
Private Nearest Neighbors Classification in Federated Databases

Phillipp Schoppmann 1 Adrià Gascón 2 Borja Balle 3

Abstract
Privacy-preserving data analysis in the context
of federated databases distributed across multi-
ple parties has the potential to produce richer and
more accurate models than what each party can
learn with their own data. Secure Multi-Party
Computation (MPC) offers a robust cryptographic
approach to this problem, and in fact several pro-
tocols have been proposed for various learning
tasks on parametric models. In this paper we fo-
cus on k-NN, shifting the attention towards non-
parametric models. We tackle several challenges
arising in privacy-preserving k-NN classification
on federated databases, and implement a concrete
protocol for document classification. Our solu-
tion is faster than the state-of-the-art custom MPC
protocol by at least one an order of magnitude.

1. Introduction
Aggregating data held by different organizations has the
potential to unlock novel data analysis applications. This
might be done to increase the amount of training data or its
dimensionality, with the goal of producing more accurate
models than the ones each organization could build using
only its local dataset. However, organizations often have
conflicting interests in such scenarios: while collaboration
would result in more accurate predictions, disclosing their
local datasets might be undesirable from a competitive point
of view or directly infeasible from a legal standpoint. Such
constraints rule out solutions involving an external trusted
party, thus presenting a challenging scenario outside the
scope of most classical approaches to privacy-preserving
data analysis.

This scenario motivates the development of tools for privacy-
preserving data analysis on distributed data which provide
distributed solutions of machine learning tasks that preserve
the privacy of each party’s data. Problems in this space are
generally parameterized by the privacy guarantees provided

1Humboldt-Universität zu Berlin, Germany 2The Alan
Turing Institute, London, UK 3Amazon Research, Cam-
bridge, UK. Correspondence to: Phillipp Schoppmann
<schoppmann@informatik.hu-berlin.de>.

by the protocol. Such guarantees involve a concrete threat
model describing the capabilities of an ideal adversary, and
typically address the question “how much information about
the dataset is revealed during the execution of the protocol?”.
This stems from the observation that any distributed compu-
tation requires communication between the parties, which
might reveal information about the data held by each party.
The goal is to protect the data contributed by each party
against adversaries corrupting one or more parties involved
in the computation.

Multi-Party Computation (MPC) is an area of cryptography
concerned with distributed computations on private data.
MPC can provide strong cryptographic privacy guarantees
under several natural threat models. However, despite recent
theoretical and engineering breakthroughs, using out-of-the-
box MPC protocols to implement arbitrary computations on
private datasets does not yet scale to real-world data analysis
applications. To circumvent this limitation, it is often nec-
essary to craft custom MPC protocols that go beyond what
can be achieved by generic solutions. This approach has led
to custom MPC protocols for linear and logistic regression
training (Nikolaenko et al., 2013b; Gascón et al., 2017; Mo-
hassel & Zhang, 2017) neural network training (Mohassel &
Zhang, 2017) and evaluation (Beimel et al., 2008; Liu et al.,
2017; Juvekar et al., 2018), matrix factorization (Nikolaenko
et al., 2013a), PCA (Al-Rubaie et al., 2017), as well as eval-
uation of decision trees and naive Bayes classifiers (Bost
et al., 2015).

In this paper we study the problem of k-NN classification
on distributed data. Our contribution complements exist-
ing work on privacy-preserving distributed data analysis
from three perspectives. First, k-NN is a non-parametric
model, while all the works cited above only deal with para-
metric models. Despite being one of the simplest non-
parametric models, k-NN enjoys remarkable theoretical
properties (Chaudhuri & Dasgupta, 2014) and provides good
accuracies in a wide range of applications (Efros, 2017).
However, non-parametric models in general, and k-NN in
particular, present several challenges from the privacy points
of view. In this paper we address some of these challenges
in the distributed setting. Second, our protocols provide
a way to exploit the sparsity of the data. This provides
obvious gains in scalability in many applications, but it is
not straightforward to do in a privacy-preserving way, i.e.,

mailto:schoppmann@informatik.hu-berlin.de

Private Nearest Neighbors Classification in Federated Databases

without revealing the set of non-zero entries in the data held
by each party. Finally, our privacy guarantees hold in a
threat model where the adversary can simultaneously take
over all parties but one, i.e. several organizations might try
to collude to learn something about the remaining dataset.
This is a distinct aspect of our protocols, as all the works
cited above only protect against coalitions of at most two
participants. We illustrate our techniques by implementing
a standard k-NN classifier based on the cosine similarity
between documents represented by their TF-IDF features.
This choice is both of practical interest, and complex enough
to illustrate the challenges addressed by our techniques.

Contributions. Our main contributions include novel pro-
tocols for (1) privately computing the IDF coefficients of a
distributed document dataset, and (2) performing distributed
multiplications on sparse private matrices. The first protocol
combines MPC and differential privacy (DP) to compute
and release IDFs in distributed settings in the framework
of multi-party computational differential privacy (Beimel
et al., 2008). The combination of MPC and DP allows
our protocol to attain the same level of privacy as local
DP (Kasiviswanathan et al., 2011) without incurring the
degradations in accuracy associated with this notion of pri-
vacy. Releasing the IDFs of a dataset with DP enables the
parties to locally compute the TF-IDF of each document
in the dataset. Our second protocol allows our distributed
k-NN classifier to leverage the inherent sparsity in the TF-
IDF representation when computing the cosine similarity
between pairs of documents or datasets of documents. Our
solution relies on ideas from Private Set Intersection (Huang
et al., 2012) and the recent matrix multiplication protocol
by Mohassel & Zhang (2017).

We provide formal privacy proofs for all our subprotocols,
as well as a utility proof of our differentially private mecha-
nism for releasing privatized IDF values. We also empiri-
cally evaluate the scalability and accuracy of our solution to
k-NN-based text classification on real-world data.

2. Distributed k-NN Classification
This section presents the different steps required to imple-
ment a distributed k-NN functionality and provides an intu-
itive description of our privacy requirements.

Let S be a set of servers denoted by numbers 1, . . . , n. We
assume each server holds a private dataset Zi with mi train-
ing samples consisting of example-label pairs. The dataset
representing the union of the datasets held by each party
will be denoted by Z = {(xj , yj)}mj=1. A distributed k-NN
classifier allows a client holding an unlabeled example x
to interact with the servers in order to obtain a label ŷ for
x. Conceptually speaking, the classifier should emulate the
behavior of a k-NN classifier where the dataset Z is held

by a single party. In particular, the following steps need
to be executed: (1) for j ∈ {1, . . . ,m} compute the sim-
ilarity score sj(x) between x and the jth example in the
dataset; (2) compute the labels ŷ1, . . . , ŷk corresponding to
the indices j ∈ {1, . . . ,m} with the top k scores; and, (3)
return the majority vote ŷ = majority(ŷ1, . . . , ŷk). Note
that from an algorithmic point of view, computing the simi-
larity score between two examples requires embedding them
into a feature space and computing a similarity between the
corresponding feature representations.

Document Classification. At a high-level, a distributed
k-NN classification protocol like the one described above
must implement three functionalities: feature extraction,
similarity computation and top-k selection. The running
example we use throughout the paper is document classifi-
cation with cosine similarity between TF-IDF representa-
tions. This problem illustrates all the challenges involved
in a generic k-NN implementation and allow us to focus on
scalability by tailoring our MPC protocols to a particular
application. While in some cases, feature extraction can be
done locally by the parties, it depends on the whole dataset
for TF-IDF features. We present a protocol for extracting
these privately in Section 3. Note that this step has to be
performed once for the entire distributed dataset Z and is
amortized over many classification queries. Similarity com-
putation is typically the most expensive step of a k-NN clas-
sification since it scales with m and needs to be performed
for every query. In Section 4 we present a protocol for
scoring that can leverage sparsity in the underlying feature
representation and can perform many queries in parallel. For
top-k selection in a distributed setting with privacy require-
ments, we can use a generic MPC framework (Damgård
et al., 2012), so we omit a detailed description. In our ex-
periments, we show that this last phase contributes little to
the overall running time of our classification protocol.

Privacy Requirements. Roughly speaking, to ensure pri-
vacy for the client we require that (1) only the client learns
the assigned class for x, and (2) no information about the
query x is learned by the servers. This must hold even when
all of the servers collude. If there are multiple clients, they
should similarly learn nothing about each other’s documents,
even when some of them collude with some or all of the
servers. We formalize this requirement by employing the
standard cryptographic notion of security (Goldreich, 2004;
Lindell, 2016) that we repeat in Appendix A. Intuitively, this
notion of privacy guarantees that the information obtained
by any adversary is the same information that is leaked by an
idealized setting where a trusted party performs the whole
computation and returns the result to the parties.

For the servers’ datasets, we require that any information
revealed beyond the classification result is differentially

Private Nearest Neighbors Classification in Federated Databases

private (Dwork et al., 2006b) with respect to every single
training sample. This captures many real-world scenarios
where each training sample contains data of an individual
person and is therefore highly sensitive, while aggregated
information about an entire population is not considered
harmful. We give a formal definition of Differential Privacy
in our distributed setting in Section 3.

