
State-Separating Proofs: A Reduction
Methodology for Real-World Protocols

Chris Brzuska1,2, Antoine Delignat-Lavaud3,
Konrad Kohbrok1, and Markulf Kohlweiss3,4

1 Hamburg University of Technology
2 Aalto University

3 Microsoft Research Cambridge
4 University of Edinburgh

Abstract. The security analysis of real-world protocols involves reduc-
tion steps that are conceptually simple but have to handle complicated
protocol details. Taking inspiration from Universal Composability, Ab-
stract Cryptography, π-calculus and F ∗-based analysis we propose a new
technique for writing simple reductions to avoid mistakes, have more self-
contained concrete security statements, and allow the writer and reader
to focus on the interesting steps of the proof.
Our method replaces a monolithic protocol game with a collection of so-
called packages that are composed by calling each other. Every compo-
nent scheme is replaced by a package parameterized by a bit b. Packages
with a bit 0 behave like a concrete scheme, while packages with a bit
1 behave like an ideal version. The indistinguishability of the two pack-
ages captures security properties, such as the concrete pseudo-random
function being indistinguishable from a random function.
In a security proof of a real-life protocol, one then needs to flip a pack-
age’s bit from 0 to 1. To do so, in our methodology, we consider all other
packages as the reduction. We facilitate the concise description of such
reductions by a number of π-calculus-style algebraic operations on pack-
ages that are justified by state separation and interface restrictions. Our
proof method handles “simple” steps using algebraic rules and leaves
“interesting” steps to existing game-based proof techniques such as, e.g.,
the code-based analysis suggested by Bellare and Rogaway.
In addition to making simple reductions more precise, we apply our tech-
niques to two composition proofs: a proof of self-composition using a
hybrid argument, and the composition of key generating and key con-
suming components. Consistent with our algebraic style the proofs are
generic. For concreteness, we apply them to the KEM-DEM proof of
hybrid-encryption by Cramer and Shoup and the proof for composabil-
ity of Bellare-Rogaway secure key exchange protocols with symmetric-
key protocols.

1 Introduction

The proof methodology that we propose is influenced and inspired by
important conceptual works from several areas. In particular, we would

like to acknowledge the influences of Canetti’s Universal Composability
framework (UC) [15], Renner’s and Maurer’s work on random systems,
abstract cryptography and constructive cryptography [34,31,33,32], the
π-calculus [35] and miTLS, the F ?-verified analysis of TLS [22,9,10,19].
We discuss those influences in detail in Subsection 1.3, after laying some
technical groundwork. The goal of the introduction is to explain how the
practice of writing security reductions for real-life protocols changes when
adopting the proof methodology proposed in this paper. We start with a
simple example.

1.1 Example

Based on a pseudorandom function (PRF), we construct a symmetric en-
cryption scheme that is indistinguishable under chosen plaintext attacks
(IND-CPA). The goal of this example is to showcase the usefulness of
associativity of algorithm composition for the writing of reductions. We
will write the IND-CPA game in a modular way that makes the game-hop
which replaces the PRF with a random function immediate and thereby
emphasizes aspects of the security analysis that are more interesting.
Readers closely familiar with miTLS, abstract cryptography or π-calculus
might be aware of this modular writing style that exploits associativity
of algorithm composition and might prefer to skip ahead to Section 1.2.

As is good cryptographic practice, we proceed as follows:

(1) Specification of security goal: IND-CPA secure symmetric encryption.
(2) Specification of cryptographic assumptions: PRF security.
(3) Construction: We build a symmetric encryption scheme from a PRF.
(4) Reduction: Prove that if the assumption is true, then our construction

satisfies the security goal. This involves a reduction, that simulates the
IND-CPA game of the security goal (instantiated with the construc-
tion) given oracle access to the PRF game of the assumption.

(1) IND-CPA security. In the real-or-ideal formalization of IND-CPA
security, the adversary has adaptive access to an encryption oracle ENC
to which they can submit one message m at a time. The adversary either
receives an encryption of m, or an encryption of a random string of the
same length as m. The adversary then needs to distinguish whether they
receive encryptions of real messages or of random messages.5 Note that we

5 Note that this definition of IND-CPA security is equivalent (by a factor of 2) to the
standard left-or-right IND-CPA security definition, where the adversary submits two
messages and either receives an encryption of the left message or an encryption of

2

operate in the concrete security setting as it is more adequate for practice-
oriented cryptography and therefore only define advantages rather than
security in line with the critique of Rogaway, Bernstein and Lange [39,8].
Our ideas can be transferred analogously to the asymptotic setting.

We denote the interaction of the adversary with the encryption oracle
as A ◦ ENC instead of the common notation AENC (which will reveal
its convenience shortly). Moreover, we will write the name of the game
instead of the oracle name: A ◦ IND-CPAb. This convention is inessential
for the current example; it is useful in more complex settings.
Definition 1 (IND-CPA Security). Let ζ = (ζ.kgen, ζ.enc, ζ.dec) be a
symmetric encryption scheme. We define the IND-CPA advantage εζ(A)
of an adversary A as

2 ·
∣∣∣Pr

[
1←$A ◦ IND-CPA0

]
− Pr

[
1←$A ◦ IND-CPA1

]∣∣∣ .
We consider εζ as a function of the adversary and write, equivalently,

IND-CPA0 εζ
≈ IND-CPA1.

The two games IND-CPA0 and IND-CPA1 are specified in the right-most
column of Figure 6, Appendix A (We give an equivalent game shortly.).

(2) PRF security. For prf a pseudorandom function (PRF) with key
length n, we define the security game of the prf where the adversary’s
task is to distinguish between (a) the game PRF0 where the adversary
has access either to a real prf evaluation oracle EVAL and (b) the game
PRF1 where the adversary has access to an evaluation oracle EVAL that
implements a random function. For disambiguation based on the secret
bit b, we write PRFb.EVAL for the respective oracles.

PRF0.EVAL(x)
if k = ⊥ then

k ←$ {0, 1}n

y ← prf(k, x)
return y

PRF1.EVAL(x)
if T [x] = ⊥ then
T [x]←$ {0, 1}n

y ← T [x]
return y

Definition 2 (PRF Security). Let prf be a pseudorandom function
with key length n. For an adversary A, the PRF distinguishing advan-
tage of PRF0 εPRF≈ PRF1 is εPRF(A).

(3) Construction. We construct a symmetric encryption scheme ζ =
(kgen, enc, dec) out of the PRF prf, see Figure 1.

the right message. Our choice of definition is not essential here. We merely prefer
real-or-ideal games, because ideal functionalities tend to ease composition.

3

ζ.kgen

k ←$ {0, 1}n

return k

ζ.enc(k,m)

r←$ {0, 1}n

pad ← prf(k, r)
c← m⊕ pad
return (r, c)

ζ.dec(k, (r, c))

pad ← prf(k, r)
m← c⊕ pad
return m

Fig. 1: Construction of the IND-CPA secure encryption scheme ζ from
the pseudorandom function prf. For simplicity of exposition, we assume
that k, r, and pad,m, c are all of equal length n.

MOD-CPAb.ENC(m)
if b = 0 then
r←$ {0, 1}n

pad ← EVAL(r)
c← m⊕ pad

if b = 1 then
m′ ←$ {0, 1}n

r←$ {0, 1}n

pad ← EVAL(r)
c← m′ ⊕ pad

return (r, c)

(4) Reduction. We reduce the IND-CPA security
of the encryption scheme ζ to the PRF security
of prf. Towards this goal, we modularize the secu-
rity game. The package MOD-CPAb (see Figure on
the right) uses an EVAL oracle and provides an
encryption oracle ENC. When MOD-CPAb is com-
posed with PRF0, then for both b ∈ {0, 1}, the
package MOD-CPAb◦PRF0 is functionally equivalent
to IND-CPAb. The comparison is straightforward
via inlining, see Appendix A.

Let A be an adversary. In the following game-
hops, note that the prf advantage appears twice,
as the games IND-CPA0 and IND-CPA1 both use ζ.enc and thus employ
the actual PRF and not a random function.

A ◦ IND-CPA0

= A ◦ MOD-CPA0 ◦ PRF0 (Functional equivalence)
= (A ◦ MOD-CPA0) ◦ PRF0 (Associativity)

ε1(A)
≈ (A ◦ MOD-CPA0) ◦ PRF1 (PRF security, ε1(A) = εPRF(A ◦ MOD-CPA0))
= A ◦ MOD-CPA0 ◦ PRF1 (Associativity)

ε2(A)
≈ A ◦ MOD-CPA1 ◦ PRF1 (Interesting step)
= (A ◦ MOD-CPA1) ◦ PRF1 (Associativity)

ε3(A)
≈ (A ◦ MOD-CPA1) ◦ PRF0 (PRF security, ε3(A) = εPRF(A ◦ MOD-CPA1))
= A ◦ MOD-CPA1 ◦ PRF0 (Associativity)
= A ◦ IND-CPA1 (Functional equivalence)

4

The first and last transformation follow by functional equivalence (See
Figure 6, Appendix A) and are proven via inlining the implementation
of the corresponding oracles. The PRF assumption and associativity of
algorithm composition cover all other steps, except for the one labeled
interesting step, on which we focus now.

Indeed, it is the only part of the proof that might contain anything
of conceptual interest. In the interesting step, the game moves from en-
crypting the adversary’s message to encryting a random message. In both
cases, the padding is created via a random function. Are the ciphertext
distributions that the adversary sees identical in both cases? That is, does
ε2(A) equal 0, or is there some loss?

It turns out that the ciphertext distributions differ whenever there is
a collision on the randomness r. In that case, the padding is repeated and
therefore, if b = 0, xoring the two ciphertexts is equal to the xor of the two
messages that the adversary queried while if b = 1, then with overwhelm-
ing probability, this is not the case. Therefore, in the interesting step, we
need to perform a bad event analysis. Let qA be an upper bound on the
number of adversarial queries; by the birthday bound, the probability of
the bad event is at most qA2/2n−1 and thus, ε2(A) ≤ qA2/2n−1.

Our suggested writing style splits reduction proofs into different kinds
of steps. Simple steps such as functional equivalence, associativity and
using the assumption are carried out separately and algebraically and
allow to make the reduction explicit and precise, first as MOD-CPA0 then
MOD-CPA1. The second category of steps are interesting steps that can
potentially hide subtleties.

