however, the server may choose to
include Ya in the earlier message.

7.6 Intellectual property rights
We believe that pending patents on algorithms and algorithmic substeps might seriously
hamper actual use of a cryptographic protocol. AuCPace was specifically designed for
avoiding all patents known to the authors. We believe that this also applies to VTBPEKE.
The only aspect where we are aware of the potential of conflicts for AuCPace is the
Map2Point substep where efficient algorithms might possibly have to be analyzed in
detail, specifically for curves in short Weierstrass form. For this reason, we will sketch a
circumvention approach in the appendix.

7.7 Registering verifiers
Regarding password verifier registration on the server we identify two main aspects: Size of
the password verifiers on the server and flexibility regarding password-verifier registration
protocols.

AuCPace is characterized by requiring only very little persistent storage for the password
verifiers, i.e., in addition to the user identifiers, the encoding of the user’s authorization
and the salt value (which might require roughly 32 bytes), only one (two) group elements
requiring typically 32 bytes need to be stored for full (partial) augmentation. In total an
amount of 64 (96) bytes suffices. (Possibly further future analysis, e.g. in the BPR model
could reduce the verifier size for partially augmented variants also to 64 bytes.)

Other protocols, specifically [GMR06, JKX18] require significantly longer verifiers. For
instance, OPAQUE requires seven group elements or secret scalars, three of which are
included in an encrypted authenticated structure (typically requiring additional nonce and
MAC fields with, e.g,. 2x16 bytes). Even when considering point compression, this could
easily add up to a total verifier size of > 280 bytes.

Note that the size of password verifiers should not be disregarded. Some microcontrollers
include small amounts (e.g., 1 kByte) of somewhat protected memory (e.g., tamper-



32 AuCPace: Efficient verifier-based PAKE protocol tailored for the IIoT

protected RAM) meant to be used for storing sensitive information such as cryptographic
keys or password-related information. Excessive size of password verifiers might require
additional complexity in the application code or make implementers be tempted to use
unprotected memory also on devices that might be exposed to physical attacks. Note
also that write operations on persistent memory could generate large power consumption
transients.

In our opinion, the fact that AuCPace only needs fairly short password verifiers is
strongly linked to the fact that it is a sequential scheme executing Diffie-Hellman before
the SPEKE-like substep and not in parallel. In schemes using a large amount of parallel
operations, such as for instance SPAKE2+[CKS08] or OPAQUE[JKX18] much more
complex password verifiers have to be used.

Regarding OPAQUE, it is worth to draw attention to a side-effect of the security
property of pre-computation attack resistance. This desirable feature is realized by
executing the complex password hash after finishing the protocol step of the oblivious
pseudo-random function (OPRF). This forces the server as a consequence to maintain
an online connection to the client upon password changes if the server is incapable of
calculating the password hash. First an interaction is required between client and server for
calculating the OPRF which is required as pre-requisite for calculating the computationally
complex PBKDF password hash. In other words, for OPAQUE password registration
requires at least three messages and bi-directional communication. Otherwise we would
have to let the client entity choose the secret server scalar for the OPRF upon password
configuration, which we do not consider ideal from a security perspective (in line with the
suggestion of the authors of [JKX18]).

As a consequence, we believe that for OPAQUE, user credential distribution protocols
based on offline tickets (allowing for only one unidirectional message) might be much
more difficult to implement. Password registration for AuCPace could, in contrast be
implemented more flexibly by one single unidirectional message. This comes, however at
the cost that pre-computation attacks could not be prevented.

8 Implementation on ARM Cortex M0 and M4 microcon-
trollers

One important target platform for resource-constrained (I)IoT devices are 32 bit micro-
controllers, such as the ARM Cortex M0 and Cortex M4 series. We have implemented
AuCPace25519 in its partially augmented variant on nRF51 and nRF52 microcontrollers
from the company Nordic Semiconductors and three different microcontrollers from the
manufacturer ST Microelectronics.

In this section we first describe the high-level strategy for implementing the X25519
Diffie-Hellman protocol and Elligator2. The method that we employ for Elligator2 has
already been presented in [BDL+11, BHKL13], but we considered it helpful to write it
down explicitly here, because we were aware of it only after having received a corresponding
hint [Ham17]. Subsequently, we will elaborate on our strategy for implementing the field
arithmetic.

8.1 Implementation of X25519
AuCPace25519 uses X25519 for generating the password verifier and the session key sk1.
We make use of the constant-time Montgomery ladder algorithm from [DHH+15]. Both
fixed-point and variable-point scalar multiplication require 1287 field multiplications and
1274 field squarings. We did implement two variants. Firstly for the sake of comparison with
related work, we implemented a synchronous version of the X25519 function. Secondly, we
implemented a second, asynchronous version of X25519. For the latter we implemented an



Björn Haase and Benoît Labrique 33

asynchronous cryptographic engine (ACE) object that stores the intermediate state of the
scalar multiplication. This allows our implementation to suspend and resume calculations
after each ladder step in case that the power budget requires the microcontroller to enter
a sleep mode.

We came to the conclusion, in line with findings from [Ham12], that the constant-time
Montgomery ladder is, most probably the most efficient known algorithmic choice available
for Diffie-Hellman on Curve25519, if we aim at avoiding memory consuming pre-computed
tables.

8.2 Implementation of Elligator2
In order to remain consistent with the notation used in [BHKL13] we denote the Legendre
symbol that records quadratic residuosity of a mod q (with q being an odd prime number)
with χ:

χ(a) ,
(
a

q

)
≡ a

q−1
2 (1)

Remember that the Elligator2’s decoding function for a Weierstrass curve E : y2 =
x3 + Ax2 + Bx is the function ψ : R → E(Fq) defined as follows: ψ(0) = (0, 0); if r 6= 0
then ψ(r) = (x, y) (see [BHKL13]). For a set R defined as

R , {r ∈ Fq : 1 + ur2 6= 0, A2ur2 6= B(1 + ur2)2} (2)

the following elements of Fq are defined (we use only x coordinates):

v = −A
1 + ur2 (3)

ε = χ(v3 +Av2 +Bv) (4)

x = εv − (1− ε)A2 (5)

In case of Curve25519, q = 2255 − 19, A = 486662 and B = 1. Also u = 2 is taken. If
we would calculate x directly, we would need two exponentiations, one for the inversion
(3) and one for the Legendre symbol χ (4). In fact computing a single exponentiation is
enough, when using the inverse square root algorithm from [BDL+11, BHKL13]. When
substituting v in v3 +Av2 +Bv one obtains, in a projective representation, the fraction

a

b
,
A3ur2 +AB(1 + ur2)2

(1 + ur2)3 (6)

As a property of the Legendre symbol we have:

χ(a
b

) = χ(ab) (7)

since χ(ab ) ≡ a
q−1

2 b
−(q−1)

2 ≡ a
q−1

2 b
q−1

2 ≡ χ(ab) with 1 ≡ aq−1 (mod q) (Fermat’s little
theorem). Now let’s define

c , ab (8)
d , 1 + ur2 (9)

s , (cd2)
q−3

2 (10)

We have s2cd2 = (cd2)q−2 = 1
cd2 using Fermat’s little theorem again. So the inverse is

given by:
1
d

= s2cd2cd (11)



34 AuCPace: Efficient verifier-based PAKE protocol tailored for the IIoT

iff c 6= 0 and d 6= 0. If c = 0, then the point is (0, 0) or ∞. If d = 0 the point is ∞ and we
return 0 in either case. On the other hand it could be written scd2 = (cd2)

q−1
2 ≡ χ(cd2).

