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Abstract. Discrete Gaussian Sampling is a fundamental tool in lat-

tice cryptography which has been used in digital signatures, identify-

based encryption, attribute-based encryption, zero-knowledge proof and

fully homomorphic cryptosystem. How to obtain integers under discrete

Gaussian distribution more accurately and more efficiently with a more

easily implementable procedure is a core problem in discrete Gaussian

Sampling. In 2010, Peikert first formulated a convolution theorem for

sampling discrete Gaussian and demonstrated its theoretical soundness.

Several improved and more practical versions of convolution based sam-

pling have been proposed recently. In this paper, we improve the error

estimation of convolution discrete Gaussian sampling by considering dif-

ferent types of errors (including some types that are missing from previ-

ous work) and expanding the theoretical result into a practical analysis.

Our result provides much more accurate error bounds which are tightly

matched by our experiments. Furthermore, we analyze two existing prac-

tical convolution sampling schemes under our framework. We observed

that their sets of parameters need to be modified in order to achieve

their preset goals. These goals can be met using the suggested parame-

ters based on our estimation results and our experiments show the con-

sistences as well. In this paper, we also prove some improved inequalities

for discrete Gaussian measure.

Key words: Discrete Gaussian Sampling, convolution theorem, lattice,

error estimation

1 Introduction

In recent years, research in lattice-based cryptography has attracted consider-

able attention. This is mainly because mathematical and computational prop-

erties of lattices provide basis for advanced schemes, such as digital signatures,

identity-based and attribute-based encryption, zero-knowledge proof and fully
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homomorphic schemes, and some of the lattice-based cryptosystems are likely

to be effective against quantum computing attacks in the future. Many of these

lattice-based schemes rely on a polynomial-time algorithm which samples from

a discrete Gaussian distribution over a lattice. Thus discrete Gaussian sampling

is one of the fundamental tools of lattice cryptography.

Discrete Gaussian over lattices has been well studied in mathematics [1, 2]

and becomes an exceedingly useful analytical tool in discussing the computa-

tional complexity of lattice problems [3, 4, 11]. A discrete Gaussian sampling

algorithm takes a basis of the lattice Λ, a vector c ∈ Rn, and a width parameter

s > 0 as inputs, and outputs a vector v that obeys the distribution DΛ+c,s which

assigns a probability proportional to e−π‖v−c‖
2/s2 . Two of the most influential

discrete Gaussian sampling algorithms are Babai’s nearest-plane algorithm [5]

and the sampling algorithm of Gentry, Peikert and Vaikuntanathan [9]. Babai’s

algorithm was proposed in 1986 and Gentry, Peikert and Vaikuntanathan im-

proved it by replacing the deterministic rounding process in each iteration by

a probabilistic rounding process which is determined by its distance from the

target point [5]. The work [9] also provided an analysis of the sample distribution

using smoothing parameter of Micciancio and Regev [6], in terms of statistical

distance. A further improvement and extension of the sampling algorithm of

[9] was obtained by Peikert [12] in 2010, where a parallelizable Gaussian sam-

pling algorithm is established based the famous convolution theorem of discrete

Gaussian as well as its theoretical bound. The convolution theorem of discrete

Gaussian allows the generation of a sample with relatively large standard devia-

tion s by combining results of different samples with small standard deviation s′.

This technique greatly improves the efficiency for sampling with large standard

deviation. Many practical improvements about Gaussian sampling have been

made based on the convolution theorem. For example, Pöppelmann, Ducas and

Güneysu proposed a highly efficient lattice-based signatures on reconfigurable

hardware in 2014 [13] and Micciancio and Walter provided a generic Gaussian

sampling algorithm with high efficiency and constant-time in 2017 [8]. Improve-

ments have been reported in recent work [10, 14], where results of [8] were further

utilized and expanded.

The error estimation of convolution theorem of discrete Gaussian sampling

is one of the key issues in employing convolution theorem of discrete Gaussian

sampling. Peikert [12] gave a theoretical error estimation as 2ε ( ε ≤ 1/2 is

bounded by smoothing parameter ) without consideration about floating-point

errors and truncation errors. Pöppelmann, Ducas and Güneysu [13] adapted

Peikert’s analysis by scaling the standard deviation s′ of one of the base sam-

plers by a factor of 11 and provided an error estimation as 32ε2 which is still a

theoretical result without consideration about floating-point errors and trunca-

tion errors. Micciancio and Walter [8] made a more practical analysis about error
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estimation of convolution theorem by involving floating-point errors and using

a novel notion of “max-log” distance. However, there seems to be a problem

without considering truncation errors which might result in a bigger deviation.

In this paper, we concentrate on the practical error estimation of convolution

theorem of discrete Gaussian sampling. By considering the floating-point errors

and truncation errors, we provide a more accurate practical bound for convolu-

tion theorem. More specifically, we combine Peikert’s theoretical result with the

analysis of floating-point errors and truncation errors and present our estimation

under several different distances (divergences). Our extensive experiments agree

very well with our estimation results. Furthermore, we use these new error esti-

mation results to analyse the sampling schemes proposed in [8, 13] and provide

suggested parameters under which their intended goals can be achieved. Our ex-

periments show a tight match with our theoretical bounds. The experiments also

indicate that convolution results from the existing work may have larger error

range and fail to be within their preset error bounds if their original parameters

are used and the truncation error is missing from the consideration. This paper

also contains some improved inequalities concerning discrete Gaussian measure.

The rest of the paper is organized as follows. In section 2, we introduce some

background about lattice, discrete Gaussian sampling, as well as error estimation

results for convolution theorem from [8, 12, 13]. Our practical estimation and its

analysis are presented in section 3. In section 4, we describe experiment results

and discuss applications of our work. Finally, a conclusion is given in section 5.

2 Preliminaries

2.1 Error Estimation

Statistical Distance. Statistical distance is defined as the sum of absolute

errors, let P and Q be two distributions over a common countable set S, the

statistical distance between distributions P and Q, denoted as ∆SD, is:

∆SD(P,Q) =
1

2

∑
x∈S
|P (x)−Q(x)|

Relative Distance. Relative distance is defined as the maximum ratio between

absolute error and corresponding probability, let P and Q be two distributions

over a common countable set S, the relative distance, denoted as ∆RE between

distributions P and Q, is:

∆RE(P,Q) = max
x∈S

δRE(P (x), Q(x))

where δRE(P (x), Q(x)) = |P (x)−Q(x)|
P (x) .
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Kullback-Leibler Divergence. Let P and Q be two distributions over a com-

mon countable set Ω, and let S ⊂ Ω be the strict support of P (P (i) > 0 iff

i ∈ S). The Kullback-Leibler divergence, denoted as ∆KL of Q from P , is defined

as:

∆KL(P,Q) =
∑
x∈S

ln
P (x)

Q(x)
P (x)

where ln(x/0) = +∞ for any x > 0.

Max-log Distance. This metric is first introduced in [8]. Given two distribu-

tions P and Q over a common countable set S, their max-log distance ∆ML is

defined as:

∆ML(P,Q) = max
x∈S

δML(P (x), Q(x))

where δML(P (x), Q(x)) = | lnP (x)− lnQ(x)|.
Relationship between Closeness Metrics. For a real number x and its p-bit

approximation x̄ which stores the p most significant bits of x in binary, we have5:

δRE(x, x̄) < 2−p+1

A relation that links statistical distance and ∆KL is described by the follow-

ing Pinsker’s inequality:

∆KL(P,Q) ≥ 2∆2
SD(P,Q).

For ∆KL and ∆RE , the inequality

∆KL(P,Q) ≤ 2∆2
RE(P,Q)

was proved in [13] under the condition that ∆RE(P,Q) < 1/4. Actually, this

argument is a special case of a general result: assume that for any i ∈ S,

there exists some δ(i) ∈ (0, 1/4) such that |P (x) − Q(x)| ≤ δ(x)P (x), then

∆KL(P,Q) ≤ 2
∑
x∈S δ

2(x)P (x) holds. The relationship between ∆KL and ∆RE

follows by setting δ(i) = ∆RE(P,Q).

Recently in [8], the above relation was further improved to

∆KL(P,Q) ≤ (8/9)∆2
RE(P,Q).

In fact, [8] established a more general inequality ∆KL(P,Q) ≤ ∆2
RE(P,Q)

2(1−∆RE(P,Q))2

for the case ∆RE(P,Q) < 1.

