
21 - Bringing Down the Complexity:
Fast Composable Protocols for

Card Games Without Secret State

Bernardo David1?, Rafael Dowsley23??, and Mario Larangeira1?

1 Tokyo Institute of Technology, Japan
{bernardo,mario}@c.titech.ac.jp

2 Aarhus University, Denmark
rafael@cs.au.dk

3 IOHK, Hong Kong

Abstract. While many cryptographic protocols for card games have
been proposed, all of them focus on card games where players have some
state that must be kept secret from each other, e.g closed cards and
bluffs in Poker. This scenario poses many interesting technical challenges,
which are addressed with cryptographic tools that introduce significant
computational and communication overheads (e.g. zero-knowledge proofs).
In this paper, we consider the case of games that do not require any secret
state to be maintained (e.g. Blackjack and Baccarat). Basically, in these
games, cards are chosen at random and then publicly advertised, allow-
ing for players to publicly announce their actions (before or after cards
are known). We show that protocols for such games can be built from
very lightweight primitives such as digital signatures and canonical ran-
dom oracle commitments, yielding constructions that far outperform all
known card game protocols in terms of communication, computational
and round complexities. Moreover, in constructing highly efficient proto-
cols, we introduce a new technique based on verifiable random functions
for extending coin tossing, which is at the core of our constructions. Be-
sides ensuring that the games are played correctly, our protocols support
financial rewards and penalties enforcement, guaranteeing that winners
receive their rewards and that cheaters get financially penalized. In or-
der to do so, we build on blockchain-based techniques that leverage the
power of stateful smart contracts to ensure fair protocol execution.

1 Introduction

Cryptographic protocols for securely playing card games among mutually dis-
trustful parties have been investigated since the seminal work of Rivest, Shamir

? This work was supported by the Input Output Cryptocurrency Collaborative Re-
search Chair, which has received funding from Input Output HK.

?? This project has received funding from the European research Council (ERC) under
the European Unions’s Horizon 2020 research and innovation programme (grant
agreement No 669255).

and Adleman [23] in the late 1970s, which initiated a long line of research [14,
15, 21, 3, 27, 26, 12, 22, 25, 24, 20, 5, 16, 17]. Not surprisingly, all of these
previous works have focused on obtaining protocols suitable for implementing a
game of Poker, which poses several interesting technical challenges. Intuitively,
in order to protect a player’s “poker face” and allow him to bluff, all of his cards
might need to be kept private throughout (and even after) protocol execution.
In previous works, ensuring this level of privacy required several powerful but
expensive cryptographic techniques, such as the use of zero-knowledge proofs
and threshold cryptography. However, not all popular card games require a se-
cret state (e.g. private cards) to be maintained, which is the case of the popular
games of Blackjack (or 21) and Baccarat. In this work, we investigate how to
exploit this fundamental difference to construct protocols specifically for games
without secret state that achieve higher efficiency than those for Poker.

Games Without Secret State: In games such as Baccarat and Blackjack, no
card is privately kept by any player at any time. Basically, in such games, cards
from a shuffled deck of closed cards (whose values are unknown to all players)
are publicly opened, having their value revealed to all players. We say these are
games without secret state, since no player possesses any secret state (i.e. private
cards) at any point in the game, as opposed to games such as Poker, where the
goal of the game is to leverage private knowledge of one’s card’s values to choose
the best strategy. An immediate consequence of this crucial difference is that
the heavy cryptographic machinery used to guarantee the secrecy and integrity
of privately held cards can be eliminated, facilitating the construction of highly
efficient card game protocols.

Security Definitions: Even though protocol for secure card games (and spe-
cially Poker) have been investigated for several decades, formal security defini-
tions have only been introduced very recently in Kaleidoscope [16] (for the case
of Poker protocols) and Royale [17] (for the case of protocols for general card
games). The lack of formal security definitions in previous works has not only
made their security guarantees unclear but resulted in concrete security issues,
such as the ones in [27, 26, 3, 12], as pointed out in [22, 16]. Hence, it is impor-
tant to provide security definitions that capture the class of protocols for card
games without secret state. Adapting the approach of Royale [17] for defining
security of protocols for general card games with secret state in the Universal
Composability framework of [8] is a promising direction to tackle this problem.
Besides clearly describing the security guarantees of a given protocol, a secu-
rity definition following the approach of Royale also ensures that protocols are
composable, meaning that they can be securely used concurrently with copies of
themselves or other protocols.

Enforcing Financial Rewards and Punishment: One of the main issues in
previous protocols for card games is ensuring that winners receive their rewards

2

while preventing cheaters to keep the protocol from reaching an outcome. This
problem was recently solved by Andrychowicz et al. [2, 1] through an approach
based on decentralized cryptocurrencies and blockchain protocols. They con-
struct a mechanism that ensures that honest players receive financial rewards
and financially punishes cheaters (who abort the protocol or provide invalid
messages). The main idea is to have all players provide deposits of betting and
collateral funds, forfeiting their collateral funds if they are found to be cheat-
ing. A cheater’s collateral funds are then used to compensate honest players.
Their general approach has been subsequently improved and applied to poker
protocols by Kumaresan et al. [20] and Bentov et al. [5]. However, protocols
for Poker (resp., for general card games) using this approach have only been
formally analysed in Kaleidoscope [16] (resp., Royale [17]), where fine tuned
checkpoint witnesses of correct protocol execution are also proposed as means of
improving the efficiency of the mechanism for enforcing rewards/penalties. Such
an approach can be carried over to the case of games without secret state.

1.1 Our Contributions

We introduce a general model for reasoning about the composable security of
protocols for games without secret state and a protocol that realizes our secu-
rity definitions with support to financial rewards/penalties. We also introduce
optimizations of our original protocol that achieve better round and communi-
cation complexities at the expense of a cheap preprocessing phase (in either the
Check-in or Create Shuffled Deck procedures). Our protocols do not require ex-
pensive card shuffling operations that rely on zero-knowledge proofs, achieving
much higher concrete efficiency than all previous works that support card games
with secret state (e.g. Poker). Our contributions are summarized below:

– The first ideal functionality for general card games without secret state: FCG.
– An analysis showing that that Baccarat and Blackjack can be implemented

by our general protocol ,i.e. in the FCG-hybrid model (Sections 3.2 and 3.3).
– A highly efficient protocol πCG for card games which realizes FCG along with

optimized Protocols πCG−PRE and πCG−VRF (Theorems 1, 2 and 3).
– A novel technique for coin tossing “extension” based on verifiable random

functions (VRF) that is of independent interest (Section 5.2).

We start by defining FCG, an ideal functionality that captures only games
without secret state, which is adapted from the functionality for general card
games with secret state proposed in Royale [17]. In order to show that such a re-
stricted functionality still finds interesting applications, we show that the games
of Blackjack and Baccarat can be implemented by FCG. Leveraging the fact the
FCG only captures games without secret state, we construct protocols that rely
on cheap primitives such as digital signatures and canonical random oracle based
commitments, as opposed to the heavy zero knowledge and threshold cryptog-
raphy machinery employed in previous works. Most notably, our approach elim-
inates the need for expensive card shuffling procedure relying on zero-knowledge

3

proofs of shuffle correctness. In fact, no card shuffling procedure is needed in
Protocol πCG and Protocol πCG−VRF, where card values are selected on the fly
during the Open Card procedure. Our basic protocol πCG simply selects the
value of each (publicly) opened card from a set of card values using randomness
obtained by a simple commit-and-open coin tossing, which requires two rounds.
Later we show that we perform the Open Card operation in one sigle round
given a cheap preprocessing phase. In order to perform this optimization, we
introduce a new technique that allows for a single coin tossing performed during
the Check-in procedure to be later “extended” in a single round with the help
of a verifiable random function, obtaining fresh randomness for each Open Card
operation.

1.2 Related Works

Our results are most closely relate to Royale [17], the currently most efficient
protocol for general card games with secret state, which employs a mechanism for
enforcing financial rewards and penalties following the stateful contract approach
of Bentov et al. [5]. In our work, we restrict the model of Royale to capture only
games without secret state but maintain the same approach for rewards/penal-
ties enforcement based on stateful contracts. As an advantage of restricting our
model to this specific class of games, we eliminate the need for expensive card
suffling procedures while constructing very cheap Open Card procedures. More-
over, we are able to construct protocols that only require digital signatures and
simple random oracle based commitments (as well as VRFs for one of our opti-
mizations), achieving much higher efficiency than Royale, as shown in Section 6.
Due to significant improvements in communication complexity, our protocols en-
joy much better efficiency for the recovery phase than Royale, since we employ
the same compact checkpoint witnesses but the protocol messages that must be
sent to the stateful contract (i.e. posted on a blockchain) are much shorter than
those of Royale.

2 Preliminaries

In this section we introduce the notation and definitions that will be used
throughout the paper. We denote the security parameter by κ. For a random-

ized algorithm F , y
$← F (x) denotes running F with input x and its random

coins, obtaining an output y. If we need to specify the coins r, we will use the
notation y ← F (x; r). We denote sampling an element x uniformly at random

from a set X by x
$← X . For a distribution Y, we denote sampling y according

to the distribution Y by y
$← Y. We say that a function f is negligible in n if for

every positive polynomial p there exists a constant c such that f(n) < 1
p(n) when

n > c. We denote by negl(κ) the set of negligible functions in κ. Two ensembles
X = {Xκ,z}κ∈N,z∈{0,1}∗ and Y = {Yκ,z}κ∈N,z∈{0,1}∗ of binary random variables
are said to be statistically indistinguishable, denoted by X ≈s Y , if for all z it

4

holds that | Pr[D(Xκ,z) = 1]−Pr[D(Yκ,z) = 1] | is negligible in κ for every prob-
abilistic distinguisher D. In case this only holds for non-uniform probabilistic
polynomial-time (PPT) distinguishers we say that X and Y are computationally
indistinguishable and denote it by X ≈c Y .

2.1 Universal Composability

We prove our protocols secure in the Universal Composability (UC) framework
introduced by Canetti in [8]. In this section, we present a brief description of
the UC framework originally given in [11] and refer interested readers to [8] for
further details. In this framework, protocol security is analyzed under the real-
world/ideal-world paradigm, i.e., by comparing the real world execution of a
protocol with an ideal world interaction with the primitive that it implements.
The model includes a composition theorem, that basically states that UC se-
cure protocols can be arbitrarily composed with each other without any security
compromises. This desirable property not only allows UC secure protocols to
effectively serve as building blocks for complex applications but also guaran-
tees security in practical environments, where several protocols (or individual
instances of protocols) are executed in parallel, such as the Internet.