Furthermore it holds that by definition of the Legendre symbol:

χ(ab) = χ(a)χ(b) (12)

and

χ(d2) = 1 (13)

unless d = 0. So

scd2 ≡ χ(cd2) = χ(c) = χ(ab) = χ(a
b

) (14)

By placing (14) into (11) we get

1
d

= χ(a
b

)scd (15)

This means that the Legendre symbol and the inverse (and finally Elligator2) was calculated
by means of a single exponentiation (10). In case of Elligator2 for Curve25519 the algorithm
requires a total of 254 field squarings and 23 field multiplications.

8.3 Implementation of the field arithmetic
The implementations for Cortex M0 and M4 share all of the group arithmetic and high-
level algorithms but rely on separate field arithmetic for addition, subtraction, negation,
multiplication and squaring.

Our implementation for the Cortex M0 uses the same highly optimized field arithmetic
as in [DHH+15, HL17]. Here register pressure and the limited capability of the multiplier
engine providing only 32 bits of a result make it beneficial to employ three cascaded
Karatsuba stages. The implementation for the Cortex M4 makes use of a new, yet
unpublished optimized implementation. Just as for the M0, we use a packed radix 32
representation. Throughout the implementation we reduce field elements modulo 2256− 38.

Our implementation on the M4 uses the much more powerful UMLAL and UMAAL instruc-
tions allowing for simultaneously multiplying two 32 bit words and accumulating up to two
32 bit words. Due to the significant advantage of using several stages of Karatsuba multi-
plication for the M0, we have implemented several variants of Karatsuba multiplication
also for the Cortex M4. Experiments, however, have shown that here the reduced register
pressure (the "upper" registers R8 . . . R12 and R14 may be used without restrictions)
in addition to the fact that accumulation comes essentially for free made schoolbook
multiplication faster when register-allocation is carefully tuned. Based on our experiments,
we presume that for carefully optimized code on the M4, Karatsuba techniques might
become beneficial again for integer sizes above 512 bits.

In order to optimize the register allocation, we have generated the assembly sources
by a code generator handling register allocation and spill register storage on the stack.
For the accumulation of intermediate results during the multiplication we also make
use of the UMLAL and UMAAL instructions. Note that when one register with the value
1 is available, UMAAL allows for implementing three 32 bit additions in one single cycle
(r := a+ b+ 1 ∗ c) yielding a 64 bit result. For subtraction (and for squaring), we made
use of a specific architectural property of the M4 architecture. There two distinct ways
of handling addition carries are possible. In addition to the UMAAL -based method above,
flag-based add and add-with-carry (ADDS, ADCS) and subtract-with-borrow (SUBS, SBCS)
instructions are available. The multiplication instructions are specified not to modify the



Björn Haase and Benoît Labrique 35

Table 2: Sequence of executing the 64 partial products of words Ai×Bj used for schoolbook
multiplication of 256 bit operands.

A0 A1 A2 A3 A4 A5 A6 A7
B0 1 5 10 15 20 25 28 48
B1 0 6 11 16 21 26 29 31
B2 2 7 12 17 22 27 30 32
B3 3 8 13 18 23 49 50 51
B4 4 9 14 19 24 52 53 54
B5 33 36 39 42 45 55 56 57
B6 34 37 40 43 46 58 59 60
B7 35 38 41 44 47 61 62 63

addition/subtraction carry flag. We did use this for merging reduction with subtraction
of field elements. We first accumulate both the value to subtract and a multiple of the
prime (that stems from reduction) by using multiply-accumulate instructions. Then we
use subtract with borrow to simultaneously subtract both results. Note that this will
result in remarkable speed differences between addition and subtraction. Addition could
be implemented very efficiently by using the powerful multiplication engine. Subtraction
is somewhat slower because SUBS and SBCS have to be used.

For addition and subtraction, we did use the powerful inline assembly capabilities of
both, GCC and CLANG, that allowed us to avoid a significant amount of call overhead.
In order to avoid operand fetches and stores wherever possible, we also made use of an
inline assembly function that merges addition of a first operand with the curve-constant’s
multiple of a second operand (r := a + b ∗ 121666). Addition and subtraction of field
elements follows the strategy from [DHH+15] by first processing the most significant word
and then merging reduction of the two most significant bits and addition(subtraction)
operation for the remaining seven words. We make use of the available carry bit 255 to
obtain an implementation with only one single carry chain.

One additional optimization strategy was to bundle load and store operations together
as much as possible in blocks. This way the pipeline latency on the M4 could be reduced.
Isolated load and store operations account for two clock cycles each, while a sequence of n
such operations only accounts for n+ 1 cycles.

8.3.1 Field multiplication for ARM Cortex M4

Table 2 depicts the sequence (0 . . . 63) in which each of the 64 partial products of the
schoolbook multiplication of the input operand words A0 . . . A7 and B0 . . . B7 is executed.
Our optimization of the multiplication strategy does not seem to follow a regular pattern
at first sight.

We use this sequence several reasons. Firstly, we observed that keeping as many input
operands in registers as possible is equally important as avoiding stack spills of intermediate
multiplication results. Secondly, it is worth noting that a multiplication actually costs
fewer instructions if two intermediate results are to be accumulated at the same time. If
only one intermediate result is to be accumulated, a MULAL instruction has to be used,
which typically requires clearing of a scratch register (+1 instruction).

Basically four subblocks may be distinguished. Initially input operands B0 to B4 are
cached in registers and multiplied one after the other with input operands A0 to A4. In the
process of multiplication increasingly more registers were required for holding intermediate
multiplication results. Completed result words that had been fully accumulated were
spilled on the stack in order to free registers for more temporary results. Still starting with



36 AuCPace: Efficient verifier-based PAKE protocol tailored for the IIoT

Table 3: Sequence of executing the partial product words Ai × Aj used for schoolbook
squaring of 256 bit operands .

A0 A1 A2 A3 A4 A5 A6 A7
A0 1 2
A1 0 3
A2 5 6 15
A3 4 11 12 19
A4 8 9 16 23 32
A5 7 13 20 24 27 34
A6 10 17 21 25 28 30 35
A7 14 18 22 26 29 31 33 36

the multiplication with input A5, the input operand registers B3 and B4 were required as
scratch registers for storing temporaries (multiplication steps 25 to 32). Ultimately also
B0 had to be discarded. Then, in order to complete words 5 to 6 of the multiplication
results (for freeing completed result words by writes to the stack), multiplication of input
operands B5 to B7 with A0 to A4 is performed (33 to 47). Subsequently the multiplication
result word 7 could be completed after the multiplication of A7 and B0 (Step 48). Finally
the multiplications of input words A6 to A7 with B3 to B7 is calculated. Here the values
A5 to A7 were cached in registers.