1.2 Conceptual Insights

The methodology sketched in the previous example relied on functional
equivalence and associativity of algorithm composition. Moreover, the
modularization of the proof relied on state separation. That is, in the
modularization, we separated the state of the PRF from the state of the
encryption scheme that used the PRF. All other technical insights in this
paper are guided by the following question:

Which state do cryptographic games share?

Multi-instance games From the viewpoint of state-sharing, one can quickly
observe why some multi-instance-to-single-instance reductions are straight-
forward while others are not: The easy case is the one where the multi-
instance game is merely a concatenation of several state-disjoint copies of

5

the single-instance primitive game, i.e., at most, all copies share a secret
bit b. We will see in Subsection 4.1 that indeed, the reduction from such
multi-instance games to single-instance games only involves simple steps
(i.e., standard transformations that can be specified precisely and do not
require any arguing). Avoiding multi-to-single instance reductions is one
of the motivations of composition frameworks (See Section 1.3 for a more
detailed discussion), so we see it as a sanity check that our modular proof
methodology indeed captures those proofs as simple. Note that also in
the game-based setting, general multi-instance to single-instance reduc-
tions for classes of games have been provided before (see, e.g., Bellare,
Boldyreva and Micali [5]).

Key composition. In turn, game-based composition becomes highly non-
trivial when it comes to key composition. Key composition occurs, essen-
tially, anytime when one cryptographic building block generates a string
that is used as a key by another building block. Prominent examples
here are composition of key encapsulation mechanisms (KEM) with de-
terministic encryption mechanisms (DEM) (see Cramer and Shoup [17])
as well as composing Bellare-Rogaway secure key exchange protocols with
symmetric-key based protocols such as secure channels (see Brzuska, Fis-
chlin, Warinschi, Williams [13,11]). We observe that the difficulty of key
composition proofs stems, essentially, from the sharing of state between
two cryptographic objects with independent security definitions: the key
generating game and the key consuming game. On a high-level, it is clear
that first, one proceeds by showing that the keys emerging from the key
generating game can be replaced by random keys and then, one can apply
security of the key consuming game. Technically, however, the pseudo-
code line that generates the key needs to be moved from the key gener-
ating game to the key consuming game, which is technically annoying.

We thus propose to move that line (plus some technicalities) into a
special KEY package. In the proof of our KEY composition lemma, we first
consider the KEY package part of the key generating game to move from
real keys to random keys. In the second step, we can then consider the
KEY package as part of the primitive that uses the key and reduce to
its security. Our algebraic rules allow to shift the KEY package into the
appropriate location.

Applications. Using our KEY composition lemma, we rewrite the CCA-
secure KEM-DEM composition proof by Cramer and Shoup [17] whose
original proof was written mostly in prose. Here, the application of our
lemma is preceded by a functional equivalence step and then, the lemma

6

can be directly applied. Our proof is more precise than the proof by
Cramer and Shoup, but our proof is not shorter, when one takes into
account the functional equivalence step. The main observation here is
that only one functional equivalence step is needed, although there are two
reductions. For larger real-world protocols, also only one large functional
equivalence step is needed, although there are several reductions.

As as second application, we capture the original composition proof
for composing Bellare-Rogaway forward-secure key exchange protocols
with single-session reducible symmetric-key protocols by Brzuska, Fis-
chlin, Warinschi and Williams (BFWW) [13]. Note that our composition
theorem only uses algebraic rules. We hope that thereby, we clarify the
original composition proof and make it more precise by giving concise de-
scriptions of all reductions. Concretely, we prove the composition theorem
using a multi-instance version of the key composition lemma.

Scope of our method. Our method considers distinguishing games for
single-stage adversaries [38], that is, we do not consider games where the
adversary is split into two algorithms whose communication/state-sharing
is restricted. Although suitable extensions might exist (e.g., by extending
adversaries into packages that can call each other), this is an actual re-
striction of our current method. Another seeming – but not an actual –
restriction is that we encode all security properties as indistinguishability
between two games. Search problems such as strong unforgeability can
also be encoded via indistinguishability. While the encoding might seem
surprising when not used to it, at a second thought, an appropriate en-
coding of an unforgeability game also simplifies game-hopping: Imagine
that we insert an abort condition whenever a message is accepted by veri-
fication that was not signed by the signer. This step actually corresponds
to idealizing the verification of the signature scheme so that it only ac-
cepts messages that were actually signed before. Finally, our method does
not consider recursions, i.e. oracles that call themselves, or oracles that
contain infinite loops.

We now discuss related ideas and then introduce our proof method-
ology.

1.3 Related Techniques

Our perspective is on improving the (hand-written) security proofs of
real-world protocols [26,29,20,16]. Such proofs typically contain large re-
ductions relating a complex monolithic game to each cryptographic as-
sumption through an intricate simulation of the protocol.

7

To manage the complexity we were inspired by modular techniques
from both the field of cryptography and programming.

Cryptography. Modular a.k.a. composable proofs in the pen-and-paper
world as pioneered by Backes, Pfitzmann, Waidner, and Canetti have a
17-year long history full of rich ideas [1,15,30,37,23,24,43], such as the
idea of an environment that cannot distinguish a real protocol from an
ideal variant with strong security guarantees. This might be obvious in
retrospect, but is foundational for any compositional approach.

Likewise, Maurer’s and Renner’s work on random systems, abstract
cryptography and constructive cryptography [34,31,33,32] inspired and
encouraged our view that a more abstract and algebraic approach to cryp-
tographic proofs is possible and desirable. Indeed several of our concepts
have close constructive cryptography analogues:

A core idea of the proof writing technique presented in this paper
is derived from the associativity of function and algorithm composition.
This has been termed composition-order independence in Maurer’s frame-
works [32].

The idea of associativity and parallel composition relates to the idea
of cryptographic algebras. An ambitious expression of the idea is found
in Section 6.2 of [33]. Abstract cryptography has an associativity law and
neutral element for serial composition and an interchange law for paral-
lel composition. This line of work [33,32] also introduces a distinguishing
advantage between composed systems and makes use of transformations
that move part of the system being considered into and out of the distin-
guisher. Our focus is not on definitions but on writing proofs and we thus
employ these techniques in game-based security proofs. As such we are
also influenced by work on game-based composition by Brzuska, Fischlin,
Warinschi, and Williams [13].

Programming. Algebraic reasoning is also at the core of process cal-
culi (or process algebras) such as the π-calculus by Milner, Parrow and
Walker [35]. The primary focus of such calculi is on the modelling of con-
currency using non-determinism, but research inspired by probabilistic
process algebras has applied these techniques to computational cryptog-
raphy by Mitchell, Ramanathan, Scedrov and Teague [36] and Barthe,
Crespo, Lakhnech and Schmidt [3].

The associativity of monadic composition, a generalisation of function
composition to effectful programs, is an important structuring principle of
functional programming languages such as Haskell, F] and F∗ [27,41,40].
Our concept of packages for which we defined the associative composition

8

operator ◦ is heavily inspired by modules in programming languages such
as F], OCaml, and ML, see, e.g., Tofte [42]. Our oracles can be consid-
ered stateful functions that operate on the local state of a package. It
is the same state-separation that enables composition in cryptographic
frameworks.

Existing techniques for overcoming the crisis of rigour in provable
security as formalised by Bellare and Rogaway [7] and mechanised in
Easycrypt [4] have focused on the most intricate aspects of proofs. While
Easycrypt has a module system as found in functional programming lan-
guages [2], it has not been used to simplify reasoning about large reduc-
tions in real-world protocols.

We make use of packages and algebraic reasoning to give concrete re-
ductions with concise descriptions. For example, jumping ahead, in Sec-
tion 2.1 (see especially Figure 2), we first use the interchange rule to
move the key consuming package into the reduction to the security as-
sumption of the key generating package, and then, we do the converse.
I.e., we use the interchange rule to move the key generating package into
the reduction to the security assumption of the key consuming package.

The closest to our idea of packaged reductions is the modular structure
of miTLS, an F ?-verified implementation of TLS [22,9,10,19]. The insight
of Fournet, Kohlweiss and Strub [22] was that code-based game rewriting
could be done on actual code, one module at a time, with the rest of the
program becoming the reduction for distinguishing the ideal from the real
version of the module. In this paper we move in the other direction back
to the pen-and-paper world.

2 Proof Methodology

The PRF and IND-CPA games considered in the introduction are very
simple, because each game only has a single oracle. However, many games
have several oracles, e.g., the security game for indistinguishability under
chosen ciphertext attacks (IND-CCA) provides an encryption oracle and a
decryption oracle to the adversary. In cryptographic literature, we use the
words game and oracle rather loosely. In this paper, we want to give those
terms precise meaning. A game is an interactive, stateful algorithm and
the oracles a.k.a. queries specify how the game updates its state and which
output is returned to the adversary. In fact, sometimes, oracle calls are
made within the game. For example, consider the IND-CCA encryption
game in the random oracle model: Here, the game provides an encryption
oracle, a decryption oracle and a random oracle to the adversary. When

9

the adversary makes a query to the encryption oracle, then the encryption
oracle makes an internal query to the random oracle. To summarize, a
game provides several oracles that can also internally call each other and
that operate on a joint state.

We now introduce the general definition of packages that subsumes
adversaries, games and reductions. Let us focus on reductions for a mo-
ment, what is the difference between a reduction and a game? On the one
hand, reductions and games are quite similar, because they both provide
oracles to the adversary. However, the game’s oracles only make queries
to internal oracles of the game. In turn, the reduction also makes queries
to the external game. That is, a reduction has two sides, so to speak, an
output side where the reductions answers queries from the adversary, and
an input side where the reduction makes queries to the game. Therefore,
packages too have two sides. A game will then just be a special case of a
package where the input side is empty.

We begin by introducing oracles formally.

Definition 3 (Oracle). An oracle O is an interactive stateful algorithm
that operates on some state Σ, a set of parameters Π and has a name
O.name. If another algorithm interacts with an oracle, we say the algo-
rithm “calls” or “queries” the oracle. When calling the oracle, the caller
can provide the oracle with an input. Upon termination, the oracle will
return some value.

We will usually write O to denote both the oracle and its name O.name,
unless context requires further clarification.

