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ALFRED MENEZES, AND FRANCISCO RODRÍGUEZ-HENRÍQUEZ

Abstract. The security of the Jao-De Feo Supersingular Isogeny Diffie-Hellman (SIDH)
key agreement scheme is based on the intractability of the Computational Supersingular
Isogeny (CSSI) problem — computing Fp2 -rational isogenies of degrees 2e and 3e between
certain supersingular elliptic curves defined over Fp2 . The classical meet-in-the-middle

attack on CSSI has an expected running time of O(p1/4), but also has O(p1/4) storage
requirements. In this paper, we demonstrate that the van Oorschot-Wiener collision
finding algorithm has a lower cost (but higher running time) for solving CSSI, and
thus should be used instead of the meet-in-the-middle attack to assess the security of
SIDH against classical attacks. The smaller parameter p brings significantly improved
performance for SIDH.

1. Introduction

The Supersingular Isogeny Diffie-Hellman (SIDH) key agreement scheme was proposed
by Jao and De Feo [11] (see also [6]). It is one of 69 candidates being considered by the
U.S. government’s National Institute of Standards and Technology (NIST) for inclusion in
a forthcoming standard for quantum-safe cryptography [10]. The security of SIDH is based
on the difficult of the Computational Supersingular Isogeny (CSSI) problem, which was
first defined by Charles, Goren and Lauter [3] in their paper that introduced an isogeny-
based hash function. The CSSI problem is also the basis for the security of isogeny-based
signature schemes [8, 27] and an undeniable signature scheme [12].

Let p be a prime, let ` be a small prime (e.g., ` ∈ {2, 3}), and let E and E′ be two
supersingular elliptic curves defined over Fp2 for which a (separable) degree-`e isogeny
φ : E → E′ defined over Fp2 exists. The CSSI problem is that of constructing such an

isogeny. In [6], the CSSI problem is assessed as having a complexity of O(p1/4) and O(p1/6)
against classical and quantum attacks [22], respectively. The classical attack is a meet-in-

the-middle attack which has time complexity O(p1/4) and space complexity O(p1/4). We
observe that the van Oorschot-Wiener collision finding (classical) algorithm [15, 16] can
be employed to construct φ. Whereas the time complexity of the van Oorschot-Wiener
algorithm is higher than that of the meet-in-the-middle attack, its space requirements are
smaller. Our cost analysis of these two CSSI attacks leads to the conclusion that, despite
its higher running time, the parallel collision finding CSSI attack has a lower cost than
the meet-in-the-middle attack, and thus should be used to assess the security of SIDH
against (known) classical attacks. Our work is inspired by Bernstein’s paper [1] which

presents convincing arguments that the O(n1/2)-time van Oorschot-Wiener algorithm for
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finding collisions for an n-bit hash function is less costly than the O(n1/3)-time quantum
algorithm of Brassard, Høyer and Tapp [2].

The remainder of this paper is organized as follows. The CSSI problem and relevant
mathematics background are presented in §2. In §3 and §4, we report on our implementa-
tion of the meet-in-the-middle and parallel collision search methods for solving CSSI. Our
implementations confirm that the heuristic analysis of these CSSI attacks accurately pre-
dicts their performance in practice. Our cost models and cost comparisons are presented
in §5. Finally, in §6 we make some concluding remarks.

2. Computational Supersingular Isogeny Problem

2.1. Mathematical prerequisites. Let p = `eAA `eBB − 1 be a prime1, where `A and `B
are distinct small primes and `eAA ≈ `eBB ≈ p1/2. Let E be a (supersingular) elliptic curve
defined over Fp2 with #E(Fp2) = (p + 1)2. Then E(Fp2) ∼= Zp+1 ⊕ Zp+1, whence the
torsion groups E[`eAA ] and E[`eBB ] are contained in E(Fp2).

In the following, we write (`, e) to mean either (`A, eA) or (`B, eB). All isogenies φ
considered in this paper are separable, whereby deg φ = #Ker(φ).

Let S be an order-`e subgroup of E[`e]. Then there exists an isogeny φ : E → E′ (with
both φ and E′ defined over Fp2) with kernel S. The isogeny φ is unique up to isomorphism

in the sense that if φ̃ : E → Ẽ is another isogeny defined over Fp2 with kernel S, then

there exists an Fp2-isomorphism ψ : E′ → Ẽ with φ̃ = ψ ◦ φ.
Given E and S, an isogeny φ with kernel S and the equation of E′ can be computed

using Vélu’s formula [23]. The running time of Vélu’s formula is polynomial in #S and

log p. Since #S ≈ p1/2, a direct application of Vélu’s formula does not yield a polynomial-
time algorithm for computing φ and E′. However, since #S is a power of a small prime,
one can compute φ and E′ in time that is polynomial in log p by using Vélu’s formula to
compute a sequence of e degree-` isogenies (see §2.2).

We will denote the elliptic curve that Vélu’s formula yields by E/S and the (Vélu)
isogeny by φS : E → E/S. As noted above, φS is unique up to isomorphism. Thus, for
any fixed E, there is a one-to-one correspondence between order-`e subgroups of E[`e] and
isogenies φ : E → E′ of order `e defined over Fp2 . It follows that the number of order-`e

isogenies φ : E → E′ is `e + `e−1 = (`+ 1)`e−1.

