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Abstract. Recently, NIST started the process of standardizing quantum-
resistant public-key cryptographic algorithms. WalnutDSA, the subject
of this paper, is one of the 20 proposed signature schemes that are be-
ing considered for standardization. Walnut relies on a one-way function
called E-Multiplication, which has a rich algebraic structure. This paper
shows that this structure can be exploited to launch several practical
attacks against the Walnut cryptosystem. The attacks work very well in
practice; it is possible to forge signatures and compute equivalent secret
keys for the 128-bit and 256-bit security parameters submitted to NIST
in less than a second and in less than a minute respectively.
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1 Introduction

As more and more progress is being made towards building large scale quan-
tum computers, the need for cryptography that can withstand cryptanalysis
from these machines has become increasingly urgent. In recognition of this fact,
NIST has started the Post-Quantum Cryptography standardization project [20]
and made a call for quantum-resistant public-key cryptographic algorithms for
standardization. The community has answered this call by submitting 20 pro-
posals for signature schemes and 49 proposals for encryption schemes. One of
the submitted signature schemes is the Walnut digital signature algorithm [5,
8], submitted by D. Atkins and owned by SecureRF. SecureRF is a corporation
founded in 2004 that develops and licenses public-key security tools for the low-
resource processors powering the Internet of Things (IoT) [1]. SecureRF received
the ARM Techcon 2017 “Best contribution to IOT security” award for the Wal-
nut signature scheme and their “Key Agreement Protocol”. SecureRF wants to



achieve widespread usage of the Walnut signature scheme in the booming IOT
market through standardization, partnerships with manufactures like Intel and
STMicroelectronics and by providing free toolkits for popular low end platforms.
Because of this potential for widespread use, it is crucial to analyze the Walnut
scheme for potential weaknesses.

Related work. For its security, Walnut relies on problems taken from the theory
of infinite non-commutative groups (more precisely, problems based on an action
of a braid group on a finite set via the coloured Burau representation). The idea
of using infinite groups in cryptography goes back at least as far as Wagner and
Magyarik [26] in 1985; see González Vasco and Steinwandt [25] for an attack on
this proposal. Problems in braid groups have been proposed as hard problems for
cryptographic primitives for about 20 years now: key agreement protocols due
to Ko et al. [18] and Anshel, Anshel and Goldfeld [3] (which is in a more general
setting) are the best known examples. The Algebraic Eraser [4] is a more recent
proposal, also promoted by SecureRF, which uses many of the same algebraic
techniques as Walnut. Early cryptanalyses of these schemes used length-based
attacks [15, 16], but the most convincing attacks [11, 10, 12, 17, 23] have generally
been based on representation theory (where ‘linearisation’ techniques reduce the
underlying security to a problem in linear algebra). Walnut is interesting because
these linearisation techniques do not seem to apply.

The first attack on (an earlier version of) Walnut [6] is due to Hart et al. [14].
The attack forges signatures in minutes for the suggested parameters, but the
resulting signatures are significantly longer than legitimately produced signa-
tures. So the Hart et al attack can be blocked by imposing a length limit on
valid signatures. In their submission to NIST, the designers of Walnut impose
such a length limit in order to block the Hart et al attack, but also modify the
scheme in a significant way (in particular changing the form of the public and
private keys) in an attempt to block the attack altogether.

Contributions. In this paper we present three independent practical attacks
on the Walnut signature scheme. The first attack is a modification of the at-
tack of [14] that applies to the adapted version of Walnut that was supposed
to resist this attack. This first attack is practical, but has the same limitation
as the original attack by Hart et al: the forged signatures are very long. This
attack demonstrates that the modifications intended to completely block the
Hart et al attack are not effective, but the attack can be blocked (as before)
by imposing a length limit on signatures. The other two attacks presented in
this paper produce forgeries whose lengths are the same or even shorter than
those of legitimate signatures. The second attack in this paper constructs pairs
of messages with the same signature; the attacker can choose a large amount
of the structure of these messages. Our third attack directly constructs equiva-
lent secret keys. We are able to forge signatures and compute equivalent secret
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keys in under one second for 128-bit security parameters, and in less than a
minute for 256-bit security parameters. This shows that the parameter sets sub-
mitted to the NIST PQC standardization project are totally insecure, and that
the corresponding implementation (which is freely available on the SecureRF
website) should not be used. Our attacks exploit various algebraic properties
of the one-way function called E-Multiplication, which is fundamental for the
Walnut scheme (and other SecureRF methods). In fact, we give a practical algo-
rithm to break the one-wayness of this function for the parameters submitted to
NIST. In order to avoid the attacks given here, the parameters of Walnut need
to be increased significantly (see the conclusion at the end of the paper for de-
tails). However, with these increased parameter sizes, it seems that Walnut loses
its performance advantage over other post-quantum signature schemes such as
lattice-based, code-based, multivariate and hash-based signatures.

