
On perfectly secure 2PC in the OT-hybrid model
Anat Paskin-Cherniavsky∗

August 6, 2018

Abstract
We initiate the study of perfect (rather than merely statistical) reductions among crypto-

graphic primitives. For simplicity, we focus on finite functionalities.
In addition to the obvious theoretical appeal of the question towards better understanding

secure computation, perfect, as opposed to statistical reductions may be useful for designing
MPC protocols with high concrete efficiency, achieved by eliminating the dependence on a
security parameter.

1-out-of-2 bit-OT (dubbed OT) was shown to be complete for statistically secure 2PC for
all functionalities [Kil88, IPS08]. Existing protocols in the OT-hybrid model only offer statisti-
cally secure with abort (efficient) protocols (requiring no further computational assumptions)
for all 2PC functionalities. Disregarding efficiency requirements, all 2PC functionalities have
protocols with full statistical security in this setting.

As opposed to the statistical setting, it is not known whether OT is complete for perfectly
secure 2PC. Furthermore, only a few sporadic examples of functionalities that have such
protocols are known. On the negative side we have somewhat better understanding as implied,
for instance, by the literature on fairness (for statistical security in the OT hybrid model).

Quite surprisingly [IKOPS11] demonstrate that all client-server functionalities can be effi-
ciently reduced to OT with statistical full security (no abort) in only one round.

Motivated by this relative “ease” of client-server functionalities for statistically secure 2PC
in the OT-hybrid model, we study perfect reductions to OT for this class of functions. We
prove that for many client-server functions of the form f : X × Y → {0, 1}, where server
domain size |Y | is larger than client domain size |X|, have a perfect reduction to OT. More
precisely, a g(|X|, |Y |) = Ω(1)-fraction of functions are perfectly reducible to OT. This fraction
grows roughly as 1 − exp(|X| − |Y |). Furthermore, our reduction is 1-round using an oracle
to secure evaluation of OTl (as in [IKOPS11]). More generally, for f : X × Y → Z, Ω(1) of
the functions with |Y | > |X|(|Z| − 1) are perfectly reducible to OT in 1 round.

Our work leaves many open questions. The main open the question of whether all finite
client-server functionalities are perfectly reducible to OT (not necessarily in one round). An-
other open question is whether any 2PC functionalities in the OT-hybrid model require strictly
more than 1 round.

1 Introduction
We revisit the question of what are the simplest idealized functionalities required for perfectly
secure 2PC - either of all, or at least “interesting” classes of functionalities. As 1-out-of-2-bit-OT
is complete for several useful security notions, in this work we focus on 1-out-of-2-bit-OT as a
candidate. While the setting of statistical security is quite well understood, the question of perfect
security of 2PC in the OT hybrid model is wide open.

Briefly, in the OT-hybrid model, in addition to sending messages among themselves, the parties
are allowed to make (any number of) calls to an idealized secure implementation of 1-out-of-2-bit-OT.
More precisely, we assume that in every round, one party either sends a message over the channel
connecting the parties, or makes a call to an ideal OT functionality 1-out-of-2-bit-OTl where l ≥ 1
is some number. The same party plays the sender of the OT call.

That is, here we assume a somewhat larger set of ideal functionalities available to us OT =
{1-out-of-2-bit-OTl}l≥1, where in each round, the parties are allowed to make a call to some
g ∈ OT . In 1-out-of-2-bit-OTl the parties submit all inputs simultaneously, and the reciever
receives all outputs simultaneously. In particular, she may not choose some of the inputs based on

∗Department of Computer Science, Ariel University. E-mail: anatpc@ariel.ac.il

1

outputs of other OT calls. In this work, and when discussing efficient protocols from the literature,
we focus on finite functionalities, so the complexity is measured in terms of a security parameter 1k
(where the simulation error is ϵ = neg(k)). Let us briefly review some key results on statistically
secure protocols in the OT-hybrid model.

Statistically secure 2PC in the OT-hybrid model. In the subsequent discussion we consider
the more standard setting where protocols are efficient, unless stated otherwise. Even inefficiently,
statistically secure computation is known to be impossible in the plain model even against semi-
honest adversaries for some simple functions such as AND and OR [1]. Here even a simulation
error of, say, 1/3 is not achievable. Among the functionalities that are efficiently semi-honestly
computable even with perfect security, some are not computable with statistical security against
malicious parties in the plain model.

In particular, Cleve [2] has demonstrated that even the simple functionality of coin tossing
where both parties output the same random bit, is not efficiently computable with statistical
security. This impossibility extends to the OT-hybrid model.

As a consequence, the 2PC literature (more generally, MPC without honest majority) has
settled on a weaker notion of security with abort where the ideal world adversary A has the extra
power allowing it to learn the output fA(x, y) first, and then decide whether to instruct the TP
to send the honest party B its output fB(x, y) or to send it ⊥ (abort). General purpose 2PC
protocols that are statistically secure with abort for any 2PC functionality have been developed
starting with [3] in the computational setting, followed by [4], that only assumes an OT oracle
(while [3] relies on additional cryptographic primitives,[4] demonstrates how to implement these
and many other cryptographic primitives using OT).

A more recent alternative relaxation of statistical security [5] allows for a polynomial error
poly(k−1), while requiring the parties are still efficient. In [5], it is proved that all 2PC function-
alities are computable with statistical security in the OT hybrid model according to this notion.
They refer to this notion as 1/p-security.

Round complexity of fully statistically secure protocols in the OT -hybrid model. Ar-
guably, one of the most important measures of efficiency of MPC protocols is their round complexity
On the OT-hybrid model, the results of [5] can be interpreted as statistically secure protocols in
the OT hybrid model in the setting where efficiency is not required. In particular, their round
complexity may be exponential in k.

Also, quite surprisingly, it turns out that many 2-party functionalities can be evaluated with
full statistical security with round complexity poly(k) (in fact, even polylog(k)) as discovered in the
seminal work [6], which rekindled interest in statistical 2PC with full security (in the OT hybrid
model) - also referred as security with fairness1. It was followed by several, [7, 8] to mention a
few. In particular [8] completes the characterization of symmetric boolean functions (where both
parties receive the same output).

However, all (general) protocols from this line of work require round complexity of ωk(1). In [9],
a 1-round protocol is presented for client-server functionalities, where only the client learns an
output. The protocol has a single round, and makes a single call to an 1-out-of-2-bit-OTl oracle (it
does not even use the channel connecting the parties). Furthermore, the protocol’s computational
and communication complexity are efficient in k. So, while all 2PC functionalities can be evaluated
with statistical security in the OT hybrid model (possibly inefficiently), there are provable gaps in
their round complexity.

For instance, Cleve’s impossibility result, and [6]’s result for functions with a so called embedded
xor, in fact prove that certain functionalities including coin-tossing require round complexity of
ωk(1). This puts coin tossing much higher in the round complexity hierarchy than all client-
server functionalities which have protocols with round complexity of 1 (on the other hand, round
complexity exp(k) suffices for all functionalities).

On the other hand, functionalities computable with perfect full security by definition have
round complexity of Ok(1).

Perfectly secure 2PC in the OT-hybrid model. As we see from the brief survey above,
the statistical setting is qualitatively understood (for unbounded parties), and even the round

1Technically, fairness is not precisely equivalent to full security.

2

complexity of protocols is partially understood, much less is known in the perfect setting. The
ultimate goal of this work is to understand which functionalities can be evaluated with perfect
security in the OT hybrid model. We are interested both in full perfect security, and in perfect
security with abort.

On the positive side, we are aware of only a handful of perfect reductions to 1-out-of-2-bit-OT.
One is from string-OT [10], and one from 1-out-of-2-bit-TO [11], which is the same as 1-out-of-2-bit-OT
where the roles of the parties are reversed. The first one sends no bits over the point to point chan-
nel, and their result can in fact be extended to 1-out-of-t l-string-OT for any parameter t, l. It only
uses the 1-out-of-2-bit-OTl oracle. The latter requires only a single bit of additional communication
over the channel connecting the parties. Let us get back for a moment to the broader question of
identifying simple classes of functionalities F which allow for perfectly secure 2PC in the F-hybrid
model for interesting (more complicated than F) classes of functionalities. In [12], the authors
show that all client-server functionalities can be efficiently evaluated in a hybrid model where F
consists of all randomized 2-party functionalities that receive no inputs (in their terminology - in
the preprocessing model).

Much more is known on the negative side. Even for the more liberal setting of security with
perfect abort, it has been shown that even in the preprocessing model, some simple functionalities
such as f(x1, x2) = (x1 ⊕ x2, x1 ⊕ x2) may not be securely evaluated [12].2 This implies that
1-out-of-2-bit-OTl does not allow for perfectly secure with abort 2PC of this functionality either.
The reason is that 1-out-of-2-bit-OTl is a client-server functionality, and as shown in [12], it is
perfectly computable in the preprocessing model (with full security). Thus, having a secure with
abort protocol in the OT -hybrid model, would imply a protocol in the preprocessing model, with
the same notion of security.