2.2. Vélu’s formula. Vélu’s formula (see Theorem 12.16 in [24]) can be used to compute
degree-` isogenies. We present Vélu’s formula for ` = 2 and ` = 3.

Consider the elliptic curve E/Fp2 : Y 2 = X3 + aX + b, and let P ∈ E(Fp2) be a point

of order two. Let v = 3X2
P + a, a′ = a − 5v, b′ = b − 7vXP , and define the elliptic curve

E′/Fp2 : Y 2 = X3 + a′X + b′. Then the map

(X,Y ) 7→
(

v

X −XP
+XP , Y −

vY

(X −XP )2

)
is a degree-2 isogeny from E to E′ with kernel 〈P 〉.

Let P ∈ E(Fp2) be a point of order three. Let v = 3X2
P + a, u = 4Y 3

P , a′ = a − 5v,

b′ = b− 7(u+ vXP ), and define the elliptic curve E′/Fp2 : Y 2 = X3 + a′X + b′. Then the

1More generally, one can take p = `eAA `eBB d± 1 where d is a small cofactor.
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map

(X,Y ) 7→
(

v

X −XP
+

u

(X −XP )2
+XP , Y

(
1− v

(X −XP )2
+

2u

(X −XP )3

))
is a degree-3 isogeny from E to E′ with kernel 〈P 〉.

Suppose now that R ∈ E(Fp2) has order `e where ` ∈ {2, 3} and e ≥ 1. Then the isogeny
φ : E → E/〈R〉 can be efficiently computed as follows. Define E0 = E and R0 = R. For
i = 0, 1, . . . , e−1, let φi : Ei → Ei+1 be the degree-` isogeny obtained using Vélu’s formula
with kernel 〈Ri〉, and let Ri+1 = φi(Ri). Then φ = φe−1 ◦ · · · ◦ φ0.

Remark 1. (cost of computing an `e-isogeny) As shown in [6] (see also [11, 5]), an optimal
strategy for computing a degree-`e isogeny requires about e

2 log2 e scalar multiplications by
` and e

2 log2 e degree-` isogeny evaluations, as well as e constructions of degree-` isogenous
curves.

2.3. SIDH. In SIDH, the parameters `A, `B, eA, eB, p and E are fixed and public, as are
bases {PA, QA} and {PB, QB} for the torsion groups E[`eAA ] and E[`eBB ].

In (unauthenticated) SIDH, Alice selects mA, nA ∈R [0, `eAA − 1], not both divisible by
`A, and sets RA = mAPA +nAQA and A = 〈RA〉; note that A is an order-`eAA subgroup of
E[`eAA ]. Alice then computes the isogeny φA : E → E/A while keeping A and φA secret.
She transmits

(1) E/A, φA(PB), φA(QB)

to Bob. Similarly, Bob selects mB, nB ∈R [0, `eBB − 1], not both divisible by `B, and sets
RB = mBPB + nBQB and B = 〈RB〉. Bob then computes the isogeny φB : E → E/B.
He keeps B and φB secret and transmits

(2) E/B, φB(PA), φB(QA)

to Alice. Thereafter, Alice computes φB(RA) = mAφB(PA) + nAφB(QA) and

(3) (E/B)/〈φB(RA)〉,
whereas Bob computes φA(RB) = mBφA(PB) + nBφA(QB) and

(4) (E/A)/〈φA(RB)〉.
The composition of isogenies

E → E/A→ (E/A)/〈φA(RB)〉
and

E → E/B → (E/B)/〈φB(RA)〉
both have kernel 〈RA, RB〉. Hence the elliptic curves in (3) and (4) are isomorphic over
Fp2 , and Alice and Bob’s shared secret k is the j-invariant of these curves.

Remark 2. (SIDH vs. SIKE ) SIDH is an unauthenticated key agreement protocol. The
NIST submission [10] specifies a variant of SIDH that is a key encapsulation mechanism
(KEM) called SIKE (Supersingular Isogeny Key Encapsulation). In SIKE, Alice’s long-
term public key is (E/A, φA(PB), φA(QB)). Bob sends Alice an ephemeral public key
(E/B, φB(PA), φB(QA)) where B is derived from Alice’s public key and a random string,
and then computes a session key from the j-invariant of the elliptic curve (4), the aforemen-
tioned random string, and the ephemeral public key. One technical difference between the
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original SIDH specification in [11, 6] and the SIKE specification in [10] (and also the SIDH
implementation in [4]) is that in the latter the secret RA is of the form PA +nAQA where
nA is selected (almost) uniformly at random from the interval [0, `eAA − 1] (and similarly
for RB). Thus, RA is selected uniformly at random from a subset of size approximately

`eA of the set of all order-`eAA subgroups (which has cardinality `eAA + `eA−1A ).

2.4. CSSI. The challenge faced by a passive adversary is to compute k given the public
parameters, E/A, E/B, φA(PB), φA(QB), φB(PA) and φB(QA). A necessary condition for
hardness of this problem is the intractability of the Computational Supersingular Isogeny
(CSSI) problem: Given the public parameters `A, `B, eA, eB, p, E, PA, QA, PB, QB,
the elliptic curve E/A, and the auxiliary points φA(PB) and φA(QB), compute the Vélu
isogeny φA : E → E/A (or, equivalently, determine a generator of A).