During the multiplication only 8 register spills were necessary for storing the lower-most
result words temporarily on the stack. After multiplication the upper 8 result words of
the 512 bit multiplication result were reduced within the register set before storing the
reduced result back to memory.

8.3.2 Field squaring for ARM Cortex M4

For squarings we again make use of a special property of the Cortex-M4 instruction set which
allows for two different types of carry chain. Either the ADDS and ADCS instructions may
be employed (storing the carry bit in the status register) or UMLAL and UMAAL instructions
(which do not modify the carry bit). The latter instructions store carries in full registers.
We make use of this by using addition instructions for doubling the off-diagonal parts
(with the exception of the product term A1*A0), while we make use of integrated multiply-
accumulate operations everywhere else.

In comparison to multiplication, we were able to hold more input operands in registers.
The following table depicts the sequence (0..36) in which the partial products were
calculated.

Throughout the calculation we distinguish between off-diagonal multiplication results
(which require subsequent doubling) and diagonal multiplication results which were ac-
cumulated by use of multiplication instructions. Just as for multiplication, squaring is
merged with reduction. This way only 5 register spills to the stack were required for
storing intermediate multiplication results.

8.4 Implementation of the hash functions
For the calculation of SHA512 we use the optimized assembly code for the Cortex M0
architecture on both targets. This code fully unrolls the inner loop of the add-rotate-xor
algorithm. We also make use of the special instructions for endianness-change. For the
Cortex M4, some further speedup would be possible, when exploiting the availability of



Björn Haase and Benoît Labrique 37

the "upper" registers. We did, however, stick with the more compact Cortex M0 code also
because hashing was not the performance bottle neck.

9 Experimental results
In the following sections we will report on experimental results obtained from several
different microcontroller targets, nRF51822, nRF52832, STM32F407, STM32F411 and
STM32L476. We decided to include figures for all of these instead of selecting one particular
chipset since in the course of our analysis, we observed that for the Cortex M4 architecture
a major difficulty arises regarding speed benchmarking. Unlike for smaller architectures
we observed that the highly target-specific performance of the flash memory subsystem
plays a major role for the actual speed.

We did observe the most remarkable effect for the microcontroller STM32L476 targeting
specifically ultra-low-power applications. Note that for ultra-low-power operation a suitable
compromise between increased microcontroller speed and increased power consumption
due to speculative flash accesses has to be found. We attribute our finding that the cycle
counts for the analyzed primitives (depending on the power-consumption configuration)
could increase by almost 40% when increasing the clock frequency from 16 MHz to 80
MHz mainly to such type of optimization. Obviously this makes fair speed benchmarking
very difficult.

For the high-performance-family devices STM32F411 and STM32F407 from the same
manufacturer, we observed that the influence of the clock frequency on performance is still
present, but much smaller. Specifically for the STM32F411 almost no speed reduction was
observed also at its highest clock frequency. In addition to flash timing issues, it is worth
noting that for the STM32F407 device we observed some further dependence on the RAM
memory configuration. This device disposes of so-called core-coupled memory (CCM). The
timings reported here were obtained when placing the execution stack to CCM. Speed
figures were observed to be significantly faster than when placing the stack in conventional
RAM region.

As a result, we conclude that for speed benchmarking for cryptography implementations
it is best to compare results obtained at lower clock frequencies. According to our results
then some variations between different microcontroller suppliers still do exist, however
the resulting values are at least of the same order of magnitude. We suggest, that the
STM32F411 as a typical medium-size implementation for IIoT applications might be well
suited as kind of reference platform for speed benchmarking.

9.1 Field arithmetic
In table 4 the speed results for the field arithmetic are summarized. Despite the mentioned
difficulties regarding benchmarking, we come to the conclusion that our field arithmetic
is significantly more efficient than the previously best published results on the Cortex
M4 microcontroller in [FA17], specifically regarding multiplication and squaring of field
elements.

The speedup obtained for the field arithmetic in comparison to reports from Aranha
and Fujii in [FA17] in our opinion might stem from the following differences. Firstly
for multiplication and squaring we did merge multiplication and squaring functions with
reductions. This allowed us to hold more operands in registers. Secondly with the realized
level of optimization regarding multiplication and squaring, the performance of addition
and subtraction within the X25519 calculations starts becoming important as well. For
these simpler operations call overhead becomes significant and use of inline assembly
functions highly beneficial.



38 AuCPace: Efficient verifier-based PAKE protocol tailored for the IIoT

Table 4: Field arithmetic on different targets at different frequencies f (/MHz). Columns
∗A0 (+ ∗A0) contain clock cycles for multiplication with the field constant A0 = 121666
and merged addition and multiplication x + y ∗ A0. Cycle count for the nRF51 target
was obtained with the CLANG compiler with compile switch -O2 while for the ST
Microelectronics microcontroller we did use GCC 4.9.2 with optimization setting -O2.

Target f x+ y x− y ∗A0 + ∗A0 x2 x ∗ y
nRF51822 16 120 147 193 - 998 1478 F(2255−19), this work
STM32F411 ? 73 77 129 - 563 631 F(2255−19), [DSS16]
MK20DX 72 86 86 76 - 252 276 F(2255−19), [FA17]
STM32F411 16 55 72 - 58 153 222 F(2255−19), this work
STM32L476 16 52 65 - 55 153 220 F(2255−19), this work
STM32L476 80 95 124 - 95 168 237 F(2255−19), this work
nRF52832 64 62 70 - 65 162 229 F(2255−19), this work
STM32F407 84 56 74 56 155 223 F(2255−19), this work
STM32F407 84 86 - - - 215 358 F(2127−1)2 [LLP+17]

For the purpose of comparison, we also did add timings for the field F(2127−1)2 as
used in the construction FourQ in [CL15, LLP+17]. Note that our timings for F(2255−19)
are significantly faster despite the fact that the group order is comparable. As a result,
we expect that a large fraction of the algorithmic speedup that is made possible by the
endomorphisms of FourQ is lost by less efficient field arithmetic in [LLP+17]. Note, that the
most relevant figure for the speed of Diffie-Hellman on FourQ is field multiplication, where
the difference to our results is particularly large. We have reviewed the field operations in
[LLP+17] and believe that significant further speedups should be possible also for FourQ.
For field multiplication, for instance, we believe that a speedup in the range of 25 percent
might be feasible in comparison to [LLP+17] when using the methods described in this
paper.

