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Abstract. In this paper, we connect two interesting problems in the
domain of Information-Theoretic Cryptography: “Non-malleable Codes”
and “Privacy Amplification”. Non-malleable codes allow for encoding a
message in such a manner that any “legal” tampering will either leave the
message in the underlying tampered codeword unchanged or unrelated to
the original message. In the setting of Privacy Amplification, we have two
users that share a weak secret w guaranteed to have some entropy. The
goal is to use this secret to agree on a fully hidden, uniformly distributed,
key K, while communicating on a public channel fully controlled by an
adversary.
While lot of connections have been known from other gadgets to NMCs,
this is one of the first few results to show an application of NMCs to
any information-theoretic primitive (other than a natural application to
tamper resilient storage). Specifically, we give a general transformation
that takes any augmented non-malleable code and builds a privacy am-
plification protocol. This leads to the following results:
(a) Assuming the existence of constant rate two-state augmented non-

malleable code with optimal error 2−Ω(κ) there exists a 8-round pri-
vacy amplification protocol with optimal entropy loss O(log(n) + κ)
and min-entropy requirement Ω(log(n) +κ) (where κ is the security
parameter). In fact, “non-malleable randomness encoders” suffice.

(b) Instantiating our construction with the current best known aug-
mented non-malleable code for 2-split-state family [Li17], we get a
8-round privacy amplification protocol with entropy loss O(log(n) +
κ log(κ)) and min-entropy requirement Ω(log(n) + κ log(κ)).

1 Introduction

The field of Information-theoretic Cryptography has seen a flurry of exciting
research activity in recent times, specifically on the problems of Non-malleable
Codes and Privacy Amplification. Non-malleable codes were introduced in the
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work of Dziembowski, Pietrzak and Wichs [DPW10] and provide an encoding
mechanism with the following guarantee: errors caused to the codeword will
render the underlying data either independent of the original encoded message
or leave it unchanged. NMCs are defined with respect to a class of tampering
families F . The class of tampering families most relevant to this work is the “2-
Split-state” family where the codeword consists of two states L and R and the
tampering family consists of two functions f and g, each acting independently on
L and R respectively. A parameter of importance for any non-malleable coding
scheme is its rate (= message length

codeword length ). Of late, there has been tremendous research
in building non-malleable codes with low-rate for various tampering function
families, in particular, the 2-Split-state model. Researchers have also explored
connections of other primitives, such as “2-source Non-malleable Extractors”
to NMCs. Yet, in spite of the interest in non-malleable codes, to this date,
to the best of our knowledge, there hasn’t been a single application of non-
malleable codes to building any other information-theoretic primitive. The main
challenge of using NMCs is that they are typically secure only with respect to
a restricted class of tampering functions (such as 2-split state tampering). Most
natural applications will require arbitrary tampering of the entire codeword. We
overcome this challenge and present an important application of NMCs, namely
to building Privacy Amplification Protocols.

We now describe the problem of Privacy Amplification, introduced by Ben-
nett, Brassard and Robert [BBR88]. In this setting, we have two parties, Alice
and Bob, who share a common string w, that is only guaranteed to be en-
tropic. The main question that is asked is the following: How can Alice and
Bob use w to communicate over a public channel that is fully controlled by a
computationally-unbounded adversary, Eve, and still agree on a key K whose
distribution is close-to-uniform? This problem has received renewed attention
in recent years. While building privacy amplification protocols, there are two
main objectives that researchers have tried to meet: a) build protocols with as
low a round complexity as possible and b) extract a key K that is as long as
possible. To achieve the latter objective, a natural goal is therefore to minimize
the “entropy loss” that occurs due to the protocol.

Our main result in this work is that we show how to build privacy amplifi-
cation protocols from non-malleable codes, specifically those with the so-called
“augmented” security which we explain later. The protocol has 8 rounds and
its entropy loss of is related to the rate of the non-malleable code. Furthermore,
even though our main protocol is presented in terms of non-malleable codes we
can also use the weaker notion of Non-malleable Randomness Encoders in the
place of non-malleable codes. Non-mallebale Randomness Encoders (NMREs)
were introduced by Kanukurthi, Obbattu and Sekar [KOS18] and, informally,
allow for non-malleable encoding of “pure randomness”. There is evidence to
suggest that it is easier to build NMREs (with good parameters) than NMCs:
specifically, while we know how to build constant-rate NMREs in the 2-Split
State Model, a similar result for NMCs has proven elusive in spite of significant
interest and effort in the research community. Informally, following are the key
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results we obtain:
Informal Theorem A: Assuming the existence of constant rate two-state
augmented non-malleable code with optimal error 2−Ω(κ), there exists a 8-round
privacy amplification protocol with optimal entropy loss O(log(n) + κ) and min-
entropy requirement Ω(log(n) + κ) (where κ is the security parameter).
In fact, we obtain the same result with exactly the same parameters with use of
just “non-malleable randomness encoders(NMREs)”.
Informal Theorem B: Assuming the existence of constant rate, two-state aug-
mented non-malleable randomness encoder with optimal error 2−Ω(κ) there exists
a 8-round privacy amplification protocol with optimal entropy loss O(log(n) +κ)
and min-entropy requirement Ω(log(n) + κ).
Informal Theorem C: Instantiating our construction with the current best
known augmented non-malleable code for 2-split-state family [Li17], we get a
8-round privacy amplification protocol with entropy loss O(log(n)+κ log(κ)) and
min-entropy requirement Ω(log(n) + κ log(κ)).

1.1 Prior Work on Privacy Amplification (PA)

Recall that the goal of privacy amplification is to enable two parties with a weak
(entropic) secret w to agree on a random key K whose distribution is close to
uniform. The protocol communication takes place in the presence of a computa-
tionally unbounded adversary, Eve, who has complete power to insert, delete or
modify messages. Intuitively, a privacy amplification protocol is considered to be
secure if any such adversarial tampering of the communication is either detected
by one of the honest parties or, if undetected, both parties do agree on the same
“secure” key, i.e., one that is guaranteed to be close to uniform from the Eve’s
point of view. It is no surprise that strong randomness extractors (introduced
by Nissan and Zuckerman [NZ96]), which transform non-uniform randomness
into uniform randomness by using a short uniformly chosen seed, play a huge
role in the design of privacy amplification protocols. Specifically, in the setting
where Eve is a passive adversary [Mau93,BBR88,BBCM95], strong randomness
extractors offer a one round solution to the above problem, which is optimal (in
terms of entropy loss and min-entropy requirements).

In the setting where Eve is an active adversary, a one-round solution to the
problem was first given by Maurer and Wolf [MW97] with min-entropy require-
ment of kmin > 2n/3, where kmin is the starting min-entropy requirement and
n is the length of w. This was later improved in Dodis, Katz, Reyzin and Smith
[DKRS06] (with min-entropy requirement of kmin > n/2). The negative results
by [DS02,DW09] show that there is no non-interactive (one-round) solution for
this problem when the entropy of the weak secret is kmin ≤ n/2. Hence, for
kmin ≤ n/2, researchers explored the use of interaction to design privacy ampli-
fication protocols.

In the interactive setting with an active adversary, there are two major lines
of work. The first line of constructions began with the protocol given by Ren-
ner and Wolf [RW03] who gave a protocol with an entropy loss of Θ(κ2) and
takes Θ(κ) rounds of communication, where κ is the security parameters. This
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was generalized by Kanukurthi and Reyzin [KR09]. In [CKOR10], Chandran,
Kanukurthi, Ostrovsky and Reyzin, used codes for Edit-distance Metric with
optimal rate to achieve the first protocol with an entropy loss of Θ(κ). The
high-level approach of Renner and Wolf’s protocol, which was followed in sub-
sequent works, was to first build an “interactive authentication protocol” which
authenticates the message bit-by-bit. This authentication protocol is then used
to authenticate a seed to a randomness extractor which is then used to extract
the final key K, thereby achieving privacy amplification. A natural limitation of
this approach is that it is highly interactive and requires Θ(κ) rounds.

The second line of constructions began with the privacy amplification proto-
col given by Dodis and Wichs [DW09]. They give an efficient two-round construc-
tion (i.e., with optimal round complexity) which has an entropy loss of Θ(κ2).
This work also introduces “seeded Non-malleable extractors (NME)”, which has
the property that the output of the extractor looks uniform, even given its value
on a related seed. Their approach for building two-round privacy amplification
protocols roughly works as follows: first, they send a seed to a NME which is
used to extract the key (k) to a non-interactive one-time message authentication
code. k is then used to authenticate a seed s to an extractor. The final shared key
K is evaluated by both parties, unless any tampering is detected, to be Ext(w; s).
In short, the approach of Dodis and Wichs leads to a Privacy amplification pro-
tocol with optimal round complexity of 2. Further, [DW09] give an existential
result that if one can efficiently construct non-malleable extractors with optimal
parameters, we get a two-round privacy amplification protocol with entropy loss
Θ(κ) and min-entropy requirement O(κ + log n). Subsequent to the existential
construction of Privacy Amplification given in [DW09], there was focus on im-
proving the parameters by giving explicit constructions of seeded non-malleable
extractors [DLWZ11,CRS12,Li12a,Li12b,Li15,CGL16,CL16,Coh16,Li17]. While
all these constructions give a 2-round privacy amplification protocol with opti-
mal entropy loss, the min-entropy requirement is not optimal.

Even with these existing connections , there is a significant gap between pa-
rameters of existing protocols and optimal parameters. In this work, we approach
to solve the privacy amplification problem with the use of “Non-malleable Ran-
domness encoders (NMRE)” (or “Non-malleable Codes (NMC)”). We explain
more about the connection in Section 1.3. As NMREs are seemingly “easier”
to build than NMCs (indeed, we already know how to build 2 state rate-1/2
NMREs from [KOS18]) and NMEs, we only need to additionally make these
NMREs have optimal error as well as “augmented” security, in order to conclu-
sively solve the long-standing open problem of building constant round privacy
amplification protocols with optimal entropy loss.

1.2 Overview of Research on NMCs and NMREs

We now give a brief overview of Non-malleable Codes. NMCs, introduced by
Dziembowski, Peitrzak and Wichs, guarantee that a tampered codeword will
decode to one of the following:
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– ⊥ i.e., the decoder detects tampering.
– the original message m itself i.e., the tampering did not change the message
– something independent of m

Since, as observed in [DPW10], NMCs cannot be built to be secure against
arbitrary, unrestricted tampering, researchers have explored the problem of
building NMCs for various classes of tampering families F . The most well-
studied model is the “t−split state” model where a codeword consists of t states
(C1, . . . Ct) and the tampering functions consists of t functions f1, . . . , ft. The
model permits independent tampering of each Ci via the function fi. (Each fi it-
self is not restricted in any way and, therefore, the model enables arbitrary but in-
dependent tampering of each state.) Over a series of works researchers have built
NMCs for varying values of t, where t = 2 represents the least restrictive model
of tampering and t = n, for codeword length n, represents the most restrictive
model [DPW10,CG14,ADL14,CZ14,ADKO15,AGM+15,Li17,KOS17,KOS18].
At the same time, researchers have also focused on building constructions
with good (low) rate. To this date, the problem of building constant rate
non-malleable codes in the 2-split state model remains open. In [KOS18], the
authors introduced a notion called “Non-malleable Randomnes Encoders”
which allow for non-malleably encoding “pure randomness”. Furthermore, they
also present a construction of an NMRE with a constant rate of 1

2 . As we will
explain later, the rate of our NMCs/NMREs is closely linked to the entropy
loss of the resulting privacy amplification protocol.

