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Abstract. Power analysis side channel attacks rely on aligned traces. As
a counter-measure, devices can use a jittered clock to misalign the power
traces. In this paper we suggest a way to overcome this counter-measure,
using an old method of integrating samples over time followed by a cor-
relation attack (Sliding Window CPA). We theoretically re-analyze this
general method with characteristics of jittered clocks and show that it is
stronger than previously believed. We show that integration of samples
over a suitably chosen window size actually amplifies the correlation both
with and without jitter — as long as multiple leakage points are present
within the window. We then validate our analysis on a new data-set of
traces measured on a board implementing a jittered clock. Our experi-
ments show that the SW-CPA attack with a well-chosen window size is
very successful against a jittered clock counter-measure and significantly
outperforms previous suggestions, requiring a much smaller set of traces
to correctly identify the correct key.

1 Introduction

1.1 Background

The use of encryption in embedded devices is proliferating. Encryption in such
devices can be implemented in two ways, either by a hardware (ASIC or FPGA)
implementation, or by software. Assuming that reasonable cryptographic algo-
rithms are in use (e.g., AES), a cryptanalyst wanting to break the encryption can
use side channel attacks (SCA), exploiting implementation-dependent informa-
tion leakage captured during the cryptographic operation to find the correct key.
A wide range of SCA exist, using leakage sources such as timing [Koc96], elec-
tromagnetic radiation [KA98], acoustic emanations [ST04] and even photonics
[FH08]. Among these, one of the first and best understood SCA is power anal-
ysis. The idea of power analysis attacks is to perform statistical analysis of the
CPU power usage, which is influenced by the secret cryptographic keys processed
by the device. Some power analysis attacks assume profiling of the board, while
others (non-profiling attacks) classify the behavior via a black-box methodology.
Known non-profiling attacks such as Simple Power Analysis (SPA), traditional
difference of means Differential Power Analysis (DPA) [KJJ99] and Correlation
Power Analysis (CPA) [BCO04] are described in the literature and can be easily
implemented by pre-made kits.

https://www.eng.tau.ac.il/~yash/
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1.2 Power traces alignment: assumptions and counter-measures

Alignment assumption Power analysis SCA works by repeatedly sampling the
power consumption of a device, while it is executing a cryptographic operation,
using a high-speed oscilloscope and capturing multiple power traces. The main
assumption is that the power consumption of certain instructions depends, in a
statistical significant manner, on the secret key. Hence, by getting enough power
traces and utilizing suitable analytical tools, one can extract the secrets.

A crucial property for the success of power SCA is that the power traces are
aligned. Common power analysis attacks (i.e., DPA and CPA) assume that the
information-leaking sub-step in the cryptographic implementation (for example
an Sbox look-up) will always occur at a fixed interval after the power trace’s
beginning. If this assumption does not hold then the leaking information will
appear at different offsets in different traces, which severely degrades the attack’s
ability to correlate the power leak to hypothetical key values.

Time domain hiding counter-measures One possible SCA counter-measure,
originating in the initial days of power SCA (cf. [CCD00]) is “hiding in the time
domain”. This counter-measure breaks the assumption that traces are aligned.
E.g., one variant of time domain hiding (dummy operations insertion) was an-
alyzed by Mangard et al. [MOP08]. They showed that the correlation ratio be-
tween the correct key and the power consumption decreases, because not all
traces leak in the same sample index.

Alignment problems have two common variants. In the first variant, the traces
do not start at the same point, which can happen for example if there is no
accurate trigger signal (start-point misalignment). In this case, the leaking en-
cryption sub-state happens a fixed amount of time after the encryption start,
but at a variable sample index within the trace after the measurement start.
The second variant of misalignment, more commonly used by defenders, is that
the encryption process itself has a variable time duration. Such behavior can
be caused in many ways — insertion of random length dummy operations into
the machine code execution, Random Process hardware Interrupts (RPIs) or
an unstable (jittered) CPU clock. These methods lead to a leaking encryption
sub-state happening at an uncertain point in time after the encryption start.
Dummy operations insertion and RPIs cause the number of machine operations
to be undetermined, whereas a jittered clock causes the execution time of these
machine operations to be undetermined. E.g., A design for a jittered clock by
Güneysu and Moradi [GM11] offers a CPU clock which is randomized by several
independent clock buffers. Our focus in this paper is dealing with the jittered
clock counter-measure.

1.3 Anti-counter-measures approaches to trace misalignment

For the variant of start-point misalignment, several possible solutions were sug-
gested. Homma et al. [HNI+06] suggested a method to align the traces according
to trace properties in the frequency domain. Later, Schimmel et al. [SDB+10]



Sliding-Window Correlation Attacks 3

suggested Correlation Power Frequency Analysis (CPFA) which is impervious
to start-point misalignment because frequency transform magnitude properties
are independent of time domain shifting.

Batina et al. [BHvW12] proposed to solve the alignment problem by Principal
Component Analysis (PCA). The method changes the possibly correlated linear
base of the data-set to another linear uncorrelated base. This transformation may
reveal a principal component which stands for the leakage. If such a component
is found, there would be a correlation between its values and the correct key
hypothesis, while the noise represented in other principal components is reduced.
The authors did not suggest a way to predict the number of principal components
required for the existence of leakage in these principal components.

The counter-measure variants involving a variable encryption length also
have several solutions, typically via a pre-processing step. An early suggestion
for time domain hiding was presented by Clavier et al. [CCD00], where the idea
of samples integration in the pre-processing stage was introduced. Next, the
authors proposed to perform a difference of means attack (traditional DPA),
naming this method Sliding Window Differential Power Analysis (SW-DPA).
The pre-processing involves aggregating several samples over number of consec-
utive cycles into one sample. For example, aggregating r out of each n samples
for k cycles (creating a “comb-like” transformation). The integration was de-
scribed as a solution for RPIs, without a specific parameter choosing suggestion.
Later, to improve the performance after the pre-processing stage, a more effi-
cient and powerful CPA attack was hinted by Brier et al. [BCO04]. Subsequently,
this method was analyzed by Mangard et al. [MOP08]. Their analysis showed
that when there is a single leaking sample among the r being aggregated, the
correlation coefficient between the correct key hypothesis without jitter and the
aggregated trace drops in proportion to 1/

√
r; In other words, sliding-window

aggregation seems to severely downgrade the performance of CPA.