Note that the fact that we allow collusions in our definition
implies that the roles of client and server are not exclusive
and settings where the client is one of the servers are covered
by our model just as much as settings with just one server.

3. Private Feature Extraction
This section presents a protocol for privately computing
IDF coefficients on a federated document database Z. Our
protocol preserves the privacy of each document in Z by em-
ploying multi-party computational differential privacy. That
is, the computed IDF values are differentially private, and
no additional information except these IDFs is revealed by
the protocol. In the context of k-NN document classification
with TF-IDF features, this means each data provider and
any potential client can use the privatized IDFs to compute
the feature representation of any document locally.

We start by recalling the relevant definitions related to the
TF-IDF feature representation and differential privacy. Then
we provide our differentially private mechanism for IDF
computation and discuss its implementation inside an MPC
protocol. Finally we formally analyze privacy and utility.

TF-IDF Features. Recall that the TF-IDF representation
of a document x is the vector ψ(x) ∈ R|V| with coordinates
ψ(x)(v) = φtf(v, x)φidf(v, Z). Here φtf(v, x) = |x|v
is the term frequency (TF) of v in x (i.e. the number of
times v occurs in x), and φidf(v, Z) is the inverse docu-
ment frequency (IDF) of v in Z (see, for example, (Manning
et al., 2008)). There are several variants of the IDF co-
efficient; here we work with a smoothed version which
for a word v ∈ V and a dataset Z gives φidf(v, Z) =
log((|Z| + 1)/(|Z|v + 1)) + 1. This is in fact the default
formulation used in the TF-IDF implementation provided by
Scikit-learn (Pedregosa et al., 2011). Although we choose a
particular definition for the sake of concreteness, our results
can easily be adapted to any other IDF variant.

An important observation is that the TF part of ψ(x) only
depends on document x, while the IDF part depends on the
whole dataset Z. This presents a challenge for computing
the TF-IDF feature representation of documents belonging
to a federated database. In particular, the IDF computation
will require communication between the data providers, and
could thus lead to privacy leaks. A naive solution would
be to use an n-party MPC protocol to simultaneously com-

pute the TF-IDF representation of all the documents in the
database (see Appendix B). However, this solution presents
several drawbacks, including: a high computational and
communication cost; an inability to leverage the sparsity in
the TF coefficients; and the fact that revealing the resulting
feature representations could leak private information about
documents owned by a party through their IDF part. Our
alternative approach is to compute the IDF coefficients in
a differentially private way and release them to the parties,
who can then locally compute the TF-IDF representation of
each document in their respective datasets.

Multi-Party Computational Differential Privacy. Dif-
ferential privacy (DP) is a technique for privacy-preserving
disclosure (Dwork et al., 2006a;b; Dwork & Roth, 2014).
It prevents a potential adversary observing the output of a
computation from recovering information about individual
input data points, i.e., individual document in our case. This
is made formal by saying that two datasets Z and Z ′ are
neighbors if they only differ in one data point; this relation
is denoted by Z ' Z ′. We say that a randomized algo-
rithm A : Z → W is (ε, δ)-DP if for any indicator function
χ :W → {0, 1} we have

∀Z ' Z ′ : E
[
χ(A(Z))

]
≤ eεE

[
χ(A(Z ′))

]
+ δ .

This definition models the setting where a curator owns
the input Z, executes the computation A, and discloses the
output A(Z).

For the purpose of providing DP in a multi-party setting one
needs to modify the above definition to account for the fact
that Z is distributed among several parties. Additionally,
implementing DP inside an MPC protocol requires a further
modification to account for the information that could be
obtained by a coalition of adversarial parties involved in the
computation who try to break the cryptography used in the
MPC protocol. This leads to the definition of multi-party
computationally differential privacy which has been studied
by Dwork et al. (2006a); Beimel et al. (2008).

Suppose the input dataset is distributed among n parties
Z = (Z1, . . . , Zn) and write Z 'i Z ′ if Zi ' Z ′i and Zj =
Z ′j for i 6= j. Suppose A : Zn →W is an n-party protocol
and let view−i(A(Z)) denote all the information observed
by all parties except the ith one during the execution of
A(Z). Then we say thatA is (ε, δ)-MPC-DP if for all i and
all Z 'i Z ′ we have

E
[
χ
(
view−i(A(Z))

)]
≤ eεE

[
χ
(
view−i(A(Z ′))

)]
+ δ

for any {0, 1}-valued polynomial time algorithm χ. Note
that technically speaking, this definition only makes sense
for a family of protocols indexed by the parameter m; see
(Beimel et al., 2008) for more details. The following key
result states that implementing a DP algorithm inside an
MPC protocol yields an MPC-DP protocol.

Private Nearest Neighbors Classification in Federated Databases

Theorem 1. If A is (ε, δDP)-DP with respect to Z ' Z ′,
then an MPC implementation of A where is Z distributed
among n parties is (ε, δDP +δMPC)-MPC-DP, where δMPC

is a negligible function of m obtained from standard crypto-
graphic assumptions.

Algorithm 1: DP IDFs
Input: Public: n, V , c0, L, ε0

Input: Private: Counts {|Zi|v}v∈V for i ∈ [n]
Output: Privatized values {c̃v}v∈V
foreach v ∈ V do

Compute cv =
∑n
i=1 |Zi|v

end
for ` = 1, . . . , L do

Sample v ∈ V with probability ∝ exp(ε0cv)
Sample η from Lap(1/ε0)
Release c̃v = cv + η
Remove v from V

end
For each v ∈ V release c̃v = c0

Differentially Private IDF Computation. To compute
IDFs with differential privacy we combine the exponential
mechanism (McSherry & Talwar, 2007) and the Laplace
mechanism (Dwork et al., 2006b). The mechanism takes as
input the absolute frequencies of each word in each party’s
dataset Zi. It then proceeds to aggregate these into frequen-
cies across the whole dataset Z, yielding cv = |Z|v for each
v ∈ V . The counts are used in a private top-L selection
step to find L words with the largest frequencies; this is a
standard construction based on the exponential mechanism
(Bafna & Ullman, 2017). The mechanism then releases
privatized counts c̃v for each of the selected words using the
Laplace mechanism. For unselected words the mechanism
outputs a default public value c̃v = c0 which is independent
of the true word count. The pseudocode of our mechanism
is given in Algorithm 1.

Theorem 2. For any ε0 ∈ (0, 0.9] and δ ∈ [0, 1] the Algo-
rithm 1 is (ε, δ)-DP with

ε = min

{
2Lε0, 2Lε

2
0 +

√
4Lε2

0 log(1/δ)

}
.

We prove Theorem 2 in Appendix C.1. By Theorem 1, we
can obtain an MPC-DP protocol from Algorithm 1 by im-
plementing it inside MPC. Computing the counts cv only
involves arithmetic operations which are simple to imple-
ment in MPC. Thus, all we need is a way for the parties to
sample from the Laplace and the exponential distribution
inside an MPC protocol. This requires a private distributed
noise generation protocol so that parties can jointly sample
from the specified distributions in a way that no coalition of

n− 1 parties can recover η from c̃v. Dwork et al. (2006a)
propose a very efficient procedure to generate noise in MPC
in exactly this way. Their protocol takes a small number of
random bits from each party and performs operations which
are efficient in MPC, such as bitwise manipulations and ad-
ditions. This results in an efficient method for implementing
Algorithm 1 in MPC.

Utility Analysis. A key observation about the utility of
Algorithm 1 is that in a corpus of documents Z the distribu-
tion of the values of |Z|v for all v ∈ V typically follows a
power-law distribution (Powers, 1998). This means there
are few very frequent words and lots of infrequent words,
which justifies assigning a default value c0 to the words
which are not selected by the top-L selection provided by
the exponential mechanism. Our experimental evaluation
(Section 5) shows that this leads to a small accuracy loss
when the privatized IDFs are used for k-NN document clas-
sification.

The following result illustrates the effect of the different
parameters of Algorithm 1 in the accuracy of the computed
IDFs. Our analysis assumes the documents in Z are sam-
pled i.i.d. from some unknown distribution over documents.
Here we present only an informal statement of our result. A
more concrete statement together with the relevant proofs
are provided in Appendix C.2. The result bounds the rel-
ative error between the true vectors of IDFs φidf and the
privatized vector φ̃idf computed using the counts released
by Algorithm 1.

Theorem 3. Let c0 = Θ(
√
m). If m is large enough, then

with high probability we have

‖φidf − φ̃idf‖1
‖φidf‖1

≤ Õ
(
L

V

1

ε0m
+

(
1− L

V

)
log(m)

)
.

Note how this result highlights an essential accuracy-privacy
trade-off in the choice of L. Indeed, from Theorem 2 we
see that increasing L reduces the privacy provided by the
mechanism, while from Theorem 3 we see that taking a
L = V (1−O(1/ log(m))) ensures the mechanism provides
a constant-factor approximation to the true IDFs.

4. Private Scoring
We will now describe how to privately compute similarity
scores between two feature vectors. As before, we focus on
text documents with TF-IDF features, where cosine similar-
ity is the measure commonly used (Manning et al., 2008).
Since this essentially corresponds to a secure inner product
computation between two parties, the protocol described
in this section can be adapted to other similarity measures
that can be reduced to inner products, such as the Euclidean
distance. Our solution is especially efficient if the feature

Private Nearest Neighbors Classification in Federated Databases

vectors are sparse, which is the case for the private TF-IDF
features computed in the previous section. However, it can
be generally applied to sparse vectors.