9.2 X25519 Diffie-Hellman
In table 5 we summarize the results for the X25519 function for different microcontrollers
and different clock frequencies. Our fastest result for X25519 on the M4 executes in as
little as 609.779 cycles and is, thus, roughly 3 and 2.5 times faster than the reports in
[dG15] (1816351) and [DSS16] (1563852) respectively and also significantly faster than the
previously fastest result (907.240 cycles) from [FA17]. It is worth noting that in contrast
to [FA17] we did use (in line with [HL17]) constant-time swaps of pointers instead of
swapping full field elements. Note that for internal memories of Cortex M4 and M0 access
timing is deterministic. When swapping pointers we expect both, more speed and less
side-channel leakage. Note however, that our implementation requires (unlike [FA17]) to
be run with using internal RAM memory with constant access times. Our implementation
optionally also allows for swapping field elements instead of pointers. According to our
own measurements the penalty of doing so accounts roughly for additional 50.000 clock
cycles.

Again we also have added speed benchmarks for FourQ from [LLP+17] for reference.
Note that comparing of the fundamentally different algorithms X25519 and Diffie-Hellman
on FourQ is difficult. For instance, when using the endomorphisms in FourQ quite
large tables in RAM are required (required stack size is unfortunately not reported in
[LLP+17]). Also note that the code size is about a factor of three larger than for our
X25519 implementation. Despite the fact that our X25519 implementation (ca. 625,500



Björn Haase and Benoît Labrique 39

Table 5: Speed of X25519 scalar multiplication (FourQ) (on different targets, clock and
memory configurations). The timings marked with (p) were obtained with enabled flash
pre-fetch engines which increase current consumption.

Target f / MHz X25519
nRF51822 16 3,474,201 this work
STM32F411 ? 1,816,351 [dG15]
STM32F411 ? 1,563,852 [DSS16]
MK20DX 72 907,240 [FA17]
STM32L476 16; 80(p); 80 609,779; 857,002; 971,272 this work
nRF52832 64 634,567 this work
STM32F411 16; 100(p); 100 625,347; 625,449; 734,554 this work
STM32F407 16; 84(p); 168(p); 168 625,358; 626,719; 655,891; 847,048 this work
STM32F407 84(p) 542,900 (FourQ) [LLP+17]

Table 6: Cycle counts for the nRF51822 Cortex M0 (STM32F411 Cortex M4) microcon-
trollers running at 16 MHz for SHA512, Elligator2, a X25519 Montgomery ladder step
(LS), Inversion (1/x) and a complete partially augmented AuCPace protocol run.

Target SHA512 Elligator2 LS 1/x AuCPace
nRF51822 21,564 289,276 13,521 258,291 7,345,820

STM32F411 21,130 46,032 3,163 42,590 1,351,381

cycles) is much more adapted to small targets, our observed speed is very competitive in
comparison to the reported result for Diffie-Hellman on FourQ (542,900 cycles including
point decompression).

9.3 Partially augmented AuCPace25519
We have implemented AuCPace by using an asynchronous execution engine as suggested
in [HL17]. Table 6 summarizes the speed results for individual substeps for the Cortex M0
(nRF51822) and different Cortex M4 microcontrollers.

We observed a speedup of roughly a factor of two in comparison to the results of
[HL17] regarding the Elligator2 substep. In [HL17] the Elligator2 mapping algorithm
was calculated by use of two separate exponentiations for inversion and calculation of
the Legendre symbol χ. In our work, we make use of the inverse square root algorithm
for calculating Elligator2 with one single field exponentiation. In total this accounts for
roughly 4 percent of a speedup regarding the balanced PACE (CPace) protocol runs on
the Cortex M0.

Our results for the Cortex-M4 microcontroller family are faster by a factor of 5.4 in
comparison to the Cortex M0, showing that this microcontroller architecture with its signal-
processing instructions is by far better suited and likely also much more power-efficient for
implementing complex asymmetric cryptography.

In table 7 the memory consumptions for the asynchronous execution object ACE
from [HL17] and the stand-alone algorithm X25519 are summarized. The figures for the
ACE object also include a Salsa20-20 based pseudo-random-number generator and the
implementation for SHA512. For the Cortex M4 version, the total RAM requirement
amounts to 532 bytes including static memory and stack. The stand-alone synchronous
X25519 implementation (no state in static memory) for the Cortex M4 needs 444 bytes of
stack memory and 3,324 bytes of flash and improves, thus, upon previous work [DSS16,



40 AuCPace: Efficient verifier-based PAKE protocol tailored for the IIoT

Table 7: Memory consumption in bytes for asynchronized implementation of AuCPace
(ACE) and X25519 for Cortex M0 and M4 microcontrollers. Results were obtained with
arm-none-eabi-gcc -O2 (gcc version 4.9.3). RAM consumption is separated in static memory
(stack memory) respectively.

Target RAM ROM RAM ROM
Target ACE ACE X25519 X25519
Cortex-M0 264 (396) 11252 0 (572) 6108 this work
Cortex-M4 264 (268) 8896 0 (444) 3324 this work
Cortex-M4 4152 [FA17]
Cortex-M4 3786 [DSS16]

FA17].
All of our code avoids secret-dependent branches and is, thus, executing in constant

time on target-platforms with deterministic RAM memory access timings, such as typically
found in ARM Cortex M0 and M4 microcontrollers.

10 Discussion and conclusion
In this paper we have presented a comprehensive analysis regarding possible optimiza-
tions for verifier-based password-authenticated key exchange for the setting of resource-
constrained servers. Our analysis did cover all of protocol design, protocol security proof,
algorithmic optimization regarding group operations and field arithmetic and assembly-level
fine-tunings.

Our construction allows for particular advantages in IIoT settings where a large number
of small server nodes should be expected to operate with the same passwords, such as, e.g.,
the case in industrial plants. In addition to the conventional notion of verifier-based PAKE,
our construction also allows for a partial augmentation operation mode that essentially
halves the server’s computational complexity of the password verification step.

Our construction with full augmentation imposes a complexity of four exponentiations
in total on the server, one of which could be pre-computed prior to each login. The
user-perceived login delay, thus is governed by the time consumed for calculating three
scalar multiplications.

Our construction is two exponentiations faster for the server than all previously known
verifier-based PAKE constructions when instantiated in its partially augmented variant. In
the setting of [HL17] where one scalar multiplication accounts for about two seconds this
results in a clearly perceivable usability gain in comparison to previously known protocols
requiring at least three scalar multiplications.

Moreover our construction inherently allows for using strong memory-hard password
hashing also on small servers since the costly memory-consuming operations are deferred
to the clients.

The composability of the AuCPace security guarantees facilitates security analysis for
use of AuCPace, e.g., as a building block in larger constructions, such as a centralized
ticket-based user-credential distribution framework for industrial plants.

In contrast to most previous Diffie-Hellman based V-PAKE constructions with anal-
ysis in the UC framework, our security proof provides guarantees also in the stronger
fully adaptive adversary model which allows for corruptions at any time during session
establishment.