Negative results for the full security setting are implied for a broad class of functions by negative
results from the fairness literature, such as impossibility results in [8].

However, the state of affairs is that most 2PC functionalities known to be computable with
fairness remain unclassified as to perfect security.

1.1 Our results
Motivated by the relative ease of client-server functionalities for statistical security in the OT-
hybrid model (only requiring an single call to 1-out-of-2 l-string-OT for a suitable l), we start with
client-server functionalities.

Question 1. Characterize the set of 2PC functionalities (not necessarily boolean) which are
perfectly secure in the OT-hybrid model. As a starting point, can we characterize client-server
functionalities ?

We make progress on the above question, and discover a broad class of 2PC functionalities
computable with perfect security.

Theorem 1.1 (Informal). Let f : X ×Y → Z be a deterministic finite client-server functionality.
If the truth table of f is full dimensional (as defined in [7]), then f is computable with perfect
security in the OT-hybrid model.

Roughly, this class contains most functionalities for each pair X,Y where |X| is much larger
than |Y |. This class includes some useful functionalities such as set intersection, where the set
domain for X is somewhat larger than that of |Y |. Another clean example is t-out-of-n-bit-OT,
where t is somewhat small relatively to n (but does not need to equal 1, as for previous OT
functionalities known to be perfectly reducible to OT).

We do not know whether all client-server functionalities are computable with perfect security,
and leave it as an interesting open question.

Our Techniques. In a nutshell, we start with a variant of [9]’s protocol, which is statistically
secure with abort. We rely on a special structure of the protocol, where the probability of ⊥ is
independent of the input, up to negligible differences.3

2Observe efficiency is not an issue here, as any fixed-round protocol with perfect security (with or without abort)
is anyhow efficient.

3In [9], they also put forward a protocol which is fully statistically secure, essentially by setting the server’s input
to some default value instead of outputting ⊥. For the purpose of making the protocol perfectly secure, we make a
different choice for ⊥.

3

To make the protocol perfectly secure against malicious clients, we modify the so called “watch-
lists” used in [9] to include exactly k out of n virtual servers, rather than enlist each server with
a certain probability. Then, to make it perfectly secure against malicious servers, we rely on geo-
metric interpretation of security (as previously used in the fairness literature), and come up with a
way to replace ⊥ in the ideal model simulating a corrupted server for functions of full dimension.

Roadmap. Section 2 includes preliminaries from geometry and algebra that will be useful for
us, and some useful facts on 1-out-of-2-bit-OT. In section 3 we discuss our model and (partially)
restate the standard security definition in geometric terms, which is crucial for the analysis of
our main construction. In section 4 we state our main perfect protocol working for so called full-
dimensional client-server functions. The appendices contain some additional results. In appendix
A we restate a folklore result as a simple instance of a perfect protocol in our model, which in fact,
does not require an OT oracle at all. In the appendices we briefly go over possible applications of
our result for concretely efficient 2PC constructions, and mention some of the open questions left
by the paper.

Acknowledgement. The author is very grateful to Yuval Ishai for suggesting this question, and
for many helpful discussions.

2 Preliminaries
Convex Geometry. We will need the following geometric notion (eventually, the represent truth
tables of 2PC functions).

Definition 2.1 (Affine dimension [7]). For a set of vectors V = {v1, . . . , vt} ⊆ Rn, we define their
affine dimension A(V) as the dimension of the set {vi − v1}i≥2.

For a vector v ∈ Rm, we let |v|1 =
∑

i |vi| denote its ℓ1 norm, and |v|∞ = maxi|vi| denote
its ℓ∞ norm. For a set of vectors V = {v1, . . . , vt} ⊆ Rn, a linear combination

∑
i αivi where∑

i αi = 1 and ∀iαi ≥ 0 is a convex combination of V . The convex hall of V , CH(V) = {u =
σiαivi|u is a convex combination of V }.

Algebra. For a matrix A ∈ Fn×n, where F is a field, let |A| denote the determinant of A. Ai,j

denotes the (i, j)’th co factor of A, which is the (n− 1)× (n− 1) matrix obtained by removing the
i’th row and j’th column of A. It is well known that:

Fact 1. A−1 = C where |Ci,j | = |Ai,j |/|A| (Cramer’s formula).

For a pair of matrices M1 ∈ Fn1×m,M2 ∈ Fn2×m, we denote by [M1||M2] the concatenation of
M2 below M1.

Oblivious Transfer (OT). The 1-out-of-2-bit-OT functionality is a client-server functionality,
where the server inputs a pair (b1, b2) of bits, the client inputs an index i ∈ {0, 1}. The client
outputs bi, while the server outputs ⊥. A generalization 1-out-of-t-bit-OT of 1-out-of-2-bit-OT
lets the client pick one out of t bits b1, b2, . . . , bt supplied by the server. In a further generalization
1-out-of-t h-string-OT the t bits are replaced by strings s1, . . . , st ∈ {0, 1}h, of which on input i
the client learns si.

A perfect reduction from 1-out-of-t h-string-OT to 1-out-of-2-bit-OT was put forward in the ele-
gant work of [10], which constitutes one of the few examples of perfect reductions to 1-out-of-2-bit-OT
known so far.

Theorem 2.1. [[10]] There exists a perfectly secure protocol as in Definition 3.1 of 1-out-of-2 h-string-OT
with communication complexity l ≤ (t− 1)5h. We refer to it as the Πint protocol.

3 Our model
We consider secure evaluation of client-server (non interactive, deterministic) functionalities f :
X × Y → Z for finite domains X,Y, Z, where the client outputs f(x, y) and the server outputs ⊥

4

(has no output).4 We focus on finite functionalities f (that is X,Y, Z are finite, and independent
of a security parameters k). Generally 2PC functionalities may be interactive and randomized.
We refer 2PC functionalities which are non-interactive and deterministic as 2PC functions.

We consider secure evaluation of such f in the stand-alone setting, with unconditional secu-
rity, against a non adaptive malicious adversary corrupting a single party. We work in an “en-
hanced” version of the OT-hybrid model where in every round a party either sends information
over the point-to-point channel, or the parties make a call to a perfectly secure implementation
of 1-out-of-2-bit-OTl for some number l that may depend on the round number (the client plays
the receiver’s role in all the oracle calls), which is rather standard. We assume the order of speak-
ing is fixed, and does not depend on the communication so far, the inputs, or the randomness.
5 For client and server inputs c ∈ {0, 1}l, s = ((s1,1, s1,2), . . . , (sl,1, sl,1)) to 1-out-of-2-bit-OTl,
respectively, we let s[c] denote s1,c1 , . . . , sl,cl .

Our security notion is the standard simulation-based notion as in [13]. That is, we require
statistical security against a malicious server or a malicious client, and perfect correctness if both
parties behave honestly. We say a protocol is ϵ(k)-client correct if for any malicious server the
simulation error is bounded from above by ϵ.

More specifically, fix a 2PC protocol in the OT-hybrid model, where the parties are dubbed
“client” and “server” respectively. For any (non-uniform) adversary A corrupting the server in Π,
and x ∈ X, z ∈ {0, 1}∗ define RealΠ,z,x

A = (OUTA(1
k, z)(x), V iewA(1

k, z)(z)) For an ideal-world
adversary S controlling the server let IdealΠ,z,x

S = (OUTS(1
k, z)(x), V iewS(1

k, z)(z)) We require
that for any adversary A there exists a simulator SA such that for all x, z

SD(IdealΠ,z,x
S , RealΠ,z,x

A) = neg(k).

Here the ideal-world adversary may not abort the computation (that is, we require full security).
Additionally, if A is polynomial-time, then so is SA. The definition for security against a corrupted
client is analogous.

We say that the protocol is ϵ(k) server-private if the simulation error against every malicious
client is bounded by ϵ(k).

For simplicity, we do not concern ourselves with the efficiency of protocols or the simulator,
and allow all parties to be unbounded. The adversaries we allow are also unbounded. In fact, our
simulator can be made efficient for efficient (in k) adversaries, but this is a secondary issue, and is
deferred to the full version.

If the simulator’s output joint with honest party’s output corresponding to (every) malicious
adversary (server or client respectively) has distance ≤ ϵ from the real world distributions, we say
the protocol is ϵ-statistically secure. The protocol is statistically secure if ϵ(k) is negligible in k.
If ϵ equals 0 for all adversaries, we say the protocol is perfectly secure against a malicious server
(client).

1-round protocols. In this work we further focus on 1-round protocols, where a single call to
1-out-of-2-bit-OTl is made by the parties. In this setting, security against malicious senders reduces
to requiring that the client’s output distribution alone is consistent with some input distribution
x∗ over X, as the sender has no view and no output. For corrupted clients, we again consider only
their view alone, as the sender has no output.