For clarity of presentation, we first focus on computing ad-
ditive shares of the similarity between two sparse vectors,
by essentially solving a 2-party private sparse inner product
problem. Subsequently, we show how to generalize our ap-
proach to secure sparse matrix multiplication, gaining even
more efficiency when computing many scores at once. At a
high level, our protocol first reduces the dimensionality of
the sparse input vectors to the total number of their non-zero
entries, and then uses the protocol of Mohassel & Zhang
(2017) to compute additive shares of their inner product.

Additive Secret Sharing. Our secure sparse multiplica-
tion protocol (Figure 1) will produce matrices C1,C2 that
are chosen uniformly at random under the constraint that
C1 + C2 = AB. Since Party i obtains only Ci, and each
share individually cannot be distinguished from a random
matrix, this does not leak any information about C = AB.
Thus, the similarity scores computed by our protocol are not
known by a single party, but secret-shared between the hold-
ers of both input document vectors. The shares are then used
as inputs to a generic MPC protocol for selecting the k most
similar documents, as described in Section 2. This tech-
nique is generally used to hide the values of intermediate
results, and it’s the basis of various MPC protocols (Beaver,
1991; Damgård et al., 2012; Mohassel & Zhang, 2017). We
will refer to values shared in this way as additively shared
and call the individual parts additive shares.

Index Sets. For any sparse vector v, we write Iv to denote
the set of indexes where v is non-zero, and call its cardinality
lv := |Iv|. We further denote the k-th element of this set
(using canonical ordering) by (Iv)k.

For a matrix M, we write Coli(M) to denote the i-th column
vector of M, and Rowj(M) for the j-th row. In analogy to
vectors, we write IColM := {i | Coli(M) 6= 0} for the set
of set of indexes corresponding to non-zero columns of M,
likewise for rows.

Throughout this paper, we consider these sets of indexes
private, as they correspond to words occurring in a text
document. However, an upper bound on their cardinality
(i.e., the number of different words) is public.

4.1. Secure Cosine Similarity

Consider two feature vectors a,b representing text docu-
ments, where a is owned by Party 1 and b by Party 2. The
cosine similarity of a and b is defined as

simcos(a,b) =
〈a,b〉
‖a‖‖b‖

=

∑|V|
i=1 aibi
‖a‖‖b‖

.

Note that each norm in the denominator can be computed lo-
cally by one of the parties. Additive shares of their product
can then be obtained using Beaver multiplication (Beaver,
1991). Since the denominators are positive, the comparison
of two scores can be done by cross-multiplication, remov-
ing the need for secure divisions. Therefore, the similarity
essentially reduces to computing the inner product of two
vectors owned by different parties.

Now, observe that the i-th term aibi of the inner product
〈a,b〉 is non-zero if and only if both ai and bi are non-
zero. In fact, if the parties could make public their non-
zero indexes Ia and Ib, they could write down the values
corresponding to indexes in the intersection Ia ∩ Ib in
canonical order, resulting in vectors ã, b̃ of shorter length
|Ia ∩ Ib| with 〈ã, b̃〉 = 〈a,b〉. The inner product of ã and
b̃ can then be computed using a standard MPC protocol
(Mohassel & Zhang, 2017; Gascón et al., 2017).

While this would greatly increase efficiency by exploiting
the sparsity of a and b, it is also clear that it would leak
information about both documents, namely the words they
contain. To remove this leakage, we do not reveal Ia and Ib.
Instead, both parties locally create vectors â, b̂ containing
the values at indexes in Ia and Ib, respectively. Now, un-
less both documents contain the exact same words, clearly
〈â, b̂〉 6= 〈a,b〉. However, if we pad both vectors with
zeroes to length la + lb and then permute them such that
the values of indexes in Ia ∩ Ib somehow end up at the
same position in both permuted vectors, while all others get
matched to a zero, then the inner product of these permuted
vectors will again be equal to 〈a,b〉. While a trusted third
party could take both index sets and compute correlated per-
mutations with the property described above, our setup does
not include such a third party. Thus, we have to develop a
MPC-sub-protocol that generates these permutations.

In the next section, we show how the observations made
here extend to matrix multiplications. Then, we describe
our two-party sparse matrix multiplication protocol in detail
and state formal correctness and security theorems that we
prove in Appendix D.

4.2. Computing Scores in Parallel

As we have seen, computing the cosine similarity of two doc-
uments in TF-IDF representation can essentially be reduced
to a secure sparse inner product. If we want to compute the
pairwise similarities of two sets of documents, this imme-
diately reduces to secure matrix multiplication: assuming
the vocabulary has size m, Party 1 arranges their l feature
vectors row-wise in a matrix A ∈ Zl×mq , while Party 2
uses a column-wise representation of their n documents,
resulting in a matrix B ∈ Zm×nq . Then, each element cij of
the product C = AB is the numerator of the similarity of
Party 1’s i-th document and Party 2’s j-th document.

Private Nearest Neighbors Classification in Federated Databases

Party 1 MPC Party 2

IColA ← {i | Coli(A) 6= 0}
Broadcast lA ←

∣∣∣IColA

∣∣∣
Input: A ∈ Zl×m

q

IRowB ← {j | Rowj(B) 6= 0}
Broadcast lB ←

∣∣∣IRowB

∣∣∣
Input: B ∈ Zm×n

q

IColA IRowB

Compute IColA ∩ I
Row
B . Then, choose a pair of ran-

dom permutations π1, π2 of {1, . . . , lA + lB}
such that for all k1 ∈ {1, . . . , lA}, k2 ∈
{1, . . . , lB}:

(
IColA

)
k1

=
(
IRowB

)
k2
⇔ π1(k1) = π2(k2).

FPERM

π1 π2

Â← 0l×(lA+lB)

For i = 1 to lA:
i′ ←

(
IColA

)
i

Coli(Â)← Coli′ (A)

Ã← permuteCols(Â, π1)

B̂← 0(lA+lB)×n

For j = 1 to lB:
j′ ←

(
IRowB

)
j

Rowj(B̂)← Rowj′ (B)

B̃← permuteRows(B̂, π2)

Choose random C1,C2 ∈ Zl×n
q such that

C1 + C2 = Ã · B̃

FMULT
Ã B̃

C1 C2

Figure 1. Secure sparse matrix multiplication. For details on the
implementations of FMULTand F PERM, see Appendices B.3 and D.1,
respectively.

The protocol described in Section 4.1 can be adapted to
this kind of matrix inputs. To compute matrices Ã, B̃ with
fewer dimensions, we have to retain all features that are
non-zero in at least one document. To that end, Party 1
locally computes IColA := {i | Coli(A) 6= 0}, and Party 2
computes IRowB := {j | Rowj(B) 6= 0}. These index sets
are then used as inputs to the functionality for generating
correlated permutations, F PERM. This functionality is imple-
mented using Yao’s Garbled Circuit Protocol (Yao, 1986). It
performs a PSI (Huang et al., 2012) to compute IColA ∩IRowB

and then generates two correlated permutations π1, π2 that
map elements of IColA ∩ IRowB to the same indexes. Ã and B̃
are then computed by first padding non-zero columns/rows
with zeroes, and then applying π1 and π2, just like ã and b̃
in Section 4.1. The result is again obtained by using a stan-
dard MPC protocol for secure matrix multiplication with
Ã and B̃ as inputs. The entire sparse matrix multiplication
protocol is depicted in Figure 1.

Theorem 4 (Correctness). For any A ∈ Zl×mq , B ∈ Zm×nq ,
let Ã, B̃ be constructed according to the protocol described
in Figure 1. Then AB = ÃB̃.

We prove Theorem 4 in Appendix D.2. To prove security of
our sparse matrix multiplication protocol, we require that
the sub-protocols for F PERM and FMULT are secure. For the
former, we use an existing protocol for Private Set Inter-
section (Huang et al., 2012), which we extend so that it
maps indexes in IColA ∩ IRowB to the same value, while mak-
ing sure non-matching indexes get mapped to zeros. The
details can be found in Appendix D.1. Our implementa-
tion is based on Yao’s Garbled Circuit protocol, which was
proven secure in the semi-honest adversary model (Lindell
& Pinkas, 2009). For FMULT, we use the protocol of Mohas-
sel & Zhang (2017), a simple extension of Beaver’s protocol
(Beaver, 1991), which is also secure in the semi-honest
model. We prove the following theorem using a standard
hybrid argument in Appendix D.3.

Theorem 5 (Security). Given public sparsity values lA, lB
and implementations of FMULT and F PERM that are secure
against semi-honest adversaries, the protocol in Figure 1
implements FMULT with security against semi-honest adver-
saries.

5. Experiments
This section provides experimental evaluation of our text
classification system. First, we report on the accuracy loss
introduced by the computation of differentially private IDF
values as part of the Private Feature Extraction described in
Section 3. Next, we analyze the running time of the Private
Scoring protocol from Section 4 and compare it against two
different baselines. We also implement the top-k selection
phase and measure its running time, but since it is negligible
compared to the scoring protocol (less than one minute in
all cases), we omit a detailed evaluation.

