
1

Clusters of Re-used Keys
Stephen Farrell,

Trinity College Dublin
stephen.farrell@cs.tcd.ie

Article version 0.4, Compiled on 2018/04/20 at 10:00
work-in-progress

Abstract—This article describes a survey of long-term cryp-
tographic public keys observed in deployments of secure-shell,
e-mail and web protocols in four similarly-sized countries –
Ireland, Estonia, Finland and Portugal. We find that keys are
very widely re-used across multiple IP addresses, and even
autonomous systems. From one run scanning 18,268 hosts in
Ireland that run at least one TLS or SSH service, approximately
53% of the hosts involved are using keys that are also seen on
some other IP address. If two IP addresses share a key, then those
two IP addresses are considered members of the same cluster.
In the same scan we find a maximum cluster size of 1,991 hosts
and a total of 1,437 clusters, mostly with relatively few hosts per
cluster (median cluster size was 26.5, most common cluster size is
two). In that scan, of the 54,447 host/port combinations running
cryptographic protocols, we only see 20,053 unique keys (36%),
indicating significant key re-use across hosts and ports. Scans
in the other countries demonstrate the same issue. We describe
the methodology followed and the published source code and
public data sources that enable researchers to replicate, validate
and extend these results. Clearly, such key sharing can create
undesirable security and privacy dependencies between cluster
members. The author is in discussons with some local (Irish)
asset-owners to try establish the reasons for key sharing and to
possibly assist with improving network posture, and will continue
to incorporate resulting findings in revisions of this article.

Index Terms—Internet measurement, security, privacy, cryp-
tographic key management

I. INTRODUCTION

This article describes six scans of populations of hosts on
the Internet, two each in Ireland (IE) and Estonia (EE) and one
each in Finland (FI) and Portugal (PT). The hosts in question
offer some mail service, that is, those hosts are contactable at
IPv4 addresses that listen on TCP port 25. Our scans record
information relating to the long-term cryptographic keys used
by a number of services on those hosts. We see unexpectedly
large-scale re-use of cryptographic keys across clusters of
hosts and Autonomous Systems (ASes) in these scans, Figure
1 is one of the more structured clusters seen in these scans.

At the time of writing the author is discussing these findings
with relevant asset-owners for some of the hosts in the Irish
(IE) population scanned in order to try establish why and how
key re-use has occurred, whether or not that was deliberate,
and whether the asset-owners can or would prefer to move
away from re-using long-term cryptographic keys on multiple
hosts. This version is therefore a work-in-progress to assist in
those discussions and will be updated as those proceed.

Manuscript received MMM dd 2018; Stephen Farrell is with
Trinity College, Dublin 2, Ireland (email: stephen.farrell@cs.tcd.ie,
https://www.cs.tcd.ie/Stephen.Farrell/)

II. BACKGROUND

Over the last five years, the proportion of Internet traffic that
is encrypted, particularly using the Transport Layer Security
(TLS) [1] protocol has been increasing consistently.1[2], [3]
The Secure-Shell (SSH) [4] protocol has also been nearly ubiq-
uitously used for systems administration for many years.[5]

These increases in the use of encryption are consistent with
the consideration that “Pervasive Monitoring is an attack”[6],
[7] which reflects some of the general drivers behind recent
increased deployment of cryptographic protocols. However,
in addition to making use of these protocols, we also want
endpoints to move beyond opportunistic security [8] and
properly manage keys, especially long-term asymmetric keys,
as otherwise we won’t achieve all the benefits of increased
deployment of security protocols.

For TLS and SSH, the long term key pairs in which we are
interested are essentially used for host authentication, though
historically they may also have been used directly for RSA
key transport. Re-using the same long-term asymmetric key
pair values for many different instances of services can create
vulnerabilities or increase the probability or impact of some
attacks. This can be relatively easily avoided if different key
pairs are used for each instance, and if keys are regularly
rotated.

In our scans we see many keys re-used in clusters of hosts.
A cluster is the largest set of IP addresses in a scan population
such that each host in the cluster shares at least one public key
with another host in the cluster. In other words, two hosts are
in the same cluster, if they share a private key, regardless of
the service for which that private key is used.

A. Safe Key Re-Use

Not all re-use of keys is bad. There are certainly situations
where it is reasonable to re-use a key pair for different services
on a single host, for example if a public key is certified for
multiple related DNS names (perhaps smtp.example.com and
mail.example.com) that resolve in the public DNS to the same
IP address, and where the same server instance listens on both
ports. In such cases it seems fairly reasonable to use one key
pair to protect services on say port 587 (email submission)
and port 25 (email submission and mail transfer).

Where services on the same host are less related, for
example, web and mail service, it seems a little less reasonable

1https://letsencrypt.org/stats/#percent-pageloads has recent graphs.



2

Fig. 1: Cluster 835 from run FI-20180326 is an 80 host cluster with many key re-uses and interesting structure. Nodes represent
hosts. Node colour represents AS – this cluster has hosts in only one AS. Edges represent pairs of ports where the same key
is used by both hosts. Edge colour reflects the combination of ports as per Figure 4. Black edges are SSH, blue are mail
protocols and orange is the web. Section V has more detail of graphs.

to re-use the same key pair, however, it is certainly arguable
that an attacker woh manages to gain access to a host with
software-only key storage should be considered to have access
to all the key pairs on that host.

If a single (physical, “bare metal”) host has multiple inter-
faces, each with it’s own IPv4 address, then it will show up
here as multiple hosts. The number of hosts of this kind in our
scanning populations is unknown, but it is certainly reasonable
to “re-use” keys in such cases.

There are also cases where re-using a key across multiple
hosts can be defended. For example, if the set of hosts for
which the key is re-used are all virtual machines that are, and
always will be, running on physical hardware that is under the
control of one entity. Another reasonable case might be if the
set of hosts for which the key is re-used are all “behind” a
middlebox or hypervisor that is not externally visible at the IP
layer and where that middlebox offers a cryptographic front-
end with the full knowledge of the hosts visible on the public
Internet.

Sometimes people might mirror two hosts for redundancy,
including the keys used. If the private keys on both instances
are considered to only be at risk from the same entities
(e.g. both are hosted by one entity), then this scenario also
seems defensible. If two different hosters were used for better
redundancy, then having the same private key at risk to two
entities seems less defensible.

There could be cases where a Hardware Security Module
(HSM) that holds keys in secure storage is used by different
hosts (say in one rack) and where the HSM for some reason
cannot operate with different keys for every host. In such
cases, re-using keys that never leave the HSM might be
defensible. In other cases, a rack might be in a less physically
trusted environment, creating a need for remote access to a
HSM, which in turn might affect the HSM:host ratio making
key re-use more likely.

There may also be cases where our scans show the same
key being used, but where the “real” application will use a

unique key, if for example, a TLS Server Name Indication [9]
for the intended name/application is used. Given our scans
start off based on IP addresses, we would miss such cases.
Nonetheless, having the same default key pair for port 443 on
multiple hosts can be problematic.

Of course, simply using different keys for each service
instance does not in itself imply that service is more secure,
better managed, nor that it is independent of other hosts, given
current virtualisation trends. Note though that from Internet
vantage points, observers cannot easily distinguish between
these and less desirable cases.

B. Dangers of Key Re-Use
There are clear potential dangers associated with key re-

use. Clearly, any legitimate holder of a private key has the
capability to attack other cluster members sharing that key,
and our results do show cases where clusters appear to contain
hoosts belonging to very different entities. Some speciifc
additional risks include:

Leaks: Where private keys are stored as files on disk, a leak
from one host may affect all cluster members. If we notionally
say the cost of a leak of any of the host keys is the same and
is C and there are n hosts, then the cost of one cluster key
leaking is n ∗ C. If the probability of a key leaking from
any host is p, then, we can say that the probability of some
key leaking from some host is n ∗ p. If those considerations
do apply then the risk of the cluster scenario could be n2 ∗
p ∗ c instead of n ∗ p ∗ c if each host has a different key. In
other words, the cluster scenario is riskier, and the bigger the
cluster grows, the faster the risk get worse. While the details
of this argument won’t always apply, it seems reasonable that
risk should increase with cluster-size faster than linearly under
most threat-models.

Masquerade: If used for authentication, then re-use of key
pairs across hosts means that a breach of any host in a cluster
enables a successful attacker to also masquerade as any host
from the cluster in question.



3

Misdirected Mail: If an attacker can manipulate mail
routing (via MX resource records) or routing information (via
BGP), and the attacker has a copy of relevant private keys, then
the attacker can masquerade as the mail recipient’s domain and
intercept email, even if the recipient’s domain enforces strong
authentication of mail transport, e.g., via MTA-STS. [10]

Credentials: Being able to masequerade as any of the hosts
in a cluster is likely to allow an active attacher to capture user
credentials, for example passwords sent in IMAP or SMTP
transactions. Even worse, if SSH password logins are still
enabled, such an attacker can make use of those privileged
user credentials. Given passwords are frequently re-used in
many places, this attack may extend beyond the cluster to
other hosts at which those credentials can be used.