5 When we store an infinite-bit real number x = 2k
∑+∞
i=1 xi2

−i as a p-most-

significant-bit real number x̃ = 2k
∑p
i=1 xi2

−i where k is a scaler that ensures

x1 = 1 and xi ∈ {0, 1} for all i > 1, the relative error µ = |x̃ − x|/x̃ =

2k
∑+∞
i=p+1 xi2

−i/(2k
∑p
i=1 xi2

−i) < 2−p/2−1 = 2−p+1.
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Lemma 4.2 of [8] sets up a relation between ∆ML and ∆RE . We shall prove

a slightly more precise inequality for these two quantities. It should be pointed

out that we assume that P and Q share exactly the same strict support S. This

is always true if the condition ∆RE(P,Q) < 1 holds.

Lemma 2.1 If ∆RE(P,Q) < 1, then

∣∣∆ML(P,Q)−∆RE(P,Q)
∣∣ ≤ ∆2

RE(P,Q)

2(1−∆RE(P,Q))
.

Proof. Note that for |t| < 1, we have | ln(1− t)| =
∣∣t+ t2

2 + t3

3 + · · ·
∣∣. For x ∈ S,

we set tx = P (x)−Q(x)
P (x) . On the one hand, we have

∣∣∣∣ ln Q(x)

P (x)

∣∣∣∣ =
∣∣ ln(1− tx)

∣∣ =
∣∣tx +

t2x
2

+
t3x
3

+ · · ·
∣∣ ≤ |tx|+ |tx|2

2
+
|tx|3

3
+ · · ·

≤ ∆RE(P,Q) +
∆2
RE(P,Q)

2
+
∆3
RE(P,Q)

3
+ · · ·

≤ ∆RE(P,Q) +
∆2
RE(P,Q)

2(1−∆RE(P,Q))
.

This gives ∆ML(P,Q) ≤ ∆RE(P,Q) +
∆2
RE(P,Q)

2(1−∆RE(P,Q)) .

On the other hand,

∣∣∣∣ ln Q(x)
P (x)

∣∣∣∣ =
∣∣ ln(1− tx)

∣∣ ≥ |tx| − ∣∣ t2x2 +
t3x
3 + · · ·

∣∣. So

|tx| ≤
∣∣∣∣ ln Q(x)

P (x)

∣∣∣∣+
∣∣ t2x

2
+
t3x
3

+ · · ·
∣∣ ≤ max

x∈S

∣∣∣∣ ln Q(x)

P (x)

∣∣∣∣+
∆2
RE(P,Q)

2
+
∆3
RE(P,Q)

3
+ · · ·

≤ ∆ML(P,Q) +
∆2
RE(P,Q)

2(1−∆RE(P,Q))
.

This yields ∆RE(P,Q) ≤ ∆ML(P,Q) +
∆2
RE(P,Q)

2(1−∆RE(P,Q)) and the lemma is proved.

ut

It should be pointed out that the result of the lemma is also true if we use δRE
and δML.

For distribution Pi andQi over support
∏
i Si, [8] also proved that if∆ML(Pi|ai, Qi|ai) ≤

1/3 for all i and ai ∈
∏
j<i Sj , then

∆SD((Pi)i, (Qi)i) ≤ ‖(max
ai

∆ML(Pi|ai, Qi|ai))i‖2 (1)



6 Zhongxiang Zheng, Xiaoyun Wang, Guangwu Xu, Chunhuan Zhao

2.2 Discrete Gaussian Sampling

Given x ∈ Rn and and a countable set A ⊂ Rn , we define the Gaussian function

ρs,c(x) = e−π
‖x−c‖2

s2 and Gaussian sum ρs,c(A) =
∑
x∈A ρs,c(x), then Pr(x) =

ρs,c(x)
ρs,c(A) gives a discrete (Gaussian) probability distribution on A which we call

DA,c,s. The subindexes c or/and s are omitted if c = 0 or/and s = 1. Gaussian

function can be defined in terms of a positive definite matrix instead of s.

The insight-conveying concept of smoothing parameter of Micciancio and

Regev [6] for an n-dimensional lattice Λ is with respect to an ε > 0 and given

by ηε(Λ) = min{r : ρ1/r(Λ
∗) ≤ 1 + ε}. One of the bounds given in [6] states

ηε(Λ) ≤
√

ln(2n(1 + 1/ε))/π · λn(Λ).

For the special case of Λ = Z, we have

ηε(Z) ≤
√

ln 2(1 + 1/ε)/π.

This, together with the fact that 2e−πηε(Z)
2

< ρ 1
ηε(Z)

(Z \ {0}) ≤ ε, yields

2

eπ(ηε(Z))2
< ε ≤ 2

eπ(ηε(Z))2 − 2
.

We shall assume that ηε(Z) ≥ 1 since ε is small. Note that ρ(Z) < 1.086435,

it is thus meaningful to choose ε < 0.086 in the rest of our discussion.

Next, we will prove a little tighter tail bound about discrete Gaussian prob-

ability which improves Lemma 4.1 of [9]. To this end, we also need to develop a

slightly more precise estimation over Banaszczyk lemma [2] for the case of Z.

Lemma 2.2 Let s, t be positive numbers such that ts ≥ 1 and c ∈ [0, 1). We

have

1. ∑
k∈Z

|k−c|≥ts

ρs(k − c) ≤ 2e−πt
2

(
1 +

e−
2πt
s

2
(ρs(Z)− 1)

)
. (2)

2. If s ≥ ηε(Z), then

∑
x∈Z

|x−c|≥t·s

Prx←DZ,c,s(x) ≤ 2e−πt
2

· 1 + ε

1− ε

1 + e−
2πt
s

2 (ρs(Z)− 1)

ρs(Z)

 . (3)

Remark 2.3 1. We include a proof of the lemma in the appendix.

2. We remark that the proof of equation (2) can be easily extended to get an

alternative proof of Banaszczyk lemma (Lemma 2.4 in [2]) for a general

lattice L ⊂ Rn.
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3. Our new bound (2) improves the original bound 2e−πt
2

ρs(Z) to Ce−πt
2

ρs(Z)

with C = 2
ρs(Z) + e−

2πt
s

(
1− 1

ρs(Z)

)
. Obviously under the natural condition

s ≥ 1 we have that C ≤ 2 6. This C can be much smaller. For example, in

our later application, we will choose s = 34, t = 6, so C < 0.38.

2.3 Convolution Theorem and its Improvements

In 2010, a convolution theorem for discrete Gaussian was formulated and proved

by Peikert [12] which utilizes smoothing parameter. The convolution theorem

states

Theorem 2.4 (Convolution Theorem [12]) Let Σ1, Σ2 > 0 be positive definite

matrices and set Σ = Σ1+Σ2 and Σ−13 = Σ−11 +Σ−12 . Let Λ1, Λ2 be lattices such

that
√
Σ1 ≥ ηε(Λ1) and

√
Σ3 ≥ ηε(Λ2) for some positive ε ≤ 1/2, and let c1, c2 ∈

Rn be arbitrary. Choose x2 ← DΛ2+c2,
√
Σ2

and x1 ← x2 + DΛ1+c1−x2,
√
Σ1

. If

D̃c1+Λ1,
√
Σ is the distribution of x1, then

δRE(PrD̃c1+Λ1,
√
Σ

[x = x̄], P rDc1+Λ1,
√
Σ

[x = x̄]) ≤ (
1 + ε

1− ε
)2 − 1.

This convolution theorem was strengthened by Micciancio and Peikert in

2013 (Theorem 3.3 of [7]). We observe that the proof in [7] can be modified

so that an improved version of Theorem 3.3 of [7] can be stated. For a vector

z ∈ Zm, we denote zmax and zmin to be the largest and smallest components (in

absolute values) of z respectively, then our form of the theorem is:

Theorem 2.5 Let Λ be an n-dimensional lattice, z ∈ Zm a nonzero integer

vector, s ∈ Rm with si ≥
√
z2max + z2minηε(Z) for all i ≤ m and ci + Λ ar-

bitrary cosets. Let yi be independent samples from Dci+Λ,si , respectively. Let

Y =
∑
i zici + gcd(z)Λ and s =

√∑
i(zisi)

2. Then D̃Y,s, the distribution of

y =
∑
ziyi, is close to DY,s. More precisely,

δRE(PrD̃Y,s [x = x̄], P rDY,s [x = x̄]) ≤ 1 + ε

1− ε
− 1.

Remark. We note that the assumption of Theorem 3.3 of [7] was si ≥
√

2‖z‖∞ηε(Z).

Our version is more efficient as
√
z2max + z2min ≤

√
2‖z‖∞. Notice that in applica-

tions, one often requires gcd(z) = 1, so zmax > zmin and hence
√
z2max + z2min <√

2‖z‖∞. The proof just modifies the last part of that given in [7] and we include

that part in the appendix.

6 Note that by the Poisson Summation formula we get s < ρs(Z) < s+ 2se−πs
2

1−e−3πs2
.
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Pöppelmann, Ducas and Güneysu considered one-dimensional case in [13].