Finally, we have presented performance benchmarks of an instantiation targeting
common microcontroller platforms coined AuCPace25519 which instantiates our protocol



Björn Haase and Benoît Labrique 41

with using the primitives X25519, Elligator2 and SHA512.
The protocol runs in only 1,351,381 (7,345,820) cycles for a partially augmented protocol

run on an ARM Cortex-M4 (M0) microcontroller respectively. On the M4 AuCPace requires
only 8896 (532) bytes of flash (RAM) memory. There the X25519 Diffie-Hellman protocol
sub-step executes in as little as 609,779 cycles. Our implementation, thus, sets up new
speed records for both, (V)-PAKE protocols and X25519 Diffie-Hellman key exchange
on this important embedded CPU architecture platform. This illustrates also that on
the Cortex M4 X25519 could be implemented very competitively, even in comparison to
the best currently published implementations that exploit additional structure in elliptic
curves, such as endomorphisms.

Summing up, we believe that all of the individual components presented in this paper
in combination might yield a solution particularly tailored for the needs of real-world
resource-constrained IIoT environments, such as notably intrinsically safe power limited
industrial instrumentation.

11 Acknowledgements
The authors would like to thank the anonymous referees for their helpful comments and
advice and their great care with the manuscript. We also acknowledge inspiring discussions
with Daniel Rausch, Ralf Küsters, Denis Kügler, Marc Fischlin, Mike Hamburg and Peter
Schwabe.

References
[ACCP08] Michel Abdalla, Dario Catalano, Céline Chevalier, and David Pointcheval.

Efficient two-party password-based key exchange protocols in the UC framework.
In Topics in Cryptology - CT-RSA 2008, The Cryptographers’ Track at the
RSA Conference 2008, San Francisco, CA, USA, April 8-11, 2008. Proceedings,
pages 335–351. 2008. 9, 16

[AFP05] Michel Abdalla, Pierre-Alain Fouque, and David Pointcheval. Password-based
authenticated key exchange in the three-party setting. In Serge Vaudenay,
editor, Public Key Cryptography - PKC 2005, 8th International Workshop on
Theory and Practice in Public Key Cryptography, Les Diablerets, Switzerland,
January 23-26, 2005, Proceedings, volume 3386 of Lecture Notes in Computer
Science, pages 65–84. Springer, 2005. 7

[AP05] Michel Abdalla and David Pointcheval. Simple password-based encrypted key
exchange protocols. In Alfred Menezes, editor, Topics in Cryptology - CT-RSA
2005, The Cryptographers’ Track at the RSA Conference 2005, San Francisco,
CA, USA, February 14-18, 2005, Proceedings, volume 3376 of Lecture Notes in
Computer Science, pages 191–208. Springer, 2005. 8

[BDKJ16] Alex Biryukov, Daniel Dinu, Dmitry Khovratovich, and Simon Josefsson. The
memory-hard argon2 password hash and proof-of-work function. Technical
report, Internet-Draft draft-irtf-cfrg-argon2-00, Internet Engineering Task Force,
2016. Work in Progress, 2016. 3

[BDL+11] Daniel J. Bernstein, Niels Duif, Tanja Lange, Peter Schwabe, and Bo-Yin
Yang. High-speed high-security signatures. In Bart Preneel and Tsuyoshi
Takagi, editors, Cryptographic Hardware and Embedded Systems - CHES 2011
- 13th International Workshop, Nara, Japan, September 28 - October 1, 2011.



42 AuCPace: Efficient verifier-based PAKE protocol tailored for the IIoT

Proceedings, volume 6917 of Lecture Notes in Computer Science, pages 124–142.
Springer, 2011. 32, 33

[Ber06] Daniel J. Bernstein. Curve25519: new Diffie-Hellman speed records. In Moti
Yung, Yevgeniy Dodis, Aggelos Kiayias, and Tal Malkin, editors, Public Key
Cryptography – PKC 2006, volume 3958 of Lecture Notes in Computer Science,
pages 207–228. Springer-Verlag Berlin Heidelberg, 2006. http://cr.yp.to/
papers.html#curve25519. 10

[Ber14] Daniel J. Bernstein. 25519 naming. Posting to the CFRG mailing list,
2014. https://www.ietf.org/mail-archive/web/cfrg/current/msg04996.
html. 10

[BFK09] Jens Bender, Marc Fischlin, and Dennis Kügler. Security analysis of the
PACE key-agreement protocol. In Pierangela Samarati, Moti Yung, Fabio
Martinelli, and Claudio Agostino Ardagna, editors, Information Security,
12th International Conference, ISC 2009, Pisa, Italy, September 7-9, 2009.
Proceedings, volume 5735 of Lecture Notes in Computer Science, pages 33–48.
Springer, 2009. 3, 5, 6, 8, 17, 20, 30, 47

[BHKL13] Daniel J. Bernstein, Mike Hamburg, Anna Krasnova, and Tanja Lange. Elliga-
tor: elliptic-curve points indistinguishable from uniform random strings. In
Ahmad-Reza Sadeghi, Virgil D. Gligor, and Moti Yung, editors, 2013 ACM
SIGSAC Conference on Computer and Communications Security, CCS’13,
Berlin, Germany, November 4-8, 2013, pages 967–980. ACM, 2013. 11, 17, 32,
33

[BL19] Daniel J. Bernstein and Tanja Lange. SafeCurves: Choosing safe curves for
elliptic-curve cryptography. Definition of Twist security. (accessed on 15 January
2019), 2019. https://safecurves.cr.yp.to/twist.html. 5

[BLR04] Boaz Barak, Yehuda Lindell, and Tal Rabin. Protocol initialization for the
framework of universal composability. Cryptology ePrint Archive, Report
2004/006, 2004. https://eprint.iacr.org/2004/006. 12

[BM92] Steven M. Bellovin and Michael Merritt. Encrypted key exchange: password-
based protocols secure against dictionary attacks. In 1992 IEEE Computer
Society Symposium on Research in Security and Privacy, Oakland, CA, USA,
May 4-6, 1992, pages 72–84. IEEE Computer Society, 1992. 3, 6

[BMP00] Victor Boyko, Philip D. MacKenzie, and Sarvar Patel. Provably secure password-
authenticated key exchange using diffie-hellman. In Preneel [Pre00], pages
156–171. 3, 8

[BPR00] Mihir Bellare, David Pointcheval, and Phillip Rogaway. Authenticated key
exchange secure against dictionary attacks. In Preneel [Pre00], pages 139–155.
7

[BRSS18] José Becerra, Peter Y. A. Ryan, Petra Sala, and Marjan Skrobot. An offline
dictionary attack against zkpake protocol. In Proceedings of the 11th ACM
Conference on Security & Privacy in Wireless and Mobile Networks, WiSec
2018, Stockholm, Sweden, June 18-20, 2018, pages 291–292, 2018. 6

[Can00] Ran Canetti. Universally composable security: A new paradigm for crypto-
graphic protocols. IACR Cryptology ePrint Archive, 2000:67, 2000. 8, 9

http://cr.yp.to/papers.html#curve25519
http://cr.yp.to/papers.html#curve25519
https://www.ietf.org/mail-archive/web/cfrg/current/msg04996.html
https://www.ietf.org/mail-archive/web/cfrg/current/msg04996.html
https://safecurves.cr.yp.to/twist.html
https://eprint.iacr.org/2004/006