Researchers have also explored connections of NMCs to other primitives, as
demonstrated by the following picture.

However, somewhat surprisingly, to the best of our knowledge, there isn’t a
single application of Non-malleable Codes to any existing information-theoretic
primitive1. One of the reasons for this is that the split-state model doesn’t allow
for arbitrary tampering when the whole codeword is visible, which most natural
applications might require. In this work, we present an application of augmented
NMCs (and NMREs) to Privacy Amplification. (Augmented non-malleable codes
are secure even if one of the states is leaked to the adversary after the tampering.)
We now give an overview of our techniques to build privacy amplification.

1 Recently, in [GK18], Goyal and Kumar introduce a new information theoretic primi-
tive called Non-malleable secret sharing and obtain a construction for the same from
Non-malleable codes.
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1.3 Technique for building PA from NMC.

In this work, we deviate from the approaches due to Renner and Wolf (of bit-wise
authentication) as well as Dodis and Wichs (of using Non-malleable Extractors)
and present a new technique to obtain privacy amplification from (augmented)
Non-malleable Codes. (We will use certain elements of Renner and Wolf’s ap-
proach, which we will describe shortly.) Just as in prior works, the heart of the
protocol consists of an authentication protocol from which we can easily obtain
a privacy amplification protocol. So for the rest of this discussion, we restrict our
attention to interactive authentication and describe our protocol for the same
at a high level. Suppose Bob wants to authentically send a message m to Alice.
Alice intiates the protocol by picking a random key k for the MAC, encodes it
into (L,R) using a non-malleable code and sends it to Bob. Bob can then au-
thenticate his message using the received key for the MAC and send the message
and the tag to Alice. In order to be able to use the MAC security, we must ensure
that the MAC key k looks uniform even given the information leaked through
the communication channel. It seems natural that the use of non-malleable codes
would ensure that even if Eve tampers the channel, Bob would either get the
original key or an independent key k. In such a case, the tag evaluated using
the MAC key k′ will not help Eve in successfully forging a tag for a modified
message. While this might seem natural, herein lies the first challenge. In or-
der to use the non-malleability of the NMC, the tampering done by Eve must
look like a split-state tampering. If the two states of the non-malleable code are
sent directly, the tampering of at least one of them would be dependent on the
other, and hence will not be a split-state tampering. Hence, we must find a way
to capture this tampering in the interactive setting as a split-state tampering.
More intuitively, we need to “amplify” the limited two-state non-malleability
to arbitrary unbounded non-malleability. This is the major challenge and the
reason for our protocol being a bit complex.

To understand how we overcome this challenge, for the sake of simplicity, we
will, for now, assume that the adversary is synchronous. Recall that the protocol
starts with Alice encoding a MAC key k into (L,R). Since she can’t send both
simultaneously to Bob (as it would violate split-state tampering), suppose she
first sends the state R. The idea then is that Alice will mask R with a one-time
pad that she extracts. Specifically, in this modified protocol, Alice initiates the
protocol by picking a seed xR and sending it to Bob. She then uses this seed (as
well as her secret w) to extract a mask yR to hide R. Alice sends this masked
string ZR = R ⊕ YR to Bob. In the next round, Alice sends the other state
L. Finally, Bob uses the received seed in the first step to unmask and get R′

and decodes the codeword received to get k′. The main challenge in the security
proof is to show that the tampering on L and R can now be captured as two-
split-state tamperings. Further, as L is revealed to the adversary, we require the
non-malleability to hold, even given the state L. Hence, we require an augmented
non-malleable code.

Showing that the above protocol is secure against a synchronous adversary
is in itself non-trivial. However, more complications arise when the adversary is
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asynchronous. Specifically, the order in which the messages are sent to Bob might
be altered and hence, the tampering of R itself may end up being dependent on L.
To resolve this issue, we borrow the concept of “liveness tests” which was implicit
in the protocol due to [RW03] and made explicit in [KR09]. A “Liveness Test” is
a two round protocol played between Alice and Bob to ensure that Bob is alive in
the protocol. It works as follows: Alice sends the seed to a randomness extractor x
as a challenge. Bob is expected to respond with Ext(w;x). The guarantee, which
follows from extractor security, is that if Bob doesn’t respond to the liveness
test, then Eve can’t respond to Alice on her own. It can be used to ensure
synchrony in the presence of an asynchronous adversary as follows: at the end of
each round from Alice to Bob, Bob will be expected to respond to the liveness
test. While this is the high level approach, this interleaving of the liveness test
and the choice of the messages sent in each round, needs to be done with care
to prevent dependency issues from arising.

With high-level intuition behind our construction described above we are able
to derive the results (Informal theorems A, B and C) mentioned in the beginning.

1.4 Overview of the Proof technique

The major challenge in the security proof is to capture the tampering made by
Eve as a split-state tampering of the two states. In order to justify this, our first
step is to prove that Eve is guaranteed to be caught with high probability, if
she behaves asynchronously and gains no more advantage than the synchronous
setting. We structure the protocol, so that all the useful information is sent
by Alice. This means we only have to ensure, through the liveness tests, that
Bob remains alive in between any two messages sent by Alice. Specifically, the
protocol begins by Alice sending a liveness test seed for a long extractor output.
At every subsequent step, Alice sends a message across to Bob only after Bob
responds to the liveness test correctly. Intuitively then, Eve cannot gain any
additional advantage in the asynchronous setting than in the synchronous setting
because of the following reasons. Firstly, as the useful information (seed of the
mask, the masked right state and then the left state) is only sent by Alice, Eve
can gain additional advantage if she manages to fool Alice by getting responses
from her, acting as Bob. But by extractor security, we show that Eve will not
be able to respond to the liveness tests on her own and hence cannot fool Alice
except with a negligible probability. On the other hand, if Eve tries to fool Bob
by acting as Alice and getting responses from him, then she actually gains no
additional information than what she would have in the synchronous setting.
This is because, by the nature of the protocol, the only information Bob sends
(until the last step) are liveness test responses, which gives no information about
the encoded message k.

Once we move into the analysis for the synchronous setting, we wish to
use the extractor security to guarantee that ZR (which is the masked right
state, i.e., R⊕Ext(W ;XR)) looks uniform and hence the tampering on L can be
defined independent of R. While intuitively this looks straight forward, the proof
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requires a careful analysis of the auxiliary information (which are, for example,
the liveness test responses), and a suitable use of extractor security to carefully
define the correct tampering functions acting on the two states. In particular,
once ZR is replaced by a uniformly chosen string and not the output of an
extractor, a challenge is to make the tampering of R consistent with the desired
tampering function. We accomplish this by carefully redefining the tampering
function acting on R so that it still remains split-state and, at the same time,
produces a consistent output as the original tampering function. Once this is
done, we use the non-malleability of the underlying NMCs to ensure that the
modified key k′, if altered, is independent of k. This helps us use the MAC
security for the desired robustness.

1.5 Independent Work

In a recent independent and concurrent work [Li18], Li obtains a 2 round pri-
vacy amplification protocol with optimal entropy loss and optimal min entropy
requirement, by building a seeded non-malleable extractor with better parame-
ters. This work lies in the second line of constructions that we mentioned in Sec-
tion 1.1. On the other hand, in this work, we provide an alternate construction
of constant round privacy amplification using NMCs/NMREs, which achieves
the optimal parameters when the underlying NMCs/NMREs have optimal pa-
rameters. As NMCs/NMREs are seemingly “easier” to build than NMEs, this
construction would be an interesting link between Privacy amplification (with
optimal parameters) and NMCs/NMREs.

1.6 Organization of the Paper

We explain the preliminaries and the building blocks required for the main pro-
tocol in Sections 2 and 3. Then, we explain the construction of the protocol in
Section 4. The complete security proofs of the interactive authentication proto-
col and the privacy amplification protocol are given in Sections 5.1 and 5.2. We
also mention an alternate construction of the protocol in Section 5.4 and give a
brief proof sketch therein.

2 Preliminaries

Notation. κ denotes security parameter throughout. s ∈R S denotes uniform
sampling from set S. x← X denotes sampling from a probability distribution X.
x||y represents concatenation of two binary strings x and y. |x| denotes length
of binary string x. Ul denotes the uniform distribution on {0, 1}l. All logarithms
are base 2.

Statistical distance and Entropy. Let X1, X2 be two probability distributions
over some set S. Their statistical distance is

SD (X1, X2)
def
= max

T⊆S
{Pr[X1 ∈ T ]− Pr[X2 ∈ T ]} =

1

2

∑
s∈S

∣∣∣∣Pr
X1

[s]− Pr
X2

[s]

∣∣∣∣
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(they are said to be ε-close if SD (X1, X2) ≤ ε and denoted by X1 ≈ε X2). For
an event E, SDE(A;B) denotes SD ((A)|E; (B)|E)
The min-entropy of a random variable W is H∞(W ) = − log(maxw Pr[W = w]).
For a joint distribution (W,E), define the (average) conditional min-entropy of
W given E [DORS08] as

H̃∞(W | E) = − log( E
e←E

(2−H∞(W |E=e)))

(here the expectation is taken over e for which Pr[E = e] is nonzero). For
a random variable W over {0, 1}n, W |E is said to be an (n, t) - source if

H̃∞(W |E) ≥ t.
We first prove the following simple lemma:

Lemma 1. Let A,B be any two independent distributions on A,B respectively.
Let C be the distribution defined by C := f(A,B) for some deterministic
function f . Then, the following distributions will be identical:

D1:

– a← A
– b← B
– c = f(a, b)
– Output a, b, c

D2:

– a← A
– b← B
– c = f(a, b)
– a′ ← A|f(A, b) = c
– Output a′, b, c

Proof. Let the distributions on A,B, f(A,B) corresponding to the two distribu-
tions D1 and D2 above be denoted by (AD1 , B,C) and (AD2 , B,C) respectively
(the distributions on B and f(A,B) are identical in D1 and D2). Consider

Pr[AD2 = a,B = b, C = c] = Pr[AD2 = a|B = b, C = c].Pr[B = b, C = c]

= Pr[AD1 = a|f(AD1 , B) = C,B = b, C = c].Pr[B = b, C = c]

= Pr[AD1 = a|f(AD1 , B) = c,B = b].Pr[B = b, C = c]

= Pr[AD1 = a|C = c,B = b].Pr[B = b, C = c]

= Pr[AD1 = a,B = b, C = c]

�

Lemma 2. For any random variables A,B,C if (A,B) ≈ε (A,C), then B ≈ε C

Lemma 3. For any random variables A,B if A ≈ε B, then for any function f,
f(A) ≈ε f(B)

Lemma 4. [DORS08] Let A,B,C be random variables. Then

(a) For any δ > 0, the conditional entropy H∞(A|B = b) is at least H̃∞(A|B)−
log(1/δ) with probability at least 1− δ over choice of b
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(b) If B has at most 2λ possible values, then H̃∞(A | B) ≥ H∞(A,B) − λ ≥
H∞(A) − λ. and, more generally, H̃∞(A | B,C) ≥ H̃∞(A,B | C) − λ ≥
H̃∞(A | C)− λ

Further propositions about statistical distance have been proved in Appendix A.