5.1. Accuracy

To evaluate the accuracy of our classification protocol, we
used a publicly available repository of Amazon product re-
views spanning May 1996 to July 2014 (He & McAuley,
2016; dat). We used the 5-core version of the dataset con-
taining only products with at least five reviews. From the
entire dataset we extracted reviews for products in four dif-
ferent categories: “Clothing, Shoes and Jewelry” (clothes),
“Toys and Games” (games), “Tools and Home Improvement”
(diy), and “Grocery and Gourmet Food” (food). We use
these product categorizations to set up a document classifi-
cation problem with four classes. To construct the dataset
we randomly selected 28K reviews from the four classes
with a uniform class distribution. Statistics about the se-
lected data are reported in Table 1. In order to tune the
hyper-parameters of the algorithm and assess the predictive
performance of the resulting models we further split the
data into 70% for training, 15% for validation, and 15%
for testing while maintaining the class proportions in each

Private Nearest Neighbors Classification in Federated Databases

class max. |x| avg. |x| |V|
clothes 858 56 13016
games 1725 105 20549
diy 1796 89 17995
food 1926 96 18706

all 1926 86 40558

2500 5000 7500 10000 12500 15000 17500 20000
Number of documents

0.65

0.70

0.75

0.80

0.85

0.90

A
cc

ur
ac

y

Without DP
ε = 0.1
ε = 0.5
ε = 1.0
ε = 5.0

Table 1. Statistics about the
datasets used in the accuracy
experiments.

Figure 2. Classification accu-
racy for various privacy bud-
gets ε.

of the subsets. When testing the effect of the amount of
training data on the overall accuracy of the model we further
subsample the ∼ 20K training examples to obtain a smaller
training set.

To quantify the accuracy loss incurred by using differen-
tial privacy as a function of the privacy parameter ε0 we
report the accuracies obtained for different sizes of the
training dataset, see Figure 2. Each line in this plot cor-
responds to the learning curve for a different setting in
ε = 2Lε0 ∈ {0.1, 0.5, 1, 5}, which is the privacy obtained
by taking δ = 0 in Theorem 2. This allows us to com-
pare the accuracy provided by the same privacy level with
different settings of L and ε0. We also report the accu-
racy of the protocol which implements k-NN without dif-
ferential privacy. Since differential privacy introduces ran-
domness in the computation, we draw shades around the
curves using differential privacy to report the standard de-
viation over 25 runs. The parameters of the protocol were
tuned on the validation set, while the plots correspond to
accuracies on the test set. The range of possible values
considered for each parameter are as follows: number of
neighbors k ∈ [1, 60], and fraction of non-default IDFs
L/m ∈ {0.01, 0.005, 0.002, 0.001}. These ranges were se-
lected after an initial data exploration phase. As is common
with differential privacy, we observe that for a fixed ε, the
loss in accuracy with respect to the protocol that uses exact
IDFs decreases as the size of the training set grows. For
example, for a training dataset with m = 20000 documents
and ε = 1 we observe that the accuracy loss is less than 5%.

5.2. Running Time

In this section, we evaluate our protocol in terms of online
running time. This corresponds to the Private Scoring proto-
col from Section 4, as both feature extraction (which can be
performed locally) and the computation of differentially pri-
vate IDF values can be done in a setup phase and amortized
across many classifications.

Baselines. For a significant comparison, we compare our
private scoring with a state-of-the-art MPC protocol based
on 2-party matrix multiplication, but without the optimiza-
tions described in Sections 3 and 4. The complete pro-
tocol is described in Appendix B.2. The basic idea is to
perform a setup phase that computes additive shares of in-
termediate values in the scoring computation that do not
depend on the client’s query document. Then, the online
phase mostly consists of two-party matrix multiplications
and is already significantly faster than a naive approach
using generic MPC. However, since additive sharing as de-
fined in Section 4 means that the servers’ arguments to these
matrix multiplications are uniformly random, we cannot
exploit the fact that most of the shared values are in fact
zero due to the sparsity of document vectors. Therefore, we
use the dense matrix multiplication protocol by Mohassel &
Zhang (2017), which we reproduce in Appendix B.3. For a
second baseline, we use the same classification protocol, but
use a matrix multiplication sub-protocol based on additive
Homomorphic Encryption from previous works (Muruge-
san et al., 2010; Bost et al., 2015). Since this protocol can
exploit sparsity only of the query document, we refer to it
as semi-sparse.

Experimental Setup. We implement our system in C++,
using Obliv-C (Zahur & Evans, 2015) and SPDZ (Damgård
et al., 2012) for generic Two-Party and Multi-Party Compu-
tation, respectively. For the semi-sparse protocol, we use an
implementation of the additively homomorphic Damgård-
Jurik encryption scheme (lib). Our timings were obtained
on Azure E8s v3 instances, each having 8 vCPUs and 64 GB
of RAM. For WAN experiments, we placed the instances
in two different regions, East US and West Europe. All of
our experiments used 3 servers and a vocabulary size of
150000, which is about the size of Aspell’s en US-large
dictionary (asp).

Results. Figure 3 shows the results of our timing exper-
iments. On the left, we plot the online time of the private
scoring phase as a function of the number of words in the
client’s document. Solid lines represent the baseline proto-
col with dense and semi-sparse matrix multiplication, while
dotted lines represent our protocol using the sparse matrix
multiplication protocol from Figure 1. It can be seen that the
semi-sparse protocol is slower than the dense one for all but
the smallest queries. On the other hand, our sparse protocol
improves upon the running time of the dense protocol by a
factor of at least 10. The right plot of Figure 3 shows the
online time as a function of the size of the servers’ datasets
for the dense and sparse protocol. It becomes apparent that
the speedup introduced by our secure sparse matrix multipli-
cation protocol is consistent across a wide range of database
sizes and in both LAN and WAN settings.

Private Nearest Neighbors Classification in Federated Databases

100 200 500 1000 2000 5000
Sparsity (# of different words in document)

1m

2m

5m

10m

30m

1h

Ti
m

e

Dense
Semi-Sparse
Sparse (W = 20k)
Sparse (W = 10k)
Sparse (W = 7k)

1000 2000 5000 10000 20000 50000
Number of documents

1m

2m

5m

10m

30m

1h

2h

5h

Ti
m

e

Dense (WAN)
Dense (LAN)
Sparse (WAN)
Sparse (LAN)

Figure 3. (Left) Running time of a single classification in a LAN
vs. sparsity of the client’s query document. The parameter W
denotes the sparsity of each server’s database, i.e., the total number
of different words used in all documents of a server. Each server
holds 2000 documents. (Right) Running time of a single classifi-
cation as a function of the number of documents per server. The
client’s sparsity was fixed to 2000 and the server’s sparsity was
computed by extrapolating from a real-world dataset of Amazon
reviews (dat).

6. Related work
As mentioned above, a remarkable difference between exist-
ing works and ours is in the threat model. More concretely,
in all the contributions mentioned in the introduction, either
the computation is delegated to two non-colluding parties –
sometimes referred to as the two-server model in MPC – or
only involves two parties.

Regarding our concrete application in private text analysis,
related work can be found in the context of similar document
detection (Jiang et al., 2008; Murugesan et al., 2010; Blundo
et al., 2012; Buyrukbilen & Bakiras, 2013), association rule
mining (Giannotti et al., 2013), document indexing and
search (Bawa et al., 2009), and text summarisation (Marujo
et al., 2014). All these contributions tackle the general issue
of computing on a document database while preserving
privacy under a variety of threat models.

Among these, the line of research relevant to our contribu-
tion is in Secure Similar Document Detection (SSDD) (Jiang
et al., 2008; Murugesan et al., 2010; Blundo et al., 2012;
Buyrukbilen & Bakiras, 2013). However, the problem con-
sidered in all of these works is limited to a two-party setting.

Finally, another trend of related work is in privacy-
preserving nearest neighbors computation (Qi & Atallah,
2008; Songhori et al., 2015; Elmehdwi et al., 2014; Riazi
et al., 2016; Li et al., 2015; Rong et al., 2016). The prob-
lem considered in the first half these contributions is in the
single server setting, and hence corresponds to a two-party
problem. The setting addressed by Riazi et al. (2016); Li
et al. (2015); Rong et al. (2016) does allow more than two
data providers, but again, their protocols are only secure
in the two-server model mentioned above, where the two
computing parties are assumed not to collude.

In summary, while there is previous work on parametric
model training and classification, document scoring, and
k-NN, the settings considered are either limited to two par-
ties, or they require the help of semi-trusted, non-colluding
external parties. In contrast, we consider the more chal-
lenging setting where privacy is guaranteed even if arbi-
trary collusions happen which better captures the federated
databases scenarios. Note that this includes the two-server
case, where all our results apply as well.

7. Conclusion
Our MPC protocol for k-NN classification achieves prov-
able security in the federated setting with possibly colluding
servers, which has not been reported in academic literature
before. At the same time, our evaluation shows that it scales
to real-world dataset sizes and is viable in both LAN and
WAN settings. We show that by combining MPC with Dif-
ferential Privacy, performance can be improved by an order
of magnitude over the state-of-the-art approach, while pro-
viding a principled way to trade off between accuracy and
privacy. A drawback of our current approach is the fact that
the running time depends linearly on the number of training
documents. Overcoming this limitation is an obvious next
challenge.