A package consists of a set of oracles and an internal state, on which all
(and only) the oracles in the set operate. When an oracle O is contained
in a package’s set of oracles, we say that the package contains O. If a
package M contains oracle O, we sometimes address the oracle with M.O.
Additionally, every package has an input interface and an output interface,
where each interface is a set of oracle names. The output interface is
a subset of the set of names of oracles contained in the package and
corresponds to the oracles that can be called from the outside of the
package, e.g., by an adversary. When an oracle name is part of the output
interface, then we say that the package provides the oracle with that
name. In turn, the input interface contains a name list of oracles that are
external to the package itself and that the package can makes calls to.

Definition 4 (Package). A package M consists of a set of oracles Ω,
some internal state Σ and a set of parameters Π, as well as an input

10

interface in(M) and an output interface out(M), which are sets of oracle
names. For all oracles O ∈ Ω, the following holds

– O can access parameters Π and only operate directly on state in Σ.
– O can only be called by oracles O′ /∈ Ω, if O.name ∈ out(M).
– O can make calls to oracles O′iff O′.name ∈ in(M) ∧ O′ /∈ Ω.

Note, that we do not allow “internal” calls, where for some package M with
oracles Ω, an oracle O ∈ Ω calls another oracle O′ ∈ Ω. This is without
loss of generality, as we can inline the code of O′ in the places where O
would do the calls.

Parameters and state. State and parameters of a package can be accessed
by all oracles contained in the package. We annotate the set of param-
eters Π of a package M in superscript: MΠ . Note that MΠ and MΠ

′ are
different packages if Π 6= Π ′ and that different packages have disjoint
state and oracles. The state Σ of a package contains all variables that are
used by any of the oracles, and the variables are initialized generically:
Sets are initialized as ∅, arrays are initially empty. Variables of any other
kind are initialized as ⊥. Value ⊥ indicates an uninitialized value or error.

Oracles. An oracle is bound to the state and the parameters it operates on.
I.e., two different packages M, M′ can contain oracles O,O′ with the same
functional description, yet operating on different states and parameters.

We can model the PRF game from the introduction as a package
PRFb, b ∈ {0, 1}, that contains the oracle EVAL. As the EVAL oracle can
be queried from outside the package (e.g., by an adversary), we have
out(PRFb) = {EVAL} and as EVAL makes no queries to other oracles, we
have in(PRFb) = ∅. Being a common object in cryptography, we call a
package with an empty input interface a game:

Definition 5 (Game). Let M be a package; M is a closed package or
game, if in(M) = ∅.

Package composition. Let us revisit the IND-CPA game from the intro-
duction. The package MOD-CPAb contains an ENC oracle and has interfaces
in(MOD-CPAb) = {EVAL} and out(MOD-CPAb) = {ENC}. We obtain a game
or closed package by composing MOD-CPAb with PRF0. We write the afore-
mentioned composition as MOD-CPAb ◦ PRF0, using the operator ◦ which is
more convenient for us than the superscript notation (i.e., MOD-CPAbPRF0

).
We say that M matches the output interface of N iff in(M) ⊆ out(N).

11

Definition 6 (Circle Operator). Let M and M′ be two packages with
states Σ,Σ′, oracle sets Ω,Ω′, and in(M) ⊆ out(M′). Then we call P := M◦M′
the package composition of M and M′ with state ΣP = Σ]Σ′, in(P) = in(M′)
and out(P) = out(M). We define ΩP := Ω, where for all calls from oracles
O ∈ Ω to oracles O′ ∈ Ω′ we replace the call with the oracle code from
O′.

Inlining. Our pseudo-code language only has precise but not formal se-
mantics (in the sense of formal programming languages) (yet). We con-
sider a language without recursion or infinite loops. Note that when in-
lining, formally, we need to prefix all variable names with the name of
their original package to avoid variable collisions. For example a variable
v of a package M, will be renamed to M.v. If no collisions are present, we
skip the renaming to ease readability.

State of composed packages. When composing two packages such that
P = M ◦ M′, the state of packages M and M′ is merged and can not be
addressed individually anymore. Instead, we now only have the state of
P, which can be modified through calls to oracles in in(P). Note, however,
that internally to package P, one can still conceive of the different parts
of the state of P and see that those parts only influence each other by
what would have been an oracle call before composition. We refer to this
property as state separation.

Uniqueness. Note, that we can’t use the same package twice when de-
scribing a package composition, i.e., it is not possible to have compositions
such as (M ◦ M’ ◦ M). In particular, the state of such an expression would
not be well-defined, and the concept of state separation would be very
unclear if repetitions were allowed. This would be similar to copies of
pointers to the same state (a.k.a. aliases).

Lemma 1 (Associativity). Package composition is associative, i.e., for
three package A, M and N with in(M) ⊆ out(N) and in(A) ⊆ out(M), we
have that (A ◦ M) ◦ N = A ◦ (M ◦ N).

Thus, the package P := A ◦ M ◦ N is well-defined and its interfaces are
in(P) = in(N) and out(P) = out(A).

Proof sketch. Associativity holds because one can first inline procedures
of M in A, (this corresponds to A ◦ M), and then inline procedures of N in
(A◦ M), or one can inline procedures of N in M (this corresponds to M ◦ N),
and then inline the resulting procedures in A. In both cases we obtain

12

exactly the same program text. When we fix formal semantics, then this
argument becomes formal.

Adversaries. After defining the traditional cryptographic game in terms
of packages (or the composition of such), we now turn to adversaries.
Traditionally, an adversary A is an algorithm that interacts with a set
of oracles with the goal of achieving a certain winning condition. In this
paper, we only consider distinguishing adversary that return a bit 0 or 1.
We model the adversary as a package whose input interface is equal to
the set of names of the oracles of the game that the adversary is meant to
interact with. In turn, the output interface of the adversary only contains
the oracle RUN and returns the guess of the adversary.

Definition 7 (Adversary). We call a package A an adversary against
a game G, if in(A) = out(G) and out(A) = {RUN}.

Definition 8 (Distinguishing Advantage). For two games Game0 and
Game1 with the same output interface out(Game0) = out(Game1) and an ad-
versary A with in(A) = out(Game0), the distinguishing advantage εGame(A)
of Game0 εGame≈ Game1 is equal to 2·

∣∣Pr
[
1←$A ◦ Game0]− Pr

[
1←$A ◦ Game1]∣∣.

Lemma 2 (Triangle Inequality). Let Game0, Game1 and Game2 be games
such that out(Game0) = out(Game1) = out(Game2). If Game0 ε1≈ Game1,
Game1 ε2≈ Game2, and Game0 ε3≈ Game2, then ε3 ≤ ε1 + ε2.

The triangle inequality helps to sum up game-hops. Many game-hops will
exploit simple associativity, as the following lemma illustrates.

Lemma 3 (Composition). Let Game0 and Game1 be games with the
same output interface out(Game0) = out(Game1) and let M be a package
such that in(M) ⊆ out(Game0). Let A be an adversary that matches the
output interface of M, then for b ∈ {0, 1} the adversary D := A◦M satisfies,

Pr
[
0←$A ◦ (M ◦ Gameb)

]
= Pr

[
0←$D ◦ Gameb

]
.

As a corollary, we obtain

A ◦ M ◦ Game0 ε(A)
≈ A ◦ M ◦ Game1 (for ε(A) = εGame(A ◦ M)) .

Proof. The proof follows by the definition of D = A ◦ M and associativity
of package composition, i.e., A◦ (M◦Gameb) = (A◦M)◦Gameb = D◦Gameb.

13

The comma operator which we define now is essentially a disjoint
union operator that takes two packages and builds a new package that
implements both of them in parallel. It is important to note that only the
output interfaces of M and N need to be disjoint, while they can potentially
share input oracles. This feature allows for parallel composition of several
packages that use the same input interface.
Definition 9 (Comma-Bracket Operator [. , .]). The operator

[M, N]

takes as input packages M and N such that out(M) ∩ out(N) = ∅. For the
resulting package P := [N, N], we get in(P) = in(M) ∪ in(N) and out(P) =
out(M)]out(N). The package [N, M], when receiving a query to an oracle O,
runs M on the query if O.name ∈ out(M), or it runs N if O.name ∈ out(N).

Lemma 4. The comma-bracket operator is commutative and associative.

We omit the proof. Associativity of the comma-bracket operator allows
us to write [M1, . . . , Mn] for the parallel composition of multiple packages.

Lemma 5 (Interchange Rule). If package M matches out(O), package
N matches out(P), and out(O) ∩ out(P) = ∅, then

[M, N] ◦ [O, P] = [M ◦ O, N ◦ P] .

Proof sketch. We again sketch the proof using inlining semantics. Consider
the package [M, N]. We inline the package [O, P]. However, as M only makes
queries to O and as N only makes queries to P, the inlining is a disjoint
operation and we obtain [M ◦ O, N ◦ P].

Identity packages. Some proofs and definitions make one or more oracles
of a package unavailable to the adversary, which we capture as follows.
Definition 10 (Identity Packages). Let S be a set of oracle names. An
identity package IDS has interfaces in(IDS) = out(IDS) = S. It contains
oracles O, where O.name ∈ S. Each oracle O of IDS, on receiving an
input x, calls the equally named oracle O from the input interface on x
and returns the answer.

Lemma 6 (Identity Rule). Let M and N be packages and in(M) ⊆ S ⊆
out(N). Then the following equivalence is called the identity rule:

M ◦ N = M ◦ IDS ◦ N

As a corollary of the rule we have M = M ◦ IDin(M) and N = IDout(N) ◦ N.

14

Proof sketch. Since we have in(M) ⊆ S = out(IDS) = in(IDS) = S ⊆
out(N), M matches out(IDS) and IDS matches out(N). Also, since IDS sim-
ply forwards any queries, functionality does not change. The corollaries
follow from in(M) ⊆ in(M) and out(N) ⊆ out(N) always holding regardless
of further composition.

2.1 KEY Package Composition

Many cryptographic constructions emerge as compositions of two crypto-
graphic building block: The first building block generates the (symmetric)
key(s) and the second building block uses the (symmetric) key(s). Com-
position of key encapsulation mechanisms (KEM) with a deterministic
encryption mechanism (DEM) is built this way. Likewise, complex proto-
cols such as TLS first execute a key exchange protocol to use the session
keys for a secure channel. In composition proofs, the key generating build-
ing block and the key-consuming building block thus share some state,
namely the (symmetric) key(s).