Web Origins: If the hosts in a cluster represent different
web origins then the ability to masquerade as any host in
the cluster would allow theft of web cookies, breaking the
same origin policy on which the web depends. Given new web
technologies such as alt-svc [11], the ORIGIN frame [12] and
secondary certificates [13], in HTTP version 2, breach of one
web server in a cluster will allow masquerading as any other,
all from the breached host.

Key Transport: If an RSA key has ever been used for key
transport, and an attacker has a record of such sessions, then
breach of any host using that key allows the attacker to directly
decrypt all recorded sessions.

Million Messages: Any unpatched vulnerability related to
use of a private key that requires multiple messages to be sent
by the attacker (e.g. the ROBOT2 attack [14]), can likely be
exploited more efficiently and more stealthily, if there are more
service endpoints to which the attacker can send messages.

Cross Protocol: Key re-use increases the potential for
cross-protocol attacks, and the likelihood that some service
instance supports older versions of SSH or TLS/SSL, that may
be vulnerable to such attacks.

Revocation: If a key is known to be compromised, then
it ought be revoked if the public component is part of some
Public Key Infrastructure (PKI[15]). With key re-use it may be
that the same private key continues to be used on some hosts
whilst being replaced on others. If the reason for revocation
related to potential private key compromise, then those less-
well managed hosts will remain at risk even after revocation.

Theory: It is now feasible to do security proofs for realistic
protocols, and indeed TLS1.3 has been the subject of such
formal studies. It is not clear that widespread key re-use was
considered in such studies. The impact, if any, on such proofs
is uncertain.

Data recovery@ It appears that keys and addresses “move”
between clusters (see Section VI-A. If data recovery tools are
accessible to e.g., a virtual machine, it could be that keys
belonging to others could be recovered. While this risk isn’t
directly caused by key re-use, it’s impact could be increased.

Laziness: Re-use of keys can be a result of careless man-
agement. Advertising attributes that can reasonably be taken
to indicate carelessness to the public Internet seems like a bad
plan for a service operator.

2 https://robotattack.org/

TABLE I: Ports Scanned. (2017 scans did not include port
587).

Port Protocol Key Used
22 secure-shell SSH host key
25 SMTP TLS Server Public
110 Pop3 TLS Server Public
143 IMAP TLS Server Public
443 HTTPS TLS Server Public
587 SMTP Submission TLS Server Public
993 IMAP TLS Server Public

C. Research Questions

The overarching research question behind this work is
to investigate whether or not local measurement of Internet
security posture is more useful (compared to Internet-scale
measurement) in helping asset-holders to improve security
posture. This study tackles one aspect of that work. One might
think of this as wondering if small to middling sized data
might better enable researcherss to gain insight, compared to
big data.

We define a metric related to key re-use: the percentage of
hosts in a population doing cryptography using keys that are
known to be used for multiple hosts; versus hosts where we
only see keys being used for one IP address. (Of course, hosts
could be mis-identified as not re-using keys, even if some
key is used elsewhere.) Call this the “hosts are re-using keys”
(HARK) percentage.

One hypothesis of this work is that reducing HARK could
correlate with improvements in security, and be a reasonable
indicator of whether a population are managing security more
carefully than in the past. We do not necessarily aim to reduce
HARK to zero, nor do we currently claim to know what value
might be optimal or a good target. But of course leaving room
for future work is also a fine feature for a proposed new metric.

III. METHODOLOGY

In November 2017, we extracted scans of Irish (IE) and
Estonian (EE) hosts that listen on the standard Simple Mail
Trasfer Protocol (SMTP [16]) port 25 (and hence offer some
mail service) from the censys infrastructure. [17]3 Subse-
quently, in March/April 2018, we ran scans locally using
ZMap/ZGrab [18] for Ireland, Estonia, Finland and Portugal,
but still limited to hosts who listen on port 25 (according to
ZMap).

Our expectation was that hosts running SMTP could be a
useful population to examine as they would hopefully have a
better than average probability of being well-managed. Initial
examination of the data showed that keys were being re-used
more frequently than expected, and that there were clusters of
hosts re-using private keys in various ways.

For each host we record SSH and/or TLS details for each of
the ports listed in Table I. (Censys scans did not include port
587 in November 2017.) We wrote analysis code to identify
and analyse the clusters of hosts re-using keys as described
below.

3https://censys.io



4

All source code required to replicate this study or do a
similar-scale scan has been published4 under the MIT license.
Our scans typicaly require a few days to run on our very
modest infrastructure, due to limits of that infrastructure and
built-in (default 100ms) delays between scan stages to require
less bandwidth. About 3-6GB of storage is required per run.
Our tools take as input a country-code (e.g. IE) and should
work for any country with a similar number of port 25
listeners.

A speedier or much larger-scale scan could likely be done
with minor code changes given better bandwidth, processing
power and storage. Note though that one of the research
questions we want to explore is whether smal-scale local scans
can be (more) effective in helping asset owners mitigate risks,
so we’re sanguine about speed and scale limitations, and happy
to demonstrate that quite limited resources are sufficient.

Data from scans are not being published as doing so could
assist an lateral movement, or attract attackers to clusters.
However, note that, as shown by this article, it is relatively
simple to detect these clusters.

A. Scanning Process

The following are the steps in our scans, (we don’t go into
significant detail, as consulting the code is the better option
for such):

Select addresses. The first step is to establish the set of
IP addresses to scan. That can be based on a previous scan
or a set of prefixes from a geo-location database. Our co-
ordinating script (“skey-all.sh”) either copies addresses from
a previous scan or (via “IPsFromMM.py”) uses a geo-location
database and ZMap to decide which ranges to scan. Running
ZMap can take from a few hours to a day depending on the
number of addresses in the scan, and the available bandwidth.
Typically, about 1% or so of the hosts probed will have a port
25 listener and will therefore be retained for further scanning.
From our scanning hosts, having ZMap send about 150 probes
per second seems to result in few or no lost answers.

Grab. The next step is to use ZGrab to attempt to connect
with the host and port in question and to record details seen,
including keys and other cryptographic parameters. This is
done via the “FreshGrab.py” script and takes a number of
hours. Before calling ZGrab we check if the IP address being
considered is correctly geo-located, as in some cases addresses
may be in the “wrong” country. (This could be due to changes
in routing, or due to ambiguities in how MaxMind and ZMap
work.)

Analyse. We analyse the records to detect key re-uses.
The script that does this “SameKeys.py” also compares the
names found in SMTP banners or X.50 certificate subject and
SubjectAltName (SAN) fields against the forward and reverse
DNS.5

Report We produce graphs for each cluster using graphviz
“dot” format [19] (optionally rendered as SVG files) and create

4https://github.com/sftcd/surveys/
5We only query up to 20 SANs per certificate - in runs we have seen some

gigantic certificates with more than 1500 SANs - querying each would be
too time consuming for the benefit gained - 20 SANs should be enough to
identify any asset-owner, which is why we’re interested in SANs in this study.

a JSON file per cluster containing relevant details. This is done
by the “ReportReuse.py” script.

All the steps above are run by the “skey-all.sh” shell script.
Consult that script (or the “README.md” file in the code
repository) for more detail. There are also some additional
scripts for installing required components (“install-deps.sh”)
and for validating clusters (“heck-keys.sh”) as described fur-
ther below.

B. Fingerprints and Clustering

We base clusters on the SHA256 [20] fingerprint of public
keys, as reported by ZGrab. We also record whether e.g. TLS
server certificates are “browser-trusted” (which can be expired)
or not and some other meta-data. For TLS services, the hash
input is the encoded SubjectPublicKeyInfo field of the X.509
certificate presented by the server. For SSH, we use the SSH
key hash, as produced by “ssh-keygen.”

We include checks for cross-protocol key re-use and see
quite a lot of that both on individual hosts and between hosts.
It is not uncommon to see the same key being used for port
25 on one IP address and port 443 on another. The only cross-
protocol re-use that we have not yet seen is between port 22
(SSH) and other ports, though we do see many cases where
SSH host keys are being re-used across multiple hosts.

Once two hosts have the same key fingerprint for any pair
of ports, then we assign those hosts to the same cluster. This
involves iterating over the set of records more than once, e.g.,
to “join” two existing clusters having found that a host shares
keys with both.

C. Scoping and Geo-location

Both censys and our local re-scans make use of MaxMind6

for geo-location. We use the GeoLite2 databases (for ASNs,
City and Country). The “mm update.sh” script downloads
the databases needed for our scans. When using censys, we
select the set of IPv4 addresses that have listeners on port
25 and that have the relevant Country Code (IE or EE) for
the sample concerned. When scanning locally, we start with
the list of country-specific prefixes from MaxMind and later
discard any specific IP addresses that no longer appear to have
the correct country code. Censys’ geo-location appears to be
more accurate than our local scans, which is unsurprising.
However, some inaccuracy in geo-location doesn’t affect our
main conclusions with respect to key re-use.