Another proposed way to overcome the unstable clock counter-measure is to
preform a traces alignment pre-processing step before the attack. Van Wouden-
berg et al. [vWWB11] suggested using the method of Dynamic Time Warping
(DTW), and a DTW approximation called Fast DTW (FDTW), to align the
traces according to one chosen reference trace, by minimizing the disparity. This
alignment is done by modifying the aligned trace: inserting, deleting or matching
sample points. However, the data-set used to evaluate the algorithm was created
synthetically, by duplicating and deleting sampling points, hence the model in
use might not be realistic. For example, if the device’s power consumption is not
constant within an instruction cycle (unstable noise amplitude), or if the clock’s
jittered frequencies are not divisible by the sampling frequency, then a large dif-
ference can be expected between the device’s behavior and that of the authors’
model. In their evaluation, the FDTW method outperformed two “straw-man”
SW-DPA aggregation combinations. The two combinations of window size and
number of windows were chosen while considering the instruction cycle length in
samples and the “width” of the CPA correlation peaks. The results showed that
choosing the window size and number of windows had a major impact on the
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results. The best results were achieved when the integration consisted of one con-
tinuous integration window rather than a “comb” with several distinct “teeth”.
The better performing SW-CPA parameters did not have an explanation in that
article. Later, Muijrers et al. [MvWB11] showed a more computationally efficient
way to align the traces using object recognition algorithms (Rapid Alignment
Method). The experiments in the article were conducted on a case where random
delays are added. This method is considered by the authors to be faster than
FDTW but has similar detection results.

Conceptually simpler approaches were suggested in [TH12,HHO15]. Their
algorithms were inspired by simple power analysis methods. They used the phe-
nomena of traces’ encryption round patterns that are sometimes observable
in the traces for pre-processing. Hodgers et al. [HHO15] excluded high jitter
traces from the data corpus by identifying peak-to-peak distances, while Tian et
al. [TH12] made a specific efficient region alignment by identifying the encryption
rounds.

Finally, hardware solutions were proposed for the jittered clock scenario, such
as entangling the sampling clock and the board clock [OC15]. In this way, the
attack is simple, while the measurement process overcomes the counter-measure.
We argue that this idea seems quite difficult to use since the devices’ clock is
usually much harder to tap than the power supply.

In addition, there are more possible ways to handle alignment if one assumes
full board access (profiling attacks). Such pre-processing approaches include,
e.g., template attacks [CRR02] which require profiling of the board power con-
sumption in advance, or reducing noise by linear transformations [OP12]. Other
methods [CDP17] used machine learning and neural networks to attack several
different time domain hiding countermeasures. Although these methods may
have good results, and some might not be alignment dependent, we find their
requirements to be challenging, and in this article we do not assume full control
the board.

1.4 Contributions and structure

In this paper we suggest a new flavor of an old sliding-window attack to overcome
the counter-measure of an unstable clock and we demonstrate that it works much
better than predicted by earlier analysis. Extending the general notion of Clavier
et al. [CCD00], we focus on the sliding-window aggregation of consecutive sam-
ples, followed by a correlation power analysis (CPA). We investigate how the
attack performs without the assumption of a single leakage point for correlation
calculations, and what are the best integration parameters. We start by revis-
iting the analysis of Mangard et al. [MOP08] and show that SW-CPA actually
amplifies the correlation between the correct key hypothesis and the aggregated
traces, both with and without jitter — as long as multiple leaking sample points
are present in the integration window. We further show analytically that under
mild conditions on the jitter model, there exist a choices of window sizes for
which SW-CPA is very effective. Without jitter, for a single leakage point our
analysis coincides with [MOP08]. However, our contribution is showing that with
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multiple leakage points in the window — integration amplifies the correlation
for suitable choices of r. When jitter is present, both [CCD00,MOP08] and our
work all show that integration drastically amplifies the correlation in compari-
son to using the raw unaligned traces. For multiple leakage points, we show that
the integration method of [CCD00] with the correct parameter setting is more
powerful than previously thought. This aspect of the analysis is validated by our
experimental work.

Next, we evaluate the jitter introduced by a real commercial board which has
a built-in spectrum-spreader. While this unstable clock was designed to reduce
Electro-Magnetic Interference (EMI), we found it to be a powerful SCA counter-
measure — its jittered traces caused severe degradation to standard CPA attacks.
Through our evaluation we found that the board’s jitter is in fact bounded. We
then sampled the power consumption of the board while it executed a software
implementation of AES, and collected a new corpus of power traces, both with
and without jitter produced by the spectrum-spreader.

Then, we implemented a SW-CPA attack and conducted an extensive evalua-
tion of its performance. We suggest a simple methodology to calibrate the size of
the integration window. We also compare the predictions of our analytical model
to the empirical performance of SW-CPA and demonstrated a good match: for
the chosen integration window sizes multiple leaking samples are present in the
window. The method indeed amplified the correlation and was able to revert the
impact of the unstable clock almost completely.

Finally, We compared the performance of SW-CPA to that of several previ-
ously suggested SCA on our real-life data corpus: SW-CPA clearly outperformed
prior attacks, requiring a vastly smaller number of traces to achieve the same
level of secret key detection.

Organization: Section 2 introduces the jittered clock counter-measure and
the SW-CPA attack. Section 3 theoretically analyzes the attack and predicts its
effectiveness under some mild assumptions on the leakage and the jitter model.
Section 4 describes the experiments we conducted with our jittered clock setup
and the validation of our analytical model. Section 5 discusses the SW-CPA
attack and compares it with other state-of-the-art methods. Section 6 gives final
conclusions.

2 The effect of an unstable clock on standard attacks

2.1 Unstable CPU clock and time domain hiding analysis

An unstable clock (i.e., jittered clock) is a technique in which the CPU does not
have a constant clock frequency, but one which can fluctuate in a given frequency
domain. When the clock is unstable, the cryptanalyst attempting SCA is not
certain any more that the leaking signal measurements occur in the same point
in time — at the same sample index in the trace (see Figure 1).