An assumption one makes is that the auxiliary points φA(PB) and φA(QB) are of no
use in solving CSSI. Thus, we can simplify the statement of the CSSI problem to the
following:

Problem 1 (CSSI). Given the public parameters `A, `B, eA, eB, p, E, PA, QA, and the
elliptic curve E/A, compute an isogeny φA : E → E/A, or, equivalently, determine a
generator of A.

3. Meet-in-the-Middle

For the sake of simplicity, we will suppose that e is even. We denote the number of
order-`e/2 subgroups of E[`e] by N = (`+ 1)`e/2−1 ≈ p1/4.

Let E1 = E and E2 = E/A. Let R denote the set of all j-invariants of elliptic curves
that are isogenous to E1; then #R ≈ p/12 [19]. Let R1 denote the set of all j-invariants

of elliptic curves over Fp2 that are `e/2-isogenous to E1. Since #R� N , one expects that

the number of pairs of distinct order-`e/2 subgroups (A1, A2) of E1[`
e] with j(E1/A1) =

j(E1/A2) is very small. Thus, we shall assume for the sake of simplicity that #R1 = N .

Similarly, we let R2 denote the set of all j-invariants of elliptic curves that are `e/2-
isogenous to E2, and assume that #R2 = N . Since E1 is `e-isogenous to E2, we know that
R1 ∩ R2 6= ∅. Moreover, since #R1 � #R and #R2 � #R, it is reasonable to assume
that #(R1 ∩R2) = 1; in other words, we assume that there is a unique degree-`e isogeny
φ : E1 → E2.

3.1. The attack. The meet-in-the-middle attack on CSSI [6] (see Figure 1) proceeds by

building a (sorted) table with entries (j(E1/A1), A1), where A1 ranges over all order-`e/2

subgroups of E1[`
e]. Next, for each order-`e/2 subgroup A2 of E2[`

e], one computes E2/A2

and searches for j(E2/A2) in the table. If j(E2/A2) = j(E1/A1), then the composition of
isogenies

φA1 : E1 → E1/A1, ψ : E1/A1 → E2/A2, φ̂A2 : E2/A2 → E2,

where ψ is an Fp2-isomorphism and φ̂ denotes the dual of φ, is the desired degree-`e isogeny
from E1 to E2.

The worst-case time complexity of the meet-in-the-middle attack is T1 = 2N , where a
unit of time is the time it takes to compute a degree-`e/2 Vélu isogeny. The average-case
time complexity is 1.5N . The attack has space complexity N .



ON THE COST OF COMPUTING ISOGENIES BETWEEN SUPERSINGULAR ELLIPTIC CURVES 5

E1

E1,2

E1,2,1
· · ·

· · ·

E1,2,0
· · ·

· · ·

E1,1

E1,1,1
· · ·

· · ·

E1,1,0
· · ·

· · ·

E1,0

E1,0,1
· · ·

· · ·

E1,0,0
· · ·

· · ·

3 · 2
e
2
−1 leaves

E1/A1
isomorphism

ψ

E2

E2,2

E2,2,1
· · ·

· · ·

E2,2,0
· · ·

· · ·

E2,1

E2,1,1
· · ·

· · ·

E2,1,0
· · ·

· · ·

E2,0

E2,0,1
· · ·

· · ·

E2,0,0
· · ·

· · ·

3 · 2
e
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Figure 1. Meet-in-the-middle attack for degree-2 isogeny trees.

3.2. Implementation report. The meet-in-the-middle attack was implemented in C,
compiled using gcc version 4.7.2, and executed on an Intel Xeon processor E5-2658 v2
server equipped with 20 physical cores and 256 GB of shared RAM memory. We used
fopenmp for the parallelization.

For p = 2eA3eBd − 1, the elliptic curve E/Fp : Y 2 = X3 + X has #E(Fp) = p + 1 and
#E(Fp2) = (p+ 1)2. A point P ∈ E(Fp2) of order 2 · 3 · d was randomly selected, and the
isogenous elliptic curve E1 = E/〈P 〉 was computed. Then, a random order-2eA subgroup
A of E1(Fp2) was selected, and the isogenous elliptic curve E2 = E1/A was computed.
Our CSSI challenge was to find a generator of A given E1 and E2.

We used Jacobian coordinates for elliptic curve arithmetic, isogeny computations, and
isogeny evaluations. The leaves of the E1-rooted tree shown in Figure 1 were generated
as follows. Let (P,Q) be a basis for E1[2

e/2]. Then for each pair (b, k) ∈ {0, 1, 2} ×
{0, 1, . . . , 2e/2−1 − 1}, triples(

j(E1/〈P + (b2e/2−1 + k)Q〉), b, b2e/2−1 + k
)
, for b = 0, 1,

(j(E1/〈(2k)P +Q〉), b, k) , for b = 2,

were computed and stored in 20 tables sorted by j-invariant (each of the 20 cores was
responsible for generating a portion of the leaves). The 20 tables were stored in shared
RAM memory.