The UC framework gives that the entities involved in both the real and ideal
world executions are modeled as PPT Interactive Turing Machines (ITM) that
receive and deliver messages through their input and output tapes, respectively.
In the ideal world execution, dummy parties (possibly controlled by an ideal
adversary S referred to as the simulator) interact directly with the ideal func-
tionality F , which works as a trusted third party that computes the desired
primitive. In the real world execution, several parties (possibly corrupted by a
real world adversary A) interact with each other by means of a protocol π that
realizes the ideal functionality. The real and ideal executions are controlled by
the environment Z, an entity that delivers inputs and reads the outputs of the
individual parties, the adversary A and the simulator S. After a real or ideal
execution, Z outputs a bit, which is considered as the output of the execution.
The rationale behind this framework lies in showing that the environment Z
(that represents everything that happens outside of the protocol execution) is
not able to efficiently distinguish between the real and ideal executions, thus
implying that the real world protocol is as secure as the ideal functionality.

We denote by REALπ,A,Z(κ, z, r̄) the output of the environment Z in the real-
world execution of a protocol π between n parties with an adversary A under
security parameter κ, input z and randomness r̄ = (rZ , rA, rP1

, . . . , rPn
), where

(z, rZ), rA and rPi
are respectively related to Z, A and party i. Analogously,

we denote by IDEALF,S,Z(κ, z, r̄) the output of the environment in the ideal
interaction between the simulator S and the ideal functionality F under security
parameter κ, input z and randomness r̄ = (rZ , rS , rF), where (z, rZ), rS and
rF are respectively related to Z, S and F . The real world execution and the
ideal executions are respectively represented by the ensembles REALπ,A,Z =
{REALπ,A,Z(κ, z, r̄)}κ∈N and IDEALF,S,Z = {IDEALF,S,Z(κ, z, r̄)}κ∈N with z ∈
{0, 1}∗ and a uniformly chosen r̄.

5

The UC framework also considers the G-hybrid world, where the computa-
tion proceeds as in the real-world with the additional assumption that the parties
have access to an auxiliary ideal functionality G. In this model, honest parties
do not communicate with the ideal functionality directly, instead the adversary
delivers all the messages to and from the ideal functionality. We consider the
communication channels to be ideally authenticated, so that the adversary may
read but not modify these messages. Unlike messages exchanged between parties,
which can be read by the adversary, the messages exchanged between parties and
the ideal functionality are divided into a public header and a private header. The
public header can be read by the adversary and contains non-sensitive informa-
tion (such as session identifiers, type of message, sender and receiver). Whereas
the private header cannot be read by the adversary and contains information
such as the parties’ private inputs. We denote the ensemble of environment out-
puts the execution of a protocol π in a G-hybrid model as HYBRIDGπ,A,Z (defined
analogously to REALπ,A,Z). UC security is then formally defined as:

Definition 1. An n-party (n ∈ N) protocol π is said to UC-realize an ideal
functionality F in the G-hybrid model if, for every adversary A, there exists a
simulator S such that, for every environment Z, the following relation holds:
IDEALF,S,Z ≈c HYBRIDGπ,A,Z .

Adversarial Model: Our protocols are secure against static malicious adversaries,
who can arbitrarily deviate from the protocol but must corrupt parties before
execution starts, having the corrupted (or honest) parties remain so throughout
the execution.

Setup Assumptions: It is a well-known fact that UC-secure two-party and mul-
tiparty protocols for non trivial functionalities require a setup assumption [10].
The main setup assumption for our protocols is random oracle model [4], which
can be modelled in the UC framework by giving parties access to a random
oracle functionality FRO, which is defined in Figure 2. Moreover, in order to
obtain a generic and modular construction, we will write our protocols in terms
of a digital signature functionality FDSIG (defined in Figure 3), a verifiable ran-
dom function functionality FVRF (defined in Figure 1 and discussed below) and
a smart contract functionality (defined in Section 2.2). In Figure 3, we present
functionality FDSIG as defined in [9], where it is shown that any EUF-CMA signa-
ture scheme realizes FDSIG. Notice that this fact implies that our protocols can
be realized based on practical digital signature schemes such as ECDSA.

Verifiable Random Functions: Verifiable random functions (VRF) are a key in-
gredient of one of our optimized protocols. In order to provide a modular con-
struction in the UC framework, we model VRFs as an ideal functionality FVRF

that captures the main security guarantees for VRFs, which are usually modeled
in game based definitions. In Figure 1, we present functionality FVRF as defined
in [18]. While a VRF achieving the standard VRF security definition or even the

6

Functionality FVRF.

FVRF interacts with parties P1, . . . ,Pn as follows:
– Key Generation. Upon receiving a message (KeyGen, sid) from a

party Pi, hand (KeyGen, sid,Pi) to the adversary. Upon receiving
(Verification Key, sid,Pi,VRF.vk) from the adversary, if Pi is honest,
verify that VRF.vk is unique, record the pair (Pi,VRF.vk) and return
(Verification Key, sid,VRF.vk) to Pi. Initialize the table T (VRF.vk, ·) to
empty.

– Malicious Key Generation. Upon receiving a message
(KeyGen, sid,VRF.vk) from S, verify that VRF.vk has not being recorded
before; in this case initialize table T (VRF.vk, ·) to empty and record the pair
(S,VRF.vk).

– VRF Evaluation. Upon receiving a message (Eval, sid,m) from Pi, verify
that some pair (Pi,VRF.vk) is recorded. If not, then ignore the request. Then,
if the value T (VRF.vk,m) is undefined, pick a random value y from {0, 1}`VRF
and set T (VRF.vk,m) = (y, ∅). Then output (Evaluated, sid, y) to Pi, where
y is such that T (VRF.vk,m) = (y, S) for some S.

– VRF Evaluation and Proof. Upon receiving a message (EvalProve, sid,m)
from Pi, verify that some pair (Pi,VRF.vk) is recorded. If not, then ignore the
request. Else, send (EvalProve, sid,Pi,m) to the adversary. Upon receiving
(Eval, sid,m, π) from the adversary, if value T (VRF.vk,m) is undefined, verify
that π is unique, pick a random value y from {0, 1}`VRF and set T (VRF.vk,m) =
(y, {π}). Else, if T (VRF.vk,m) = (y, S), set T (VRF.vk,m) = (y, S ∪ {π}). In
any case, output (Evaluated, sid, y, π) to Pi.

– Malicious VRF Evaluation. Upon receiving a message
(Eval, sid,VRF.vk,m) from S for some VRF.vk, do the following. First,
if (S,VRF.vk) is recorded and T (VRF.vk,m) is undefined, then choose a
random value y from {0, 1}`VRF and set T (VRF.vk,m) = (y, ∅). Then, if
T (VRF.vk,m) = (y, S) for some S 6= ∅, output (Evaluated, sid, y) to S, else
ignore the request.

– Verification. Upon receiving a message (Verify, sid,m, y, π,VRF.vk′) from
some party P , send (Verify, sid,m, y, π,VRF.vk′) to the adversary. Upon re-
ceiving (Verified, sid,m, y, π,VRF.vk′) from the adversary do:
1. If VRF.vk′ = VRF.vk for some (Pi,VRF.vk) and the entry T (VRF.vk,m)

equals (y, S) with π ∈ S, then set f = 1.
2. Else, if VRF.vk′ = VRF.vk for some (Pi,VRF.vk), but no entry

T (VRF.vk,m) of the form (y, {. . . , π, . . .}) is recorded, then set f = 0.
3. Else, initialize the table T (VRF.vk′, ·) to empty, and set f = 0.

Output (Verified, sid,m, y, π, f) to P .

Fig. 1. Functionality FVRF.

simulatable VRF notion of [13] is not sufficient to realize FVRF, it has been shown
in [18] that this functionality can be realized in the random oracle model under
the CDH assumption by a scheme based on the 2-Hash-DH verifiable oblivious
pseudorandom function construction of [19].

7

Functionality FRO

FRO is parameterized by a range D. FRO keeps a list L of pairs of values, which is
initially empty, and proceeds as follows:

– Upon receiving a value (sid,m) from a party Pi or from S, if there is a pair

(m, ĥ) in the list L, set h = ĥ. Otherwise, choose h
$← D and store the pair

(m,h) in L. Reply to the activating machine with (sid, h).

Fig. 2. Functionality FRO for the random oracle.

Functionality FDSIG

Given ideal adversary S, parties P1, . . . , Pn and a signer Ps, FDSIG performs:

– Key Generation Upon receiving a message (keygen, sid) from
some party Ps, verify that sid = (Ps, sid

′) for some sid′. If not,
then ignore the request. Else, hand (keygen, sid) to the adversary
S. Upon receiving (verification key, sid, SIG.vk) from S, output
(verification key, sid, SIG.vk) to Ps, and record the pair (Ps, SIG.vk).

– Signature Generation Upon receiving a message (sign, sid,m) from Ps, ver-
ify that sid = (Ps, sid

′) for some sid′ . If not, then ignore the request. Else,
send (sign, sid,m) to S. Upon receiving (signature, sid,m, σ) from S, verify
that no entry (m,σ,SIG.vk, 0) is recorded. If it is, then output an error message
to Ps and halt. Else, output (signature, sid,m, σ) to Ps, and record the entry
(m,σ,SIG.vk, 1).

– Signature Verification Upon receiving a message (verify, sid,m, σ,SIG.vk′)
from some party Pi, hand (verify, sid,m, σ,SIG.vk′) to S. Upon receiving
(verified, sid,m, φ) from S do:
1. If SIG.vk′ = SIG.vk and the entry (m,σ,SIG.vk, 1) is recorded, then set

f = 1. (This condition guarantees completeness: If the verification key
SIG.vk′ is the registered one and σ is a legitimately generated signature for
m, then the verification succeeds.)

2. Else, if SIG.vk′ = SIG.vk, the signer Ps is not corrupted, and no entry
(m,σ′, SIG.vk, 1) for any σ′ is recorded, then set f = 0 and record the entry
(m,σ,SIG.vk, 0). (This condition guarantees unforgeability: If SIG.vk′ is the
registered one, the signer is not corrupted, and never signed m, then the
verification fails.)

3. Else, if there is an entry (m,σ, SIG.vk′, f ′) recorded, then let f = f ′. (This
condition guarantees consistency: All verification requests with identical
parameters will result in the same answer.)

4. Else, let f = φ and record the entry (m,σ,SIG.vk′, φ).
Output (verified, sid,m, f) to Pi.

Fig. 3. Functionality FDSIG for digital signature.

8

Functionality FSC

The functionality is executed with players P1, . . . ,Pn and is parametrized by a
timeout limit τ , and the values of the initial stake t, the compensation q and the
security deposit d ≥ (n − 1)q. There is an embedded program GR that represents
the game’s rules and a protocol verification mechanism pv.

Players Check-in: When execution starts, FSC waits to receive from each
player Pi the message (checkin, sid,Pi, coins(d + t),SIG.vki) containing the nec-
essary coins and its signature verification key. Record the values and send
(checkedin, sid,Pi,SIG.vki) to all players. If some player fails to check-in within
the timeout limit τ or if a message (checkin-fail, sid) is received from any player,
then send (compensation, coins(d+ t)) to all players who checked in and halt.

