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Abstract. This paper initiates a study of Fine Grained Secure Com-
putation: i.e. the construction of secure computation primitives against
“moderately complex” adversaries. We present definitions and construc-
tions for compact Fully Homomorphic Encryption and Verifiable Com-
putation secure against (non-uniform) NC1 adversaries. Our results do
not require the existence of one-way functions and hold under a widely
believed separation assumption, namely NC1 ( ⊕L/poly. We also present
two application scenarios for our model: (i) hardware chips that prove
their own correctness, and (ii) protocols against rational adversaries po-
tentially relevant to the Verifier’s Dilemma in smart-contracts transac-
tions such as Ethereum.

1 Introduction

Historically, Cryptography has been used to protect information (either in tran-
sit or stored) from unauthorized access. One of the most important developments
in Cryptography in the last thirty years, has been the ability to protect not only
information but also the computations that are performed on data that needs
to be secure. Starting with the work on secure multiparty computation [Yao82],
and continuing with ZK proofs [GMR89], and more recently Fully Homomor-
phic Encryption [Gen09], verifiable outsourcing computation [GKR08,GGP10],
SNARKs [GGPR13,BCI+13] and obfuscation [GGH+16] we now have crypto-
graphic tools that protect the secrecy and integrity not only of data, but also of
the programs which run on that data.

Another crucial development in Modern Cryptography has been the adoption
of a more “fine-grained” notion of computational hardness and security. The
traditional cryptographic approach modeled computational tasks as “easy” (for
the honest parties to perform) and “hard” (infeasible for the adversary). Yet
we have also seen a notion of moderately hard problems being used to attain
certain security properties. The best example of this approach might be the use of
moderately hard inversion problems used in blockchain protocols such as Bitcoin.
Although present in many works since the inception of Modern Cryptography,
this approach was first formalized in a work of Dwork and Naor [DN92].

In the second part of this work we consider the following model (which can be
traced back to the seminal paper by Merkle [Mer78] on public key cryptography).
Honest parties will run a protocol which will cost1 them C while an adversary

1 We intentionally refer to it as “cost” to keep the notion generic. For concreteness
one can think of C as the running time required to run the protocol.



who wants to compromise the security of the protocol will incur a C ′ = ω(C) cost.
Note that while C ′ is asymptotically larger than C, it might still be a feasible
cost to incur – the only guarantee is that it is substantially larger than the work
of the honest parties. For example in Merkle’s original proposal for public-key
cryptography the honest parties can exchange a key in time T but the adversary
can only learn the key in time T 2. Other examples include primitives introduced
by Cachin and Maurer [CM97] and Hastad [Has87] where the cost is the space
and parallel time complexity of the parties, respectively.

Recently there has been renewed interest in this model. Degwekar et al.
[DVV16] show how to construct certain cryptographic primitives in NC1 [resp.
AC0] which are secure against all adversaries in NC1 [resp. AC0]. In conceptually
related work Ball et al. [BRSV17] present computational problems which are
“moderately hard” on average, if they are moderately hard in the worst case, a
useful property for such problems to be used as cryptographic primitives.

The goal of this paper is to initiate a study of Fine Grained Secure Compu-
tation. By doing so we connect these two major developments in Modern Cryp-
tography. The question we ask is if it is possible to construct secure computation
primitives that are secure against “moderately complex” adversaries. We answer
this question in the affirmative, by presenting definitions and constructions for
the task of Fully Homomorphic Encryption and Verifiable Computation in the
fine-grained model. In our constructions, our goal is to optimize at the same time
(for the extent to which it is possible) in terms of depth, size, round and com-
munication complexity. Our constructions rely on a widely believed complexity
separation2. We also present two application scenarios for our model: i) hardware
chips that prove their own correctness and ii) protocols against rational adver-
saries including potential solutions to the Verifier’s Dilemma in smart-contracts
transactions such as Ethereum.

1.1 Our Results

Our starting point is the work in [DVV16] and specifically their public-key en-
cryption scheme secure against NC1 circuits. Recall that AC0[2] is the class of
Boolean circuits with constant depth, unbounded fan-in, augmented with parity
gates. If the number of AND (and OR) gates of non constant fan-in is constant
we say that the circuit belongs to the class AC0

Q[2] ⊂ AC0[2].
Our results can be summarized as follows:

– We first show that the techniques in [DVV16] can be used to build a some-
what homomorphic encryption (SHE) scheme. We note that because honest
parties are limited to NC1 computations, the best we can hope is to have a
scheme that is homomorphic for computations in NC1. However our scheme
can only support computations that can be expressed in AC0

Q[2].
– We then use our SHE scheme, in conjunction with protocols described in

[GGP10,CKV10,AIK10], to construct verifiable computation protocols for

2 A separation implied by L 6= NC1. See Section 1.1 for more details.
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functions in AC0
Q[2], secure and input/output private against any adversary

in NC1.

Our somewhat homomorphic encryption also allows us to obtain the following
protocols secure against NC1 adversaries: (i) constant-round 2PC, secure in the
presence of semi-honest static adversaries for functions in AC0

Q[2]; (ii) Private
Function Evaluation in a two party setting for circuits of constant multiplicative
depth without relying on universal circuits. These results stem from well-known
folklore transformations and we do not prove them formally.

The class AC0
Q[2] includes many natural and interesting problems such as:

fixed precision arithmetic, evaluation of formulas in 3CNF (or kCNF for any
constant k), a representative subset of SQL queries, and S-Boxes [BP11] for
symmetric key encryption.

Our results (like [DVV16]) hold under the assumption that NC1 ( ⊕L/poly,
a widely believed worst-case assumption on separation of complexity classes.
Notice that this assumption does not imply the existence of one-way functions
(or even P 6= NP). Thus, our work shows that it is possible to obtain “advanced”
cryptographic schemes, such as somewhat homomorphic encryption and verifi-
able computation, even if we do not live in Minicrypt34.

Comparison with other approaches. One important question is: on what
features are our schemes better than “generic” cryptographic schemes that after
all are secure against any polynomial time adversary.

One such feature is the type of assumption one must make to prove secu-
rity. As we said above, our schemes rely on a very mild worst-case complexity
assumption, while cryptographic SHE and VC schemes rely on very specific as-
sumptions, which are much stronger than the above.

For the case of Verifiable Computation, we also have information-theoretic
protocols which are secure against any (possibly computationally unbounded)
adversary. For example the “Muggles” protocol in [GKR08] which can compute
any (log-space uniform) NC function, and is also reasonably efficient in practice
[CMT12]. Or, the more recent work [GR18], which obtains efficient VC for func-
tions in a subset of NC ∩ SC. Compared to these results, one aspect in which
our protocol fares better is that our Prover/Verifier can be implemented with
a constant-depth circuit (in particular in AC0[2], see Section 4) which is not
possible for the Prover/Verifier in [GKR08,GR18], which needs5 to be in TC0.
Moreover our protocol is non-interactive (while [GKR08,GR18] requires Ω(1)
rounds of interaction) and because our protocols work in the “pre-processing
model” we do not require any uniformity or regularity condition on the circuit
being outsourced (which are required by [GKR08] and [CMT12]). Finally, out
verification scheme achieves input and output privacy.

3 This is a reference to Impagliazzo’s “five possible worlds” [Imp95].
4 Naturally the security guarantees of these schemes are more limited compared to

their standard definitions.
5 The techniques in [GKR08,GR18] are based on properties of finite fields. Arithmetic

in such fields can be carried out by circuits of constant depth with threshold gates
(TC0), but not in AC0[2].
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Another approach to obtain information-theoretic security for Verifiable Com-
putation is to use the framework of randomized encodings (RE) [IK00a,AIK04]
(e.g. [GGH+07] which uses related techniques). In this work we build scheme
with additional requirements: compact homomorphic encryption6 and overall
efficient verification for verifiable computation7. We do not see how to achieve
these additional requirements via current RE-based approaches. We further dis-
cuss these and other limitations of directly using RE in Appendix D.

1.2 Overview of our Techniques

Homomorphic Encryption. In [DVV16] the authors already point out that
their scheme is linearly homomorphic. We make use of the re-linearization tech-
nique from [BV14] to construct a leveled homomorphic encryption.

Our scheme (as the one in [DVV16]) is secure against adversaries in the
class of (non-uniform) NC1. This implies that we can only evaluate functions
in NC1 otherwise the evaluator would be able to break the semantic security of
the scheme. However we have to ensure that the whole homomorphic evaluation
stays in NC1. The problem is that homomorphically evaluating a function f
might increase the depth of the computation.

In terms of circuit depth, the main overhead will be (as usual) the compu-
tation of multiplication gates. As we show in Section 3 a single homomorphic
multiplication can be performed by a depth two AC0[2] circuit, but this requires
depth O(log(n)) with a circuit of fan-in two. Therefore, a circuit for f with
ω(1) multiplicative depth would require an evaluation of ω(log(n)) depth, which
would be out of NC1. Therefore our first scheme can only evaluate functions with
constant multiplicative depth, as in that case the evaluation stays in AC0[2].

We then present a second scheme that extends the class of computable func-
tions to AC0

Q[2] by allowing for a negligible error in the correctness of the scheme.

We use techniques from a work by Razborov [Raz87] on approximating AC0[2]
circuits with low-degree polynomials – the correctness of the approximation (ap-
propriately amplified) will be the correctness of our scheme.

