
DeepSigns: A Generic Watermarking Framework for
IP Protection of Deep Learning Models

Bita Darvish Rohani, Huili Chen, and Farinaz Koushanfar
University of California, San Diego

bita@ucsd.edu, huc044@ucsd.edu, farinaz@ucsd.edu

Abstract
This paper proposes DeepSigns, a novel end-to-end
framework for systematic Watermarking and Intel-
lectual Property (IP) protection in the context of
deep learning. DeepSigns, for the first time, in-
troduces a generic watermarking methodology that
is applicable in both and black-box settings, where
the adversary may or may not know the internal de-
tails of the model. The proposed methodology em-
beds the signature in the probability density func-
tion (pdf) of the data abstraction obtained in dif-
ferent layers of a deep neural network. Our ap-
proach is robust to removal and transformation at-
tacks including model compression, model fine-
tuning, and/or watermark overwriting. Extensive
proof-of-concept evaluations on MNIST and CI-
FAR10 datasets, as well as a wide variety of neu-
ral networks architectures including Wide Resid-
ual Networks (Wide-ResNet), Multi-Layer Percep-
tron (MLP), and Convolutional Neural Networks
(CNNs) corroborate DeepSigns’ effectiveness and
applicability.

1 Introduction
The fourth industrial revolution is underway. The popular
class of Deep Learning (DL) models and other contemporary
Artificial Intelligence (AI) methods are enabling this revo-
lution by providing a paradigm shift in model accuracy and
functionality. Several applications are already going through
significant transformative changes due to intelligence integra-
tion including but not limited to social networks, autonomous
transportation, automated manufacturing, natural language
processing, intelligent warfare and smart health [1–4]. A
practical concern in the rush to adopt AI as a service is the
capability to perform model protection: AI models are usu-
ally trained by allocating significant computational resources
to process massive amounts of training data. The built mod-
els are therefore considered as the owner’s IP and need to be
protected to preserve the competitive advantage.

Embedding digital watermarks into DL models is critically
important for a reliable technology transfer. A digital water-
mark is a type of marker covertly embedded in a signal or
IP including audio, video image, or functional design. It is
commonly adopted to identify ownership of the copyright of

such a signal or function. Watermarking has been immensely
leveraged over past decade to protect the ownership of multi-
media and video content, as well as digital circuit functional-
ity [5–7]. Extension of watermarking techniques to AI mod-
els and particularly deep neural networks, however, is still in
its infancy. The AI models can be utilized in both white-box
and black-box settings. In the white-box setting, the model
parameters are public and voluntary shared with the third-
party. In the black-box setting, however, the model details
are not publicly shared and are only available to execute as a
remote oracle.

The authors in [8] propose a new approach for watermark-
ing of convolutional neural networks by embedding the IP
information in the static content of a model (i.e., weight ma-
trices). Although this work provides a significant leap as the
first attempt to watermark neural networks, it poses (at least)
three limitations: (i) It incurs a bounded watermarking ca-
pacity due to using the static properties of a model (weights)
as opposed to using the dynamic content (activations). Note
that the weights of a neural network are invariable (static) in
the execution phase regardless of the data passing through the
model. The activations, however, are dynamic and both data
and model dependent. As such, we argue that using activa-
tions (instead of static weights) provides more flexibility for
watermarking purposes. (ii) It is not robust against overwrit-
ing the original watermark by a third-party. (iii) It targets
white-box settings and inapplicable to black-box scenarios.

A more recent work in [9], propose a 1-bit watermarking
methodology that is applicable to black-box models. This
approach is built upon model boundary modification and the
use of adversarial samples that lie near decision boundaries.
Adversarial samples, however, are known to be statistically
unstable, meaning that the adversarial samples crafted for
a model are not necessarily mis-classified by another net-
work [10, 11]. Thereby, the proposed approach in [9] is
highly sensitive to hyper-parameter tuning and usually leads
to a high false alarm rate if the detection policy is not pre-
cisely fine-tuned in a supervised setting. Note that false own-
ership proofs based upon watermark extraction, in turn, jeop-
ardize the integrity of the proposed watermarking methodol-
ogy and render the watermarks ineffective.