Table 1 shows the time expended for finding 2e-isogenies for e ∈ {32, 34, 36, 38, 40, 42, 44}
with the MITM attack. These experimental results confirm the accuracy of the attack’s
heuristic analysis.
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median average

expected number measured clock measured clock

eA eB d time of runs space time cycles time cycles

32 20 23 217.17 19 220.72 217.07 234.35 217.06 234.28

34 21 109 218.17 19 221.83 218.21 235.39 218.20 235.37

36 22 31 219.17 19 222.87 219.12 236.39 219.15 236.43

38 23 271 220.17 19 223.99 220.22 237.53 220.21 237.53

40 25 71 221.17 19 225.04 221.14 238.51 221.13 238.52

42 26 37 222.17 19 226.09 222.21 239.82 222.21 239.81

44 27 37 223.17 6 227.14 223.12 240.79 223.09 240.76

Table 1. Meet-in-the-middle attack for finding a 2eA-isogeny between two
supersingular elliptic curves over Fp2 with p = 2eA ·3eB ·d−1. For each p, the
listed number of CSSI instances were solved and the median and average
of the results are reported. The running time columns give the expected
number and the actual number of degree-2eA/2 isogeny computations. The
space is measured in bytes.

4. Parallel collision search

4.1. Van Oorschot-Wiener parallel collision search. Let S be a finite set of car-
dinality M , and let f : S → S be an efficiently-computable function which we shall
heuristically assume is a random function. The van Oorschot-Wiener (VW) method [16]
finds a collision for f , i.e., a pair x, x′ ∈ S with f(x) = f(x′) and x 6= x′.

Define an element x of S to be distinguished if it has some easily-testable distinguishing
property. Suppose that the proportion of elements of S that are distinguished is θ. For i =
1, 2, . . ., the VW method repeatedly selects xi,0 ∈R S, and iteratively computes a sequence
xi,j = f(xi,j−1) for j = 1, 2, 3, . . . until a distinguished element xi,a is encountered. In that
event, the triple (xi,a, a, xi,0) is stored in a table sorted by first entry. If xi,a was already in
the table, say xi,a = xi′,b with i 6= i′, then a collision has been detected (see Figure 2). The
two colliding table entries (xi,a, a, xi,0), (xi′,b, b, xi′,0) can then be used to find a collision
for f by iterating the longer sequence (say the ith sequence) beginning at xi,0 until it
is the same distance from xi,a as xi′,0 is from xi′,b, and then stepping both sequences in
unison until they collide (see Figure 3).

By the birthday paradox, the expected time before a collision occurs is
√
πM/2, where a

unit of time is an f evaluation. After a collision has occurred, the expected time before it is
detected is 1/θ, and thereafter the expected time to find the collision is approximately 3/θ.

Thus, the expected time complexity of the VW method is approximately
√
πM/2 + 4/θ.

The expected storage complexity is θ
√
πM/2. The parameter θ can be selected to control

the storage requirements.
The collision detecting stage of the VW method can be effectively parallelized. Each

of the available m processors computes its own sequences, and the distinguished elements
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xi′,b

xi,0 xi′,0

x′
x

xi,a

Figure 2. VW method: detecting a collision (x, x′).

xi′,b

x

xi,a

xi′,0

x′

xi,0

Figure 3. VW method: finding a collision (x, x′).

are stored in shared memory. The expected time complexity of parallelized VW is then
1
m

√
πM/2 + 2.5

θ . The space complexity is θ
√
πM/2.

4.2. Finding a golden collision. Van Oorschot and Wiener estimate that a random
function f : S → S is expected to have M/2 unordered collisions. Suppose that we seek
a particular one of the collisions, called a golden collision; we assume that the golden
collision can be efficiently recognized. Then, one can expect to have to find M/4 collisions
until the golden collision is found. Thus one continues generating distinguished points and
collisions until the golden collision is encountered. The expected time to find q collisions
is only

√
q times as much as that to find one collision. However, since not all collisions

are equally likely and the golden collision might have a very low probability of detection
(see [15]), it is necessary to change the version of f periodically.
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Suppose that the available memory can store w triples (xi,a, a, xi,0). When a distin-
guished point xi,a is encountered, the triple (xi,a, a, xi,0) is stored in a memory cell deter-
mined by hashing xi,a. If the memory cell was already occupied with a triple holding a
distinguished point xi′,b = xi,a, then the two triples are used to locate a collision.

Van Oorschot and Wiener proposed setting

(5) θ = α
√
w/M

and using each version of f to produce βw distinguished points. Experimental data
presented in [16] suggested that the total running time to find the golden collision is
minimized by setting α = 2.25 and β = 10. Then, for 210 ≤ w ≤ M/210, the expected
running time to find the golden collisions when m processors are employed is slightly
overestimated as

(6)
1

m
(2.5

√
M3/w).

4.3. The attack. Let I = {1, 2, . . . , N} and S = {1, 2} × I. For i = 1, 2, let Ai denote

the set of all order-`e/2 subgroups of Ei[`
e], define fi : Ai → Ri by fi(Ai) = j(Ei/Ai),

and let hi : I → Ai be bijections. Let g : R → S be a random function. Finally, define
f : S → S by

f : (i, x) 7→ g(fi(hi(x))).