Reusable Verifiable Computation. The core of our approach is the con-
struction in [CKV10], to derive Verifiable Computation from Homomorphic En-
cryption. The details of this approach follow. Recall that we are working in a
model with an expensive preprocessing phase (executed by the Client only once
and before providing any inputs to the Server) and an inexpensive online phase.
The online phase is in turn composed by two algorithms, an algorithm to encode
the input for the Server and one to check its response. In the preprocessing phase
in [CKV10], the Client selects a random input r, encrypts it as cr = E(r) and
homomorphically compute cf(r) an encryption of f(r). During the online phase,
the Client, on input x, computes cx = E(x) and submits the ciphertexts cx, cr

6 Where the ciphertexts do not grow in size with each homomorphic operation.
7 Where not only the circuit depth is constant but also the size of the circuit is

quasilinear – the size of the verification circuit should be O(poly(λ)(n + m)) where
n and m are the size of the input and output respectively.
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in random order to the Server, who homomorphically computes cf(r) = E(f(r))
and cf(x) = E(f(x)) and returns them to the Client. The Client, given the mes-
sage c0, c1 from the Server, checks that cb = cf(r) (for the appropriate bit b) and
if so accepts y = D(cf(x)) as y = f(x). The semantic security of E guarantees
that this protocol has soundness error 1/2. This error can be reduce by “scaling”
this approach replacing the two ciphertexts cx and cr with 2t ciphertexts (t dis-
tinct encryptions of x and t encryptions of random values r1, . . . , rt ) sent to the
prover after being shuffled through a random permutation. The scheme as de-
scribed is however one-time secure, since a malicious server can figure out which
one is the test ciphertext cf(r) if it is used again. To make this scheme “many-
times secure”, [CKV10] uses the paradigm introduced in [GGP10] of running
the one-time scheme “under the hood” of a different homomorphic encryption
key each time.

When applying these techniques in our fine-grained context the main techni-
cal challenge is to guarantee that they would also work within NC1. In particular,
we needed to ensure that: (i) the constructions can be computed in low-depth;
(ii) the reductions in the security proofs can be carried out in low-depth. We rely
on results from [MV91] to make sure a random permutation can be sampled by
an appropriately low-depth scheme8 Moreover, we cannot simply make black-
box use of the one-time construction in [CKV10]. In fact, their construction
works only for homomorphic encryption schemes with deterministic evaluation,
whereas the more expressive of our constructions (Section 3.3) is randomized9.

1.3 Application Scenarios

The applications described in this section refer to the problem of Verifying Com-
putation, where a Client outsources an algorithm f and an input x to a Server,
who returns a value y and a proof that y = f(x). The security property is that it
should be infeasible to convince the verifier to accept y′ 6= f(x), and the crucial
efficiency property is that verifying the proof should cost less than computing f
(since avoiding that cost was the reason the Client hired the Server to compute
f).

Hardware Chips That Prove Their Own Correctness Verifiable Com-
putation (VC) can be used to verify the execution of hardware chips designed
by untrusted manufacturers. One could envision chips that provide (efficient)
proofs of their correctness for every input-output computation they perform.
These proofs must be efficiently verified in less time and energy than it takes to
re-execute the computation itself.

When working in hardware, however, one may not need the full power of
cryptographic protection against any malicious attacks since one could bound
the computational power of the malicious chip. The bound could be obtained

8 More precisely, that a permutation statistically indistinguishable from a random one
can be sampled in AC0.

9 See also Remark C.1.
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by making (reasonable and evidence-based) assumptions on how much compu-
tational power can fit in a given chip area. For example one could safely assume
that a malicious chip can perform at most a constant factor more work than the
original function because of the basic physics of the size and power constraints.
In other words, if C is the cost of the honest Server in a VC protocol, then in
this model the adversary is limited to O(C)-cost computations, and therefore a
protocol that guarantees that successful cheating strategies require ω(C) cost,
will suffice. This is exactly the model in our paper. Our results will apply to the
case in which we define the cost as the depth (i.e. the parallel time complexity)
of the computation implemented in the chip.

Rational Proofs. The problem above is related to the notion of composable
Rational Proofs defined in [CG15]. In a Rational Proof (introduced by Azar and
Micali [AM12,AM13]), given a function f and an input x, the Server returns
the value y = f(x), and (possibly) some auxiliary information, to the Client.
The Client in turn pays the Server for its work with a reward based on the
transcript exchanged with the server and some randomness chosen by the client.
The crucial property is that this reward is maximized in expectation when the
server returns the correct value y. Clearly a rational prover who is only interested
in maximizing his reward, will always answer correctly.

The authors of [CG15] show however that the definition of Rational Proofs
in [AM12,AM13] does not satisfy a basic compositional property needed for the
case in which many computations are outsourced to many servers who compete
with each other for rewards (e.g. the case of volunteer computations [ACK+02]).
A “rational proof” for the single-proof setting may no longer be rational when a
large number of “computation problems” are outsourced. If one can produce T
“random guesses” to problems in the time it takes to solve 1 problem correctly, it
may be preferable to guess! That’s because even if each individual reward for an
incorrect answer is lower than the reward for a correct answer, the total reward
of T incorrect answers might be higher (and this is indeed the case for some of
the protocols presented in [AM12,AM13]).

The question (only partially answered in [CG15,CG17] for a limited class of
computations) is to design protocols where the reward is strictly connected, not
just to the correctness of the result, but to the amount of work done by the
prover. Consider for example a protocol where the prover collects the reward
only if he produces a proof of correctness of the result. Assume that the cost to
produce a valid proof for an incorrect result, is higher than just computing the
correct result and the correct proof. Then obviously a rational prover will always
answer correctly, because the above strategy of fast incorrect answers will not
work anymore. While the application is different, the goal is the same as in the
previous verifiable hardware scenario.

The Verifier’s Dilemma. In blockchain systems such as Ethereum, transac-
tions can be expressed by arbitrary programs. To add a transaction to a block
miners have to verify its validity, which could be too costly if the program is too
complex. This creates the so-called Verifier’s Dilemma [LTKS15]: given a costly
valid transaction Tr a miner who spends time verifying it is at a disadvantage
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over a miner who does not verify it and accept it “uncritically” since the latter
will produce a valid block faster and claim the reward. On the other hand if
the transaction is invalid, accepting it without verifying it first will lead to the
rejection of the entire block by the blockchain and a waste of work by the uncrit-
ical miner. The solution is to require efficiently verifiable proofs of validity for
transactions, an approach already pursued by various startups in the Ethereum
ecosystem (e.g. TrueBit10). We note that it suffices for these proofs to satisfy
the condition above: i.e. we do not need the full power of information-theoretic
or cryptographic security but it is enough to guarantee that to produce a proof
of correctness for a false transaction is more costly than producing a valid trans-
action and its correct proof, which is exactly the model we are proposing.

1.4 Future Directions

Our work opens up many interesting future directions.
First of all, it would be nice to extend our results to the case where cost is the

actual running time, rather than “parallel running time”/“circuit depth” as in
our model. The techniques in [BRSV17] (which presents problems conjectured to
have Ω(n2) complexity on the average), if not even the original work of Merkle
[Mer78], might be useful in building a verifiable computation scheme where if
computing the function takes time T , then producing a false proof of correctness
would have to take Ω(T 2).

For the specifics of our constructions it would be nice to “close the gap”
between what we can achieve and the complexity assumption: our schemes can
only compute AC0

Q[2] against adversaries in NC1, and ideally we would like to

be able to compute all of NC1 (or at the very least all of AC0[2]).
Finally, to apply these schemes in practice it is important to have tight

concrete security reductions and a proof-of-concept implementations.

2 Preliminaries

For a distribution D, we denote by x ← D the fact that x is being sampled
according to D. We remind the reader that an ensemble X = {Xλ}λ∈N is a family
of probability distributions over a family of domains D = {Dλ}λ∈N. We say two
ensembles D = {Dλ}λ∈N and D′ = {D′λ}λ∈N are statistically indistinguishable if
1
2

∑
x

|D(x)−D′(x)| < neg(λ). Finally, we note that all arithmetic computations

(such as sums, inner product, matrix products, etc.) in this work will be over
GF(2) unless specified otherwise.

Definition 2.1 (Function Family). A function family is a family of (possibly

randomized) functions F = {fλ}λ∈N, where for each λ, fλ has domain Df
λ and

co-domain Rfλ. A class C is a collection of function families.

10 TrueBit: https://truebit.io/
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In most of our constructions Df
λ = {0, 1}d

f
λ and Rfλ = {0, 1}r

f
λ for sequences

{dfλ}λ, {dfλ}λ.
In the rest of the paper we will focus on the class of C = NC1 of functions

for which there is a polynomial p(·) and a constant c such that for each λ, the
function fλ can be computed by a Boolean (randomized) fan-in 2, circuit of
size p(λ) and depth c log(λ). In the formal statements of our results we will
also use the following classes: AC0, the class of functions of polynomial size and
constant depth with AND,OR and NOT gates with unbounded fan-in; AC0[2],
the class of functions of polynomial size and constant depth with AND,OR,NOT
and PARITY gates with unbounded fan-in.

Given a function f , we can think of its multiplicative depth as the degree
of the lowest-degree polynomial in GF(2) that evaluates to f . We denote by
AC0

CM[2] the class of circuits in AC0[2] with constant multiplicative depth. We
say that a circuit has quasi-constant multiplicative depth if it has a constant
number of gates with non-constant fan-in (an example is a circuit composed by
a single AND of fan-in n). We denote the class of such circuits by AC0

Q[2]. See
Appendix A for a formal treatment.

Limited Adversaries. We define adversaries also as families of randomized
algorithms {Aλ}λ, one for each security parameter (note that this is a non-
uniform notion of security). We denote the class of adversaries we consider as
A, and in the rest of the paper we will also restrict A to NC1.

Infinitely-Often Security. We now move to define security against all ad-
versaries {Aλ}λ that belong to a class A. Our results achieve an “infinitely often”
notion of security, which states that for all adversaries outside of our permitted
class A our security property holds infinitely often (i.e. for an infinite sequence of
security parameters rather than for every sufficiently large security parameter).
This limitation seems inherent to the techniques in this paper and in [DVV16].
We informally denote with X ∼Λ Y the fact that two ensembles X and Y are
indistinguishable by NC1 adversaries for an infinite sequence of parameters Λ.
See also Appendix A.

3 Fine-Grained SHE

We start by recalling the public key encryption from [DVV16] which is secure
against adversaries in NC1.