This paper proposes DeepSigns, a novel end-to-end frame-
work that enables coherent integration of robust digital water-
marks in contemporary deep learning models. DeepSigns, for
the first time, introduces a generic functional watermarking

Figure 1: DeepSigns Global Flow: DeepSigns performs functional watermarking on DL models by sequentially embedding a set of binary
random strings in the pdf of the activation set acquired at each intermediate layer and the output layer. Typically, a specific input (key) is
utilized for extracting the embedded watermark. In our case, the inputs triggering the ingrained binary random strings are used as the key for
detection of IP infringement in both white-box and black-box settings.

methodology that is applicable to both black-box and white-
box settings. The proposed methodology is simultaneously
data and model dependent. DeepSigns works by embedding
an arbitrarily N-bit string into the pdf of the activation set in
each layer of the neural network with no drop in the overall
accuracy. The embedded strings can be triggered by the cor-
responding input keys to remotely detect the existence of the
pertinent neural network in a third-party IP.

We demonstrate the robustness of our proposed framework
to removal and transformation attacks including model com-
pression/pruning, model fine-tuning, and watermark over-
writing. As we empirically corroborate in Section 5, Deep-
Signs is robust against the state-of-the-art removal attacks and
does not require excessive hyper-parameter tuning to avoid
false alarms in black-box settings. The explicit contributions
of this paper are as follows:

• Proposing DeepSigns, the first end-to-end framework
for systematic deep learning IP protection that works for
both white-box and black-box settings. A novel water-
marking methodology is introduced to encode the pdf of
the DL model and effectively trace the IP ownership.

• Providing a new and comprehensive set of metrics to
assess the performance of a watermark embedding ap-
proach for DL models. Such metrics, in turn, enables
coherent comparison of current and pending AI model
protection methodologies.

• Devising an Application Programming Interface (API)
to facilitate the adoption of DeepSigns watermarking
methodology in training various DL models including
convolutional and fully-connected DL models.

• Performing extensive proof-of-concept evaluation on
various benchmarks including commonly used MNIST,

CIFAR10 datasets. Our evaluations demonstrate the ef-
fectiveness of DeepSigns to protect the IP of an arbitrary
neural network and detect IP ownership.

2 Global Flow
Figure 1 demonstrates the high-level block diagram of Deep-
Signs framework. In order to protect the IP of a particular
neural network, the model owner (Alice) is required to em-
bed a set of N-bit binary random watermark (WM) strings
within each intermediate activation set of the neural network
as discussed in Section 3. Once the neural network is lo-
cally trained by Alice to include the pertinent watermarks, it
is ready to be employed by a third-party AI service provider
(Bob) either as a black-box API or a white-box model. To
prove the ownership of a model, Alice can query the remote
service provider and detect whether her model is used in the
underlying AI service as outlined by the protocol in Section 4.

Watermarking Requirements. Table 1 details the require-
ments for an effective watermarking methodology in the con-
text of deep learning. In addition to the primary requirements
listed in [8, 9], we argue that reliability, integrity, and gener-
alizability are three other major factors that need to be con-
sidered for designing a practical watermarking methodology.
The reliability property has to do with the fact that the embed-
ded watermark should be accurately extracted using the perti-
nent keys; thereby, the model owner is able to detect any mis-
use of her model with a high probability. The integrity prop-
erty ensures that the IP infringement detection policy yields
the minimal number of false alarms; meaning that there is
very low chance of (i) watermark collision for different mod-
els, and/or (ii) falsely proving a third-party ownership. Gen-
eralizability is another main factor in developing an effective

watermarking methodology. DeepSigns satisfies all the re-
quirements listed in Table 1 as shown by our experiments in
Section 5.

Potential Attack Scenarios. To validate the robustness of
the proposed watermarking approach, we evaluate DeepSigns
performance against three types of attacks for IP infringement
in deep learning services: (i) Model fine-tuning. This type
of attack involves re-training of the original model to alter
the model parameters and find a new local minimum while
preserving the accuracy. (ii) Model pruning. Model pruning
is a commonly used approach for efficient execution of neu-
ral networks, particularly on embedded devices. We consider
model pruning (compression) as another attack approach that
might affect the watermarking extraction/detection. (iii) Wa-
termark overwriting. The third-party user Bob that is aware
of the methodology used to watermark the model (but not
Alice’s private keys) may try to embed a new watermark in
the model and overwrite the original one. A watermarking
methodology should be robust against overwriting attacks to
effectively prevent IP infringement.