As shown in [MOP08], CMOS circuits have data dependent power consump-
tion called dynamic power consumption. This dynamic power consumption is
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Fig. 1: CPU power consumption vs. time, for different traces with different clock
frequencies

a dominant factor in the board’s total power consumption. It occurs when the
cell needs switching for digital signal transition. A CMOS cell’s switching power
consumption is proportional to the clock frequency:

Pswitching ∝ fCPU

When the frequency of the board changes, the amount of data dependent power
leakage also changes. However, for our analysis we shall assume that the different
CPU clock frequencies are close to each other, and do not have a significant effect
on the power consumption model.

2.2 Basic time domain hiding analysis:

Following [MOP08], let P, Porig be the random variables representing the board’s
instantaneous power consumption at sample index t0, with and without the hid-
ing counter-measure respectively. These random variables represent the power
consumption over the different traces at a point in time in which the leak oc-
curs. We use the leaking Hamming weight model commonly used in SCA against
software encryption implementations. Let Hi denote the random variable rep-
resenting the power consumption estimation for hypothetical key byte value i.
Each different known plaintext input combined with key byte value i results in
a specific data Hamming weight during encryption sub-states. Due to Hamming
weight behavior, Hi are normally distributed random variables. Let Hck be the
random variable representing the hypothetical power consumption of the correct
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Fig. 2: The probability of a leakage point position in the trace at sample points
near the original leakage point t0 as a function of the sample index, without and
with jitter (sample drift normally distributed).

key byte value. Let ρ(Hck, P ) denote the Pearson correlation coefficient between
these random variables.

Assume that Porig is computed at sample index t0. When jitter is present, the
leak that occurs at time t0 drifts due to hiding, meaning the observation of the
leak may not be at sample t0, but might be within a range of sample indexes,
either before or after t0. We denote the probability of the leak occurring in
a specific sample index t by p̄(t). Let p̂ denote maxt p̄(t). We assume that p̂
is achieved at the same sample index t0 that would likely contain the most of
leakage points over the different traces, thus having the highest correlation ratio.
This idea is illustrated in Figure 2, comparing the non-jittered case where there is
certainty about the leakage sample index, and the jittered case with an example
of normally distributed drift values.

For aligned power traces without jitter, p̂ = 1 because the leakage points all
occur in the same sample number. However, for misaligned power traces p̂ 6= 1,
and the maximal correlation ratio between the observed power consumption P
and the correct key hypothetical power consumption Hck would be:

ρ(Hck, P ) = ρ(Hck, Porig) · p̂ (1)

2.3 Sliding Window CPA attack on jittered CPU clocks

The Sliding Window Differential Power Analysis attack (SW-DPA) was initially
proposed in [CCD00]. It was proposed as a way to eliminate the counter-measure
of RPIs insertion for random delays with aggregation parameters similar to a
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Algorithm 1 Sliding Window Correlation Power Analysis Attack (SW-CPA)

1: procedure PreprocessTrace(Trace, r)
2: for t ∈ Trace do
3: SummedTrace(t) =

∑r/2

i=−r/2 Trace(t+ i)

4: return SummedTrace
5: procedure Attack(r)
6: Acquire set of traces X
7: for Trace ∈ X do
8: Trace← PreprocessTrace(Trace, r).

9: Perform CPA on X.

“comb” function transformation. The original attack was performed with tradi-
tional difference of means DPA (single bit model attack).

Our attack on jittered CPUs, which we call the Sliding Window Correla-
tion Power Analysis attack (SW-CPA), is inspired by [CCD00]; we use a similar
pre-processing idea but then we use a CPA attack (byte model attack). Further-
more, unlike the example in [CCD00], we use only a single continuous integration
window with a size of r (aggregating r consecutive samples instead of a sparse
“comb” aggregation) — see Algorithm 1. The attack exploits the fact that al-
though each trace’s leakage can happen at a different time due to jitter, with a
high probability the leakages will occur within some radius r/2 of the original
leakage sample point (without the counter-measure). If we then apply the CPA
attack on the integrated traces, there would be a common trace sample index
containing the leakage for many different traces. We chose to aggregate one con-
tinuous window (rather than the comb-like integration of [CCD00]) as we cannot
assume, without profiling, where the leakage would be, and we would like the
drifted leakage points to be included within the integrated window.

2.4 Basic correlation analysis of sliding-window integration

To begin with, let us find the Pearson correlation coefficient of a key hypothesis
with the pre-processed traces data-set, when no jitter is present and the traces
are aligned. Without loss of generality assume that a leakage occurs at sample
point 1. Let ρ1 be the correlation coefficient between the leakage sample P1 and
the correct key hypothesis Hck. Then, by definition we have:

ρ1 ≡ ρ(Hck, P1) =
Cov(Hck, P1)√

V ar(Hck) · V ar(P1)
=
E(Hck · P1)− E(Hck) · E(P1)√

V ar(Hck) · V ar(P1)
(2)

In [MOP08] pp. 210-211, Mangard et al. analyzed the effect of the integration
of r independent power samples, {P−r/2, . . . , P1, . . . , Pr/2}, containing exactly a
single leakage sample. Their analysis shows that:

ρ(Hck,

r/2∑
i=−r/2

Pi) =
ρ1√
r

(3)
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Equation (3) is clearly an upper bound on the correlation once jitter is intro-
duced. Therefore, under the analyzed conditions there is a trade-off on setting
the window size r. On the one hand, when we increase r, we increase the likeli-
hood that the leakage sample would be within our aggregation window because
the drift value caused by jitter will be smaller than r. Consequently, due to Equa-
tion (1), we would like to increase the window size. On the other, Equation (3)
seems to show that integration decreases the correlation by the square root of
the window size, which would force the cryptanalyst to use many more traces to
compensate.

3 A new analysis of multiple leakage samples integration

The conclusion from [MOP08] as seen in Equation (3) is that when using inte-
gration, the samples’ noise is aggregated, and the correlation ratio drops. In this
section we show that on the contrary, SW-CPA integration can be an effective
technique which actually amplifies the correlation with and without jitter. We
do this by using a different and very realistic model of the leakage observed in
the power traces. In Section 4 we validate that our model assumptions indeed
hold on traces collected from a real device with a jittered clock.