Using ∆KL instead of ∆SD and with one lattice being sampled to be kZ, their

improved convolution theorem states:

Theorem 2.6 (Convolution Theorem [13]) Let x1 ← DZ,s1 , x2 ← DkZ,s2 for

some positive reals s1, s2, and let s−23 = s−21 + s−22 and s2 = s21 + s22. For any

ε ∈ (0, 1/2) if s1 ≥ ηε(Z) and s3 ≥ ηε(kZ), to the distribution of x = x1 + x2,

denoted as Dx, is close to DZ,s under KL-divergence:

∆KL(Dx, DZ,s) ≤ 2(1− (
1 + ε

1− ε
)2)2.

Another useful bound in studying error estimation of convolution theorem

is also proposed in [8] which describes errors when continuously using approxi-

mated output results as inputs of the next round.

Theorem 2.7 Let ∆ be a useful or efficient metric. Let AP be an algorithm

querying a distribution ensemble Pθ at most q times. Then:

∆(AQ, R) ≤ ∆(AP , R) + q ·∆(Pθ, Qθ)

for any distribution R and any ensemble Qθ.

Micciancio and Walter are the first to analyze error estimation of convolution

discrete Gaussian sampling using the metric ∆ML by combining equation (1),

theorem 2.4, theorem 2.5, and theorem 2.7. Their result is also the first practical

refinement of convolution theorem that takes float-point errors into account. The

following two corollaries from [8] give error estimation under max-log distance.

Corollary 2.8 (Corollary 4.1 of [8]) Let z ∈ Zm be a nonzero integer vector

with gcd(z) = 1 and s ∈ Rm with si ≥
√

2‖z‖∞ηε(Z) for all i ≤ m. Let yi
be independent samples from D̃Z,si , respectively, with ∆ML(DZ,si , D̃Z,si) ≤ µi
for all i. Let D̃Z,s be the distribution of y =

∑
ziyi and s2 =

∑
s2i .Then

∆ML(DZ,s, D̃Z,s) . 2ε+
∑
i µi.

Remark. The assumption of si ≥
√

2‖z‖∞ηε(Z) can be replaced by si ≥√
z2max + z2minηε(Z) according to Theorem 2.5.

Corollary 2.9 (Corollary 4.2 of [8]) Let s1, s2 > 0 with s2 = s21 + s22 and

s−23 = s−21 + s−22 . Let Λ = KZ be a copy of the integer lattice Z scaled by

a constant K. For any c1 and c2 ∈ R, denote the distribution of x1 ← x2 +

D̃c1−x2+Z,s1 , where x2 ← D̃c2+Λ,s2 , by D̃c1+Z,s. If s1 ≥ ηε(Z), s3 ≥ ηε(Λ) =

Kηε(Z), ∆ML(Dc2+Λ,s2 , D̃c2+Λ,s2) ≤ µ1 and ∆ML(Dc+Z,s1 , D̃c+Z,s1) ≤ µ2 for

any c ∈ R, then ∆ML(Dc1+Z,s, D̃c1+Z,s) . 4ε+ µ1 + µ2.
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3 Our Refinement of Practical Convolution Theorem

In this section, we consider convolution discrete Gaussian sampling. We will use

the relaxed version of Convolution Theorem (Theorem 2.5) for dealing with two

random variables, and analyse three types of errors, namely, convolution errors,

truncation errors, as well as float-point errors. The effectiveness of convolutions

are evaluated by statistical distance, KL-divergence, relative difference and max-

log distance. We will use the tail bound from Lemma 2.2 to control truncation

errors. For a real number t > 1, we denote εt = ρ1/t(Z)− 1 = 2
∑+∞
i=1 e

−πt2i2 ∈
(2e−πt

2

, 2e−πt
2

1−e−3πt2
). We will use εt to control the truncation error with respect to

t, it can be verified that εt < 0.086463 for all t > 1.

Notations. To simplify our presentation, we shall use the following notations

in our discussion. Let a, b be positive integers and s1, t positive real numbers, we

denote η =
√
a2+b2

s1
, ψ =

√
a2+b2−a

b and ω = 1− η
ψt .

Theorem 3.1 Let a > b ∈ Z be nonzero integers with gcd(a, b) = 1 and s ∈ R2

with s1 = s2 ≥
√
a2 + b2ηε(Z) 7 . Let xi ∈ [−tsi, tsi] be independent samples

from DZ,si respectively, with float-point error µi ≤ µ for i = 1, 2. Let D̃Z,s be the

distribution of x = ax1 + bx2 ∈ S = [−ts, ts] where s =
√
a2s21 + b2s22. Then

∆SD(D̃Z,s, DZ,s) ≤ C1εt + µ+ ε+O(ε2t + µε+ εtε+ εtµ)

∆RE(D̃Z,s, DZ,s) ≤ C3ε
ω2ψ2

t + 2µ+ 2ε+O(ε1+ω
2ψ2

t + µε+ εψ
2

t ε+ εψ
2

t µ)

∆ML(D̃Z,s, DZ,s) ≤ C3ε
ω2ψ2

t + 2µ+ 2ε+O(ε2ω
2ψ2

t + µ2 + ε2 + µε+ εψ
2

t ε+ εψ
2

t µ)

∆KL(D̃Z,s, DZ,s) ≤ (2C1 + C4)εt + 2µ+ 2ε2 +O(ε2t + µ2 + ε3 + µε+ εtε+ εtµ)

Especially when t = ηε(Z) and εt = ε

∆SD(D̃Z,s, DZ,s) ≤ (C1 + 1)ε+ µ+O(ε2 + εµ)

∆RE(D̃Z,s, DZ,s) ≤ C3ε
ω2ψ2

+ 2µ+O(ε+ εω
2ψ2

µ)

∆ML(D̃Z,s, DZ,s) ≤ C3ε
ω2ψ2

+ 2µ+O(ε2ω
2ψ2

+ µ2 + εω
2ψ2

µ)

∆KL(D̃Z,s, DZ,s) ≤ (2C1 + C4)ε+ 2µ+O(ε2 + µ2 + εµ)

where C1 =
1− 1

2
e
− 2πt
s1

s1
+ 1

2
e
−2πt
s1 , C3 = 2(

1−e−π(2ωψηt+η2)
)
(1+e−2πη2 (1+e−4πη2 ))

, and

C4 =
1− 1

2
e
− 2πt

s

s
+ 1

2
e
−2πt
s .

7 It is note that our discussion can be extended to the case of s1 6= s2. We choose

s1 = s2 is for the purpose of simplifying our discussion. This is also a very common

set used in practice.
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We would like to remark that C1, C3, C4 are considered as constants because

the parameters of convolution theorem are selected as s1 = s2 ≥
√
a2 + b2ηε(Z)�

1, t ≥ ηε(Z) � 1. It is obvious that C1, C4 ∈ (0, 1) and C1 = O(e−2πt/s1), C4 =

O(e−2πt/s). We also have εt = O(e−2πt
2

) ≤ ε = O(e−2πη
2
ε(Z)) and µ ≤ 2−p+1

(p ∈ [53, 200]), note that e−2πt
2 ≤ e−2πη

2
ε(Z) � e−2πt � e−2πt/s ≤ e−2πt/s1 (i.e

when takes s1 = 34, t = ηε(Z) = 6, εt = ε ≈ 2−160 and C1 ≥ ε1/(ts1) ≈ 2−0.78

and there are similar cases for C3 and C4). So C1, C3, C4 can be viewed as

constants that do not affect the analysis of εt, ε and µ.

We would also like to remark that our result is quite different from the

existing ones, even compared with the practical result of [8]. It is noted that

the relationships between ∆ML and other metrics are presented in [8], but the

influence of truncation error, which acts as a dominant term in computing ∆ML,

seems to be ignored.

Our analysis of practical convolution theorem can be divided into three parts

by the nature of errors, i.e., convolution errors, float-point errors and truncation

errors. Details of our analysis will be given in the following subsections. Our

version of convolution theorem (Theorem 2.5) will be used.