3 Functional Watermarking
Many contemporary AI applications possess non-convex loss
surfaces with a large number of local minima that are likely
to yield an accuracy (on test data) very close to another ap-
proximate model [12]. DeepSigns framework is built upon
the fact that there is not a unique solution to address modern
non-convex optimization used in the context of deep learning.
DeepSigns framework works by iteratively learning and ad-
justing the corresponding pdf of data abstractions to incorpo-
rate the desired watermarking information within each layer
of the neural network. The watermarking information can
later be leveraged to claim the ownership of the neural net-
work or detect IP infringement.

In many real-world deep learning applications, the activa-
tion features attained in the intermediate (a.k.a., hidden) lay-
ers roughly follow a Gaussian distribution [13]. In this paper,
we consider a Gaussian Mixture Model (GMM) as the prior
probability to characterize the data distribution at each hid-
den layer.1 The last layer (a.k.a., output layer) is an exception
since the output can be a discrete variable (e.g., class label) in
a large category of AI applications. As such, DeepSigns gov-
erns the hidden (Section 3.1) and output (Section 3.2) layers
differently.

3.1 Watermarking Intermediate Layers
To accommodate for the GMM prior distribution assumption,
we suggest adding the following term to the conventional loss
(e.g., cross-entropy) used for training deep neural networks
which we denote as L(θ, x) and refer to as loss0:

λ1 (‖µly∗ − f l(x, θ)‖22 − Σi6=y∗‖µli − f l(x, θ)‖22︸ ︷︷ ︸
loss1

), (1)

1We emphasize that our proposed approach is rather generic and
is not restricted to the GMM distribution; the GMM distribution can
be replaced with any other prior depending on the application.

where λ1 is a trade-off parameter that specifies the contri-
bution of the additive loss term. The additive loss function
(loss1) aims to minimize the entanglement between each pair
of two Gaussian distributions (associated with the activation
features corresponding to two different classes) while de-
creasing the inner-class diversity. This objective resembles
the terminology of a kernel-based support vector machine
which, in turn, facilitates approximation of the underlying
pdf as a GMM distribution. In Equation (1), θ is the model
parameter set (i.e., weights and biases), f l(x, θ) is the corre-
sponding activation features of input sample x at the lth layer,
y∗ is the ground-truth label, and µli denotes the mean value
of the Gaussian distribution at layer l that best fits the data
abstractions belonging to class i. The mean values µli and in-
termediate feature vectors f l(x, θ) are trainable variables that
are iteratively learned during the training process of the target
deep neural network.
Watermark Embedding. In order to watermark the target
neural network, the model owner (Alice) first needs to gen-
erate three sets of WMs for each intermediate layer of her
model:
(I) Choosing one (or more) random indices between 1 and S
with no replacement. Each index corresponds to one of the
Gaussian distributions in the target mixture model that con-
tains a total of S Gaussians. The mean values of the selected
distributions are then used to carry on the watermark infor-
mation generated in the steps II and III.
(II) Designating an arbitrary binary string to be embedded in
the target model. The elements (a.k.a., bits) of the binary
string are independently and identically distributed (i.i.d).
Henceforth, we refer to this binary string as the vector b ∈
{0, 1}s×N where s is the number of selected distributions
(step I) to carry on the watermarking information, and N is
a user-defined parameter indicating the desired length of the
digital watermark embedded at each Gaussian’s mean value.
(III) Specifying a random projection matrix (A) to map the
selected centers in step I into the binary string chosen in step
II. The transformation is denoted as follows:

Gs×Nσ = Sigmoid (µs×M . AM×N),

bs×N = Hard Thresholding (Gs×Nσ , 0.5).
(2)

Here, M is the size of the feature space in the pertinent layer,
and µs×M denotes the concatenated mean values of the se-
lected distributions. In our experiments, we leverage a stan-
dard normal distribution N (0, 1) per [8] suggestion to gener-
ate the projection WM (A). Using i.i.d. samples drawn from
a normal distribution, in turn, ensures that each bit of the bi-
nary string is embedded into all the features associated with
the selected centers (mean values).