Outline. In Sect. 2 we explain some necessary preliminaries such as distin-
guished point collision finding, a very short introduction to braid groups, and
an explanation of E-Multiplication and the workings of the Walnut signature
scheme. The following sections, Sections 3, 4 and 5, each introduce a practical
attack against the Walnut scheme and discusses the feasibility of countermea-
sures. Sect. 3 contains an adaptation of the factorization attack of [14] that
applies to the updated version of Walnut that was submitted to NIST. Sect. 4
describes an attack where we use a generic distinguished point collision finding
method to find two documents d1 and d2 such that a signature that is valid for
d1 is automatically valid for d2 and vice versa. In Sect. 5 we give an algorithm
that breaks the one-wayness of the E-Multiplication map. This algorithm can
be used to forge signatures and compute equivalent secret keys, even for the
256 bits of security parameters. The last section presents the conclusions of the
paper.

2 Preliminaries

2.1 Distinguished point collision finding

The attacks introduced in this paper rely on a collision finding algorithm that
is able to find a collision in any function f : D → D which maps a domain
D to itself. Our algorithm of choice is the distinguished point method of van
Oorschot and Wiener [24]. Finding a single collision with this method has the
same O(

√
|D|) time complexity as the Pollard’s rho method with cycle find-

ing [21, 22], but it can be parallelized more efficiently. Moreover, the method of
van Oorschot and Wiener is much more efficient for finding multiple collisions;
the number of collisions found grows quadratically with the time spent.
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The algorithm repeatedly chooses a random starting point x1 ∈ D and it-
eratively applies the function f to obtain a chain of values x1, x2, · · · , where
xi = f(xi−1) for all i > 1. This process continues until a distinguished value xk
is reached. This is a value which satisfies some easily verified property, such as
having a fixed number of leading zero bits. This property is chosen such that it
is satisfied by a fraction ϑ of the elements of D. When the distinguished point is
reached the starting point x1, the distinguished point xk and the length k of the
chain is stored in a table. Assuming f behaves like a random function, after an
expected number of O(

√
|D|) function calls the current chain will collide with

one of the previously computed chains. From this point on we will follow the
same chain and we will end up at the same distinguished point. We read the
starting poins x1, x

′
1 and the corresponding chain lengths k, k′ from the table.

Without loss of generality, we assume that k ≥ k′. We then know that for some
i < k′

xk−k′+i 6= x′i and f(xk−k′+i) = f(x′i) ,

unless the starting point x′0 appears in the chain starting at x0 (which only
happens with a very small probability). This collision can be extracted with
k − k′ + 2i function calls. If we require more than one collision we can continue
the process, maintaining the contents of the table. Since over time the table will
contains more and more chains, the rate at which collisions are found will also
increase.

2.2 Braid groups

Informally, the braid group on N strands is a group whose elements are repre-
sented by a configuration of N non-intersecting vertical strands in three di-
mensional space, where 2 configurations are considered equal if one can be
transformed continuously into the other configuration without intersecting the
strands. The group multiplication is defined as the concatenation of the strands.
E. Artin [9] showed that there is an equivalent definition of braid groups, given
by the presentation〈

b1, · · · , bN−1
∣∣∣∣ bibj = bjbi for 1 ≤ i < j < N and j − i ≥ 2
bibi+1bi = bi+1bibi+1 for 1 ≤ i < N − 1

〉
.