2.1 Definitions

We define an Interactive Authentication protocol:

Definition 1. ([CKOR10]) An interactive protocol (A,B) played by Alice and
Bob on a communication channel fully controlled by an adversary Eve, is a
(hW , κ)-interactive authentication protocol if ∀m, it satisfies the following
properties whenever H∞(W ) ≥ hW and ma = m:

1. Correctness. If Eve is passive, Pr[ma = mb] = 1.
2. Robustness. For any Eve, the probability that the following experiment out-

puts “Eve wins” is at most 2−κ: sample w from W ; let receiveda, receivedb
be the messages received by Alice and Bob upon execution of (A,B) with
Eve actively controlling the channel, and let A(w, receiveda, ra,ma) = tA,
B(w, receivedb, rb) = (mb, tB). Output “Eve wins” if (mb 6= ma ∧ tB =
“accept”).

Further, we define a privacy amplification protocol:

Definition 2. ([CKOR10]) An interactive protocol (A,B) played by Alice and
Bob on a communication channel fully controlled by an adversary Eve, is a
(hW , λk, δ, ε)-privacy amplification protocol if it satisfies the following prop-
erties whenever H∞(W ) ≥ hW :

1. Correctness. If Eve is passive, Pr[kA = kB ] = 1.
2. Robustness. For any Eve, the probability that the following experiment out-

puts “Eve wins” is at most 2−δ: sample w from W ; let receiveda, receivedb
be the messages received by Alice and Bob upon execution of (A,B) with
Eve actively controlling the channel, and let A(w, receiveda, ra) = kA,
B(w, receivedb, rb) = kB. Output “Eve wins” if (kA 6= kB ∧ kA 6= ⊥ ∧ kB 6=
⊥).

3. Extraction. Define purify(r) to be a randomized function whose input is
either a binary string or ⊥. If r = ⊥, then purify(r) = ⊥; else, purify(r)
is a uniformly chosen random string of length λk. Let Senta, Sentb be the
messages sent by Alice and Bob upon execution of (A,B) in presence of Eve.
Note that the pair Sent = (Senta, Sentb) contains an active Eve’s view of
the protocol. We require that for any Eve,

SD ((kA, Sent), (purify(kA), Sent)) ≤ ε

SD ((kB , Sent), (purify(kB), Sent)) ≤ ε
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Definition 3. [KOS18] Let (NMREnc,NMRDec) be s.t. NMREnc :
{0, 1}r → {0, 1}k × ({0, 1}n1 × {0, 1}n2) is defined as NMREnc(r) =
(NMREnc1(r),NMREnc2(r)) = (m, (x, y)) and NMRDec : {0, 1}n1 × {0, 1}n2 →
{0, 1}k.
We say that (NMREnc,NMRDec) is a ε-non-malleable randomness encoder
with message space {0, 1}k and codeword space {0, 1}n1 × {0, 1}n2 , for the
distribution R on {0, 1}r with respect to the 2-split-state family F if the
following is satisfied:

– Correctness:

Pr
r←R

[NMRDec(NMREnc2(r)) = NMREnc1(r)] = 1

– Non-malleability: For each (f, g) ∈ F , ∃ a distribution NMRSimf,g over
{0, 1}k ∪ {same∗,⊥} such that

NMRTamperf,g ≈ε Copy(Uk,NMRSimf,g)

where NMRTamperf,g denotes the distribution
(NMREnc1(R),NMRDec((f, g)(NMREnc2(R)))2 and Copy(Uk,NMRSimf,g)
is defined as:

u← Uk; m̃← NMRSimf,g

Copy(u, m̃) =

{
(u, u), if m̃ = same∗

(u, m̃), otherwise

NMRSimf,g should be efficiently samplable given oracle access to (f, g)(.).

Further, the rate of this code is defined as k/(n1 + n2)

Definition 4. Let (NMREnc,NMRDec) be s.t. NMREnc : {0, 1}r → {0, 1}k ×
({0, 1}n1 × {0, 1}n2) is defined as NMREnc(r) = (NMREnc1(r),NMREnc2(r)) =
(m, (x, y)) and NMRDec : {0, 1}n1 × {0, 1}n2 → {0, 1}k.
We say that (NMREnc,NMRDec) is a ε-augmented non-malleable random-
ness encoder with message space {0, 1}k and codeword space {0, 1}n1×{0, 1}n2 ,
for the distribution R on {0, 1}r with respect to the 2-split-state family F if the
following is satisfied:

– Correctness:

Pr
r←R

[NMRDec(NMREnc2(r)) = NMREnc1(r)] = 1

– Non-malleability: For each (f, g) ∈ F , ∃ a distribution NMRSimf,g over
{0, 1}n1 × {{0, 1}k ∪ {same∗,⊥}} such that

NMRTamper+f,g ≈ε Copy(Uk,NMRSim+
f,g)

2 Here (f, g)(NMREnc2(R)) just denotes the tampering by the split-state tampering
functions f and g on the corresponding states.



12 Authors Suppressed Due to Excessive Length

where NMRTamper+f,g denotes the distribution
(NMREnc1(R), L,NMRDec((f(L), g(R))) where (L,R) ≡ NMREnc2(R) and
Copy(Uk,NMRSim+

f,g) is defined as:

u← Uk; L, m̃← NMRSim+
f,g

Copy(u, m̃) =

{
(u, L, u), if m̃ = same∗

(u, L, m̃), otherwise

NMRSim+
f,g should be efficiently samplable given oracle access to (f, g)(.).

3 Buliding Blocks

We use information-theoretic message authentication codes, strong average case
extractor and an augmented non-malleable code for 2-split-state family , as build-
ing blocks to our construction. We define these building blocks below.

3.1 Augmented Non-malleable Codes

We first define Augmented Non-malleable codes for the 2-split-state family as
below:

Definition 5. Augmented Non-malleable Codes [AAG+16] A coding
scheme (Enc,Dec) with message and codeword spaces as {0, 1}α, ({0, 1}β)2 re-
spectively, is ε- augmented-non-malleable with respect to the function family
F = {(f1, f2) : fi : {0, 1}β → {0, 1}β} if ∀ (f1, f2) ∈ F , ∃ a distribution
Simf1,f2 over ({0, 1}β)× ({0, 1}α ∪ {same∗,⊥}) such that ∀ m ∈ {0, 1}α

Tampermf1,f2 ≈ε Copy
m
Simf1,f2

where Tampermf1,f2 denotes the distribution (L,Dec(f1(L), f2(R))), where
Enc(m) = (L,R). CopymSimf1,f2 is defined as

(L, m̃)← Simf1,f2

CopymSimf1,f2 =

{
(L,m) if (L, m̃) = (L, same∗)

(L, m̃) otherwise

Simf1,f2 should be efficiently samplable given oracle access to (f1, f2)(.). 3 We
say an ε- augmented non-malleable code has optimal error, if ε ≤ 2−Θ(α). We ex-
press the rate, of an augmented non-malleable code as a function of α. We say the
rate is a function r(.), if 2β = (α/r(α)) i.e codeword length = message length

r(message length) .

Similarly, the ε-non-malleable code has error 2−φ(.), if ε ≤ 2−φ(.)

3 For simplicity in the proof, we may assume here that the decoder Dec never outputs
⊥. This can be done by replacing ⊥ with some fixed string, like 00..0.



Privacy Amplification from Non-malleable Codes 13

3.2 Information-theoretic One-Time Message Authentication Codes

A family of pair of functions {Tagka : {0, 1}γ → {0, 1}δ, Vrfyka : {0, 1}γ ×
{0, 1}δ → {0, 1}}ka∈{0,1}τ is said to a µ− secure one time MAC if

1. For ka ∈R {0, 1}τ , ∀ m ∈ {0, 1}γ , Pr[Vrfyka(m,Tagka(m)) = 1] = 1
2. For anym 6= m′, t, t′, Pr

ka
[Tagka(m) = t|Tagka(m′) = t′] ≤ µ for ka ∈R {0, 1}τ

3.3 Average-case Extractors

Definition 6. [DORS08, Section 2.5] Let Ext : {0, 1}n × {0, 1}d → {0, 1}l be
a polynomial time computable function. We say that Ext is an efficient average-
case (n, t, d, l, ε)-strong extractor if for all pairs of random variables (W, I) such

that W is an n-bit string satisfying H̃∞(W |I) ≥ t, we have
SD ((Ext(W ;X), X, I), (U,X, I)) ≤ ε , where X is uniform on {0, 1}d.

We now prove the following lemma about strong extractors.

Lemma 5. Let W be a source with min-entropy t and Ext be an (n, t, d, l, ε)-
strong extractor.Then the following distributions are 1.5ε-close.

– x ∈R {0, 1}d
– w ←W
– y = Ext(w;x)
– Output x, y, w

– x ∈R {0, 1}d
– y′ ∈R {0, 1}l
– If ∃ wres ∈ Support(W ), such that y,= Ext(w;x)

wres ←W |Ext(W ;x) = y′

else wres = ⊥
– Output x, y′, wres

Proof. 2SD ((X,Y,W ); (X,Y ′,W res))

=
∑
x,y

Pr[X = x, Y ′ = y,W res = ⊥]︸ ︷︷ ︸
∗

+
∑
x,y,w

|Pr[X = x, Y = y,W = w]− Pr[X = x, Y ′ = y,W res = w]|︸ ︷︷ ︸
∗∗

Let S(W,X) denote the set {Ext(w;x) : w ∈ Support(W ) ∧ x ∈ {0, 1}d}.∑
x,y

Pr[X = x, Y ′ = y,W res = ⊥] = Pr[W res = ⊥]

= Pr[Y ′ /∈ S(W,X)]

≤ Pr[Ext(W ;X) /∈ S(W,X)] + SD
(
Y ′;Ext(W ;X)

)
≤ 0 + ε = ε
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The above inequality follows because W is a t-source and Ext is a strong extractor.
Hence Observe that for any (x, y, w( 6= ⊥)), Pr[X = x, Y = y,W = w] = 0 iff Pr[X =
x, Y ′ = y,W res = w] = 0. So to compute ∗∗ we only need to consider (x, y, w) such
that Pr[X = x, Y = y,W = w] > 0. For any (x, y, w) such that Pr[X = x, Y = y,W =
w] > 0,

Pr[X = x, Y ′ = y,W res = w] = Pr[W res = w|X = x, Y ′ = y] Pr[X = x, Y ′ = y]

= Pr[W = w|Ext(W ;X) = Y ′, X = x, Y ′ = y] Pr[X = x, Y ′ = y]

= Pr[W = w|Ext(W ;x) = y] Pr[X = x, Y ′ = y]

The above equation follows because the event W = w is independent of the event
(X = x, Y ′ = y) and Pr[Ext(W ;x) = y] > 0 (as Pr[X = x, Y = y,W = w] > 0 ).∑

x,y,w

|Pr[X = x, Y = y,W = w]− Pr[X = x, Y ′ = y,W res = w]|

=
∑
x,y,w

Pr[W = w|Ext(W ;x) = y].|Pr[X = x, Y = y]− Pr[X = x, Y ′ = y]|

=
∑
x,y

|Pr[X = x, Y = y]− Pr[X = x, Y ′ = y]|
∑
w

Pr[W = w|Ext(W ;x) = y]

=
∑
x,y

|Pr[X = x, Y = y]− Pr[X = x, Y ′ = y]|.1 (1)

≤ 2ε

Equation 1 follows from Proposition 3 (Appendix A). Let Aw denote the event (W =
w). Let B be the event (Ext(W ;x) = y) and the mutually exclusive and exhaustive
events are {Aw}w∈{0,1}n . B is a non-zero probability event as Pr[Ext(W ;x) = y] > 0.
Equation 1 follows by applying Proposition 3(Appendix A) to {Aw}w∈{0,1}n and B.
Therefore we have

SD
(
(X,Y,W ); (X,Y ′,W res)

)
≤ 1.5ε

We will state two useful inequalities from the proof of Lemma 5 that we will further
use in the paper.