Player Check-out: Upon receiving (checkout-init, sid,Pj) from Pj , send
(checkout-init, sid,Pj) to all players. Upon receiving (checkout, sid,
Pj , payout, σ1, . . . , σn) from Pj , verify that σ1, . . . , σn are valid signatures by
the players P1, . . . ,Pn on (CHECKOUT|payout) for the payout vector with respect to
FDSIG. If all tests succeed, for i = 1, . . . , n, send (payout, sid,Pi, coins(w)) to Pi,
where w = payout[i] + d, and halt.

Recovery: Upon receiving a recovery request (recovery, sid) from a player
Pi, send the message (request, sid) to all players. Upon getting a message
(response, sid,Pj ,Checkpointj , procj) from some player Pj with checkpoint wit-
nesses (which are not necessarily relative to the same checkpoint as the ones received
from other players) and witnesses for the current procedure; or an acknowledge-
ment of the witnesses previous submitted by another player, forward this message
to the other players. Upon receiving replies from all players or reaching the timeout
limit τ , fix the current procedure by picking the most recent checkpoint that has
valid witnesses (i.e. the most recent checkpoint witness signed by all players Pi).
Verify the last valid point of the protocol execution using the current procedure’s
witnesses, the rules of the game GR, and pv. If some player Pi misbehaved in the
current phase (by sending an invalid message), then send (compensation, coins(d+
q + balance[j] + bets[j])) to each Pj 6= Pi, send the leftover coins to Pi and halt.
Otherwise, proceed with a mediated execution of the protocol until the next check-
point using the rules of the game GR and pv to determine the course of the actions
and check the validity of the answer. Messages (nxt-stp, sid,Pi, proc, round) are
used to request from player Pi the protocol message for round round of proce-
dure proc according to the game’s rules specified in GR, who answer with messages
(nxt-stp-rsp, sid,Pi, proc, round,msg), where msg is the requested protocol mes-
sage. All messages (nxt-stp, sid, . . .) and (nxt-stp-rsp, sid, . . .) are delivered to
all players. If during this mediated execution a player misbehaves or does not an-
swer within the timeout limit τ , penalize him and compensate the others as above,
and halt. Otherwise send (recovered, sid, proc,Checkpoint), to the parties once
the next checkpoint Checkpoint is reached, where proc is the procedure for which
Checkpoint was generated.

Fig. 4. The stateful contract functionality used by the secure protocol for card games
based on Royale [17].

9

2.2 Stateful Contracts

We employ an ideal functionality FSC that models a stateful contract, following
the approach of Bentov et al. [6]. We use the functionality FSC defined in [17]
and presented in Figure 4. This functionality is used to ensure correct protocol
execution, enforcing rewards distribution for honest parties and penalties for
cheaters. Basically, it provides a “check-in” mechanism for players to deposit
funds for betting and collateral, as well as registering signature verification keys
that will be used throughout the protocol for verifying authenticity of players
messages and generating checkpoint witnesses. After check-in, if a player sus-
pects cheating, it can complain to FSC by requesting the Recovery mechanism
to be activated, during which FSC mediates protocol execution, verifying that
each player generates valid protocol messages. Instead of re-executing the whole
protocol, the Recovery phase of FSC requires the players to provide checkpoint
witnesses proving that the protocol has been correctly executed up to a certain
point, only requiring FSC to mediate protocol execution from that point on. If
any player is found to be cheating, FSC penalizes the cheaters, distributing their
collateral funds among the honest players and finalizing the protocol. Finally,
FSC provides a “Check-out” mechanism, which ensures that players receive their
rewards according to the game outcome.

Implementation of FSC. It is important to emphasize that the FSC function-
ality can be easily implemented via smart contracts over a blockchain, such as
Ethereum [7]. Moreover, our construction (for protocol πCG) requires only simple
operations, i.e. verification of signatures and random oracle outputs. The regular
operation of our protocol is performed entirely off-chain, without intervention
of the contract. However in the event that any problem happen or in the case
that any participant in the game claim problems in the execution, any player
can publish their agreed status of the game in the chain, via short witnesses (to
be detailed in the protocol description).

3 Modeling Card Games Without Secret State

Before presenting our protocols, we must formally define security for card games
without secret state. We depart from the framework introduced in Royale [17]
for modeling general card games (which can include secret state), restricting the
model to the case of card games without secret state. In order to showcase the
applicability of our model to popular games, we further present ideal function-
alities for Blackjack and Baccarat, which can be realized with our general card
game functionality for games without secret state.

3.1 Modeling General Games Without Secret State

We present an ideal functionality FCG for card games without secret state in Fig-
ure 5. Our ideal functionality is heavily based on the FCG for games with secret

10

Functionality FCG

The functionality is executed with players P1, . . . ,Pn and is parameterized by a
timeout limit τ , and the values of the initial stake t, the security deposit d and of
the compensation q. There is an embedded program GR that represents the rules
of the game and is responsible for mediating the execution: it requests actions from
the players, processes their answers, and invokes the procedures of FCG. FCG pro-
vides a check-in procedure that is run in the beginning of the execution, a check-out
procedure that allows a player to leave the game (which is requested by the player
via GR) and a compensation procedure that is invoked by GR if some player misbe-
haves/aborts. It also provides a channel for GR to request public actions from the
players and card operations as described below. GR is also responsible for updating
the vectors balance and bets. Whenever a message is sent to S for confirmation or
action selection, S should answer, but can always answer (abort, sid), in which
case the compensation procedure is executed; this option will not be explicitly
mentioned in the functionality description henceforth.

Check-in: Executed during the initialization, it waits for a check-in message
(checkin, sid, coins(d+ t)) from each Pi and sends (checkedin, sid,Pi) to the re-
maining players and GR. If some player fails to check-in within the timeout limit τ ,
then allow the players that checked-in to dropout and reclaim their coins. Initialize
vectors balance = (t, . . . , t) and bets = (0, . . . , 0).

Check-out: Whenever GR requests the players’s check-out with payouts specified
by vector payout, send (checkout, sid, payout) to S. If S answers (checkout, sid,
payout), send (payout, sid,Pi, coins(d+ payout[i])) to each Pi and halt.

Compensation: This procedure is triggered whenever S answers a request for
confirmation of an action with (abort, sid). Send (compensation, sid, coins(d +
q+ balance[i] + bets[i])) to each active honest player Pi. Send the remaining locked
coins to S and stop the execution.

Request Action: Whenever GR requests an action with description act − desc
from Pi, send a message (action, sid,Pi, act−desc) to the players. Upon receiving
(action-rsp, sid,Pi, act− rsp) from Pi, forward it to all other players and GR.

Create Shuffled Deck: Whenever GR requests the creation of a shuffled deck of
cards containing cards with values v1, . . . , vm, choose the next m free identifiers
id1, . . . , idm, representing cards as pairs (id1, v1), . . . , (idm, vm). Choose a random
permutationΠ that is applied to the values (v1, . . . , vm) to obtain the updated cards
(id1, v

′
1), . . . , (idm, v

′
m) such that (v′1, . . . , v

′
m) = Π(v1, . . . , vm). Send the message

(shuffled, sid, v1, . . . , vm, id1, . . . , idm) to all players and GR.

Open Card: Whenever GR requests to reveal the card (id, v) in public, read the
card (id, v) from the memory and send the message (card, sid, id, v) to S. If S
answers (card, sid, id, v), forward this message to all players and GR.

Fig. 5. Functionality for card games without secret state FCG based on [17].

state presented in Royale [17]. We define a version of FCG that only captures
games without secret state, allowing us to realize it with a lightweight proto-
col. This version has the same structure and procedures as the FCG presented

11

in Royale, except for the procedures that require secret state to be maintained.
Namely, we model game rules with an embedded program GR that encodes the
rules of the game to be implemented. FCG offers mechanisms for GR to specify
the distribution of rewards and financially punish cheaters. Additionally, it offers
a mechanism for GR to communicate with the players in order to request actions
(e.g. bets) and publicly register their answers to such requests. In contrast to
the model of Royale and previous protocols focusing on poker, FCG only offers
two main card operations: shuffling and public opening of cards. Restricting FCG

to these operations captures the fact that only games without secret state can
be instantiated and allows for realizing this functionality with very efficient pro-
tocols. Notice that all actions announced by players are publicly broadcast by
FCG and that players cannot draw closed cards (which might never be revealed
in the game, constituting a secret state). As in Royale, FCG can be extended
with further operations (e.g. randomness generation), incorporating ideal func-
tionalities that model these operations. However, differently from Royale, these
operations cannot rely on the card game keeping a secret state.

3.2 Blackjack and its Formalization

Before detailing our proposed formalization, we briefly review the rules of the
most played version of the Blackjack game. These rules are captured by the rules
GRblackjack to be introduced later in this section.

Game Overview: The game has two types of parties: the dealer and the play-
ers. Before the dealer distributes the cards, the players place their respective
bets. Next, the dealer starts by handing two face up cards to each player in a
pre-established order. The dealer receives only one card, and therefore its hand
is not complete yet. On turns, each player places its action, which can be:

– hit: The player asks for another card from the deck, and he can ask for more
cards until he thinks that it is a good hand;

– stand: The player does not do any action;
– double down: In case a player’s cards combined value is at most 11, the

player can double the bet and get a single card. In that case the player
cannot add more cards to the set;

– split: If there are two card equal cards in the set, the player has the option
to separate the sets and play them independently. The player has to bet the
same amount for the new hand;

– insurance bet: In case the dealer has an Ace as its first card, before the
players’ actions, the dealer gives them an option of betting at most half of
its already bet amount as an insurance for the case the second card is one
with value 10.

Each card has a value associated: the cards from 2 to 10 have their face value,
while the Jacks, Kings and Queens each have value 10. Finally, the Ace card can
be considered 1 or 11 at the player discretion. The combined value of a player’s
cards is referred to as the player’s hand. The goal is to get a hand as close as

12

possible to 21, in other words to obtain a blackjack : the unbeatable hand. Over
this value the player is said to be bust and out of the hand, i.e. looses its bet.
Each player decides how many cards they ask. Note that all the cards are visible
to all players.

Cases for pay-out. The hand is over when a player wins, i.e., player’s hand is
21, or the dealer looses, i.e. the dealer’s cards combined value is over 21. In the
first case, the amount bet by the winner player is doubled by the dealer, while
the dealer collects the bets of all the players whose hand has a value lower than
the dealer cards. Otherwise the dealer also pays the double to other players. In
the case the dealer hits a blackjack, and no other player does it, it collects all the
bets. In the case of paying an insurance bet, it is treated independently of the
main bet. That is, the player looses the latter, but is rewarded with the double
of the former.

Game Rules for Blackjack: We describe the rules GRblackjack for the Blackjack
game in Figures 6 and 7. It captures all the actions and dynamics of the game.

3.3 Baccarat

Before detailing our proposed formalization for the game, we briefly review the
most played version of Baccarat. The actions of the players and dynamics of the
game are captured by the rules GRbaccarat to be introduced later in this section.