3.1 The correlation coefficient when integrating within a trace

The leakage model previously mentioned in Section 2.4 assumes only a single
leakage point within the integration window, and r − 1 power samples inde-
pendent of the encryption key (non leakage samples). However, there might be
several leakage samples in a trace. Whenever the cryptanalyst observes more
than one peak in the correlation coefficient in a CPA for the correct key byte,
there is more than one leakage point. This may be caused by several reasons:
multiple leakage sources may exist, such as data bus leakage, address bus leakage
or different electronic components’ glitches which may all happen sequentially.
Alternatively, a high sampling frequency of the measurement instrument may
cause switching to spread over more than one sample. CPU architecture and
software implementation may imply more phenomena creating such behavior.
For example, Papagiannopoulos et al. [PV17] showed that the data might be
loaded to several registers during the computation. As we shall see, in traces we
collected (without jitter), we observed this phenomenon quite clearly: there were
multiple leak points, relatively close to each other in time.

We start our analysis with the case of aligned traces: we assume the clock is
stable and analyze the effect of SW-CPA with different values of window size r.

Assume that among the r samples {P−r/2, . . . , P1, . . . , Pr/2}, there are
q(r) ≥ 1 leakage points and r − q(r) samples independent of the correct key
hypothesis Hck (which we call for short “noise samples”). For the q(r) leakage
samples, we assume that the random variables Pi are identically distributed but
not independent since they all depend on the leak — but their variability is
caused by the noise, which we can reasonably argue to be independent among
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different sample points. Therefore, they have the same expectation and variance.
Without loss of generality, assume that P1 is a leakage sample point, so for all
q(r) leakage samples Pi, Pj , (i 6= j) we have:

E(Pi) = E(P1)

V ar(Pi) = V ar(P1)
(4)

By definition for two leakage samples with same variance, using Pearson corre-
lation coefficient ρi,j between power samples Pi, Pj , we have:

Cov(Pi, Pj) ≡
√
V ar(Pi) · V ar(Pj) · ρi,j = V ar(P1) · ρi,j (5)

For the other r − q(r) noise samples we can safely assume that they are inde-
pendent of each other and of the leakage points. Therefore, for samples Pi, Pj
where at least one is a noise samples, we get that Pi and Pj are uncorrelated,
i.e., Cov(Pi, Pj) = 0.

Next, we assume that while the expectations of the key-dependent and noise
samples are different, they all have the same variance, since they are all subject
to the same noise, i.e.,

V ar(Pi) = V ar(P1) for all i.

Hence, for all samples, regardless of the sample type (leakage or noise), we con-
clude that for all Pi , Pj :

Cov(Pi, Pj) =

{
V ar(P1) · ρi,j i, j are leakage samples

0 Otherwise
(6)

The noise samples are also independent of the correct key hypothesis (because
they are not leakage points), so for such sample Pi:

E(Hck · Pi) = E(Hck) · E(Pi) (7)

Now we return to the correlation coefficient. According to Equation (2), the
correlation coefficient for r integrated samples is:

ρ(Hck,

r/2∑
i=−r/2

Pi) =
E(Hck · (

∑r/2
i=−r/2 Pi))− E(Hck) · E(

∑r/2
i=−r/2 Pi)√

V ar(Hck) · V ar(
∑r/2
i=−r/2 Pi)

=

∑r/2
i=−r/2(E(Hck · Pi)− E(Hck) · E(Pi))√

V ar(Hck)) · V ar(
∑r/2
i=−r/2 Pi)

We know there are exactly q(r) leakage samples. Separating the sums for key
byte leakage and noise indexes, Equations (4) and (7) and the standard formula
for the variance of a sum give:

ρ(Hck,

r/2∑
i=−r/2

Pi) =
q(r) · (E(Hck · P1))− E(Hck) · E(P1))√

V ar(Hck) ·
√∑r/2

i=−r/2 V ar(Pi) +
∑
i 6=j Cov(Pi, Pj)
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By Equation (6) and plugging in the definition of ρ1 (non-jittered correlation
without integration) from Equation (2) we can simplify the result to:

ρ(Hck,

r/2∑
i=−r/2

Pi) =
q(r) · (E(Hck · P1)− E(Hck) · E(P1))√
V ar(Hck) ·

√
r +

∑
i6=j ρi,j ·

√
V ar(P1)

=⇒

ρ(Hck,

r/2∑
i=−r/2

Pi) =
q(r)√

r +
∑
i 6=j,leakage samples ρi,j

· ρ1 (8)

Let γ denote the normalized sum of correlation coefficients of the leakage points:

γ ≡
r +

∑
i 6=j,leakage samples ρi,j

r

Then, we can rewrite Equation (8) as:

ρ(Hck,

r/2∑
i=−r/2

Pi) =
q(r)
√
r · γ

· ρ1 (9)

If all the leakage points are uncorrelated samples then ρi,j = 0 ⇒ γ = 1. Con-
versely, in the worst case the leakage points are fully correlated with ρi,j = 1⇒
γ = r. Because γ is derived from the correlation matrix of random variables, it is
positive semidefinite and in particular the sum of its items is non-negative, hence
also γ ≥ 0. However, γ can be smaller than 1 causing a further amplification.
Casting Equation (9) to also explicitly show the interesting cases we get

ρ(Hck,

r/2∑
i=−r/2

Pi) =


q(r)√
r
· ρ1 uncorrelated leakage samples

q(r)√
r·γ · ρ1 partly correlated leakage samples

q(r)
r · ρ1 fully correlated samples

(10)

For simplicity, unless mentioned otherwise, in the derivations below we as-
sume leakage samples are uncorrelated, hence:

γ = 1 (11)

As we shall see in Section 4.3, in the data we gathered γ is quite close to 1 and
much smaller than r.

We can see that for the special case of q(r) = 1 we get exactly Equation (3),
i.e., the result of Mangard et al. [MOP08]. For the most special case, where
r = q = 1 we obtain the standard CPA attack.