Apart from classification, our private k-NN algorithm can
be easily adapted to support other types of queries on dis-
tributed datasets, for example private duplicate detection, or
query answering. Additionally, other document similarity
measures can be implemented atop our protocol for secure
two-party sparse matrix multiplication. Moreover, our pro-
tocol for sparse matrix multiplication is general in that it
works on arithmetic sharings, and hence can be directly used
as a building block in other applications. The latter might
be of independent interest to the MPC community. In future
work we plan to address some of its applications, and study
further improvements using recent results on Private Set
Intersection.

Beyond our concrete contributions, this work shows that
hybrid solutions combining MPC and DP are a promising
venue for privacy-preserving data analysis on distributed
data, as carefully designed DP mechanisms for approxi-
mated functionalities can enable efficient MPC protocols.

References
Aspell dictionary creation. http://app.aspell.
net/create.

Amazon Product Data. http://jmcauley.ucsd.
edu/data/amazon/.

libSCAPI – The Secure Computation API. https://
github.com/cryptobiu/libscapi/.

http://app.aspell.net/create
http://app.aspell.net/create
http://jmcauley.ucsd.edu/data/amazon/
http://jmcauley.ucsd.edu/data/amazon/
https://github.com/cryptobiu/libscapi/
https://github.com/cryptobiu/libscapi/

Private Nearest Neighbors Classification in Federated Databases

Al-Rubaie, Mohammad, Wu, Pei Yuan, Chang, J. Mor-
ris, and Kung, Sun-Yuan. Privacy-preserving PCA on
horizontally-partitioned data. In DSC, pp. 280–287. IEEE,
2017.

Bafna, Mitali and Ullman, Jonathan. The price of selec-
tion in differential privacy. In Proceedings of the 2017
Conference on Learning Theory, Proceedings of Machine
Learning Research, 2017.

Bawa, Mayank, Bayardo, Roberto J., Agrawal, Rakesh, and
Vaidya, Jaideep. Privacy-preserving indexing of docu-
ments on the network. VLDB J., 18(4):837–856, 2009.

Beaver, Donald. Efficient Multiparty Protocols Using Cir-
cuit Randomization. In CRYPTO, volume 576 of Lecture
Notes in Computer Science, pp. 420–432. Springer, 1991.

Beimel, Amos, Nissim, Kobbi, and Omri, Eran. Distributed
private data analysis: Simultaneously solving how and
what. In CRYPTO, volume 5157 of Lecture Notes in
Computer Science, pp. 451–468. Springer, 2008.

Blundo, Carlo, Cristofaro, Emiliano De, and Gasti, Paolo.
EsPRESSo: Efficient privacy-preserving evaluation of
sample set similarity. In DPM/SETOP, volume 7731 of
Lecture Notes in Computer Science, pp. 89–103. Springer,
2012.

Bost, Raphael, Popa, Raluca Ada, Tu, Stephen, and Gold-
wasser, Shafi. Machine learning classification over en-
crypted data. In NDSS. The Internet Society, 2015.

Buyrukbilen, Sahin and Bakiras, Spiridon. Secure simi-
lar document detection with simhash. In Secure Data
Management, volume 8425 of Lecture Notes in Computer
Science, pp. 61–75. Springer, 2013.

Chaudhuri, Kamalika and Dasgupta, Sanjoy. Rates of con-
vergence for nearest neighbor classification. In Advances
in Neural Information Processing Systems, pp. 3437–
3445, 2014.

Damgård, Ivan, Pastro, Valerio, Smart, Nigel P., and Za-
karias, Sarah. Multiparty computation from somewhat ho-
momorphic encryption. In CRYPTO, volume 7417 of Lec-
ture Notes in Computer Science, pp. 643–662. Springer,
2012.

Dwork, Cynthia and Roth, Aaron. The Algorithmic Founda-
tions of Differential Privacy. Foundations and Trends in
Theoretical Computer Science, 9(3–4):211–407, August
2014.

Dwork, Cynthia, Kenthapadi, Krishnaram, McSherry, Frank,
Mironov, Ilya, and Naor, Moni. Our Data, Ourselves: Pri-
vacy Via Distributed Noise Generation. In EUROCRYPT,
volume 4004 of Lecture Notes in Computer Science, pp.
486–503. Springer, 2006a.

Dwork, Cynthia, McSherry, Frank, Nissim, Kobbi, and
Smith, Adam D. Calibrating Noise to Sensitivity in
Private Data Analysis. In TCC, volume 3876 of Lec-
ture Notes in Computer Science, pp. 265–284. Springer,
2006b.

Dwork, Cynthia, Rothblum, Guy N, and Vadhan, Salil.
Boosting and differential privacy. In Foundations of Com-
puter Science (FOCS), 2010 51st Annual IEEE Sympo-
sium on, 2010.

Efros, Alexei. How to stop worrying and learn to love
nearest neighbors. NIPS workshop on Nearest Neighbors
for Modern Applications with Massive Data, 2017.

Elmehdwi, Yousef, Samanthula, Bharath K., and Jiang, Wei.
Secure k-nearest neighbor query over encrypted data in
outsourced environments. In ICDE, pp. 664–675. IEEE
Computer Society, 2014.

Gascón, Adrià, Schoppmann, Phillipp, Balle, Borja,
Raykova, Mariana, Doerner, Jack, Zahur, Samee, and
Evans, David. Privacy-Preserving Distributed Linear Re-
gression on High-Dimensional Data. Proceedings on
Privacy Enhancing Technologies, 2017(4):345–364, Oc-
tober 2017.

Giannotti, Fosca, Lakshmanan, Laks V. S., Monreale,
Anna, Pedreschi, Dino, and Wang, Wendy Hui. Privacy-
preserving mining of association rules from outsourced
transaction databases. IEEE Systems Journal, 7(3):385–
395, 2013.

Goldreich, Oded. The Foundations of Cryptography – Vol-
ume 2, Basic Applications. Cambridge University Press,
2004.

He, Ruining and McAuley, Julian. Ups and downs: Mod-
eling the visual evolution of fashion trends with one-
class collaborative filtering. In Proceedings of the 25th
International Conference on World Wide Web, pp. 507–
517. International World Wide Web Conferences Steering
Committee, 2016.

Huang, Yan, Evans, David, and Katz, Jonathan. Private
set intersection: Are garbled circuits better than custom
protocols? In NDSS. The Internet Society, 2012.

Jiang, Wei, Murugesan, Mummoorthy, Clifton, Chris, and
Si, Luo. Similar document detection with limited informa-
tion disclosure. In ICDE, pp. 735–743. IEEE Computer
Society, 2008.

Juvekar, Chiraag, Vaikuntanathan, Vinod, and Chan-
drakasan, Anantha. Gazelle: A Low Latency Framework
for Secure Neural Network Inference. IACR Cryptology
ePrint Archive, 2018:73, 2018.

Private Nearest Neighbors Classification in Federated Databases

Kasiviswanathan, Shiva Prasad, Lee, Homin K, Nissim,
Kobbi, Raskhodnikova, Sofya, and Smith, Adam. What
can we learn privately? SIAM Journal on Computing, 40
(3):793–826, 2011.

Li, Frank, Shin, Richard, and Paxson, Vern. Exploring
privacy preservation in outsourced k-nearest neighbors
with multiple data owners. In CCSW, pp. 53–64. ACM,
2015.

Lindell, Yehuda. How To Simulate It – A Tutorial on the
Simulation Proof Technique. IACR Cryptology ePrint
Archive, 2016:46, 2016.

Lindell, Yehuda and Pinkas, Benny. A Proof of Security of
Yao’s Protocol for Two-Party Computation. J. Cryptology,
22(2):161–188, 2009.

Liu, Jian, Juuti, Mika, Lu, Yao, and Asokan, N. Oblivious
neural network predictions via minionn transformations.
In CCS, pp. 619–631. ACM, 2017.

Manning, Christopher, Raghavan, Prabhakar, and Schütze,
Hinrich. Scoring, term weighting and the vector space
model. In Introduction to information retrieval, pp. 100–
122. 2008.

Marujo, Luı́s, Portelo, José, de Matos, David Martins, Neto,
João Paulo, Gershman, Anatole, Carbonell, Jaime G.,
Trancoso, Isabel, and Raj, Bhiksha. Privacy-preserving
important passage retrieval. In PIR@SIGIR, volume
1225 of CEUR Workshop Proceedings, pp. 7–12. CEUR-
WS.org, 2014.

McSherry, Frank and Talwar, Kunal. Mechanism design
via differential privacy. In FOCS, pp. 94–103. IEEE
Computer Society, 2007.

Mohassel, Payman and Zhang, Yupeng. SecureML: A sys-
tem for scalable privacy-preserving machine learning. In
IEEE Symposium on Security and Privacy, pp. 19–38.
IEEE Computer Society, 2017.