Björn Haase and Benoît Labrique 43

[Can01] Ran Canetti. Universally composable security: A new paradigm for crypto-
graphic protocols. In 42nd Annual Symposium on Foundations of Computer
Science, FOCS 2001, 14-17 October 2001, Las Vegas, Nevada, USA, pages
136–145. IEEE Computer Society, 2001. 7, 9

[CGIP12] Jean-Sébastien Coron, Aline Gouget, Thomas Icart, and Pascal Paillier. Sup-
plemental access control (PACE v2): Security analysis of PACE integrated
mapping. In David Naccache, editor, Cryptography and Security: From Theory
to Applications - Essays Dedicated to Jean-Jacques Quisquater on the Occasion
of His 65th Birthday, volume 6805 of Lecture Notes in Computer Science, pages
207–232. Springer, 2012. 8

[CHK+05] Ran Canetti, Shai Halevi, Jonathan Katz, Yehuda Lindell, and Philip D.
MacKenzie. Universally composable password-based key exchange. In Advances
in Cryptology - EUROCRYPT 2005, 24th Annual International Conference on
the Theory and Applications of Cryptographic Techniques, Aarhus, Denmark,
May 22-26, 2005, Proceedings, pages 404–421, 2005. 3, 7, 9, 12, 15, 16

[CKS08] David Cash, Eike Kiltz, and Victor Shoup. The twin diffie-hellman problem and
applications. In Nigel P. Smart, editor, Advances in Cryptology - EUROCRYPT
2008, 27th Annual International Conference on the Theory and Applications
of Cryptographic Techniques, Istanbul, Turkey, April 13-17, 2008. Proceedings,
volume 4965 of Lecture Notes in Computer Science, pages 127–145. Springer,
2008. 28, 32

[CL15] Craig Costello and Patrick Longa. Fourq: Four-dimensional decompositions on
a q-curve over the mersenne prime. In Tetsu Iwata and Jung Hee Cheon, editors,
Advances in Cryptology - ASIACRYPT 2015 - 21st International Conference on
the Theory and Application of Cryptology and Information Security, Auckland,
New Zealand, November 29 - December 3, 2015, Proceedings, Part I, volume
9452 of Lecture Notes in Computer Science, pages 214–235. Springer, 2015. 38

[CR03] Ran Canetti and Tal Rabin. Universal composition with joint state. In
Dan Boneh, editor, Advances in Cryptology - CRYPTO 2003, 23rd Annual
International Cryptology Conference, Santa Barbara, California, USA, August
17-21, 2003, Proceedings, volume 2729 of Lecture Notes in Computer Science,
pages 265–281. Springer, 2003. 5, 7, 9

[dG15] Wouter de Groot. A Performance Study of X25519 on Cortex-M3 and M4.
PhD thesis, Master thesis, Eindhoven University of Technology (Sep 2015),
2015. 38, 39

[DHH+15] Michael Düll, Björn Haase, Gesine Hinterwälder, Michael Hutter, Christof Paar,
Ana Helena Sánchez, and Peter Schwabe. High-speed curve25519 on 8-bit,
16-bit, and 32-bit microcontrollers. Des. Codes Cryptography, 77(2-3):493–514,
2015. 32, 34, 35

[DSS16] Fabrizio De Santis and Georg Sigl. Towards side-channel protected X25519
on ARM Cortex-M4 processors. In Proceedings of Software performance en-
hancement for encryption and decryption, and benchmarking, Utrecht, The
Netherlands., 2016. 38, 39, 40

[EKSS09] John Engler, Chris Karlof, Elaine Shi, and Dawn Song. Is it too late for PAKE?
In Proceedings of the IEEE Web 2.0 Security and Privacy Workshop, volume 5,
page 17, 2009. 6



44 AuCPace: Efficient verifier-based PAKE protocol tailored for the IIoT

[FA17] Hayato Fujii and Diego F Aranha. Curve25519 for the Cortex-M4 and beyond.
Progress in Cryptology-LATINCRYPT, 2017. 37, 38, 39, 40

[GMR06] Craig Gentry, Philip D. MacKenzie, and Zulfikar Ramzan. A method for making
password-based key exchange resilient to server compromise. In Cynthia Dwork,
editor, Advances in Cryptology - CRYPTO 2006, 26th Annual International
Cryptology Conference, Santa Barbara, California, USA, August 20-24, 2006,
Proceedings, volume 4117 of Lecture Notes in Computer Science, pages 142–159.
Springer, 2006. 3, 5, 9, 10, 21, 22, 28, 30, 31, 47

[Gre18] Matthew Green. Let’s talk about PAKE, 2018. https://blog.
cryptographyengineering.com/2018/10/19/lets-talk-about-pake/. 3

[Ham12] Mike Hamburg. Fast and compact elliptic-curve cryptography. IACR Cryptology
ePrint Archive, 2012:309, 2012. 33

[Ham17] Mike Hamburg. ISR trick for elligator2. Posting to the Curves mailing list, 2017.
https://moderncrypto.org/mail-archive/curves/2017/000939.html. 32

[HL17] Björn Haase and Benoît Labrique. Making password authenticated key exchange
suitable for resource-constrained industrial control devices. In Wieland Fischer
and Naofumi Homma, editors, Cryptographic Hardware and Embedded Systems
- CHES 2017 - 19th International Conference, Taipei, Taiwan, September 25-28,
2017, Proceedings, volume 10529 of Lecture Notes in Computer Science, pages
346–364. Springer, 2017. 2, 4, 5, 6, 10, 34, 38, 39, 40, 48

[HL18] Björn Haase and Benoît Labrique. Repository for optimized X25519 field
arithmetics code for ARM cortex M4 microcontrollers, 2018. https://github.
com/BjoernMHaase/fe25519. 6

[HR10] Feng Hao and Peter Ryan. J-PAKE: authenticated key exchange without PKI.
Trans. Computational Science, 11:192–206, 2010. 6

[HS14] Feng Hao and Siamak Fayyaz Shahandashti. The SPEKE protocol revisited. In
Liqun Chen and Chris J. Mitchell, editors, Security Standardisation Research -
First International Conference, SSR 2014, London, UK, December 16-17, 2014.
Proceedings, volume 8893 of Lecture Notes in Computer Science, pages 26–38.
Springer, 2014. 7

[Jab96] David P. Jablon. Strong password-only authenticated key exchange. Computer
Communication Review, 26(5):5–26, 1996. 3, 5, 6, 7

[Jab97] David P. Jablon. Extended password key exchange protocols immune to
dictionary attacks. In 6th Workshop on Enabling Technologies (WET-ICE ’97),
Infrastructure for Collaborative Enterprises, 18-20 June 1997, MIT, Cambridge,
MA, USA, Proceedings, pages 248–255, 1997. 3, 8