To ease the sharing of state, we now introduce a key package KEYλ

which can store a single6 key k in its internal state. The key package KEYλ

handles the key via its oracles GEN, SET and GET. It is parameterized by
a key length λ. GEN (and SET) can be used to initialize the key with a
random value of length λ (or a specific value). GET requires the key to
be initialized via GEN or SET before it can be called. We now define the
KEYλ package and then show how to use it for composing a key-generating
package with a key-consuming package.

Definition 11 (KEY Package). Let λ ∈ N. We define in(KEYλ) = ∅ and
out(KEYλ) = {GEN,SET,GET}, where the oracles are described as follows:

GEN()
assert k = ⊥
k←$ {0, 1}λ

SET(k′)
assert k = ⊥
k ← k′

GET()
assert k 6= ⊥
return k

Definition 12 (Key Generating Package). Let λ ∈ N. We call Ab,
b ∈ {0, 1} a key generating package if in(A0) = {SET}, in(A1) = {GEN}
and out(A0) = out(A1). We define[

A0, ID{GET}
]
◦ KEYλ

εA≈
[
A1, ID{GET}

]
◦ KEYλ

Definition 13 (Key Consuming Package). Let λ ∈ N. We call Bd,
d ∈ {0, 1}, a key consuming package if in(Bd) = {GET} and out(B0) =

6 We discuss the multi-instance variant in Section 4.

15

out(B1). We define[
ID{GEN}, B

0
]
◦ KEYλ

εB≈
[
ID{GEN}, B

1
]
◦ KEYλ

Definition 14 (Compatible Packages).We call a key-consuming pack-
age Bd, d ∈ {0, 1}, and a key-generating package Ab, b ∈ {0, 1} compatible
if they use KEYλ packages with the same λ ∈ N, and for all b, d ∈ {0, 1},

out(Ab) ∩ out(Bd) = ∅.

Lemma 7 (Single Key Lemma). Let Ab, b ∈ {0, 1} be a key generating
package and Bd, d ∈ {0, 1} a key consuming package such that the two are
compatible with λ ∈ N. Then we have that[

A0, B0
]
◦ KEYλ

ε≈
[
A0, B1

]
◦ KEYλ, (1)

where for all adversaries A, ε(A) is less or equal to

εA
(
A ◦

[
IDout(A), B

0
])

+ εB
(
A ◦

[
A1, IDout(B)

])
+ εA

(
A ◦

[
IDout(A), B

1
])
.

A

B

KEYA

SET/
GEN

GET

A

B

KEYA
GEN

GET

Fig. 2: Reduction to the key providing cryptographic building block (left)
and reduction to the key consuming cryptographic building block (right).

Proof. The proof proceeds by (1) idealizing the key providing game (left
side of Fig. 2, SET switches to GEN), (2) idealizing the key consuming
game (right side of Fig. 2) and (3) de-idealizing the key providing game
again (left side of Fig. 2, GEN switches to SET).

Technically, we use the algebraic rules introduced in Section 2 to trans-
form the construction such that we can apply Def. (12) and Def. (13).

16

Idealizing the key providing game. The first intermediate goal is to bring
the package into a shape where we can use Def. 12 to change A0 into A1,
which happens in the first 4 lines. Below, for all adversaries A, we have
ε1(A) = εA

(
A ◦

[
IDout(A), B0

])
.[

A0, B0
]
◦ KEYλ

=
[
IDout(A), B

0
]
◦
[
A0, ID{GET}

]
◦ KEYλ identity & interchange

ε1≈
[
IDout(A), B

0
]
◦
[
A1, ID{GET}

]
◦ KEYλ Def. 12

=
[
A1, B0

]
◦ KEYλ interchange & identity

Idealizing the key consuming game. Now, as a second step, we want to
use Def. 13 to move from B0 to B1. Towards this goal, we need to make
ID{GEN} appear. Note that we can use ID{GEN} because {GEN} is equal
to the input interface of A1. This was not possible before idealizing to
A1, since in(A0) = {SET}. Below, for all adversaries A, we have ε2(A) =
εB
(
A ◦

[
A1, IDout(B)

])
.[

A1, B0
]
◦ KEYλ

=
[
A1, IDout(B)

]
◦
[
ID{GEN}, B

0
]
◦ KEYλ identity & interchange

ε2≈
[
A1, IDout(B)

]
◦
[
ID{GEN}, B

1
]
◦ KEYλ Def. 13

=
[
A1, B1

]
◦ KEYλ interchange & identity

Deidealizing the key providing game. Finally, we need to move back from
A1 to A0, which will be the inverse steps of the operations we did in the
beginning of the proof. Below, for all adversaries A, we have ε3(A) =
εA
(
A ◦

[
IDout(A), B1

])
.[

A1, B1
]
◦ KEYλ

=
[
IDout(A), B

1
]
◦
[
A1, ID{GET}

]
◦ KEYλ identity & interchange

ε3≈
[
IDout(A), B

1
]
◦
[
A0, ID{GET}

]
◦ KEYλ Def. 12

=
[
A0, B1

]
◦ KEYλ interchange & identity

17

To obtain the desired upper bound on ε(A), we use the triangle in-
equality and sum up the advantages which concludes the proof of Lemma 2.

ε1(A) + ε2(A) + ε3(A)

=εA
(
A ◦

[
IDout(A), B

0
])

+ εB
(
A ◦

[
A1, IDout(B)

])
+ εA

(
A ◦

[
IDout(A), B

1
])

3 KEM-DEMs

We now use the KEY package composition introduced in the previous sec-
tion to give a new formulation of the KEM-DEM proof by Cramer and
Shoup [17, §7] which shows that composing a CCA-secure key encapsula-
tion mechanism (KEM) and a CCA-secure data encapsulation mechanism
(DEM) yields a CCA secure public-key encryption (PKE).

We denote PKE schemes by ζ = (kgen, enc, dec), using standard no-
tation and semantics. We denote DEM schemes by θ = (kgen, enc, dec),
where we recall that enc is a deterministic algorithm. We will prepend al-
gorithm names by ζ and θ for disambiguation. We denote KEM schemes
by η = (kgen, encap, decap), where kgen produces a key pair (pk, sk),
encap(pk) generates a symmetric key k of length η.λ and a key encapsu-
lation c, while decap(sk, c) given sk and an encapsulation c returns a key
k. For all three schemes, we consider perfect correctness. Throughout this
section, we consider a single symmetric-key length λ that corresponds to
the length of the symmetric key used by the DEM scheme as well as the
length of the symmetric key produced by the encapsulation mechanism
η.encap. We now turn to the security notions which are the standard
IND-CPA security notions for all three primitives.

Definition 15 (PKE-CCA). Let ζ be a PKE-scheme. For b ∈ {0, 1},
in(PKE-CCAb,ζ) = ∅ and out(PKE-CCAb,ζ) = {PKGEN,PKENC,PKDEC},
where the oracles are defined as follows.

PKGEN()
assert sk = ⊥
pk, sk←$ ζ.kgen()
return pk

PKENC(m)
assert pk 6= ⊥
assert c = ⊥
if b = 0 then
c←$ {0, 1}|m|

else
c←$ ζ.enc(pk,m)

return c

PKDEC(c′)
assert sk 6= ⊥
assert c′ 6= c

m← ζ.dec(sk, c′)
return m

We denote the PKE-CCA advantage as PKE-CCA0,ζ ε
ζ
PKE-CCA≈ PKE-CCA1,ζ .

18

We model the KEM as a key producing and the DEM as a key consuming
package. In the description of our definitions, we will use the KEYλ package
as specified in Definition 11.
Definition 16 (KEM-CCA). Let η be a KEM. For d ∈ {0, 1}, we
define input interface in(KEM-CCAd,η) = {SET,GEN} and output inter-
face out(KEM-CCAd,η) = {KEMGEN,ENCAP,DECAP}, where the oracles
of KEM-CCAd,η are defined as follows:

KEMGEN()
assert sk = ⊥
pk, sk ←$ η.kgen()
return pk

ENCAP()
assert pk 6= ⊥
assert c = ⊥
k, c←$ η.encap(pk)
if b = 0 then

SET(k)
else

GEN()
return c

DECAP(c′)
assert sk 6= ⊥
assert c′ 6= c

k ← η.decap(sk, c′)
return k

We denote the KEM-CCA advantage as[
KEM-CCA0,η, ID{GET}

]
◦ KEYη.λ

εηKEM-CCA≈
[
KEM-CCA1,η, ID{GET}

]
◦ KEYη.λ.

Definition 17 (DEM-CCA). Let θ be a DEM. For b ∈ {0, 1}, we define
input interface in(DEM-CCAb,θ) = {GET} and output interface out(DEM-CCAb,θ) =
{ENC,DEC}, where the oracles of DEM-CCAb,θ are defined as follows:

ENC(m)
assert c = ⊥
k ← GET()
if d = 0 then
c←$ {0, 1}|m|

else
c←$ θ.enc(k,m)

return c

DEC(c′)
assert c 6= c′

k ← GET()
m← θ.dec(k, c′)
return m

We denote the DEM-CCA advantage as[
DEM-CCA0,θ, ID{GEN}

]
◦ KEYθ.λ

εθDEM-CCA≈
[
DEM-CCA1,θ, ID{GEN}

]
◦ KEYθ.λ.

3.1 Composition and Proof

We prove that the PKE scheme obtained by composing a KEM-CCA
secure KEM and a DEM-CCA secure DEM is PKE-CCA secure.