Murugesan, Mummoorthy, Jiang, Wei, Clifton, Chris, Si,
Luo, and Vaidya, Jaideep. Efficient privacy-preserving
similar document detection. VLDB J., 19(4):457–475,
2010.

Nikolaenko, Valeria, Ioannidis, Stratis, Weinsberg, Udi,
Joye, Marc, Taft, Nina, and Boneh, Dan. Privacy-
preserving matrix factorization. In ACM Conference on
Computer and Communications Security, pp. 801–812.
ACM, 2013a.

Nikolaenko, Valeria, Weinsberg, Udi, Ioannidis, Stratis,
Joye, Marc, Boneh, Dan, and Taft, Nina. Privacy-
preserving ridge regression on hundreds of millions of
records. In IEEE Symposium on Security and Privacy, pp.
334–348. IEEE Computer Society, 2013b.

Pedregosa, Fabian, Varoquaux, Gaël, Gramfort, Alexandre,
Michel, Vincent, Thirion, Bertrand, Grisel, Olivier, Blon-
del, Mathieu, Prettenhofer, Peter, Weiss, Ron, Dubourg,
Vincent, VanderPlas, Jake, Passos, Alexandre, Courna-
peau, David, Brucher, Matthieu, Perrot, Matthieu, and
Duchesnay, Edouard. Scikit-learn: Machine Learning
in Python. Journal of Machine Learning Research, 12:
2825–2830, 2011.

Powers, David M. W. Applications and explanations of
zipf’s law. In CoNLL, pp. 151–160. ACL, 1998.

Qi, Yinian and Atallah, Mikhail J. Efficient privacy-
preserving k-nearest neighbor search. In ICDCS, pp.
311–319. IEEE Computer Society, 2008.

Riazi, M. Sadegh, Chen, Beidi, Shrivastava, Anshumali,
Wallach, Dan S., and Koushanfar, Farinaz. Sub-linear
privacy-preserving search with untrusted server and semi-
honest parties. CoRR, abs/1612.01835, 2016.

Rong, Hong, Wang, Huimei, Liu, Jian, and Xian, Ming.
Privacy-preserving k-nearest neighbor computation in
multiple cloud environments. IEEE Access, 4:9589–9603,
2016.

Songhori, Ebrahim M., Hussain, Siam U., Sadeghi, Ahmad-
Reza, and Koushanfar, Farinaz. Compacting privacy-
preserving k-nearest neighbor search using logic synthe-
sis. In DAC, pp. 36:1–36:6. ACM, 2015.

Yao, Andrew Chi-Chih. How to Generate and Exchange
Secrets (Extended Abstract). In FOCS, pp. 162–167.
IEEE Computer Society, 1986.

Zahur, Samee and Evans, David. Obliv-C: A Language for
Extensible Data-Oblivious Computation. IACR Cryptol-
ogy ePrint Archive, 2015:1153, 2015.

Private Nearest Neighbors Classification in Federated Databases

A. Security
The following definition of security against semi-honest ad-
versaries for two-party computation was adapted from (Gol-
dreich, 2004). See also (Lindell, 2016). Note that in the orig-
inal definition, the ensembles in (1) are also parametrized
by a security parameter. For clarity of presentation, we omit
it in the definition below and in our proofs.

A probabilistic two-party functionality is a function F :

{0, 1}∗ × {0, 1}∗ → {0, 1}∗ × {0, 1}∗. Let F(x, y)
def.
=

(F1(x, y),F2(x, y)). For each party i ∈ {1, 2}, Fi takes
both parties’ inputs x, y and returns the output Fi(x, y)
to Party i. Let Π be a protocol that computes F . Let
outputΠ(x, y) =

(
outputΠ1 (x, y), outputΠ2 (x, y)

)
denote

the combined output of Π. Additionally, each party
has a view on the protocol execution that is denoted by
viewΠ

i (x, y) and contains Party i’s inputs, internal random
state, and all received messages.

Now, a simulator Si is a probabilistic polynomial-time algo-
rithm that takes as arguments the inputs of Party i, and the
functionality’s output to Party i, i. e. Fi(x, y). Using these,
Si generates a view for party i. If such a simulator exists
for each party and they satisfy

{(
Si(x,Fi(x, y)),F(x, y)

)}
x,y

c≡{(
viewΠ

i (x, y), outputΠ(x, y)
)}

x,y
(1)

then Π privately computesF (Goldreich, 2004). Here,
c≡ de-

notes computational indistinguishability as defined in (Gol-
dreich, 2004; Lindell, 2016).

B. Baseline Protocol
B.1. Remarks on notation

Given a set of parties S ⊆ {1, . . . , n} and a value v ∈ Zq,
we write [[v]]S to denote that v is additively shared among
the parties in S, as defined in Section 4. We identify the
shared value with the collection of shares and write [[v]]S =
([[v]]Si : i ∈ S) where [[v]]Si is known only to the ith party.
When S is clear from the context we shall just write [[v]]
and [[v]]i.

B.2. k-NN Without Exploiting Sparsity

Here, we describe a custom MPC protocol for private docu-
ment classification that is already significantly faster than
a naive implementation using generic MPC, but does not
exploit the optimizations we describe in Sections 3 and 4.
We use it as a baseline in our experiments (Section 5). The
main building blocks are arithmetic share computations and
an existing method for private matrix-vector multiplication.

We split the computation into two phases. The setup
phase (1) is run by the servers holding the distributed dataset
Z and independent of any document classifications. Hence,
its cost is amortized across all executions of the classifica-
tion phase (2), which is executed once for each query from
the client.

The key idea behind the setup phase is to pre-compute the
values

gj,v = φtf(v, xj)φidf(v, Z)2

hj,v = φidf(v, Z)2‖ψ(xj)‖2

for each xj ∈ Z and v ∈ V . These can then be used in
the classification phase to simplify the computation of the
scores in the k-NN classifier. It can be readily seen that for
a new document d,

sj(d) =
〈ψ(d), ψ(xj)〉2

‖ψ(d)‖2‖ψ(xj)‖2
=

(
∑
v gj,vφtf(v, d))2∑
v hj,vφtf(v, d)2

.

Thus, by arranging the pre-computed values into twom×|V|
matrices G and H, we reduce the computation of the scores
sj(d), j ∈ {1, . . . ,m}, to the entry-wise division of the
matrix-vector products Gφtf(d) and Hφtf(d)2. However,
we do not compute that quocient explicitely. Using the fact
that a/b ≥ c/d =⇒ ad ≥ cd even allows us replace this
division by more efficient multiplications.

Let us ignore the details of how to implement the setup
phase – which we will explain later – and assume that at
the end of the setup phase (see below), each server i holds
shares [[G]]Si , [[H]]Si of the matrices G and H. We use
these and a matrix vector multiplication sub-protocol MULT
(Section B.3, implement the classification phase described
in Protocol 2. It exploits the structure of arithmetic shares
to compute shares of Gφtf(d) and Hφtf(d)2 via a series
of 2-party computations. In particular, the protocol uses
that if server i and the client (with index 0) collaborate
to obtain arithmetic shares [[[[G]]iφtf(d)]]{0,i}, then using∑n
i=1[[G]]i = G we have

Gφtf(d) =

(
n∑
i=1

[[[[G]]iφtf(d)]]
{0,i}
0

)

+

n∑
i=1

[[[[G]]iφtf(d)]]
{0,i}
i ,

where the first sum only involves shares owned by the client
and each term in the second sum is owned by a single server.
A similar observation holds for Hφtf(d)2. Now, we see
that computing shares of the scores sj(d) just requires the
parties to engage in a private computation to add their re-
spective shares of Gφtf(d) and Hφtf(d)2. These corre-
spond to shares m-dimensional vectors s and t such that

Private Nearest Neighbors Classification in Federated Databases

Protocol 2: Classification
Parties: S′ = {0, 1, . . . , n} with servers
S = {1, . . . , n} and a client 0
Input: (Server i) Shares [[G]]Si , [[H]]Si , and labels

Yi for the documents in Zi
Input: (Client) Document d to classify
Output: Client obtains predicted label for d

1: The client runs MULT([[G]]Si , φtf(d)) with
each server i ∈ S to produce shares
[[[[G]]Si φtf(d)]]{0,i}

2: Client locally computes

[[Gφtf(d)]]S
′

0 =

n∑
i=1

[[[[G]]Si φtf(d)]]
{0,i}
0

and each server i locally defines
[[Gφtf(d)]]S

′

i = [[[[G]]Si φtf(d)]]
{0,i}
i

3: Client runs MULT([[H]]Si , φtf(d)2) with
each server i ∈ S to produce shares
[[[[H]]Si φtf(d)2]]{0,i}

4: Client locally computes

[[Hφtf(d)2]]S
′

0 =

n∑
i=1

[[[[H]]Si φtf(d)2]]
{0,i}
0

and each server i locally defines
[[Hφtf(d)2]]S

′

i = [[[[H]]Si φtf(d)2]]
{0,i}
i

5: All parties run a generic MPC protocol with in-
puts [[Gφtf(d)]]S

′
, [[Hφtf(d)2]]S

′
, and Y to com-

pute the scores sj(d) and obtain the label ỹ for
d, which is revealed only to the client

sj/tj = sj(d), i.e. the score of document xj ∈ Z. A naive
approach to find the top k scores and compute majority re-
quires 2|Z|k multiplications and k|Z| comparisons (recall
that computing division is easily avoided). This can be eas-
ily implemented efficiently in a generic MPC protocol (cf.
Section 5).