The scheme is described in Figure 1. Its security relies on the following result,
implicit in [IK00a]11. We will also use this lemma when proving the security of
our construction in Section 3.

Lemma 3.1 ([IK00a]). If NC1 ( ⊕L/poly then there exist distribution Dkg
λ

over {0, 1}λ×λ, distribution Dfλ over matrices in {0, 1}λ×λ of full rank, and in-
finite set Λ ⊆ N such that

Mkg ∼Λ Mf

11 Stated as Lemma 4.3 in [DVV16].
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where Mf ← Dfλ and Mkg ← Dkg
λ .

The following result is central to the correctness of the scheme PKE in Figure
1 and is implicit in [DVV16].

Lemma 3.2 ([DVV16]). There exists sampling algorithm KSample such that

(M,k) ← KSample(1λ), M is a matrix distributed according to Dkg
λ (as in

Lemma 3.1), k is a vector in the kernel of M and has the form
k = (r1, r2, . . . , rλ−1, 1) ∈ {0, 1}λ where ri-s are uniformly distributed bits.

– PKE.Keygensk(1
λ) :

1. Sample (M,k)← KSample(1λ);
2. Output (pk = M, sk = k).

– PKE.Encpk=M(µ) :
1. Sample r←$ {0, 1}λ;
2. Let tᵀ = (0 . . . 0 1) ∈ {0, 1}λ;
3. Output cᵀ = rᵀM + µtᵀ.

– PKE.Decsk=k(c) :
1. Output 〈k , c〉

Fig. 1. PKE construction [DVV16]

Theorem 3.1 ([DVV16]). Assume NC1 ( ⊕L/poly. Then, the scheme PKE =
(PKE.Keygen,PKE.Enc,PKE.Dec) defined in Figure 1 is a Public Key Encryp-
tion scheme secure against NC1 adversaries. All algorithms in the scheme are
computable in AC0[2].

3.1 Leveled Homomorphic Encryption for AC0
CM[2] Functions

Secure against NC1

We denote by x[i] the i-th bit of a vector of bits x . Below, the scheme PKE =
(PKE.Keygen,PKE.Enc,PKE.Dec) is the one defined in Figure 1. Our SHE scheme
is defined by the following four algorithms:

– HE.Keygensk(1
λ, L) : For key generation, sample L + 1 key pairs

(M0,k0), . . . , (ML,kL) ← PKE.Keygen(1λ), and compute, for all ` ∈
{0, . . . , L− 1}, i, j ∈ [λ], the value

a`,i,j ← PKE.EncM`+1
(k`[i] · k`[j]) ∈ {0, 1}λ

We define A := {a`,i,j}`,i,j to be the set of all these values. t then outputs
the secret key sk = kL, and the public key pk = (M0,A). In the following
we call evk = A the evaluation key.
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We point out a property that will be useful later: by the definition above,
for all ` ∈ {0, . . . , L− 1} we have

〈k`+1 ,a`+1,i,j〉 = k`[i] · k`[j] . (1)

– HE.Encpk(µ)) : Recall that pk = M0. To encrypt a message µ we compute
v ← PKE.EncM0

(µ). The output ciphertext contains v in addition to a
“level tag”, an index in {0, . . . , L} denoting the “multiplicative depth” of
the generated ciphertext. The encryption algorithm outputs c := (v, 0).

– HE.DeckL(c) : To decrypt a ciphertext12 c = (v, L) compute PKE.DeckL(v),
i.e.

〈kL ,v〉

– HE.Evalevk(f, c1, . . . , cn) : where f : {0, 1}n → {0, 1}: We require that f is
represented as an arithmetic circuit in GF(2) with addition gates of un-
bounded fan-in and multiplication gates of fan-in 2. We also require the
circuit to be layered, i.e. the set of gates can be partitioned in subsets (lay-
ers) such that wires are always between adjacent layers. Each layer should be
composed homogeneously either of addition or multiplication gates. Finally,
we require that the number of multiplications layers (i.e. the multiplicative
depth) of f is L.

We homomorphically evaluate f gate by gate. We will show how to perform
multiplication (resp. addition) of two (resp. many) ciphertexts. Carrying out
this procedure recursively we can homomorphically compute any circuit f
of multiplicative depth L.

Ciphertext structure during evaluation. During the homomorphic
evaluation a ciphertext will be of the form c = (v, `) where ` is the “level tag”
mentioned above. At any point of the evaluation we will have that ` is be-
tween 0 (for fresh ciphertexts at the input layer) and L (at the output layer).
We define homomorphic evaluation only among ciphertexts at the same level.
Since our circuit is layered we will not have to worry about homomorphic
evaluation occurring among ciphertexts at different levels. Consistently with
the fact a level tag represents the multiplicative depth of a ciphertext, ad-
dition gates will keep the level of ciphertexts unchanged, whereas multipli-
cation gates will increase it by one. Finally, we will keep the invariant that
the output of each gate evaluation c = (v, `) is such that

〈k` ,v〉 = µ (2)

where µ is the correct plaintext output of the gate. We prove our construction
satisfies this invariant in Appendix B.

12 We are only requiring to decrypt ciphertexts that are output by HE.Eval(· · · )
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Homomorphic Evaluation of gates:
• Addition gates. Homomorphic evaluation of an addition gates on inputs
c1, . . . , cn where ci = (vi, `) is performed by outputting

cadd = (vadd, `) :=
(∑

i

vi, `
)

• Multiplication gates. We show how to multiply ciphertexts c, c′ where c =
(v, `) and c′ = (v′, `) to obtain an output ciphertext cmult = (vmult, `+1).
The homomorphic multiplication algorithm will set

vmult :=
∑
i,j∈[λ]

hi,j · a`+1,i,j

where hi,j = v[i] · v′[j] for i, j ∈ [λ].
The final output ciphertext will be

cmult := (vmult, `+ 1).

The following theorem states the security of our scheme under our complexity
assumption.

Theorem 3.2 (Security). The scheme HE is CPA secure against NC1 adver-
saries (Definition A.5) under the assumption NC1 ( ⊕L/poly.

3.2 Efficiency and Homomorphic Properties of Our Scheme

Our scheme is secure against adversaries in the class NC1. This implies that we
can run HE.Eval only on functions f that are in NC1, otherwise the evaluator
would be able to break the semantic security of the scheme. However we have
to ensure that the whole homomorphic evaluation stays in NC1. The problem is
that homomorphically evaluating f has an overhead with respect to the “plain”
evaluation of f . Therefore, we need to determine for which functions f , we can
guarantee that HE.Eval(F, . . . ) will stay in NC1. The class of such functions turns
out to be the class of functions implementable in constant multiplicative depth,
i.e. AC0

CM[2] 13.
These observations, plus the fact that the invariant in Eq. 2 is preserved

throughout homomorphic evaluation, imply the following result.

Theorem 3.3. The scheme HE is leveled AC0
CM[2]-homomorphic. Key genera-

tion, encryption, decryption and evaluation are all computable in AC0
CM[2].

13 In terms of circuit depth, the main overhead when evaluating f homomorphically is
given by the multiplication gates (addition, on the other hand, is “for free” — see
definition of HE.Eval above). A single homomorphic multiplication can be performed
by a depth two AC0[2] circuit, but this requires depth Ω(log(n)) with a circuit of
fan-in two. Therefore, a circuit for f with ω(1) multiplicative depth would require an
evaluation of ω(log(n)) depth, which would be out of NC1. On the other hand, observe
that for any function f in AC0[2] with constant multiplicative depth, the evaluation
stays in AC0[2]. This because there is a constant number (depth) of homomorphic
multiplications each requiring an AC0[2] computation.
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3.3 Beyond Constant Multiplicative Depth

In the previous section we saw how our scheme is homomorphic for a class of
constant-depth, unbounded fan-in arithmetic circuits in GF(2) with constant
multiplicative depth. We now show how to overcome this limitation by first ex-
tending techniques from [Raz87] to approximate AC0[2] circuits with low-degree
polynomials and then designing a construction that internally uses our scheme
HE from Section 3.1.

Approximating AC0
Q[2] in AC0

CM[2] Our approach to homomorphically eval-

uate a function f ∈ AC0
Q[2] is as follows. Instead of evaluating f we evaluate f∗,

an approximate version of f that is computable in AC0
CM[2]. The function f∗

is randomized and we will denote by n′ the number of random bits f∗ takes in
input (in addition to the n bits of the input x). If x̂ = Enc(x) and r̂ = Enc(r)
where r is uniformly random in {0, 1}n′ , then decrypting HE.Eval(f∗, x̂, r̂)14

yields f(x) with constant error probability. One way to reduce error could be to
let evaluation compute f∗ s times with s random inputs. However, this requires
particular care to avoid using majority gates in the decryption algorithm. With
this goal in mind we extend the output of the approximating function f∗. When
performing evaluation we will then perform s evaluations of f ′, the “extension”
of f∗ This additional information will be returned (encrypted) from the evalua-
tion algorithm and will allow correct decryption with overwhelming probability
and in low-depth (and without majority gates).

In the next constructions we will make use of the functions GenApproxFun,
GenDecodeAux and DecodeApprox, here only informally defined15. The function
GenApproxFun(f) returns the (extended) approximating function f ′; the function
GenDecodeAux(f) returns a constant-size string auxf used to decode (multiple)
output of f ′(x); the function DecodeApprox(auxf ,y

out
1 , . . . ,yout

s ) returns f(x)
w.h.p. if each yout

s is an output of f ′(x; r) for random r.

Homomorphic Evaluations of AC0
Q[2] Circuits Below is our construction

for a homomorphic scheme that can evaluate all circuits in AC0
Q[2] in AC0[2]. This

time, in order to evaluate circuit C, we perform several homomorphic evaluations
of the randomized circuit C ′ (as in Lemma B.2). To obtain the plaintext output
of C we can decrypt all the ciphertext outputs and use DecodeApprox. Notice
that this scheme is still compact. As we use a randomized approach to evaluate
f , the scheme HE′ will be implicitly parametrized by a soundness parameter s.
Intuitively, the probability of a function f being evaluated incorrectly will be
upper bounded by 2−s.