D. Other Tooling

There are some additional tools in the code repo in the
“clustertools” directory – the “ipoverlaps.sh” script compares
two runs and says which clusters overlap with which, see
Section VI-A for discussion of the output of this tool. The
“fpsfromcluster.sh” script shows host many occurrences of
each fingerprint are seen in a cluster. The “check-no-ssh-cross-
protocol.sh” script checks for any cases where an SSH host-
key is used for a TLS port - no such case has been seen in

6https://www.MaxMind.com/



5

$ check-keys.sh -i cluster835.json
Running check-keys.sh at 20180402-141156
Starting at 20180402-141156, log in

validation-results-20180402-141156.out
Doing cluster835.json
infile,ipcount,22count,matches,mismatches
835,80,66,1042,0
infile,ipcount,tlscount,matches,mismatches
835,80,140,544,41

Fig. 2: Validation of cluster 835 (Figure 1)using “check-
keys.sh”. This show no discrepancies for SSH host-keys but
41 mismatches out of 585 pairs of ports for TLS. Most
mismatches are due to a lack of response but there were also
four real key changes.

the five runs reported here. The “ClusterGetCerts.py” script
makes a fresh connection to the TLS ports from a cluster file
and extracts the X.509 certificates seen in text form. There is
also a script for producing the LaTex source (“make-tex.sh”)
used in the results section below. Additional tools may be
added as the analysis proceeds.

E. Validation

In order to increase our confidence that these clusters are
real, we have a validation script (“check-keys.sh”) that reads
a list of cluster files and uses different tooling to check if the
cluster is as before. This is to guard against e.g., bugs in ZGrab
or in our clustering code. For SSH, we use the “ssh-keyscan”
binary to connect to the hosts in question and re-check the key
hashes. For TLS services (all the others), we use the “openssl”
binary (in “s client” mode) to re-check fingerprints.

During validation, we often see additional SSH host keys,
as it appears that ZGrab (at least as we use it) finds fewer
keys than ssh-keyscan. If you run the validation script from a
network that e.g. doesn’t allow outbound port 25 connections
(which is not uncommon), then you’ll get some false negatives,
as the validation script won’t be able to connect to port 25 on
the hosts in the cluster. Similarly, if a host is not accessible
at all during validation, that will show up as discrepancies
that may disappear in a later run. We do also see some real
discrepancies for some clusters, but that is to be expected, e.g.,
due to key rotation for browser-trusted certificates that have
expired.

We do not re-validate all clusters as part of runs, but do that
selectively when looking at individual clusters of interest. A
validation run of Cluster 835 (shown in Figure 1), produced
the output shown in Figure 2.

F. (Lack of) Infrastructure

As stated previously, being able to do local scanning using
very modest “infrastructure” seems like a benefit. We did
make initial use of the presumably well-engineered censys
infrastructure, but, thanks to open-source technology and open
databases, we are able to run our scans from an extremely
modest virtual server or normal laptop.

TABLE II: A very modest scanner

Parameter Value
Processor AMD Opteron 62xx class CPU
CPU 25% of 1 Core
RAM 0.75 GB
Disk 7.5 GB
Bandwidth Unlimited @10 Mbps

Specifically, we currently run scans from a modest Virtual
Private Server (VPS) with the parameters listed in Table II.
Only the “Grab” phase of the process needs to be run on this
host - at the scale of scan we’re doing, the rest can be done
just fine on a typical laptop.

G. Ethical Considerations

As we’re doing active scans it is appropriate to consider
whether there are ethical implications of this work. Given that
our current scans are of hosts that listen on port 25 (i.e.,
email servers) we feel that these scans have fewer ethical
implications than those that might involve hosts that are
operated by or for individual users.

Given our preference for modest scanning infrastructure, our
scanning rate is low enough that we are not likely to affect
any running services. We use the default ZMap block list and
have published a web page and DNS TXT record that can be
found from the source address from which we scan. So far,
nobody has asked us to not scan them, if someone did, we
would add them to the ZMap block list.

As stated previously, we do not intend to publish scan data,
as that could assist attackers in some cases. In communications
to date with autonomous system asset-holders, we anonymise
IP address and name information that involves other asset-
holders, e.g. when a cluster has members from multiple ASes.
We do however include the AS numbers of other hosts in
clusters shared with the asset-holder in question, as they may
already have relevant eontacts.

IV. RELATED WORK

Early work surveying the use of cryptographic keys on
the Internet included Heninger et al’s seminal work [21]
identifying re-used keys and keys with common factors. Since
ZMap/ZGrab and censys have become available many people
have studied the properties of populations of cryptographic
keys for example [2], [22], [23], [3].

The properties of email security deployments have also been
studied, for example, by Durumeric et al. [24] and Holz et
al. [25]. Albrecht et al, carried out Internet-wide scans of SSH
usage in 2015 [5] finding “about 224” servers in their scans.

To our knowledge, those and the many other studies of the
TLS and SSH ecosystems have focused more on the protocol
or cryptographic properties seen, and did not consider the
clustering aspect studied here.

V. RESULTS

Table III provides the oveviews of each of the six runs done
for this article. Figure 3 shows the cluster size distributions for



6

TABLE III: Overview of runs

Country (year) IE(2017) IE(2018) EE(2017) EE(2018) FI(2018) PT(2018)
Scan start 2017-11-30 2018-03-16 2017-11-30 2018-03-24 2018-03-26 2018-04-03
Scan end 2018-04-15 2018-03-25 2018-04-14 2018-03-29 2018-04-01 2018-04-05
IPs from ZMap 23616 24774 12775 17827 37012 19782
“out of county” 0 1233 0 1334 506 63
“In country” IPs 23616 23541 12775 16493 36506 19719
No crypto seen 12959 5273 796 1519 26106 4169
Some Crypto 10657 18268 11979 14974 10400 15550
Some crypto% 45% 77% 93% 90% 28% 78%
Total crypto host/ports 25935 54447 45067 80019 34263 63907
Total unique keys 12889 20053 15502 20014 11686 12202
Percent keys vs. max 49% 36% 34% 25% 34% 19%
Hosts with only local keys 5651 8570 3176 3303 4675 4143
Hosts in clusters 5006 9698 8803 11671 5725 11407
HARK 46% 53% 73% 77% 55% 73%
Number of clusters 823 1437 521 639 1029 1512
Max cluster size 671 1991 2874 2402 373 2016
Median cluster size 21 26.5 36 42 24 30
Average cluster size 63.23 87.78 121.18 98.04 50.65 117.51

(a) 100 101 102 103 104

0

1,000

2,000

3,000

(b) 100 101 102 103 104

0

1,000

2,000

3,000

(c) 100 101 102 103 104

0

1,000

2,000

3,000

(d) 100 101 102 103 104

0

1,000

2,000

3,000

(e) 100 101 102 103 104

0

1,000

2,000

3,000

(f) 100 101 102 103 104

0

1,000

2,000

3,000

Fig. 3: Clustersize distributions for runs (a) IE-20171130, (b) IE-20180316, (c) EE-20171130, (d) EE-20180324, (e) FI-
20180326, (f) PT-20180403. Blue circles show the number of hosts in clusters of given size, red squares reflect the number of
clusters of given size. The x-axis is logarithmic.



7

these runs.7

For each specific run below we report the following:
Country: IE, EE, FI, or PT in this article.
Scan start/end dates: Scans take multiple days. For the

2017 scans here the latency is due to the time taken to develop
the analysis code.

IPs from ZMap: the number we got from censys for 2017
scans, or the addresses from MaxMind for local scans.

Judged “out of country”: the number of addresses that
MaxMind doesn’t consider to be in the right country. There
is the usual ambiguity here with respect to Ireland/Northern
Ireland/UK. but we don’t consider hosts MaxMind says are
in the ”UK.” For Estonia, there were quite a few addresses
considered to be in Sweden, but the author is not sufficiently
locally knowledgeable to know if there is any rationale behind
that other than inaccuracy in the prefixes from the geo-location
database.

No crypto seen: hosts that ran no SSH or TLS services our
scanner could detect.

Some crypto: hosts that have at least one port (not nec-
essarily port 25) where a server key can be detected. There
is no quality judgement as to whether keys are good or bad,
certified or not, certificate expired or not, etc.

Some crypto%: = 100 ∗ some− crypto/in− country
Total crypto hosts/ports: is a count of all of the ports seen

on all of the hosts that run TLS or SSH
Total unique keys: is a count of all of the key fingerprints

seen, across all hosts/ports - keys are only counted once,
regardless of the number of hosts on which a key is seen.

% keys vs. max: if a different key were seen on every
possible host/port combination this would be 100%

Hosts with only local keys: the number of hosts such that
none of their keys are seen on any other host in the run

Hosts in clusters: the number of hosts that are in some
cluster

HARK: the “Hosts Are Re-using Keys” percentage = 100∗
hosts− in− clusters/some− crypto

Max, Median and Average cluster size: as you’d expect

A. Graphing Clusters

Graphs provide a sometimes useful way to visualise clusters.
These were very useful during debugging when e.g., impossi-
ble asymmetries in graphs showed up problems that needed to
be addressed. Flicking through the graph images was a useful
way to spot such anomalies. Figures 5, 6, 7 and 8 are sample
cluster graphs from scans, to give a sense of the range of
clusters we see.

For the medium to large clusters in these runs, the more
complex graphs aren’t that useful, but do at least give an
impression of scale. Some few of these graphs do show some
structure that could prove useful when investigating causes,
e.g. Figure 1.