Then one can view f as a “random” function from S to S.
Recall that one expects there are unique order-`e/2 subgroups A1, A2 of E1[`

e], E2[`
e],

respectively, with j(E1/A1) = j(E2/A2). Let y1 = h−11 (A1) and y2 = h−12 (A2). Then the
collision for f that we seek is the golden collision (1, y1), (2, y2). Using m processors and
w cells of memory, the VW method can be used to find this golden collision in expected
time

(7)
1

m
(2.5

√
8N3/w) ≈ 7.1p3/8/(w1/2m).

Remark 3. (finding any collision vs. finding a golden collision) The problem of finding a
collision for a hash function H : {0, 1}∗ → {0, 1}n and the problem of computing discrete
logarithms in a cyclic group G can be formulated as problems of finding a collision for a
random function f : S → S, where #S = 2n for the first problem and #S = #G for the
second problem (see [16]). For both formulations, any collision for f yields a solution to
the original problem. Thus, letting N = 2n or N = #G, the problems can be solved using
van Oorschot-Wiener collision search in time approximately

(8)
1

m
N1/2.

In contrast, the only formulation of CSSI as a collision search problem for f : S → S
that we know requires one to find a golden collision for f . For this problem, the van
Oorschot-Wiener algorithm has running time approximately

(9) N3/2/(w1/2m).
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4.4. Implementation report. The VW attack was implemented in C, compiled using
gcc version 4.7.2, and executed on an Intel Xeon processor E5-2658 v2 server equipped
with 20 physical cores and 256 GB of shared RAM memory. We used fopenmp for the
parallelization and openssl’s MD5 implementation. The CSSI challenges were the same as
the ones in §3.2.

Let (P1, Q1), (P2, Q2) be bases for E1[2
e/2], E2[2

e/2], respectively. Noting that N =

3 · 2e/2−1, we identify the elements of I = {1, 2, . . . , N} with elements of I1 × I2 where

I1 = {0, 1, 2} and I2 = {0, 1, . . . , 2e/2−1 − 1}. The bijections hi : I1 × I2 → Ai for i = 1, 2
are defined by

hi : (b, k) 7→
{
Pi + (b2e/2−1 + k)Qi, if b = 0, 1,
(2k)Pi +Qi, if b = 2.

Let S = {1, 2} × I1 × I2. For n ∈ {0, 1}64, we let gn : R → S be the function computed
using Algorithm 1. We then define the version fn : S → S of f by (i, x) 7→ gn(fi(hi(x))).

Algorithm 1 The “random” function gn

Require: n ∈ {0, 1}64 and j ∈ Fp2 .
Ensure: Output c ∈ {1, 2}, b ∈ I1, k ∈ I2.
1: counter := 0;
2: h := MD5(j, n, counter).
3: Let h′ be the e/2 + 2 least significant bits of h, and parse h′ as (k, c, b), where k, c, b have

bitlengths e/2− 1, 1, and 2, respectively.
4: if b = 11 then
5: counter := counter + 1;
6: Go to Step 2
7: end if
8: return (c+ 1, b, k);

Table 2 shows the time expended for finding 2e-isogenies for e ∈ {32, 34, 36, 38, 40, 42}
with the VW attack. These experimental results partially confirm the accuracy of the VW
attack’s heuristic analysis. We are conducting additional experiments with larger values
of e to gather more evidence that the VW attack performs as expected.

5. Comparisons

There are many factors that can affect the efficacy of an algorithm.

(1) Time: the worst-case or average-case number of basic arithmetic operations per-
formed by the algorithm.

(2) Space: the amount of storage (RAM, hard disk, etc.) required.
(3) Parallelizability : the speedup achievable when running the algorithm on multiple

processors. Ideally, the speedup is by a factor equal to the number of processors,
and the processors do not need to communicate with each other; if this is the case
then the parallelization is said to be perfect2.

2If the processors share the same storage space, then frequent storage accesses might decrease the
parallelizability of the algorithm.
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median average

expected number measured clock measured clock

eA eB d w r time of runs # fn’s time cycles # fn’s time cycles

32 20 23 29 3 223.20 19 193 223.07 240.53 466 224.35 241.80

34 21 109 29 4 224.70 19 372 225.01 242.56 432 225.23 242.78

36 22 31 210 4 225.70 19 423 226.20 243.84 530 226.52 244.17

38 23 271 211 4 226.70 19 750 228.02 245.66 1186 228.68 246.32

40 25 71 211 4 228.20 19 416 227.15 244.87 1639 229.13 246.85

42 26 37 212 4 229.20 19 1188 229.66 247.57 2750 230.87 248.78

Table 2. Van Oorschot-Wiener parallel collision search for finding a 2eA-
isogeny between two supersingular elliptic curves over Fp2 with p = 2eA ·
3eB · d − 1. For each p, the listed number of CSSI instances were solved
and the median and average of the results are reported. The parameter
r in the fifth column indicates the number of most significant bits of the
parameter k that must be zero in order for an element of S to be considered
distinguished. The #fn’s column indicates how many random functions
fn were tested until the golden collision was found. The expected and
measured times list number of degree-2eA/2 isogeny computations.