For our new scheme we will use the following auxiliary functions:

Definition 3.1 (Auxiliary Functions for HE′).

14 In the evaluation algorithm we ignore the distinction between deterministic and
random input.

15 The reader can find additional details in Appendix B.
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Let f : {0, 1}n → {0, 1} be represented as an arithmetic circuit as in HE and
pk a public key for the scheme HE that includes the evaluation key. Let s be a
soundness parameter. We denote by f ′ be as above; let n′ = O(n) be the number
of additional bits f ′ will take as random input.

– SampleAuxRandomnesss(pk, f
′) :

1. Sample s · n′ random bits r
(1)
1 , . . . , r

(1)
n′ , . . . , r

(s)
1 , . . . , r

(s)
n′ ;

2. Compute r̂aux := {r̂(i)j | r̂
(i)
j ← HE.Encpk(r

(i)
j ), i ∈ [s], j ∈ [n′]};

3. Output r̂aux.

– EvalApproxs(pk, f
′, c1, . . . , cn, r̂aux) :

1. Let r̂aux = {r̂(i)j | i ∈ [s], j ∈ [n′]}.
2. For i ∈ [s], compute couti ← HE.Evalevk(f

′, c1, . . . cn, r̂
(i)
1 , . . . , r̂

(i)
n′ );

3. Output c = (cout1 , . . . , couts )16.

The new scheme HE′ with soundness parameter s follows. Notice that the
evaluation function outputs an auxiliary string auxf together with the proper
ciphertext c. This is necessary to have a correct decoding in decryption phase.

– Key generation and encryption are the same as in HE.
– HE′.Evalpk(f, c1, . . . , cn):

1. Compute f ′ ← GenApproxFun(f);
2. Compute r̂aux ← SampleAuxRandomnesss(pk, f

′);
3. auxf ← GenDecodeAux(f);
4. c← EvalApproxs(pk, f

′, c1, . . . , cn, r̂aux);
5. Output (c,auxf ).

– HE′.Decsk(c = (cout1 , . . . , couts ),auxf ):
1. Let yout

i ← HE.Decsk(c
out
i ) for i ∈ [s];

2. Output DecodeApproxf (auxf ,y
out
1 , . . . ,yout

s ).

The following theorem summarizes the properties of this construction.

Theorem 3.4. The scheme HE′ above with soundness parameter s = Ω(λ) is
leveled AC0

Q[2]-homomorphic. Key generation, encryption and evaluation can be

computed in AC0
CM[2]. Decryption is computable in AC0

Q[2].

4 Fine-Grained Verifiable Computation

In this section we describe our private verifiable computation scheme. Our con-
structions are based on the techniques in [CKV10] to obtain (reusable) verifiable
computation from fully homomorphic encryption; see Section 1.2 for a high-level
description.

16 Recall that the output of the expanded approximating function f ′ is a bit string and
thus each couti encrypts a bit string.
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4.1 A One-time Verification Scheme

In Figure 2 we describe an adaptation of the one-time secure delegation scheme
from [CKV10]. We make non-black box use of our homomorphic encryption
scheme HE′ (Section 3.3) with soundness parameter s = λ. Notice that. during
the preprocessing phase, we fix the “auxiliary randomness” for EvalApprox (and
thus for HE′.Eval) once and for all. We will use that same randomness for all the
input instances. This choice does not affect the security of the construction. We
remind the reader that we will simplify notation by considering the evaluation
key of our somewhat homomorphic encryption scheme as part of its public key.

If x is a vector of bits x1, . . . , xn, below we will denote with HE′.Enc(x) the
concatenation of the bit by bit ciphertexts HE′.Enc(x1), . . . ,HE′.Enc(xn). We
denote by HE′.Enc(0̄) the concatenation of n encryptions of 0, HE′.Enc(0).

Let f : {0, 1}n → {0, 1}m be a function and GenApproxFun, SampleAuxRandomness
and EvalApprox as described in Section 3.3 and Definition 3.1.

– VC.KeyGen(1λ, f)→ (pkW, skD): We assume function f represented as
1. Generate a pair of keys (pk, sk)← HE′.Keygen(1λ).
2. Generate the approximating function f ′ ← GenApproxFun(f) and auxil-

iary string auxf ← GenDecodeAux(f);
3. Generate the ciphertext of the auxiliary random input for homomorphic

evaluation r̂aux ← SampleAuxRandomnessλ(pk, f ′)
4. Compute t independent encryptions r̂i = HE′.Encpk(0̄) and the homomor-

phic evaluations ŵi = f̂(r̂i) = EvalApproxs(pk, f
′, r̂i, r̂aux) for i ∈ [t];

5. pkW ← (pk, f ′, r̂aux), skD ← ({(r̂i, ŵi)i∈[t]},auxf ).
– VC.ProbGenskD(x)→ (qx, sx):

1. Compute t independent encryptions r̂i+t = HE′.Encpk(x) for i ∈ [t].
2. Sample a random permutation π←$S2t.
3. qx ← (ẑπ(1), . . . , ẑπ(2t)) = (r̂1, . . . , r̂2t); sx ← π

– VC.ComputepkW(qx)→ ax:

1. Compute ŷi = f̂(ẑi) = EvalApproxs(pk, f
′, ẑi, r̂aux) for i ∈ [2t].

2. ax = (ŷ1, . . . , ŷ2t).
– VC.VerifyskD(sx, ax):

1. Check if ŵi = ŷi for all i ∈ [t].
2. Check if HE′.Decsk(ŷπ(t+1),auxf ) = · · · = HE′.Decsk(ŷπ(2t),auxf ).
3. If either of the two tests above fails, return ⊥; otherwise return

HE′.Decsk(ŷπ(t+1),auxf ).

Fig. 2. One-Time Delegation Scheme VC

The scheme VC in Figure 2 has overwhelming completeness and is one-time
secure when t is chosen ω(log(λ)). We prove these results in Appendix C.
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Remark 4.1 (Efficiency of VC). In the following we consider the verifiable com-
putation of a function f : {0, 1}n → {0, 1}m computable by an AC0

Q[2] circuit of
size S.

– VC.KeyGen is computable by an AC0[2] circuit of size O(poly(λ)S);

– VC.ProbGen is computable by an AC0[2] circuit of size O(poly(λ)(m+ n));

– VC.Compute is computable by an AC0[2] circuit of size O(poly(λ)S);

– VC.Verify is computable by a AC0[2] circuit of size O(poly(λ)(m+ n)).

The (constant) depth of VC.ProbGen and VC.Verify is independent of the depth
of f17.

4.2 A Reusable Verification Scheme

We obtain our reusable verification scheme VC applying the transformation in
[CKV10] from one-time sound verification schemes through fully homomorphic
encryption. The core idea behind this transformation is to encapsulate all the
operations of a one-time verifiable computation scheme (such as VC in Figure 2)
through homomorphic encryption. We instantiate this transformation with the
simplest of our two somewhat homomorphic encryption schemes, HE (described
in Section 3.1). The full construction of VC is in Appendix C (Figure 3).

Remark 4.2 (Efficiency of VC). The efficiency of VC is analogous to that of VC
with the exception of a circuit size overhead of a factor O(λ) on the problem
generation and verification algorithms and of O(λ2) for the computation algo-
rithm. The (constant) depth of VC.ProbGen and VC.Verify is independent of the
depth of f .

Theorem 4.1 (Completeness of VC). The verifiable computation scheme VC
has overwhelming completeness (Definition A.10) for the class AC0

Q[2].

Theorem 4.2 (Many-Times Soundness of VC). Under the assumption that
NC1 ( ⊕L/poly the scheme VC is many-times secure against NC1 adversaries
whenever t is chosen to be ω(log(λ)) in the underlying scheme VC.

17 Further details on the complexity of VC follow. All the algorithms are in AC0
CM[2], ex-

cept for the online stage. In fact, VC.Verify and VC.ProbGen are in AC0[2]. Moreover,
they are not in AC0

Q[2] as they perform in parallel a non-constant (polylogarithmic)
number of decryptions and permutations respectively, and these involve non-constant
fan-in gates. Notice that even though the online stage is not in AC0

Q[2] we still have
a gain at verification time (although not in an asymptotic sense). This because of
the specific structure of these circuits. Consider for example what happens when
implementing VC.Verify or VC.ProbGen with a fan-in two circuit. Their depth will
be c(log(n) + log(λ)) for a constant c. Contrast this with a circuit f in AC0

Q[2] of
constant depth D that we may want to verify. With fan-in two, the depth of f will
become c′D log(n) (for a constant c′), which may be significantly larger.
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A Additional Preliminaries

A.1 Infinitely-Often Computational Indistinguishability

Definition A.1 (Infinitely-Often Computational Indistinguishability).
Let X = {Xλ}λ∈N Let Y = {Yλ}λ∈N be ensembles over the same domain family,
A a class of adversaries, and Λ an infinite subset of N. We say that X and Y
are infinitely often computational indistinguishable with respect to set Λ and the
class A, denoted by X ∼Λ,A Y if there exists a negligible function ν such that
for any λ ∈ Λ and for any adversary A = {Aλ}λ ∈ A

|Pr[Aλ(Xλ) = 1]− Pr[Aλ(Yλ) = 1]| < ν(λ)

When A = NC1 we will keep it implicit and use the notation X ∼Λ Y and say
that X and Y are Λ-computationally indistinguishable.

In our proofs we will use the following facts on infinitely-often computa-
tionally indistinguishable ensembles. We skip their proof as, except for a few
technicalities, it is analogous to the corresponding properties for standard com-
putational indistinguishability18.

Lemma A.1 (Facts on Λ-Computational Indistinguishability).