Definition 3.1 (1-round protocols in OT-hybrid model). A protocol for evaluating f : X×Y → Z
are tuples Π = (ΠQ,ΠR,ΠD) of randomized algorithms, where ΠQ(x) : X → {0, 1}l generates
client’s query c. ΠR(x, c, v) : X × {0, 1}l × {0, 1}l → Z generates client’s output based on x, c
and OT reply v.6 ΠD(y) : Y → {0, 1}2l is server’s generator of OT inputs. We refer to l as the
communication complexity of Π.

4All the definitions below readily generalize to randomized functionalities f , but we focus on deterministic f for
simplicity.

5The point-to-point channel is not necessary in 1-round protocols where the client does not send messages to the
server, as any messages sent to the client over this channel can be emulated by the OT channel.

6For some, but not all functions f , x is not required as an input to R, as Cx ∪ Cx′ = ϕ for all x ̸= x′. It is not
hard to prove that a sufficient condition on f for having Cx ∪ Cx′ = ϕ in all secure protocols for f is the existence
of a 2 × 2 rectangle {y, y′} × {x, x′} in which 3 of the entries are identical, and the other entry differs from these
three.

5

A protocol Π = (ΠQ,ΠR,ΠD) as in Definition 3.1 with CC l operates in the 1-out-of-2-bit-OTl-
hybrid model as described above.7 That is, it is specified by a pair of randomized Turing machines
Π?

C ,Π
?
S with oracle access to an idealized functionality 1-out-of-2-bit-OTl operating as follows

Π?
C(x; r) : Let c = ΠQ(x; r). Send c as input to the 1-out-of-2-bit-OTl oracle, and let v denote the

oracle’s output. Output ΠR(x, c, v; r).

Π?(y; r) : Let s = ΠD(y; r), and send it to the 1-out-of-2-bit-OTl oracle.

Both algorithms ΠC ,ΠS run in parallel, in a single round. We will usually use the notation
Π = (ΠQ,ΠR,ΠD) to denote protocols, while ΠC ,ΠS are implicit.

The above definition defines the syntax of protocols we consider. In the following (this and
following section) we discuss the security requirements we pose on our protocols.

We will usually state our protocols in a hybrid model where the parties have access to some
l oracles 1-out-of-ti hi-string-OT in parallel, where l and (ti, hi) are numbers of our choice. This
is potentially useful for optimizing the complexity of real-world, computationally secure protocols
that are based on our construction, as OT extension allows to implement 1-out-of-2 h-string-OT
using a sublinear (in k) number of calls to 1-out-of-2-bit-OT and some additional sublinear work,
assuming a strong variant of PRG [14]. Also, this is wlog. in our perfectly secure setting and costs
only linear time O(tk) to convert into a perfect protocol in the 1-out-of-2-bit-OT-hybrid model by
using the 1-round perfect reduction from Theorem 2.1.

From now on, all out definitions apply to 1-round protocols for client-server functionalities (in
the OT hybrid), as we only consider this type of protocols.

Definition 3.2. Here, we assume that f is defined on f : X × Y → Z, where ⊥ ∈ Y, Z and
f(x, y) = ⊥ iff. x = ⊥. We say a protocol Π as in Definition 3.1 evaluates f with ϵ-enhanced client
correctness if it satisfies the same definition as ϵ-client correctness, with the following additional
guarantee. For any (deterministic) server strategy S∗, there exists a distribution Y ∗ over Y such
that for all x,

∆(ΠR(x, c← ΠQ(x), S
∗[c]), f(x, Y ∗)) ≤ ϵp⊥

where p⊥ = PrY ∗(⊥). 8

The second notion is a relaxation of perfect client correctness.9

Definition 3.3. Here we assume ⊥ ∈ Y . In the model with input-dependent client-security, we
modify the ideal model to allow the simulator send a single value y∗ ∈ Y to the TP. It also gives
the TP a predicate P such that the TP sends the client f(x, y) if P (x) = 0, and f(x,⊥) otherwise.
We say a protocol Π as in Definition 3.1 evaluates f with perfect input-dependent security, if for
any adversary ,there exists a simulator with simulation error of 0.

3.0.1 Restating security requirements geometrically.

We take a similar approach to that of [7] to representing (some of the) protocols’ security require-
ments geometrically.

More specifically, for client correctness, we consider row distribution vectors achievable in the
ideal model. That is, the region P̃S denotes all achievable row distributions corresponding to
possible ideal-world server strategies. This region simply corresponds to the convex hall of the
rows of f ’s truth table F .

To achieve security against a malicious server, we require that the region of real-world achievable
row distributions PS satisfies PS ⊆ P̃S . Properties 2,3 in the security definition are verified directly.

Geometric representation of client’s output distributions. Fix a protocol Π = (ΠQ,ΠR,ΠD)
as in Definition 3.1 for evaluating a functionality f : X × Y → Z. For the sake of defining our
output distributions we view the protocol as merely randomized mapping from X × Y to client
outputs Z, and do not require it to securely evaluate f , or even correctly evaluate it if everyone
behaves honestly.

7In particular, it first receives all inputs and only then returns all the outputs to the client. No rushing such as
sending inputs to a certain OT instance after getting outputs from other OT instances is possible.

8This enhances the ϵ-client correctness requiring only a distance bound of ϵ, rather than ϵp⊥.
9This is a relaxation as it allows for conditional abort. It also strengthens the definition in the sense that every

deterministic server strategy induces a single effective input y, rather than a distribution.

6

Boolean functions. Fix Z = {0, 1}. For a given server’s strategy Π∗
D(x = y; r) = s∗ for some

fixed s∗ ∈ {0, 1}2l10, we consider the distributions of the client’s output at the end of a protocol
execution Π∗ = (ΠQ,ΠR,Π

∗
D) (that is, a protocol resulting from Π when the server runs Π∗

D instead
of ΠD). We denote this set of distributions by a vector o ∈ R|X| indexed by x ∈ [|X|]. Here ox = p
denotes the probability of the client outputting 1 on input x That is,

ox = Prr[ΠQ(x; r) = c; ΠR(x, c, s
∗[c]) = 1].

We refer to such a vector corresponding to some (possibly invalid) server’s strategy s∗ as a
geometric row distribution for Π. We shall also consider geometric row distributions for the ideal
model evaluating f , corresponding to server’s input distributions y ∈ Y , referring to them as a row
distribution for f . We omit Π, f whenever clear from the context.

Observe that the single number ox uniquely encodes a distribution over the client’s output
set {0, 1} on input x.11 Similarly, we consider geometric column distributions for Π: for a given
client’s strategy c∗ ∈ {0, 1}l for its input to the OT oracle, we consider the corresponding geometric
column distribution vector o ∈ {0, 1}|Y | indexed by y ∈ [|Y |], where oy is the probability of the
client outputting 1 for server input y. That is:

oy = Prr[ΠR(x, c
∗,ΠD(y; r)[c∗]) = 1].

General functions. Generalizing for larger Z = {0, 1, . . . , k−1}, a (geometric) row distribution
o ∈ R(k−1−1)|X|, has entries labeled by pairs (x, i) where x ∈ [|X|], i ∈ Z\{0}, and o(x,i) denotes the
probability of outputting i on input x. Thus, for every x, i we have

∑
j o(x,j) ≤ 1, and o(x,i) ≥ 0.12

As in the case of |Z| = 2, this vector fully represents the client’s output distribution for each input
x. A similar extension can be made for (geometric) row distributions. For a given x ∈ X, let ox
denote the sub-vector (ox,z)z∈[k−1].

Truth tables. In the truth table F of f , we index rows by elements of Y and columns by
elements of X. For Z = {0, 1}, the truth table representation we consider is just the standard one:
a table where entry (y, x) equals f(x, y). We use Fy to denote the row vector (Xx to denote the
column) in F corresponding to y (x). We observe that each row Fy in this case is a geometric row
distribution in the ideal model, where the server inputs y. We can interpret Yy,x as f(x, y) = p,
where p is the probability of outputting 1 (either p = 0 or p = 1).

Let us generalize this form to larger Z. We represent the truth table in "unary", where for
each y, x we have |Z| − 1 columns (x, z)z∈[|Z|−1], and we set F ((x, z), y) = 1 if f(x, y) = z, and
F ((x, z), y) = 0 otherwise (if f(x, y) = 0, all entires F ((x, z), y)) will be 0).13 Again, each row Fy

is a valid geometric row distribution in the ideal world (corresponding to a server input of y).

Definition 3.4 ([7]). We say a function f : X×Y → Z is full-dimensional if the affine dimension
of the row set of its truth table F is the maximal possible - (|Z| − 1)|X|.