3.1 Error Analysis–Proof of Theorem 3.1

We start the analysis by considering two base samplers which samples x1 ←
D̃c1,s1 and x2 ← D̃c2,s2 respectively. As the practical precision as well as the

set of x1, x2 can not be infinite, there exists both truncation errors and float-

point errors for base samplers. Without loss of generality, we assume c = c1 =

c2 = 0, s1 = s2. The truncation ranges for x1 and x2 are denoted by S1 =

[−ts1, ts1] and S2 = [−ts2, ts2] respectively. As mentioned earlier, we set εt =

2
∑+∞
i=1 e

−πt2i2 to be the truncation error and we know that εt < 0.086463 for

all t > 1. Denote float-point errors as µ1, µ2 with µ1 ≤ µ, µ2 ≤ µ. We first treat

truncation errors:

PrD̃s1
(x = x1) =

ρs1(x1)∑
x∈S1

ρs1(x)

PrDs1 (x = x1) =
ρs1(x1)∑
x∈Z ρs1(x)

From Lemma 2.2 and the fact that ρs1(Z) > s1 we get∑
x1∈Z
|x1|≥ts1

ρs1(x) ≤ 2e−πt
2

(
1 +

1

2
e−

2πt
s1 (ρs1(Z)− 1)

)
≤ εt

(
1 +

1

2
e−

2πt
s1 (ρs1(Z)− 1)

)

≤ εt

(
1− 1

2e
− 2πt
s1

s1
+

1

2
e
−2πt
s1

)
ρs1(Z) = C1 · εtρs1(Z)
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where C1 =
1− 1

2 e
− 2πt
s1

s1
+ 1

2e
−2πt
s1 .

From the fact that ρs1(Z) < s1 + 2s1e
−πs21

1−e−3πs21
and εt ∈ (2e−πt

2

, 2e−πt
2

1−e−3πt2
), we

get

∑
x1∈Z
|x1|≥ts1

ρs1(x) ≥ 2e−πt
2

1− e−
2πt
s1

≥ εt
1− e−3πt2

1− e−
2πt
s1

≥ εt

 1−e−3πt2

1−e
− 2πt
s1

s1 + 2s1e
−πs21

1−e−3πs21

 ρs1(Z) = C2 · εtρs1(Z)

where C2 =

1−e−3πt2

1−e
− 2πt
s1

s1+
2s1e

−πs21

1−e−3πs21

.

These yield that for all x1 ∈ S1

PrDs1 (x = x1)

1− C2εt
≤ PrD̃s1 (x = x1) ≤

PrDs1 (x = x1)

1− C1εt

Since the probabilities of base samplers are stored with finite precision p

which may introduce relative errors as large as µ ≤ 2−p+1, for a base sampler

which samples x1 ← D̃s1 (or x2 ← D̃s2), we have

PrDs1 (x = x1)

1− C2εt
≤ [1− µ, 1 + µ] · PrD̃s1 (x = x1) ≤

PrDs1 (x = x1)

1− C1εt

PrDs1 (x = x1)

1− C2εt + µ+O(εtµ)
≤ PrD̃s1 (x = x1) ≤

PrDs1 (x = x1)

1− C1εt − µ+O(εtµ)
(4)

As C1 > C2, the relative error is bounded by:

δRE(PrD̃s1
(x = x1), P rDs1 (x = x1)) ≤ C1εt + µ+O(εtµ)

Next, let us analyze the joint distribution of the two independent base sam-

plers. Recall that we set s1 = s2 and c = c1 = c2 = 0, and S1 = [−ts1, ts1],

S2 = [−ts2, ts2], S = [−ts, ts] with s =
√
a2s21 + b2s22.

The Convolution Theorem (Thoerem 2.5) proves that

δRE(PrD̃Y,s [x = x̄], P rDY,s [x = x̄]) ≤ 1 + ε

1− ε
− 1.

It should be noted that Theorem 2.5 applies to the ideal situation where we

can obtain all possibilities with neither truncation errors nor float-point errors,

thus for all xc ∈ S = [−ts, ts], PrD̃Y,s(x = xc) =
∑

x1∈Z,x2∈Z
xc=ax1+bx2

PrDs1 (x =

x1) · PrDs2 (x = x2). As a result, we have
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PrDs(x = xc) = (1 + a(xc)) ·
∑

x1∈Z,x2∈Z
xc=ax1+bx2

PrDs1 (x = x1) · PrDs2 (x = x2)

where (1 + a(xc)) ∈ [ 1−ε1+ε ,
1+ε
1−ε ] for all xc ∈ Z. On the other hand, we know the

probability of convolution of two base samples is given by

PrD̃s(x = xc) =
∑

x1∈S1,x2∈S2
xc=ax1+bx2

PrD̃s1
(x = x1) · PrD̃s2 (x = x2)

According to the previous analysis about relative error of base samplers, it

is clear that

PrD̃s(x = xc) =
∑

x1∈S1,x2∈S2
xc=ax1+bx2

PrD̃s1
(x = x1) · PrD̃s2 (x = x2)

= Ct ·
∑

x1∈S1,x2∈S2
xc=ax1+bx2

PrDs1 (x = x1) · PrDs2 (x = x2)

for some Ct ∈
[

1
(1−C2εt+µ)

2 ,
1

(1−C1εt−µ)2

]
, where C1, C2 as previously defined. Reor-

ganizing this, we get

PrD̃s (x = xc) = Ct ·
∑

(x1,x2)∈S1×S2
xc=ax1+bx2

PrDs1
(x = x1) · PrDs2 (x = x2)

= Ct ·

 ∑
(x1,x2)∈Z2
xc=ax1+bx2

PrDs1
(x = x1) · PrDs2 (x = x2)−

∑
(x1,x2)/∈S1×S2
xc=ax1+bx2

PrDs1
(x = x1) · PrDs2 (x = x2)


= Ct · (1− b(xc)) ·

∑
(x1,x2)∈Z2
xc=ax1+bx2

PrDs1
(x = x1) · PrDs2 (x = x2)

= Ct ·
1− b(xc)
1 + a(xc)

· PrDs (x = xc)

= g(xc) · PrDs (x = xc)

where g(xc) = Ct· 1−b(xc)1+a(xc)
, with b(xc) = β(xc)

α(xc)
=

∑
(x1,x2)/∈S1×S2
xc=ax1+bx2

PrDs1
(x=x1)·PrDs2 (x=x2)∑

(x1,x2)∈Z2
xc=ax1+bx2

PrDs1
(x=x1)·PrDs2 (x=x2)

.

Now we shall analyse b(xc). Given xc, we denote `xc the line defined by

the equation xc = ax1 + bx2 in the (x1, x2)-plane. We are concerning with the

integral point (x1, x2) ∈ Z2 on the line `xc . Note that

PrDs1 (x = x1) · PrDs2 (x = x2) =
(e−π/s

2
1)(x

2
1+x

2
2)

(ρs1(Z))2
=

1

ρ2s1(Z)
e
−π x

2
1+x22
s21 .
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Figure 1. xc = ax1 + bx2 in the plane of (x1, x2), the Horizontal Axis is for x1 and the

Vertical Axis for x2

So we can connect the convolution probabilities with the distances from the

origin of the (x1, x2)-plane, as it is shown in Fig 1.

Since gcd(a, b) = 1, we may assume a > b without loss of generality. By the

extended Euclidean algorithm, there are positive integers u < b, v < a such that

au− bv = 1.

Let ST0 = {k(b,−a) : k ∈ Z} denote the set of integral solutions of ax1+bx2 = 0.

Then the set of integral solutions of `xc : ax1 + bx2 = xc is

STxc = xc(u,−v) + ST0.

This means that a point in STx is of the form : (xcu+ kb,−xcv − ka).

The point on `xc that is closest to the origin is

P =
( axc
a2 + b2

,
bxc

a2 + b2
)

= (xcu+ ξb,−xcv − ξa)

with ξ = −ub+vaa2+b2 xc. So the two possible shortest vectors in STxc are

P0 = (xcu+ bξcb,−xcv − bξca) and P1 = (xcu+ dξeb,−xcv − dξea).
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Consider a vector (xcu+ kb,−xcv − ka) ∈ STxc . Its norm relates the norms

of P0, P1 through the following8 9

‖(xcu+ kb,−xcv − ka)‖2 =

{
‖P0‖2 + (i2 − 2i(ξ − bξc)), if i = k − bξc,
‖P1‖2 + (i2 + 2i(dξe − ξ)), if i = k − dξe. (5)

The relation (5) will be used in deriving explicit formulas of α(xc) and β(xc).

These formulas enable us to establish a key estimation for the relative convolu-

tion error. More precisely, this estimation states

Lemma 3.2 If s1t ≥
√
a2+b2

ψ ,

b(xc) =
β(xc)

α(xc)
≤ C3e

−πω2ψ2t2 .

The constants appear in the lemma have been defined previously, they are η =√
a2+b2

s1
, ψ =

√
a2+b2−a

b , ω = 1− η
ψt , and C3 = 2

(1−e−π(2ωψηt+η2))(1+e−2πη2 (1+e−4πη2 ))
.

We include a proof of the lemma in the appendix due to space limitations.