18 We refer the reader to [Gol01].
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– Transitivity: Let m = poly(λ) and X (j) with j ∈ {0, . . . ,m} be ensembles.
If for all j ∈ [m] X (j−1) ∼Λ X (j), then X (0) ∼Λ X (m).

– Weaker than statistical indistinguishability: Let X ,Y be statistically
indistinguishable ensembles. Then X ∼Λ Y for any infinite Λ ⊆ N

– Closure under NC1: Let X ,Y be ensembles and {fλ}λ∈N ∈ NC1. If X ∼Λ Y
for some Λ then fλ(X ) ∼Λ fλ(Y).

A.2 Circuit Classes

For a gate g we denote by typeC(g) the type of the gate g in the circuit C and
by parentsC(g) the list of gates of C whose output is an input to C (such list
may potentially contain duplicates).
We define the multiplicative depth of a circuit as follows:

Definition A.2 (Multiplicative Depth). Let C be a circuit, we define the
multiplicative depth of C as md(gout) where gout is its output gate and the func-
tion md, from the set of gates to the set of natural numbers is recursively defined
as follows:

md(g) :=


1 if typeC(g) = input

max{md(g′) : g′ ∈ parentsC(g)} if typeC(g) = XOR∑
g′∈parentsC(g)

md(g′) if typeC(g) ∈ {AND,OR}

where the sum in the last case is over the integers.

The following two circuit classes will appear in several of our results.

Definition A.3 (Circuits with Constant Multiplicative Depth). We de-
note by AC0

CM[2] the class of circuit families in AC0[2] with constant multiplica-
tive depth.

Definition A.4 (Circuits with Quasi-Constant Multiplicative Depth).
For a circuit C we denote by Sω(1)(C) the set of AND and OR gates in C with

non-constant fan-in. We say that a circuit family C = {Cλ} has quasi-constant
multiplicative depth if |Sω(1)(Cλ)| = O(1). We shall denote by AC0

Q[2] the class

of circuit families in AC0[2] with quasi-constant multiplicative depth.

A.3 Public-Key Encryption

A public-key encryption scheme
PKE = (PKE.Keygen,PKE.Enc,PKE.Dec) is a triple of algorithms which operate
as follow:

– Key Generation. The algorithm (pk, sk)← PKE.Keygen(1λ) takes a unary
representation of the security parameter and outputs a public key encryption
key pk and a secret decryption key sk.
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– Encryption. The algorithm c← PKE.Encpk(µ) takes the public key pk and
a single bit message µ ∈ {0, 1} and outputs a ciphertext c. The notation
PKE.Encpk(µ; r) will be used to represent the encryption of a bit µ using
randomness r.

– Decryption. The algorithm µ∗ ← PKE.Decsk(c) takes the secret key sk and
a ciphertext c and outputs a message µ∗ ∈ {0, 1}.

Obviously we require that µ =PKE.Decsk(PKE.Encpk(µ))

Definition A.5 (CPA Security for PKE). A scheme PKE is IND-CPA
secure if for an infinite Λ ⊆ N we have

(pk,PKE.Encpk(0)) ∼Λ (pk,PKE.Encpk(1))

where (pk, sk)← PKE.Keygen(1λ).

Remark A.1 (Security for Multiple Messages). Notice that by a standard hybrid
argument and Lemma A.1 we can prove that any scheme secure according to
Definition A.5 is also secure for multiple messages (i.e. the two sequences of
encryptions bit by bit of two bit strings are computationally indistinguishable).
We will use this fact in the constructions in Section 4, but we do not provide the
formal definition for this type of security. We refer the reader to 5.4.2 in [Gol09].

Somewhat Homomorphic Encryption A public-key encryption scheme is
said to be homomorphic if there is an additional algorithm Eval which takes a
input the public key pk, the representation of a function f : {0, 1}l → {0, 1} and
a set of l ciphertexts c1, . . . , cl, and outputs a ciphertext cf

19.
We proceed to define the homomorphism property. The next notion of C-

homomorphism is sometimes also referred to as “somewhat homomorphism”.

Definition A.6 (C-homomorphism). Let C be a class of functions (to-
gether with their respective representations). An encryption scheme PKE is C-
homomorphic (or, homomorphic for the class C) if for every function fλ where
fλ ∈ C and respective inputs µ1, . . . , µn ∈ {0, 1} (where n = n(λ)), it holds that
if (pk, sk)← PKE.Keygen(1λ) and ci ← PKE.Encpk(µi) then

Pr[PKE.Decsk(Evalpk(fλ, c1, . . . , cn)) 6= fλ(µ1, . . . , µn)] = neg(λ),

As usual we require the scheme to be non-trivial by requiring that the output
of Eval is compact:

Definition A.7 (Compactness). A homomorphic encryption scheme PKE is
compact if there exists a polynomial s in λ such that the output length of Eval is
at most s(λ) bits long (regardless of the function f being computed or the number
of inputs).

19 Notice that the syntax of Eval can also be extended to return a sequence of encryp-
tions for the case of multi-output functions. We will use this fact in Section 3.3. See
also Remark A.1.
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Definition A.8. Let C = {Cλ}λ∈N of arithmetic circuits in GF(2). A scheme
PKE is leveled C-homomorphic if it takes 1L as additional input in key genera-
tion, and can only evaluate depth-L arithmetic circuits from C. The bound s(λ)
on the ciphertext must remain independent of L.

A.4 Verifiable Computation

In a Verifiable Computation scheme a Client uses an untrusted server to compute
a function f over an input x. The goal is to prevent the Client from accepting
an incorrect value y′ 6= f(x). We require that the Client’s cost of running this
protocol be smaller than the cost of computing the function on his own. The
following definition is from [GGP10] which allows the client to run a possibly
expensive pre-processing step.

Definition A.9 (Verifiable Computation Scheme). We define a
verifiable computation scheme as a quadruple of algorithms VC =
(VC.KeyGen,VC.ProbGen,VC.Compute,VC.Verify) where:

1. VC.KeyGen(f, 1λ)→ (pkW, skD): Based on the security parameter λ, the ran-
domized key generation algorithm generates a public key that encodes the
target function f , which is used by the Server to compute f . It also com-
putes a matching secret key, which is kept private by the Client.

2. VC.ProbGenskD(x) → (qx, sx): The problem generation algorithm uses the
secret key skD to encode the function input x as a public query qx which
is given to the Server to compute with, and a secret value sx which is kept
private by the Client.

3. VC.ComputepkW(qx) → ax: Using the Client’s public key and the encoded
input, the Server computes an encoded version of the function’s output y =
f(x).

4. VC.VerifyskD(sx, ax)→ y ∪{⊥}: Using the secret key skD and the secret “de-
coding” sx, the verification algorithm converts the worker’s encoded output
into the output of the function, e.g., y = f(x) or outputs ⊥ indicating that
ax does not represent the valid output of f on x.

The scheme should be complete, i.e. an honest Server should (almost) always
return the correct value.

Definition A.10 (Completeness). A delegation scheme VC, with
VC = (VC.KeyGen,VC.ProbGen,VC.Compute,VC.Verify), has overwhelming com-
pleteness for a class of functions C if there is a function ν(n) = neg(λ) such
that for infinitely many values of λ, for all fλ ∈ C and for all inputs x the fol-
lowing holds with probability at least 1 − ν(n): (pkW, skD) ← VC.KeyGen(fλ, λ),
(qx, sx) ← VC.ProbGenskD(x) and ax ← VC.ComputepkW(qx) then y = fλ(x) ←
VC.VerifyskD(sx, ax).

To define soundness we consider an adversary who plays the role of a mali-
cious Server who tries to convince the Client of an incorrect output y 6= f(x).
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The adversary is allowed to run the protocol on inputs of her choice, i.e. see the
queries qxi for adversarially chosen xi’s before picking an input x and attempt
to cheat on that input. Because we are interested in the parallel complexity of
the adversary we distinguish between two parameters l and m. The adversary is
allowed to do l rounds of adaptive queries, and in each round she queries m in-
puts. Jumping ahead, because our adversaries are restricted to NC1 circuits, we
will have to bound l with a constant, but we will be able to keep m polynomially
large.

Experiment ExpVerif
A [VC, f, λ, l,m]

(pkW, skD)← VC.KeyGen(f, λ);
I ← ∅;
For i = 1, . . . , i = l;
{x(i−1)m, . . . xim−1} ← Aλ(pkW, I);
{(qj , sj) : (qj , sj)← VC.ProbGenskD(xj), j ∈ {(i− 1)m, . . . , im}}
I ← I ∪ {x(i−1)m, . . . xim−1} ∪ {q(i−1)m, . . . qim−1};

â← Aλ(pkW, I);
ŷ ← VC.VerifyskD(slm, â)
If ŷ 6= ⊥ and ŷ 6= f(xlm), output 1, else 0.

Remark A.2. In the experiment above the adversary “tries to cheat” on the last
input presented in the last round of queries (i.e. xlm). This is without loss of
generality. In fact, assume the adversary aimed at cheating on an input presented
before round l, then with one additional round it could present that same input
once more as the last of the batch in that round.

Definition A.11 (Soundness). We say that a verifiable computation scheme
is (l,m)-sound against a class A of adversaries if there exists a negligible function
neg(λ), such that for all A = {Aλ}λ ∈ A, and for infinitely many λ we have that

Pr[ExpVerif
A [VC, f, λ, l,m] = 1] ≤ neg(λ)

Assume the function f we are trying to compute belongs to a class C which
is smaller than A. Then our definition guarantees that the ”cost” of cheating
is higher than the cost of honestly computing f and engaging in the Verifiable
Computation protocol VC. Jumping ahead, our scheme will allow us to compute
the class C = AC0[2] against the class of adversaries A = NC1.

Efficiency The last thing to consider is the efficiency of a VC protocol. Here
we focus on the time complexity of computing the function f . Let n be the
number of input bits, and m be the number of output bits, and S be the size of
the circuit computing f .