(4) Communication costs: the time taken for communication between processors, and
the memory access time for retrieving data from large storage devices. Memory
access time can be a dominant cost factor when using extremely large storage
devices [1].

(5) Custom-designed devices: the possible speedups that can be achieved by executing
the algorithm on custom-designed hardware. Examples of such devices are TWIN-
KLE [20] and TWIRL [21] that were designed for the number field sieve integer
factorization algorithm.

In this section we analyze and compare the efficacy of the meet-in-the-middle algorithm,
parallel collision search, and a mesh sorting algorithm for solving CSSI. We make two
assumptions:

(1) The number m of processors available is at most 264.
(2) The total amount of storage w available is at most 280 units.

Our analysis will ignore communication costs, and thus our running time estimates can
be considered to be lower bounds on the “true” running time.

Remark 4. (feasible amount of storage and number of processors) The Sunway TaihuLight
supercomputer, the most powerful in the world as of March 2018, has 223.3 CPU cores
[26]. In 2013, it was estimated that Google’s data centres have a total storage capacity of
about a dozen exabytes3 [26]. Thus it is reasonable to argue that acquiring 264 processors

3An exabyte is 260 bytes.
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and a storage capacity (with low access times) of several dozen yottabytes4 for the purpose
of solving a CSSI problem is prohibitively costly for the foreseeable future.

5.1. Meet-in-the-middle. As stated in §3.1, the running time of the meet-in-the-middle
attack is approximately 2N and the storage requirements are N , where N ≈ p1/4. Since for
N ≥ 280 the storage requirements are infeasible, we deem the meet-in-the-middle attack
to be prohibitively expensive when N � 280.

Of course, one can trade space for time. One possible time-memory tradeoff is to
store a table with entries (j(E1/A1), A1), where A1 ranges over a w-subset of order-`e/2

subgroups of E1[`
e]. Next, for each order-`e/2 subgroup A2 of E2[`

e], E2/A2 is computed
and j(E2/A2) is searched in the table. If no match is found, then the algorithm is repeated

for a disjoint w-subset of order-`e/2 subgroups of E1[`
e], and so on. The running time of

this time-memory tradeoff is approximately

(10) (w +N)
N

w
≈ N2/w.

One can see that this time-memory-tradeoff can be parallelized perfectly.
Another possible time-memory tradeoff is to store (j(E1/A1), A1), where A1 ranges over

all order-`c subgroups of E1[`
e] and c ≈ log`w. Let d = e − c. Then, for each order-`d

subgroup A2 of E2[`
e], E2/A2 is computed and j(E2/A2) is searched in the table. One

can check that the running time of this time-memory tradeoff is approximately N2/w,
and that it can be parallelized perfectly. Note that the unit of time here is an `d-isogeny
computation instead of an `e/2-isogeny computation.

5.2. Parallel collision search. As stated in §4.3, the running time of van Oorschot-
Wiener parallel collision search is approximately

(11) N3/2/(w1/2m).

The algorithm parallelizes perfectly.

5.3. Mesh sorting. The mesh sorting attack is analogous to the one described by Bern-
stein [1] for finding hash collisions. Suppose that one has m processors arranged in a
two-dimensional grid. Each processor only communicates with its neighbours in the grid.
In one unit of time, each processor computes and stores pairs (j(E1/A1), A1), where A1

is an order-`e/2 subgroup of E1[`
e]. Next, these stored pairs are sorted in time ≈ m1/2

(e.g., see [18]). In the next stage, a second two-dimensional grid of m processors computes

and stores pairs (j(E2/A2, A2), where A2 is an order-`e/2 subgroup of E2[`
e], and the two

sorted lists are compared for a match. This is repeated for a disjoint m-subset of order-`e/2

subgroups A2 until all order-`e/2 subgroups of E2[`
e] have been tested. Then, the process

is repeated for a disjoint subset of order-`e/2 subgroups A1 of E1[`
e] until a match is found.

One can check that the total running time is approximately

(12)

(
m1/2 +m1/2N

m

)
N

m
≈ N2/m3/2.

4A yottabyte is 280 bytes.
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5.4. Targetting the 128-bit security level. The CSSI problem is said to have a 128-
bit security level if the fastest known attack has total time complexity at least 2128 and
feasible space and hardware costs.

Suppose that p ≈ 2512, whereby N ≈ 2128; this would be a reasonable choice for the
bitlength of p if the standard meet-in-the-middle attack was assessed to be the fastest
(classical) algorithm for solving CSSI. However, as noted above, the storage costs for the
attack are prohibitive. Instead, one should consider the time complexity of the time-
memory tradeoff, parallel collision search, and mesh sorting under realistic constraints on
the storage space w and the number m of processors m. Table 3 lists the calendar time5

and the total time of these CSSI attacks for (m,w) ∈ {(248, 264), (248, 280), (264, 280)}.
One sees that in all cases the total time complexity is significantly greater than 2128, even
though we have ignored communication costs.