Pr[W res = ⊥] ≤ ε (2)

Pr[W res 6= ⊥].SDWres 6=⊥(X,Y,W ); (X,Y ′,W res) ≤ 0.5ε ≤ ε (3)

Inequality 3 follows from Proposition 1(Appendix A) and Lemma 5. �

We also require the following lemma given in [CKOR10]:

Lemma 6. Let Ext be a (n, t, d, l, ε)-strong extractor and W be a random vari-
able over {0, 1}n with H∞(W ) ≥ t. Then Prx[H∞(Ext(W ;x)) ≤ l − 1] ≤ 2lε.

4 Protocol

4.1 Notation

– Let Ext′ be an (n, t′, d, 3l′, ε1)- average case extractor.
– Let Ext be an (n, t, d, l, ε2)- average case extractor.
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– Let Enc,Dec be an ε3- secure two-state augmented non-malleable code with
message, codeword spaces being {0, 1}τ and {0, 1}2l.

– Let Tag,Vrfy be an ε4-secure one-time MAC with key, message and tag spaces
being {0, 1}τ , {0, 1}d, and {0, 1}δ respectively.

– Let Ext′′ be an (n, t′′, d, l′′, ε5)- average case extractor.

4.2 Protocol

We now describe the Privacy Amplification Protocol below. w is drawn from
the entropic source W , and is shared between Alice and Bob. We denote the
Interactive Authentication Protocol to authenticate a message m by πAUTH

m,w and

the Privacy Amplification Protocol by πPA
w .

As described in the introduction, the idea behind the protocol is as follows:
For the synchronous setting: Alice picks a MAC key, encodes it using the NMC
and sends across the states to Bob. Now, in order to ensure that the tampering
done by Eve is captured as a split-state tampering on the states, Alice uses an
extractor and masks one of the states before sending it. In the next round, the
other state is sent in clear. We require the augmented nature of the NMC to
guarantee security even when one state is sent in clear. For the asynchronous
setting, we need to add “liveness tests” to the protocol (where an extractor seed
is sent by one party as a challenge and the other party has to respond to this cor-
rectly). By the nature of the protocol, as the communication is unidirectional(all
the “useful information” is only sent by Alice), we only need to include liveness
tests to ensure that Bob is alive. For this, Alice sends a liveness test seed for
a long extractor output in the first step. This challenge seed is reused for the
liveness test responses. The reuse of liveness test seed reduces the number of
rounds in the protocol. But, in addition, it is also crucial that this is done to
guarantee security of protocol, else dependencies arise.

Theorem 1 Let (Enc,Dec), (Tag,Vrfy) , Ext′ and Ext be as in Section 4.1.
Then, the 8-round sub-protocol πAUTH in Figure 1 is a an (t′, κ)-interactive mes-
sage authentication protocol.

Theorem 2.A Let (Enc,Dec), (Tag,Vrfy) , Ext′ and Ext be as in Section 4.1.
If (Enc,Dec) is a two-state, constant rate augmented non-malleable code with
optimal error 2−Ω(κ), then the 8-round protocol πPA in Figure 1 is a (t′, l′′, κ, κ−
1)-secure privacy amplification protocol with optimal entropy loss O(log(n) + κ)
and with min-entropy requirement t′ = Ω(log(n) + κ).

Theorem 2.B Let (Enc,Dec), (Tag,Vrfy) , Ext′ and Ext be as in Section 4.1. If
(Enc,Dec) is instantiated with the augmented non-malleable code given in [Li17]
, then the 8-round protocol πPA in Figure 1 is a (t′, l′′, κ, κ − 1)-secure privacy
amplification protocol with entropy loss being O(log(n) +κlog(κ)) and with min-
entropy requirement t′ = Ω(log(n) + κ log κ).
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Fig. 1. Privacy Amplification Protocol

5 Security proof

5.1 Proof of Theorem 1

We first prove that πAUTH is an interactive authentication protocol.
Correctness: The correctness of πAUTH follows easily.
Robustness: We need to show that

Pr[Eve wins] = Pr[mA 6= mB ∧mA 6= ⊥ ∧mB 6= ⊥] ≤ 2−κ.

If Bob didn’t receive any messages during the protocol, then mB = ⊥ and Eve
doesn’t win. Further, for Eve to win, all the liveness test checks must have verified
correctly. Hence, from now on, we assume Bob receives and sends messages and



Privacy Amplification from Non-malleable Codes 17

that the liveness test checks go through. We now analyze Eve’s success probability
by considering the asynchronous and synchronous case separately. We define the
following events for the same.

– Let Sync denote the event that Eve is synchronous and doesn’t interleave.
– Async denote the complement of the event Sync, i.e., where Eve interleaves.
– Pass denote the event that Eve passes all initial checks done by Alice and Bob.

It denotes the event “(y′′1 ||y′′2 ||y′′3 = ylive)”. Pass also implies mB = m 6= ⊥.

Then, we get:

Pr[Eve wins] ≤ Pr[Eve wins|Sync] + Pr[Eve wins|Async]
≤ Pr[Eve wins|Sync,Pass] + Pr[Eve wins|Async] (4)

This is because, the event Eve wins implies that Pass has occured. To prove
robustness we will now bound each of the above summands.

Lemma 7. Pr[Eve wins|Async] ≤ Pr[Eve wins|Sync,Pass]+2.(2−l
′
+23l

′
ε1+2−λ)

Proof. We first introduce the following notations:

– Let msgi denote the message received by Eve in the actual i-th round
(i.e., in the synchronous world) of the protocol (msg1 = xlive, msg2 =
y′1, · · · ,msg8 = m, t ).

– Let msg′i denote the modification of msgi sent by Eve to Bob/Alice (msg′1 =
x′live, msg

′
2 = y′′1 , · · · ,msg′8 = m′, t′. In the asynchronous setting these mod-

ified messages may depend on messages received by Eve in later rounds).

We split the event Async into the following three mutually exclusive events:

– Indlive: This denotes the event that Eve sends x′live to Bob before she receives
xlive from Alice.

– AsyncA: This denotes the event that IndliveC (the compliment event) occurred
and that for some i, Eve receives both msgi and msgi+2 from Alice before
she sends msg′i to Bob.

– AsyncB: This denotes the event that IndliveC and AysncA
C occurred and for

some i, Eve receives both msgi and msgi+2 from Bob before she sends msg′i
to Alice.

These events are clearly mutually exclusive. Further, observe that Async =
Indlive

⋃
AsyncA

⋃
AsyncB. This is because, given that AsyncA

C and IndliveC oc-
curred, as we are in the asynchronous setting, the additional (third) condition
described in AsyncB must occur. Then, we have:

Pr[Eve wins|Async] ≤ Pr[Eve wins|Indlive] + Pr[Eve wins|AsyncA]

+ Pr[Eve wins|AsyncB] (5)

We now bound each of the summands above separately

Claim 1 Pr[Eve wins|Indlive] ≤ 2−l
′
+ 23l

′
.ε1 + 2−λ
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Proof. In this case, as the liveness test seed sent by Eve is independent of Xlive

(as x′live is sent before receiving xlive from Alice), the liveness test responses seen
by Eve are independent of Xlive. Hence, to win the game, Eve has to respond
to at least one liveness test challenge correctly on her own. Conditioned on the
event that the liveness test seed is good so that the extractor output on xlive has
high entropy, we can show that Eve can do no better than guess the liveness test
response. Let the part of transcript seen by Eve until she responds to this liveness
test on her own be denoted by E. Then, E is an auxiliary information, indepen-

dent of seed Xlive. By setting parameters we can ensure that H̃∞(W |E) ≥ t′+λ,
so that by Lemma 4, E takes a value such that H∞(W |E = e) ≥ t′ with proba-
bility at least 1−2−λ. For value of E such that H∞(W |E = e) ≥ t′, by applying
Lemma 6 we get:

Pr[Eve wins|Indlive] ≤ Pr[Pass|Indlive]
≤ Pr[Pass|Indlive,H∞(Ext′(W ;xlive)|E = e) > l′ − 1]

+ Pr
xlive

[H∞(Ext′(W ;xlive)|E = e) ≤ l′ − 1|Indlive]

≤ Pr[Pass|Indlive,H∞(Ext′(W ;xlive)|E = e) > l′ − 1]

+ Pr
xlive

[H∞(Ext′(W ;xlive)|E = e) ≤ l′ − 1|Indlive,H∞(W |E = e) ≥ t′]

+ Pr
e

[H∞(W |E = e) < t′|Indlive]

≤ 2−l
′

+ 23l′ε1 + 2−λ (6)

Claim 2 Pr[Eve wins|AsyncA] ≤ 2−l
′

+ ε123l′ + 2−λ

Proof. Observe that if AsyncA has occurred, it means that Eve would have responded
to atleast one of the liveness test responses correctly on her own. Then, conditioned on
the event that the liveness test seed is good, i.e., the extractor output on xlive has high
entropy, we know that Eve can do no better than guessing the liveness test response.
As Eve may see certain part of the transcript before she responds to liveness test, as
in previous claim, let E denote the part of transcript seen by Eve until she responds a
certain liveness test on her own. By similar arguments as in Claim 1, for choice of E
such that H∞(W |E = e) ≥ t′, we apply Lemma 6 (which guarantees that the extractor
output has high enough entropy with high probability) to get:

Pr[Eve wins|AsyncA] ≤ Pr[Pass|AsyncA]

≤ Pr[Pass|AsyncA,H∞(Ext′(W ;xlive)|E = e) > l′ − 1]

+ Pr
xlive

[H∞(Ext′(W ;xlive)|E = e) ≤ l′ − 1|AsyncA]

≤ 2−l
′

+ 23l′ .ε1 + 2−λ (7)

where the last inequality uses Lemma 6 and Lemma 4, just as in the previous claim.