B.3. Dense Matrix Multiplication

We use the matrix multiplication protocol of Mohassel &
Zhang (2017), which we show in Protocol 3 and state its
correctness in Theorem 6.

The protocol works in the so-called preprocessing model,
a common paradigm in MPC which delegates part of the
computation to a data-independent offline phase, denoted
by FOFF. In Protocol 3, this refers to the computation of
U, V and [[UV]]i, which can be done in advance without
knowledge of A or B. Such approach is applicable in all
circumstances in the context of our document classification
protocol, but becomes especially appropriate if the client
in the classification phase is in fact one of the servers. In

Protocol 3: Dense MULT
Parties: 1, 2.
Input: Party 1: A ∈ Zl×mq ; Party 2: B ∈ Zm×nq

Preprocessed: Party 1: random U ∈ Zl×mq

Party 2: random V ∈ Zm×nq

Party i: [[UV]]i ∈ Zl×nq

Output: Party i : [[AB]]i ∈ Zl×nq

1: Party 1 computes U, [[UV]]1 ← FOFF(l,m, n)
and sends E = A−U

2: Party 2 computes V, [[UV]]2 ← FOFF(l,m, n)
and sends F = B−V

3: Party 1 sets [[AB]]1 = EF + UF + [[UV]]1
4: Party 2 sets [[AB]]2 = EV + [[UV]]2;

that case, the number of potential clients is limited and the
offline phase can be performed preemptively as part of the
setup phase.

Theorem 6 (Beaver, 1991; Mohassel & Zhang, 2017). As-
suming a secure implementation of FOFF, Protocol 3 imple-
ments FMULT with security against semi-honest adversaries.

C. Details from Section 3
C.1. Proof of Theorem 2

Theorem 2. For any ε0 ∈ (0, 0.9] and δ ∈ [0, 1] the Algo-
rithm 1 is (ε, δ)-DP with

ε = min

{
2Lε0, 2Lε

2
0 +

√
4Lε2

0 log(1/δ)

}
.

Proof. Note that for any pair of neighboring datasets Z '
Z ′ we have |cv − c′v| ≤ 1. Thus, the analysis of the ex-
ponential mechanism implies that releasing each selected
word v is ε0-DP. Furthermore, the analysis of the Laplace
mechanism implies that releasing each c̃v for each selected
word is ε0-DP. Note also that the values released for the
words which are not selected are independent of the dataset
Z. Thus, the result follows by applying the advanced com-
position theorem with 2L queries (Dwork et al., 2010).

C.2. Proof of Theorem 3

Theorem 3. Let c0 = Θ(
√
m). If m is large enough, then

with high probability we have

‖φidf − φ̃idf‖1
‖φidf‖1

≤ Õ
(
L

V

1

ε0m
+

(
1− L

V

)
log(m)

)
.

Recall that as input our mechanism receives counts {cv :
v ∈ V} estimated on a Z database with m labelled docu-
ments x1, . . . , xm over vocabulary V of size V = |V|. For

Private Nearest Neighbors Classification in Federated Databases

the utility analysis we will assume a distributionD over doc-
uments such that the xi are i.i.d. Using D we can define the
word occurrence probabilities pv = Px∼D[v ∈ x] so that the
expected counts can be written as E[|Z|v] = E[cv] = mpv.
Using these probabilities we can define an order on the vo-
cabulary V = {v1, . . . , vV } in such a way that pv1

≥ pv2
≥

· · · ≥ pvV . To simplify our notation throughout the proof
we define φv = φidf(v, Z) and φ̃v = φ̃idf(v, Z).

We start by splitting the vocabulary V into two parts: the
set of words Vs selected by the exponential mechanism, and
the set of not selected words Vs̄ = V \ Vs. Note that by
definition we have |Vs| = L. The main idea behind our
analysis of the error between the private and the non-private
IDFs is to consider the words in Vs and Vs̄ separately. The
error for words in the former depends on Laplace noise
added to cv, which the error for words in the later depends
on the difference between the default value c0 and the true
count cv. The first source of error can be controlled by
bounding the noise added by the Laplace mechanism. To
control the second source of error we will need to make sure
that most of the words in Vs̄ have counts not too far from
c0.

We start by recalling well-known facts about the Laplace
and the exponential mechanism.

Lemma 1. With probability at least 1− γl we have |cv −
c̃v| ≤ ∆l simultaneously for all words v ∈ Vs, where
∆l = log(L/γl)/ε0.

Proof. See (Dwork & Roth, 2014, Theorem 3.8).

Lemma 2. Let c(L) denote the Lth greatest word count in
{cv : v ∈ V}. With probability at least 1 − γe, if v ∈ Vs,
then cv ≥ c(L) −∆e, where ∆e = 2 log(LV/γe)/ε0.

Proof. The proof follows the same structure as the classical
utility analysis for the exponential mechanism (McSherry &
Talwar, 2007, Lemma 7).

Lemma 3. With probability at least 1− γL we have c(L) ≥
mpvL −∆L, where ∆L =

√
2m log(L/γL).

Proof. First note that by definition of c(L) we have

P[c(L) < mpvL −∆L] ≤ P
[

min
i∈[L]

cvi < mpvL −∆L

]
≤
∑
i∈[L]

P[cvi < mpvL −∆L] .

Since E[cvi] = mpvi ≥ mpvL for any i ∈ [L], by the
Chernoff bound we have

P[cvi < mpvL −∆L] ≤ P[cvi < mpvi −∆L]

≤ exp

(
− ∆2

L

2mpvi

)
≤ γL

L
.

The result follows.

Lemma 4. Suppose we have cv ≥ mpvL −∆L −∆e for
every word v ∈ Vs. Then with probability at least 1− γl we
have the following:∑

v∈Vs

|φv − φ̃v| ≤
L∆l

mpvL −∆L −∆e −∆l
.

Proof. Note that by the expression for the smoothed IDFs,
for any v ∈ V we have

|φv − φ̃v| =
∣∣∣∣log

(
c̃v + 1

cv + 1

)∣∣∣∣ .
Now, by combining the assumption cv ≥ mpvL −∆L−∆e

and Lemma 1 we see that with probability at least 1 − γl
the following is simultaneously satisfied for all v ∈ Vs:

c̃v ≥ cv −∆l

≥ c(L) −∆e −∆l

≥ mpvL −∆L −∆e −∆l .

Thus, using that for 0 ≤ y < x we have log(x)− log(x−
y) ≤ y/(x− y), we get∣∣∣∣log

(
c̃v + 1

cv + 1

)∣∣∣∣ ≤ log

(
cv + 1

cv −∆l + 1

)
≤ ∆l

cv −∆l

≤ ∆l

mpvL −∆L −∆e −∆l
.

The result follows from noting that |Vs| = L.

Lemma 5. Suppose m is large enough to satisfy the follow-
ing inequality:

m ≥
(

1

pvL−pvL+1

(√
3pvL+1

log((V − L)/γs̄)

+
√

2 log(L/γL)

+ 2 log(LV/γe)/ε0

√
m
))2

.

With probability at least 1 − γs̄ we have cvi < mpvL −
∆L −∆e for every i > L.

Private Nearest Neighbors Classification in Federated Databases

Proof. First note that an application of the Chernoff bound
together with a union bound shows that simultaneously for
all L < i ≤ V we have, with probability at least 1− γs̄:

cvi < mpvi + ∆s̄

≤ mpvL+1
+ ∆s̄ ,

where ∆s̄ =
√

3mpvL+1
log((V − L)/γs̄). The result fol-

lows by plugging in the definitions of ∆L and ∆e and ob-
serving that the constraint on m implies

mpvL+1
+ ∆s̄ ≤ mpvL −∆L −∆e .

Note that the constraint on m above is satisfied by taking

m = Ω̃

(
log(LV)

ε0(pvL − pvL+1
)2

)
, (2)

where the notation Ω̃(·) hides constants and logarithmic
terms in 1/γs̄, 1/γL, and 1/γe.

Lemma 6. Suppose we have cv < mpvL −∆L −∆e for
every word v ∈ Vs̄. Then the following holds:

∑
v∈Vs̄

|φv − φ̃v| ≤

O

(
(V − L) max

{
log(c0), log

(
mpvL−∆L−∆e

c0

)})
.

Proof. Recall that for every word v ∈ Vs̄ the mech-
anism outputs c̃v = c0. Furthermore, by assumption
we have 0 ≤ cv < mpvL − ∆L − ∆e, which yields:

|φv − φ̃v| =
∣∣∣∣log

(
c0 + 1

cv + 1

)∣∣∣∣
≤ max

{
log(c0 + 1), log

(
mpvL −∆L −∆e + 1

c0 + 1

)}
= O

(
max

{
log(c0), log

(
mpvL −∆L −∆e

c0

)})
.

The result follows by noting that |Vs̄| = V − L.