3.2 Correlation coefficient amplification:

Let Pt be the distribution of trace power values at sample index t. Let

ρcpa = max
t
ρ(Hck, Pt)
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be the achieved correlation coefficient of a regular CPA attack on the traces.
Now, assume we conduct a SW-CPA with a window size of r. Then let

ρr = max
t
ρ(Hck,

r/2∑
i=−r/2

Pt+i)

be the correlation achieved by SW-CPA with window size r. Note that ρcpa ≡ ρ1.
Both ρ1 and ρr should have similar jitter properties (or no jitter). We define the
correlation coefficient amplification to be:

Amplification = ρr/ρ1

The cryptanalyst’s goal is to maximize the amplification, to reveal as many secret
key bytes as possible.

3.3 The correlation coefficient for specific r and q relationships

Equation (10) can be made concrete if we have an explicit connection between
r and q. We first assume that each key byte has a maximal number of leakage
points, qmax. Further, we assume that all qmax leakage points are temporally
close: they are all located within a distance of r0 samples from each other.
Therefore, when r ≥ r0 the window is called saturated and q stops growing with
r. So we get:

q =

{
q(r) if r < r0

qmax otherwise (saturation)
(12)

With this assumption we analyze two important cases:

Constant number of leakage points In case r ≥ r0, our window contains all
qmax leakage points of the phenomenon. Increasing the window size any further
does not change the value of q. According to Equation (10), the correlation would
be:

ρ(Hck,

r/2∑
i=−r/2

Pi) =
qmax√
r
· ρ1 (13)

Hence, when r increases ρ decreases, and for r > q2max the correlation drops below
ρ1 and eventually ρ −→ 0. Therefore, a cryptanalyst who seeks to maximize ρ,
should select the value of r to be the smallest possible value containing all qmax
leakage points.

This observation is also valid for the general case. When the number of leak-
age points q(r) does not change while incrementing r, the correlation decreases
by
√
r until more leakage points are aggregated into the integration window.
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Constant ratio between r and q Another important case is when the in-
tegration window is not saturated, and increasing r increases the number of
leakage points q linearly such that q(r) = r/c for some constant c. In this case:

ρ(Hck,

r/2∑
i=−r/2

Pi) =
q(r)√
r
· ρ1 =

r/c√
r
· ρ1 =⇒

ρ(Hck,

r/2∑
i=−r/2

Pi) =

√
r

c
· ρ1 (14)

The first implication of this equation is that when
√
r > c we obtain that ρ > ρ1:

in other words, without jitter, not only does integration not reduce the correla-
tion coefficient, it can even amplify it. However, as we increase r, eventually the
number of leakage points saturates, yielding a non constant ratio between r and
q(r) and we fall back to Equation (13).

Therefore, according to Equations (13) and (14), we get that the relationship
between ρ, the correlation coefficient of the integrated non-jittered traces; r, the
window size; q, the number of leakage points within the window; and c, the ratio
between r and q is:

ρ(Hck,

r/2∑
i=−r/2

Pi) =


√
r
c · ρ1 r < r0, constant ratio between q and r

qmax√
r
· ρ1 r ≥ r0 (saturated q)

(15)

Still assuming for simplicity that γ = 1.

3.4 The correlation coefficient with an unstable clock

So far, our analysis of SW-CPA assumed a stable clock and aligned traces. When
we use an unstable clock, the correlation coefficient is also affected by the prob-
ability that the leakage signals happen in the window around the same point in
time, as stated in Equation (1). We denote by q̂(r) the number of leakage points
in a window of size r when jitter is present.

Combining q̂ leakage points and the case of uncorrelated samples in Equation
(10) yields the general correlation coefficient for the jittered clock:

ρ(Hck,

r/2∑
i=−r/2

Pi) =
q̂(r)√
r
· ρ1 (16)

The correlation coefficient of bounded jitter We now assume the clock
jitter is bounded and the maximal drift that a logical action in the encryption
process can suffer is J sample points (we validate our assumption empirically in
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Fig. 3: Leakage vs. sample index for two specific traces. Blue lines are leakage
points. The red dashed line is the possible drift region around t0. The gray area
is the integration window around t0. The upper sub-figure is non-jittered while
the lower sub-figure has jitter. The drift for the original L3 leakage point caused
it to fall outside the window while L4 falls into the window.

Section 4.2). We seek to find the relation between q̂ and q for different values of
r. It is important to notice that the drift might change between different traces
and different samples in the data-set.

For simplicity, we assume that the drift of a sample point is uniformly dis-
tributed in time around the original non-jittered index, i.e., Drift ∼ U{−J2 ,

J
2 }.

Because the drift is distributed uniformly and E(Drift) = 0, the distance
between the leakage points might increase as well as decrease, but it’s expectation
is equal to the non-jittered case.

Figure 3 gives a schematic example for leakage samples, their drift over time,
and how the number of leakage samples in the window is affected. We can see that
although the original leakage point drifted, another leakage point was integrated
in the window.

Recall that r0 denotes the window size such that all qmax leakage samples
are in the window. Hence, with jitter, we take a worst-case scenario and assume
that the qmax leakage points are distributed uniformly among the r0 + J sam-
ples. Further, saturation happens in a larger window size because of the drift.
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Therefore we get:

q̂(r) =

{
qmax

r0+J
· r if r < r0 + J

qmax otherwise (saturation)
(17)

The CPA correlation coefficient in the jittered case We first calculate
ρ̂1, the correlation coefficient for original CPA attack (r = 1) with jitter J > 1.
The leakage signal originally always happens at t0, but due to the jitter it may
occur anywhere within the range [t0 − J/2, t0 + J/2].

According to Equation (17), the probability that a leakage point appears in
sample index t0 is:

q̂(r = 1) =
qmax
r0 + J

=
r0

r0 + J
· 1

c
(18)

due to the uniform leakage distribution.
Putting Equations (16) and (18) together gives the correlation ratio for the

standard CPA (r = 1) against jittered traces:

ρ̂1 =
q̂(r = 1)√

r
· ρ1 =

r0
r0 + J

· 1

c
· ρ1 (19)

We can see that according to Equation (19), when jitter is present the standard
CPA attack effectiveness is severely degraded — as we shall see in Section 5.2.

The SW-CPA Correlation coefficient for different r values We now ana-
lyze two important cases of r, caused by the different domains of q̂ in
Equation (17), under the effect of a bounded jitter.