Here, the Artin generator bi represents the braid where the i-th strand crosses
over the (i+ 1)-th strand. The relations bibj = bjbi for |i− j| ≥ 2 correspond to
the fact that crossings that involve different strands are free to move past each
other. The relations bibi+1bi = bi+1bibi+1 correspond to moving one strand over
the crossing of two other strands. The Artin generators and their relations are
graphically represented in Fig. 1, 2 and 3.

There is a natural homomorphism σ : BN → SN from the braid group on N
strands to the symmetric group of order N that maps each braid to the permu-
tation obtained by following the strands. This map sends an Artin generator bi
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Fig. 1. The three Artin
generators b1, b2 and b3
that generate B4.

=

Fig. 2. Crossings that do not share strands com-
mute, i.e. b1b3 = b3b1

=

Fig. 3. The first strand moves over the crossing of
strand 2 and 3, i.e. b1b2b1 = b2b1b2.
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to the transposition σ(bi) = (i i+ 1). Elements in the kernel of this homomor-
phism are called pure braids, the kernel itself is called the pure braid group on
N strands and is denoted by PN .

The braid group B2 on two strands is the infinite cyclic group, so this group
is its own center. For N > 2 the center of the braid group on N strands is
generated by the full-twist braid which is obtained by grabbing the ends of the
strands of the identity braid and rotating them by 360 degrees [13]. This braid
is commonly denoted by ∆2 and is depicted in Fig. 4.

Fig. 4. The full-twist braid ∆2 in the braid group on 4 strands.

2.3 The colored Burau representation and E-multiplication

The Walnut digital signature algorithm relies heavily on a group action called
E-Multiplication. To define this group action we need the colored Burau Repre-
sentation (see, for example, Anshel et al. [2]) which is a homomorphism from the
braid group BN to the colored Burau group GLN (Z[t±11 , · · · , t±1N ]) o SN . This
group is defined as a semidirect product, by letting the symmetric group SN
act on GLN (Z[t±11 , · · · , t±1N ] by permuting the variables ti. More concretely, the
elements of the colored Burau group are pairs (A(t1, · · · , tN ), π) where π ∈ SN
is a permutation and where A(t1, · · · , tN ) is an invertible N ×N matrix whose
entries lie in Z[t±11 , · · · , t±1N ]. Multiplication in the colored Burau group is defined
by

(A(t1, · · · , tN ), π) · (B(t1, · · · , tN ), τ) ..= (A(t1, · · · , tN ) · π(B(t1, · · · , tN )), πτ)
= (A(t1, · · · , tN ) ·B(tπ(1), · · · , tπ(N)), πτ).

The colored Burau representation CB : BN → GLN (Z[t±11 , · · · , t±1N ]) o SN is
defined at each Artin generator as CB(bi) = (CBM(i), σ(bi)), where CBM(i)
is a matrix and σ(bi) is a permutation, defined as follows. The permutation σ(bi)
is the transposition (i i+ 1). We define CBM(b1), the colored Burau matrix of
b1, as

CBM(b1) =

−t1 1 0
0 1 0

0 0 1N−2

 ,
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where 1N−2 is the (N−2)×(N−2) identity matrix. For i > 1 the colored Burau
matrix of bi is defined as

CBM(bi) =


1i−2 0 0 0 0

0 1 0 0 0
0 ti −ti 1 0
0 0 0 1 0

0 0 0 0 1N−i−1

 .

This definition of CB(bi) is compatible with the relations of the braid group,
so it can be extended to define a homomorphism on the entire group BN . For
a braid b, the matrix component of CB(b) is called the colored Burau matrix
of b and is denoted by CBM(b), the permutation component of CB(b) is sim-
ply equal to σ(b). This implies that pure braids are mapped into the subgroup
GLN (Z[t±11 , · · · , t±1N ]) ⊂ GLN (Z[t±11 , · · · , t±1N ]) o SN .

Now we fix a finite field Fq, and for any integer k with 1 < k ≤ N we define
Ak to be the group of invertible N -by-N matrices of the form

Ak =


X Y 0

0 1 0
0 0 1N−k

 |X ∈ GLk−1(Fq), Y ∈ Fk−1q

 .