The process of computing the vector Gσ is differentiable;
thereby, for a fixed set of projection matrix (A) and binary
string (b), the selected centers can be readily modified/trained
via back-propagation such that the hamming distance be-
tween the binarized projected centers and the actual WM val-
ues b is minimized (ideally zero). To do so, one needs to add

Table 1: Requirements for an effective watermarking of deep neural networks.

Requirements Description
Fidelity The functionality (e.g., accuracy) of the target neural network shall not be degraded as a result of

watermark embedding.
Capacity The watermarking methodology shall be capable of embedding a large amount of information in the

target neural network.
Efficiency The overhead of watermark embedding and extraction/detection shall be negligible.
Security The watermark shall leave no tangible footprint in the target neural network; thus, an unauthorized

individual cannot detect the presence of a watermark in the model.
Robustness The watermarking methodology shall be resilient against model modifications such as compres-

sion/pruning, fine-tuning, and/or watermark overwriting.
Reliability The watermarking methodology should yield minimal false negatives; the watermarked model

should be effectively detected using the pertinent keys.
Integrity The watermarking methodology should yield minimal false alarm (a.k.a., false positive); the water-

marked model should be uniquely identified using the pertinent keys.
Generalizability The watermarking methodology should be detectable in both white-box and black-box settings.

the following term to the overall loss function for each spe-
cific layer of the underlying neural network:

−λ2
N∑
j=1

s∑
k=1

(bkj ln(Gkjσ) + (1− bkj) ln(1−Gkjσ))︸ ︷︷ ︸
loss2

. (3)

Here, the variable λ2 is a hyper-parameter that determines
the contribution of loss2 in the process of training the neu-
ral network. All the three loss functions (loss0, loss1, and
loss2) are simultaneously used to train the underlying neural
network. We set λ1 and λ2 to 0.01 in all our experiments.
As we empirically verified in Section 5, DeepSigns can ef-
fectively perform functional watermarking with no drop in
the baseline accuracy of the original neural network that has
no watermark embedded. In cases where the accuracy might
be jeopardized due to excessive regularization of the interme-
diate activation features, one can mitigate the accuracy drop
by expanding each layer to include more free variables. The
accuracy compensation is due to the fact that although the
probability of finding a poor local minimum is non-zero for
small-size networks, this probability decreases quickly with
the expansion of network size [12, 14].

3.2 Watermarking Output Layer
The network prediction in the very last layer of a DL model
needs to closely match the ground-truth data (e.g., training
labels in a classification task) in order to have the maximum
possible accuracy. As such, instead of directly regularizing
the activation set of the output layer, we choose to adjust the
tails of the decision boundaries to incorporate a desired sta-
tistical bias in the network as a 1-bit watermark. In this paper,
we particularly focus on classification tasks using deep neural
networks. Watermarking the output layer includes three main
steps as shown in Figure 2.
(I) Learning the pdf distribution of the activation set in each
intermediate layer as discussed in Section 3.1. The acquired
probability density function, in turn, gives us an insight on
the sectors of the latent space that are thoroughly occupied

by the training data and the regions that are only covered by
the tail of the GMM distribution (unused regions).
(II) Generating a set ofK unique random input samples to be
used as the watermarking keys in step III. Each selected ran-
dom sample should be passed through the pre-trained neural
network in order to make sure its latent features lie within
the unused regions (Step I). In particular, if the number of
training data within a ε-ball of the random sample is less than
a threshold, we accept that sample as one of the watermark
keys. Otherwise, a new random sample is generated to re-
place the previous sample. Each selected input sample is then
mapped to a corresponding random ground-truth vector. For
instance, in a classification application, each random input is
associated with a randomly selected class.
(III) Fine-tuning the pre-trained neural network with the se-
lected random watermarks in Step II such that the network
has an exact prediction (e.g., an accuracy greater than 99%)
for those samples. In our experiments, we utilize the same
optimizer setting originally used for training the neural net-
work except that the learning rate is reduced by a factor of 10
to prevent accuracy drop in the prediction of the legitimate
input data.