Constant q/r ratio: When r < r0 + J from Equations (16) and (17), the corre-
lation coefficient for SW-CPA is:

ρ(Hck,

r/2∑
i=−r/2

Pi) = q̂(r) · 1√
r
· ρ1 =

qmax · r
r0 + J

· 1√
r
· r0 + J

r0
· c · ρ̂1 =⇒

ρ(Hck,

r/2∑
i=−r/2

Pi) =
√
r · ρ̂1 (20)

Saturated q̂ values: The region around t0 when r ≥ r0 + J contains all the
leakage points, meaning q̂(r) = qmax. Combining Equations (16) and (19) gives
for r ≥ r0 + J :

ρ(Hck,

r/2∑
i=−r/2

Pi) =
q̂(r)√
r
· ρ1 =

qmax√
r
· r0 + J

r0
· c · ρ̂1 =

r0 + J√
r
· ρ̂1 (21)
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Fig. 4: SW-CPA attack amplification of correlation coefficient (with jitter) vs.
window size r (log scale) for J = 20, r0 = 70. The black line is the scenario
for uncorrelated leakage samples (γ = 1). The blue line is for the worst case
correlated leakage samples (γ = r). The dashed line at r = 90 separates the two
regions of the amplification (constant q/r ratio and saturated q). Amplification
values above 1 indicate that ρ is amplified beyond the values for r = 1 (CPA
attack on a jittered clock data-set).

Summarizing Equations (20) and (21), we get that the relationship between ρ,
the correlation coefficient of the integrated jittered traces; ρ̂1, the correlation co-
efficient without integration; r, the window size; q, the number of leakage points
within the window; c, the ratio between r and q; replugging in the equation of
γ from Equation (10); and J , the maximal drift is:

ρ(Hck,

r/2∑
i=−r/2

Pi) =


√
r√
γ · ρ̂1 r < r0 + J, constant ratio between q and r

r0+J√
r·√γ · ρ̂1 r ≥ r0 + J (saturated q)

(22)

Figure 4 illustrates Equation (22). The parameter values in this figure were
chosen according to the values found later in our experimental part (see Section
5.1). The upper curve models a bounded jitter for uncorrelated leakage (γ = 1)
where J = 20, r0 = 70, c = 3 (leakage in a third of the samples in the window),
and q reaches saturation of qmax = 25 when r = r0 + J = 90. Note that under
these conditions the SW-CPA can amplify the correlation ratio by factor of 10
when r = 90. The Figure also illustrates the worst case scenario where the leakage
samples are all fully correlated and γ = r, where we can see no amplification.
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The correlation coefficient with an unbounded jitter While our analysis
assumed that the jitter is bounded (and in Section 4.2 we demonstrate this is
a realistic assumption for our board), we argue that our analysis has merit in
more general cases as well. Even if the jitter is unbounded we still expect to
observe a randomly changing clock frequency according to some distribution. In
such a case, we assume that using a reasonable clock spreading model, it should
be possible to build a sample drift model in which with high probability the drift
value would be in a specific range, thus making our analysis relevant. We leave
the analysis of cases with unbounded jitter to future work.

4 Experiments and results

4.1 Setup and measurements

Our experimental setup centers around a Rabbit RCM4010 evaluation board.
This device has a 59MHz processor with a 16-bit architecture [RCM10]. We
programmed the board to implement an AES-128 algorithm using open-source
code taken from [Con12]. This is a plain-vanilla software implementation of AES,
without any side channel counter-measures or software optimizations (i.e., with-
out using T-tables).

The Rabbit processor has a special feature called a spectrum-spreader — de-
signed to reduce electromagnetic interference (EMI). Enabling the spreader in-
troduces jitter into the CPU clock frequency. However, the documentation does
not specify precisely how the spectrum-spreader works. Note that the Rabbit
has two spreading modes, called Normal and Strong (in addition to no spread-
ing mode), which can be selected by software. Our main experiments used the
Normal mode, but additional experiments were conducted with Strong jitter and
showed similar results.

We sampled the board power by a Lecroy WavePro 715Zi oscilloscope. When
starting the execution of an encryption, we programmed the board to send a
signal to the oscilloscope via one of its I/O pins which can be controlled by the
software. This signal sets the trigger for the oscilloscope, which starts sampling
at a rate of 500 million samples per second, for 500µs. This time period contains
one round of the full AES encryption. Every encryption process is recorded to
a new trace. The voltage of the processor was measured by a shunt resistor
soldered to the processor voltage input. The input plaintexts for the program
were changed every encryption round, while the key was kept constant during
all traces. Two data-sets where captured; one consisted 5,000 traces without
jitter and 5,600 traces with Normal jitter, using the same encryption key and
plaintexts (for the first 5,000 jittered traces). The second and bigger data-set
contains 10,000 traces of each spectrum-spreading mode: no spreading, Normal
spreading and Strong spreading. These measurements were done with a different
random key than the first data-set, but same plaintexts.

Note that while the spectrum-spreader is not an SCA counter-measure by
design, we found it to be quite effective as such. E.g., as we shall see in Section 5.2,
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(a) Without jitter (b) Normal jitter (c) Strong jitter

Fig. 5: FFT magnitude vs. frequency of the power trace from RCM board, com-
puted by the oscilloscope (a) without jitter, (b) with Normal jitter, (c) with
Strong jitter, centered around 59MHz (original clock frequency) and axis be-
tween 55-63 MHz

when the spectrum-spreader is turned on, the standard CPA attack is drastically
degraded: without jitter the attack correctly discovers all 16 key bytes with as
few as 2,500 traces, while with jitter CPA fails to identify more than two key
bytes even with all 5,600 traces of the first data-set.

4.2 Jitter modeling

We first explored the jitter injected by the spectrum-spreader to validate the
analysis of Section 3.4. This part was used for white-box validation of our leak-
age model only and is not essential for the common adversary. When spectrum-
spreading was enabled, frequency analysis revealed several new frequencies that
appeared around the original 59MHz clock frequency, with about 0.15MHz dif-
ference between them. Figure 5(a) shows the spectrum without jitter: notice the
peaks at 59MHz and 60MHz (the former is the board clock frequency). Figure
5(b) shows the spectrum with Normal jitter: notice how the 59MHz peak is
replaced by some 15-25 separate peaks while the irrelevant 60MHz peak is un-
affected. Figure 5(c) shows the spectrum with Strong jitter: some 15 additional
peaks appeared with higher and lower frequencies.