Definition of security. As mentioned above, for client-server functionalities, the standard re-
quirement of perfect stand-alone security in the 1-out-of-2-bit-OTl-hybrid model can be restated
as three separate requirements, all involving only the client’s output distribution. For such func-
tionalities and protocols Π as in Definition 3.1 the standard definition of perfect security against
malicious parties is “almost” equivalent to the following definition. It would be fully equivalent if
it required simulation of efficient (in k) adversaries is also efficient. Our protocols in fact satisfy
the stronger definition, as we prove in the full version. We ignore efficiency issues altogether in
this work for the sake of simplicity.

For simplicity, our security definition is stated without account for auxiliary information z
that the adversary and simulator receive regarding the other party’s input, required for sequential
composition. It is easy to see that it in fact follows from our definition below.

In our security definition, security against malicious servers is stated in geometrical terms,
which will be useful for use later.

10This notion naturally generalizes to randomized strategies, but we do not need this extent of generality here.
11The vector o represents |X| separate distributions, one for each client’s input x. Nothing is implied about the

correlation between client’s outputs on different inputs for a given server’s strategy s∗.
12The decision to exclude 0 is merely aesthetic, intended to remain consistent with standard binary truth tables.
13This is instead of having a single entry for each (x, y) with values in Z.

7

Definition 3.5 (Perfect security of protocols as in Definition 3.1). We say that a protocol Π as
in Definition 3.1 for evaluating a client-server functionality f : X × Y → Z as above is perfectly
secure against a single malicious party if it satisfies:

1. Client correctness: For every server’s strategy s∗ ∈ {0, 1}2l, the corresponding row distribu-
tion o∗ of f ′ is in CH({Fy}y∈Y), where the Fy’s are the rows of the truth table F of f .

2. Server privacy: For every client strategy c∗, there exists a simulator S such that for all y,
S(1k) is distributed identically to ΠD(y).

3. Honest correctness: Let Cx = support(ΠQ(x)), Sy = support(ΠD(y)). Then for all c ∈
Cx, s ∈ Sy, ΠR(x, c, s[c]) = f(x, y).

Next we restate Definition 3.2 in geometrical terms.

Observation 1. Consider a protocol Π evaluating a function f as in Definition 3.2 with ϵ-enhanced
client correctness. Then the following holds. For every server’s strategy s∗ ∈ {0, 1}2l, there exists
an ideal world row distribution o∗ ∈ CH({Fy}y∈Y) such that the real world row distribution o′

corresponding to s∗ satisfies
∆(o′, o∗) ≤ ϵ(|Z| − 1)p⊥

Here p⊥ is the coefficient of Y⊥ in o∗.14

4 A perfect protocol when F is full-dimensional
Due to the simple structure of 1-round protocols in the OT hybrid model, the first two security
requirements are fully expressed as a single LP (linear program) [15, 16] specifying (ΠQ,ΠD,ΠR).
However, it is unclear how to incorporate the third requirement into the same program. Thus,
we do not write an explicit LP searching for a specification of (ΠQ,ΠD,ΠR). The resulting LP is
not trivial to solve even for requirements 1,2 alone in 3.5. Instead, we take a similar road to that
used in the fairness literature, which considers protocols with more general structure. We suggest
a concrete protocol, and prove it is secure for a certain subclass of functions.

For every such function, we separately verify that each of conditions 1,2,3 in Definition 3.1. As
in the fairness literature, we do use techniques related to solving LP’s (analyzing the convex hall of
a certain point set) only for proving condition 1 is satisfied by our protocol, but not for searching
for a protocol.

Our starting point is a protocol as in Definition 3.1 (1-round protocol in the (1-out-of-2-bit-OT)l-
hybrid model for some l) by [9][Section 3]. We denote this protocol by ΠIKOPS. It is stated for
function with NC0 circuits, but we restate it for general function (families), and bound its CC as
a function of |X|, |Y |, |Z| (which are assumed to be finite in our work).

The reason the protocol in [9] is restricted to NC0 functionalities is for improving concrete
efficiency, which is not a concern in our paper. Otherwise, their construction works for all functions,
as summarized below.

Theorem 4.1. Let f : X × Y → Z denote any (finite) client-server function. Then for all
ϵ ≥ 0, ΠIKOPS evaluates f with ϵ-relaxed client correctness. Let hi denote the smallest formula
for evaluating the i’th bit of f(x, y), and let h = maxi≤log(|Z|)hi. Then, Π has communication
complexity of l = log(|Z|)Õ(log(|X|)(log(ϵ−1) + h)2) + polylog(ϵ−1).

In a nutshell, in the ΠIKOPS11 protocol, reduces the evaluation of f(x, y) to secure evaluation
of a single instance of l parallel instances of OT 1-out-of-2 h-string-OT functionality for certain
parameters h, l depending on f, ϵ. This is done using a decomposable randomized encodings of
f [17]. Here we have l = log |X| - the input to i’th OT instance is the bit xi. The y is mapped to
a string sequence (s1,0, s1,1, . . . , sl,0, sl,1) fed to the OT’s in a certain manner.

Now, to securely evaluate the resulting functionality in the malicious setting, the OT is replaced
by a COT (certified OT) functionality. The COT returns the client the output, and additionally
reports whether the resulting string is consistent with some y and randomness r, as prescribed by
reduction from f(x, y) to the OT instances. ΠCOT verifies that the OT input s ∈ {0, 1}2l it feeds

14This is not exactly equivalent to enhanced ϵ-client correctness, as the parameters here are slightly worse, but
this is all we need, and it simplifies the definition.

8

to the OT oracle is consistent with some y, r for the reduction. Along with s, the server feeds a
representation of y, r as a witness that s is consistent. It gives client Ci the OT output along with
a bit on whether it is consistent (with that witness y, r common for all indices) or not.

In the COT implementation, the server runs MPC in the head of an n′-party protocol Π for
evaluating the (randomized) mapping from a pair (y, r) to a sequence s. More concretely, the
protocol consists of a sender that privately sends n virtual servers its inputs y, r. There are also
2l clients who have no inputs, where client Ci,b gets the output of the i’th OT instance on input
xi = b. In Π, the virtual servers send messages to the clients in the last round of the protocol.

The COT client chooses the strings corresponding to the views seen by the virtual clients
corresponding to its input x. Additionally, it asks for the entire view of each of the virtual servers
with some small constant probability δ′. We observe that these so called watchlists (the client
watches only a small fraction of the virtual server), along with the requests for client’s views can
be perfectly reduced in one round to 1-out-of-2-bit-OT oracles.

This MPC protocol Π is secure against malicious corruption of δn of the n parties. With
high probability, the client will see p/2n < δ′n < δn of the views, catching cheating with high
probability, but not learning anything besides f(x, y). For a choice of δ′ as above, the IKOPS
protocol already happens to be statistically private against malicious clients.

There is however (small) non-zero probability of the client learning too much (in the worst case,
f(x, y) for all x ∈ X), by ending up watching too many of the virtual parties’ view (potentially all
of them).

Thus, ΠIKOPS is not perfectly server-private. In the following section, we slightly tweak
ΠIKOPS , making watchlists deterministic, thereby making it perfectly server-private. In Sec-
tion [?], using geometric techniques, we demonstrate how to make the protocol from Section 4.1
perfectly client correct. Here we critically rely on the fact that ΠIKOPS satisfies statistical en-
hanced client privacy, rather than just standard statistical client privacy.

4.1 Making ΠIKOPS perfectly server-private
4.1.1 Setting up deterministic watchlists

Recall the problem with client privacy was in the fact that the client may watch the internal state
of too make servers, breaching security of the protocol Π, and thus of the entire construction. To
solve this problem, we replace the probabilistic watchlist setup with a deterministic watchlist setup
that allows the honest client to learn exactly p1n of the views of its choice, while no client can
learn more than p2n of the values, where p2 is not “much larger” than p1. We also allow the server
to input ⊥, in which case the client should output ⊥. Formally let k1, k2, n, h where n ≥ k2 > 2k1,
and h ≥ 1. We define f1 : k1-out-of-n h-string-OT and f2 : k2-out-of-n h-string-OT. We extend
the fi above into f ′

1 : X ′
1 × Y ′

1 → Z ′
1, f

′
2 : X ′

2 × Y2 → Z ′
2, so that Zi = Zi ∪ {⊥}, Yi = Yi ∪ {⊥} so

that ∀x ∈ Xi, fi(x,⊥) = ⊥.

Theorem 4.2 (a (k1, k2)-out-of-n h-string-OT protocol). There exists a protocol Π as in Defini-
tion 3.1 for f ′

1 with communication complexity l. Π satisfies:

• Perfect honest correctness.

• Perfect client-correctness with input-dependent abort.

• Perfect server privacy relaxed to replace f ′
1 with f ′

2 (that is, malicious clients can be simulated
by inputting additional, larger, sets beyond what is allowed by f1).

Proof. We construct a protocol as required, we refer to as Πramp-OT.