For the largest graphs, the graphviz package fails to render
the graph as an image. The “try-render-problematic.sh” script
attempts to use graphviz in various ways and does succeed in

7Fixes for some bugs in analysis code caused small changes to the 2017
run figures between versions 0.3 and 0.4 of this article.

Fig. 4: Legend for edge colours in graphs. Nodes are port
numbers, edge colours are as used between host-nodes in
other graphs when the pair of ports re-use the same key. The
loopback colours (e.g. black from p22 to itself) are used when
a key is re-used on the same port on two hosts.

Fig. 5: Cluster 112 from run EE-20180324 is a 14 host cluster
with mail and web key re-uses.

generating images for all but the largest graphs in our runs
to date. Graphviz has a number of tools for rendering graphs
that perform differently, some slower, making nicer graphs
(e.g. “sfdp”), but failing for more graph instances, others (e.g.
“neato”’) quicker and more robust, but producing less readable
output in general for our graphs. All of the graphs below were
produced using the “sfdp” tool, except in Figure 12 which was
produced by “neato” as sfdp times out in our build with that
input as we impose a two-minute timeout for building each
specific graph.

Node numbers in the graphs are local indexes of the IP
addresses in our data set. These are essentially determined
by ZMap which hashes the set of input ranges we give
it, resulting in node and cluster numbers changing (suffi-

Fig. 6: Cluster 60 from run FI-20180326 is a 30 host cluster
involving mostly SSH host-key re-uses, but with some re-use
of key on mail ports. 13 of the hosts are in one AS, and 17
in another.



8

Fig. 7: Cluster 144 from run PT-20180403 is a 48 host cluster
with two clear “lobes”

Fig. 8: Cluster 240 from run FI-20180326 is a 25 host, 2 AS,
cluster with mail and /web key re-uses.

ciently) unpredictably for each run. The “ReportReuse.py”
script that produces the graphviz dot files used to generate
these graphs has a command line argument specifying whether
to anonymise the IP addresses like this. Node colour is set
based on the ASN of the host. Edge colours are specific to
the combination of ports on which the same key is seen - the
colours used are as shown in Figure 4.

Once there are more than 10 hosts in a cluster, we no longer
distinguish re-use for the same protocol via different edge
colours, but simply add one edge when the same mail related
ports use the same keys on a pair of hosts. So if two hosts in
a larger cluster use the same key for both ports 25 and 143,
then only one edge will be created on the graph for that cluster
and that edge will be coloured for “mail.” Even in such larger
graphs, if two hosts share a key on different ports, e.g. port25
on one host has the same key as port 143 on the second host,
then, as these situations are less common, we continue to add
edges for those, and the graph will have a ”p25-p143” entry
in the legend.

Relatively few of these graphs display interesting structure
– one that does is cluster 10 from the IE-20171130 run, shown
in Figure 20. The set of hosts in run IE-20171130/Cluster-10
turns into run IE-20171130/Cluster-333 shown in Figure 19.

Fig. 9: Cluster 355 from run FI-20180326 is a 21 host
cluster with various mail/web key re-uses and some apparent
structure.

One additional host is added to the cluster and some of the
linkages have undergone changes. Cluster 355 from the FI-
20180326 run, shown in Figure 9, also shows some interesting
structure as does cluster 835 (Figure 1) from the same run.

B. Cross-border Overlaps

We check for fingerprint overlaps between the clusters found
in different runs using the “fpoverlaps.sh” script. We find
overlaps as shown in Figure 10. Note we only checks hosts
for which key re-use has already been detected within a run
– additional re-uses may exist that are not detected by this
script.

Overall we see 89 cases of cross-border cluster overlap. One
of those is between IE-20180316/227 (a 15-host, 10 AS clus-
ter, Figure 21), EE-20180324/165 (a 2-host, 2 AS, cluster) and
FI-20180326/688 (a 2-host cluster) and PT-20180403/1184 (a
5-host, 4 AS cluster). This seems to be related to common
software or hardware as one vendor’s name is mentioned in
banners for all four clusters.

C. Word Clouds for Clusters

While cluster graphs help to understand the scale and
possible structure of a cluster, if we aim to understand more
we need to delve into the details as to which hosts, belonging
to which asset-holders, are sharing keys. The cluster details
stored include names from AS names, banners, reverse DNS,
and X.509 certificates, but it can be tedious to extract that data
from whatever bulk format (in our case JSON files) in which
it is stored. We have experimented with generating a word-
list for each cluster, based on the names we find, repeated as
often as they are in the underlying cluster data. From those
word-lists, we build a word cloud image.8 Doing that for
all clusters and flicking through the images has been useful
for identifying some asset-holders for local (Irish) clusters,
but hasn’t been useful for clusters from other locales. Local
knowledge therefore does seem to help in identifying some
asset-holders – whether that results in much change is still to
be determined. The word-list and word-cloud images are built
using the “wordle.sh” script. If we get permission from some
asset-holder to include an example, we will, but for now, we
don’t as that would be identifying information.

D. Communicating with Asset-Holders

We have developed tooling, “ah-tb.sh” and “ClusterA-
nonOthers.py”, to assist with communication with asset-
holders. The former creates a directory containing the set of
cluster files corresponding to an input regular expression and
the latter anonymises a set of cluster files, except those from
one specified AS. Anonymous records have an IP address
of ”XXX.XXX.XXX.XXX” and no names from banners,
certificates or DNS. We do not anonymise the AS of the
anonymised IP addresses.

To date, our practice has been to communicate with asset-
holders via an existing contact, and to then try funnel our

8https://en.wikipedia.org/wiki/Tag\ cloud



9

Fig. 10: Cross-border Cluster Links. Nodes represent clusters, edges are present when there is at least one fingerprint in
common between the clusters. (green=IE-20180316;blue=FI-20180326;gray=EE-20180324,red=PT-20180403)

TABLE IV: TLS certificate details for keys from clusters in run
IE-20180316. The rightmost column is the number of listeners
on that port who are members of clusters. Recall there are
9,698 hosts in clusters in this run.

Port Browser Trusted Wildcard Cert Listeners
25 294 173 4277
110 311 49 3998
143 328 59 4109
443 396 241 7331
587 307 0 3321
993 345 0 4024

results into whatever process suits the asset-holder. In all but
one case so far we have started by contacting local ASes.
(The exception being an educational institution where we had
contacts already.) It’s likely we may move on to contacting
the owners of hosts in clusters directly but time will tell.

VI. IRISH RESULTS

In this section we report in more detail on the Irish runs,
with additional detail of selected clusters.

Of the 1,437 clusters seen in the IE-20180316 run, 129
(9%) invlolved more than one AS. The use of less desirable
ciphersuites is as shown in Table V. Recall that RSA key
transport combined with many copies of a private key is a
bed combination. (RC4 is independently bad.)

Information on the certificates seen on TLS ports is shown
in Table IV. In terms of the threat against web origins
mentioned in Section II, there are 5205 hosts with browser-
trusted certificates that are in clusters in this run. The max
cluster size (only considering port 443) is 1991, next is 171,
then 152. Cluster 32 (see Figure 13 seems like a case in point
where apparently different origins are being used “behind” a
single wild-card certificate. We see 25 cases where a key used
on port 443 on more than one host sometimees is presented
via a browser-trusted certificate but also sometimes presented
without such a certificate. We see one case where a key
has different sets of names associated with the same key in
different browser-trusted certificates.

Of the 684 keys that are shared on more that one host in
this run, the average number of hosts per key is 7.81 (median
is 2, max is 1991, then 183 etc.).

TABLE V: Less Desirable Cipherstuites used in IE-20180316

Keys Code Ciphersuite Name
2 x0A TLS RSA WITH 3DES EDE CBC SHA
86 x35 TLS RSA WITH AES 256 CBC SHA
87 xC011 TLS ECDHE RSA WITH RC4 128 SHA

1818 x2F TLS RSA WITH AES 128 CBC SHA
2806 x05 TLS RSA WITH RC4 128 SHA

A. Time Evolution

Clusters evolve over time. The primary attributes of clusters
are key fingerprints and IP addresses that can change indepen-
dently, under the contol of whomever administers a host. Keys
can be rotated (as we’d suggest), or new re-uses can be seen.
IP addresses can be re-purposed, or remain stable. And of
course, our clusters are sets, so membership can change based
on key and/or IP address changes. (We could, but have so
far not, extend our concept of cluster evolution to encompass
naming, based on all the usual forms of name.)

The “dot-r1r2.sh” script analyses two runs to produce this
analysis. For the two Irish runs, (20171130 and 20180316), we
examined the changes in the ”forward” (from 2017 to 2018)
and “reverse” directions with the overall results as per Table
VI.

The “disappeared” category covers clusters that we no
longer see at 20180316. The “appeared” category are those
created (or first seen) in the 20180316 run. The ”IP-linked”
category are clusters that share some IP address(es) with
exactly one cluster in the other run, but have no keys finger-
print in common. The ”FP-linked” are clusters that share key
fingerprints with one cluster in the other run, but have no IP
addresses in common. The most common linkage are the“IP
and FP” category that have at least one IP address and at least
one key fingerprint in common (not necessarily, but commonly,
on the same IP address). This is what one would expect if
nothing changes between runs. The “complex” category covers
relationships that are more complicated - Figure 11 shows the
clusters in this category.