– A verifiable computation scheme VC is client-efficient if circuit sizes of
VC.ProbGen and VC.Verify are o(S). We say that it is linear-client if those
sizes are O(poly(λ)(n+m)).

– A verifiable computation scheme VC is server-efficient if the circuit size of
VC.Compute is O(poly(λ)S).
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We note that the key generation protocol VC.KeyGen can be expensive, and
indeed in our protocol (as in [GGP10,CKV10,AIK10]) its cost is the same as
computing f – this is OK as VC.KeyGen is only invoked once per function, and
the cost can be amortized over several computations of f .

B Proofs for Homomorphic Encryption Constructions

B.1 Constant Multiplicative Depth

Lemma B.1. The construction of HE (Section 3.1) satisfies Eq. 1 (ibid).

Proof. For homomorphic addition:

〈k` ,vadd〉 = 〈k` ,
∑
i

vi〉 =
∑
i

〈k` ,vi〉 =
∑
i

µi

where µi is the plaintext corresponding to vi.
For homomorphic multiplication:

〈k`+1 ,vmult〉 = 〈k`+1 ,
∑
i,j∈[λ]

hi,j · a`+1,i,j〉

=
∑
i,j∈[λ]

(hi,j · 〈k`+1 ,a`+1,i,j〉)

=
∑
i,j∈[λ]

(hi,j · k`[i] · k`[j])

=
∑
i,j∈[λ]

(v[i] · v′[j] · k`[i] · k`[j])

=
(∑
i∈[λ]

v[i] · k`[i]
)
·
(∑
j∈[λ]

v′[j] · k`[j]
)

= 〈k` ,v〉 · 〈k` ,v′〉

= µ · µ′

where in the third and fourth equality we used respectively Eq. 1 and the
definition of hi,j , and µ, µ′ are the plaintexts corresponding to v v′ respectively.

ut

Theorem B.1 (Security). The scheme HE is CPA secure against NC1 adver-
saries (Definition A.5) under the assumption NC1 ( ⊕L/poly whenever the key
generation algorithm is invoked on (1λ, 1L) with L = O(log λ).

Proof. We are going to prove that there exists infinite Λ ⊆ N such that
(pk, evk,HE.Encpk(0)) ∼Λ (pk, evk,HE.Encpk(1)).
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When using the notations Mf and Mkg we will always denote matrices dis-
tributed respectively according to Df

λ and Dkg, where Df
λ and Dkg are the dis-

tributions defined in Lemma 3.1.
We will define the (randomized) encoding procedure E : {0, 1}λ×λ → {0, 1}λ

defined as
E(M, b) = rᵀM + (0 . . . 0 b)

ᵀ
,

where r is uniformly distributed in {0, 1}λ. The functions we will pass to E
will be distributed either according to Mkg or Mf. Notice that: (i) E(Mkg, b) is
distributed identically to HE.Encpk(b); (ii) E(Mf, b) corresponds to the uniform
distribution over {0, 1}λ because (by Lemma 3.1) Mf has full rank and hence
rᵀMf must be uniformly random.

We will denote with Mkg
1 , . . . ,M

kg
L the matrices M1, . . . ,ML used to con-

struct the evaluation key in HE.Keygen (see definition). Recall these matrices are
distributed according to Dkg as in Lemma 3.1.

We will also define the following vectors:

αkg
` := {E(Mkg

`+1,k`[i]·k`[j]) | i, j ∈ [λ]} αf
` := {E(Mf

`+1,k`[i]·k`[j]) | i, j ∈ [λ]} ,

where k` is defined as in HE.Keygen and the matrices in input to E will be clear
from the context. Notice that all the elements of αkg

` are encryptions, whereas
all the elements of αf

` are uniformly distributed.
We will use a standard hybrid argument. Each of our hybrids is parametrized

by a bit b. This bit informally marks whether the hybrid contains an element
indistinguishable from an encryption of b.

– Eb := (Mkg
0 ,E(Mkg

0 , b), α
kg
1 , . . . , α

kg
L ) where Mkg

0 corresponds to the pub-

lic key of our scheme. Notice that αkg
` ≡ {a`,i,j | i, j ∈ [λ]} where a`,i,j

is as defined in HE.Keygen. This hybrid corresponds to the distribution
(pk, evk,HE.Encpk(b)).

– Hb0 := (Mf
0,E(Mf, b), αkg

1 , . . . , α
kg
L ). The only difference from E is in the first

two components where we replaced the actual public key and ciphertext with
a full rank matrix distributed according to Df

λ and a random vector of bits.
– For ` ∈ [L] we define

Hb` := (Mf
0,E(Mf, b), αf

1, . . . , α
f
`, α

kg
`+1, . . . , α

kg
L ) .

We will proceed proving that

E0 ∼Λ H0
0 ∼Λ H0

1 ∼Λ . . . ∼Λ H0
L ∼Λ H1

L ∼Λ . . . ∼Λ H1
1 ∼Λ H1

0 ∼Λ E1

through a series of smaller claims. In the remainder of the proof Λ refers to the
set in Lemma 3.1.

– E0 ∼Λ H0
0: if this were not the case we would be able to distinguish Mkg

0 from
Mf

0 for some of the values in the set Λ thus contradicting Lemma 3.1. The
(natural) reduction can be carried out in NC1 since it requires L = O(log n)
iterations of PKE.Enc and the latter algorithm can be computed in NC0 (see
Remark 4.1 in [DVV16]).
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– H0
`−1 ∼Λ H0

` for ` ∈ [L]: assume by contradiction this statement is false for
some ` ∈ [L]. That is

(Mf
0,E(Mf

0, b), α
f
1, . . . , α

f
`−1, α

kg
` , . . . , α

kg
L )

6∼Λ
(Mf

0,E(Mf
0, b), α

f
1, . . . , α

f
`, α

kg
`+1, . . . , α

kg
L )

Recall that, by definition, the elements of αkg
` are all encryptions whereas

the elements of αf
` are all randomly distributed values. This contradicts the

the semantic security of the scheme PKE (by a standard hybrid argument
on the number of ciphertexts).

– H0
L ∼Λ H1

L: the distributions associated to these two hybrids are identical.
In fact, notice the only difference between these two hybrids is in the second
component: E(Mf, 0) in H0

L and E(Mf, 1) in H1
L. As observed above E(Mf, b)

is uniformly distributed, which proves the claim.

All the claims above can be proven analogously for E1,H1
0 and H1

` -s. ut

B.2 Quasi-Constant Multiplicative Depth

Lemma B.2 ([Raz87]). Let C be an AC0
Q[2] circuit of depth d. Then there

exists a randomized circuit C ′ ∈ AC0
CM[2] such that, for all x,

Pr[C ′(x) 6= C(x)] ≤ ε ,

where ε = O(1). The circuit C ′ uses O(n) random bits and its representation
can be computed in NC0 from a representation of C.

Proof. Consider a circuit C ∈ AC0
Q[2] and let K = O(1) be the total number of

AND and OR gates with non-constant fan-in. We can replace every OR gate of
fan-in m = ω(1) with a randomized “gadget” that takes in input m additional
random bits and computes the function

ĝOR(x1, . . . , xm; r1, . . . , rm) :=
∑
i∈[m]

xiri .

This function can be implemented in constant multiplicative depth with one XOR
gate and m AND gates of fan-in two. Let x = (x1, . . . , xm) and r = (r1, . . . , rm).
The probabilistic gadget ĝOR has one-sided error. if xi = 0 (i.e. if OR(x) = 0)
then Pr[ĝOR(x; r) = 0] = 1; otherwise Pr[ĝOR(x; r) = 1] = 1

2 .
In a similar fashion, we can replace every unbounded fan-in AND gate with

a randomized gadget in computing

ĝAND(x1, . . . , xm; r1, . . . , rm) := 1−
∑
i∈[m]

(1− xi)ri .

This gadget can also be implemented in constant-multiplicative depth and has
one-sided error 1/2. Finally, by applying the union bound we can observe that
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Pr[C ′(x) 6= C(x)] ≤ ε for a constant ε, because we have only a constant number
of gates to be replaced with gadgets for ĝOR or ĝAND.

We only provide the intuition for why the transformations above can be
carried out in NC0. Assume the encoding of a circuit as a list of gates in the
form (g, tg, in1, . . . , inm) where g and t are respectively the index of the output
wire of the gate and its type (possibly of the form “input” or “random input”)
and the ini-s are the indices of the input wire of g. The transformation from
C to C ′ needs to simply copy all the items in the list except for the gates of
unbounded fan-in. We will assume the encoding conventions of C always puts
these gates at the end of the list20. For each of such gates the transformation
circuit needs to: add appropriate r1, . . . , rm to the list, add m AND gates and
one XOR, possibly (if we are transforming an AND gate) add negation gates. All
this can be carried out based on wire connections and the type of the gate (a
constant-size string) and thus in NC0. ut

In the construction above, we built C ′ by replacing every gate g ∈ Sω(1)(C)
(as in Definition A.4) with a (randomized) gadget Gg. The output of each of
these gadgets will be useful in order to keep the low complexity of the decryp-
tion algorithm in our next homomorphic encryption scheme. We shall use an
“expanded” version of C ′, the multi-output circuit C ′exp.

Definition B.1 (Expanded Approximating Function). Let C be a circuit
in AC0

Q[2] and let C ′ be a circuit as in the proof of Lemma B.2. We denote
by Gg(x; r) the output of the gadget Gg when C ′ is evaluated on inputs (x; r).
On input (x; r), the multi-output circuit C ′exp output C ′(x; r) together with the
outputs of the O(1) gadgets Gg for each g ∈ Sω(1)(C). Finally, we denote with
GenApproxFun the algorithm computing a representation of C ′exp from a repre-
sentation of C.