19

Construction 1 (KEM-DEM Construction) Let η be a KEM and θ
be a DEM. We define the PKE scheme ζ as follows:

ζ.kgen()
return η.gen()

ζ.enc(pk,m)
k, c1 ←$ η.encap(pk)
c2 ← θ.enc(k,m)
return c1||c2

ζ.dec(sk, c)
c1||c2 ← c

k ← η.decap(sk, c1)
m← θ.dec(k, c2)
return m

Theorem 1 (PKE Security of the KEM-DEM Construction). Let
ζ be the PKE scheme in Construction 1. For adversaries A, we have that

εζPKE-CCA(A) ≤ εηKEM-CCA

(
A ◦ MOD-CCA ◦

[
IDout(KEM-CCA0,η), DEM-CCA0,θ

])
+εθDEM-CCA

(
A ◦ MOD-CCA ◦

[
KEM-CCA1,η, IDout(DEM-CCA0,θ)

])
+εηKEM-CCA

(
A ◦ MOD-CCA ◦

[
IDout(KEM-CCA0,η), DEM-CCA1,θ

])
,

where out(MOD-CCA) = out(PKE-CCAζ,0), the oracles of MOD-CCA are de-
fined in Fig. 3, and in(MOD-CCA) = out(DEM-CCA0,θ) ∪ out(KEM-CCA0,η).

PKGEN()

assert pk = ⊥
pk ← KEMGEN()
return pk

PKENC(m)

assert pk 6= ⊥
assert c = ⊥
c1 ← ENCAP()
c2 ← ENC(m)
c← c1||c2

return (c)

PKDEC(c′)

assert pk 6= ⊥
assert c 6= c′

c′1||c′2 ← c′

if c′1 = c1 then
m← DEC(c′2)

else
k′ ← DECAP(c′1)
m← θ.dec(k′, c′2)

return m

Fig. 3: MOD-CCA construction.

In Appendix D, we prove via code comparison that for b ∈ {0, 1},

PKE-CCAb,ζ = MOD-CCA ◦
[
KEM-CCA0,η, DEM-CCAb,θ

]
◦ KEYλ.

20

Thus, for all adversaries A, we can now apply Lemma 7 to the adversary
B = A ◦ MOD-CCA, as KEM-CCAd,η, d ∈ {0, 1} is indeed a key generating
package, DEM-CCAb,θ, b ∈ {0, 1} is indeed a key consuming package, and
the two are compatible. For all adversaries B, we denote

B◦
[
KEM-CCAη,0, DEM-CCAθ,0

]
◦KEYλ

ε(B)
≈ B◦

[
KEM-CCAη,0, DEM-CCAθ,1

]
◦KEYλ.

Thus, via Lemma 7, we obtain that for all adversaries B, the value ε(B)
is less or equal to

εζPKE-CCA(A) ≤ εηKEM-CCA

(
B ◦

[
IDout(KEM-CCA0,η), DEM-CCA0,θ

])
+εθDEM-CCA

(
B ◦

[
KEM-CCA1,η, IDout(DEM-CCA0,θ)

])
+εηKEM-CCA

(
B ◦

[
IDout(KEM-CCA0,η), DEM-CCA1,θ

])
,

Plugging in B = A ◦ MOD-CCA concludes the proof.

4 Multi-Instance Packages and Composition

Cryptographic primitives are usually not used in isolation, but rather are
executed, concurrently, by many different users with different keys. Now
consider a game B which is used to model the security of a cryptographic
primitive or protocol, e.g., a secure channel or an authenticated encryp-
tion scheme.

A simple way to have the adversary interact with multiple instances
is to use the comma-bracket operator and n packages B. To distinguish
the different instances, we introduce an additional index parameter i with
0 < i ≤ n. For convenience, we here use the array notation instead of the
superscript notation (which we use for other parameters).

A ◦ [B[1], B[2], B[3], . . . , B[n]] = A ◦ B[1..n].

Recall, that a requirement for using the comma-bracket operator is that
the output interfaces of B[i] for 1 ≤ i ≤ n have no intersection. We
accomplish this by including the index in the oracle names. We define the
packages with multiple instances formally as follows:

Definition 18 (Package Instances). Let B be a package with a set of
oracles Ω operating on state Σ. For all j, i ∈ N, j 6= i, we denote by Σ[i]
and Σ[j] disjoint copies of Σ. For O ∈ Ω, we denote by O[i] the oracle

21

that operates as O, except that it uses the variables in state Σ[i]. We
denote by O[i] the oracle that behaves as O[i] except that, whenever O[i]
calls an oracle O′, then O[i] calls an oracle O′[i]. We denote by B[i] and
B[i] an instance of B with state Σ[i], where out(B[i]) := {O[i]|O ∈ out(B)}
and out(B[i]) := {O[i]|O ∈ out(B)}, as well as in(B[i]) := {O[i]|O ∈ in(B)}
and in(B[i]) := in(B). For n ∈ N, we define B[1..n] := [B[1], .., B[n]] and
B[1..n] := [B[1], .., B[n]].

4.1 Multi-Instance Lemma

We introduce a multi-instance lemma that allows us to turn arbitrary
games using symmetric keys into multi-instance games.

Lemma 8 (Multi-Instance Lemma). Let Mb be a game with distin-
guishing advantage εM. Then for any number n of instances, adversaries
A, and reduction R that samples i←$ {1, . . . , n} and runs [M0[1..i − 1],
IDout(M)[i], M1[i+ 1..n]] we have

εM[1..n](A) ≤ n · εM(A ◦R)

See Appendix B we provide a systematic recipe for hybrid arguments and
instantiate it for the proof of this lemma.

From multi-instance to unbounded instance. We see multi-instance games
primarily as a proof technique. Moving from multi-instance games to un-
bounded instance games requires an additional proof step.

Consider an unbounded instance game U, e.g., with interface in(U) =
{Gen,O′} where oracle O′ takes a handle returned by the instance generat-
ing oracle Gen as input. We introduce a module A with out(A) = {Gen,O′}
and in(A) = {B[i..n].O}. In the proof, we can bound the number of queries
made by A to GEN by n and use a functional equivalence proof step to
show that A ◦ Ub = A ◦ A ◦ Bb[1..n].

The following lemma states that the multi-instance operator [1..n]
commutes with the operators ◦, [., .] and ID.

Lemma 9 (Multi-Instance Interchange). Let M and N be packages
such that M matches the output interface of N. Let P be a packages such
that out(M) and out(P) are disjoint. Let S be set of queries. Then, for any

22

number n of instances, the following hold:

(M ◦ N)[1..n] =M[1..n] ◦ N[1..n]
[M, P][1..n] =[M[1..n], P[1..n]]

IDS[1..n] =IDS [1..n]
M[i] =IDout(M)[i] ◦ M

Proof. Firstly, note that the package M[1..n] ◦N[1..n] is well-defined, since
M[1..n] matches the input interface of N[1..n] due to Definition ??. More-
over, note that [M[1..n], P[1..n]] is well-defined due to the disjointness con-
dition observed in Equation ??. In the following, each of the three columns
corresponds to a proof of one equation. We omit the proof of the fourth
equation.

M [1..n] ◦N [1..n]
= [M [1], . . . ,M [n]] ◦ [N [1], . . . , N [n]]
= [M [1] ◦N [1], . . . ,M [n] ◦N [n]]
= (M ◦N)[1..n]

[M [1..n], P [1..n]]
= [[M [1], P [1]]..[M [n], P [n]]
= [M,P][1..n]

in(IDS [1..n])
= S[1] ∪ · · · ∪ S[n]
= S[1..n]
= in(IDS[1..n])

4.2 Multi-Instance Key Lemma

We now combine key composition and multi-instance lemmas. For this
purpose, we use a multi-instance version of the following single-instance
package CKEY. In contrast to the simpler KEY package, CKEY allows for
corrupted keys (whence the name CKEY) and, consequently, needs to allow
the symmetric-key protocol to check whether keys are honest.

Definition 19 (CKEY Package). The CKEY package is parameterized with
a key length parameter λ ∈ N and has input interface in(CKEY) = ∅ and
out(CKEY) = {GEN,SET,CSET,GET,HON}.

GEN()

assert k = ⊥
k←$ {0, 1}λ

h← 1

SET(k′)

assert k = ⊥
k ← k′

h← 1

CSET(k′)

assert k = ⊥
k ← k′

h← 0

GET()

assert k 6= ⊥

return k

HON()

assert h 6= ⊥

return h

Fig. 4: Oracles of the CKEYλ package.

23

The corruptible key providing package is multi-instance and can set
corrupty keys via the CSET oracle. The corruptible key consuming pack-
age will be turned into a multi-instance package later and can access the
honesty status of keys via the HON oracle.

Definition 20 (Corruptible Key Generating Package). We call Ab,
b ∈ {0, 1} a key generating package if in(A0) = {SET,CSET} and in(A1) =
{GEN,CSET}. For n, λ ∈ N, we define[

A0, ID{GET,HON}
]
◦ KEYλ[1..n] εA≈

[
A1, ID{GET,HON}

]
◦ KEYλ[1..n]

Definition 21 (Corruptible Key Consuming Package). We call Bd,
d ∈ {0, 1} a key consuming package if in(Bd) = {GET,HON}. For λ ∈ N,
we define [

ID{GEN,CSET}, B
0
]
◦ KEYλ

εB≈
[
ID{GEN,CSET}, B

1
]
◦ KEYλ

Key generating and consuming packages A and B are compatible if for all
n ∈ N, out(A) ∩ out(B[1..n]) is empty and their key length parameters λ
match.
Lemma 10 (Multi-Instance Key Lemma). Let Ab, b ∈ {0, 1} be a
corruptible key generating package and Bd, d ∈ {0, 1} a corruptible key
consuming package such that the two are compatible with n, λ ∈ N.[

A0, B0[1..n]
]
◦ CKEYλ[1..n] ε≈

[
A0, B1[1..n]

]
◦ CKEYλ[1..n]

where for all adversaries A,

ε(A) ≤ εA
(
A ◦

[
IDout(A), B

0[1..n]
])

+ n · εB
(
A ◦

[
A1, IDout(B[1..n])

]
◦ R

)
+ εA

(
A ◦

[
IDout(A), B

1[1..n]
])
,

where reduction R samples i←$ {1, . . . , n} and implements the package
[M0[1..i− 1], IDout(M)[i], M1[i+ 1..n]], where M0 = [ID{GEN,CSET}, B0] ◦ CKEYλ

and M1 = [ID{GEN,CSET}, B1] ◦ CKEYλ.

Proof. On a high-level, the proof of this lemma consists of two parts: We
need to invoke the multi-instance lemma on the key-consuming package,
and then, we need to carry out a proof that is analogous to the proof of the
single-instance key composition lemma. In particular, we proceed again
by idealizing the key providing game, then idealizing the key consuming
game and finally deidealizing the key providing game.