Learning the PDF distribution of
model activations

Generating output WM

Fine-tuning
the neural
network

WM WM WM

WM WM WM WM
WM

Figure 2: High-level overview of watermarking the output layer in a
neural network. Output watermarking is performed after embedding
the selected binary WMs in the intermediate (hidden) layers.

It is worth noting that the watermarking information em-
bedded in the output layer can be extracted even in settings

where the DL model is used as a black-box API by a third-
party (Bob). Recently, [9] have proposed a method, called
frontier stitching, to perform 1-bit watermarking in black-box
settings. Our proposed approach is different in a sense that we
leverage random samples that lie within the tail regions of the
probability density function spanned by the model as opposed
to relying on adversarial samples that lie close to the bound-
aries [10, 11, 15, 16]. Adversarial samples are known to be
statistically unstable, meaning that the adversarial samples
carefully crafted for a model is not necessarily mis-classified
by another network. As shown in [9], frontier stitching is
highly vulnerable to the hyper-parameter selection of the wa-
termarking detection policy and may lead to a high false pos-
itive if it is not precisely tuned; thus jeopardizing the integrity
requirement.

As we experimentally verify in Section 5, DeepSigns over-
comes the integrity concern by selecting random samples
within the unused space of the model. This is due to the fact
that the unused regions in the space spanned by a model is
specific to that model, whereas the decision boundaries for a
given task retain high correlations in different models.

4 Watermarking Extraction
For the purpose of watermark inquiry, the model owner (Al-
ice) sends a set of queries to the AI service provider (Bob).
The queries include the input keys discussed in Sections 3.1
and 3.2. In case of the black-box usage of the network, Alice
can only retrieve model predictions for the queried samples
whereas in the white-box setting the intermediate activations
can be also recovered.

To extract the watermarking information in the interme-
diate layers, Alice first needs to compute the element-wise
mean value of the activation features to approximate the
Gaussian centers that carry on the watermarking data.2 As the
second step, Alice requires to perform the inverse of the pro-
cess described in Equation 2 to figure out the corresponding
binary string. Note that in case of a mismatch between the
recovered string from Bob’s model and the original water-
marking information selected by Alice, random watermarks
will be extracted which, in turn, yield a very high Bit Error
Rate (BER) as shown in Section 5.

To verify the presence of the watermark in the output layer,
Alice needs to statistically analyze Bob’s responses to her
keys. In particular, if the number of mismatches between the
model predictions and Alice’s ground-truth labels is less than
a threshold, it means that the model used by Bob possesses
a high similarity to the network owned by Alice. Otherwise,
the two models are not replicas. When the two models are
the exact duplicate of one another, the number of mismatches
will be zero and Alice can safely claim the ownership of the
network used by Bob. However, in the real-world settings,
the target neural network might be slightly modified by Bob
in both malicious or nonmalicious ways. Examples of such
modifications are model fine-tuning, model compression, or
WM removal. As such, the threshold used for the purpose of

2The queries that belong to the output WMs are excluded.

watermark detection should be greater than zero to withstand
the modifications.

The probability of a network (not owned by Alice) to make
at least nk correct decision according to the Alice private keys
is as follow:

P (Nk > nk|O) = 1−
nk∑
k=0

(
K
k

)
(1
C)K−k(1− 1

C)k, (4)

where O is the oracle model used by Bob, Nk is the number
of matched predictions of the two models compared against
one another,K is the key length according to Section 3.2, and
C is the number of classes in the target DL application. In our
experiments, we use the decision policy (P (Nk > nk|O) >
1−1e−5) for watermark detection. In Section 5, we corrobo-
rate the integrity and robustness of DeepSigns against various
attack scenarios and black-box models.

5 Evaluations
We evaluate the performance of DeepSigns on MNIST [17]
and CIFAR10 [18] datasets and three different neural network
architectures. Table 2 summarizes the neural network topolo-
gies used in each benchmark. In Table 2, K denotes the key
size for watermarking the output layer and N is the length
of the WM used for watermarking the hidden layers. In all
white-box related experiments, we use the second to the last
layer for the purpose of watermarking. In the block-box sce-
nario, we leverage the very last layer for watermark embed-
ding/detection.