# processors space calendar total
m w time time

Meet-in-the-middle 48 64 144 192
time-memory tradeoff 48 80 128 176

64 80 112 176

Van Oorschot-Wiener 48 64 112 160
parallel collision search 48 80 104 152

64 80 88 152

Mesh sorting 48 — 184 184
64 — 160 160

Table 3. Time complexity estimates of CSSI attacks for p ≈ 2512. All
numbers are expressed in their base-2 logarithms. The unit of time is an
`e/2-isogeny computation.

Since the total times in Table 3 are all significantly greater than 2128, one can consider
using smaller primes p while still achieving the 128-bit security level. Table 4 lists the calen-
dar time and the total time of these CSSI attacks for (m,w) ∈ {(248, 264), (248, 280), (264, 280)}
when p ≈ 2448 and N ≈ 2112. One sees that all attacks have total time complexity at least
2128, even though we have ignored communication costs. We can conclude that select-
ing SIDH parameters with p ≈ 2448 provides 128 bits of security against known classical
attacks. What remains to be determined is the security of CSSI against quantum attacks.

Remark 5. (communication costs) Consider the case p ≈ 2448, e = 224, m = 264,
w = 280. From (5) and (6) we obtain θ ≈ 1/215.62 and an expected running time of
2131.7. For each function version, the 264 processors will generate approximately 248.4

distinguished points per unit of time (i.e., a 2112-isogeny computation). So, on average,
the 280 storage device will be accessed 248.4 times during each unit of time. The cost of
these accesses will dominate the computational costs. Thus our security estimates, which
ignore communication costs, can be regarded as being conservative.

5Calendar time is the elapsed time taken for a computation, whereas total time is the sum of the time
expended by all m processors.
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# processors space calendar total
m w time time

Meet-in-the-middle 48 64 112 160
time-memory tradeoff 48 80 96 144

64 80 80 144

Van Oorschot-Wiener 48 64 88 136
parallel collision search 48 80 80 128

64 80 64 128

Mesh sorting 48 — 152 152
64 — 128 128

Table 4. Time complexity estimates of CSSI attacks for p ≈ 2448. All
numbers are expressed in their base-2 logarithms. The unit of time is an
`e/2-isogeny computation.

The fastest known quantum attack on CSSI is Tani’s algorithm [22]. Given two generic
functions g1 : X1 → Y and g2 : X2 → Y , where #X1 ≈ #X2 ≈ N and #Y � N , Tani’s
quantum algorithm finds a claw, i.e., (x1, x2) ∈ X1×X2 such that g1(x1) = g2(x2) in time

O(N2/3). The CSSI problem can be recast as a claw-finding problem by defining Xi to

be the set of all degree-`e/2 isogenies originating at Ei, gi to be the function that maps
a degree-`e/2 isogeny originating at Ei to the j-invariant of its image curve, and Y = R.
Since #X1 = #X2 = N ≈ p1/4, this yields an O(p1/6)-time CSSI attack.

CSSI can also be solved by an application of Grover’s quantum search [9]. Recall that
if g : X → {0, 1} is a generic function such that g(x) = 1 for exactly one x ∈ X, then
Grover’s algorithm can determine the x with g(x) = 1 in quantum time O(

√
#X). The

CSSI problem can be recast as a Grover search problem by defining X to be the set of
all ordered pairs (φ1, φ2) of degree-`e/2 isogenies originating at E1, E2, respectively, and
defining g(φ1, φ2) to be equal to 1 if and only if the j-invariants of the image curves of

φ1 and φ2 are equal. Since #X = N2 ≈ p1/2, this yields an O(p1/4)-time CSSI quantum
attack.

Even though Tani’s algorithm has a smaller total running time than Grover’s search, a
careful cost analysis by Jaques and Schanck [13] reveals that Tani’s algorithm is signifi-
cantly costlier than Grover’s search using reasonable cost measures. This is not unexpected
since Tani’s algorithm has O(p1/6) space requirements, whereas the space requirements of
Grover’s search are negligible compared to its running time. Now, Grover’s search does
not parallelize perfectly — using m quantum circuits only yields a speedup by a factor of√
m and this speedup has been proven to be optimal [28]. Furthermore, it is envisioned

that running long serial quantum computations will be very difficult — NIST suggests
that 240 is the maximum depth of a quantum circuit that can be executed in one year
[14]. Thus, it can reasonably be concluded that Grover’s search for the p ≈ 2448 case will
be significantly costlier than parallel collision search.

We conclude that using SIDH parameters with p ≈ 2448 offers CSSI security of at least
128 bits against known classical and quantum attacks. Such a prime is significantly smaller
than a 768-bit prime (such as the 751-bit prime p = 23723239 − 1 proposed in [5, 10]) that
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would be needed if Tani’s algorithm was deemed to be the most cost-effective CSSI attack.
For example, one could select the 434-bit prime

p434 = 22163137 − 1;

this prime is balanced in the sense that 3137 ≈ 2217, thus providing maximal resistant to
Petit’s SIDH attack [17].

5.5. Targetting the 160-bit security level. Using similar arguments as in §5.4, one
surmises that SIDH parameters with p ≈ 2536 offer at least 160 bits of CSSI security
against known classical (see Table 5) and quantum attacks. Such primes are significantly
smaller than a 960-bit prime (such as the 964-bit prime p = 24863301− 1 proposed in [10])
that would be needed if Tani’s algorithm was deemed to be the most cost-effective CSSI
attack. For example, one could select the 546-bit prime

p546 = 22733172 − 1;

this prime is nicely balanced since 3172 ≈ 2273.