Claim 3 Pr[Eve wins|AsyncB] ≤ Pr[Eve wins|Sync,Pass]

Proof. We aim to prove that given AysncB, Eve only gains as much advantage in winning,
as in the synchronous setting. To prove this, we first define the function family FasyncB ,
which captures the modifications made (to the transcript) by Eve given AsyncB. Then,
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we will prove that for any tampering made by Eve using (f1, · · · , f8) ∈ FasyncB , we
can capture it by a function in the synchronous setting (post removing the liveness
test checks, which can only give more advantage to Eve).4.This would prove that the
probability of Eve winning given AsyncB is at most the probability of her winning given
(Sync,Pass). Here, by slight abuse of notation, we also use Pass to denote that the
liveness test checks are removed.
Now, we define the domain and range spaces of functions (f1, · · · , f8) from FasyncB :

– f1 : {0, 1}d → {0, 1}d

– f2 : {0, 1}d × {0, 1}l
′
× ({0, 1}l

′ ⋃
{⊥}) × ({0, 1}l

′ ⋃
{⊥}) × ({0, 1}d+δ

⋃
{⊥}) →

{0, 1}l
′

– f3 : {0, 1}d × {0, 1}l
′
× ({0, 1}d

⋃
{⊥})→ {0, 1}d

– f4 : {0, 1}d × {0, 1}l
′
× {0, 1}d × {0, 1}l

′
× ({0, 1}l

′ ⋃
{⊥}) × ({0, 1}d+δ

⋃
{⊥}) →

{0, 1}l
′

– f5 : {0, 1}d × {0, 1}l
′
× {0, 1}d × {0, 1}l

′
× ({0, 1}l

⋃
{⊥})→ {0, 1}l

– f6 : {0, 1}d × {0, 1}l
′
× {0, 1}d × {0, 1}l

′
× {0, 1}l × {0, 1}l

′
× ({0, 1}d+δ

⋃
{⊥})→

{0, 1}l
′

– f7 : {0, 1}d×{0, 1}l
′
×{0, 1}d×{0, 1}l

′
×{0, 1}l×{0, 1}l

′
×({0, 1}l

⋃
{⊥})→ {0, 1}l

– f8 : {0, 1}d × {0, 1}l
′
× {0, 1}d × {0, 1}l

′
× {0, 1}l × {0, 1}l

′
× {0, 1}l × {0, 1}d+δ →

{0, 1}d+δ

The ⊥ symbol is used to denote that the function description does not depend on that
input. Given AsyncB, we know that IndliveC and AsyncA

C have occurred. This means
that x′live is sent by Eve only after she sees xlive. Further, each of x′live, x

′
R, Z

′
R are

sent by Eve to Bob before she receives the subsequent messages xR, ZR, L, respectively,
from Alice. Hence the function description of f1 is exactly as in the synchronous setting
and that of f3, f5, f7 only differs from their synchronous counterpart in that, these
functions may not depend on certain messages in their input (we use ⊥ to denote this).
The function description f8 is exactly as in the synchronous setting.
Now, if we assume that Pass occurs and hence remove the liveness test checks in the
game, then clearly, it can only increase the advantage of Eve in winning. Hence

Pr[Eve wins|AsyncB] ≤ Pr[Eve wins|AsyncB,Pass]

Two key observations below will complete the proof of this claim:

1. Post the liveness test checks are removed (both in case of asynchronous and syn-
chronous), the functions f2, f4 and f6, which give modifications of the liveness test
responses by Bob, are no longer used in generating the view of Eve. So, given that
Pass occurred, the view of Eve in both the asynchronous and synchronous world
does not depend on the functions f2, f4 and f6.

2. The current descriptions of f3, f5, f7 in FasyncB can be captured by defining func-
tions f ′3, f

′
5, f
′
7 (whose domains do not include ⊥) such that if a certain input for

fi is ⊥, replace it with a dummy string and use f ′i to get the modification. If all
inputs of fi are 6= ⊥, f ′i is same as fi.The function descriptions of f ′3, f

′
5, f
′
7 are as

in the synchronous setting.

4 As Eve is information theoretic, we can assume that Eve gives the functions she is
going to use for modifications a priori
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Observations 1. and 2. above show that post removing the liveness test checks, i.e.,
assuming Pass occurred, the function descriptions of f1, f3, f5, f7.f8 can be captured
by function descriptions in the synchronous setting. Hence, it follows that:

Pr[Eve wins|AsyncB] ≤ Pr[Eve wins|AsyncB,Pass]
≤ Pr[Eve wins|Sync,Pass] (8)

Combining the above claims 1, 2 and 3 in Equation 5, we get:

Pr[Eve wins|Async] ≤ Pr[Eve wins|Sync,Pass] + 2.(2−l
′

+ 23l′ε1 + 2−λ)

�

Lemma 8. Pr[Eve wins|Sync,Pass] ≤ 2−λ + 3ε2 + ε3 + ε4

Proof. Let us define the random variable corresponding to the view of Eve conditioned
on the event Sync happening. We introduce the following notations for that.

– Let m denote the message being authenticated by Bob through πAUTH.
– As Eve is information theoretic adversary, we assume that she chooses the tam-

pering functions of each round apriori. We denote these functions with the literals
f1, f2, f3, f4, f5, f6, f7, f8 with domains and ranges set as follows.
• f1 : {0, 1}d → {0, 1}d

• f2 : {0, 1}d × {0, 1}l
′
→ {0, 1}l

′

• f3 : {0, 1}d × {0, 1}l
′
× {0, 1}d → {0, 1}d

• f4 : {0, 1}d × {0, 1}l
′
× {0, 1}d × {0, 1}l

′
→ {0, 1}l

′

• f5 : {0, 1}d × {0, 1}l
′
× {0, 1}d × {0, 1}l

′
× {0, 1}l → {0, 1}l

• f6 : {0, 1}d × {0, 1}l
′
× {0, 1}d × {0, 1}l

′
× {0, 1}l × {0, 1}l

′
→ {0, 1}l

′

• f7 : {0, 1}d × {0, 1}l
′
× {0, 1}d × {0, 1}l

′
× {0, 1}l × {0, 1}l

′
× {0, 1}l → {0, 1}l

• f8 : {0, 1}d×{0, 1}l
′
×{0, 1}d×{0, 1}l

′
×{0, 1}l×{0, 1}l

′
×{0, 1}l×{0, 1}d+δ →

{0, 1}d+δ

V iew0mf1,..,f8 :

– w ←W
– xlive ∈R {0, 1}d,
k ∈R {0, 1}d, xR ∈R {0, 1}d

– x′live = f1(xlive)
– y1||y2||y3 = ylive = Ext′(w;xlive)
– y′1||y′2||y′3 = y′live = Ext′(w;x′live)
– x′R = f3(xlive, y

′
1, xR)

– yR = Ext(w;xR)
– (L,R)← Enc(k)
– zR = yR ⊕R
– z′R = f5(xlive, y

′
1, xR, y

′
2, zR)

– y′R = Ext(w;x′R)
– R′ = z′R ⊕ y′R
– L′ = f7(xlive, y

′
1, xR, y

′
2, zR, y

′
3, L)

– k′ = Dec(L′, R′)
– t = Tagk′(m)
– (m′, t′) =
f8(xlive, y

′
1, xR, y

′
2, zR, y

′
3, L,m, t)

– Output xlive, y
′
live, xR, zR, L,m, t
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The random variable V iew0mf1,..,f8 is defined as

V iew0mf1,..,f8 ≡ (Xlive, Y
′
live, XR, ZR, L,m, T )

where the capital letters on the right denote the distributions corresponding to the
respective small letters (as described in the figure above). Then, we have:

Pr[Eve wins|Sync,Pass]
= Pr[(m′, t′)← Eve(V iew0mf1,··· ,f8) ∧m′ 6= m ∧ VrfyK(m′, t′) = 1] (9)

where the probability is over the randomness used to generate V iew0mf1,··· ,f8 , namely
W,Xlive,K,XR and the randomness used in Enc. To bound this probability, we use
a hybrid argument. We now define the views of Eve in the subsequent hybrids. Then,
we prove that the success probability of Eve given V iew0mf1,..,f8 (Equation 9) is upper
bounded by its success probability given the final view (V iew4mf1,..,f8) upto a small
error.
V iew1mf1,..,f8 :

– w ←W
– xlive ∈R {0, 1}d,
k ∈R {0, 1}d, xR ∈R {0, 1}d

– x′live = f1(xlive)
– y1||y2||y3 = ylive = Ext′(w;xlive)
– y′1||y′2||y′3 = y′live = Ext′(w;x′live)
– w̃ ← W̃
W̃ is the conditional source,
W̃ := W |(Ext′(W ;xlive) = ylive,

Ext′(W ;x′live) = y′live)
– x′R = f3(xlive, y

′
1, xR)

– yR = Ext(w̃;xR)
– (L,R)← Enc(k)
– zR = yR ⊕R
– z′R = f5(xlive, y

′
1, xR, y

′
2, zR)

– y′R = Ext(w̃;x′R)
– R′ = z′R ⊕ y′R
– L′ = f7(xlive, y

′
1, xR, y

′
2, zR, y

′
3, L)

– k′ = Dec(L′, R′)
– t = Tagk′(m)
– (m′, t′) =
f8(xlive, y

′
1, xR, y

′
2, zR, y

′
3, L,m, t)

– Output xlive, y
′
live, xR, zR, L,m, t

V iew2mf1,..,f8 :

– w ←W
– xlive ∈R {0, 1}d, zR ∈R {0, 1}l,
k ∈R {0, 1}d, xR ∈R {0, 1}d

– x′live = f1(xlive)
– y1||y2||y3 = ylive = Ext′(w;xlive)
– y′1||y′2||y′3 = y′live = Ext′(w;x′live)
– x′R = f3(xlive, y

′
1, xR)

– (L,R)← Enc(k)
– yR = zR ⊕R
– z′R = f5(xlive, y

′
1, xR, y

′
2, zR)

– If @w̃ ∈ Support(W̃ ) such that
Ext(W̃ ;xR) = yR , then set w̃ = ⊥
and Output ⊥
else w̃ ← W̃ |(Ext(W̃ ;xR) = yR)
W̃ is the conditional source,
W̃ := W |(Ext′(W ;xlive) = ylive,

Ext′(W ;x′live) = y′live)
– y′R = Ext(w̃;x′R)
– R′ = z′R ⊕ y′R
– L′ = f7(xlive, y

′
1, xR, y

′
2, zR, y

′
3, L)

– k′ = Dec(L′, R′)
– t = Tagk′(m)
– (m′, t′) =
f8(xlive, y

′
1, xR, y

′
2, zR, y

′
3, L,m, t)

– Output xlive, y
′
live, xR, zR, L,m, t
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V iew3mf1,..,f8 :

– w ←W
– xlive ∈R {0, 1}d, zR ∈R {0, 1}l,
k ∈R {0, 1}d, xR ∈R {0, 1}d

– x′live = f1(xlive)
– y1||y2||y3 = ylive = Ext′(w;xlive)
– y′1||y′2||y′3 = y′live = Ext′(w;x′live)
– L, k′ ← Tamperkf,g
∗f, g will be hardwired with
xlive, ylive, y

′
live, xR, zR

– t = Tagk′(m)
– (m′, t′) =
f8(xlive, y

′
1, xR, y

′
2, zR, y

′
3, L,m, t)

– Output xlive, y
′
live, xR, zR, L,m, t

∗ Description of f, g is given in Claim
6

V iew4mf1,..,f8 :

– w ←W
– xlive ∈R {0, 1}d, zR ∈R {0, 1}l,
k ∈R {0, 1}d, xR ∈R {0, 1}d

– x′live = f1(xlive)
– y1||y2||y3 = ylive = Ext′(w;xlive)
– y′1||y′2||y′3 = y′live = Ext′(w;x′live)
– L, k′ = Copy(k, Simf,g)
∗f, g will be hardwired with
xlive, ylive, y

′
live, xR, zR

– t = Tagk′(m)
– (m′, t′) =
f8(xlive, y

′
1, xR, y

′
2, zR, y

′
3, L,m, t)

– Output xlive, y
′
live, xR, zR, L,m, t

∗ Description of f, g is given in Claim
6

We define the random variables corresponding to the views described above as follows.