Next, we conducted a set of experiments in order to understand the drift
of the jittered clock (Normal jitter). We programmed the board to implement
the following steps (see Algorithm 2): send a first signal to the oscilloscope,
then perform N times a condition test and a variable assignment, and finally
send a second signal when finishing the execution. The time between the two
signals (∆T ) was saved and analyzed. We set the execution length N to start
at about a quarter of the total AES encryption time (N = 600 =⇒ ∆T =
2ms), and increased it to more than the encryption time (N = 3000 =⇒
∆T = 10ms). We also tested intermediate values of ∆T = 4ms and ∆T = 5ms.
500 executions were done for each of the N values. When spectrum-spreading
was not enabled, ∆T was identical in all executions (per execution length).
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Algorithm 2 Drift assessment

1: procedure PerformInstructions(N)
2: Send an initial signal for execution start
3: for i from 1 to N do
4: if True then
5: V ar1← 0
6: Send a second signal for execution end

Fig. 6: Drift in number of samples (D) vs. different execution duration (∆T )
with the Normal and Strong spectrum-spreader. The red line is the median,
the bottom and top of the boxes represent the first the third quartiles, and
the whiskers range from the minimum to the maximum samples drift. Normal
spreading is bounded by |D| = 10 samples and Strong spreading is bounded by
|D| = 20 samples.

When Normal spreading was enabled ∆T was not constant per execution length.
We denote by D the difference, in number of samples, between the execution
length with jitter and the constant execution length without jitter. For different
execution lengths, we observed that the magnitude of the drift (|D|) was bounded
by at most 10 samples (20ns) to each side, regardless of the execution length.
Using the terminology of Section 3.4, the Rabbit Normal spectrum-spreader has
a bound J = 20, |D| = 10. Similar experiments with the Strong spectrum-
spreader showed that the drift is still bounded but with J = 40, |D| = 20. The
bounded drift in number of samples is illustrated by a box plot in Figure 6, for
both Normal spreading and Strong spreading (box plots for additional Strong
spreading execution lengths omitted).

We believe that drift is not accumulating beyond |D| = 10 for Normal spread-
ing and |D| = 20 for Strong spreading because the spreading is probably gener-
ated by a fixed cyclic series of clock jitter values, with a cycle time shorter than
2ms. The bounded drift is consistent with the board design, since even a short
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Fig. 7: Correlation matrix heat-map, for 25 leakage sample points for the best
leakage window of key byte 7

cycle of jitter values can achieve the goal of EMI reduction, much more easily
than generating true random, or cryptographic pseudo-random, clock jitter.

4.3 Validating leakage points’ power consumption correlation

Next, we need to validate our assumptions in Equations (4), (6) and (10) about
the distributions and correlation between leakage points and the value of γ. In
Figure 7 we show a heat-map of the correlation coefficients between 25 leakage
sample points of a specific key byte, for 5,000 traces without jitter. These leakage
samples form the best window for integration with maximal correlation between
the true key byte and the traces as shown in Section 5.2. In order to find the
leakage points, we set a threshold (of 3 standard deviations above or below the
mean) over the correlation coefficient of a sample index to differentiate between
leakage and noise samples. Figure 7 shows that the off-diagonal correlations are
both negative and positive: these sign alternations in fact help keep the total
correlation low, with a total sum of γ = 1.7 (including diagonal values). Thus,
the correlation coefficient in Equation (10) is divided by

√
γ = 1.3, which is still

highly amplified in comparison to CPA without integration. This experiment was
done for all key bytes, resulting in γ values between 0.5 to 1.7 with average 0.95
and standard deviation of 0.33 — supporting our assumption in Equation (11)
that γ is close to 1; hence we can treat the leakages as if they are uncorrelated
without a great penalty in the analysis.
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Fig. 8: Amplification of the correlation coefficient vs. window size r (log scale),
for three correct key bytes, with the jittered clock data-set of 5,600 traces. Am-
plification values above 1 indicate that ρ is amplified beyond the values for r = 1.

5 Evaluating the SW-CPA attack

5.1 Amplification for different aggregation window sizes

To calibrate the best window size r we examined leaks from the different key
bytes in our encryption process. Figure 8 shows the amplification of the corre-
lation coefficient for different window sizes and different correct key bytes when
the CPU clock is jittered. Note that these key bytes are not identified correctly
by CPA without pre-processing due to jitter. For simplicity, we do not show all
key bytes.

The amplification graphs for all key bytes have major similarities. First, they
all have an amplification higher than 1 for some window size r, which helps the
correct key byte detection and supports SW-CPA as an effective solution for the
unstable clock counter-measure. In addition, they all suffer degradation when r
grows beyond a certain point and q reaches saturation. Finally, we see that the
amplification does not increase monotonically toward a single peak — unlike the
prediction in Figure 4. We explore this issue below.

Note that some of the curves contain a significant peak when r is relatively
small, around 5 ≤ r ≤ 10, as demonstrated in key byte 10. This is somewhat
surprising because as stated in Equation (22), for a small window size r, the
integration might not be as effective as for a large window size. We speculate
that maybe the leaks for some key bytes had statistically repetitive drift values
or a small number of leakage points with a relatively dense scatter. Another



22 Dor Fledel and Avishai Wool

option is that the leakage samples are correlated in a way that γ is relatively
small for this small window of leakage samples.

5.2 Selecting a window size r for all key bytes

Next, we determine the single, best, r value of all key bytes for our device. Figure
9 shows the overall SW-CPA success rate for different r values together with the
results for standard CPA on non-jittered traces (as an ideal) and CPA on the
jittered traces (as a worst-case).

The metric we used to recognize a correct key byte detection counted a
correct key byte when the true key byte was within the highest five correlation
possibilities, i.e., the key byte recovery is of the 5th order as stated in [SMY09].
This metric was chosen because a cryptanalyst can iterate (brute force) over the
remaining 516 ≈ 237 options.