# processors space calendar total
m w time time

Meet-in-the-middle 48 64 156 204
time-memory tradeoff 48 80 140 188

64 80 124 188

Van Oorschot-Wiener 48 64 121 169
parallel collision search 48 80 113 161

64 80 97 161

Mesh sorting 48 — 196 196
64 — 172 172

Table 5. Time complexity estimates of CSSI attacks for p ≈ 2536. All
numbers are expressed in their base-2 logarithms.

5.6. SIDH performance. The 434-bit prime p434 = 22163137 − 1 and the 546-bit prime
p546 = 22733177 − 1 are significantly smaller than the 751-bit prime p751 = 23723239 − 1
proposed in [5, 10], and therefore can offer substantial improvements in the performance
of SIDH. The boost in the performance gain is mainly due to the following.

First, since the computation of the ground field Fp multiplication operation has a qua-
dratic complexity, any reduction in the size of p will result in significant savings. Since
high-end processors have a word size of 64 bits, the primes p751, p546 and p434 can be
accommodated using twelve, nine and seven 64-bit words, respectively. Hence, if Fp mul-
tiplication using p751 can be computed in T clock cycles, then a rough estimation of
the computational costs for Fp multiplication using p434 and p546 is as low as 0.34T and
0.56T , respectively. Second, since the exponents of the primes 2 and 3 in p434 and p546
are smaller than the ones in p751, the computation of the isogeny chain described in §2.2
(see Remark 1) is faster.
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Table 6 lists the timings for arithmetic operations in Fp, Fp2 , and E(Fp2) for p434, p546
and p751 using the SIDH library [4]. Table 7 shows that SIDH operations are about 4.8
times faster when p434 is used instead of p751 in the SIDH library of Costello et al. [5].
Also shown in Table 7 are SIDH timings for p751 from [7].

Domain Operation p751 p434 p546
2372 · 3239 − 1 2216 · 3137 − 1 2273 · 3172 − 1

Modular reduction 212 78 103
Fp Multiplication 486 180 276

Inversion 456,621 89,406 166,405

Multiplication 1,582 530 846
Fp2 Squaring 1,026 394 562

Inversion 458,706 90,132 167,457

Point doubling 8,855 3,105 4,664
Point tripling 17,799 6,199 9,303

E(Fp2) Degree-3 isog. computation 8,537 3,147 4,605
Degree-4 isog. computation 5,980 2,285 3,203
Degree-3 isog. evaluation 11,864 4,040 6,169
Degree-4 isog. evaluation 15,932 5,453 8,287

Table 6. Timings of selected base field, quadratic field, and elliptic curve
arithmetic operations in comparison with the SIDH v2 library [4]. All
timings are reported in clock cycles on an Intel Core i7-6700 supporting a
Skylake micro-architecture.

6. Concluding remarks

Our implementations of the meet-in-the-middle and golden collision search CSSI at-
tacks are, to the best of our knowledge, the first ones reported in the literature. The
implementations confirm that the performance of these attacks is accurately predicted by
the heuristic analysis.

Protocol

Phase

Skylake

CLN [5] FLOR [7]
p751 p751 p434 p546

Key

Gen.

Alice 35.7 26.9 7.51 13.20

Bob 39.9 30.5 8.32 14.84

Shared

Secret

Alice 33.6 24.9 7.01 12.56

Bob 38.4 28.6 7.94 14.35

Table 7. Performance of the SIDH protocol. All timings are reported in
106 clock cycles, measured on an Intel Core i7-6700 supporting a Skylake
micro-architecture.
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Our concrete cost analysis of the attacks leads to the conclusion that golden collision
search is more effective that the meet-in-the-middle attack. Thus one can use 448-bit
primes and 536-bit primes p in SIDH to achieve the 128-bit and 160-bit security levels
against known classical attacks on the CSSI problem. We emphasize that these conclu-
sions are based on our understanding of how to best implement these algorithms, and on
assumptions on the amount of storage and the number of processors that an adversary
might possess. On the other hand, our conclusions are somewhat conservative in that the
analysis does not account for communication costs. Moreover, whereas it is generally ac-
cepted that the AES-128 and AES-256 block ciphers attain the 128-bit security level in the
classical and quantum settings, the time it takes to compute a degree-2112 isogeny (which
is the unit of time for the CSSI attack with balanced 448-bit prime p) is considerably
greater than the time for one application of AES-128 or AES-256.

Our analysis in combination with the cost analysis in [13] of the known quantum attacks
on CSSI leads to the conclusion that van Oorschot-Wiener parallel collision search is the
most powerful attack on the CSSI problem. Thus, 448- and 536-bit primes p offer 128-
and 160-bits of SIDH security against all known classical and quantum attacks.
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[6] L. De Feo, D. Jao and J. Plût, “Towards quantum-resistant cryptosystems from supersingular elliptic

curve isogenies”, Journal of Mathematical Cryptology, 8 (2014), 209–247.
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