Construction 1. The parties perform n 1-out-of-2 nh-string-OT’s in parallel (implemented via
the 1-out-of-2-bit-OTl using parallel instances of Πint).

1. ΠD(y) : In the i’th instance the sender samples n random strings r1, . . . , rn ∈ {0, 1}h.
Then, it secret-shares r = (r1, . . . , rn) with a (n − 2k1)-out-of-n threshold using Shamir’s
secret sharing [18]. Let s1, . . . , sn ∈ {0, 1}hn denote the resulting shares. Output s =
(y1 ⊕ r1, s1, y2, s2, . . . , yn ⊕ rn, sn) (the yi’s are padded accordingly).

2. ΠQ(x = {x1, . . . ,xk1}) : Assume wlog. that all the xi’s are distinct. Output c = (c1, . . . , cn),
where ci = 0 iff. i ∈ x = {x1, . . . , xk1

}.

9

3. ΠR(x, c,v = (v1, . . . ,vn)) : Here vi is the string returned by the i’th instance of Πint. Let
wi = ΠintR(x, ci, vi) denote the output of the i’th instance of Πint. Use the wi’s in SR = [n]\x
to recover the secret vector r as follows:

(a) If all subsets of size n− 2k1 of SR agree on the same secret r, output (wi ⊕ ri)i∈x.
(b) Otherwise, output ⊥.

We now prove the protocol satisfies the required security guarantees. By construction, it is not
hard to see that the protocol satisfies honest correctness. As for client correctness, we observe that
for any server strategy r∗ (input to OT oracle) there exists a value y∗ ∈ {0, 1}2nh such that for
every client’s input x, either ⊥ or y∗[x] is output (with probability 1), and the choice to abort or
not depends on x. To see this, it suffices to observe the following

Observation 2. Fix some server strategy s. Then, for server strategy s, no two choices c1, c2 by
the (honest) client yield corresponding reconstructed secret values r1 ̸= r2 that are both non-⊥.

Assume the contrary, that for some server strategy s = (s1,0, s1,1, . . . , sn,0, sn,1) such c1, c2 exist.
For any pair of sets SR1, SR2 of size k1, SR1, SR2 have at least n− k1− k1 = n− 2k1 coordinates
in common. This set B = SR1 ∩ SR2 can thus reconstruct the secret s. To lead to non-⊥ output
by ΠR, all reconstructing subsets of SR1, SR2 must agree with s (if not, the corresponding output
is ⊥).

Observation 3 implies that all sets SR leading to non-⊥ values for some x lead to the re-
construction of the same value r∗ = s (if no such set exists, we fix r∗ arbitrarily). Therefor,
y∗ = (s1,0 ⊕ r∗1 , . . . , sn,0 ⊕ r∗n) is as promised above. Now, clearly, for each x y∗[x] or ⊥ is output
(depending on the resulting SRx). To see perfect server privacy holds, observe that if the client
tries to learn a set S of at most k2 of the 0-inputs, it can also reconstruct the secret mask r, and
recover all values in S. It learns nothing about the other values, as it only learns one out of 2
‘shares’ in an additive sharing of these values (originating form r), this can be simulated by sending
S in the ideal model. If it attempts to learn a set S of size > k2, it learns nothing about r, as it
does not have enough shares of it, so that it learns nothing about any of the server’s inputs (its
view consists of random field elements for the Shamir sharing, and random strings for each of the
server inputs in S). Thus, its input can be simulated given any S (let us fix some S of size k1) to
be sent to the TP in the ideal model to simulate its view.

4.1.2 Upgrading ΠIKOPS

Let us recall and modify (a specific variant of) the original protocol Πϵ
IKOPS in more detail. In

particular, we change the watchlists from picking each server with a certain probability p, to picking
a random subset of size exactly pn.

Here we represent X,Y, Z as some X = {0, 1}lx , Y = {0, 1}ly , Z = {0, 1}lz .

Construction 2 ([9]). Fix f as above, and a security parameter ϵ > 0. Then Π+
IKOPS,f,ϵ is as

follows.

1. Let κ = O(ϵ−1) for a suitable constant to be determined later. Let us encode input x =
(x1, . . . , xlx) via EncI(x) = (x1,1, . . . , x1,κ+1, . . . , xlx,κ+1), where each xi,1, . . . , xi,κ+1 is a
random additive sharing of xi. Let h : Xκ+1 × Y → Z be defined as h(EncI(x), y) =
f((⊕κ+1

i=1 x1,i, . . . ,⊕κ+1
i=1 xκ+1,i), y).

2. Let (Ench, Dech) denote a decomposable PRE of a function f ′(x, y) related to f . For in-
stance, we could separately encode each of the bits of f(x, y) using the perfect formula-based
encoding from [17]. The resulting encoding has monomials of degree at most 3, and degree 1
in x, y or combinations of the form xiyj, but for a fixed value of y, all these become degree-1
in xi (with possibly rj’s involved). Furthermore, each polynomial has a constant number of
monomials, so it is easy to make the encoding (for any fixed y decomposable by introducing a
constant overhead and more randomness rs []). The complexity of this encoding is (κ+ |C|)2,
where |C| is the formula complexity of each bit of f(x, y).

3. Consider a semi-honest protocol Π′ for evaluating f where c = EncI(x), and the server inputs
s where si,b = Ench,i(b, (y, rs)). The client then recovers f(x, y) from s[c] = s1,x1

, . . . , slx,xlx

by applying Dech to s[c]. We denote α = (κ+ 1)lx.

10

4. To evaluate the protocol Π′ above, we reduce it to a COT (conditional OT) functional-
ity, similar to that of [9]. The COT protocol receives (y, r) from the server, and eval-
uates the decomposable NC0 encoding above to generate the 2l′x purported output values
(v1,0, v1,1, . . . , vα,0, vα,1) = Ench,1(0, (y, rs)), . . . , Ench,α(1, (y, rs)). Each value is either the
correct value Ench,i(b, (y, rs)), or ⊥ in case the vi,b is not consistent with (y, rs). As in [9] the
server performs MPC in the head of an MPC protocol ΠHM evaluating the COT functionality.
The MPC participants are a sender with input (y, rs), 2α clients and some n virtual servers
that perform the computation. The protocol proceeds by having the sender send messages to
the virtual servers, the servers running ΠHM among themselves, and sending the correspond-
ing outputs to the clients during a single round at the end, where each client receives a single
message from the virtual servers, from which it recovers its output.
The protocol has the following security guarantees. It is perfectly correct against any adver-
sary corrupting the sender and at most δn of the servers, and any number of the clients.
Such protocols exist for all δ < 1/3. Also, we will n to satisfy 2⌊δ/3n⌋ < ⌊δn⌋ (from now on
we omit ⌊ ⌋ for brevity). Let us fix δ = 1/4, which imposes that n > 12.
If the sender is honest, ΠHM is perfectly private against semi-honest adversaries corrupting
any subset of clients, and up to δn of the virtual servers. Consider [19] as such a protocol
with CC linear in the size of the encoding circuit, which is an optimized variant of [19].

5. The server runs Π′ on (y, rs) in his head, generating the views V1, . . . , Vn of the virtual
servers, and the purported messages V1,0, V1,1, . . . , V2α,1 received by each of the 2α clients
from all n virtual parties.
Recall that in [9], on input x′ = Enc(x), the parties run parallel instances of 1-out-of-2-bit-OTh
(for the proper value of h), where in the first α instances, instance i inputs Vi,0, Vi,1 are used
by the server. The other set of parallel OT’s is dedicated to watchlists. The client picks δ/3n
of the views V1, . . . , Vn. This is done using the (δ/3n, δn)-out-of-n h-string-OT protocol in
Πramp-OT. 15

The client sends c = (x1, . . . , xα) as its queries for the first part, we refer to as the “keys”
part, and picks a random subset S of size δ/3n of [n] as its input set for the watchlist part
Πramp−OT . Given the replies of both parts: if Πramp−OT outputs ⊥, output ⊥ as well.
Otherwise, it reconstructs the set {Vs∈S}S of virtual server views. It checks whether all
the recovered Vi’s are consistent among them (comparing messages sent and received among
viewed parties, and that they are consistent with their inputs and randomness). The client
outputs ⊥ if an inconsistency among the watched views of the Vi’s was discovered. Otherwise,
it checks whether any of the messages in some Vi,xi

seen by the client are inconsistent with
the values sent in the watched Vj’s. Otherwise, it reconstructs f(x, y) = h(Enc(x), y) from
(Vi,x1

, . . . , Vi,xα
).

Lemma 4.3. Fix some ϵ > 0, and f : X × Y → Z. Then Π+
IKOPS,f,ϵ in Construction 2 is

perfectly correct for honest parties, and is perfectly server-private. It also satisfies enhanced ϵ-
client correctness. Let us denote the complexity of the resulting protocol by ℓ(ϵ, |X|, |Y |).