We’ve experimentally seen in Figure 8 that the ρ amplification graphs for
separate key bytes had the highest peaks between 25 < r < 75. We chose the
overall value of r = 75 experimentally, without profiling information, simply by
running the attacks.

Figure 9 shows clearly that SW-CPA is very effective attack and defeats the
clock jitter counter-measure well: for values of 10 ≤ r ≤ 75 it finds 12-14 correct
key bytes with ≈ 4500 traces — only twice as many traces as needed for an
equivalent success rate on non-jittered traces. Further, we see that our attack
is not very sensitive to the value of r: values between 10 ≤ r ≤ 75 are roughly
equally successful. The figure shows that a larger window such as r = 150 gives
a poor amount of true key byte detections. Window sizes below r = 10 have
inferior performance (graphs omitted).

Figure 10 shows similar results for a larger data-set (10,000 traces) with a
different key and Strong spectrum-spreading. The figure shows that SW-CPA is
very successful against Strong jitter as well: it correctly finds all key bytes, with
about 6,000 traces, for many window sizes, whereas regular CPA cannot find
two correct key bytes even with all 10,000 traces. In addition, the higher drift
with Strong jitter causes SW-CPA with large window size such as r = 300 to
be effective and find 15-16 key bytes, whereas with Normal spreading (Figure 9)
r = 150 was already too high and performance was degraded in comparison to
r = 75.

To determine the optimal window size r, we suggest choosing its value after
analyzing the q/r ratio for all key bytes if possible, or otherwise by trial and
error (no profiling). Choosing an imprecise value of r still gives far better results
than other state-of-the-art methods as would be shown later: Even for clearly
sub-optimal choices of r our method is superior to others (see Figure 11). In
addition, the computational resources for trial and error are low in comparison
to other methods. Furthermore, one might also use a different window size for
each key byte. We did not explore this possibility since the results with a uniform
r were satisfactory.
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Fig. 9: Number of correct key bytes vs. number of traces, for different values of
the integration window size r and Normal Jitter

5.3 Comparing SW-CPA with other known methods

We compare the SW-CPA method (with the best integration window size) to
previously suggested methods: trace selection pre-processing [HHO15], align-
ment pre-processing [TH12,vWWB11,BHvW12], and frequency analysis attacks
[SDB+10]. Figure 11 summarizes the results.

Applying the methods suggested in [HHO15,TH12] of pre-processing accord-
ing to simple trace properties was inapplicable to our data-set. These attacks
were originally performed on hardware encryption implementations and assume
that the power consumption measurements have clearly visible patterns of the
AES rounds. Our data with a software implementation on the Rabbit board
exhibited no such patterns. We tried searching for the patterns with different
sampling frequencies and different number of samples but the expected 10 spikes
marking the 10 AES rounds did not manifest themselves in the power traces. A
possibility why we did not observe the patters is that the Rabbit board we used
is not idle between the encryption cycles or when waiting for input. Because the
attacks rely on the visible encryption rounds, the device cannot be attacked by
these methods.

Another available solution is using a PCA attack [BHvW12]. As mentioned
before, this attack works if there exists a principal component representing the
leakage. However, in our base transformations, no such principal component was
found, even with high numbers of base items and concentrating in the leakage
region of the traces.
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Fig. 10: Number of correct key bytes vs. number of traces, for different values of
the integration window size r and large data-set with Strong spectrum-spreading.

Therefore, the methods of pre-processing according to simple trace properties
and PCA [HHO15,TH12,BHvW12] detected zero key bytes correctly, and were
not inserted to the comparison in Figure 11.

The method of elastic alignment [vWWB11] did not give us a high percent-
age of correct key byte detection either (as was also observed by others who
tested it with non-simulated data-sets [OP11,GPPT15]). The original article
[vWWB11] offers a way to overcome the computational complexity of DTW by
using FDTW, which is an approximation for DTW. We first implemented and
tested FDTW with poor results. After FDTW failed, we applied the full DTW
(with just the relevant alignment margin because of our bounded jitter) which
slightly improved the results. Figure 11 shows the results of the improved DTW
implementation.

The method of Correlation Power Frequency Analysis (CPFA) [SDB+10]
was previously offered as a method for handling the start-point misalignment,
because the magnitude in the frequency domain is not affected by time domain
shifting. The results of this method were poor as well. We tried to optimize this
attack as well, by targeting leakage areas, but results stayed the same.

Comparison to SW-DPA was more challenging. Clavier et al. [CCD00] did
not suggest a way to determine their algorithm’s parameters, hence we do not see
how to compare their general approach to our specific instantiation. However,
their SW-DPA with 1-bit difference of means using our integration parameters
gave poor results and was omitted from the comparison figure.

For the SW-CPA attack, Figure 11 shows the result with the window size
r = 75, found in Section 5.2. Many other choices of r still outperform other
methods as well.
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Fig. 11: Number of correct bytes vs. number of traces, for different implemented
attacks. Attacks with 0 key bytes successfully detected were omitted. We also
show the success rate of the standard CPA attack on non-jittered data (as an
ideal).

Figure 11 clearly shows that SW-CPA yields far better true key byte detection
results than the other possible solutions we tried. All the other solutions did not
have more than two correct key bytes detections on our data-set with 5,600
traces. However, note that the unstable clock still degregates the attack: even
our best SW-CPA requires approximately twice the number of traces to achieve
an equivalent level of success in comparison to standard CPA against a non-
jittered device.

6 Conclusions

In this paper we suggested an attack to overcome the jittered CPU clock counter-
measure, proposing a specific parameter setting for the old method of consecutive
samples integration followed by a correlation attack (Sliding Window CPA). For-
mer analysis showed that integration of samples degrades the correlation between
the correct key hypothesis and the trace. We re-analyzed this method under a
new model where multiple leakage points may be present within the window,
and we showed that integration of samples over a suitably chosen window size
amplifies the correlation significantly. We then validated our analysis on a new
data-set of traces measured on a board implementing a jittered clock. Our ex-
periments show that the SW-CPA attack with the optimal window size is very
powerful against a jittered clock counter-measure and significantly outperforms
previous state-of-the-art suggestions.
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FH08. Julie Ferrigno and M Hlaváč. When AES blinks: introducing optical side
channel. IET Information Security, 2(3):94–98, 2008.
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