Game Overview: Similarly to Blackjack, the cards have values associated
with each one: the numbered cards have their face value, while Kings, Jacks and
Queens have value 0, and finally the Ace card has value of 1. The goal of the
game is to get a hand as close as possible to 9, and the hand value is computed
modulo 10. The game starts by the players deciding their respective bets. As
mentioned earlier the player has the option of betting in the banker’s or player’s
hands, or for a tie. After the bets are placed, the dealer draws, and reveals, two
pairs of cards, respectively, the player and the banker hands. Again, in contrast
to blackjack, the dealer is actually the one who decides to draw an extra card
based on the hands and the players do not decide anything.

Game rules for Baccarat: We describe the game rules GRbaccarat for Baccarat
in Figures 8. Later we show that GRbaccarat is used in FCG. Similarly to the case of
GRblackjack, the game actions that must be taken by each participant are requested
and announced through the action mechanism of FCG, while card openings are
implemented by calling the card opening operation of FCG on the cards specified
by the game rules.

Player’s Hand Actions. First the dealer acts on behalf of the player’s hand.
Values between 1 and 5 will make the dealer draw a third card for the hand. In
the case of 6 or 7 the player’s hand stands, that is, no card is drawn. Furthermore,

13

a natural is the hand of 8 and 9, the highest hands. Such high hand prevents
the banker’s hand to draw an extra card and the comparison is done with the
cards initially drawn.

Game Rules GRblackjack

The rules have parameters for the minimal min and maximum max bet amounts,
the security deposit d, the initial stake t, the compensation amount q, and an upper
limit of sampled cards u. Moreover, the rules keep a counter for drawn cards sampled
initially set for 0. The game is played among n players (P1, . . . ,Pn) and a virtual
dealer Pd whose actions are performed by GRblackjack. GRblackjack creates a shuffled
deck of cards shoe consisting of 6 regular card decks and uses a vector for side bets
sides which are particular to Blackjack.

Betting Round: Keep track of the chronological order of actions.
– Execute a round of bets starting with the closest active successor of the dealer,

by requesting the action pay to each pi, 0 < i ≤ n. Upon receiving the answer
bi from pi increase bets[i] by bi and decrease balance[i] by the same amount.

– For each player that Pi and the dealer Pn open a single card pci,1 for 0 < i ≤ n
and i = d, next, open another round of cards pci,2, but only for 0 < i ≤ n. For
every card sampled, increase sampled by 1.

Action round: Proceed with the ordered sequence of the players, and each one
ends its round of actions by calling the Stand action, unless its cards sum 21 or
above (according to the card values described in Section 3.2). In Pi’s turn, GRblackjack

requests is to indicate its action. The player Pi is expected to answer with one of
the following actions:

– stand: The player does not receive any new card. The next player in the se-
quence is called to act.

– hit: Open a card. After the card is drawn, if the sum of all cards of Pi is
over 21, GRblackjack does not open more cards to the player and sends an action
request to the next player in the sequence. Otherwise, request an action again
to the same player. For every card opened increment by 1 the counter sampled.

– double: if balance[i] − bets[i] < 0, do not accept the action. Otherwise set
bets[i] = 2·bets[i], decrease balance[i] by bets[i], and open new card pc, updating
sampled. Do not accept any more actions, and proceed to the next player.

– split: If pci,1 and pci,2 are of the same type, Pi is allowed to request a split.
In that case, check the following and proceed to the Dealer Action Phase:
• if balance[i] ≥ min, then set an extra slot on vector bets, say bets[i′], and

set bets[i′] = bets[i], and decrease balance by another bet amount, that is
balance[i] = balance[i] − bets[i]. Finally set pci′,1 = pci,2, open two cards
pci′,2 and pci,2 from shoe updating accordingly the the counter sampled.
Proceed as a independent hand, pci′,1, pci′,2 and bets[i′] with respect to
balance balance[i] for Pi;

• if balance[i] < min, Pi is not allowed to split and GRblackjack performs the
Compensation procedure.

Fig. 6. Rules for the Blackjack game (Part 1 of 2).

14

Side bets round: Before the Action round, if pcd,1 is the Ace card, all the
players in sequence are requested to choose if they want to make a single insurance
bet. If the player Pi wants to make the bet it answers with a value bi > 0, otherwise
it answers with 0. In the case of bet, check if b ≤ bets[i]/2 and balance[i] − b > 0,
then update sides[i] = sides[i] + b, and balance[i] = balance[i] − b, and accept the
bet. Otherwise, perform the Compensation procedure.
Dealer Actions: Open a card pcd,2 from shoe for Pd and set sampled = sampled+1.
If pcd,1 and pcd,2 sum 17 or above, no extra card is opened. Otherwise open a new
card pc from shoe, and set sum to the sum of the values associated with pcd,1, pcd,2
and pc.
1. If sum is 17 or above, proceed to the Pay-out phase. Otherwise, Pd has to hit,

then;
2. Sample a new card pc, add the value of it to sum, and go to step 1.

Pay-out: Using bets, and the sum of the opened cards for each player, compare
the outcomes and computes the amount of money that Pi receives or looses for the
following cases, according to the hand and actions:

– Tie: if the Pi’s hand sums the same value of the dealer’s hand, then set
balance[i] = balance[i] + bets[i] (i.e., no payment is done);

– Insurance bet: if pcd,1 is an ace, and pcd,2 is a figure card, set balance[i] =
balance[1] + 2 · sides[i] and balance[d] = balance[d] − sides[i]. Otherwise
balance[d] = balance[d] + sides[i].

– Winner hand: if Pi’s initial cards are a Ace (value 11) and a figure (value 10),
then set the value x = 5

2
. Otherwise, check if Pi has acted with (double, sid),

then set x = 3, if not, then set x = 2. If Pi’s hand is strictly higher than
the dealer’s hand, then set balance[i] = balance[i] + x · bets[i] and balance[d] =
balance[d] − x · bets[i]. If it is strictly lower, then set balance[d] = balance[d] +
bets[i].

Restore the usual size of n for the bets and sides vectors (for the case of n players
still player) and reset them to its initial state. If sampled ≥ u, request a re-shuffle
of the cards, and sampled = 0, otherwise does nothing.

Fig. 7. Rules for the Blackjack game (Part 2 of 2).

Banker’s Hand Actions. Once the actions for the player’s hand are done, the
dealer acts on the banker’s hand, again the decision of drawing an extra card or
not. As mentioned, if the player’s hand has a natural hand, the banker cannot
draw an extra card independently of the current hand value, and the comparison
of the hands are done with the cards that are on the table.

In general the criteria for drawing are based on initial banker’s and player’s
hands, and the third card drawn for the player. More concretely, in the case
that the player’s hand is not a natural and the value of the banker’s hand is 0,
1 or 2, the dealer is requested to draw an extra card. If the hand is worth 7 or
above, the hand stands. The rule for the values in between, that is 3, 4, 5 and
6, depends on the third card drawn for the player’s hand if there is one. For
completeness, the rule is described in Table 1.

15

Game Rules GRbaccarat

The rules have parameters as the minimal min and maximum max bet amounts,
and a upper limit of sampled cards u. Moreover, the rules keep a counter for drawn
cards sampled initially set for 0. The game is played among n players and a single
dealer, respectively (P1, . . . ,Pn,Pd). The rule also assumes the existence of the
n+ 1 and n size vectors for balances and bets respectively, balance, for each player
Pi and Pd, and bets for each Pi only. Furthermore, keep a n-size vector hands,
which is particular to Baccarat, for handi ∈ {player, banker, tie} of each player
Pi. GRbaccarat creates a shuffled deck consisting of 12 regular card decks.
Betting Round: Each player is requested to place their respective bet bi on
handi ∈ {player, banker, tie}. That is, each player Pi for i = 1, . . . , n is requested
to place a bet bi. For each bet bi, if bi ≥ min, bi ≤ max, proceed to the Com-
pensation procedure. Otherwise, update balance and bets vectors accordingly, that
is balance[i] = balance[i] − bi and bets[i] = b1, and hands[i] = handi. Proceed to
Dealer Actions phase.
Dealer Actions: Two cards pcp,1 and pcp,2 are opened for Pd as the Player’s hand.
Next, two more cards are opened as the Banker’s hand, pcb,1 and pcb,2, updating
the sampled counter for each drawn card. Accordingly to the rules and card values
described in the early Section 3.3, it may be necessary to draw the card pcp,3,
the extra card for the Player’s hand, again, updating sampled. Depending on the
values and the rule described in Table 1, it may be necessary to draw the Banker’s
extra card. In that case, request Pd to draw pcb,3, and update sampled accordingly.
Proceed to Pay-out phase.
Pay-out: There are three possible outcomes, Pi wins whenever it has bet on one of
the three possible outcome. Otherwise it looses its bet entirely, namely balance[d] =
balance[d] + bets[i] and bets[i] = 0. Consider Pi is rewarded according to one of the
following three cases:

– Tie: Set balance[i] = balance[i]+8·bets[i] and balance[d] = balance[d]−8·bets[i];
– Banker’s hand: Set balance[i] = balance[i] + 1.95 · bets[i] and balance[d] =

balance[d]− 1.95 · bets[i];
– Player’s hand: Set balance[i] = balance[i]+2·bets[i] and balance[d] = balance[d]−

2 · bets[i].
After making the payments, allow the entrance and exit of players. If sampled ≥ u,
then request a re-shuffle and set the sampled cards counter to its original state
sampled = 0. Next, set the vector bets and hands to its original state. Finally, if
there is a single player still playing, then proceed to the Betting round. Otherwise,
end the game.

Fig. 8. Rules for the Baccarat game.

4 The Framework

Our framework can be used to implement any card game without secret state
where cards that were previously randomly shuffled are publicly revealed. Instead
of representing cards as ciphertexts as in previous works, we exploit the fact
that publicly opening a card from a set of previously randomly shuffled cards is
equivalent to randomly sampling card values from an initial set of card values.

16

The main idea is that each opened card has its value randomly picked from a
list of “unopened cards” using randomness generated by a coin tossing protocol
executed by all parties. This protocol requires no shuffling procedure per se and
requires 2 rounds for opening each card (required for executing coin tossing).
Later on, we will show that this protocol can be optimized in different ways, but
its simple structure aids us in describing our basic approach.

When the game rules GR specify that a card must be created, it is added
to a list of cards that have not been opened CC . When a card is opened, the
parties execute a commit-and-open coin tossing protocol to generate random-
ness that is used to uniformly pick a card from the list of unopened cards CC ,
removing the selected card from CC and adding it to a list of opened cards CO.
This technique works since every card is publicly opened and no player gets to
privately learn the value of a card with the option of not revealing it to the other
players, which allows the players to keep the list of unopened cards up-to-date.
We implement the necessary commitments with the canonical efficient random
oracle based construction, where a commitment is simply an evaluation of the
random oracle on the commitment message concatenated with some randomness
and the opening consists of the message and randomness themselves. This simple
construction achieves very low computational and communication complexities
as computing a commitment (and verifying and opening) requires only a single
call to the random oracle and the commitment (and opening) can be represented
by a string of the size of the security parameter. Besides being compact, these
commitments are publicly verifiable, meaning that any third party party can
verify the validity of an opening, which comes in handy for verifying that the
protocol has been correctly executed.