B. Specific Clusters

We now describe a selected subset of the clusters seen in
more detail. We do not yet attempt to present a fully consistent
level of description of each cluster – we may evolve towards



10

TABLE VI: Cluster evolution - from IE-20171130 to IE-
20180316.

Category Category
Disappeared 168 Appeared 777
IP-linked 36 FP-linked 16
IP and IP-linked 584
Complex-20171130 19 Complex-20180316 24

that, or it may be that the aspects of interest for each cluster
can only be established via inspection, in which case different
descriptions for each are a reasonable outcome. We hope to
learn more as we discuss these clusters with asset-owners.

1) IE-20180316/Cluster-3:

• This cluster has 1991 hosts and is the largest in the run.
All the IP addresses are in the same ASN, which is one of
the world’s hyper-scalers who happen to host machines
in Ireland, so this cluster doesn’t seem to be particularly
associated with Ireland.

• There are a total of 1995 host/port combinations. 1991 of
those use the same key with browser-trusted certificates
for port 443. A CT search via crt.sh for that SPKI hash
seems to indicate that key has been used since late 2014.
The other 4 use one key that is not browser-trusted for
port 25.

• A run of “check-keys.sh” shows that the p25 keys appear
to have changed.

• Hosts in the cluster do appear to be listening on port 25
- 3 randomly selected hosts from the cluster all accepted
connections from telnet on port 25.

• 1972 of the hosts have the same public key certificate,
which is a wild-card certificate. It may be be that these
hosts are used for marketing related services.

• There are 1980 different SMTP banners. For each one, it
appears that the hostname in the banner is used as the
hostname for a DNS name that matches the wildcard
certificate. So if the SMTP banner is “foo” and the
certificate is for “*.example.com” then we see a DNS
entry for “foo.example.com” as one might expect.

• Many of the banner hostnames are of the form
“[company]-mkt-dev1-1” or “[company]-mkt-prod2”
There are 293 different company names in the set, some
of which are internationally known brand names, and
only a few of which are related to Ireland. An HTTP
GET to port 443 on one of those hosts returned a 404.
We didn’t further investigate the web site content.

• All TLS host/port combinations report use of the
TLS ECDHE RSA WITH AES 128 GCM SHA256
ciphersuite,9 so there may not be a current concern with
RSA key transport.

• The same keys, banners and other names were also see
in the IE-20171130 run. At that time there were 871
members of this cluster.

2) IE-20180316/Cluster-665:

9See https://www.iana.org/assignments/tls-parameters/tls-parameters.
xhtml#tls-parameters-4

• This cluster has 578 hosts and is the second largest in
the run. The hosts in this cluster are in five ASes. The
number of hosts in each the these ASes is 433, 111,
17, 15 and 2. The ASN with 433 hosts is a well-known
local hoster/registrar. The ASN with the 111 hosts is a
local ISP/hoster. The ASNs with 17 and 15 hosts are
international with a local presence. The ASN with 2 hosts
is a local Internet/computing consultancy.

• 517 of the TLS server certificates seen are browser-trusted
whereas 2400 are not. There are a total of 3405 host/port
combinations with crypto. 1298 of those use the same
key. The next most commonly used key is used for 570
ports, then 375, 219, 86, and so on down to 2 - there are
65 keys used twice. There are 480 keys used only on one
port.

• There are 457 reverse DNS names associated with this
cluster and 20 unique names from TLS certificates -
two for tool names, three as wildcards, i.e. of the form
“*.example.com” and 15 for what appear to be regular
hostnames one might find in DNS.

• The names from banners and certificates may imply that
default keys for a particulat hosting control panel tool
are being re-used. Forum posts for that tool do appear
to indicate that controlling these settings is considered
challenging.

3) IE-20180316/Cluster-9:
• This cluster has 249 hosts and is the third largest in the

run. All 249 hosts in this cluster are in the same AS,
which is a local hosting company.

• 96 of the TLS server certificates seen are browser-trusted
whereas 1052 are not. There are a total of 1396 host/port
combinations with crypto. 911 of those use the same key.
The next most commonly used key is used for 90 ports,
then 51, 18, 18, and so on down to 2 - there are 9 keys
used twice. There are 145 keys used only on one port.

4) IE-20180316/Cluster-52:
• This cluster has 118 hosts and is the seventh largest in

the run. See Figure 12.
• All 118 hosts in this cluster are in the same AS, which

is a hyper-scaler with a local presence.
• All 118 of the TLS server certificates seen are browser-

trusted and use the same certificate, issued in mid-2016.
• There are a total of 118 host/port combinations with

crypto.
• The name associated with these keys sounds like it’s

related to mail delivery. But who knows?
• The certificate for these hosts includes a name like

”example.com” with a SAN for ”www.example.com” but
there is not A record for the relevant www.example.com
in the DNS today

5) IE-20180316/Cluster-32:
• This cluster has 92 hosts. See Figure 13. All 92 hosts in

this cluster are in the same AS, which is a hyper-scaler
with a local presence.

• There are a total of 165 host/port combinations with
crypto. 70 of the 74 port 443 keys are the same, and
map to one wildcard certificate. “check-keys.sh” shows



11

Fig. 11: The clusters with “complex” time evolution between runs IE-20171130 (orange) and IE-20180316 (green). Blue arrows
show key fingerprint linkage, black arrows show IP linkage.

Fig. 12: Cluster 52 has one hundred and eighteen hosts sharing
Web server keys and is the largest cluster that renders with
graphviz for this run. There are six larger clusters.

Fig. 13: Cluster 32, has 92 hosts sharing web and mail host
keys.

some discrepancies. This cluster has no SSH keys. The
TLS discrepancies do include some key changes, with
4 new key fingerprints being seen on a number of the
cluster’s hosts.

• This cluster features about 50 different DNS names,
mostly below the same .co.uk 2LD, but with the leftnmost
label reflecting different organisations. These names may
relate to a UK based mobile web application development
company, so the use of one wildcard certificate could be
undesirable.

6) IE-20180316/Cluster-199:
• Cluster 199 has 48 hosts who make lots of use of one

key. See Figure 14.
• All 48 hosts are part of a small local telco ASN. (With

which the author was unfamiliar.)
• There are 285 host/port combinations, 231 of which use

the same key. 48 of those use another key, and then
5 ports use unique keys. 232 ports use browser-trusted
certificates, whereas 5 do not.

• check-key.sh produced no discrepancies.
• All but one of the SMTP banners use the same hostname.

Fig. 14: Cluster 199 has 48 hosts

Fig. 15: Cluster 103, has twenty-five hosts sharing SSH host
keys and is the largest “pure” SSH cluster in this run.

The one exception appears appears to be a certificate with
a SAN for what could be a .ie second-level domain (2LD)
except that that value is not registered. The rest have
names of the form “cpanel.[foo].com”.

7) IE-20180316/Cluster-103:
• This cluster has 25 hosts and is the largest “pure-” SSH

cluster n the run. See Figure 15. All 25 hosts in this
cluster are in the same AS, which is a hyper-scaler with
a local presence.

• There are a total of 25 host/port combinations with
crypto.

• “check-keys.sh” shows some discrepancies. The discrep-
ancies all seem to relate to hosts not responding, except
for one host that does appear to now be using different
host-keys.

8) IE-20180316/Cluster-144:
• This cluster has 26 hosts and is one of two matching the



12

Fig. 16: Cluster 144, has twenty-six hosts.

Fig. 17: Cluster 177, has twenty-six hosts.

median cluster size See Figure 16.
• All 26 hosts in this cluster are in the same AS, which

belongs to a local ISP.
• There are a total of 125 host/port combinations with

crypto. 109 of those use the same key. Each of the others
has a unique key. The most-used key is used mail ports
(110,143,587,993) on all 26 hosts. That same key is used
for port 443 on 5 hosts. 16 other hosts use a unique key
for port 443.

• “check-keys.sh” detected no mismatches - all 125
host/ports remain the same

9) IE-20180316/Cluster-177:
• This cluster has 26 hosts and is one of two matching the

median cluster size See Figure 17.
• All 26 hosts in this cluster are in the same AS, which

belongs to a local ISP.
• There are a total of 128 host/port combinations with

crypto. Three keys are used for all of these, one 78 times,
one 26 times and one 24v times.

• “check-keys.sh” shows some change on port 443 since
the test run.

10) IE-20180316/Cluster-194:
• This cluster has 22 hosts. See Figure 18.
• All 22 hosts in this cluster are in the same AS, which

belongs to a local ISP.
• There are a total of 121 host/port combinations with

crypto. One key is used for 88 of those, one key for 21,
and 12 keys are used for one port each. For 96 ports, a
browser-trusted certificate is used, 4 ports use a certificate

Fig. 18: Cluster 194 has twenty-two hosts that re-use lots of
keys.