– V iew1mf1,..,f8 ≡ (Xlive, Y
′
live, XR, Z

1
R, L,m, T

1)
– V iew2mf1,..,f8 ≡ (Xlive, Y

′
live, XR, Z

2
R, L,m, T

2)
– V iew3mf1,..,f8 ≡ (Xlive, Y

′
live, XR, Z

3
R, L,m, T

3)
– V iew4mf1,..,f8 ≡ (Xlive, Y

′
live, XR, Z

3
R, L

4,m, T 4)

In the above description, we superscript a random variable with the corresponding view
number i, wherever there is a change in distribution from the previous view.
We consider the following claims to complete the hybrid argument and then bound the
success probability of Eve given the final view (V iew4mf1,..,f8) to complete the proof.
Moving from V iew0mf1,··· ,f8 to V iew1mf1,··· ,f8 : In the first hybrid, we wish to analyze

Eve’s success probability, given an identical view, where we use a conditional source
W̃ = W |(Ext′(W ;xlive) = ylive,Ext

′(W ;x′live) = y′live) (post drawing the liveness test
responses and seed from the same distribution as in V iew0mf1,··· ,f8 and then fixing
them) for further extractions. The use of a different sample of w for the liveness test
is crucial and the reason for doing this becomes clear when we move to V iew3mf1,··· ,f8 .
We show how the two views are identical and then show why Eve’s success probability
remains the same.

Claim 4

Pr[(m′, t′)← Eve(V iew0mf1,··· ,f8) ∧m 6= m′ ∧ VrfyK(m′, t′) = 1]

= Pr[(m′, t′)← Eve(V iew1mf1,··· ,f8) ∧m 6= m′ ∧ VrfyK(m′, t′) = 1]

where the probabilities are taken over the randomness used to generate V iew0mf1,··· ,f8
and V iew1mf1,··· ,f8 respectively, i.e., W,Xlive, XR,K, the randomness used in Enc and

W, W̃ ,Xlive, XR,K, the randomness used in Enc respectively.

Proof. Taking A = W , B = Xlive and C = (Ylive = Ext′(W ;Xlive), Y
′
live =

Ext′(W ;X ′live)) = f(A,B) in Lemma 1, we get:

W,Xlive, Ylive, Y
′
live ≡ W̃ ,Xlive, Ylive, Y

′
live
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where W̃ ≡W |Ext′(W ;Xlive) = Ylive,Ext
′(W ;X ′live) = Y ′live. Further, as K and XR is

independent of the random variables above, we get:

K,XR,W,Xlive, Ylive, Y
′
live ≡ K,XR, W̃ ,Xlive, Ylive, Y

′
live

The randomness used in Enc is independent of the random variables above. Hence,
ZR, L and T can be obtained as functions of the above random variables (and the
randomness used in Enc). Then, by using Lemma 3, we get:

K,Xlive, Y
′
live, XR, ZR, L,m, T ≡ K,Xlive, Y ′live, XR, Z1

R, L,m, T
1

K,V iew0mf1,··· ,f8 ≡ K,V iew1mf1,··· ,f8

Again as Eve’s output and the verification check are a function of the above random
variables, by use of Lemma 3, it follows that

Pr[(m′, t′)← Eve(V iew0mf1,··· ,f8) ∧m 6= m′ ∧ Vrfyk(m′, t′) = 1]

= Pr[(m′, t′)← Eve(V iew1mf1,··· ,f8) ∧m 6= m′ ∧ Vrfyk(m′, t′) = 1]

�

Moving from V iew1mf1,··· ,f8 to V iew2mf1,··· ,f8 : We replace ZR with U and then sam-

ple the source consistently (upto some error) in V iew2mf1,··· ,f8 . This reverse sampling of
the source becomes a little complicated as it has to be not only consistent with the zR
sampled but also has to be consistent with the liveness test responses. This is why we
would consistently reverse sample from the conditional source W̃ here. Now, showing
that Eve’s success probability in V iew1mf1,··· ,f8 is at most her success probability in this
view (upto some error) captures that R remains hidden from Eve.

Claim 5 If Ext is an (n, t, d, l, ε2)- average case extractor, then

Pr[(m′, t′)← Eve(V iew1mf1,··· ,f8) ∧m 6= m′ ∧ VrfyK(m′, t′) = 1]

≤ Pr[(m′, t′)← Eve(V iew2mf1,··· ,f8) ∧m 6= m′ ∧ VrfyK(m′, t′) = 1] + 2−λ + 2ε1

where the probabilities are taken over the randomness used to generate V iew1mf1,··· ,f8
and V iew2mf1,··· ,f8 respectively.

Proof. In order to use the extractor security, we first need to ensure that W̃ has “high
enough entropy”. We define the following good set:

G = {(xlive, ylive, y′live) : H∞(W̃ ) =

H∞(W |Ext′(W ;xlive) = ylive,Ext
′(W ;x′live) = y′live) ≥ t′ − 6l′ − λ}

We now define the good event:

Good : (Xlive, Ylive, Y
′
live) ∈ G

Here, Ylive and Y ′live denote the random variables Ylive = Ext′(W ;Xlive) and Y ′live =
Ext′(W ;X ′live). Let GoodC denote its complement event. Consider, by Proposition
1(Appendix A)

SD
(
(K,V iew1mf1,··· ,f8); (K,V iew2mf1,··· ,f8)

)
≤ SDGood((K,V iew1mf1,··· ,f8); (K,V iew2mf1,··· ,f8)).Pr[Good]

+ SDGoodC ((K,V iew1mf1,··· ,f8); (K,V iew2mf1,··· ,f8)).Pr[GoodC ] (10)
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where the subscript notation is used to denote the statistical distance conditioned on
the specific event (in the subscript). By Lemma 4, we get:

Pr[GoodC ] = Pr[(Xlive, Ylive, Y
′
live) /∈ G]

= Pr
ylive,y

′
live

[H∞(W |Ylive = ylive, Y
′
live = y′live) < t′ − 6l′ − λ]

≤ Pr
ylive,y

′
live

[H∞(W |Ylive = ylive, Y
′
live = y′live) < H̃∞(W |Ylive, Y ′live)− λ]

≤ 2−λ (11)

Let W1 denote the random variable:

– If @w̃ ∈ Support(W̃ ) such that Ext(W̃ ;xR) = yR , then set w̃ = ⊥ and Output ⊥
– else w̃ ← W̃ |Ext(W̃ ;xR) = yR

By setting parameters appropriately, we ensure H∞(W̃ ) ≥ t, where t is the min entropy
required for using Ext(.). Then, by Lemma 5, we know that

∀(xlive, ylive, y′live) ∈ G, W̃ ,XR, Y
1
R ≈2ε1 W1, XR, Y

2
R

where the distributions which change in the two views have been superscripted with
the corresponding view number. Then, by using Proposition 2(Appendix A), with A ≡
((W̃ ,XR, Y

1
R)|Good), B ≡ ((W1, XR, Y

2
R)|Good) and C ≡ ((Xlive, Ylive, Y

′
live)|Good),

we get:

Xlive, Ylive, Y
′
live, W̃ ,XR, Y

1
R|Good ≈2ε1 Xlive, Ylive, Y

′
live,W1, XR, Y

2
R|Good

Xlive, Y
′
live, W̃ ,XR, Y

1
R|Good ≈2ε1 Xlive, Y

′
live,W1, XR, Y

2
R|Good

Further, as K is independent of the above random variables, we get:

K,Xlive, Y
′
live, W̃ ,XR, Y

1
R|Good ≈2ε1 K,Xlive, Y

′
live,W1, XR, Y

2
R|Good

The randomness used in Enc is independent of the above random variables. Hence,
Z1
R, L and T 1 can be obtained as a function of the above random variables (and the

randomness used in Enc). Then, by using Lemma 3, we get:

K,Xlive, Y
′
live, XR, Z

1
R, L,m, T

1|Good ≈2ε1 K,Xlive, Y
′
live, XR, Z

2
R, L,m, T

2|Good
K,V iew1mf1,··· ,f8 |Good ≈2ε1 K,V iew2mf1,··· ,f8 |Good (12)

Then, by using Equations 11 and 12 in Equation 10, we get:

SD
(
(K,V iew1mf1,··· ,f8); (K,V iew2mf1,··· ,f8)

)
≤ 2−λ + 2ε1

Finally, by use of Lemma 3, we get the desired bound:

Pr[(m′, t′)← Eve(V iew1mf1,··· ,f8) ∧m 6= m′ ∧ VrfyK(m′, t′) = 1]

≤ Pr[(m′, t′)← Eve(V iew2mf1,··· ,f8) ∧m 6= m′ ∧ VrfyK(m′, t′) = 1] + 2−λ + 2ε1

�
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Moving from V iew2mf1,··· ,f8 to V iew3mf1,··· ,f8 : In V iew3mf1,··· ,f8 , we want to capture

the tampering on k by the tamper random variable of the augmented NMC, Tamperkf,g.
To be able to to do this, we have to first capture the tampering on L and R as a correct
split-state tampering by (f, g). In order to describe the functions, we would need to
hardwire the liveness test seed and responses, xR and zR. Now, to get the tampering of
R, a w consistent with the hardwired values has to be sampled. But this sampler might
return ⊥. However, as the function g cannot output ⊥, we replace w̃ with an arbitrary
string, whenever the sampling returns ⊥. We now analyze Eve’s success probability in
this modified view.

Claim 6

Pr[(m′, t′)← Eve(V iew2mf1,··· ,f8) ∧m 6= m′ ∧ VrfyK(m′, t′) = 1]

≤ Pr[(m′, t′)← Eve(V iew3mf1,··· ,f8) ∧m 6= m′ ∧ VrfyK(m′, t′) = 1]

where the probabilities are taken over the randomness used to generate V iew2mf1,··· ,f8
and V iew3mf1,··· ,f8 respectively.