According to Lemma 3.2, we see that

g(xc) = Ct ·
1− b(xc)
1 + a(xc)

≥ 1

(1− C2εt + µ)
2 (1− 2ε)(1− C3e

−πω2ψ2t2)

≥ 1

(1− C2εt + µ)
2 (1− 2ε)(1− C3ε

ω2ψ2

t )

= 1− C3ε
ω2ψ2

t − 2µ− 2ε+O(ε1+ω
2ψ2

t ) +O(εω
2ψ2

t µ) +O(εω
2ψ2

t ε) +O(µε)

To analysis ∆RE , we have

∆RE(D̃Z,s, DZ,s)

= max
x∈S

δRE(PrD̃s(x), P rDs(x))

= max
x∈S

|PrD̃s(x)− PrDs(x)|
PrD̃s(x)

= max
x∈S
|g(x)− 1|

≤ C3ε
ω2ψ2

t + 2µ+ 2ε+O(ε1+ω
2ψ2

t ) +O(εω
2ψ2

t µ) +O(εω
2ψ2

t ε) +O(µε).

8 Here we just verify the second relation of (5), and the other is similar. ‖(xcu +

kb,−xcv − ka)‖2 − ‖P1‖2 = (k − dξe)(2xcub + 2xcva) + (k2 − dξe2)(a2 + b2) =

(a2+b2)(k−dξe)
(

2ub+va
a2+b2

xc+k+dξe
)

= (a2+b2)i
(
−2ξ+i+2dξe

)
= (i2+2i(dξe−ξ)).

9 It should be noted that the result of (5) is obtained under the condition s1 = s2, for

the case when s1 6= s2, a similar result can also be derived with a small difference as

ξ = −us
2
2b+vs

2
1a

s21a
2+s22b

2 xc.
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And from lemma 2.1, we also have:

∣∣∆ML(D̃Z,s, DZ,s)−∆RE(D̃Z,s, DZ,s)
∣∣ ≤ ∆2

RE(D̃Z,s, DZ,s)

2(1−∆RE(D̃Z,s, DZ,s))
.

So:

∆ML(D̃Z,s, DZ,s) ≤ ∆RE(D̃Z,s, DZ,s) ·
(

1 +
1

2
∆2
RE(D̃Z,s, DZ,s) +∆3

RE(D̃Z,s, DZ,s)

)
= C3ε

ω2ψ2

t + 2µ+ 2ε+O(ε2ω
2ψ2

t + µ2 + ε2 + µε+ εψ
2

t ε+ εψ
2

t µ).

It is seen that the truncations in the base samplers bring an extra error

for the joint distribution after convolution. More specifically, the extra error

is negligible when x is close to the center, but it acts as the dominant term

when x is close to the edges. This error has a profound effect in computing

max-like divergences, such as ∆ML and ∆RE , however, when considering sum-

like divergences, such as ∆SD and ∆KL, it contributes little because the cor-

responding probability is very small. So we use a general bound PrD̃s(x) ≤(
1 + 2C1εt + 2µ+ 2ε+O(ε2t + µε+ εtε+ εtµ)

)
·PrDs(x) (obtained by ignoring

b(xc)) to make following analysis about ∆SD, ∆KL:

∆SD(D̃Z,s, DZ,s) =
1

2

∑
x∈S
|PrD̃s(x)− PrDs(x)|

≤ 1

2
·
(
2C1εt + 2µ+ 2ε+O(ε2t + µε+ εtε+ εtµ)

)∑
x∈S

PrDs(x)

≤ 1

2
·
(
2C1εt + 2µ+ 2ε+O(ε2t + µε+ εtε+ εtµ)

)
= C1εt + µ+ ε+O(ε2t + µε+ εtε+ εtµ)

For ∆KL:

∆KL(D̃Z,s, DZ,s)

=
∑
x∈S

ln

(
PrD̃s(x)

PrDs(x)

)
· PrD̃s(x)
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Let PrD̃s(x) = (1 + c(x))PrDs(x) where |c(x)| ≤ 2C1εt + 2µ + 2ε + O(ε2t +

µε+ εtε+ εtµ), we have:

∆KL(D̃Z,s, DZ,s)

=
∑
x∈S

ln

(
1 + c(x)

)
· (1 + c(x))PrDs(x)

=
∑
x∈S

(
c(x)− 1

2
c2(x) +O(c3(x))

)
· (1 + c(x))PrDs(x)

=
∑
x∈S

(
c(x) +

1

2
c2(x) +O(c3(x))

)
· PrDs(x)

≤
∑
x∈S

c(x)PrDs(x) +
1

2

(
2C1εt + 2µ+ 2ε+O(ε2t + µε+ εtε+ εtµ)

)2∑
x∈S

PrDs(x)

+O

(
(2C1εt + 2µ+ 2ε)3

)

It is also noted that, according to Lemma 2.2:

∑
x∈S

PrDs(x) =
∑
x∈Z

PrDs(x)−
∑
x/∈S

PrDs(x) ≥ 1− εt ·
1 + ε

1− ε

1 + e−
2πt
s

2 (ρs(Z)− 1)

ρs(Z)



According to an early analysis of Equation (4),
∑
x1∈S1

PrD̃s1
(x1) ≤ 1+C1εt+µ(∑

x2∈S2
PrD̃s2

(x2) ≤ 1 + C1εt + µ
)
10, we have:

∑
x∈S

PrD̃s(x) =
∑
x∈S

(
1 + c(x)

)
PrDs(x)

=
∑
x∈S

PrDs(x) +
∑
x∈S

c(x)PrDs(x)

10 According to the definition, it is natural to know that
∑
x∈S PrD̃s(x) ≤ 1 + µ

with float-point error µ. It should be note that this error can not be fixed effec-

tively by normalization. For example, let µ = 2−p+1,P r1 =
∑p+1
i=1 2−i + 2−l, P r2 =∑l

i=p+2 2−i(l > 2(p + 1)), we have Pr1 + Pr2 = 1. And when we storage them

with their p-most-significant bits as ˜Pr1, ˜Pr2, ˜Pr1 = 1, ˜Pr2 = 2−(p+1), then
˜Pr1 + ˜Pr2 ≤ 1 + µ. This case remains unchanged for ˜Pr′1,

˜Pr′2 which are computed

after normalization where Pr′1 =
˜Pr1

˜Pr1+ ˜Pr2
, P r′2 =

˜Pr2
˜Pr1+ ˜Pr2

.
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And∑
x∈S

PrD̃s(x) =
∑

x1∈S1,x2∈S2

PrD̃s1
(x1) · PrD̃s2 (x2)−

∑
x1∈S1,x2∈S2
x=ax1+bx2 /∈S

PrD̃s1
(x1) · PrD̃s2 (x2)

≤
∑

x1∈S1,x2∈S2

PrD̃s1
(x1) · PrD̃s2 (x2)

≤ 1 + 2µ+ 2C1εt +O(µ2) +O(ε2t ) +O(µεt).

Therefore,∑
x∈S

c(x)PrDs(x) =
∑
x∈S

PrD̃s(x)−
∑
x∈S

PrDs(x)

≤ 2µ+ 2C1εt + εt ·
1 + ε

1− ε

1 + e
− 2πt

s

2
(ρs(Z)− 1)

ρs(Z)

+O(µ2 + ε2t + µεt)

≤ (2C1 + C4)εt + 2µ+O(µ2 + ε2t + µεt + εtε).

where C4 =
1− 1

2 e
− 2πt

s

s + 1
2e
−2πt
s .

This yields

∆KL(D̃Z,s, DZ,s)

≤
∑
x∈S

c(x)PrDs(x) +
1

2
(2C1εt + 2µ+ 2ε)2

∑
x∈S

PrDs(x) +O
(
(2C1εt + 2µ+ 2ε)3

)
≤ (2C1 + C4)εt + 2µ+ 2ε2 +O(ε2t + µ2 + ε3 + µε+ εtε+ εtµ).

4 Experiment Results

In this section, we describe our experiments about the practical errors of con-

volution discrete Gaussian sampling, followed by an analysis about experiments

results.