24

Multi-instance lemma. We start by invoking the multi-instance lemma
(Lemma 8) with M0 = [ID{GEN,CSET}, B0]◦CKEYλ and M1 = [ID{GEN,CSET}, B1]◦
CKEYλ. By applying Lemma 8, we obtain that for all adversaries B, we
have

εM[1..n](B) ≤ n · εB(B ◦ R), (2)
where reduction R samples i←$ {1, . . . , n} and implements the package
[M0[1..i− 1], IDout(M)[i], M1[i+ 1..n]].

Idealizing the key providing game. For the second part of the proof, the
steps that idealize the corruptible key providing game are analogous to
the single-instance key composition proof, and we obtain[

A0, B0[1..n]
]
◦ CKEYλ[1..n]

ε1(A)
≈

[
A1, B0[1..n]

]
◦ CKEYλ[1..n],

where ε1(A) = εA
(
A ◦

[
IDout(A), B0[1..n]

])
.

Idealizing the multi-instance version of B. We discuss ε2 after presenting
the transformations. The step from the penultimate to the last line works
by performing the first 3 steps of the proof in inverse order.[

A1, B0[1..n]
]
◦ CKEYλ[1..n]

=
[
A1 ◦ ID{GEN,CSET}[1..n], IDout(B[1..n]) ◦ B0[1..n]

]
◦ CKEYλ[1..n] identity

=
[
A1, IDout(B[1..n])

]
◦
[
ID{GEN,CSET}[1..n], B0[1..n]

]
◦ CKEYλ[1..n] interch.

=
[
A1, IDout(B[1..n])

]
◦
([

ID{GEN,CSET}, B
0
]
◦ CKEYλ

)
[1..n] interch.

ε2≈
[
A1, IDout(B[1..n])

]
◦
([

ID{GEN,CSET}, B
1
]
◦ CKEYλ

)
[1..n] Def. 13

=
[
A1, B1[1..n]

]
◦ CKEYλ[1..n]

We have ε2(A) = εM[1..n]
(
A ◦

[
A1, IDout(B[1..n])

])
. Moreover, plugging in

Inequality 2, we obtain

ε2(A) ≤ n · εB
(
A ◦

[
A1, IDout(B[1..n])

]
◦ R

)
.

Idealizing the key providing game. The steps that deidealize the corrupt-
ible key providing game are analogous to the single-instance key compo-
sition proof, and we obtain[

A1, B1[1..n]
]
◦ CKEYλ[1..n] ε3≈

[
A0, B1[1..n]

]
◦ CKEYλ[1..n],

where for all adversaries A, we have ε3(A) = εA
(
A ◦

[
IDout(A), B0[1..n]

])
.

25

5 Composition of Bellare-Rogaway Key Exchange

We here give a short definition of eCK-forward secure key exchange pro-
tocols, see Cremers and Feltz [18] as well as the discussion in the end of
this section.
Definition 22 (Key Exchange Protocol). A key exchange protocol π
consists of a key generation algorithm π.kgen and a protocol algorithm
π.run. π.kgen returns a pair of keys:

(sk, pk)←$π.kgen

Π.run takes as input a state and an incoming message and returns a state
and an outgoing message:

(state,m)←$π.run(state,m)

Each party holds several sessions and the algorithm π.run is executed
locally on the session state. We use indices i for sessions and indices
u, v as for parties. For the ith session of party u, we denote the state
by Π[u, i].state. The state contains at least the following variables. For a
variable v, we denote by Π[u, i].a the variable a stored in Π[u, i].state.
– (pk, sk): the party’s own public-key and corresponding private key
– peer : the public-key of the intended peer for the session
– role: determines whether the session runs as an initiator or responder
– α: protocol state that is either running or accepted.
– k: the symmetric session key derived by the session

Upon initialization, the state is initialized with pair (pk, sk), the public-
key peer of the intended peer of a session, a value role ∈ {I,R}, α =
running and k = ⊥. The first three variables cannot be changed. The
variables α and k can be set only once. We require that

Π[u, i].α = accepted =⇒ Π[u, i].k 6= ⊥.

The game that we will define soon will run (⊥,m′)←$π.run(state,⊥) on
the initial state state and an empty message ⊥. For initiator roles, this
first run yields m′ 6= ⊥, and for responder roles, it yields m′ = ⊥.

Protocol correctness. For all pairs of sessions which are initialized with
(pkI , skI), pkR, role = I, α = running and k = ⊥ for one session, and
(pkR, skR), pkI , role = R, α = running and k = ⊥ for the other session,
the following holds: When the messages produced by π.run are faithfully
transmitted to the other session, then eventually, both sessions have α =
accepted and hold the same key k 6= ⊥.

26

Partnering. As a partnering mechanism, we use sound partnering func-
tions, one of the partnering mechanisms suggested by Bellare and Rog-
away’s [6]. Discussing the specifics, advantages and disadvantages of part-
nering mechanisms is beyond the scope of this work, we provide a short
discussion as well as complete definitions and soundness requirements for
partner functions in Appendix C. For the sake of the definition presented
in this section, the reader may think of the partnering function f(u, i) as
indicating the (first) session (v, j) which derived the same key as (u, i),
has a different role than (u, i), and is the intended partner of (u, i). It is
a symmetric function, thus partners of sessions, if they exist, are unique.

Definition 23 (AKE Advantage). For a key exchange protocol π =
(kgen, run) and a symmetric, monotonic and sound partnering function
f , and a number of instances n ∈ N, we denote the AKE advantage by

[ID{GET,HON}, AKE0,π,f]◦CKEY[1..n]
επ,f,nAKE≈ [ID{GET,HON}, AKE1,π,f]◦CKEY[1..n],

where in(AKE0,π,f) = {SET,CSET} and in(AKE1,π,f) = {GEN,CSET} and
for b ∈ {0, 1}, the output interface out(AKEb,π,f) is equal to the set of or-
acle names {NEWPARTY,NEWSESSION, SEND,CORRUPT}, where the
oracles are defined in Fig. 5.

Theorem 2 (BR-Secure Key Exchange is Composable). Let π be a
key exchange protocol with partnering function f such that for n, λ ∈ N,
their AKE advantage is επ,f,nAKE . Let SYM be a corruptible key consuming
package that is compatible with AKE. Then it holds that[

AKE0,π,f , SYM0[1..n]
]
◦ CKEYλ[1..n] εBR≈

[
AKE0,π, SYM1[1..n]

]
◦ CKEYλ[1..n],

where

εBR(A) ≤ επ,f,nAKE

(
A ◦

[
IDout(AKE), SYM0[1..n]

])
+ n · εSYM

(
A ◦

[
AKE1,π,f , IDout(SYM[1..n])

]
◦ R

)
+ επ,f,nAKE

(
A ◦

[
IDout(AKE), SYM1[1..n]

])
,

where reduction R samples i←$ {1, . . . , n} and implements the package
[M0[1..i−1], IDout(M)[i], M1[i+1..n]], where M0 = [ID{GEN,CSET}, SYM0]◦CKEYλ

and M1 = [ID{GEN,CSET}, SYM1] ◦ CKEYλ.

27

NEWSESSION(u, i, r, v)

assert PK[u] 6= ⊥, PK[v] 6= ⊥, Π[u, i] = ⊥
Π[u, i]← (

(pk, sk)← (PK[u], SK[u]),
peer ← v,

role ← r,

α← running,
k ← ⊥)

(Π[u, i],m)←$π.run(Π[u, i],⊥)
return m

SEND(u, i,m))

assert Π[u, i].α = running
(Π[u, i],m′)←$π.run(Π(u, i),m)
if Π[u, i].α 6= accepted then

return (m′,⊥).
if Π[f(u, i)].α = accepted then

return (m′, Π[f(u, i)].id)
Π[u, i].id ← cntr
if H[Π[u, i].peer] = 1 ∨ f(u, i) 6= ⊥ then

if b = 1 then
GEN[cntr]()

else
SET[cntr](Π[u, i].k)

else
CSET[cntr](Π[u, i].k)

cntr ← cntr + 1
return (m′, Π[u, i].id)

NEWPARTY(u)

assert PK[u] = ⊥
(SK[u], PK[u))←$π.kgen
H[u]← 1
return PK[u]

CORRUPT(u)

H[u]← 0
return SK[u]

Fig. 5: Oracles of the AKE package.

Proof. We observe that Theorem 2 is a direct application of the multi-
instance key composition lemma (Lemma 10). Firstly, AKE is a corruptible
key generating package as we have that in(AKE0,π,f) = {SET,CSET} and
in(AKE1,π,f) = {GEN,CSET}. Also, by definition, SYM is a corruptible key
consuming package that is compatible with AKEb,π,f .

28

Discussion of definitional choices. Forward secrecy usually requires a no-
tion of time that cryptographic games are not automatically endowed
with and that we have no tools to handle in hand-written proofs. Thus,
the corresponding security games rely on a notion of time that is difficult
to handle. In the miTLS work and also in our notation of eCK security,
instead, it is decided upon acceptance whether a session shall be idealized
or not. The advantage is that one can check in the moment of acceptance
whether the preconditions for freshness are satisfied, and this check does
not require a notion of time. In our encoding the CKEY package then stores
either a real or a random key, and when the partner of the session accepts,
the partner session inherits these idealization or non-idealization proper-
ties. A downside of this encoding is that it is only suitable for protocols
with explicit entity authentication (See, e.g., Fischlin, Günther, Schmidt
and Warinschi [21]), as in those, the first accepting session is already ide-
alized. In particular, our model does not capture two-flow protocols such
as HMQV [28].

Using partner functions instead of session identifiers or key partnering
has the advantage that the at most condition of Match security defined
by Brzuska, Fischlin, Smart, Warinschi and Williams [12] holds syntacti-
cally. Thus, one does not need to make probabilistic statements that are
external to the games. Note that we made another simplication to the
model: Currently, the CKEY module and thus SYM does not receive infor-
mation about the timing of acceptance. This can be integrated at the cost
of a more complex CKEY module.