Proof. We define the tampering functions f, g hardwired with xlive, ylive, y
′
live, xR, zR

as follows.

fxlive,ylive,y′live,xR,zR(L):

– Output
L′ = f7(xlive, y

′
1, xR, y

′
2, zR, y

′
3, L)

gxlive,ylive,y′live,xR,zR(R):

– w̃ ← W̃ |Ext(W̃ ;xR) = zR ⊕R
– If w̃ = ⊥, set w̃ := 0.
– y′R = Ext(w̃; f1(xR))
– z′R = f5(xlive, y

′
1, xR, y

′
2, zR)

– Output R′ = z′R ⊕ y′R

The function g is a randomized function here (atypical to tampering function descrip-
tions). But, the randomness required for this sampling can be sampled a priori and
hardwired in g, along with the other values, making it a deterministic function. Hence,
while we use the above description of g for simplicity, it is simple to convert it to a
deterministic function. For the sake of simplicity we avoid explicitly writing the hard-
wired values while referring to the tampering functions.
Let W1 be the following distribution

– If @w̃ ∈ Support(W̃ ) such that Ext(W̃ ;xR) = yR , then set w̃ = ⊥ and Output ⊥
– else w̃ ← W̃ |Ext(W̃ ;xR) = yR

Observe that

(V iew3mf1,··· ,f8 |W1 6= ⊥) ≡ (V iew2mf1,··· ,f8 |W1 6= ⊥)

Hence, as K is independent of the event W1 6= ⊥, ((K,V iew3mf1,··· ,f8)|W1 6=
⊥) ≡ (K, (V iew3mf1,··· ,f8 |W1 6= ⊥)) ≡ (K, (V iew2mf1,··· ,f8 |W1 6= ⊥)) ≡
((K,V iew2mf1,··· ,f8)|W1 6= ⊥). Hence, Proposition 1 (Appendix A), we get:

SD
(
(K,V iew2mf1,··· ,f8); (K,V iew3mf1,··· ,f8)

)
≤ SD

(
(K,V iew2mf1,··· ,f8); (K,V iew3mf1,··· ,f8)|W1 6= ⊥

)
+ Pr[W1 = ⊥]

= 0 + Pr[W1 = ⊥]

≤ ε2
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The last inequality follows from Inequality 2 in proof of Lemma 5 where W res is W1.
�

Moving from V iew3mf1,··· ,f8 to V iew4mf1,··· ,f8 : To use MAC security, it is crucial that

we argue the non-malleability of the MAC key. For this, we use the non-malleability of
(Enc,Dec). To do this, we observe that tampering functions f, g are indeed split-state,
as the hardwired values (xlive, ylive, y

′
live, xR, zR) are independent of the two states L

and R.5 Then we analyze Eve’s success probability in this modified view.

Claim 7 If (Enc,Dec) is an ε3- augmented non-malleable code, then

Pr[(m′, t′)← Eve(V iew3mf1,··· ,f8) ∧m 6= m′ ∧ VrfyK(m′, t′) = 1]

≤ Pr[(m′, t′)← Eve(V iew4mf1,··· ,f8) ∧m 6= m′ ∧ VrfyK(m′, t′) = 1] + ε3

where the probabilities are taken over the randomness used to generate V iew3mf1,··· ,f8
and V iew4mf1,··· ,f8 respectively.

Proof. As already mentioned the tampering functions are split-state. Hence, by the
security of (Enc,Dec) we have

∀(xlive, ylive, y′live, xR, zR), ∀k, Tamperkf,g ≈ε3 Copy(k, Simf,g)

where the message to be encoded is k and the split-state tampering functions are
hardwired with (xlive, ylive, y

′
live, xR, zR). Hence, by Proposition 2(Appendix A) with

A,B,C being TamperKf,g, Copy(K,Simf,g), (K,Xlive, Ylive, Y
′
live, XR, Z

3
R) respec-

tively, we have

K,Xlive, Ylive, Y
′
live, XR, Z

3
R, Tamper

K
f,g

≈ε3 K,Xlive, Ylive, Y
′
live, XR, Z

3
R, Copy(K,Simf,g)

For clarity, we denote the random variables (L,K′, T ) of V iew3 and V iew4 by

(L,K
′3, T 3) and (L4,K

′4, T 4) respectively.

K,Xlive, Ylive, Y
′
live, XR, Z

3
R, L,K

′3 ≈ε3 K,Xlive, Ylive, Y
′
live, XR, Z

3
R, L

4,K
′4

K,Xlive, Ylive, Y
′
live, XR, Z

3
R, L,m, T

3 ≈ε3 K,Xlive, Ylive, Y
′
live, XR, Z

3
R, L

4,m, T 4

K,V iew3mf1,··· ,f8 ≈ε3 K,V iew4mf1,··· ,f8

Above implications follow from Lemma 3. Therefore

Pr[(m′, t′)← Eve(V iew3mf1,··· ,f8) ∧m 6= m′ ∧ VrfyK(m′, t′) = 1]

≤ Pr[(m′, t′)← Eve(V iew4mf1,··· ,f8) ∧m 6= m′ ∧ VrfyK(m′, t′) = 1] + ε3

�

We now combine the above claims with MAC security and show how to get the desired
bound on Eve’s success probability in the synchronous case.

5 As mentioned while describing g in V iew3mf1,··· ,f8 , although the given description of
g is randomized, but by fixing the randomness it can be made deterministic.
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Claim 8 If (Tag,Vrfy) is an ε4- one time MAC (the auxiliary information variant
defined in Section 3) then

Pr[(m′, t′)← Eve(V iew0mf1,··· ,f8) ∧m 6= m′ ∧ VrfyK(m′, t′) = 1] ≤ 2−λ + 3ε2 + ε3 + ε4

where the probability is taken over the randomness used to generate V iew0mf1,··· ,f8 re-
spectively.

Proof. Combining Claims 4,5,6,7 we get

Pr[(m′, t′)← Eve(V iew0mf1,··· ,f8) ∧m 6= m′ ∧ VrfyK(m′, t′) = 1]

≤ Pr[(m′, t′)← Eve(V iew4mf1,··· ,f8) ∧m 6= m′ ∧ VrfyK(m′, t′) = 1] + 2−λ + 3ε2 + ε3
(13)

We now consider the following events with respect to V iew4mf1,··· ,f8 .

Case1: Simf,g does not output same∗

K ≡ Uτ
K,Xlive, Ylive, Y

′
live, XR, Z

3
R, Simf,g|Case1 ≡ Uτ , Xlive, Ylive, Y ′live, XR, Z3

R, Simf,g|Case1
(14)

K,m,Xlive, Y
′
live, XR, Z

3
R, L

4,K
′4 ≡ Uτ ,m,Xlive, Y ′live, XR, Z3

R, L
4,K

′4

K,m,Xlive, Y
′
live, XR, Z

3
R, L

4,TagK′4(m) ≡ Uτ ,m,Xlive, Y ′live, XR, Z3
R, L

4,TagK′4(m)

Implication 14 follows from Proposition 5(Appendix A) with A,B,C,E being
K, (Xlive, Ylive, Y

′
live, XR, Z

3
R, Simf,g), Uτ , Case1 respectively. Therefore, given Case1,

Eve’s view is V iew4m|Case1 ≡ (m,Xlive, Y
′
live, XR, Z

3
R, L

4,TagK′4(m)) is independent
of MAC key K. This is because the randomness used to generate V iew4m|Case1, which
is Xlive, XR,W, W̃ , the randomness used in Simf,g, are all independent of K. Then,
as E ≡ V iew4m|Case1 is independent of K, by the MAC security we get:

Pr[(m′, t′)← Eve(V iew4m) ∧m 6= m′ ∧ VrfyK(m′, t′) = 1|Case1]

= Pr
k

[Tagk(m′) = t′ ∧ (m 6= m′)|E = (m,xlive, y
′
live, xR, zR, L, Tagk′(m))]

≤ ε4 (15)

Case2: Simf,g outputs same∗

K ≡ Uτ
K,Xlive, Ylive, Y

′
live, XR, Z

3
R, Simf,g|Case2 ≡ Uτ , Xlive, Ylive, Y ′live, XR, Z3

R, Simf,g|Case2
(16)

K,m,Xlive, Y
′
live, XR, Z

3
R, L

4|Case2 ≡ Uτ ,m,Xlive, Y ′live, XR, Z3
R, L

4|Case2

Implication 16 follows from Proposition 5(Appendix A) with A,B,C,E being
K, (Xlive, Ylive, Y

′
live, XR, Z

3
R, Simf,g), Uτ , Case2 respectively. Therefore, given

Case2, Eve’s view is V iew4m|Case2 ≡ (m,Xlive, Y
′
live, XR, Z

3
R, L

4,TagK(m)).
The only information Eve has regarding K is TagK(m). Then, as E ≡
(m,Xlive, Y

′
live, XR, Z

3
R, L

4)|Case2 is independent of K, by MAC security we



28 Authors Suppressed Due to Excessive Length

get:

Pr[(m′, t′)← Eve(V iew4m) ∧m 6= m′ ∧ VrfyK(m′, t′) = 1|Case2]

= Pr
k

[Tagk(m′) = t′ ∧ (m′ 6= m)|Tagk(m) = t, E = (m,xlive, y
′
live, xR, zR, L)]

= Pr
k

[Tagk(m′) = t′ ∧ (m′ 6= m)|Tagk(m) = t]

≤ ε4 (17)

Combining inequalities 15,17 with the inequality 13 gives

Pr[(m′, t′)← Eve(V iew0m) ∧m 6= m′ ∧ VrfyK(m′, t′) = 1] ≤ 2−λ + 3ε2 + ε3 + ε4

�

Using Claim 8 and Equation 9, we get:

Pr[Eve wins|Sync,Pass] ≤ 2−λ + 3ε2 + ε3 + ε4

Hence, Lemma 8 is proved. �

Now, combining Lemmata 7 and 8, Equation 4 gives:

Pr[Eve wins] =≤ 2.(2−l
′

+ 23l′ε1 + 2−λ + 2−λ + 3ε2 + ε3 + ε4)

We set κ such that 2−κ = 2.(2−l
′
+ 23l′ε1 + 2.2−λ + 3ε2 + ε3 + ε4). Thus robustness of

message authentication protocol is proved.