4.1 Convolution Errors, Truncation Errors and Float-point Errors

Our first experiment is to separately show the influences of convolution errors,

truncation errors and float-point errors, more specifically, we choose s1 = s2
and compute the probability distributions for x1 ← DZ,s1 and x2 ← DZ,s2
under different precisions where x1 ∈ [−ts1, ts1], x2 ∈ [−ts2, ts2]. Then we com-

pute the probability distribution of the variable x̃ = ax1 + bx2, denoted as

D̃Z,s=
√
a2s21+b

2s22
, and compare it with a pre-computed and much more accurate

probability distribution for x ← DZ,s=
√
a2s21+b

2s22
(i.e the probability distribu-

tion is computed with a much larger precision and t) to get a result of output

errors.
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The detailed parameters are selected as s1 = s2 = 19.53
√

2π, a = 11, b = 1,

s =
√
a2s21 + b2s22, x1 ∈ [−ts1, ts1], x2 ∈ [−ts2, ts2], the experiment is conducted

with t varies from 3 to 8 and precision varies from 53 to 200. For the contrast

probability distribution, the precision is selected as 500 and t = 10 which makes

truncation errors and float-point errors as small as possible. An overview result

is as followed in Table 111, and we will make further analysis for ∆SD and ∆KL:

We have bounded ∆SD, ∆KL as ∆SD . C1εt + µ + ε and ∆KL . (2C1 +

C4)εt + 2µ+ 2ε2 in Section 3, where µ ≤ 2−p+1. As the bound of ε is limited by

s1 = s2 ≥
√
a2 + b2ηε(Z) according to Theorem 3.1, we have:

ηε(Z) ≈ 19.53
√

2π√
112 + 12

⇒ ε ≤ 2−88.02

∆SD(D̃Z,s, DZ,s) ≤ C1εt + µ+ 2−88.02

∆KL(D̃Z,s, DZ,s) ≤ (2C1 + C4)εt + 2µ+ 2−175.05

When t = 3, 5, 7 separately, εt ≤ 2−39.79, 2−112.31, 2−221.09, C1εt ≤ 2−41.29, 2−114.16,

2−223.28 and (2C1 +C4)εt ≤ 2−39.38, 2−112.25, 2−221.37 with precisions vary from

53 to 200 which indicates µ ≤ 2−54, ..., 2−201, we have:

When t = 3:

∆SD(D̃Z,s, DZ,s) ≤ 2−41.29

∆KL(D̃Z,s, DZ,s) ≤ 2−39.38

When t = 5:

∆SD(D̃Z,s, DZ,s) ≤ 2−88.02 + µ

∆KL(D̃Z,s, DZ,s) ≤ 2−112.25 + 2µ

And when t = 7:

∆SD(D̃Z,s, DZ,s) ≤ 2−88.02 + µ

∆KL(D̃Z,s, DZ,s) ≤ 2−175.05 + 2µ

From Fig 2, we find our theoretical bounds for ∆SD and ∆KL fit well with

practical results.

As for∆RE and∆ML, we select following parameters to conduct experiments:

s1 = s2 = 34, a = 4, b = 3, s =
√
a2s21 + b2s22, x1 ∈ [−ts1, ts1], x2 ∈ [−ts2, ts2],

11 Due to the space limit, Table 1 only lists about 0.6% of the total results, to

obtain the complete results, one can access the public codes of our experiments

from https://github.com/zhengzx/Gsample or run a program by oneself. It also

should be noted that ∆KL and ∆RE are not symmetric metrics, and different

input orders lead to different results, however, the difference is quite small, i.e.

|log2(
∆KL(DZ,s,D̃Z,s)

∆KL(D̃Z,s,DZ,s)
)| ≤ 1
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Table 1. Experiment1: Practical Errors with Different Precisions and t
t log2(εt) Precisions log2(µ) log2(∆SD) log2(∆KL)

53 -54 -44.74 -44.70

63 -64 -44.74 -44.71

73 -74 -44.74 -44.71

83 -84 -44.74 -44.71

93 -94 -44.74 -44.71

103 -104 -44.74 -44.71

113 -114 -44.74 -44.71

3 -39.79 123 -124 -44.74 -44.71

133 -134 -44.74 -44.71

143 -144 -44.74 -44.71

153 -154 -44.74 -44.71

163 -164 -44.74 -44.71

173 -174 -44.74 -44.71

183 -184 -44.74 -44.71

193 -194 -44.74 -44.71

53 -54 -52.11 -51.11

63 -64 -60.40 -59.40

73 -74 -70.97 -69.97

83 -84 -86.57 -85.71

93 -94 -89.69 -91.11

103 -104 -89.69 -98.67

113 -114 -89.69 -111.36

5 -112.31 123 -124 -89.69 -118.27

133 -134 -89.69 -118.49

143 -144 -89.69 -118.49

153 -154 -89.69 -118.49

163 -164 -89.69 -118.49

173 -174 -89.69 -118.49

183 -184 -89.69 -118.49

193 -194 -89.69 -118.49

53 -54 -52.11 -51.11

63 -64 -60.40 -59.40

73 -74 -70.97 -69.97

83 -84 -86.57 -85.71

93 -94 -89.69 -91.11

103 -104 -89.69 -98.67

113 -114 -89.69 -111.41

7 -221.09 123 -124 -89.69 -121.14

133 -134 -89.69 -129.41

143 -144 -89.69 -139.69

153 -154 -89.69 -149.16

163 -164 -89.69 -160.02

173 -174 -89.69 -171.41

183 -184 -89.69 -177.79

193 -194 -89.69 -178.09

with t varies from 3 to 8 and precisions varies from 53 to 200. For the contrast

probability distribution, the precision is selected as 500 and t = 10 which makes
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Figure 2. Relationship between Bounds and Practical Errors Measured by ∆SD,∆KL

with Different Precisions

truncation errors and float-point errors as small as possible, and an overview

of the result is shown in Table 2 and the details can be found in Fig 3. As we

analysis ∆RE and ∆ML as:

∆ML(DZ,s, D̃Z,s) ≈ ∆RE(DZ,s, D̃Z,s) ≤ C3ε
ω2ψ2

t + 2µ+ 2ε

where ψ = (
√

42 + 32 − 4)/3 ≈ 0.3333, ω ≈ 0.9265, C3 ≈ 0.9466.

As C3ε
ψ2

t � max(2µ, 2ε), our analysis indicates that the practical errors may

not change with different precisions from 53 to 200. And it seems the experiment

result fits our result well.

Table 2. Experiment2: Practical Errors with Different Precisions and t
t log2(εt) Precisions log2(∆RE) log2(∆ML)

3.0 -39.79 53-200 -7.30 -7.30

3.5 -54.52 53-200 -9.06 -9.06

4.0 -71.52 53-200 -11.01 -11.01

4.5 -90.78 53-200 -13.52 -13.52

5.0 -112.31 53-200 -15.93 -15.93

5.5 -136.10 53-200 -18.57 -18.57

6.0 -162.17 53-200 -21.88 -21.88

6.5 -190.49 53-200 -24.99 -24.99

7.0 -221.09 53-200 -28.33 -28.33

7.5 -253.95 53-200 -32.45 -32.45

8.0 -289.07 53-200 -36.27 -36.27

4.2 Application of Our Practical Bound

We have established a new bound for convolution discrete Gaussian sampling

which fits well with experiments. In this section, we use this bound to reanalyse
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Figure 3. Relationship between Bounds and Practical Errors Measured by ∆RE ,∆ML

with Different t

Gaussian sampling schemes using convolution discrete Gaussian theorem, such as

the sampling schemes of Pöppelmann, Ducas and Güneysu as well as Micciancio

and Walter, and try to give suggested modified parameters based on our analysis.

4.2.1 Revisit the Sampling Scheme of Pöppelmann, Ducas and

Güneysu

In Pöppelmann, Ducas and Güneysu’s sampling scheme [13], the parameters are

selected as: s1 = s2 ≈ 19.53 ·
√

2π, a = 11, b = 1, ηε(Z) ≤ 3.860, t ≈ 5.35 to

ensure εt ≤ 2−128 and precision is set to 72 with µ ≤ 2−71 (in [13], a technique

was used to store probabilities with different precisions vary from 16 to 72, here

we take the fixed precision of 72 which leads to a smaller practical errors than

using the original setting in [13]), the goal of the design in [13] is to ensure:

∆KL ≤ 2−128 (6)

Now let us analyse if the scheme can achieve this goal, the convolution the-

orem demands for s1 = s2 ≥
√
a2 + b2ηε(Z), ε is bounded by:

ηε(Z) ≈ 19.53
√

2π√
112 + 12

⇒ ε ≤ 2−88.02

Thus:

∆KL(D̃Z,s, DZ,s) ≤ (2C1 + C4)εt + 2µ+ 2ε2 ≈ 2−70

The experiment results shown in Fig 4 indicate that the error fits well with

our estimation. To make the convolution of sampling to satisfy equation (6), one

possible way with a minor modification is to set precision larger than 128. Our
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analysis results a quite different upper bound from that in [13], and the difference

may be caused by two reasons: the first is that the convolution theorem that

used in [13] does not consider truncation errors which contributes significantly

in estimating ∆RE , and thus ( 1+ε
1−ε )2 − 1 seems fail to be the dominate term for

bounding ∆RE . The second is that when choosing precisions (section 3.4 of [13]),

the technique of [13] only ensures the ∆KL of base sampler is smaller than 2−128

but whether this still holds for ∆KL of the output after convolution is unknown.

To validate this analysis, we also make experiments with the suggested mod-

ification and the results, which are shown in Fig 4, are consist with our estima-

tions.