In order to implement financial rewards/penalties enforcement, our protocol
relies on a stateful contract functionality FSC that provides a mechanism for the

Banker’s Player’s Third Card (pcp,3)
Hand N 0 1 2 3 4 5 6 7 8 9

9 S S S S S S S S S S S

8 S S S S S S S S S S S

7 S S S S S S S S S S S

6 S S S S S S S D D S S

5 D S S S S D D D D S S

4 D S S D D D D D D S S

3 D D D D D D D D D S D

2 D D D D D D D D D D D

1 D D D D D D D D D D D

0 D D D D D D D D D D D
Table 1. Rules for drawing a third card for the Banker depending on the values of the
Banker’s hand and the Player’s third card (pcp,3), where “N” denotes that a third card
pcp,3 was not drawn for the player. The action of drawing a third card for the banker
is denoted by “D” means, while “S” denotes that the Banker’s hand stands, i.e. no
third card is drawn for the Banker.

17

players to deposit betting and collateral funds, enforcing correct distribution
of such funds according to the protocol execution. If the protocol is correctly
executed, the rewards corresponding to a game outcome are distributed among
the players. Otherwise, if a cheater is detected, FSC distributes the cheater’s
collateral funds among honest players, who also receive a refund of their betting
and collateral funds. After each game action (e.g. betting and card opening),
all players cooperate to generate a checkpoint witness showing that the pro-
tocol has been correctly executed up to that point. This compact checkpoint
witness is basically a set of signatures generated under each player’s signing key
on the opened and unopened cards lists and vectors representing the players’
balance and bets. In case a player suspects cheating, it activates the recovery
procedure of FSC with its latest checkpoint witness, requiring players to provide
their most up-to-date checkpoint witnesses to FSC (or agree with the one that
has been provided). After this point, FSC mediates protocol execution, receiv-
ing from all players the protocol messages to be sent after the latest checkpoint
witness, ensuring their validity and broadcasting them to all players. If the pro-
tocol proceeds until next checkpoint witness is generated, the execution is again
carried out directly by the players without involving FSC. Otherwise, if a player
is found to be cheating (by failing to provide their messages or providing invalid
ones), FSC refunds the honest parties and distributes among them the cheater’s
collateral funds. Protocol πCG is presented in Figures 9, 10 and 11.

4.1 Security Analysis

The security of protocol πCG in the Universal Composability framework is for-
mally stated in Theorem 1. In order to prove this theorem we construct a sim-
ulator such that an ideal execution with this simulator and functionality FCG

is indistinguishable from a real execution of πCG with any adversary. The main
idea behind this simulator is that it learns from FCG the value of each opened
card, “cheating” in the commit-and-open coin tossing procedure in order to force
it to yield the right card value. The simulator can do that since it knows the
values that each player has committed to with the random oracle based commit-
ments and it can equivocate the opening of its own commitment, forcing the coin
tossing to result in an arbitrary output, yielding an arbitrary card value. The
simulation for the mechanisms for requesting players actions and enforcing finan-
cial rewards/penalties follows the same approach as in Royale [17]. Namely, the
simulator follows the steps of an honest user and makes FCG fail if a corrupted
party misbehaves, subsequently activating the recovery procedure that results
in cheating parties being penalized and honest parties being compensated.

Theorem 1. For every static active adversary A who corrupts at most n −
1 parties, there exists a simulator S such that, for every environment Z, the
following relation holds:

IDEALFCG,S,Z ≈c HYBRID
FRO,FDSIG,FSC

πCG,A,Z .

18

Protocol πCG (Part 1)

Protocol πCG is parametrized by a security parameter 1κ, a timeout limit τ , the
values of the initial stake t, the compensation q, the security deposit d ≥ (n− 1)q
and an embedded program GR that represents the rules of the game. In all queries
(sign, sid,m) to FDSIG, the message m is implicitly concatenated with NONCE and

cnt, where NONCE
$← {0, 1}κ is a fresh nonce (sampled individually for each query)

and cnt is a counter that is increased after each query. Every player Pi keeps
track of used NONCE values (rejecting signatures that reuse nonces) and implicitly
concatenate the corresponding NONCE and cnt values with message m in all queries
(verify, sid,m, σ,SIG.vk′) to FDSIG. Protocol πCG is executed by players P1, . . . ,Pn
interacting with functionalities FSC, FRO and FDSIG as follows:

– Checkpoint Witnesses: After the execution of a procedure, the players store
a checkpoint witness that consists of the lists CO and CC , the vectors balance
and bets as well as a signature by each of the other players on the concatenation
of all these values. Each signature is generated using FDSIG and all players check
all signatures using the relevant procedure of FDSIG. Old checkpoint witnesses
are deleted. If any check fails for Pi, he proceeds to the recovery procedure.

– Recovery Triggers: All signatures and proofs in received messages are verified
by default. Players are assumed to have loosely synchronized clocks and, after
each round of the protocol starts, players expect to receive all messages sent
in that round before a timeout limit τ . If a player Pi does not receive an
expected message from a player Pj in a given round before the timeout limit τ ,
Pi considers that Pj has aborted. After the check-in procedure, if any player
receives an invalid message or considers that another player has aborted, it
proceeds to the recovery procedure.

– Check-in: Every player Pi proceeds as follows:
1. Send (keygen, sid) to FDSIG, receiving (verification key, sid, SIG.vki).
2. Send (checkin, sid,Pi, coins(d+ t), SIG.vki) to FSC.
3. Upon receiving (checkedin, sid,Pj , SIG.vkj) from FSC for all j 6= i, j =

1, . . . , n, initialize the internal lists of open cards CO and closed cards CC .
We assume parties have a sequence of unused card id values (e.g. a counter).
Initialize vectors balance[j] = t and bets[j] = 0 for j = 1, . . . , n. Output
(checkedin, sid).

4. If Pi fails to receive (checkedin, sid,Pj , SIG.vkj) from FSC for another
party Pj within the timeout limit τ , it requests FSC to dropout and receive
its coins back.

– Compensation: This procedure is activated if the recovery phase of FSC de-
tects a cheater, causing honest parties to receive refunds plus compensation and
the cheater to receive the remainder of its funds after honest parties are com-
pensated. Upon receiving (compensation, sid,Pi, coins(w)) from FSC, a player
Pi outputs this message and halts.

Fig. 9. Part 1 of Protocol πCG.

19

Protocol πCG (Part 2)

– Check-out: A player Pj can initiate the check-out procedure and leave the
protocol at any point that GR allows, in which case all players will receive the
money that they currently own plus their collateral refund. The players proceed
as follows:
1. Pj sends (checkout-init, sid,Pj) to FSC.
2. Upon receiving (checkout-init, sid,Pj) from FSC, each Pi (for i =

1, . . . , n) sends (sign, sid, (CHECKOUT|payout)) to FDSIG (where payout is a
vector containing the amount of money that each player will receive accord-
ing to GR), obtaining (signature, sid, (CHECKOUT|payout), σi) as answer.
Player Pi sends σi to Pj .

3. For all i 6= j, Pj sends (verify, sid, (CHECKOUT|payout), σi, SIG.vki) to
FDSIG, where payout is computed locally by Pj . If FDSIG answers all
queries (verify, sid, (CHECKOUT|payout), σi,SIG.vki) with (verified, sid,
(CHECKOUT|payout), 1), Pj sends (checkout, sid, payout, σ1, . . . , σn) to FSC.
Otherwise, it proceeds to the recovery procedure.

4. Upon receiving (payout, sid,Pi, coins(w)) from FSC, Pi outputs this mes-
sage and halts.

– Executing Actions: Each Pi follows GR that represents the rules of the game,
performing the necessary card operations in the order specified by GR. If GR
request an action with description act − desc from Pi, all the players output
(act, sid,Pi, act − desc) and Pi executes any necessary operations. Pi broad-
casts (action-rsp, sid,Pi, act− rsp, σi), where act− rsp is his answer and σi
his signature on act− rsp, and outputs (action-rsp, sid,Pi, act− rsp). Upon
receiving this message, all other players check the signature, and if it is valid
output (action-rsp, sid,Pi, act− rsp). If a player Pj believes cheating is hap-
pening, he proceeds to the recovery procedure.

– Tracking Balance and Bets: Every player Pi keeps a local copy of the
vectors balance and bets, such that balance[j] and bets[j] represent the balance
and current bets of each player Pj , respectively. In order to keep balance and
bets up to date, every player proceeds as follows:
• At each point that GR specifies that a betting action from Pi takes place,

player Pi broadcasts a message (bet, sid,Pi, beti), where beti is the value
of its bet. It updates balance[i] = balance[i]− bi and bets[i] = bets[i] + bi.

• Upon receiving a message (bet, sid,Pj , betj) from Pj , player Pi sets
balance[j] = balance[j]− bj and bets[j] = bets[j] + bj .

• When GR specifies a game outcome where player Pj receives an amount
payj and has its bet amount updated to b′j , player Pi sets balance[j] =
balance[j] + payj and bets[j] = b′j .

– Create Shuffled Deck: When requested by GR to create a shuffled deck of
cards containing cards with values v1, . . . , vm, each player Pi chooses the next
m free identifiers id1, . . . , idm and, for j = 1, . . . ,m, stores (idj ,⊥) in CO and
vj in CC . Pi outputs (shuffled, sid, v1, . . . , vm, id1, . . . , idm).

Fig. 10. Part 2 of Protocol πCG.

20

Protocol πCG (Part 3)

– Open Card: Every player Pi proceeds as follows to open card with id id:
1. Organize the card values in CC in alphabetic order obtaining an ordered

list CC = {v1, . . . , vm}.
2. Sample a random ri

$← {0, 1}κ and send (sid, ri) to FRO, receiving (sid, hi)
as response. Broadcast (sid, hi).

3. After all (sid, hj) for j 6= i and j = 1, . . . , n are received, broadcast (sid, ri).
4. For j = 1, . . . , n and j 6= i, send (sid, rj) to FRO, receiving (sid, h′j) as

response and checking that hj = h′j . If all checks succeed, compute k =∑
i ri mod m, proceeding to the Recovery phase otherwise. Define the

opened card value as vk, remove vk from CC and update (id,⊥) in CO to
(id, vk).

– Recovery: Player Pi proceeds as follows:
• Starting Recovery: Player Pi sends (recovery, sid) to FSC if it starts the

procedure.
• Upon receiving a message (request, sid) from FSC, every player Pi sends

(response, sid,Pi,Checkpointi, proci) to FSC, where Checkpointi is Pi’s lat-
est checkpoint witness and proci are Pi’s witnesses for the protocol proce-
dure that started after the latest checkpoint; or acknowledges the witnesses
sent by another party if it is the same as the local one.