Fig. 19: Cluster 333 - Fig. 20 grown a little a few months later

Fig. 20: Cluster 10 from IE-20171130.

that is not browser-trusted.
• “check-keys.sh” shows a number discrepancies for SSH,

but none for mail or web.
• An interesting variety of names are used for SMTP

banners. Some relate to bitcoin, others to finance, and
more to gaming.

• A certificate associated with the most-used key was issued
in late 2017.

11) IE-20180316/Cluster-333:
• Cluster 333 has 21 hosts. See Figures 19 and ??.
• All hosts are within a hyper-scaler’s local AS.
• There are 135 host/port combinations, with one key used

47, 26, 15, 10, 5 and 2 times each, and with 30 other keys
used for one port each. 7 ports use certificates that are
browser-trusted, 109 ports do not. One of the browser-
trusted certificates uses a key that has been in use since
2014, across multiple certificates/CAs, another uses a key
certified only once so far in early 2018, a third was issued
in March 2018, and for a Dutch-sounding .eu DNS name
not reflected in the SMTP banners.

• check-key.sh shows up some mail and web port discrep-
ancies, with cases of hosts not answering and of changed
fingerprints. All of the SSH ports were the same, about
20% of the mail and web ports showed discrepancies.

• SMTP banners are mixed. There are 21 different values,
19 with a common 2LD, which seems to be that of a
Dutch Internet consultancy, but with two more outside
that namespace. Of those, one has a .nl 2LD that matches
the hostname used in some of the 19 banners, the last one
seems to have no relation to the others.

• A search at crt.sh shows certificates for this public key
dating back to late 2014.



13

Fig. 21: Cluster 227 has 15 hosts sharing variously over ten
different ASes.

Fig. 22: Cluster 150 from run IE-20171130 overlaps cluster
227.

• We saw this cluster as cluster 9 in our IE-20171130-
000000 scan.

12) IE-20180316/Cluster-227:
• Cluster 227 has 15 hosts. See Figures 21 and 22. 10

different ASes are involved in this cluster, of many kinds,
from hyper-scalers, through local ISPs to small local
hosters and even the local NREN.

• There are 20 host/port combinations, 19 of which use the
same key. The odd one out is a port 443 listener. The
others are for ports 25 or 443. One of those certificates
is browser-trusted and is for a medium-sized food pro-
cessing company in Ireland.

• SMTP banners have names that vary widely.
• check-keys.sh reports about 50% mismatches, mostly it

seems due to inability to connect to some hosts.
• Since run IE-20171130, this cluster has grown in size

by one host, but two others have changed, i.e., since
then, two hosts have dropped out, and three have joined.
(Assuming hosts just weren’t unavailable at the wrong
moment.) This cluster also overlaps with clusters in other
runs - see Section V-B for details.

13) IE-20180316/Cluster-462:
• Cluster 462 has 14 hosts. See Figure 23. 6 different ASes

are involved in this cluster, mainly local ISPs.
• There are 16 host/port combinations, 15 of which use the

same key. The most used key is a 1024 bit RSA key.
• The SMTP banners vary but generally name Irish organ-

isations.
• check-keys.sh reports mismatches on port 443, but none

on port 25.
• The certificate used on port 25 in most cases has a SAN

of the form “[vendor-appliance] Demo Certificate.” It is

Fig. 23: Cluster 462 has 14 hosts sharing variously on ports
25 and 443 web over 6 different ASes.

Fig. 24: Cluster 1227 has five hosts that re-use the same SSH
host-keys, and two of whom share a key for port 25.

not known if these hosts are offering a live service or are
just used for testing. In at least one case the IP address
of the HOST matches the MX address for the domain as
per the SMTP banner seen, which implies these keys are
in live use.

14) IE-20180316/Cluster-1227:
• Cluster 1227 has 5 hosts. See Figure 24.
• All hosts are within a single AS operated by a hyper-

scaler
• There are 13 host/port combinations, 5 are the shared

SSH host-keys. Two are the shared port 25 keys. 6 other
unique keys are used for port 25 and port 443 on the
hosts that don’t share a port 25 key. The three port 443
certificates are browser-trusted, no other certificates are
browser-trusted.

• check-key.sh reports no discrepancies.
• There are four different SMTP banners, that appear

unrelated. The two identical banners are on the hosts that
share a key for port 25.

15) IE-20180316/Cluster-111:
• Cluster 111 has 5 hosts who make lots of use of one key.

See Figure 25.
• Four hosts are within a local hoster’s AS. One is within

a local telco/ISP’s AS.
• There are 31 host/port combinations, all but one use the

same key which is used on ports 110, 143, 443, 587 and
993. The odd one out is the only SSH host-key in use.

• check-key.sh says all keys remain the same.



14

Fig. 25: Cluster 111 has five hosts that re-use the same keys
for almost everything. As can be seen the individual edges
become less useful at this point.

Fig. 26: Cluster 8 - a representative four host cluster where
the same TLS key is used on port 443.

• Each host has an SMTP banner of the form
“[foo].example.com” where foo is either “server1” (one
occurrence) or “hosting2” (four occurrences), whilst the
(same) public key certificate for each host is for “*.ex-
ample.com”.

• A search at crt.sh shows certificates for this public key
dating back to late 2014.

16) IE-20180316/Cluster-8:
• Cluster 8 has 4 hosts who share one key for port 443.

See Figure 26
• All hosts are within one AS operated by a hyper-scaler.
• There are 9 host/port combinations, 4 use the same key,

all for port 443. Each host has a unique key for port 22.
One of the hosts has a unique key for port 25. The port
443 keys are browser-trusted, the port 25 key is not.

• check-key.sh says there are 3 discrepancies - one of the
hosts seems to be unresponsive.

• Each host has an SMTP banner of the form
“foo.example.com” whilst the (same) public key certifi-
cate for each host is for “*.example.com”. A search at
crt.sh shows only one matching certificate issued in mid
2017.

17) IE-20180316/Cluster-76:
• Cluster 76 has 3 hosts who share SSH host-keys. See

Figure 27.
• Two of the hosts are within one local AS operated by a

Fig. 27: Cluster 76 consists of three hosts, in two different
ASes and shows SSH host-key re-use.

hosting company. Another is within an AS operated by a
local ISP/hoster.

• Each host only does crypto on port 22.
• check-key.sh says all 3 keys remain the same.
• There are two SMTP banners with names that don’t

appear to obviously match. One is a DNS bogon.

18) IE-20180316/Cluster-648:

• This cluster has 2 hosts who share an SSH host-key and
is the 3rd smallest (file) in the run.

• The SSH host-keys are 1024-bit RSA, so presumably
quite old.

• Both hosts are in an ASN operated by the local NREN.
Reverse DNS indicates they belong to a 3rd level educa-
tional institute.

• Neither host has any other cryptographic ports.
• The SMTP banner indicates a name that matches one of

the hosts. Reverse DNS for that host also matches the
banner. The other host has

• “check-keys.sh” reports both keys are still active.

19) IE-20180316/Cluster-804:

• This cluster has 2 hosts who share an SSH host-key and
is the 2nd smallest (file) in the run.

• Both hosts are in an ASN operated by the local NREN,
in a range that appears to be for non-universities.

• Neither host has any other cryptographic ports.
• “check-keys.sh” reports only one of those keys are still

the same at the time of writing. That could be some Fire-
wall/Intrusion Detection System (IDS) behaviour, ssh-
keyscan results for one of the hosts varies depending on
whether one uses names or IP addresses, and IPv4 or
IPv6. Manual inspection shows that the host keys remain
the same.

• Neither IP is in our IE-20171130-000000 scan.

20) IE-20180316/Cluster-639: This is a two-host cluster
where a single key is used for mail and web services. The same
two IPs are also cluster IE-20171130/341 but with entirely
different keys and even with some port differences (SSH is ab-
sent in IE-20180316/639 but present in IE-20171130/341). Yet
cluster IE-20171140/337 shares keys with IE-20180316/639,
though again for a different set of ports. The IPs from IE-
20171130/337 do not show up at all in the IE-20180316 run.
The AS for all four IPs is a local hoster.

21) IE-20180316/Cluster-1389:



15

• This cluster has 2 hosts who share an SSH host-key and
is the smallest (file) in the run. Both hosts are in an ASN
operated by a major multinational, and hoster. Reverse
DNS suggests these hosts are in the ranges used for the
multinational’s hosted customers.

• Neither host has any other cryptographic ports.
• “check-keys.sh” reports those keys are still the same at

the time of writing.
• Neither IP is in the IE-20171130 run.
22) Summary of Clusters of Size 2: There are 742 clusters

of size 2. In total, there are 170 different combinations of ports
seen in this set of clusters, of those:

• 150 only involve common port 25 keys.
• 143 only involve common port 443 keys.
• 41 only involve common keys for both ports 25 and 443

(one unique key per host).
• 27 only involve common SSH host-keys.
• 24 only involve independently common keys for ports 25

and 443 (two unique keys per host).

VII. DISCUSSION

Clusters could have been created deliberately or acciden-
tally. The former case could be as a result of an attack or,
more likely, is the result of limitations in tooling that don’t
make key re-use apparent to administrators, or that make it
easy to end up re-using keys. Asset owners may or may not
know or care about the existence of clusters of key re-use.