Table 2: Benchmark neural network architectures. Here, 64C3(1)
indicates a convolutional layer with 64 output channels and 3× 3
filters applied with a stride of 2, MP2(1) denotes a max-pooling
layer over regions of size 2× 2 and stride of 1, and 512FC is a
fully-connected layer consisting of 512 output neurons. ReLU is
used as the activation function in all the three benchmarks. For the
CIFAR10 data, the CNN model is used in the white-box setting and
the Wide-ResNet (WRN) is evaluated in the black-box scenario.

Dataset Model Type Baseline
Accuracy

Marked Model
Accuracy Architecture

MNIST MLP 98.54% K=10 N=4 784-512FC-512FC-10FC98.51% 98.13%

CIFAR10 CNN 78.47% - N=4 3*32*32-32C3(1)-32C3(1)-MP2(1)
80.7% -64C3(1)-64C3(1)-MP2(1)-512FC-10FC

CIFAR10 WideResNet 91.42% K=10 - Please refer to [19].91.48%

DeepSigns satisfies all the requirements listed in Table 1 as
empirically verified in the following. We provide an accom-
panying API to facilitate watermark embedding and extrac-
tion in various DL models.

5.1 Fidelity
The proposed watermarking approach respects the fidelity re-
quirement as demonstrated in Table 2. In some cases (e.g.,
wide-ResNet benchmark), we even observed a slight accu-
racy improvement compared to the baseline.

5.2 Robustness
We evaluate the robustness of DeepSigns framework against
three contemporary removal attacks as discussed in Section 2.

(a) (b) (c) (d)

Figure 3: Evaluation of the watermark’s robustness against parameter pruning. Figures (a) and (b) show the results for MNIST and CIFAR10
in the black-box setting. The horizontal red line is the mismatch threshold obtained from Equation (4). The dashed lines show the corre-
sponding accuracy for each pruning rate. Figures (c) and (d) correspond to the MNIST and CIFAR10 benchmarks in the white-box setting.
The dashed lines demonstrate the corresponding accuracy per pruning rate.

The potential attacks include parameter pruning [4, 20, 21],
model fine-tuning [22], and watermark overwriting [8].

Parameter pruning. We use the pruning approach proposed
in [20] to compress the neural network. In particular, for
pruning each layer of a neural network, we first set the α%
of the parameters that possess the smallest weight values to
zero. The obtained mask is then used to sparsely fine-tune
the model in order to compensate for the accuracy loss in-
duced by pruning. Figure 3 illustrates the impact of prun-
ing on watermark extraction/detection in both black-box and
white-box settings. In the black-box experiments, DeepSigns
can tolerate up to 60% and 35% parameter pruning for the
MNIST and CIFAR10 benchmarks, and up to 90% and 99%
in the white-box related experiments. The WM length to per-
form watermarking in each benchmark are listed in Table 2.
As shown in Figure 3, in occasions where pruning the neural
network yields a substantial bit error rate (BER) value, we ob-
serve that the sparse model suffers from a large accuracy loss
compared to the baseline. As such, one cannot remove the
embedded watermark in a neural network by excessive prun-
ing of the parameters while attaining a comparable accuracy
with the baseline.

Model fine-tuning. For the fine-tuning transform, we re-
train the target model using the original training data with the
conventional cross-entropy loss (excluding the watermark-
ing specific loss functions). Table 3 summarizes the impact
of fine-tuning on watermarking detection rate across all the
benchmarks. As shown, DeepSigns can successfully detect
the watermark even after fine-tuning the target model while
preserving the baseline accuracy. There is a trade-off be-
tween the model accuracy and success rate of watermarking
removal.