Lemma B.3. There exists a deterministic algorithm DecodeApprox computable
in AC0[2] with the following properties. For every circuit C in AC0

Q[2] computing

the function f , there exists auxf ∈ {0, 1}O(1) such that for all x ∈ {0, 1}n

Pr[DecodeApprox(auxf , C
′
exp(x; r(1)), . . . , C ′exp(x; r(s))) = C(x)] ≥ 1− neg(s) ,

where C ′ is an approximating circuit as in Lemma B.2, the probability is taken
over the uniformly distributed bit vectors r(i)-s for i ∈ [s], C ′exp is as in Definition
B.1. Finally, there exists a function GenDecodeAux that computes auxf from a
representation of C in NC0.

Proof. Before we provide a construction for DecodeApprox, let us observe how
we can amplify the error of C ′. Consider for example a gadget ĝOR constructed
as in the proof of Lemma B.2, approximating an OR gate in C. If we repeat
the execution of the gadget s times, every time using fresh random bit vec-
tors r′(1), . . . , r′(s), then we can correctly compute OR(x′) with overwhelming

20 This allows our NC0 circuit to to “know” which gates to copy and which ones to
transform based on their position only.
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probability. Define hOR(x′; r′(1), . . . , r′(s)) := OR(ĝOR(x; r′(1)), . . . , ĝOR(x′; r′(s))).
Clearly Pr[hOR(x′; r′(1), . . . , r′(s)) = OR(x′)] ≥ 1 − 2−s. In a similar fashion we
can define hAND(x′; r′(1), . . . , r′(s)) := AND(ĝAND(x; r′(1)), . . . , ĝAND(x′; r′(s))). It
holds that Pr[hAND(x′; r′(1), . . . , r′(s)) = AND(x′)] ≥ 1− 2−s.

If C ′ were composed by a single gadget ĝOR (resp. ĝAND) we could just let
DecodeApprox be the same as hOR (resp. hAND) and we would be done. To deal
with multiple gadgets, however, we need a more general approach. Consider
some ordering on the gates in Sω(1), i.e. let Sω(1) = {g1, . . . , gK}. For sake of
presentation, assume there are only gadgets approximating OR gates and let
us temporarily ignore auxf . We can write each of the C ′exp(x; r(j)) input to

DecodeApprox as (z(j), y
(j)
1 , . . . , y

(j)
K ) where z(j) is the output of C ′(x, r(j)) and

y
(j)
i is the output of the gadget corresponding to gi when provided random

bits from r(j). Define y∗i as y∗i := OR(y
(1)
i , . . . , y

(s)
i ). We then let the output

of DecodeApprox be zĵ where ĵ is such that for all i ∈ [K] it is the case that

y
(ĵ)
i = y∗i . We let DecodeApprox output an arbitrary value if such ĵ does not exist.

However we can prove (Lemma B.4) that ĵ exists with overwhelming probability.
Denote by VC,x(gi) the value of the output wire of gi when evaluating C on input

x. Clearly, by construction of C ′exp, Pr[z(ĵ) = C(x)] ≥ Pr[∀i y(ĵ)i = VC,x(gi)] and
by the proof of Lemma B.4 we can show that the right hand side probability is
overwhelming.

To generalize this same approach to the scenario including both OR and
AND gadgets we let the string auxf include information on the type of gates
in Sω(1). This way DecodeApprox can use ĝOR or ĝAND accordingly. Clearly the

representation of auxf can be computed by a representation of C in NC0. ut

Lemma B.4. Pr[∃ĵ ∈ [s] ∀i ∈ [K] : y
(ĵ)
i = y∗i ] ≥ 1− neg(s).

Proof. Let Sω(1) = {g1, . . . , gK} and VC,x(gi) for i ∈ [K] defined as in the proof
of Lemma B.3. We have that

Pr[∃ĵ ∀i y(ĵ)i = y∗i ] ≥ Pr[(∃ĵ ∀i y(ĵ)i = y∗i ) ∧ ∀i y∗i = VC,x(gi)]

= Pr[∃ĵ ∀i y(ĵ)i = VC,x(gi)] Pr[∀i y∗i = VC,x(gi)]

We now lower-bound each of the two probabilities in the last product. Denote

by Ei,j the event “y
(j)
i = VC,x(gi)” and by E i,j its negation. Observe that

Pr[∀j ∃i E i,j ] =
∏
j

Pr[∃iE i,j ]

≤
∏
j

(∑
i

Pr[E i,j ]
)

≤
∏
j

(Kε∗j )

≤ (Kε∗j )
s

≤ neg(s)
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where ε∗j := maxi∈[K] Pr[E i,j ]. Moreover ε∗j is constant for any j ∈ [S] as the

event E i,j = “y
(j)
i 6= VC,x(gi)” occurs with at most constant probability by

Lemma B.2. This shows that Pr[∃ĵ ∀i y(ĵ)i = VC,x(gi)] ≥ 1− neg(s).
In order to lower-bound Pr[∀i y∗i = VC,x(gi)] we observe that:

Pr[∃i y∗i 6= VC,x(gi)] ≤
∑
i

Pr[y∗i 6= VC,x(gi)]

=
∑
i

Pr[∀j y(j)i 6= VC,x(gi)]

=
∑
i

∏
j

Pr[y
(j)
i 6= VC,x(gi)]

≤ Kε̃si
≤ neg(s)

where ε̃i := maxj∈[S] Pr[E i,j ] is a constant quantity analogously to ε∗j . This shows
that Pr[∀i y∗i = VC,x(gi)] ≤ 1− neg(s) which completes the proof. ut

Remark B.1 (Efficiency of HE′ in Section 3.3). Given in input a function f not
necessarily of constant multiplicative depth, GenApproxFun returns a function
f ′ of constant multiplicative depth that approximates it. As stated in Lemma
B.2, GenApproxFun is computable in NC0 and so is GenDecodeAux. The function
SampleAuxRandomness in AC0

CM[2] and EvalApprox makes parallel invocations to
HE.Eval which is computable in AC0

CM[2] when provided in input a function in
AC0

CM[2] (Theorem 3.3). This fact will be useful when showing the completeness
of the verifiable computation constructions in Section 4.

C Proofs for Verifiable Computation Constructions

The following two auxiliary lemmas guarantee that the constructions in Figures
2 and 3 are computable in AC0[2]. We refer the reader to [Hag91,MV91] for the
proof of Lemma C.1.

Lemma C.1. [Hag91,MV91] There are uniform AC0 circuits C : {0, 1}poly(l) →
[l]l of size poly(l) and depth O(1) whose output distribution have statistical dis-
tance ≤ 2−l from the uniform distribution over permutations of [l].

Lemma C.2. There are uniform AC0[2] circuits C : [l]l × {0, 1}l → {0, 1}l of
size O(l2) where C(π, (x1, . . . , xl)) = (π(1), . . . , π(l)) and π is a permutation.

Proof. Let x = (x1, . . . , xl) the bits to permute and let π be a permutation. If π
is represented as a permutation matrix with rows r1, . . . , rl, we can permute x by
simply performing l parallel inner products 〈x , ri〉-s, which is in AC0[2]. We now
describe how to generate the permutation matrix from a binary representations
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x1, . . . , xlg(l) of the integers in [l]. Let fi : {0, 1}lg(l) → {0, 1} be the function that
computes the i-th row of the permutation matrix. We can define fi as follows:

fi(x1, . . . , xlg(l)) := eq([i− 1]2, (x1, . . . , xlg(l)) ,

where [i − 1]2 is the binary representation of i − 1 and eq returns 1 if its two
inputs (each of lenght lg(l)) are equal. The function fi is clearly in AC0[2]. On
input (n1, . . . , nl, x1, . . . , xl), we can thus the compute j-th element of row ri as
fj(ni). ut

C.1 One-time scheme

Remark C.1 (On deterministic homomorphic evaluation). As pointed out in
[CKV10], one requirement for the approach in Figure 2 to work is for the homo-
morphic evaluation to be deterministic. We point out that once r̂aux are fixed
once and for all the homomorphic evaluation in VC.Compute is deterministic.

Lemma C.3 (Completeness of VC). The verifiable computation scheme VC
in Figure 2 has overwhelming completeness (Definition A.10) for the class AC0

Q[2].

Proof. The proof is straightforward and stems directly from the homomorphic
properties of HE′ (Theorem 3.4). In fact, by construction and by definition of
HE′ (Section 3.3), the distribution of the ŵi-s is identical to HE′.Evalpk(f, r̂i).
Analogously, the distribution of ŷi-s is identical to HE′.Evalpk(f, ẑi). ut

Lemma C.4 (One-time Soundness). Under the assumption that NC1 (
⊕L/poly the scheme in Figure 2 is (1, 1)-sound (one time secure) against NC1

adversaries whenever t is chosen to be ω(log(λ)).

Proof. We follow the same proof structure as in the proof of Lemma 12 in
[CKV10]. We will keep part of the analysis informal, emphasizing why this proof
still works for low-depth circuits. We refer the reader to [CKV10] for further
details.

The following observation will be crucial in the rest of the proof. Notice that,
by construction and by definition of HE′ (Section 3.3), the distribution of the ŵi-
s is identical to HE′.Evalpk(f, r̂i). Analogously, the distribution of ŷi-s is identical
to HE′.Evalpk(f, ẑi).

Consider an NC1 adversary A∗ that cheats with non-negligible probability
in the one-time security experiment ExpVerif

A [VC, f, λ, 1, 1] (Definition A.11). Let
(r̂1, . . . , r̂t) be the independent copies of HE′.EncpkW(0̄) and (r̂t+1, . . . , r̂2t) the
t independent copies of HE′.EncpkW(x) as above. Whenever the verification al-
gorithm accepts, the adversary must have responded correctly on r̂1, ..., r̂t and
incorrectly (and consistently) on r̂t+1, . . . , r̂2t. Our goal is to bound the proba-
bility that the adversary succeeds in doing that.