Proof Sketch. It easy to see that the protocol remains correct in face of honest parties. To
prove perfect server privacy, fix some client strategy c∗. The first part (virtual client views) of the
protocol only discloses at most one Vi,bi for every i ∈ [α], by perfect server privacy of Πint. Let x∗

denote the input corresponding to the bi’s learned (set x∗
i arbitrarily).

We run the simulator guaranteed by Πramp-OT of the malicious client strategy c∗2 induced by
c∗ on Πramp−OT . Consider the client’s induced strategy in Πramp-OT. The simulator sends some
distribution M∗ over {m ⊆ [n]||c| ≤ δn}. For m∗ in support(H∗), by perfect server privacy of
ΠHM , the client learns exactly what follows from h(x∗, y), as it learns at most δn of the virtual
server’s views. Like [9], we also use the fact that any value v ∈ {0, 1}α corresponds to EncI(x) for
some x, so client’s view can be perfectly simulated given DecI(x

∗).
Enhanced ϵ-client correctness holds similarly to the original construction. On a high level, the

only new case that we need to address here is when Πramp-OT makes the client output ⊥.
In more detail, the simulator of the server acts as follows given the server’s strategy s∗.

15As discussed above, the watchlist implementation is where we diverge from [9], everything so far is unmodified.

11

1. It runs the simulator for Πramp-OT on s∗2, the part of the server’s input corresponding to the
watchlist part of the protocol.

2. It picks a random subset T of size δ/3n of [n] Let u2 denote the server’s effective input
guaranteed by Simramp-OT for client inputs T for which the output is non-⊥.

(a) If the output is ⊥ for all T , send ⊥ as an input to the TP (of our 2-party protocol
evaluating f).

(b) Otherwise, let u2 denote the extracted server’s input guaranteed to exist by the security
definition of Πramp-OT. Consider the consistency graph G’ among the virtual servers
induced by u2, where an edge (A,B) exists between a pair of virtual servers A,B iff.
their views do not match. That is, some message received by B (A) does not match the
message sent by A (B) as determined by A’s (B) randomness and initial message from
the sender.

i. If the minimal VC L of the consistency graph G′ is of size t > δ/3n, send ⊥ to the
TP.

ii. Otherwise, t < δ/3n. Pick a subset T of size δ/3n among the virtual servers.
If there is an edge of G′ inside T , send ⊥ to the TP. Otherwise, let u1 denote
the sender’s input extracted for the "keys" part of the protocol - executing the α
parallel instances of Πint. Complete the graph G′ into a graph G with all virtual
clients and virtual servers (but not the sender). Add edges between V ′ and V \ V ′

between client A = (i, b) and server B iff. u1[i, b] is not consistent with B’s message
to A according to u2. Let B1 denote the set of client nodes that have a neighbor
in T . Let g = |B1|. If g ≥ κ + 1 or xi,j,0, xi,j,1 ∈ B1 for some i, j send ⊥ to the
TP. Otherwise, send the TP ⊥ with probability 2−g, and (y, rs) otherwise (with
probability 1− 2−g). Here (y, rs) is obtained by extracting (y, rs) according to the
views of the sender and L, as appearing in u2. In particular, the sender’s messages
are taken from all virtual server’s first messages as appearing in u2. In particular,
send ⊥ if (y, rs) = ⊥ is extracted. 16

It remains to prove that the simulator indeed satisfies the client correctness requirement. Con-
sider several cases.

1. Assume the server’s input s to the second part is such that the client outputs ⊥ for all inputs
x ⊆ [n] of size δ/3n. Then the client in the real world outputs ⊥ with probability 1. This is
also the case in the simulation, leading to ϵ = 0 simulation error.

2. Otherwise, let u2 denote the server’s input extracted by the simulator of Πramp-OT. This
value is identical to the effective input in the real worlds (in fact, it is a single value, not even
a general distribution).

(a) If the inconsistency graph induced by u2 is of size t > δ/3n, then the smallest maximum
matching in the graph is of size at least t/2. Thus, by a simple analysis using Chernoff
bounds (see [] for details), the client picks a set T of parties covering some edge in G′

with probability 2−Θ(n). Thus, with probability at least 1− 2−κ, we the client outputs
⊥. This probability may also rise due to an event of outputting ⊥ for a certain choice of
T due to Πramp-OT leading to an output of ⊥ for that value of T . The simulator outputs
⊥ with probability b⊥ = 1. Thus the security requirement is satisfied in this case for a
proper choice of κ.

(b) Otherwise, for fix some choice of T by the client in the watchlist part. If ⊥ is output
due to Πramp-OT’s execution, then this is also the case when the simulator chooses T .
Otherwise, extract the server’s effective input ⊥ to the “keys” part of the protocol - it is

16Here a note on simulator efficiency is in order. In this work we do not require efficient simulation. In particular,
we compute exact minimal VC, rather than approximate VC, for the sake of simplicity. Similarly to [] we could
have, had we strived for efficient simulation. The part of extracting (y, rs) is also efficient if ΠHM ’s simulator is
efficient. To be precise, the simulator is expected to receive the code of TM’s rather than concrete views. The
simulator assumes that the sender deterministically sends messages as in all virtual server’s views, and the virtual
servers in B have next-message functions consistent with the views in u2, and arbitrary otherwise. As the protocol
is ΠHM perfectly correct in face of an adversary corrupting {sender} ∪B, the correct distribution (y, rs) is always
extracted.

12

also identically distributed to the effective input of the server to the first part (in fact,
by structure of Πint, this is also a single value). Consider the set B1 of nodes in V \ V ′

with neighbors in T .
i. If g ≥ κ + 1, consider the maximal subset B′

1 ⊆ B1 where for every ∀i ∈ [lx], j ∈
[κ+1]∀b ∈ {0, 1}xi,j,b /∈ B′

1. By the structure of Ench, at least a (1−2κ−1)-fraction
of B1 is in B′

1. This holds as for each i, we either keep all of the nodes in B1, or
remove at most 2 out of at least κ + 1. For all x ∈ X, the probability that Eh(x)
has some xi,j value so that node xi,j,xi,j

is in B′
1 is 1− 2−|B′

1| ≥ 1− 2−κ/2. In this
case the client outputs ⊥. The probability of outputting ⊥ conditioned on choosing
T by the simulator is 1.

ii. Otherwise, g ≤ κ. In this case, for all x, B′
1 = B1 (where B1, B

′
1 are defined as

above). Therefore, for all x, the probability of outputting ⊥ due to hitting an edge
in V \V ′∪T is the same as for the simulator conditioned on choosing T . If the event
of hitting an edge does not occur, the output induced by u2 is always consistent
with (y, rs) extracted by the simulator conditioned on picking ⊥ (in particular, it
may or may not equal ⊥).

To summarize, for every input x, the extracted distribution on server inputs induces an output
distribution that is at distance at most 2−κp⊥ from the real output distribution. More concretely,
the difference stems only from case 2.b.ii. ■

4.2 Transforming ΠIKOPS+ into a perfectly correct protocol
In this section we describe the first step of the construction. Here we rely on ideas from convex
geometry that are somewhat similar to those of [7]. In particular, the geometric interpretation of
ϵ-enhanced client correctness and the following notion of full-dimensional functions is central to
our construction.

Lemma 4.4. Let ϵ > 0, and let Π denote a protocol as in Definition 3.1 for evaluating f with
ϵ-enhanced client security, perfect server privacy, and perfect honest correctness. Then there exists
a perfectly secure protocol as in Definition 3.1 for evaluating f with communication complexity
ℓ(ϵ, |X|, |Y |), where ℓ is as in Theorem 4.3.

As a corollary from Lemma 4.4 and Theorem 4.3, we obtain our main result.

Theorem 4.5. Let f : X × Y → Z denote a full-dimensional function, and g = |X|(|Z| − 1).
Then there exists a protocol Π′ as in Definition 3.1 evaluating f with perfect security against a
malicious adversary in the 1-out-of-2-bit-OTl-hybrid model for l = ℓ(1/10(g − 1)g!, |X|, |Z|) =
Õ(h2, poly(|X|, |Z|)), where ℓ is the function in Theorem 4.3.

Here poly(|X|, |Z|) is a global polynomial, independent of f .

Proof sketch. We pick a sufficiently small ϵ > 0, to be set later, and consider Π+
IKOPS+,f,ϵ

. Fix
some vector v in the convex hall of F ’s (not F ′’s) rows Fy, which is “far enough from the edges” of
that polygon. By “far enough” we mean that adding up to ±ϵp⊥ in every coordinate results in a
point which is still inside the polygon. Our protocol Π′ proceeds as follows. Whenever Π+

IKOPS+,f,ϵ

outputs ⊥ as an output on input x, output a distribution consistent with vx. Otherwise, output
the value output by Π. Indeed, as Π+

IKOPS+,f,ϵ
satisfies ϵ-enhanced client correctness, its output

distribution is of the form.
o+ =

∑
i

αioi + er (1)

Here αioi is a convex combination of the rows Y ′
i of F ′. The vector er is an error vector, |er|∞ ≤

ϵα⊥, where α⊥ is the coefficient of Y⊥.17.
Now, as in Π, an output of ⊥ on input x is replaced by vx, o+ in Equation 3 is replaced by

õ =
∑
i∈Y

αiYi + α⊥(vx + ẽr) (2)

17In fact, for every x, |ex|1 ≤ ϵ , but using this stronger property would not improve our result.