Acknowledgements. We are deeply indebted to Cas Cremers and Cé-
dric Fournet for extensive feedback on an early draft of our article. We
are greatful to Simon Peyton Jones for pointing out the associativity of
monadic composition as a generalization of function composition to ef-
fectful programs. We thank Giorgia Azzurra Marson and Hoeteck Wee
for feedback on the presentation of our toy example in the introduction.
We thank Martijn Stam for suggesting to use KEM-DEM composition
as one of our application cases. We are greatful to Håkon Jacobsen for
feedback on our key exchange definition. We thank Ueli Maurer for an in-
spiring and helpful discussion on abstraction. Chris Brzuska is greatful to
NXP for the support of his chair of IT Security Analysis at TU Hamburg.
Much of the research was done while the first author was at Microsoft
Research Cambridge and during internships and research visits supported
by Microsoft and the EU COST framework. In particular, this work was

29

supported by an STSM Grant from COST Action IC1306 “Cryptography
for Secure Digital Interaction”.

References

1. M. Backes, B. Pfitzmann, and M. Waidner. A general composition theorem for
secure reactive systems. In TCC, 2004.

2. G. Barthe, J. M. Crespo, Y. Lakhnech, and B. Schmidt. Mind the gap: Modular
machine-checked proofs of one-round key exchange protocols. In EUROCRYPT,
2015.

3. G. Barthe, M. Daubignard, B. M. Kapron, and Y. Lakhnech. Computational
indistinguishability logic. In ACM CCS, pages 375–386, 2010.

4. G. Barthe, B. Grégoire, S. Heraud, and S. Z. Béguelin. Computer-aided security
proofs for the working cryptographer. In CRYPTO, 2011.

5. M. Bellare, A. Boldyreva, and S. Micali. Public-key encryption in a multi-user
setting: Security proofs and improvements. In EUROCRYPT 2000. Springer, 2000.

6. M. Bellare and P. Rogaway. Provably secure session key distribution: the three
party case. In STOC, 1995.

7. M. Bellare and P. Rogaway. The security of triple encryption and a framework for
code-based game-playing proofs. In EUROCRYPT, 2006.

8. D. J. Bernstein and T. Lange. Non-uniform cracks in the concrete: The power of
free precomputation. In ASIACRYPT, 2013.

9. K. Bhargavan, C. Fournet, M. Kohlweiss, A. Pironti, and P.-Y. Strub. Implement-
ing TLS with verified cryptographic security. In Security and Privacy, 2013.

10. K. Bhargavan, C. Fournet, M. Kohlweiss, A. Pironti, P.-Y. Strub, and S. Zanella
Béguelin. Proving the TLS handshake secure (as it is). In CRYPTO, 2014.

11. C. Brzuska. On the foundations of key exchange. PhD thesis, Darmstadt University
of Technology, Germany, 2013.

12. C. Brzuska, M. Fischlin, N. P. Smart, B. Warinschi, and S. C. Williams. Less is
more: relaxed yet composable security notions for key exchange. Int. J. Inf. Sec.,
12(4), 2013.

13. C. Brzuska, M. Fischlin, B. Warinschi, and S. C. Williams. Composability of
Bellare-Rogaway key exchange protocols. In ACM CCS, 2011.

14. C. Brzuska and H. Jacobsen. A modular security analysis of EAP and IEEE 802.11.
In PKC, 2017.

15. R. Canetti. Universally composable security: A new paradigm for cryptographic
protocols. In FOCS, 2001.

16. K. Cohn-Gordon, C. J. F. Cremers, B. Dowling, L. Garratt, and D. Stebila. A
formal security analysis of the signal messaging protocol. In EuroS&P 2017, 2017.

17. R. Cramer and V. Shoup. Design and analysis of practical public-key encryption
schemes secure against adaptive chosen ciphertext attack. SIAM J. Comput., 2003.

18. C. J. F. Cremers and M. Feltz. Beyond eck: perfect forward secrecy under actor
compromise and ephemeral-key reveal. Des. Codes Cryptography, 74(1), 2015.

19. A. Delignat-Lavaud, C. Fournet, M. Kohlweiss, J. Protzenko, A. Rastogi,
N. Swamy, S. Z. Béguelin, K. Bhargavan, J. Pan, and J. K. Zinzindohoue. Im-
plementing and proving the TLS 1.3 record layer. In Security and Privacy, 2017.

20. B. Dowling, M. Fischlin, F. Günther, and D. Stebila. A cryptographic analysis of
the TLS 1.3 handshake protocol candidates. In ACM CCS, 2015.

30

21. M. Fischlin, F. Günther, B. Schmidt, and B. Warinschi. Key confirmation in
key exchange: A formal treatment and implications for TLS 1.3. In Security and
Privacy, 2016.

22. C. Fournet, M. Kohlweiss, and P.-Y. Strub. Modular code-based cryptographic
verification. In ACM CCS, 2011.

23. D. Hofheinz and V. Shoup. GNUC: A new universal composability framework.
Cryptology ePrint Archive, Report 2011/303, 2011. http://eprint.iacr.org/
2011/303.

24. D. Hofheinz and V. Shoup. GNUC: A new universal composability framework.
Journal of Cryptology, 28(3), 2015.

25. H. Jacobsen. A Modular Security Analysis of EAP and IEEE 802.11. PhD thesis,
Norwegian University of Science and Technology, Trondheim, Norway, 2017.

26. T. Jager, F. Kohlar, S. Schäge, and J. Schwenk. On the security of TLS-DHE in
the standard model. In CRYPTO 2012, 2012.

27. S. P. Jones. Haskell 98 language and libraries: the revised report, 2003.
28. H. Krawczyk. HMQV: A high-performance secure diffie-hellman protocol. In

CRYPTO. Springer, 2005.
29. H. Krawczyk, K. G. Paterson, and H. Wee. On the security of the TLS protocol:

A systematic analysis. In CRYPTO 2013, 2013.
30. R. Kuesters and M. Tuengerthal. The IITM model: a simple and expressive model

for universal composability. Cryptology ePrint Archive, Report 2013/025, 2013.
http://eprint.iacr.org/2013/025.

31. U. Maurer. Constructive cryptography - a primer (invited paper). In Financial
Cryptography, 2010.

32. U. Maurer. Constructive cryptography - A new paradigm for security definitions
and proofs. In TOSCA, 2011.

33. U. Maurer and R. Renner. Abstract cryptography. In ITCS, 2011.
34. U. M. Maurer. Indistinguishability of random systems. In EUROCRYPT, 2002.
35. R. Milner, J. Parrow, and D. Walker. A calculus of mobile processes, I. Inf.

Comput., 100(1), 1992.
36. J. C. Mitchell, A. Ramanathan, A. Scedrov, and V. Teague. A probabilis-

tic polynomial-time process calculus for the analysis of cryptographic protocols.
Theor. Comput. Sci., 353(1-3), 2006.

37. J. Müller-Quade and D. Unruh. Long-term security and universal composability.
In TCC, 2007.

38. T. Ristenpart, H. Shacham, and T. Shrimpton. Careful with composition: Limita-
tions of the indifferentiability framework. In EUROCRYPT, 2011.

39. P. Rogaway. Formalizing human ignorance. In VIETCRYPT, 2006.
40. N. Swamy, C. Hrit,cu, C. Keller, A. Rastogi, A. Delignat-Lavaud, S. Forest, K. Bhar-

gavan, C. Fournet, P.-Y. Strub, M. Kohlweiss, J.-K. Zinzindohoue, and S. Zanella-
Béguelin. Dependent types and multi-monadic effects in F*. In POPL, 2016.

41. D. Syme, A. Granicz, and A. Cisternino. Expert F# 3.0. Springer, 2012.
42. M. Tofte. Essentials of standard ML modules. In Advanced Functional Program-

ming, Second International School, Olympia, 1996.
43. D. Wikström. Simplified universal composability framework. In TCC, 2016.

31

http://eprint.iacr.org/2011/303
http://eprint.iacr.org/2011/303
http://eprint.iacr.org/2013/025

MOD-CPAb.ENC(m)

if b = 0 then
r←$ {0, 1}n

pad ← EVAL(r)

c← m⊕ pad
if b = 1 then
m′ ←$ {0, 1}n

r←$ {0, 1}n

pad ← EVAL(r)

c← m′ ⊕ pad
return (r, c)

MOD-CPAb.ENC(m)

if b = 0 then
r←$ {0, 1}n

if k = ⊥ then
k ←$ {0, 1}n

pad ← prf(k, r)
c← m⊕ pad

if b = 1 then
m′ ←$ {0, 1}n

r←$ {0, 1}n

if k = ⊥ then
k ←$ {0, 1}n

pad ← prf(k, r)
c← m′ ⊕ pad

return (r, c)

MOD-CPAb.ENC(m)

if k = ⊥ then
k ←$ {0, 1}n

if b = 0 then
r←$ {0, 1}n

pad ← prf(k, r)
c← m⊕ pad

if b = 1 then
m′ ←$ {0, 1}n

r←$ {0, 1}n

pad ← prf(k, r)
c← m′ ⊕ pad

return (r, c)

IND-CPAb.ENC(m)

if k = ⊥ then
k ←$ {0, 1}n

if b = 0 then
(r, c)←$ ζ.enc(k,m)

if b = 1 then
m′ ←$ {0, 1}n

(r, c)←$ ζ.enc(k,m′)

return (r, c)

Fig. 6: The left-most column shows the modular game MOD-CPA that uses
an oracle EVAL. From the left-most to the second-left column, we inline
the code of PRF0.EVAL. From the second-left to the second-right column,
we use Bellare-Rogaway-like code-comparison to see that the key genera-
tion can be moved up, as it is the same in both branches of the program.
We get from the second-right column to the right-most column by con-
sidering the code of our concrete construction ζ.

A IND-CPA and Functional Equivalence

EVAL(x)
if k = ⊥ then

k ←$ {0, 1}n

y ← prf(k, x)
return y

The right-most column of Figure 6 complements
the definition of IND-CPA security (Definition 1).
We need to show that for b ∈ {0, 1}, the modu-
lar MOD-CPAb game, composed with the PRF0 game,
is functionally equivalent to IND-CPAb. See Figure 6,
including the caption, for a proof. For ease of read-
ability, recall that the EVAL oracle in PRF0 runs the
code depicted on the right.

32

B Hybrid Argument Recipe

Hybrid arguments can be used in various contexts and are the standard
technique to reduce multi-instance games to single-instance games. We
here write down a general hybrid argument recipe.