Figure 4. ∆KL of Revised Parameters for [13]’s Scheme with Different Precisions

4.2.2 Revisit the Sampling Scheme of Micciancio and Walter

In Micciancio and Walter’s sampling scheme, the parameters are selected itera-

tively, takes the example in [8]:

The parameters of the first round sampling, known as the base sampling, are

selected as: s1 = s2 = 34, a = b s1√
2ηε(Z)

c = 4, b = max(1, a−1) = 3, t = ηε(Z) = 6,

εt = ε ≤ 2−160 with precision set to 60 bits, and the goal of the design in [8] is

to ensure:

∆ML ≤ 2−55 (7)

However, based on our analysis:

∆ML(DZ,s, D̃Z,s) ≈ ∆RE(DZ,s, D̃Z,s) ≤ C3ε
ω2ψ2

t + 2µ+ 2ε

where ω ≈ 0.9265, ψ = (
√

42 + 32 − 4)/3 ≈ 0.3333, C3 ≈ 0.0632. Thus we have:

∆ML(DZ,s, D̃Z,s) ≈ ∆RE(DZ,s, D̃Z,s) ≤ 2−19.45
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The experiment results shown in Fig 5 seem to be consistent with our analy-

sis. To make ∆ML satisfying the original goal of (7), one should ask εt ≤ 2−538.

This would require t to be very large and also a very large corresponding preci-

sion, i.e. t ≥ 10.90 and precision larger than 538 which seems to be not practical

as both time and space complexities of using convolution theorem are propor-

tional to the squares of t and precision. Thus one possible way with the least

modification is to take ∆KL ≤ 2−110 instead of ∆ML ≤ 2−55 as the goal and set

the precision larger than 110.

The differences between our analyses and that in [8] are mainly caused by

the following two reasons: the first is similar with the previous one where the

convolution theorem that used in [8] does not consider about truncation errors

which contributes significantly in estimating ∆RE(∆ML). The second reason is

concerning the lower bound of relative metrics such as ∆RE and ∆ML. Although

these metrics have a lower bound that can be as larger as O(
√
∆KL), it is not

easy to be reached. This leads to a situation that requiring ∆RE or ∆ML to be

less than 2−k/2 is not easier (in fact much harder at most time) than requiring

∆KL or ∆SD less than 2−k.

To validate our suggested parameters, experiment results are followed in Fig

5 which support our analysis well.

Figure 5. ∆ML and ∆KL of Revised Parameters for [8]’s Scheme with Different Pre-

cisions

5 Conclusion

In this paper, we focus on the practical error estimation of convolution theorem

of discrete Gaussian sampling. By bringing the floating-point errors and trun-

cation errors in consideration, we are able to provide a more accurate practical



24 Zhongxiang Zheng, Xiaoyun Wang, Guangwu Xu, Chunhuan Zhao

bound for convolution theorem. Extensive experiments have been conducted and

the results highly agree with our derived bound. We revisit two previous prac-

tical convolution based sampling schemes under our new error estimation. It is

observed that under the parameters originally proposed, their preset goals may

not be achievable due to the absence of truncation error. Our bound suggests

modified sets of parameters that ensure their goals to be met. Our experiments

results also support the new sets of parameters.
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Appendix I: Proof of Lemma 2.2

Note that ∑
k∈Z

|k−c|≥ts

ρs(k − c) = e−πt
2 ∑

k∈Z
|k−c|≥ts

e−π
(k−c)2−s2t2

s2

= e−πt
2 ∑
k≥c+ts

e−
π
s2

(|k−c|−ts)(|k−c|+ts)

+e−πt
2 ∑
k≤c−ts

e−
π
s2

(|k−c|−ts)(|k−c|+ts).

Since ∑
k≥c+ts

e−
π
s2

(|k−c|−ts)(|k−c|+ts) =
∑

k≥dc+tse

e−
π
s2

(k−(c+ts))2e−
2π
s (k−(c+ts))t

≤ 1 + e−
2πt
s

∞∑
k=dc+tse+1

e−
π
s2

(k−(c+ts))2

≤ 1 + e−
2πt
s

∞∑
k=1

e−π
k2

s2 ,

and ∑
k≤c−ts

e−
π
s2

(|k−c|−ts)(|k−c|+ts) ≤
∑

k≤bc−tsc

e−
π
s2

(k−(c−ts))2e−
2π
s |k−(c−ts)|t

≤ 1 + e−
2πt
s

−∞∑
k=bc−tsc−1

e−
π
s2

(k−(c−ts))2

≤ 1 + e−
2πt
s

−∞∑
k=−1

e−π
k2

s2 .

So we get an improved Banaszczyk bound

∑
|k−c|≥ts

ρs(k − c) ≤ 2e−πt
2

(
1 +

e−
2πt
s

2
(ρs(Z)− 1)

)
.

�

Appendix II: Proof of Theorem 2.5

We just include the modification part here. Readers are referred to the proof

Theorem 3.2 of [7] for necessary notations.
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Proof. Our goal is to show that the result holds for a larger scope of si where

si ≥
√
z2max + z2minηε(Z).

When bounding the smoothing parameter of L in [7]:

η(L) ≤ η((S′)−1 · (Z ⊗ Λ)) ≤ ηε(Z) · b̃l(Z)/min(si)

where Z = Zm∩ker(zT ) = {v ∈ Zm : 〈z,v〉 = 0} and b̃l(Λ) represents the Gram-

Schmidt minimum of a lattice Λ where b̃l(Λ) = minB ‖B̃‖, ‖B̃‖ = maxi ‖b̃i‖ and

the minimum is taken over all bases B of Λ.

Micciancio and Peikert bound b̃l(Z) ≤ min(‖z‖,
√

2‖z‖∞) because there exist

a full-rank set of vectors zi ·ej−zj ·ei ∈ Z where zi has the minimal |zi| 6= 0 and

j 6= i ∈ [1, ..,m]. Among this set of vectors, we have maxi ‖b̃i‖ =
√
z2max + z2min

where
√
z2max + z2min ≤ ‖z‖ when m = 2 it takes equality and

√
z2max + z2min ≤√

2‖z‖∞ when zmax = zmin it takes equality.

And by bounding b̃l(Z) ≤
√
z2max + z2min, we have η(L) ≤ ηε(Z)·b̃l(Z)/min(si) ≤

ηε(Z) ·
√
z2max + z2min/min(si). And for si ≥

√
z2max + z2minηε(Λ), it is seen that

ηε(Z) ·
√
z2max + z2min/min(si) ≤ 1. �

Appendix III: Proof of Lemma 3.2

Recall that we use the following notations: η =
√
a2+b2

s1
, ψ =

√
a2+b2−a

b and

ω = 1 − η
ψt . Our goal is to show that under the condition of s1 = s2 and

s1t ≥
√
a2+b2

ψ , we have

b(xc) =
β(xc)

α(xc)
≤ Ce−πω

2ψ2t2 .

where C = 2

(1−e−π(2ωψηt+η2))(1+e−2πη2 (1+e−4πη2 ))
.

We first analyse α(xc)

α(xc) =
1

ρ2s1(Z)

∑
(x1,x2)∈Sxc

e
−π x

2
1+x22
s21 .

Note that ξ = −ub+vaa2+b2 xc. By (5), we know that

∞∑
k=dξe+1

e
−π (xcu+kb)

2+(xcv+ka)
2

s21 = e
−π ‖P1‖

2

s21

∞∑
i=1

e−πη
2(i2+2i(dξe−ξ)),

and

−∞∑
k=bξc−1

e
−π (xcu+kb)

2+(xcv+ka)
2

s21 = e
−π ‖P0‖

2

s21

∞∑
i=1

e−πη
2(i2+2i(ξ−bξc)).
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Thus

α(xc) =


1

ρ2s1
(Z)

e−π ‖P1‖
2

s21
∑∞
i=0 e

−πη2(i2+2i(dξe−ξ)) + e
−π ‖P0‖

2

s21
∑∞
i=0 e

−πη2(i2+2i(ξ−bξc))

 , if ξ /∈ Z,

1
ρ2s1

(Z)

e−π ‖P0‖
2

s21 + 2e
−π ‖P0‖

2

s21
∑∞
i=1 e

−πη2i2

 , if ξ ∈ Z.

Let

d0 = e−πη
2(1+2(ξ−bξc))(1 + e−πη

2(3+2(ξ−bξc))),

d1 = e−πη
2(1+2(dξe−ξ))(1 + e−πη

2(3+2(dξe−ξ))).

We have

1 + d0 ≤
∞∑
i=0

e−πη
2(i2+2i(ξ−bξc)),

1 + d1 ≤
∞∑
i=0

e−πη
2(i2+2i(dξe−ξ)).