13

where |er|∞ ≤ ϵ. It remains to show that d = vx + ẽr is in CH({Yy}y∈[|Y |−1]) for the right
choice of v, ϵ. This is the case as if d = βiYi is a convex combination of F ’s rows, we get that

õ =
∑
i∈Y

αiYi + α⊥(βiYi) =
∑
i∈Y

(αi + α⊥βi)Yi

Since α1, α⊥, . . . , α|Y |, and (separately) the βi’s are coefficients of a convex combination, thus
constituting a valid ideal-world row distribution for f .

It remains to prove that there is a way to pick v, ϵ so that the resulting õ satisfies the client
correctness requirement. Since f is full-rank, let us pick a set of size g = |X|(|Z| − 1) + 1 of rows
of F , V = {Y1, . . . , Yg}, such that the dimension of {∆i−1 = Yi − Y1}i≥2 is g − 1. We will pick v
as a convex combination ∑

i≤g

αiYi

of the Yi’s, which we determine in the following. As F has 0-1 entries we have

Observation 3. Each ∆j is has entires in the set {0, 1,−1}.

Let us pick
v = 3/4Y1 +

∑
2≤i≤g

1/4(g − 1)Yi

Now, we adapt ϵ to this choice based on the following observation.

Claim 4.6. Let u ∈ Rg−1 be a vector with |u|∞ ≤ ϵ. Then, in the representation u =
∑

i≤g−1 αi∆i

(it exists and is unique as the ∆i’s form a basis of Rg−1)), it must be the case that |αi| ≤ ϵ · g!.

To prove the claim we apply Fact 1 to M = (∆1||∆2|| . . .∆g−1), and use Observation 3 to
bound each |M−1

i,j | as |Ci,j | ≤ (g − 1)!/1 = (g − 1)!. Now, the solution to Mx = u is M−1u, thus
we get |x|∞ ≤ (g − 1)(g − 1)!ϵ ≤ g!ϵ, as required (here g − 1 is the length of u).

We can rewrite a convex combination of the Yi’s as∑
i≤g

αiYi = Y1 +
∑

i≤g−1

αi+1∆i (3)

where the αi’s on the right hand side are non-negative integers summing to at most 1 (and move
back and forth between the two representations). In particular, we have

v = Y1 + 1/4(g − 1)
∑

i≤g−1

∆i

Recall also that the resulting row distribution is o′ = (1− ϵ)v+ e′, where |e′|∞ ≤ ϵ. Thus, we have
e′ =

∑
i≤g−1 αi∆i, where |αi| ≤ g!ϵ.

Thus, we have

o′ = (1− ϵ)v + e′ = Y1 + (1− ϵ)1/g
∑

i≤g−1

∆i + (e′ − ϵY1)

Let us write w = e′ − ϵY1. Clearly, |w|∞ ≤ 2ϵ. Here |βi| ≤ 2ϵ for each i. Thus, from Claim 4.6 we
have

o′ = Y1 +
∑

i≤g−1

((1− ϵ)1/4(g − 1) + βi)∆i

where |βi| ≤ 2g!ϵ. Thus (since g ≥ 2), picking ϵ = 1/10(g − 1)(g!), we obtain o′ of the form
presented in Equation 3, which falls in the required region (the coefficients of the ∆i’s are all
non-negative and sum to at most 1).

More precisely, let f(x, y) : [n]× [m]← {0, 1} denote a function where FT is of full dimension.
Consider the protocol from [7] for evaluating this function with fairness (page 13 in the eprint
version). Here RandOut2(y) is such that XReal = c is in CH(X1, . . . , Xl), where the Xi’s are the
rows of FT .

14

References
[1] Benny Chor and Eyal Kushilevitz. A zero-one law for boolean privacy (extended abstract).

In David S. Johnson, editor, Proceedings of the 21st Annual ACM Symposium on Theory of
Computing, May 14-17, 1989, Seattle, Washigton, USA, pages 62–72. ACM, 1989.

[2] Richard Cleve. Limits on the security of coin flips when half the processors are faulty (extended
abstract). In Juris Hartmanis, editor, Proceedings of the 18th Annual ACM Symposium on
Theory of Computing, May 28-30, 1986, Berkeley, California, USA, pages 364–369. ACM,
1986.

[3] Oded Goldreich, Silvio Micali, and Avi Wigderson. Proofs that yield nothing but their validity
for all languages in NP have zero-knowledge proof systems. J. ACM, 38(3):691–729, 1991.

[4] Joe Kilian. Founding cryptography on oblivious transfer. In Simon [20], pages 20–31.

[5] S. Dov Gordon and Jonathan Katz. Partial fairness in secure two-party computation. In Henri
Gilbert, editor, Advances in Cryptology - EUROCRYPT 2010, 29th Annual International
Conference on the Theory and Applications of Cryptographic Techniques, French Riviera, May
30 - June 3, 2010. Proceedings, volume 6110 of Lecture Notes in Computer Science, pages 157–
176. Springer, 2010.

[6] S. Dov Gordon, Carmit Hazay, Jonathan Katz, and Yehuda Lindell. Complete fairness in
secure two-party computation. IACR Cryptology ePrint Archive, 2008:303, 2008.

[7] Gilad Asharov. Towards characterizing complete fairness in secure two-party computation.
In Yehuda Lindell, editor, Theory of Cryptography - 11th Theory of Cryptography Confer-
ence, TCC 2014, San Diego, CA, USA, February 24-26, 2014. Proceedings, volume 8349
of Lecture Notes in Computer Science, pages 291–316. Springer, 2014. eprint version at
https://eprint.iacr.org/2014/098.

[8] Gilad Asharov, Amos Beimel, Nikolaos Makriyannis, and Eran Omri. Complete characteriza-
tion of fairness in secure two-party computation of boolean functions. In Yevgeniy Dodis and
Jesper Buus Nielsen, editors, Theory of Cryptography - 12th Theory of Cryptography Confer-
ence, TCC 2015, Warsaw, Poland, March 23-25, 2015, Proceedings, Part I, volume 9014 of
Lecture Notes in Computer Science, pages 199–228. Springer, 2015.

[9] Yuval Ishai, Eyal Kushilevitz, Rafail Ostrovsky, Manoj Prabhakaran, and Amit Sahai. Ef-
ficient non-interactive secure computation. In Kenneth G. Paterson, editor, Advances in
Cryptology - EUROCRYPT 2011 - 30th Annual International Conference on the Theory and
Applications of Cryptographic Techniques, Tallinn, Estonia, May 15-19, 2011. Proceedings,
volume 6632 of Lecture Notes in Computer Science, pages 406–425. Springer, 2011.

[10] Gilles Brassard, Claude Crépeau, and Miklos Santha. Oblivious transfers and intersecting
codes. IACR Cryptology ePrint Archive, 1996:10, 1996.

[11] Stefan Wolf and Jürg Wullschleger. Oblivious transfer is symmetric. In Serge Vaudenay,
editor, Advances in Cryptology - EUROCRYPT 2006, 25th Annual International Conference
on the Theory and Applications of Cryptographic Techniques, St. Petersburg, Russia, May
28 - June 1, 2006, Proceedings, volume 4004 of Lecture Notes in Computer Science, pages
222–232. Springer, 2006.

[12] Amos Beimel, Ariel Gabizon, Yuval Ishai, Eyal Kushilevitz, Sigurd Meldgaard, and Anat
Paskin-Cherniavsky. Non-interactive secure multiparty computation. In Juan A. Garay and
Rosario Gennaro, editors, Advances in Cryptology - CRYPTO 2014 - 34th Annual Cryptology
Conference, Santa Barbara, CA, USA, August 17-21, 2014, Proceedings, Part II, volume 8617
of Lecture Notes in Computer Science, pages 387–404. Springer, 2014.

[13] Ran Canetti. Security and composition of multiparty cryptographic protocols. J. Cryptology,
13(1):143–202, 2000.

15

[14] Yuval Ishai, Eyal Kushilevitz, Rafail Ostrovsky, and Amit Sahai. Cryptography with constant
computational overhead. In Cynthia Dwork, editor, Proceedings of the 40th Annual ACM
Symposium on Theory of Computing, Victoria, British Columbia, Canada, May 17-20, 2008,
pages 433–442. ACM, 2008.