Theorem 7. Suppose m satisfies (2) and c0 =√
mpvL −∆L −∆e. Let γ = γl + γe + γL + γs̄. With

probability at least 1− γ we have

‖φidf − φ̃idf‖1
‖φidf‖1

≤ Õ
(
L

V

1

ε0m
+

(
1− L

V

)
log(m)

)
.

Proof. By decomposing the L1 distance according to the
partition V = Vs ∪ Vs̄ and plugging the bounds from Lem-

mas 4 and 6 we get

‖φidf − φ̃idf‖1 =
∑
v∈V
|φv − φ̃v|

=
∑
v∈Vs

|φv − φ̃v|+
∑
v∈Vs̄

|φv − φ̃v|

≤ L∆l

mpvL −∆L −∆e −∆l

+ (V − L)O
(

log(mpvL −∆L −∆e)
)
.

Note that the conditions to apply these lemmas hold simul-
taneously with probability at least 1− γ by Lemmas 1, 2, 3,
and 5. Next we observe that by the definition of φidf(v, Z)
we have ‖φidf‖1 ≥ V . The result now follows by plug-
ging the expression for ∆l, ∆e, and ∆L into the bound
above, and using the notation Õ(·) to hide constants and
logarithmic terms not involving m.

D. Details from Section 4
The implementation of the local computations of the pro-
tocol in Figure 1 is straight-forward. As is FMULT, which
is described by Mohassel & Zhang (2017). The remaining
piece is therefore the two-party functionality F PERM that
generates correlated permutations.

D.1. Implementing FPERM

A first step is the observation that we only require the output
to each party alone to be a uniformly random permutation.
Thus, F PERM can generate one of the permutations randomly,
and derive the other deterministically from it. A detailed
description of F PERM is given in Algorithm 4.

Algorithm 4: F PERM

Parties: 1, 2.
Input: Party 1: IColA , Party 2: IRowB

Output: Permutations π1 (Party 1) and π2 (Party 2)

1: Choose a permutation π of {1, . . . , lA + lB}
uniformly at random

2: Compute the function

ρ : {1, . . . , lA} → {1, . . . , lA + lB},

ρ(i) =

{
π(j) if

(
IColA

)
i

=
(
IRowB

)
j

π(lB + i) if no such j exists

3: Extend ρ to a random permutation π1 of
{1, . . . , lA + lB} by mapping all elements i >
lA to uniformly random unmapped elements of
its codomain

4: Output π1 to Party 1 and π2 = π to Party 2

Private Nearest Neighbors Classification in Federated Databases

By the construction of ρ in Step 2, it is clear that the condi-
tion from Figure 1, that matching indexes get mapped to the
same position, holds for π1 and π2. We now prove that the
outputs to both parties are indeed random permutations.

Theorem 8. For any input sets IColA and IRowB of size lA
and lB, and any party i ∈ {1, 2}, πi = F PERM

i

(
IColA , IRowB

)
is a uniformly random permutation of {1, . . . , lA + lB}.

Proof. Case i = 1. By the definition in Step 2 in Algo-
rithm 4, ρ is constructed by selecting lA different map-
pings from a uniformly random permutation. Clearly,
each of the (lA + lB)! / lB! possible functions is se-
lected with equal probability. The extension of ρ in
Step 3 reduces to selecting a uniformly random per-
mutation of lB elements. Thus, the claim follows by a
simple counting argument.

Case i = 2 follows immediately from Step 1 and π2 = π.

We use Yao’s Garbled Circuit protocol (Yao, 1986) to im-
plement Algorithm 4. To find matching indexes in Step 2,
we use the Sort-Compare-Shuffle approach of Huang et al.
(2012). Since we operate in the semi-honest model, we
further employ the following optimizations:

1. Instead of choosing π inside the Garbled Circuit, we
let Party 2 choose it locally and use it as an input. Note
that this is trivially simulatable since π = π2 is Party
2’s output.

2. Similarly, we reveal ρ to Party 1 and let it perform
Step 3 locally. Again, simulating ρ it trivial by restrict-
ing π1 to {1, . . . , lA}.

Together with the security of Yao’s protocol in the semi-
honest model (Lindell & Pinkas, 2009), security of our
implementation of F PERM follows.

D.2. Correctness of Sparse Matrix Multiplication

Theorem 4 (Correctness). For any A ∈ Zl×mq , B ∈ Zm×nq ,
let Ã, B̃ be constructed according to the protocol described
in Figure 1. Then AB = ÃB̃.

Proof. By construction of Ã, for all i ∈ {1, . . . , l} and all
j ∈ {1, . . . , n},

(ÃB̃)ij =

lA+lB∑
k=1

ãik b̃kj =

lA+lB∑
k=1

âiπ−1
1 (k)b̂π−1

2 (k)j .

From the definition of F PERM, for any pair (k1, k2) :=(
π−1

1 (k), π−1
2 (k)

)
, k ∈ {1, . . . , lA + lB}, one of the fol-

lowing cases holds.

Case 1 k1 ≤ lA and k2 ≤ lB. Then there is a unique
k′ ∈ {1, . . . ,m} such that

(
IColA

)
k1

=
(
IRowB

)
k2

= k′

and âik1 b̂k2j = aik′bk′j .

Case 2 k1 > lA or k2 > lB. Then âik1
or b̂k2j are zero,

and thus âik1 b̂k2j = 0.

On the other hand, for any k′ ∈ {1, . . . ,m} with aik′bk′j 6=
0, there is a pair (k1, k2) with (IColA)k1 = (IRowB)k2 = k′

and thus a unique k ∈ {1, . . . , lA + lB} s.t. π1(k1) =
π2(k2) = k. Therefore,

(ÃB̃)ij =
∑

k′∈IColA ∩I
Row
B

aik′bk′j = (AB)ij .

D.3. Security of Sparse Matrix Multiplication

Theorem 5 (Security). Given public sparsity values lA, lB
and implementations of FMULT and F PERM that are secure
against semi-honest adversaries, the protocol in Figure 1
implements FMULT with security against semi-honest adver-
saries.

Proof. We only give the proof for the view of Party 1. By
symmetry, the proof for Party 2 follows analogously. Our
proof uses the standard simulation paradigm for crypto-
graphic protocols (Goldreich, 2004; Lindell, 2016) intro-
duced in Section A. For a functionality F and a protocol Π,
we denote the output to player i of an execution with inputs
x, y by Fi(x, y) and outputΠi (x, y), respectively.

Using Simulators SMULT
1 ,SPERM

1 , we construct a simulator
SΠ

1 in the ideal model that simulates Party 1’s view on the
Protocol in Figure 1, including calls to sub-protocols:

viewΠ
1 (A,B) =(
A, viewPERM

1 (IColA , IRowB), π1, view
MULT
1 (Ã, B̃)

)
.

Upon receiving input A and output FMULT
1 (A,B), the sim-

ulator SΠ
1 :

1. computes IColA , the indices of non-zero columns of A,

2. samples a permutation π′1 of {1, . . . , lA + lB} uni-
formly at random,

3. computes Ã′ by padding and applying π′1 to A accord-
ing to the Protocol in Figure 1, and

4. outputs(
A,SPERM

1 (IColA , π′1), π′1,SMULT
1

(
Ã′,FMULT

1 (A,B)
))

.

Private Nearest Neighbors Classification in Federated Databases

It remains to be shown that the output of SΠ
1 together with

the ideal functionality outputs is indistinguishable from the
view on the real protocol and its outputs, i.e.,

SIM :=
(
SΠ

1 (A,FMULT
1 (A,B)),FMULT(A,B)

) c≡(
viewΠ

1 (A,B), outputΠ(A,B)
)

=: REAL. (3)

We use a standard hybrid argument to show (3). That is,
we construct a series of hybrid random variables REAL =:

H0, . . . ,H4 := SIM, such that Hi
c≡ Hi−1 for i ∈

{1, . . . 4}.

H1: This hybrid is identical to REAL, except that we re-
place the execution of MULT(Ã, B̃) with a call to
FMULT(Ã, B̃) and use SMULT

1 to simulate the view of
Party 1. The security of MULT implies that this is
computationally indistinguishable from H0.

H2: Instead of FMULT(Ã, B̃), we call FMULT(A,B).
Since, by definition, the components C1,C2 of the
output of FMULT(A,B) are uniformly random with the
constraint C1 + C2 = AB, using ÃB̃ = AB from
Theorem 4 is enough to conclude H1

c≡ H2.

H3: We use F PERM
1 (IColA , IRowB) to replace π1 =

outputPERM
1 (IColA , IRowB) and use SPERM

1 to simulate
viewPERM

1 (IColA , IRowB). Indistinguishability from H2

follows from the security of PERM.

H4: Finally, we replace F PERM
1 (IColA , IRowB) with a uni-

formly random permutation π′1 of {1, . . . , lA + lB},
and Ã by Ã′ as defined in Step 3 above. Note that this
hybrid is equal to SIM.

F PERM
1 (IColA , IRowB) is uniformly random (Theorem 8),

and thus identically distributed to π′1. Since Ã′ is de-
rived from (π′1, A) in the same deterministic way that
Ã is computed from

(
F PERM

1 (IColA , IRowB), A
)
, these

two are also identically distributed. Therefore, H4
c≡

H3.

By transitivity of computational indistinguishability,
REAL

c≡ SIM follows.