Lemma 11 (Hybrid Argument Recipe Lemma). Let Game0, Game1,
Multi0 and Multi1 be four packages with in(Game0) = in(Game1) = ∅ and
out(Game0) = out(Game1) as well as in(Multi0) = in(Multi1) = ∅ and
out(Multi0) = out(Multi1). Let A be an adversary. Let n be a natural
number. Let H0, . . . , Hn be games with out(Hi) = out(Multi1), let Ri be
reduction packages with out(Ri) = out(Multi1) and in(Ri) = out(Game1),
and let R be a package, which samples i←$ {0, . . . , n−1} and then behaves
like Ri. Then we need to prove the following:

Claim 1: It holds that

Multi0 = H0 (3)
and Multi1 = Hn (4)

Claim 2: For all i ∈ {0, . . . , n− 1} the following holds

Ri ◦ Game0 = Hi (5)
and Ri ◦ Game1 = Hi+1 (6)

If Claim 1 and Claim 2 hold, then the package R satisfies

εMulti(A) ≤ n · εGame(A ◦R) .

Proof. Let A : out(Multi0) → out(A) be an adversary and let εi,i′(A) =
|Pr[0← A ◦ Hi]− Pr[1←$A ◦ Hi′]| be the distinguishing advantage be-
tween hybrids Hi and Hi′ for A.

1. By definition we have

A ◦ H0
ε0,1(A)
≈ A ◦ H1 ≈ · · · ≈ A ◦ Hn−1

εn−1,n(A)
≈ A ◦ Hn .

From the equation in Claim 1, it follows that ε0,n = εMulti, i.e.,

A ◦ H0
εMulti(A)
≈ A ◦ Hn

By the triangle inequality of ε≈ we have that

εMulti(A) ≤ ε0,1(A) + · · ·+ εn−1,n(A) =
n−1∑
`=0

εi,i+1(A)

33

2. Now, we recall the definition of εi,i+1 and plug in Eq. 5 and 6 from
Claim 2:

εMulti(A) ≤
n−1∑
i=0

εi,i+1(A)

=
n−1∑
i=0
|Pr[1←$A ◦ Hi]− Pr[1←$A ◦ Hi+1]|

=
n−1∑
i=0

∣∣∣Pr
[
1←$A ◦Ri ◦ Game0

]
− Pr

[
1←$A ◦Ri ◦ Game1

]∣∣∣

Due to the construction of R we get that εMulti(A) is smaller or equal to

n−1∑
i=0

∣∣∣Pr
[
1←$A ◦R ◦ Game0 | `′ = `

]
− Pr

[
1←$A ◦R ◦ Game1

∣∣∣ i′ = i
]∣∣∣
(7)

As the sum iterates over all i ∈ {0, . . . , n− 1}, we obtain

n−1∑
i=0

Pr
[
1←$A ◦R ◦ Gameb | i′ = i

]
=

Pr
[
1←$A ◦R ◦ Gameb

]
1
n

. (8)

Plugging Eq. 8 into Eq. 7 gives us

εMulti(A) ≤n ·
(
Pr
[
1←$A ◦R ◦ Game0

]
− Pr

[
1←$A ◦R ◦ Game1

])
=n · εGame(A ◦R) .

We now use the above recipe to provide a proof of Lemma 8.

Proof. We instantiate the hybrid argument recipe lemma as follows

Multib := Mb[1..n],
Gameb := Mb.

We define the hybrids Hi for 0 ≤ i ≤ n as follows

Hi := [M0[1..i], M1[i+ 1..n]]

Observe, that indeed, H0 = Multi0 and Hn = Multi1, so Claim 1 holds.
We now specify the reduction package Ri[1..n] for 1 ≤ i ≤ n with

34

in(Ri[1..n]) = out(M) and out(Ri[1..n]) = out(M[1..n]). It behaves just as
hybrid Hi[1..n], except for instance i, where Ri[1..n] forwards the queries
to the oracles provided through its input interface (i.e. M). Formally,

Ri[1..n] := [M0[1..i− 1], IDout(M)[i], M1[i+ 1..n]]

We now need to show that the reductions Ri[1..n] satisfy Claim 2. We
show Eq. 5, then Eq. 6 follows analogously.

Ri[1..n] ◦ M0 = [M0[1..i− 1], IDout(M)[i], M1[i+ 1..n]] ◦ M0

= [M0[1..i− 1], M0[i], M1[i+ 1..n]] multi-ins. interch.
= [M0[1..i], M1[i+ 1..n]]
= Hi

Therefore, by Lemma 11 R satisfies

εM[1..n](A) ≤ n · εM(A ◦R),

which concludes the proof of Lemma 8.

C Partner Mechanisms in Key Exchange

Partnering is needed in key exchange protocols to specify which partners
derive the same key so that security notions for key exchange can exclude
trivial winning strategies, such as revealing the key of a partner session.
The original BFWW work showed that for composition, the reduction
needs to know the partnering between sessions. In our model, we give
this information directly to the adversary (via the indices) and thus also
to the reduction. There are many ways to define partnering in key ex-
change, and partnering in key exchange is an interesting area of research
that is not yet fully clarified. For simplicity, we here follow Bellare and
Rogaway’s formulation of public partnering functions that map sessions
merely based on public transcripts [6]. Although partner functions have
not been very popular over many years, Brzuska and Jacobsen [14,25]
recently re-discovered partnering functions, because properties of part-
nering functions such as uniqueness can be required to hold syntactically,
while they only hold probabilistically for concepts such as session identi-
fiers and key equality. These syntactic properties simplify our composition
theorem as we discuss in the end of Section 5. The following definition

35

is a prose variant of the definition of transcript given by Brzuska and
Jacobsen [14,25].

Partner functions are used within key exchange security games and
yet, at the same time, the definition of partner functions requires part of
the game as already defined. The way out of the circularity is as follows:
(1) The partner function can be defined syntactically on transcripts, and
the transcript are well-defined also without a partner function. (2) No
probabilistic properties on the partner function are required, so that we
can consider all powerful adversaries in the consideration of the partner
function.

Definition 24 (Transcript). The public transcript T of a key exchange
game consists of all NEWPARTY, NEWSESSION and SEND queries by the
adversary as well as their answers, except for the answers of SEND where
only the first component of each answer becomes part of the transcript.

Definition 25 (Partner Functions). A symmetric and monotonic part-
ner function is a function f , parametrized by a transcript T , that maps
pairs (U, i) of sessions to other pairs (V, j) of sessions

1. fT (U, i) = (V, j) =⇒ fT (V, j) = (U, i), (symmetric)
2. fT (U, i) = (V, j) =⇒ fT ′(U, i) = (V, j) for all T ⊆ T ′. (monotonic)

Partnering soundness. For a security analysis based on partner functions
to be meaningful, the partner function needs to satisfy certain soundness
properties. Briefly, soundness demands that partners should: (1) end up
with the same session key, (2) agree upon who they are talking to, (3)
have compatible roles, and (4) be unique. However, since we are limit-
ing our attention to symmetric partner functions in this paper, the last
requirement follows directly so we omit it.

Definition 26 (Partner Function Soundness). A partner function is
sound if the following holds for all transcripts T . If sessions fT ′(U, i) =
(V, J) then:

1. π[U, i].α = π[V, j].α = accepted =⇒ π[U, i].k = π[V, j].k 6= ⊥,
2. π[U, i].peer = pk[V], and π[V, j].peer = pk[U].
3. (π[U, i].role = I, and π[V, j].role = R) or (π[U, i].role = R, and

π[V, j].role = I)

36

D Functional Equivalence for MOD-CCA in the Proof of
Theorem 1

MOD-CCA PKE-CCAb,ζ

PKENC(m)

assert pk 6= ⊥
assert c = ⊥
c1 ← ENCAP()

c2 ← ENC(m)

c← c1||c2

return c

PKENC(m)

assert pk 6= ⊥
assert c = ⊥
k, c1 ← η.encap(pk)
if 0 = 0 then

SET(k)
else

GEN()
c2 ← ENC(m)

c← c1||c2

return c

PKENC(m)

assert pk 6= ⊥
assert c = ⊥
k, c1 ← η.encap(pk)

SET(k)

k ← GET()
if b = 0 then

c2 ←$ {0, 1}|m|

else
c2 ←$ θ.enc(k,m)

c← c1||c2

return c

PKENC(m)

assert pk 6= ⊥
assert c = ⊥
k, c1 ← η.encap(pk)

if b = 0 then
c2 ←$ {0, 1}|m|

else
c2 ←$ θ.enc(k,m)

c← c1||c2

return c

PKDEC(c’)

assert pk 6= ⊥
assert c 6= c′

c′1||c′2 ← c′

if c′1 = c1 then
m← DEC(c′2)

else
k′ ← DECAP(c′1)
m← θ.dec(k′, c′2)

return m

PKDEC(c’)

assert pk 6= ⊥
assert c 6= c′

c′1||c′2 ← c′

if c′1 = c1 then
m← DEC(c′2)

else
k′ ← η.decap(sk, c′1)
m← θ.dec(k′)

return m

PKDEC(c’)

assert pk 6= ⊥
assert c 6= c′

c′1||c′2 ← c′

if c′1 = c1 then
k ← GET()
m← θ.dec(k, c′2)

else
k′ ← η.decap(sk, c′1)
m← θ.dec(k′)

return m

PKDEC(c′)

assert pk 6= ⊥
assert c 6= c′

c′1||c′2 ← c′

k ← η.decap(sk, c′1)
m← θ.dec(k, c′2)
return m

Fig. 7: Col. 1-to-2: ENCAP and DECAP of KEM-CCA0,η are inlined, high-
lighted in gray. We cross out code that is not executed. Col. 2-to-3: ENC
and DEC of DEM-CCAb,θ are inlined. Calls to SET and GET do not modify
k. Col. 3-to-4: we compare MOD-CCA to KEM-CCAb,θ. They differ only when
c′1 = c1 in the PKDEC oracle. PKENC can only be called once and thus,
MOD-CCA.PKDEC decrypts c′1 with the symmetric key k that was previ-
ously encapsulated in the MOD-CCA.PKENC oracle. By correctness of the
KEM, k = η.decap(sk, c′1) and η.dec uses the same k in both cases.

37

	State-Separating Proofs: A Reduction Methodology for Real-World Protocols