A. Confirmed Reasons for Key Re-Use

In this section we describe causes for key re-use that have
been confirmed by asset-holders. Note that we simply accept
asset-holders’ assertions to this effect - attempting to validate
for specific clusters would likely be too intrusive.

SSH Host Key Reuse: Some SSH host-key clusters were
caused by starting the “sshd” daemon (thus generating the SSH
host key pair) on a host prior to creating a virtual machine
image as a clone of that host, so that subsequent loads of
that image onto another of host caused the re-use. This is not
obvious to clients, as the host-key hash presented is perhaps
unlikely to be recorded. This was confirmed for cluster IE-
20180316/Cluster 35. The asset-holder in that case now has
new scripting so that cluster sholdn’t grow further and may
disappear.

One system administrator using Puppet10 had installed the
SSH server on a base system used to generate images. Even
though the Puppet SSH module was activated on the imaged
hosts, the original SSH host key from the image was already in
place, and so there was no requirement for the Puppet agent on
the image to generate one. The fix was to delete the existing
SSH host key from all imaged hosts, and either generate a
new image-specific host key manually (or just let the Puppet
agent do it in due course). The base image was then modified
appropriately to prevent the situation described arising again.

Copied configs/VMs: Some of the key re-use detected here
is due to VM cloning with config files or templates being

10https://puppet.com/

buggy or re-used. Speaking to asset holders, this seems to be
an issue that has come up in the past,11 been fixed, but that
tends to recur, perhaps indicating some tooling changes could
be useful.

Mirrored Hosts: One asset-holder contacted the author
describing a mirroing arrangement as outlined in Section II-A.
Presumably this kind of mirroring is the cause for a number
of the clusters of size two and perhaps even three.

B. Possible Reasons for Key Re-Use

As of now, this section is speculative. As discuession with
asset-holders continues, we hope to move points here to the
section above.

Old/New Hosts: It could be that some of the size-two
clusters represent hosts where one is a ”new” version of the
other, but where the administrators forgot to turn off or re-
configure the old machine after setting up the new.

Anycast: If a service uses anycast addressing, it is possible
that multiple instances of the service will have been deployed
with the same keys. In such cases, scans such as ours are likely
to see those instances via unicast addresses so see this as a
key re-use across hosts. It is unclear why it might be desirable
for anycast services to re-use SSH or TLS server keys, unless
clients for those services are pinned to the specific host keys,
which would be a fairly brittle design.”

Bad Random Number Generators: It is possible that some
of the key re-uses detected here are the result of bad random
number generators causing the same keys to be generated at
different times and places.

Software/Hardware with Hard-coded Keys: If some soft-
ware package or piece of equipment ships with hard-coded or
default keys, then that would clearly show up in our results.

Test Equipment left Running: If test equipment is installed
with default or test keys, and never updated to use real keys
then key re-use is highly likely. Some of the SMTP banners
we see in results seem to imply that this may have occurred.

Large scale use of wildcard certificates: Some of the
clusters we’ve seen are re-using a private key where the public
key is in an X.509 wildcard certificate that is being used on
many hosts. There seem to be at least two different cases here:
a) where the hostnames covered by the wildcard all seem to
relate to one organisation and b) where the hostnames seem
to map to many different organisations, e.g. hostnames of the
form of ”[customer].example.com” – in the latter case, key
re-use may be more risky, if the different customers are not
expected to be mutually trusting.

Mega-SANs: Cluster 46 (with 12 hosts) in the PT-20180403
run has a certificate with 1,577 SANs for port 443. While that
particular key does not appear to be re-used on other hosts,
other (mail related) keys on that host are. That seems like quite
a concentration of risk.

Cross-Border Clusters:
More investigation of the clusters shown in Figure 10 is

needed. It seems fairly sure (but not yet fully-confirmed) that
software-related issues are more likely to give rise to such

11https://technodrone.blogspot.ie/2013/01/the-ssh-key-problem-with-cloned-linux.
html



16

overlaps, whereas many configuration related issues are more
likely to give rise to clusters that don’t cross borders or ASes
so much. For example, clusters 464, 462 and 227 each give a
very strong impression of being caused by products that ship
with default keys - it is hard to envisage how key re-use across
so many ASes and locales could happen otherwise, and each
of those clusters prominentely mentions a well-known vendor
name.

C. De-Clustering

If one considers these clusters undesirable, then the question
arises as to how one might migrate away from large clusters.
In this section we suggest ways in which administrators might
move away from key re-use.

Measurement: If the adage “you can’t manage what you
don’t measure” is considered to have some validity, then
presumably a first step in de-clustering could be to monitor
for the existence of key re-use. Systems administratation and
monitoring tools could relatively easily integrate the kind
of key re-use detection described here, and thereby enable
administrators to decide to take action (or not) when they see
unexpected re-use.

Regular Key Rotation: The most basic way to avoid being
a part of one of these clusters is likely to be to simply rotate
all cryptographic keys at some frequency that is acceptable for
the application context. This can of course cause problems if
e.g. hashes of keys have been stored in applications. However,
not rotating keys brings with it the significant risk that e.g.
former employees may continue to have access to systems in
contravention of local policy, so the pain is likely worthwhile.

Use a PKI that encourages key rotation: As previously
pointed out, the combination of certbot and LetsEncrypt results
in keys being changed every few months, so setting up cron
jobs on each host to renew certificates in that manner with
LetsEncrypt or some other Certification Authority (CA) will
remove re-uses fairly quickly. Note that this can as easily be
done for certificates used for mail as for the web and this
could go a long way to de-clustering generally. There may
be a perceived downside to doing this as the certificates will
likely end up in Certificate Transparency logs, however, the
fact that scans such as ours can in any case see those keys
and detect key re-use seems to imply that that is not a very
convincing argument.

SSH Client Notification: Whether or not having SSH
clients warn about the re-use of host keys would be an effective
improvement is something that could be tested with systems
administrators. In principle, SSH clients could warn a user that
the same host key has been seen for multiple entries in the
“known hosts” file.

VIII. FUTURE WORK

Talk to Asset Owners: The author has begun discussing
these results with local (Irish) asset-holders and will be
updating this as events warrant. But there are clearly plenty
of clusters to go around, and also different locales so repli-
cation of this work would be interesting, both to validate
(or falsify!) these results, but also (in the former case) to

investigate whether some common local approaches to de-
clustering emerge in different locales.

Efficiency: Whilst it isn’t a problem that these scans take
days, as the underlying data is unlikely to change quickly, it
would nonetheless be better to improve the efficiency of the
tools so they could be run on even more modest machines. At
present they are fairly memory intensive and slow in parts -
use of a database would likely be a significant improvement.

Infrastructure: Building a relatively modest server, with
modest storage (a few terabytes) and excellent bandwidth
would also speed up the scans. The author plans to investigate
such infrastructure locally in Ireland and would be happy to
help anyone else who wanted to do that instead, or as well, in
some other locale.

Other Populations: The populations scanned to date are
geographically bounded and all run SMTP listeners. It would
also be interesting to scan sets of related hosts, e.g. belonging
to the same sector or making use of the same technologies. The
scanning tools used here could also be used within enterprise
networks to check internal and externally visible hosts.

Check the rest of the Internet: While the local clusters are
interesting, it seems like an obvious extension to check if keys
being re-used locally are also used elsewhere. Starting from
locally detected clusters may be a useful way to approach that
at Internet-scale.

Check in CT: We have not, but could, check for additional
information based on searching Certificate Transparency (CT)
logs [26], for example the crt.sh12 web interface offered by
Commodo does allow searching based on the TLS fingerprints
we find. We have not (yet) done the work to develop an
application to use a CT API for the populations we have
scanned, but have verified that at least some of our fingerprints
do occur in CT logs.

Slowly doing more runs: Another obvious thing to do is
to run this for other locales, and to extend to other geographic
scopes, e.g. city or regional scale.

IPv6: Investigating the IPv6 addresses associated with the
names detected here could also be of interest, if it extends any
of the clusters. (Generic IPv6 scanning is of course of interest
but not as a specific extension of this work.)

Mitigations and Incentives: Whilst discussing with asset-
holders, it will be interesting to investigate better mitigations
and the incentives that might motivate administrators to do
better in this space. For the former, one could speculate that
administrative tools may be making accidental key re-use
too likely and run-time/monitoring tools are presumably not
looking out for key re-uses.

Key Rotation: Even if a host starts out as part of a cluster,
it ought be a normal part of applications using cryptography
to periodically rotate to new key pairs. That should result
in clusters being broken up relatively quickly. TLS server
certificates using the LetsEncrypt (tm) CA and certbot do seem
to default to changing keys during certificate renewal which
is also relatively frequent. If CAs had policies that called
for key rotation, or notified key holders that key re-use has
been detected, that could be a significant help in breaking up

12https://crt.sh/



17

clusters.
Longitudinal Studies Running cron jobs with these scans

over time may produce interesting results in terms of how
clusters form, live and (hopefully) dissipate.