• Upon receiving a message (nxt-stp, sid,Pi, proc, round) from FSC, player
Pi sends (nxt-stp-rsp, sid,Pi, proc, round,msg) to FSC, where msg is the
protocol message that should be sent at round round of procedure proc of
the protocol according to GR.

• Upon receiving a message (nxt-stp-rsp, sid,Pj , proc, round,msg) from
FSC, every player Pi considers msg as the protocol message sent by Pj in
round of procedure proc and take it into consideration for future messages.

• Upon receiving a message (recovered, sid, proc,Checkpoint) from FSC, ev-
ery player Pi records Checkpoint as the latest checkpoint and continues
protocol execution according to the game rules GR.

Fig. 11. Part 3 of Protocol πCG.

Proof. In order to prove the security of πCG, we construct a simulator S such
that no environment Z can distinguish between interactions with an adversary
A running Protocol πCG in the real world and with S and FCG in the ideal
world. The basic operations that implement financial rewards/penalties enforce-
ment (i.e. Checkpoint Witnesses, Recovery Trigger, Tracking Balance and Bets,
Executing Actions, Check-in, Check-out, Recovery and Compensation) are sim-
ulated using the same approach as in Royale [17], where the simulator executes
the procedures of an honest player in the simulated execution with its internal
copy of the adversary, allowing FCG to proceed if the adversary acts honestly.
For the sake of completeness, we describe the procedures for simulating these op-
erations as presented in Royale [17]. The new techniques introduced in this work

21

are reflected in the simulation of the Shuffle Cards and Open Card operations,
which are discussed at length.

We now describe the simulator S, which interacts with an internal copy of the
adversary A, the environment Z and the ideal functionality FCG. S writes all the
messages received from Z in A’s input tape, simulating A’s environment. Also,
S writes all messages from A’s output tape to its own output tape, forwarding
them to Z. Let H denote one of honest parties (any arbitrary one), for which
S will execute special procedures during the simulation. As in the protocol, S
is parameterized by a security parameter 1κ, a timeout limit τ , the values of
the initial stake t, the compensation q, the security deposit d ≥ (n − 1)q and
an embedded program GR that represents the rules of the game. S simulates an
execution with an internal copy of the adversary A (that controls the malicious
parties), and generates the protocol messages from the honest parties. S proceeds
as follows to simulate each procedure of Protocol πCG:

– Simulating FRO: S simulates the answers to the random oracle queries from
A exactly as FRO would (and stores the lists of queries/answers), except
when stated otherwise in S’s description.

– Simulating FDSIG: S simulates queries from A to FDSIG exactly as FDSIG

would.

– Simulating FSC: S simulates queries from A to FSC exactly as FSC would.

– Checkpoint Witnesses, Recovery Trigger, Tracking Balance and
Bets, Executing Actions, Check-in, Create Shuffled Deck, Check-
out, Compensation: S simulates the execution of the respective steps of
πCG for the honest parties. If the procedure finishes correctly in this internal
simulation, then S forwards the necessary messages to FCG to let it continue.

– Recovery: When the recovery phase is activated, S proceeds by following
the steps of an honest party in πCG by sending its most up to date checkpoint
and current procedure witnesses to the simulated FSC and proceeding by
sending the next messages of the honestly simulated execution of πCG to
FSC instead of sending them directly to A. However, when a card operation
(shuffling or opening of cards) is required while execution is mediated by
the simulated FSC, the messages required by such operation are simulated
as described below. If the recovery phase succeeds, S sends FCG a message
allowing the execution to proceed normally and, if it fails, S sends a failure
message to FCG notifying that the operation has failed as described below
in the steps for simulating each operation. In case of a failure, S proceeds to
simulate the compensation phase.

– Open Card: Upon receiving (card, sid, id, v) from FCG, S simulates honest
parties’ behavior exactly as in πCG but proceeds as follows for H:
1. Organize the card values in CC in alphabetic order obtaining an ordered

list CC = {v1, . . . , vm}.
2. Sample a random hH

$← {0, 1}κ and, if no pair (q, hH) exists in the
simulated FRO’s internal list of queries/answers, broadcast (sid, hH).
Otherwise, output fail and halt.

22

3. After all (sid, hj) for j 6= H and j = 1, . . . , n are received, check that
there exist pairs (rj , hj) in the list of queries and answers of the simulated
FRO. If one such pair does not exist (meaning that A did not obtain hj
from the simulated FRO), S sends (abort, sid) to FCG and proceeds
to the Recovery procedure after the adversary sends (or fails to send)
a (sid, rj), as this message will be invalid. Otherwise, S computes rH
such that rH +

∑n, j 6=H
j=1 rj mod m = k where vk = v (for v provided

by FCG). If a pair (rH, h) exists in the simulated FRO’s internal list
of queries/answers, S outputs fail and halts. Otherwise, upon receiving
a query (sid, rH) to the simulated FRO, S answers with (sid, hH). S
broadcasts (sid, rH), forcing the open card operation to result in the
value v provided by FCG for that card identified by id.

4. If all messages (sid, r′j) from A are received before timeout τ , S checks
that there exist pairs (r′j , hj) in the list of queries/answers of the sim-
ulated FRO, where (sid, hj) are the messages received from A in the
previous step. If all checks succeed, S sends (card, sid, id, v) to FCG.
Otherwise, it sends (abort, sid) to FCG and proceeds to simulate the
Recovery phase.

Simulation Indistinguishability: Notice that, unless S does not output fail, it
behaves exactly as an honest player in πCG and proceeds in such a way that,
for every card value revealed by FCG, the same card value is set in the internal
execution with the copy of the adversary A. Since S is able to observe the queries
of all the other players in the simulated execution with A, it can compute rH
such that any honest player executing the steps of πCG will obtain the value v
associated with id as provided by FCG. Moreover, S can program the answer to
rH in such a way that (rH, hH) is a valid query/answer pair for FRO, passing the
checks executed by other players. Notice that, once S computes rH, A cannot
provide a rj such that rH +

∑n, j 6=H
j=1 rj mod |CC | 6= id, since this value would

not pass the verification where other players query FRO with (sid, rj) and verify
that its answer (sid, h′j) matches the hj previously received, causing the protocol
to proceed to the Recovery phase (which S also simulates). Hence, the execution
with S proceeds exactly as in Protocol πCG unless it outputs fail. We will show
that this only happens with negligible probability. Notice that S only outputs
fail if a pair (q, hH) (resp. (rH, h)) exists in the simulated FRO’s internal list of

queries/answers for a value hH
$← {0, 1}κ (resp. rH

$← {0, 1}κ) chosen at random
in Step 2 (resp. Step 3) of the Open Card operation simulation. Since throughout
the simulation S picks all answers h for the simulated FRO uniformly at random,

the probability that hH
$← {0, 1}κ has already been picked is negligible in the

security parameter κ. An analogous argument shows that the probability that

rH
$← {0, 1}κ has already been queried to FRO is negligible in κ. Hence, the

ideal world execution with S and FCG is indistinguishable from an execution of
πCG with A.

23

5 Optimizing Our Protocol

In this section, we construct optimized protocols that improve on the round
complexity of the open card operation, which represents the main efficiency
bottleneck of our framework. The basic protocol constructed in the previous
section requires a whole “commit-then-open” coin tossing to be carried out for
each card that is opened. Even though this coin tossing can be implemented
efficiently in the random oracle model, its inherent round complexity implies that
each card opening requires 2 rounds. We show how the open card operation can
be executed with only 1 round while also improving communication complexity
but incurring a higher local space complexity (linear in the number of cards)
for each player in the Shuffle Card operation. Next, we show how to achieve the
same optimal round complexity with a low constant local space complexity.

Protocol πCG−PRE

– Create Shuffled Deck: When requested by GR to create a shuffled deck
of cards containing cards with values v1, . . . , vm, each player Pi creates
CO = {(id1,⊥), . . . , (idm,⊥)} and CC = {v1, . . . , vm} following the instruc-

tions of πCG. Moreover, for l = 1, . . . ,m, Pi samples a random ri,l
$← {0, 1}κ

and sends (sid, ri,l) to FRO, receiving (sid, hi) in response. Pi broadcasts
(sid, hi,1, . . . , hi,m). After all (sid, hj,1, . . . , hj,m) for j 6= i and j = 1, . . . , n
are received, Pi outputs (shuffled, sid, v1, . . . , vm, id1, . . . , idm).

– Open Card: Each player Pi proceeds as follows to open card with id id:
1. Organize the card values in CC in alphabetic order obtaining an ordered

list CC = {v1, . . . , vm}.
2. Broadcast (sid, ri,l), where hi,l is the next available (still closed) commit-

ment generated in the Shuffle Cards operation.
3. For j = 1, . . . , n and j 6= i, send (sid, rj,l) to FRO, receiving (sid, h′j,l)

in response and checking that hj,l = h′j,l. If all checks succeed, compute
k =

∑
i ri mod m, proceeding to the Recovery phase otherwise. Define the

opened card value as vk, remove vk from CC and update (id,⊥) in CO to
(id, vk).

Fig. 12. Protocol πCG−PRE (only phases that differ from Protocol πCG are described).

5.1 Lower Round and Communication Complexities

A straightforward way to execute the Open Card operation in one round is
to pre-process the necessary commitments during the Shuffle Cards operation.
Basically, in order to pre-process the opening of m cards, all players broadcast m
commitments to random values in the Shuffle Cards phase. Later on, every time
the Open Card operation is executed, each player broadcasts an opening to one

24

of their previously sent commitments. Besides making it possible to open cards
in only one round, this simple technique reduces the communication complexity
of the Open Card operation, since each player only broadcasts one opening
per card (but no commitment). However, it requires each player to store (n −
1)m commitments (received from other players) as all well as m openings (for
their own commitments). Protocol πCG−PRE is very similar to Protocol πCG, only
differing in the Shuffle Card and Open Card operations, which are presented in
Figure 12. The security of this protocol is formally stated in Theorem 2.

Theorem 2. For every static active adversary A who corrupts at most n −
1 parties, there exists a simulator S such that, for every environment Z, the
following relation holds:

IDEALFCG,S,Z ≈c HYBRID
FRO,FDSIG,FSC

πCG−PRE,A,Z .