[15] L. V. Kantorovich. Mathematical methods of organizing and planning production. Manage-
ment Science, 6(4):366–422, 1960.

[16] George B. Dantzig. Inductive proof of the simplex method. IBM Journal of Research and
Development, 4(5):505–506, 1960.

[17] Yuval Ishai and Eyal Kushilevitz. Perfect constant-round secure computation via perfect
randomizing polynomials. In Peter Widmayer, Francisco Triguero Ruiz, Rafael Morales
Bueno, Matthew Hennessy, Stephan Eidenbenz, and Ricardo Conejo, editors, Automata, Lan-
guages and Programming, 29th International Colloquium, ICALP 2002, Malaga, Spain, July
8-13, 2002, Proceedings, volume 2380 of Lecture Notes in Computer Science, pages 244–256.
Springer, 2002.

[18] Adi Shamir. How to share a secret. Commun. ACM, 22(11):612–613, 1979.

[19] Michael Ben-Or, Shafi Goldwasser, and Avi Wigderson. Completeness theorems for non-
cryptographic fault-tolerant distributed computation (extended abstract). In Simon [20], pages
1–10.

[20] Janos Simon, editor. Proceedings of the 20th Annual ACM Symposium on Theory of Comput-
ing, May 2-4, 1988, Chicago, Illinois, USA. ACM, 1988.

[21] Yehuda Lindell and Benny Pinkas. Secure two-party computation via cut-and-choose oblivious
transfer. J. Cryptology, 25(4):680–722, 2012.

A Warmup - Y = {0, 1}
As a warmup, we observe that for all finite Z all client-server functions f : X × Y → Z where
Y = {0, 1} have a perfectly secure protocol in the OT hybrid model. In turn, this is a special
case of a folklore construction for f ’s where F has a column x0 that dominates all other columns
(recall that a column x dominates a column x′ if for all y ∈ Y F (x, y) = F (x, y′) implies that
F (x′, y) = F (x′, y).). The protocol in fact does not use OT oracle, and is secure in the plain
model.18

This trivial (set of) examples is the only type of functions we know of that is not fully covered
by our main construction 4.5.

Theorem A.1. Let f : X × Y → Z be a client server functionality where F has a column x0

that dominates all other columns. Then there exists a 1-round perfectly secure protocol for f in
the plain model.

Proof Sketch. Consider the following protocol. If all columns in F are constant, the client just
outputs f(x0, y1) where y1 ∈ Y is fixed arbitrarily without any communication. Otherwise, the
server simply sends o = f(x0, y) to the client. The client recovers f(x, y) from o: as column F x0

dominates column F x, f(x, y) is uniquely determined by o.
The construction is private against malicious clients, as the client’s view can be simulated by

sending x0 to the trusted party, where x0 is an entry such that column x0 in F has two distinct
entries.

A malicious server’s behavior can also be simulated, as it sends a message distributed over
{f(x0, y)}y∈Y according to some distribution (anything outside Y is interpreted as some default
value). ■

Corollary A.2. Let f : X × Y → Z be a client server functionality where Y = {0, 1}. Then there
exists a 1-round perfectly secure protocol in the plain model.

18The protocol is 1-round, and in particular can be replaced by one as in Definition 3.1, since sending a message
in |Z| over a channel can be implemented via a call to 1-out-of-2-bit-OTlog |Z| where the message to be sent is
placed in both positions.

16

B Applications
As discussed in the intro, our protocol allows evaluating functions whose truth table are full-
dimensional with computational (and communication) complexity which is independent of the
security parameter to achieve 0 simulation error. For domains that the not very large, this may
help achieving concretely efficient protocols. The focus of our work is mostly theoretical, so we did
not try to optimize the concrete parameters, but it paves a way for designing protocols which may
be competitive in efficiency (say, in CC) with the state of the art statistically or computationally
secure protocols.

Observe that a large fraction of functions f : X × Y → Z with |Y | > |X| satisfy the require-
ments of Theorem 4.5. More concretely, analysis of row-rank of random functions with domains
|X|, |Y |, |Z| this fraction behaves as 1 − exp(−(|Y | − |X|(|Z| − 1)) (see discussion in [7] for more
details). For instance, at least 1− 1.6 · 10−6 of the functions with |Y | = 31, |X| = 30, |Z| = 2 can
be computed with perfect security in the OT-hybrid model!

C Future work
In this work we initiate a systematic study of perfect security in the OT hybrid model. More
concretely, we have focused on client-server functionalities. Although we have made some progress,
many interesting questions remain wide open.

Client-server functionalities. A natural open question is to fully characterize the set of client-
server functionalities that can be evaluated. One concrete question that is interesting to resolve is
that of k-out-of-n-bit-OT for any k ̸= 1, n. A perfect protocol for 2-out-of-3-bit-OT this functional-
ity would be particularly useful for improving concrete efficiency of 2PC protocols - via constructing
improved cut and choose OT [21]. Observe that k-out-of-n-bit-OT implies k-out-of-n′-bit-OT for
all n′ ≤ n (in our model). This holds via a simple perfect reduction from the latter to the former,
where the sender pads its n inputs to n′, and the client only picks subsets of the first n bits.

A concrete approach. Trivially, if a 2PC functionality has a perfectly secure protocol in the
OT hybrid model it is also securely computable with fairness. The other direction is not true.
As follows from the ωk(1) bound in [6] for symmetric functions with an embedded XOR, and the
construction of [7] for all full dimensional functions (some of which have an embedded XOR),
fairness does not imply perfect security.

The work of [7] puts forward a class of symmetric functions that have protocols which are
statistically secure with fairness, for which our protocols do not work. The condition characterizing
the functions that can be handled by his protocol is identical to ours.

Theorem C.1 (Informal [7]). Every symmetric function f(x, y) such that the truth table F of
f(x, y) is full-dimensional (when considering the set of rows of the matrix representing F), can be
evaluated with full security.

This is precisely the condition we impose, where the columns of F are labeled by X, and the rows
are labeled by Y . However, if FT rather than f is of full dimension, since f is symmetric, reversing
the roles of the row player and the column player allows to securely compute f ′(y, x) = f(x, y),
and thus compute f(x, y). For client-server functionalities, this transpose is not possible, as the
roles of the parties in the protocol are not symmetric.

This is interesting, since client-server functionalities are particularly easy to implement with
(statistical) fairness, while symmetric functionalities are less so. However, even symmetric func-
tionalities that are computable with full statistical security may not be computable with perfect
security even in their client-server variant.

This provides guidance for candidate client-server functionalities with no perfect protocols to
look at first.

Question 1.1 Consider f(x, y) for which F is not full dimensional, but FT is. Such functions
have a protocol with full statistical security in the OT-hybrid model [7], but are not covered by our
construction. Do all these function have a perfect protocol in the OT hybrid model?

Another interesting open question on perfect security refers to round complexity.

17

The round complexity of perfect 2PC. Question 2. For (inefficient) statistical security it
follows from the fairness literature that increasing round complexity helps to evaluate more func-
tions (some examples for efficient 2PC are also known: combining [7, 6] to obtain certain functions
with embedded xor). Does increasing round complexity beyond 1 allow to perfectly evaluate more
functions ? This relates to both client-server and other types of 2PC functionalities.

Roughly, increasing round complexity in the fully secure statistical setting allows to decrease
the simulation error of that protocol, by making it harder for a malicious party to guess what is
the “right” time to abort. It is not apriori clear throughout which mechanism, if any, this could
be useful for obtaining protocols with perfect full security.

A concrete approach One approach towards constructing multi-round protocols for possibly
new functionalities, is modifying [7]’s GHKL-style protocols for general (possibly asymmetric)
functions.

Here full dimension properties of f alone will not generally suffice, as for (symmetric) function-
alities with an embedded xor every protocol with error neg(k) requires ωk(1) rounds [6] so perfect
security is in fact impossible. Thus new techniques will be required if we are to find functionalities
which can be perfectly computed, but in multiple rounds.

Security with abort. Although this notion is equivalent for client-server functionalities, it is
natural to ask whether the full perfect security notion and perfect security with abort in the
OT-hybrid model are equivalent for 2PC functionalities.

As we know, this is not the case for efficient statistical 2PC in the OT-hybrid model. It is also
known that even perfect security with abort is not possible for certain 2PC functionalities.

Can we separate the two notionts in the 2PC setting? As a first step, it would be interesting
to understand whether client-server functionalities can be handled with security with abort (even
before understanding the status of this class for perfect full security).

18

	Introduction
	Our results

	Preliminaries
	Our model
	Restating security requirements geometrically.

	A perfect protocol when F is full-dimensional
	Making IKOPS perfectly server-private
	Setting up deterministic watchlists
	Upgrading IKOPS

	Transforming IKOPS+ into a perfectly correct protocol

	Warmup - Y={0,1}
	Applications
	Future work