Better Metrics: While the HARK metric is simple and easy
to understand, it does not capture the changes in risk possibly
associated with cluster sizes and density. It could be interesting
to investigate whether metrics used for other clusters of risk
(e.g. health related metrics) might be more meaningful. And
of course, determining whether or not any metric related to
these clusters is useful in reducing risk would be a fine thing.

IX. CONCLUSION

The HARK numbers were a surprise to the author. One
conclusion is that doing measurement is a good, perhaps
especially when researchers first dip a toe in these waters
with a background that others haven’t previously brought to
the space. The clusters seen here do seem to indicate some
failings in key management, possibly due to a mixture of
technology limitations and operators still being less familiar
with managing keys at scale.

In the end though - rotate the keys!

ACKNOWLEDGEMENTS

Initial data on which this survey was built was made
available at no cost by Censys.io. Thanks for that. Thanks
to all those who attended the September 2017, “responsible”
workshop13, the discussion at which provided the inspiration
for this work. Thanks to: David Malone for help with un-
derstanding some clusters; Mike Bishop for the point about
HSMs remote from the rack. Thanks also to the asset-holders
who co-operated in finding reasons for these results, but who
would prefer to remain anonymous.

REFERENCES

[1] T. Dierks and E. Rescorla, “The Transport Layer Security (TLS)
Protocol Version 1.2,” RFC 5246 (Proposed Standard), RFC Editor,
Fremont, CA, USA, pp. 1–104, Aug. 2008, updated by RFCs 5746,
5878, 6176, 7465, 7507, 7568, 7627, 7685, 7905, 7919. [Online].
Available: https://www.rfc-editor.org/rfc/rfc5246.txt

[2] A. P. Felt, R. Barnes, A. King, C. Palmer, C. Bentzel, and P. Tabriz,
“Measuring https adoption on the web,” in 26th USENIX Security
Symposium, 2017, pp. 1323–1338.

[3] J. Amann, O. Gasser, Q. Scheitle, L. Brent, G. Carle, and R. Holz,
“Mission accomplished?: Https security after diginotar,” in Proceedings
of the 2017 Internet Measurement Conference. ACM, 2017, pp. 325–
340.

[4] T. Ylonen and C. Lonvick (Ed.), “The Secure Shell (SSH) Transport
Layer Protocol,” RFC 4253 (Proposed Standard), RFC Editor, Fremont,
CA, USA, pp. 1–32, Jan. 2006, updated by RFCs 6668, 8268, 8308,
8332. [Online]. Available: https://www.rfc-editor.org/rfc/rfc4253.txt

[5] M. R. Albrecht, J. P. Degabriele, T. B. Hansen, and K. G. Paterson, “A
surfeit of ssh cipher suites,” in Proceedings of the 2016 ACM SIGSAC
Conference on Computer and Communications Security. ACM, 2016,
pp. 1480–1491.

[6] S. Farrell and H. Tschofenig, “Pervasive Monitoring Is an Attack,”
RFC 7258 (Best Current Practice), RFC Editor, Fremont, CA, USA,
pp. 1–6, May 2014. [Online]. Available: https://www.rfc-editor.org/rfc/
rfc7258.txt

[7] S. Farrell, “Why pervasive monitoring is bad,” IEEE Internet Computing,
vol. 18, no. 4, pp. 4–7, 2014.

13 https://responsible.ie/

[8] V. Dukhovni, “Opportunistic Security: Some Protection Most of the
Time,” RFC 7435 (Informational), RFC Editor, Fremont, CA, USA,
pp. 1–11, Dec. 2014. [Online]. Available: https://www.rfc-editor.org/
rfc/rfc7435.txt

[9] D. Eastlake 3rd, “Transport Layer Security (TLS) Extensions:
Extension Definitions,” RFC 6066 (Proposed Standard), RFC Editor,
Fremont, CA, USA, pp. 1–25, Jan. 2011. [Online]. Available:
https://www.rfc-editor.org/rfc/rfc6066.txt

[10] D. Margolis, M. Risher, B. Ramakrishnan, A. Brotman, and
J. Jones, “SMTP MTA Strict Transport Security (MTA-STS),”
Internet Engineering Task Force, Internet-Draft draft-ietf-uta-mta-
sts-15, Apr. 2018, work in progress. [Online]. Available: http:
//tools.ietf.org/html/draft-ietf-uta-mta-sts-15

[11] M. Nottingham, P. McManus, and J. Reschke, “HTTP Alternative
Services,” RFC 7838 (Proposed Standard), RFC Editor, Fremont, CA,
USA, pp. 1–20, Apr. 2016. [Online]. Available: https://www.rfc-editor.
org/rfc/rfc7838.txt

[12] M. Nottingham and E. Nygren, “The ORIGIN HTTP/2 Frame,” RFC
8336 (Proposed Standard), RFC Editor, Fremont, CA, USA, pp. 1–11,
Mar. 2018. [Online]. Available: https://www.rfc-editor.org/rfc/rfc8336.
txt

[13] M. Bishop, N. Sullivan, and M. Thomson, “Secondary
Certificate Authentication in HTTP/2,” Internet Engineering
Task Force, Internet-Draft draft-ietf-httpbis-http2-secondary-certs-
00, Dec. 2017, work in progress. [Online]. Available:
http://tools.ietf.org/html/draft-ietf-httpbis-http2-secondary-certs-00

[14] H. Bck, J. Somorovsky, and C. Young, “Return of bleichenbacher’s
oracle threat (robot),” Cryptology ePrint Archive, Report 2017/1189,
2017, https://eprint.iacr.org/2017/1189.

[15] D. Cooper, S. Santesson, S. Farrell, S. Boeyen, R. Housley, and W. Polk,
“Internet X.509 Public Key Infrastructure Certificate and Certificate
Revocation List (CRL) Profile,” RFC 5280 (Proposed Standard), RFC
Editor, Fremont, CA, USA, pp. 1–151, May 2008, updated by RFC
6818. [Online]. Available: https://www.rfc-editor.org/rfc/rfc5280.txt

[16] J. Klensin, “Simple Mail Transfer Protocol,” RFC 5321 (Draft Standard),
RFC Editor, Fremont, CA, USA, pp. 1–95, Oct. 2008, updated by RFC
7504. [Online]. Available: https://www.rfc-editor.org/rfc/rfc5321.txt

[17] Z. Durumeric, D. Adrian, A. Mirian, M. Bailey, and J. A. Halderman,
“A search engine backed by internet-wide scanning,” in Proceedings of
the 22nd ACM SIGSAC Conference on Computer and Communications
Security. ACM, 2015, pp. 542–553.

[18] Z. Durumeric, E. Wustrow, and J. A. Halderman, “Zmap: Fast internet-
wide scanning and its security applications.” in Usenix Security, 2013,
pp. 605–620.

[19] E. Gansner, E. Koutsofios, and S. North, “Drawing graphs with dot,”
2006.

[20] D. Eastlake 3rd and T. Hansen, “US Secure Hash Algorithms (SHA
and SHA-based HMAC and HKDF),” RFC 6234 (Informational), RFC
Editor, Fremont, CA, USA, pp. 1–127, May 2011. [Online]. Available:
https://www.rfc-editor.org/rfc/rfc6234.txt

[21] N. Heninger, Z. Durumeric, E. Wustrow, and J. A. Halderman, “Mining
your ps and qs: Detection of widespread weak keys in network devices.”
in USENIX Security Symposium, vol. 8, 2012, p. 1.

[22] L. Valenta, D. Adrian, A. Sanso, S. Cohney, J. Fried, M. Hastings,
J. A. Halderman, and N. Heninger, “Measuring small subgroup attacks
against diffie-hellman.” IACR Cryptology ePrint Archive, vol. 2016, p.
995, 2016.

[23] M. Hastings, J. Fried, and N. Heninger, “Weak keys remain widespread
in network devices,” in Proceedings of the 2016 Internet Measurement
Conference. ACM, 2016, pp. 49–63.

[24] Z. Durumeric, D. Adrian, A. Mirian, J. Kasten, E. Bursztein,
N. Lidzborski, K. Thomas, V. Eranti, M. Bailey, and J. A. Halderman,
“Neither snow nor rain nor mitm...: An empirical analysis of email
delivery security,” in Proceedings of the 2015 Internet Measurement
Conference. ACM, 2015, pp. 27–39.

[25] R. Holz, J. Amann, O. Mehani, M. Wachs, and M. A. Kaafar, “Tls in
the wild: An internet-wide analysis of tls-based protocols for electronic
communication,” arXiv preprint arXiv:1511.00341, 2015.

[26] B. Laurie, A. Langley, and E. Kasper, “Certificate Transparency,” RFC
6962 (Experimental), RFC Editor, Fremont, CA, USA, pp. 1–27, Jun.
2013. [Online]. Available: https://www.rfc-editor.org/rfc/rfc6962.txt



18

Stephen Farrell is a research fellow at Trinity
College Dublin, from which he received his PhD
in 2008. His research interests include security and
privacy and communication in unusual and stressed
environments. Between 2011 and 2017, Stephen was
Internet Engineering Task Force (IETF) security area
director. Stephen is a senior technical advisor for
M3AAWG and a co-founder of Tolerant Networks
Limited.