Proof. (Sketch) In order to prove this theorem we adapt the simulator con-
structed for πCG (in the proof of Theorem 1) to take into consideration the
preprocessing of commitments that takes place in the Shuffle Cards phase. Our
adapted simulator S proceeds exactly as the simulator for πCG except in the
following operations:

– Create Shuffled Deck: Upon receiving (shuffle, sid, v1, . . . , vm, id1, . . . ,
idm) from FCG (meaning that GR requests a shuffling operation), S pro-
ceeds exactly as an honest party in protocol πCG except for a special honest
party H. When simulating H, S creates CO = {(id1,⊥), . . . , (idm,⊥)} and
CC = {v1, . . . , vm} following the instructions of πCG but, for l = 1, . . . ,m, S
samples a random hH,l

$← {0, 1}κ. If no pair (q, hH,l) exists in the simulated
FRO’s internal list of queries/answers, S broadcasts (sid, hH,1, . . . , hH,l).
Otherwise, S outputs fail and halts. If messages (sid, hj,1, . . . , hj,l) are re-
ceived from all (corrupted) parties before timeout τ , S sends (shuffle, sid,
id1, . . . , idm) to FCG. Otherwise, it sends (abort, sid) to FCG and proceeds
to simulate the Recovery procedure.

– Open Card: Upon receiving (card, sid, id, v) from FCG, S simulates honest
parties’ behavior exactly as in πCG but proceeds as follows for the special
honest party H:

1. Organize the card values in CC in alphabetic order obtaining an ordered
list CC = {v1, . . . , vm}.

2. Check that there exist pairs (rj,l, hj,l) in the list of queries and answers
of the simulated FRO, where hi,l is the next available (still closed) com-
mitment generated in the Shuffle Cards operation. If one such pair does
not exist (meaning that A did not obtain hj,l from the simulated FRO),
S sends (abort, sid) to FCG and proceeds to the Recovery procedure
after the adversary sends (or fails to send) a (sid, rj,l), as this message

will be invalid. Otherwise, S computes rH,l such that rH,l +
∑n, j 6=H
j=1 rj,l

mod m = k where vk = v (for v provided by FCG). If a pair (rH,l, h)
exists in the simulated FRO’s internal list of queries/answers, S outputs

25

fail and halts. Otherwise, upon receiving a query (sid, rH,l) to the sim-
ulated FRO, S answers with (sid, hH,l). S broadcasts (sid, rH,l), forcing
the open card operation to result in the value v provided by FCG for that
card identified by id.

3. If all messages (sid, r′j,l) from A are received before timeout τ , S checks
that there exist pairs (r′j,l, hj,l) in the list of queries/answers of the sim-
ulated FRO, where (sid, hj,l) are the messages received from A in the
Shuffle Cards operation. If all checks succeed, S sends (card, sid, id, v)
to FCG. Otherwise, it sends (abort, sid) to FCG and proceeds to simulate
the Recovery phase.

Simulation Indistinguishability: Notice that the simulator S proceeds as the
simulator constructed in proving Theorem 1, with the sole difference that it
receives (resp. generates) a batches of commitments (sid, hj,1, . . . , hj,l) (resp.
(sid, hH,1, . . . , hH,l)) in during the Shuffle Cards operations instead of during
the Open Card operation. As before, S behaves exactly as an honest player
and proceeds in a way that the Open Card operation outputs the same card
value as in πCG−PRE, unless it outputs fail. The same argument of the proof
of Theorem 1 can be used to show that S only outputs fail with negligible
probability in the security parameter κ and that the ideal execution with S and
FCG is indistinguishable from the execution of πCG with A.

5.2 Lower Round and Space Complexities via Coin Tossing
Extension

Even though the previous optimization reduces the round complexity of our
original protocol, it introduces a high local space complexity overhead, since
each party needs to store the preprocessed commitments. In order to achieve
low round complexity without a space complexity overhead, we show that a
single coin tossing can be “extended” to open an unlimited number of cards.
With this technique, we first run a coin tossing in the Check-in phase, later
extending it to obtain new randomness used to pick each card that is opened.

We develop a new technique for extending coin tossing based on verifiable
random functions, which is at the core of our optimized protocol. The main idea
is to first have all parties broadcast their VRF public keys and execute a single
coin tossing used to generate a seed. Every time a new random value is needed,
each party evaluates the VRF under their secret key using the seed concatenated
with a counter as input, broadcasting the output and accompanying proof. Upon
receiving all the other parties’ VRF output and proof, each party verifies the
validity of the output and defines the new random value as the sum of all outputs.
Protocol πCG−VRF is very similar to Protocol πCG, only differing in the Shuffle
Card and Open Card operations, which are presented in Figure 13. The security
of this protocol is formally stated in Theorem 3.

26

Protocol πCG−VRF

– Check-in: When requested by GR to shuffle cards with identifiers (id1, . . . , idm)
to be shuffled, each Pi proceeds as follows:
1. Execute the steps of the Check-in phase of πCG.
2. Send (KeyGen, sid) to FVRF, receiving (Verification Key, sid,VRF.vki)

in response. Sample a random seedi
$← {0, 1}κ and send (sid, seedi) to

FRO, receiving (sid, hi) in response. Broadcast (sid,VRF.vki, hi).
3. After all (sid,VRF.vkj , hj) for j 6= i and j = 1, . . . , n are received, broad-

cast (sid, seedi).
4. For j = 1, . . . , n and j 6= i, send (sid, seedj) to FRO, receiving (sid, h′j)

in response and checking that hj = h′j . If all checks succeed, compute
seed =

∑
i seedi, proceeding to the Recovery phase otherwise. Set cnt = 1

and broadcast message (shuffled, sid, id1, . . . , idm).
– Open Card: Every player Pi proceeds as follows to open card with id id:

1. Organize the card values in CC in alphabetic order obtaining an ordered
list CC = {v1, . . . , vm}.

2. Send (EvalProve, sid, seed|cnt) to FVRF, receiving (Evaluated, sid,
yi, πi) in response. Broadcast (sid, yi, πi).

3. For j = 1, . . . , n and j 6= i, send (Verify, sid, seed|cnt, yj , πj ,VRF.vkj) to
FVRF, checking that FVRF answers with (Verified, sid, seed|cnt, yj , πj , 1).
If all checks succeed, compute k =

∑
i yi mod m, proceeding to the Re-

covery phase otherwise. Define the opened card value as vk, remove vk from
CC , update (id,⊥) in CO to (id, vk) and increment the counter cnt.

Fig. 13. Protocol πCG−VRF (only phases that differ from Protocol πCG are described).

Theorem 3. For every static active adversary A who corrupts at most n −
1 parties, there exists a simulator S such that, for every environment Z, the
following relation holds:

IDEALFCG,S,Z ≈c HYBRID
FRO,FDSIG,FVRF,FSC

πCG−VRF,A,Z .

Proof. (Sketch) In order to prove this theorem we adapt the simulator con-
structed for πCG (in the proof of Theorem 1) to take into consideration the coin
tossing for seed generation and VRF key registration that takes place in the
Check-in phase as well as the new procedure for opening cards. Additionally
our adapted simulator S simulates FVRF by exactly following the steps of that
functionality except when stated otherwise in its description. S proceeds exactly
as the simulator for πCG except in the following operations:

– Check-in: When execution starts, S proceeds exactly as an honest party
in protocol πCG−VRF (including when simulating a special honest party H),
learning seed and the verification keys VRF.vki of each party Pi.

– Open Card: Upon receiving (card, sid, id, v) from FCG, S simulates honest
parties’ behavior exactly as in πCG but proceeds as follows for H:

27

1. Organize the card values in CC in alphabetic order obtaining an ordered
list CC = {v1, . . . , vm}.

2. Let T (VRF.vk, ·) denote the table of queries/answers for verification key
VRF.vk of the simulated FVRF, which is initially empty. For j = 1, . . . , n
such that j 6= H, if T (VRF.vkj , (seed|cnt)) is undefined, S samples

a random random yj
$← {0, 1}`VRF and a random unique πj setting

T (VRF.vkj , (seed|cnt)) = (yj , {πj}). Next, S computes a random yH
such that yH +

∑n, j 6=H
j=1 yj mod m = k where vk = v (for v pro-

vided by FCG). S sets T (VRF.vkH, seed|cnt) = (yH, {πH}) and sends
(sid, yH, πH) to A.

3. If all messages (sid, yj , πj) from A are received before timeout τ , S
follows the steps of FVRF to verify that yj is a valid output accord-
ing to VRF.vkj , πj and T (VRF.vkj , ·). If all checks succeed, S sends
(card, sid, id, v) to FCG. Otherwise, it sends (abort, sid) to FCG and
halts.

Simulation Indistinguishability: Notice that S proceeds exactly as an honest
player would in Protocol πCG−VRF with the exception of the way it simulates the
answers (Evaluated, sid, yH, πH) of FVRF to the queries from player H of the
form (EvalProve, sid, seed|cnt). The difference is that instead of sampling a

random yH, S samples a random yH = k −
∑n, j 6=H
j=1 yj mod m. Notice, how-

ever, that yH is distributed as any randomly sampled y, since S simulates FVRF

following its exact steps (except for these specific queries from H) and, as per

definition of FVRF, all yj
$← {0, 1}`VRF , for j = 1, . . . , n such that j 6= H. Hence,

the ideal execution with S and FCG is indistinguishable from the real execution
of πCG−VRF with A.

6 Concrete Complexity Analysis

In this section, we analyse our protocols’ computational, communication, round
and space complexities, showcasing the different trade-offs obtained by each op-
timization. We compare our protocols with Royale [17], which is the currently
most efficient protocol for general card games (with secret state) that enforces
financial rewards and penalties. We focus on the Shuffle Cards and Open Card
operations, which represent the main bottlenecks in card game protocols. Inter-
estingly, our main protocol πCG and optimized protocol πCG−VRF do not require
a Create Shuffled Deck operation and that operation in Protocol πCG−PRE is or-
ders of magnitude more efficient than in previous protocols. Protocol πCG only
requires a simple coin tossing to perform the Open Card procedure at the cost of
one extra round (in comparison to previous protocols). Our optimized protocols
implement the Open Card operation with a single round and different computa-
tional and local complexities. It is interesting to observe the trade-off between
the computational and local space complexities of our two optimizations, which
offer advantages for different scenarios.

28

Operation Protocol Computational Communication Space Rounds

Open
Card

πCG n H 2nκ 0 2
πCG−PRE (n− 1) H nκ nmκ 1

πCG−VRF
3n H

+(4n− 1) Exp
3nκ+ n |Z|) n |G|+ κ 1

Royale
[17]

n H
+4n Exp

n |G|+ 2n |Z| 2m |G| 1

Create
Shuffled

Deck

πCG 0 0 0 0
πCG−PRE m H nmκ 0 1
πCG−VRF 0 0 0 0
Royale

[17]
n H + (2 log(d

√
me)

+4n− 2)m Exp
n(2m+ d

√
me) G

+5nd
√
me Z 0 n

Table 2. Complexity comparison of the Shuffle Cards and Open Card operation of
Protocols πCG, πCG−PRE and πCG−VRF with n and m cards. The cost of calling the random
oracle is denoted by H and the cost of a modular exponentiation is denoted by Exp.
The size of elements of G and Z are denoted by |G| and |Z|, respectively.