5.2 Proof of Theorem 2

We now prove that πPA is a Privacy Amplification protocol.
Correctness The correctness of πPA follows by the correctness of πAUTH.
Robustness: We need to show

Pr[KA 6= KB ∧KA 6= ⊥ ∧KB 6= ⊥] ≤ 2−κ

Pr[KA 6= KB ∧KA 6= ⊥ ∧KB 6= ⊥]

= Pr[MA 6= MB ∧MA 6= ⊥ ∧MB 6= ⊥].Pr[KA 6= KB |MA 6= MB ∧MA 6= ⊥ ∧MB 6= ⊥]

≤ 2−κ (by robustness of πAUTH)

Extraction: Senta, Sentb denote the messages sent by Alice and Bob upon execution
of πPA in presence of Eve, the pair Sent = (Senta, Sentb) contains an active Eve’s view
of the protocol. For extraction we need to show

– If KB 6= ⊥, then KB , Sent ≈ε5 Ul′′ , Sent
– If KA 6= ⊥, then KA, Sent ≈ε5 Ul′′ , Sent

If KB 6= ⊥, KB is the extractor output on an independent uniform seed MB 6= ⊥. As
MB is independent of Xlive, Ylive, Y

′
live, XR, ZR, L,K,K

′, by the use of average case
extractors we have,

KB ,MB , Xlive, Ylive, Y
′
live, XR, ZR, L,K,K

′ ≈ε5 Ul′′ ,MB , Xlive, Ylive, Y
′
live, XR, ZR, L,K,K

′

KB ,MB , Xlive, Ylive, Y
′
live, XR, ZR, L,K,K

′, T ≈ε5 Ul′′ ,MB , Xlive, Ylive, Y
′
live, XR, ZR, L,K,K

′, T

KB , Sent ≈ε5 Ul′′ , Sent
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KA 6= ⊥ ⇒MA 6= ⊥ ∧MB 6= ⊥.
We can write, SD ((KA, Sent); (Ul′′ , Sent))

= Pr[MA = MB ∧MA 6= ⊥ ∧MB 6= ⊥]SDMA=MB ((KA, Sent); (Ul′′ , Sent))

+ Pr[MA 6= MB ∧MA 6= ⊥ ∧MB 6= ⊥]SDMA 6=MB ((KA, Sent); (Ul′′ , Sent))

≤ SD ((KB , Sent); (Ul′′ , Sent)) + Pr[MA 6= MB ∧MA 6= ⊥ ∧MB 6= ⊥]

≤ ε5 + 2−κ

5.3 Analysis of Entropy loss and Other Parameters

To get desired parameters as in Theorem 2, we use optimal constructions of building
blocks given in following theorems.

Lemma 9. [GUV07] For every constant ν > 0 all integers n ≥ t and all ε ≥ 0, there is

an explicit (efficient) (n, t, d, l, ε)−strong extractor with l = (1−ν)t−O(log(n)+log(
1

ε
))

and d = O(log(n) + log(
1

ε
)).

Now, as we give some auxiliary information about the source, we require the secu-
rity of the extractor to hold, even given this information. Hence, we use average case
extractors, given in the following lemma.

Lemma 10. [DORS08] For any µ > 0, if Ext is a (worst case)(n, t, d, l, ε)−strong

extractor, then Ext is also an average-case (n, t+ log(
1

µ
), d, l, ε+ µ) strong extractor.

Now, we also encode the authentication keys and tags using the underlying non-
malleable code. Hence, we require them to have short lengths. This is guaranteed
by the following lemma [JKS93]:

Lemma 11. For any n′, ε2 > 0 there is an efficient ε2−secure one time MAC with

δ ≤ (log(n′) + log(
1

ε2
)), τ ≤ 2δ, where τ, n′, δ are key, message, tag length respectively.

We now set the parameters:

– For the MAC, we set:

• ε4 = 2−λ

• Tag length: δ = c0λ, for some c0 > 1
• Key length: τ = 2δ = 2cλ
• Message length: d, will be set below.

– For the liveness test Extractor, we set:

• ε1 = 2−4.λ

• Seed length: d = O(logn+ 4.λ)
• output length: 3l′ = 3λ

– Now, we calculate the entropy loss:

• From the transcript of the protocol, the entropy loss that occurs is: 3l′+l+δ =
3l′ + l +O(λ)

• Additional leakage results in a loss: O(λ) + 3l′

• Hence, we require H∞(W )− (6l′ + l +O(λ)) ≥ max{t, t′, t′′}
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• Then, by setting ε5 = 2−λ, µ = 2−λ, we know l′′ = (1−µ)t′′−O(logn+λ), we
get a total entropy loss = 6l′+l+O(λ)+O(logn+λ) = O(λ)+l+O(logn+λ) =
l +O(logn+ λ)

To finally evaluate the entropy loss, we set parameters for the NMC:

2A: If we consider a constant rate optimal error NMC, we set:
• We know message length: τ = c0λ
• ε3 = 2−Ω(λ)

• Codeword length: 2l = O(λ)
Then entropy loss = (l +O(logn+ λ)) = O(λ) +O(logn+ λ) = O(logn+ λ)

2B: If we instantiate our construction using the NMC [Li17], we set:
• We know message length: τ = c0λ
• ε3 = 2−Ω(λ)

• Codeword length: 2l = O(λ log λ)
Then entropy loss = (l + O(logn + λ)) = O(λ log λ) + O(logn + λ) = O(logn +
λ log λ)

– Finally, as we set 2−κ = 2.(2−l
′
+23l′ε1+2.2−λ+3ε2+ε3+ε4). By setting ε2 = 2−λ,

in both 2A and 2B, we get 2−κ = 2−Ω(λ). We set, κ = Θ(λ).
– The error in Extraction property of πPA = ε5 + 2−κ = 2−λ + 2−κ = 2−κ+1

5.4 Privacy Amplification from Augmented-NMREs

Theorem 3 If (Enc,Dec) in πAUTH is a two-state, constant rate augmented non-
malleable randomness encoder with optimal error 2−Ω(κ), then the 8-round protocol
πPA in Figure 1 is a (t′, l′′, κ, κ− 1)-secure privacy amplification protocol with optimal
entropy loss O(log(n) + κ) with min-entropy requirement Ω(log(n) + κ).

Proof: The only modification made in this protocol is that instead of picking the MAC
key k uniformly at random and then encoding it using NMCs, we use the key k and its
encoding output by the NMRE. As augmented-NMREs guarantee the K looks uniform
even given L and the modified key K′, the proof structure of this theorem follows on
the same lines as the security proof in Sections 5.1 and 5.2.
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A Appendix A

Proposition 1. Let A1, ..., An be mutually exclusive and exhaustive events. Then, for
probability distributions X1, X2 over some set S, we have:

SD (X1, X2) ≤
n∑
i=1

Pr[Ai].SD (X1|Ai, X2|Ai)

where Xj |Ai is the distribution of Xj conditioned on the event Ai.

Proof.

2SD (X1, X2) =
∑
s∈S

|Pr[X1 = s]− Pr[X2 = s]|
=
∑
s∈S

| n∑
i=1

(Pr[Ai] Pr[X1 = s|Ai]− Pr[Ai] Pr[X2 = s|Ai])|
≤
∑
s∈S

n∑
i=1

Pr[Ai]|Pr[X1 = s|Ai]− Pr[X2 = s|Ai]|
=

n∑
i=1

Pr[Ai]
∑
s∈S

|Pr[X1 = s|Ai]− Pr[X2 = s|Ai]|
= 2

n∑
i=1

Pr[Ai]SD (X1|Ai, X2|Ai)

�
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Proposition 2. Let A,B be random variables over A. Let C be any distribution over
C.

If ∀c ∈ C, SDC=c(A;B) ≤ ε , then SD ((A,C); (B,C)) ≤ ε

Proof.

2SD ((A,C); (B,C)) =
∑
a,c

|Pr[A = a,C = c]− Pr[B = a,C = c]|

=
∑
c

Pr[C = c]
∑
a

|Pr[A = a|C = c]− Pr[B = a|C = c]|

≤
∑
c

Pr[C = c].ε

= ε

�

Proposition 3. Let A1, A2, ..., An be mutually exclusive and exhaustive events. Let B
be any (possibly correlated to Ai’s) event with non-zero probability. Then∑

i=1 to n

Pr[Ai|B] = 1

Proof.

∑
i=1 to n

Pr[Ai|B] =
∑

i=1 to n

(
Pr[Ai ∧B]

Pr[B]
)

=

∑
i=1 to n Pr[Ai ∧B]

Pr[B]

=
Pr[B]

Pr[B]

= 1

The third equation follows because Ai’s are mutually exclusive and exhaustive events.
�

Proposition 4. Let A,B be random variables over A,B respectively. Let F be some
event with non-zero probability. Let C be the random variable B|F . Suppose A is inde-
pendent of event F , then

∀a ∈ A, b ∈ B, Pr[A = a,B = b|F ] = Pr[A = a,C = b] and

SD ((A,B); (A,C)) ≤ 1− Pr[F ]

Proof. Define random variable D as A|F . Then

Pr[A = a,B = b|F ] = Pr[D = a,C = b]

= Pr[A = a,C = b]
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The above equation follows because A is independent of F and therefore, D ≡ A.
Let F̃ be the complement event of F .

2SD ((A,B); (A,C)) =
∑
a,b

|Pr[A = a,B = b]− Pr[A = a,C = b]|

=
∑
a,b

|Pr[F ] Pr[A = a,B = b|F ] + Pr[F̃ ] Pr[A = a,B = b|F̃ ]− Pr[A = a,C = b]|

=
∑
a,b

|Pr[F ] Pr[A = a,C = b] + Pr[F̃ ] Pr[A = a,B = b|F̃ ]− Pr[A = a,C = b]|

leq
∑
a,b

|Pr[F ] Pr[A = a,C = b]− Pr[A = a,C = b]|+ Pr[F̃ ]
∑
a,b

Pr[A = a,B = b|F̃ ]

= (1− Pr[F ])
∑
a,b

(Pr[A = a,C = b]) + Pr[F̃ ] Pr[A ∈ A, B ∈ B|F̃ ]

= (1− Pr[F ]) + Pr[F̃ ].1

= 2(1− Pr[F ])

�

Proposition 5. Let A,B,C be random variables and F be some event with non-zero
probability. Suppose A,C are independent of B, F and A ≈ε C, then (A,B)|F ≈ε
(C,B)|F .

Proof. Let A′, B′, C′ denote the random variables (A|F ), (B|F ), (C|F ). A,C are inde-
pendent of B and F . Therefore, A′, C′ are independent of B′. For the sake of complete-
ness we just show A′ is independent of B′.

Pr[A′ = a,B′ = b] = Pr[A = a,B = b|F ]

= Pr[A = a,B = b, F ]/Pr[F ]

= (Pr[A = a] Pr[B = b, F ])/Pr[F ]

= Pr[A = a] Pr[B = b|F ]

= Pr[A = a|F ] Pr[B = b|F ] = Pr[A′ = a] Pr[B′ = b]

2SD ((A,B)|F ; (C,B)|F ) =
∑
a,b

|Pr[A = a,B = b|F ]− Pr[C = a,B = b|F ]|
=
∑
a,b

|Pr[A′ = a,B′ = b]− Pr[C′ = a,B′ = b]|
=
∑
b

Pr[B′ = b]
∑
a

|Pr[A′ = a]− Pr[C′ = a]|
=
∑
b

Pr[B′ = b]
∑
a

|Pr[A = a]− Pr[C = a]|
=
∑
b

Pr[B′ = b]2ε = 2ε
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The above equations follow because A,C are independent of F and therefore, A′ ≡ A
and C′ ≡ C. �
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