[JKX18] Stanislaw Jarecki, Hugo Krawczyk, and Jiayu Xu. OPAQUE: an asymmetric
PAKE protocol secure against pre-computation attacks. In Jesper Buus Nielsen
and Vincent Rijmen, editors, Advances in Cryptology - EUROCRYPT 2018
- 37th Annual International Conference on the Theory and Applications of
Cryptographic Techniques, Tel Aviv, Israel, April 29 - May 3, 2018 Proceedings,
Part III, volume 10822 of Lecture Notes in Computer Science, pages 456–486.
Springer, 2018. 2, 4, 7, 12, 21, 28, 31, 32, 47

https://blog.cryptographyengineering.com/2018/10/19/lets-talk-about-pake/
https://blog.cryptographyengineering.com/2018/10/19/lets-talk-about-pake/
https://moderncrypto.org/mail-archive/curves/2017/000939.html
https://github.com/BjoernMHaase/fe25519
https://github.com/BjoernMHaase/fe25519


Björn Haase and Benoît Labrique 45

[KR17] Ralf Küsters and Daniel Rausch. A framework for universally composable diffie-
hellman key exchange. In 2017 IEEE Symposium on Security and Privacy, SP
2017, San Jose, CA, USA, May 22-26, 2017, pages 881–900. IEEE Computer
Society, 2017. 9

[Kra05] Hugo Krawczyk. HMQV: A high-performance secure diffie-hellman protocol. In
Victor Shoup, editor, Advances in Cryptology - CRYPTO 2005: 25th Annual
International Cryptology Conference, Santa Barbara, California, USA, August
14-18, 2005, Proceedings, volume 3621 of Lecture Notes in Computer Science,
pages 546–566. Springer, 2005. 29

[Kra18] Hugo Krawczyk. The opaque asymmetric pake protocol, 2018. https://tools.
ietf.org/pdf/draft-krawczyk-cfrg-opaque-00.pdf. 29

[KTR13] Ralf Kuesters, Max Tuengerthal, and Daniel Rausch. The IITM model: a
simple and expressive model for universal composability. Cryptology ePrint
Archive, Report 2013/025, 2013. https://eprint.iacr.org/2013/025. 14

[LL97] Chae Hoon Lim and Pil Joong Lee. A key recovery attack on discrete log-based
schemes using a prime order subgroupp. In Burton S. Kaliski Jr., editor,
Advances in Cryptology - CRYPTO ’97, 17th Annual International Cryptology
Conference, Santa Barbara, California, USA, August 17-21, 1997, Proceedings,
volume 1294 of Lecture Notes in Computer Science, pages 249–263. Springer,
1997. 10

[LLM07] Brian A. LaMacchia, Kristin E. Lauter, and Anton Mityagin. Stronger security
of authenticated key exchange. In Willy Susilo, Joseph K. Liu, and Yi Mu,
editors, Provable Security, First International Conference, ProvSec 2007, Wol-
longong, Australia, November 1-2, 2007, Proceedings, volume 4784 of Lecture
Notes in Computer Science, pages 1–16. Springer, 2007. 29

[LLP+17] Zhe Liu, Patrick Longa, Geovandro C. C. F. Pereira, Oscar Reparaz, and
Hwajeong Seo. Fourq on embedded devices with strong countermeasures
against side-channel attacks. IACR Cryptology ePrint Archive, 2017:434, 2017.
38, 39

[LW15] Hanwook Lee and Dongho Won. Prevention of exponential equivalence in simple
password exponential key exchange (SPEKE). Symmetry, 7(3):1587–1594, 2015.
8

[Mac01] Philip MacKenzie. On the security of the SPEKE password-authenticated key
exchange protocol. IACR Cryptology ePrint Archive, 2001:57, 2001. 7

[MRA15] Karina Mochetti, Amanda C Davi Resende, and Diego F Aranha. zkpake: A
simple augmented PAKE protocol. In Proceedings of the Brazilian Symposium
on Information and Computational Systems Security (SBSeg), 2015. 6

[PJ12] Colin Percival and Simon Josefsson. The scrypt password-based key derivation
function., 2012. http://tools.ietf.org/html/josefsson-scrypt-kdf-00.
txt. 3, 10

[Pre00] Bart Preneel, editor. Advances in Cryptology - EUROCRYPT 2000, Interna-
tional Conference on the Theory and Application of Cryptographic Techniques,
Bruges, Belgium, May 14-18, 2000, Proceeding, volume 1807 of Lecture Notes
in Computer Science. Springer, 2000. 42

https://tools.ietf.org/pdf/draft-krawczyk-cfrg-opaque-00.pdf
https://tools.ietf.org/pdf/draft-krawczyk-cfrg-opaque-00.pdf
https://eprint.iacr.org/2013/025
http://tools.ietf.org/html/josefsson-scrypt-kdf-00.txt
http://tools.ietf.org/html/josefsson-scrypt-kdf-00.txt


46 AuCPace: Efficient verifier-based PAKE protocol tailored for the IIoT

[PW17] David Pointcheval and Guilin Wang. VTBPEKE: verifier-based two-basis
password exponential key exchange. In Ramesh Karri, Ozgur Sinanoglu,
Ahmad-Reza Sadeghi, and Xun Yi, editors, Proceedings of the 2017 ACM
on Asia Conference on Computer and Communications Security, AsiaCCS
2017, Abu Dhabi, United Arab Emirates, April 2-6, 2017, pages 301–312. ACM,
2017. 2, 3, 7, 8, 12, 28, 47

[RS17] Joost Renes and Benjamin Smith. qdsa: Small and secure digital signatures with
curve-based diffie-hellman key pairs. In Tsuyoshi Takagi and Thomas Peyrin,
editors, Advances in Cryptology - ASIACRYPT 2017 - 23rd International
Conference on the Theory and Applications of Cryptology and Information
Security, Hong Kong, China, December 3-7, 2017, Proceedings, Part II, volume
10625 of Lecture Notes in Computer Science, pages 273–302. Springer, 2017. 10

[Sho97] Victor Shoup. Lower bounds for discrete logarithms and related problems. In
Walter Fumy, editor, Advances in Cryptology - EUROCRYPT ’97, Interna-
tional Conference on the Theory and Application of Cryptographic Techniques,
Konstanz, Germany, May 11-15, 1997, Proceeding, volume 1233 of Lecture
Notes in Computer Science, pages 256–266. Springer, 1997. 20

[SKI10] SeongHan Shin, Kazukuni Kobara, and Hideki Imai. Security proof of Aug-
PAKE. IACR Cryptology ePrint Archive, 2010:334, 2010. 4, 12, 28

[SOAA15] Stanislav Smyshlyaev, Igor B. Oshkin, Evgeniy K. Alekseev, and Liliya R.
Ahmetzyanova. On the security of one password authenticated key exchange
protocol. IACR Cryptology ePrint Archive, 2015:1237, 2015. 6, 28

[Wu98] Thomas D. Wu. The secure remote password protocol. In Proceedings of the
Network and Distributed System Security Symposium, NDSS 1998, San Diego,
California, USA, pages 97–111. The Internet Society, 1998. 3, 6

[Zha04] Muxiang Zhang. Analysis of the SPEKE password-authenticated key exchange
protocol. IEEE Communications Letters, 8(1):63–65, 2004. 7, 8



Björn Haase and Benoît Labrique 47

A Notes regarding short Weierstrass curves
Our construction shares with [JKX18] the requirement that an efficient hashing to group
elements must be available for the elliptic curve’s point group. Unfortunately, this is not
always the case for important established curves, namely regarding standards using the
short Weierstrass form. In order to circumvent this problem, as an alternative in [PW17]
a construction TBPEKE based on two base points and an additional scalar multiplication
has been suggested by Pointcheval and Wang. Note that this construction is very similar
to the balanced sub-protocol CPace presented in this paper.