These yield an estimation of α(x): If ξ /∈ Z

1

ρ2s1(Z)

(
e
−π ‖P1‖

2

s21 (1 + d1) + e
−π ‖P0‖

2

s21 (1 + d0)

)
≤ α(x);

if ξ ∈ Z

(1 + 2d0)e
−π ‖P0‖

2

s21

ρ2s1(Z)
≤ α(x).

And as for β(xc), we have

β(xc) =
1

ρ2s1(Z)

∑
(x1,x2)∈Sxc

|x1|≥s1t or |x2|≥s1t

e
−π x

2
1+x22
s21 .

where |xc| ≤
√
a2 + b2s1t.

Three cases shall be discussed separately:

1. (a− b)s1t ≤ xc ≤
√
a2 + b2s1t;

2. −(a− b)s1t < xc < (a− b)s1t;
3. and −

√
a2 + b2s1t ≤ xc ≤ −(a− b)s1t.
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Case I: (a− b)s1t ≤ xc ≤
√
a2 + b2s1t.

In this case, condition |x1| ≥ s1t or |x2| ≥ s1t corresponds to k ≤
⌊−s1t−xv

a

⌋
or k ≥

⌈
s1t−xu

b

⌉
. So by (5),

β(xc) =
1

ρ2s1(Z)

 ∞∑
k=
⌈
s1t−xcu

b

⌉ e
−π (xcu+kb)

2+(xcv+ka)
2

s21 +

−∞∑
k=
⌊−s1t−xv

a

⌋ e
−π (xu+kb)2+(xv+ka)2

s21



=
1

ρ2s1(Z)

e−π ‖P1‖
2

s21

∞∑
i=
⌈
s1t−xcu

b

⌉
−dξe

e−πη
2(i2+2i(dξe−ξ))

+

1

ρ2s1(Z)

e−π ‖P0‖
2

s21

−∞∑
i=
⌊−s1t−xcv

a

⌋
−bξc

e−πη
2(i2−2i(ξ−bξc))



Note that (a− b)s1t ≤ xc ≤
√
a2 + b2s1t, we see that

⌈
s1t− xcu

b

⌉
− dξe ≥ s1t− xcu

b
− ξ − 1 ≥

√
a2 + b2 − a
b
√
a2 + b2

s1t− 1

Obviously,
√
a2+b2−b
a
√
a2+b2

≥
√
a2+b2−a
b
√
a2+b2

as a > b > 0, we get

⌊−s1t− xcv
a

⌋
− bξc ≤

−s1t− xcv
a

− ξ + 1 ≤ −
√
a2 + b2 − b
a
√
a2 + b2

s1t+ 1 ≤ −(
√
a2 + b2 − a
b
√
a2 + b2

s1t− 1).

Case III: −
√
a2 + b2s1t ≤ xc ≤ −(a− b)s1t.

In this case, condition |x1| ≥ s1t or |x2| ≥ s1t corresponds to k ≤
⌊−s1t−xcu

b

⌋
or k ≥

⌈
s1t−xcv

a

⌉
. So similarly with Case I, we see that

⌈
s1t− xcv

a

⌉
− dξe ≥

s1t− xcv
a

− ξ − 1 ≥
√
a2 + b2 − b
a
√
a2 + b2

s1t− 1 ≥
√
a2 + b2 − a
b
√
a2 + b2

s1t− 1.

Also

⌊
−s1t− xcu

b

⌋
− bξc ≤ −s1t− xcu

b
− ξ + 1 ≤ −(

√
a2 + b2 − a
b
√
a2 + b2

s1t− 1).

Case II: −(a− b)s1t < xc < (a− b)s1t.
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In this case, condition |x1| ≥ s1t or |x2| ≥ s1t corresponds to k ≤
⌊−s1t−xcv

a

⌋
or k ≥

⌈
s1t−xcv

a

⌉
. So by (5),

β(x) =
1

ρ2s1(Z)

 ∞∑
k=
⌈
s1t−xcv

a

⌉ e
−π (xcu+kb)

2+(xv+ka)2

s21 +

−∞∑
k=
⌊−s1t−xcv

a

⌋ e
−π (xcu+kb)

2+(xcv+ka)
2

s21



=
1

ρ2s1(Z)

e−π ‖P1‖
2

s21

∞∑
i=
⌈
s1t−xcv

a

⌉
−dξe

e−πη
2(i2+2i(dξe−ξ))

+

1

ρ2s1(Z)

e−π ‖P0‖
2

s21

−∞∑
i=
⌊−s1t−xcv

a

⌋
−bξc

e−πη
2(i2−2i(ξ−bξc))



Obviously, a
2+2b2−ab
a(a2+b2) ≥

√
a2+b2−a
b
√
a2+b2

as a > b > 0, we have

⌈
s1t− xcv

a

⌉
−dξe ≥ s1t− xcv

a
− ξ− 1 ≥ a2 + 2b2 − ab

a(a2 + b2)
s1t− 1 ≥

√
a2 + b2 − a
b
√
a2 + b2

s1t− 1.

and

⌊−s1t− xcv
a

⌋
− bξc ≤

−s1t− xcv
a

− ξ + 1 ≤ −
a2 + 2b2 − ab
a(a2 + b2)

s1t+ 1 ≤ −(
√
a2 + b2 − a
b
√
a2 + b2

s1t− 1).

When s1t ≥
√
a2+b2

ψ , we have ω ≥ 0 and ψ
η t − 1 ≥ ωψ

η t. As a result, for all

xc ∈ [−
√
a2 + b2s1t,

√
a2 + b2s1t], we have

−∞∑
i=

⌊
−s1t−xcv

a

⌋
−bξc

e
−πη2(i2−2i(ξ−bξc)) ≤ D0, and

∞∑
i=

⌈
s1t−xcv

a

⌉
−dξe

e
−πη2(i2+2i(dξe−ξ)) ≤ D0.

where D0 = e−πω
2ψ2t2

1−e−π(2ωψηt+η2)
.

So

β(x) ≤ 1

ρ2s1(Z)

e−π ‖P1‖
2

s21

∞∑
i=
⌈
s1t−xcv

a

⌉
−dξe

e−πη
2(i2+2i(dξe−ξ))

+

1

ρ2s1(Z)

e−π ‖P0‖
2

s21

−∞∑
i=
⌊−s1t−xcv

a

⌋
−bξc

e−πη
2(i2−2i(ξ−bξc))


≤ 1

ρ2s1(Z)
D0

(
e
−π ‖P1‖

2

s21 + e
−π ‖P0‖

2

s21

)
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Thus when ξ ∈ Z

b(xc) =
β(xc)

α(xc)
≤
D0

(
e
−π ‖P1‖

2

s21 + e
−π ‖P0‖

2

s21

)

e
−π ‖P0‖2

s21 (1 + 2d0)

=
(1 + e−π/s

2
1)e−πψ

2ω2t2

(1− e−π(2ωψηt+η2))(1 + 2e−πη2(1 + e−3πη2))

≤ D1e
−πω2ψ2t2

where D1 = 1+e−π/s
2
1

(1−e−π(2ωψηt+η2))(1+2e−πη2 (1+e−3πη2 ))
.

And when ξ /∈ Z, assume ‖P1‖2 ≥ ‖P0‖2 without loss of generality, we have

b(xc) =
β(xc)

α(xc)
≤ D0e

−π ‖P1‖
2

s21 +D0e
−π ‖P0‖

2

s21

e
−π ‖P1‖2

s21 (1 + d1) + e
−π ‖P0‖2

s21 (1 + d0)

≤ 2D0e
−π ‖P0‖

2

s21

e
−π ‖P0‖2

s21 (1 + d0)

≤ 2e−πω
2ψ2t2

(1− e−π(2ωψηt+η2))(1 + 2e−2πη2(1 + e−4πη2))

≤ D2e
−πω2ψ2t2

where D2 = 2
(1−e−π(2ωψηt+η2))(1+2e−2πη2 (1+e−4πη2 ))

.

Let C = D2 > D1, for all ξ, we have

b(xc) ≤ Ce−πω
2ψ2t2

�

It should be noted that to ensure ω = 1 −
√
a2+b2

ψs1t
≥ 0, s1t ≥

√
a2+b2

ψ is

required. Without this requirement, b(xc) could be very close to 1 and the dis-

cussion would not be meaningful.

Besides, theorem 3.1 demands s1 ≥
√
a2 + b2ηε(Z), t ≥ ηε(Z) and ηε(Z) can

be regarded as a constant because it is controlled by ε which is related to the

designed errors. We have

ω ≥ 1− 1

ψη2ε(Z)

It is seen that a larger a/b leads to smaller ψ as well as ω and turns out to be a

much larger b(xc).