We estimate the computational complexity of the Shuffle Cards and Open
Card operations of our protocols in terms of the number of random oracle calls
and modular exponentiations. The communication and space complexities are
estimated in terms of the number of strings of size κ (which also represent ran-
dom oracle outputs), and elements from G and Z. In order to estimate concrete
costs, we assume that FRO is implemented by a hash function with input and
output lengths of κ bits. Moreover, we assume that FVRF is implemented by the
2-Hash-DH verifiable oblivious pseudorandom function construction of [19] as
discussed in Section 2. This VRF construction requires 1 modular exponentia-
tion to generate a key pair, 3 modular exponentiations and 3 calls to the random
oracle to evaluate an input and generate a proof, and 4 modular exponentiations
and 3 calls to the random oracle to verify an output given a proof. In terms of
communication/space complexity, a verification key is one element of a group G
and the output plus proof consist of 3 random oracle outputs and an element of
a ring Z of same order as G. The estimates for Royale are taken from [17].

Our concrete complexity estimates are presented in Table 2. First, we remark
that none of our protocols requires an expensive Create Shuffled Deck procedure
involving zero knowledge proofs of shuffle correctness, which is the main bottle-
neck in previous works such as Royale [17], the currently most efficient protocol
for card games with secret state. Notice that our basic protocol πCG and our op-
timized protocol πCG−VRF do not require a Create Shuffled Deck operation at all,
while Protocol πCG−PRE requires a cheap Create Shuffled Cards operation where
a batch of commitments to random values are performed. Protocol πCG−PRE im-
proves on the round complexity of the Open Card operation of protocol πCG,
requiring only 1 round and the same computational complexity but incurring in
a larger space complexity as each player must locally store nmκ bits to complete
this operation, since they need to store a number of pre-processed commitments

29

that depends on both the number of players and the number of cards in the
game. We solve this local storage issue with Protocol πCG−VRF, which employs
our “coin tossing extension” technique to achieve local space complexity inde-
pendent of the number of cards, which tends to be much larger than the number
of players. We remark that the computational complexity of the Open Card op-
eration of πCG−VRF is equivalent to that of Royale [17], while the communication
and space complexities are much lower.

7 Conclusion

In this work, we observe that a certain class of card games do not require any
secret state to be maintained, initiating an universally composable treatment of
such games by introducing an ideal functionality FCG that captures this class. In
contrast to previous works on general card games (which require expensive zero
knowledge proofs), we show that FCG can be realized by the very simple and
efficient Protocol πCG based on cheap coin tossing in the random oracle model.
Moreover, πCG supports financial rewards and penalties with very low on-chain
storage requirements. We develop a novel technique for extending coin tossing
with VRFs, which is at the core of our optimized protocol πCG−VRF and might be
of independent interest. As a direct application of our model and constructions of
efficient protocols for card games without secret state, we show that our general
protocol can be used to instantiate the popular games of Blackjack and Baccarat,
for which we also introduce the first formal definitions in the UC framework (ideal
functionalities Fblackjack and Fbaccarat). Finally, we provide a detailed complexity
analysis and comparison, showing that our protocol for card games without
secret state achieves far better performance than previous protocols for general
games.

While we construct our protocols in terms of canonical random oracle based
commitments, our approach can be instantiated more generally based on any
UC secure commitment scheme (or even coin tossing functionality) that allows
for openings (and final outputs) to be publicly verified by a third party who does
not necessarily participate in the protocol but wishes to verify the blockchain.
Even though such a general construction might not achieve the same concrete
efficiency of our random oracle based protocols, it can be instantiated under other
setup assumptions (e.g. a common reference string) without necessarily requiring
random oracles. Constructing such a generalized version of our protocols is left
as a future work.

References

1. Marcin Andrychowicz, Stefan Dziembowski, Daniel Malinowski, and Lukasz
Mazurek. Fair two-party computations via bitcoin deposits. In Rainer Böhme,
Michael Brenner, Tyler Moore, and Matthew Smith, editors, FC 2014 Workshops,
volume 8438 of LNCS, pages 105–121. Springer, Heidelberg, March 2014.

30

2. Marcin Andrychowicz, Stefan Dziembowski, Daniel Malinowski, and Lukasz
Mazurek. Secure multiparty computations on bitcoin. In 2014 IEEE Symposium
on Security and Privacy, pages 443–458. IEEE Computer Society Press, May 2014.

3. Adam Barnett and Nigel P. Smart. Mental poker revisited. In Kenneth G. Pa-
terson, editor, 9th IMA International Conference on Cryptography and Coding,
volume 2898 of LNCS, pages 370–383. Springer, Heidelberg, December 2003.

4. Mihir Bellare and Phillip Rogaway. Random oracles are practical: A paradigm
for designing efficient protocols. In V. Ashby, editor, ACM CCS 93, pages 62–73.
ACM Press, November 1993.

5. Iddo Bentov, Ranjit Kumaresan, and Andrew Miller. Instantaneous decentralized
poker. To appear on Asiacrypt 2017. Available at http://eprint.iacr.org/2017/
875.

6. Iddo Bentov, Ranjit Kumaresan, and Andrew Miller. Instantaneous decentralized
poker. In Tsuyoshi Takagi and Thomas Peyrin, editors, ASIACRYPT 2017, Part II,
volume 10625 of LNCS, pages 410–440. Springer, Heidelberg, December 2017.

7. Vitalik Buterin. White paper. 2013. https://github.com/ethereum/wiki/wiki/

White-Paper, Accessed on 5/12/2017.
8. Ran Canetti. Universally composable security: A new paradigm for cryptographic

protocols. In 42nd FOCS, pages 136–145. IEEE Computer Society Press, October
2001.

9. Ran Canetti. Universally composable signature, certification, and authentication.
In 17th IEEE Computer Security Foundations Workshop, (CSFW-17 2004), page
219. IEEE Computer Society, 2004.

10. Ran Canetti and Marc Fischlin. Universally composable commitments. In Joe
Kilian, editor, CRYPTO 2001, volume 2139 of LNCS, pages 19–40. Springer, Hei-
delberg, August 2001.

11. Ignacio Cascudo, Ivan Damg̊ard, Bernardo Machado David, Irene Giacomelli, Jes-
per Buus Nielsen, and Roberto Trifiletti. Additively homomorphic UC commit-
ments with optimal amortized overhead. In Jonathan Katz, editor, PKC 2015,
volume 9020 of LNCS, pages 495–515. Springer, Heidelberg, March / April 2015.

12. Jordi Castellà-Roca, Francesc Sebé, and Josep Domingo-Ferrer. Dropout-tolerant
ttp-free mental poker. In Sokratis Katsikas, Javier López, and Günther Pernul, ed-
itors, Trust, Privacy, and Security in Digital Business: Second International Con-
ference, TrustBus 2005, Copenhagen, Denmark, August 22-26, 2005. Proceedings,
pages 30–40, Berlin, Heidelberg, 2005. Springer Berlin Heidelberg.

13. Melissa Chase and Anna Lysyanskaya. Simulatable VRFs with applications to
multi-theorem NIZK. In Alfred Menezes, editor, CRYPTO 2007, volume 4622 of
LNCS, pages 303–322. Springer, Heidelberg, August 2007.

14. Claude Crépeau. A secure poker protocol that minimizes the effect of player coali-
tions. In Hugh C. Williams, editor, CRYPTO’85, volume 218 of LNCS, pages
73–86. Springer, Heidelberg, August 1986.

15. Claude Crépeau. A zero-knowledge poker protocol that achieves confidentiality of
the players’ strategy or how to achieve an electronic poker face. In Andrew M.
Odlyzko, editor, CRYPTO’86, volume 263 of LNCS, pages 239–247. Springer, Hei-
delberg, August 1987.

16. Bernardo David, Rafael Dowsley, and Mario Larangeira. Kaleidoscope: An efficient
poker protocol with payment distribution and penalty enforcement. Cryptology
ePrint Archive, Report 2017/899, 2017. http://eprint.iacr.org/2017/899.

17. Bernardo David, Rafael Dowsley, and Mario Larangeira. Royale: A framework for
universally composable card games with financial rewards and penalties enforce-

31

http://eprint.iacr.org/2017/875
http://eprint.iacr.org/2017/875
https://github.com/ethereum/wiki/wiki/White-Paper
https://github.com/ethereum/wiki/wiki/White-Paper
http://eprint.iacr.org/2017/899

ment. Cryptology ePrint Archive, Report 2018/157, 2018. https://eprint.iacr.
org/2018/157.

18. Bernardo David, Peter Gaži, Aggelos Kiayias, and Alexander Russell. Ouroboros
praos: An adaptively-secure, semi-synchronous proof-of-stake protocol. Cryptology
ePrint Archive, Report 2017/573, 2017. (To appear in Eurocrypt 2018) https:

//eprint.iacr.org/2017/573.
19. Stanislaw Jarecki, Aggelos Kiayias, and Hugo Krawczyk. Round-optimal password-

protected secret sharing and T-PAKE in the password-only model. In Palash Sarkar
and Tetsu Iwata, editors, ASIACRYPT 2014, Part II, volume 8874 of LNCS, pages
233–253. Springer, Heidelberg, December 2014.

20. Ranjit Kumaresan, Tal Moran, and Iddo Bentov. How to use bitcoin to play
decentralized poker. In Indrajit Ray, Ninghui Li, and Christopher Kruegel:, editors,
ACM CCS 15, pages 195–206. ACM Press, October 2015.

21. Christian Schindelhauer. A toolbox for mental card games. Technical report,
University of Lübeck, 1998.

22. Francesc Sebe, Josep Domingo-Ferrer, and Jordi Castella-Roca. On the security
of a repaired mental poker protocol. Information Technology: New Generations,
Third International Conference on, 00:664–668, 2006.

23. Adi Shamir, Ronald L Rivest, and Leonard M Adleman. Mental poker. In The
mathematical gardner, pages 37–43. Springer, 1981.

24. Tzer-jen Wei. Secure and practical constant round mental poker. Information
Sciences, 273:352–386, 2014.

25. Tzer-jen Wei and Lih-Chung Wang. A fast mental poker protocol. Journal of
Mathematical Cryptology, 6(1):39–68, 2012.

26. Weiliang Zhao and V. Varadharajan. Efficient ttp-free mental poker protocols.
In International Conference on Information Technology: Coding and Computing
(ITCC’05) - Volume II, volume 1, pages 745–750 Vol. 1, April 2005.

27. Weiliang Zhao, Vijay Varadharajan, and Yi Mu. A secure mental poker protocol
over the internet. In Proceedings of the Australasian Information Security Work-
shop Conference on ACSW Frontiers 2003 - Volume 21, ACSW Frontiers ’03, pages
105–109, Darlinghurst, Australia, Australia, 2003. Australian Computer Society,
Inc.

32

https://eprint.iacr.org/2018/157
https://eprint.iacr.org/2018/157
https://eprint.iacr.org/2017/573
https://eprint.iacr.org/2017/573

	21 - Bringing Down the Complexity: Fast Composable Protocols for Card Games Without Secret State