In this appendix we deal with the question, whether the TBPEKE construction could
also be used instead of CPace as a balanced sub-protocol component for AuCPace. I.e.
the question is whether the TBPEKE construction could also be proven secure in the UC
model. In our opinion, this answer could be given affirmatively. However, unfortunately,
our UC security proof technique that allowed for fully adaptive adversaries could probably
not be carried out for TBPEKE because of a technical commitment problem within the
Diffie-Hellman step. However, we come to the conclusion, that the balanced sub-step of
TBPEKE could be proven secure also in the UC framework, when considering a weaker
static adversary model as used for most other security proofs of efficient constructions in
the UC framework such as [GMR06].

I.e. for implementations forced to use older short Weierstrass curves, we suggest
to replace our technique for the calculation of the ephemeral generator G as G =
Map2Point(H1(PRS)) by the TBPEKE equivalent of G = A + CH1(PRS). The essen-
tial property (as pointed out also in [BFK09]) is that the discrete logarithm of G must be
unknown for both, honest parties and the adversaries.

Note that for any TBPEKE-based construction we see as important pre-requisite that
the "nothing-upon-my-sleeve" problem related to the secrecy of the discrete log of the
points C and A needs to be resolved in a trustworthy way.

Here we make the following suggestion. For any of the older short Weierstrass form
elliptic curves we suggest to determine the curve points A and C by the following algorithm.
For the point A (C) we suggest to first take the packed little-endian encoding of the
standardized curve’s base point x (y) coordinate and calculate x̃A = SHA512(x) (x̃C =
SHA512(y)). When doing so, there is a non-negligible probability that the x-coordinates
x̃A and x̃C actually correspond to the x-coordinate of a point on the twist or possibly on
a small subgroup. In this case we suggest to increment the x coordinate step by step by
one until a point on the cryptographic group is returned. We then suggest to choose the
one out of two y-coordinate candidates yA and yC such that the least-significant bit of the
y-coordinate is zero.

Based on the assumption that no common mathematical structure is shared between
the respective short Weierstrass curve and the Add-Rotate-XOR (ARX) algorithm SHA512,
we conclude that it is justified to conjecture the secrecy of the discrete logarithms of A
and C.



48 AuCPace: Efficient verifier-based PAKE protocol tailored for the IIoT

B Notes regarding UC security of the PACE protocol vari-
ant from [HL17]

The protocol in [HL17] is closely related to the protocol CPace presented in this paper.
This protocol and the specific optimization steps were not yet analyzed within the UC
framework. The main difference to CPace stems from the strategy used for circumventing
the patents on SPEKE.

While we do not detail a full UC security proof for this protocol, we nevertheless would
like to sketch the necessary steps for executing it. In the notation of [HL17] the password
pw corresponds to a password-based key π generated, e.g. by hashing the password. The
difference of [HL17] to CPace essentially is that the calculation of the password related
string PRS involves an additional symmetric encryption, not actually needed for securely
implementing the protocol. In order to cover the patent circumvention protocol, we suggest
to proceed as follows:

• Firstly we use the encrypted version of the messages s together with the nonce value
and the message t that are exchanged at the beginning of the protocol for deriving
the session id needed for the UC framework.

• We then use the symmetric Salsa20-20 primitive on the password in order to generate
the XOR pad used in [HL17] and modify the definition of the password-related string
PRS according to the patent circumvention construction s||t.

• In order to fend off relay attacks, it will be mandatory to incorporate identifiers
for the parties (corresponding to the CI of CPace) into the input to the Map2Point
function (H(s||t)) such that not only the password is authenticated but also the client
and server identities. This could e.g. be done by incorporating a channel identifier
component into input parameter π (the password-derived key) used in [HL17].

• We then prove that the password dependent string (s||t) generated this way matches
iff the same password parameter π was used by both, server and client, ensuring
that the password and the identities match. For this step, we essentially need the
property that the entropy of π is preserved when extracting a random stream from
π and nonce value by using Salsa20-20.

• The rest of the proof could then be executed by the same procedures as used in
this paper. (Note that the explicit authentication step involving generation of
several authenticators by one single run of SHA512 is not mandatory for securely
implementing FpwKE.)


	Introduction
	Note on the current standardization activities for industrial installations
	Differences between conventional web security and IIoT
	Strategies for protecting passwords
	Why industrial instrumentation needs a specially tailored V-PAKE protocol
	Contribution of this paper
	Organization of this paper

	Review of PAKE protocols and their security analysis
	Overview on PAKE protocols
	Security guarantees of PAKE and V-PAKE protocols
	Security models
	Review of SPEKE and SPEKE variants
	Review of the UC framework
	Advantages and drawbacks of security proofs within the UC framework
	Overall proof strategy used in this paper

	The AuCPace protocol
	Design rationales for the AuCPace protocol
	Parameters of the AuCPace protocol
	Configuring the password verifier on the server
	Establishing session keys based on the password pw and the password verifier W
	Key difference between AuCPace and previously known SPEKE-based constructions 

	Proof of indistinguishability for the balanced sub-protocol CPace
	Proof strategy
	Game-based proof
	Proof that probability GuessK in G3 is negligible
	Remarks regarding the ordering of the messages and efficiency

	Proof for the augmented protocol AuCPace
	Technical details
	Proof strategy for the augmented protocol
	Game-based proof

	Partial augmentation
	The ideal functionality FpapwKE  for modeling partial augmentation.
	Proof

	Performance assessment of the AuCPace protocol
	Discussion of the comparison overview
	Security guarantees
	Computational efficiency for constrained servers
	Implementation effort
	Bandwidth and latency aspects
	Intellectual property rights
	Registering verifiers

	Implementation on ARM Cortex M0 and M4 microcontrollers
	Implementation of X25519
	Implementation of Elligator2
	Implementation of the field arithmetic
	Implementation of the hash functions

	Experimental results
	Field arithmetic
	X25519 Diffie-Hellman
	Partially augmented AuCPace25519

	Discussion and conclusion
	Acknowledgements
	Notes regarding short Weierstrass curves
	Notes regarding UC security of the PACE protocol variant from haase2017making