Watermark overwriting. Assuming the attacker is aware of
the watermarking technique, he may attempt to damage the
original watermark by overwriting it. Figure 4 shows the re-
sults of watermark overwriting for MNIST and CIFAR10 in
the black-box setting. As can be seen from the histogram,
the embedded watermark can be successfully detected in
the MNIST benchmarks with all the three WM lengths af-
ter overwriting attack. Even though the overwriting makes
the watermark undetectable in the CIFAR-10 benchmark (for
K ≥ 15), the attacked model suffers from substantial ac-

curacy loss; making the resulting model ineffective. Simi-
larly, in the white-box scenario, the watermark extraction has
non-zero BER if a large watermarking strength (e.g., λ1 and
λ2 ≥ 0.1) is used by the attacker, which also leads to a high
accuracy loss.

Figure 4: There is a trade-off between the model accuracy and the
success rate of the overwriting attack. The red horizontal lines in-
dicate the detection threshold for different key lengths (Section 4).
The left vertical axis is correspondence to the bar figures and the
right vertical axis shows the accuracy depicted by dashed lines.

5.3 Integrity
Figure 5 illustrates the results of integrity evaluation in the
black-box setting where unmarked models with the same
(models 1 to 3) and different (models 4 to 6) topologies
are queried by Alice’s keys. As shown in Figure 5, Deep-
Signs satisfies the integrity criterion and has no false posi-
tives, which means the ownership of unmarked models will
not be falsely proved. Note that unlike the black-box set-
ting, in the white-box scenario, different topologies can be
distinguished by one-to-one comparison of Alice’s and Bob’s
architecture. For the unmarked model with the same topol-
ogy in white-box setting, the integrity analysis is equivalent
to model fine-tuning, for which the results are summarized in
Table 3.

5.4 Capacity
The capacity of the white-box activation watermarking is as-
sessed by embedding binary strings of different lengths in the
intermediate layers. As shown in Figure 6, DeepSigns allows
up to 64 bits and 128 bits capacity for MNIST and CIFAR-10
benchmarks, respectively. Note that there is a trade-off be-
tween the capacity and accuracy which can be leveraged by

Table 3: Robustness of the proposed functional watermarking against model fine-tuning attack. A value 1 in the last row of the table indicates
that the embedded watermark is successfully detected, whereas the value 0 indicates a false negative.

Metrics White-box Black-box
MNIST-MLP CIFAR10-CNN MNIST-MLP CIFAR10-WRN

Number of Epochs 50 100 200 50 100 200 50 100 200 50 100 200
Accuracy 98.21 98.20 98.18 70.11 62.74 59.86 98.61 98.63 98.60 87.65 89.74 88.35
BER 0 0 0 0 0 0 - - - - - -
Detection Success 1 1 1 1 1 1 1 1 1 0 0 0

the IP owner (Alice) to embed a stronger watermark in her
neural network model.

Figure 5: Integrity analysis for different benchmarks. The red hori-
zontal lines indicate the detection threshold for various WM lengths.

Figure 6: The trade-off between accuracy and watermarking capac-
ity for MNIST and CIFAR10 benchmarks.

5.5 Discussion
Figure 7 compares the overall capability of the existing wa-
termarking frameworks. [8] uses the weights of a convolution
neural network for the purpose of watermarking as opposed to
the activation sets. As shown in [8], watermarking weights is
not robust against overwriting attack. DeepSigns’s dynamic
data and model aware approach, on the other hand, provides
a much more robust and flexible watermarking methodology.

6 Conclusion
In this paper, we present DeepSigns the first generic DL wa-
termarking framework that is applicable in both black-box

Figure 7: Comparison with the state-of-the-art neural network wa-
termarking frameworks.

and white-box settings. DeepSigns works by embedding the
watermark information in the probability density distribution
of the activation sets corresponding to different layers of a
neural network. The performance of the proposed framework
is evaluated on MNIST and CIFAR-10 datasets using three
different topologies. Our results demonstrate that DeepSigns
satisfies all the criteria for effective watermarking including
fidelity, robustness, generalizability, and integrity. DeepSigns
attains comparable accuracy to the baseline neural network
after embedding the watermark and resists potential attacks
such as parameter pruning, model fine-tuning, and watermark
overwriting.