First, notice that the view of the adversary is (pkW, r̂1, . . . , r̂2t), and identical
to (pkW,HE

′.EncpkW(0̄)t,HE′.EncpkW(x)t). By semantic security of the homomor-
phic encryption scheme, there exists an infinitely large set of parameters Λ such
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that (pkW,HE
′.EncpkW(0̄)t,HE′.EncpkW(x)t) ∼Λ (pkW,HE

′.EncpkW(0̄)2t). Consider
a modified game where the adversary receives (pkW,HE

′.EncpkW(0̄)2t). Denote by
p the probability that the adversary succeeds in this game. By computational
indistinguishability we have

Pr[A∗ is correct on (r̂1, . . . , r̂t) and incorrect on (r̂t+1, . . . , r̂2t)] ≤ p+ neg(λ)

for all λ ∈ Λ. This inequality holds because we can test in NC1 whether A∗
cheats only on (r̂t+1, . . . , r̂2t). Therefore, if the adversary’s behavior differed
significantly between the two games, one would be able to break the semantic
security of the homomorphic scheme. Here we made use of the third fact in
Lemma A.1.

We now proceed to upper bound p. Observe that

p = Pr[A∗ is correct on (ẑπ(1), . . . , ẑπ(t)) and incorrect on (ẑπ(t+1), . . . , ẑπ(2t))]

where the ẑπ(i)-s are defined as in Figure 2. Because of Lemma C.1 that the dis-
tribution of π is statistically indistinguishable from that of a uniformly random
permutation. Also, observe that the answers ŷi of the adversary are independent
of π. We can then conclude that p ≤ 1

(2t
t )

+ neg(t), which concludes the security

analysis. ut

C.2 Reusable scheme

Let VC be the verifiable computation scheme defined in Fig-
ure 2. The reusable verifiable computation scheme VC =
(VC.KeyGen,VC.ProbGen,VC.Compute,VC.Verify) is defined as follows.

– VC.KeyGen(1λ, f) → (pkW, skD): The key generation stage is the same as in
VC.

– VC.ProbGenskD(x)→ (qx, sx):
1. (qx, sx)← VC.ProbGenskD(x);
2. Compute a fresh pair of keys (pkx, skx)← HE.Keygen(1λ);
3. Compute q̂x ← HE.Encpkx(qx);
4. qx ← (pkx, q̂x); sx ← (sx, skx)

– VC.ComputepkW(qx)→ ax:
1. âx ← HE.Evalpkx(VC.Compute(·, f), q̂x).
2. ax ← âx.

– VC.VerifyskD(sx, ax):
1. ax ← HE.Decskx(âx).
2. return VC.VerifyskD(sx, ax).

Fig. 3. Transformation from one-time VC scheme to a reusable VC scheme
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The following is a proof of the completeness of VC.

Proof (Of Theorem 4.1). The completeness of the reusable scheme follows di-
rectly from the completeness of the one-time scheme VC and the homomorphic
properties of HE. Notice that we can use HE.Eval to homomorphically compute
VC.Compute as the latter carries out a computation in AC0

CM[2] (although it is
approximating a computation in AC0

Q[2]). ut

The following is a restatement of Theorem 4.2.

Theorem C.1 (Many-Times Soundness). Under the assumption that NC1 (
⊕L/poly the scheme VC in Figure 3 is (O(1), poly(λ))-sound (many-times secure)
against NC1 adversaries whenever t is chosen to be ω(log(λ)) in the underlying
scheme VC.

Proof. By Lemma C.4 there exists an infinite set Λ ⊆ N of security parame-
ters for which VC “is secure”. By the proof of Lemma C.4, this set is also the
set of parameters where the somewhat homomorphic encryption scheme HE “is
secure”. We will show that for all values in this same set Λ, the probability of
success of any NC1 adversary in ExpVerif

A [VC, f, λ,O(1), poly(λ)] is negligible.
Assume by contradiction there exists an NC1 adversary A∗ that achieves

non-negligible advantage in ExpVerif
A [VC, f, λ,O(1), poly(λ)] for some λ ∈ Λ.

Claim: If VC is not secure for some λ∗ ∈ Λ then we can break the
one-time security of VC. Let l = O(1) be the number of rounds in the many-
time soundness experiment for VC. Consider the following NC1 adversary A1 for
the experiment ExpVerif

A [VC, f, λ, 1, 1]:

– A1 obtains a pair a public key pkW and sends it to A∗;
– For all rounds i ∈ {1, . . . , l − 1}, A1 replies to A∗ queries by generating a

fresh pair of keys (pk, sk) and sending back encryptions of HE.Encpk(0̄);
– At round l, A1 responds to all input queries but the last one as above. This,

by experiment definition, is the input where A∗ will try to cheat; we denote
this input by x∗. Now A1 sends x∗ as the only input query in the one-time
security experiment and will receive back q∗. It will then obtain a fresh pair
of keys (pk∗, sk∗) and send HE.Encpk∗(q

∗) to A∗.
– A∗ will respond with â∗ and A1 will send HE.Decsk∗(â) to the challenger for

one-time security experiment.

The advantage of A1 depends on how likely is A∗ can successfully cheat in
that interaction. Let p be the advantage of A1 in the one-time security exper-
iment. Clearly, if p is close to the advantage of A∗ in the many-times security
experiment A1 breaks the security of the one-time scheme.

Claim: the advantage of A1 is negligibly close to that of A∗ in the
many-time security game for security parameter λ∗. We can prove this
by relying on the semantic security of the homomorphic encryption and on a
hybrid argument.

Let L = lm, the total number of input queries in the many-times security
experiment. We now define the hybrids H(j) with j ∈ {0, . . . , L}. We define
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H(0) to be the exactly the many-time security experiment. For j ∈ [L] we define
H(j) to be an experiment where we respond to input queries with HE.Encpkf (0̄)
where pkf is a fresh public key up to input query j and behaves the many-time

security experiment from input query j+ 1 on. Notice that H(L) corresponds to
the interaction with A1 above.

Denote by A(j) the output distribution of A∗ when interacting with H(j).
Intuitively, if the advantage of the A1 in the one-time experiment is significantly
different from the advantage of A∗ in the many-times security games, then A(0)

and A(L) are not Λ-computationally indistinguishable. Therefore (by Lemma
A.1), there exists j ∈ [L] such that A(j−1) 6∼Λ A(j).

Claim: If there exists j ∈ [L] such that A(j−1) 6∼Λ A(j) then we can
break the semantic security of HE. Consider the following NC1 adversary
ACPA which receives in input a “challenge” public key pk∗. ACPA will interact
with A∗ simulating H(j) until receiving input query xj . At this point it will
compute qj from VC.ProbGen(xj) and send to the CPA challenger (see Remark
A.1) qj and 0̄, receiving back an encryption c∗ of either message under the public
key pk∗. ACPA will now send (pk∗, c∗) to A∗ and continue simulating H(j) till
the end of the experiment. The adversary ACPA will check whether A∗ cheated
successfully at the end of the experiment and output (in the multiple-message
CPA experiment) 1 if that is the case and 0 otherwise. This would allow ACPA

to have a noticeable advantage in the experiment thus breaking the semantic
security of HE. ut

D On Approaches Based on Randomized Encodings

A randomized encoding of a function f is a randomized function f̂ such that
for any input x, the distribution of f̂(x) reveals f(x), but nothing more about
x. We observe that approaches based on low-depth information-theoretic affine
randomized encodings (as constructed in [IK00b,IK02,AIK04] or as applied in
[SYY99,AIK10,GGH+07]) may be used to obtain results similar to ours. Known
ways to construct these tools, however, all seem to have significant limitations,
which pushed us to look for different solutions.

Example Constructions. An example construction for homomorphic en-
cryption: the encryptor could send to the evaluator a linearly homomorphic
encryption of the inputs and the evaluator could reply with an affine (requiring
only linear operations) randomized encoding of f computed on the ciphertexts.
Possible constructions for verifiable computation could be based on [AIK10] or
using a constant-round variant of [GKR08] for NC1 circuits together with the
approach in [GGH+07].

Limitations of constructions from RE. Such approaches can yield ho-
momorphic encryption for NC1 circuits and verifiable computation in low-depth.
Noticeably, such schemes would be (partly) implementable in NC0 and the sound-
ness of the (one-time) verifiable computation could hold unconditionally.

In our work, however, we are interested in compact homomorphic encryption
schemes (where the ciphertexts do not grow in size with each homomorphic oper-
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ation) and in verifiable computation schemes where the total (online) work of the
verifier is approximately linear in the I/O size21. When using currently known
constructions the techniques mentioned above seem to fail in both respects. One
reason for this is that having the verifier (resp. evaluator) compute (resp. send)
an information-theoretic22 randomized encoding would require verification time
(resp. communication complexity) to be at best Ω(n2) (resp. Ω(2d), where d
is the depth of the fan-in two evaluation circuit). These lower bounds refer to
the complexity of known constructions for information-theoretic randomized en-
codings [AIK04], which stem from two main approaches: the branching-program
based one in [IK00b] and the “Yao-like” in [IK02] (Section 3). The former con-
structs randomized encodings computable in time Ω(`2) and of the same size,
where ` is the size of the (polynomial-size) branching program describing f (the
related approach in [GGH+07] has output size and computation time of `3).
The latter describes randomized encodings of size 2d and computable in s2 for
circuits of size s and (logarithmic) depth d. The complexity of these encodings
can be improved under the existence of PRGs with linear stretch (e.g. [AIK10]
uses this fact to build verifiable computation with low online communication).
Unfortunately it is not known how to build such primitives under the assumption
NC1 ( ⊕L/poly [DVV16].

It would be worth investigating exactly the extent to which we can exploit
such techniques in a context where low communication complexity and low se-
quential verification complexity are not constraints. We leave this as an open
problem. We finally point out that some of these depth-reduction techniques can
be applied to our results (naturally, with overheads similar to the ones pointed
out above).

21 I.e. the size of the verification circuit should be O(poly(λ)(n + m)) where n and m
are the size of the input and output respectively.

22 These observations would not hold for the computational setting, which is out of the
scope of this paper.
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