References
[1] Y. LeCun, Y. Bengio, and G. Hinton, “Deep learning,” nature,

vol. 521, no. 7553, p. 436, 2015.
[2] I. Goodfellow, Y. Bengio, A. Courville, and Y. Bengio, Deep

learning. MIT press Cambridge, 2016, vol. 1.
[3] B. D. Rouhani, A. Mirhoseini, and F. Koushanfar, “Deep3:

Leveraging three levels of parallelism for efficient deep learn-
ing,” in Proceedings of the 54th Annual Design Automation
Conference 2017. ACM, 2017, p. 61.

[4] ——, “Delight: Adding energy dimension to deep neural net-
works,” in Proceedings of the 2016 International Symposium
on Low Power Electronics and Design. ACM, 2016, pp. 112–
117.

[5] B. Furht and D. Kirovski, Multimedia security handbook.
CRC press, 2004.

[6] F. Hartung and M. Kutter, “Multimedia watermarking tech-
niques,” Proceedings of the IEEE, vol. 87, no. 7, pp. 1079–
1107, 1999.

[7] G. Qu and M. Potkonjak, Intellectual property protection in
VLSI designs: theory and practice. Springer Science & Busi-
ness Media, 2007.

[8] Y. Uchida, Y. Nagai, S. Sakazawa, and S. Satoh, “Embed-
ding watermarks into deep neural networks,” in Proceedings
of the 2017 ACM on International Conference on Multimedia
Retrieval. ACM, 2017, pp. 269–277.

[9] E. L. Merrer, P. Perez, and G. Trédan, “Adversarial fron-
tier stitching for remote neural network watermarking,” arXiv
preprint arXiv:1711.01894, 2017.

[10] B. D. Rouhani, M. Samragh, T. Javidi, and F. Koushanfar,
“Curtail: Characterizing and thwarting adversarial deep learn-
ing,” arXiv preprint arXiv:1709.02538, 2017.

[11] K. Grosse, P. Manoharan, N. Papernot, M. Backes, and P. Mc-
Daniel, “On the (statistical) detection of adversarial examples,”
arXiv preprint arXiv:1702.06280, 2017.

[12] A. Choromanska, M. Henaff, M. Mathieu, G. B. Arous, and
Y. LeCun, “The loss surfaces of multilayer networks,” in Arti-
ficial Intelligence and Statistics, 2015, pp. 192–204.

[13] D. Lin, S. Talathi, and S. Annapureddy, “Fixed point quantiza-
tion of deep convolutional networks,” in International Confer-
ence on Machine Learning, 2016, pp. 2849–2858.

[14] Y. N. Dauphin, R. Pascanu, C. Gulcehre, K. Cho, S. Gan-
guli, and Y. Bengio, “Identifying and attacking the saddle point
problem in high-dimensional non-convex optimization,” in Ad-
vances in neural information processing systems, 2014, pp.
2933–2941.

[15] I. J. Goodfellow, J. Shlens, and C. Szegedy, “Explain-
ing and harnessing adversarial examples,” arXiv preprint
arXiv:1412.6572, 2014.

[16] N. Papernot, P. McDaniel, I. Goodfellow, S. Jha, Z. B. Celik,
and A. Swami, “Practical black-box attacks against machine
learning,” in Proceedings of the 2017 ACM on Asia Conference
on Computer and Communications Security. ACM, 2017, pp.
506–519.

[17] Y. LeCun, C. Cortes, and C. J. Burges, “The mnist database of
handwritten digits,” 1998.

[18] A. Krizhevsky and G. Hinton, “Learning multiple layers of fea-
tures from tiny images,” 2009.

[19] S. Zagoruyko and N. Komodakis, “Wide residual networks,”
arXiv preprint arXiv:1605.07146, 2016.

[20] S. Han, J. Pool, J. Tran, and W. Dally, “Learning both weights
and connections for efficient neural network,” in Advances in
neural information processing systems, 2015, pp. 1135–1143.

[21] S. Han, H. Mao, and W. J. Dally, “Deep compression: Com-
pressing deep neural networks with pruning, trained quantiza-
tion and huffman coding,” arXiv preprint arXiv:1510.00149,
2015.

[22] K. Simonyan and A. Zisserman, “Very deep convolutional
networks for large-scale image recognition,” arXiv preprint
arXiv:1409.1556, 2014.