Given a list T = [τ1, · · · , τN ] of N values in a finite field we can define an entry-
wise evaluation map GLN (Z[t±11 , · · · , t±1N ]) → GLN (Fq). The evaluation of a
matrix M(t1, · · · , tn) at T is denoted by

M ↓T ..= M(τ1, · · · , τN ) .

For a list T containing N non-zero finite field elements, we can now define a
right group action, called E-Multiplication and denoted by ?, of the braid group
BN on the set AN ×SN . A braid b acts on the first component of the pair (M,π)
by multiplying from the right with a matrix obtained from the colored Burau
matrix of b by permuting the variables ti using π and then evaluating at T . The
second component of the acvtion is obtained by multiplying on the right by σ(b).
Written out symbolically, this is

(M,π) ? b ..= (M · π(CBM(b)) ↓T , πσ(b)) .

The fact that this defines a group action follows from the fact that the colored
Burau representation is a homomorphism of groups. In practice, when calculating
(M,π) ? b, the action is calculated one Artin generator at a time (see Alg. 1).
Given the sparsity of the colored Burau matrices CBM(bi), acting with an Artin
generator requires only a few column operations on M and one swap on π, so
this is very efficient. This action was first introduced in [4], where it was used to
build a key agreement protocol. More recently, E-Multiplication has been used
as the basic building block for a cryptographic hash function [7] and the Walnut
digital signature scheme [5].
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Algorithm E-Multiplication

input: (M,π) — a pair in AN × SN to act on
s — a braid to act with
T = {τ1, · · · , τN} — a list of T-values

output: (M,π) — the resulting pair

1: while |s| > 0 do
2: b±1

i ||s← s . split the first generator b±1
i from the rest of s

3: N ← CBM(bi)
±1 . The CB Matrix of bi, inverted if necessary.

4: N ← N(τπ(i)) . Evaluate in τπ(i)
5: M ←M ·N
6: π ← π ◦ σ(bi)
7: end while
8: return (M,π)

Alg. 1. The algorithm for computing the E-Multiplication action.

By letting BN act on (1N , e) ∈ AN × SN we define a map P

P : BN → AN × SN : s 7→ (1N , e) ? s .

When restricted to the subgroup of pure braids PN , the second component of P
always maps to the identity permutation, so we can think of it as a map P|PN

:
PN → AN . The map P|PN

is actually a homomorphism because it is the com-
position of the colored Burau representation CB : PN → GLN (Z[t±11 , · · · , t±1N ])
and the evaluation homomorphism |T : GLN (Z[t±11 , · · · , t±1N ])→ AN . Moreover,
if we further restrict P to the subgroup Pk of pure braids where only the first
k strands cross over each other, i.e. the intersection of PN with the subgroup
generated by b1, · · · , bk−1, the homomorphism P|Pk

: Pk → Ak maps into the
subgroup Ak. This fact will be exploited in the attack of Sect. 5.

2.4 The Walnut signature scheme

We now introduce the Walnut signature scheme, which is the subject of our
cryptanalysis. Before we describe the key generation, signing and verification
algorithms (Alg. 2, 4 and 5) in detail we will summarize the scheme very briefly:
the secret key consists of two braids s1, s2 and the public key is (M1, π1) = P(s1)
and M2 = mat(P(s2)), the matrix component of P(s2). To sign or verify a
document d it is hashed and encoded as a pure braid E(d) with an encoding
mechanism E. The Walnut design [5] defines a braid sig to be a valid signature
for the document d if and only if the verification equation

mat(P(s1) ? sig) = mat(P(E(d))) ·M2 (1)
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is satisfied. However, this equation is equal to the matrix component of

P(s1) ? sig = P(E(d)) ? s2 , (2)

and the permutation component of equation (2) is also satisfied by all the le-
gitimately produced signatures. In this document we define a valid signature
as a braid sig that satisfies the stronger verification equation (2). It is clear
that sig = s−11 E(d)s2 would be a valid signature. In order to prevent length-
based attacks [16, 19] cloaking elements, namely braids that do not affect E-
Multiplication, are inserted into the signature and the braids are put through
a rewriting algorithm so that s1 and s2 cannot easily be extracted from the
signature.

Parameters. The scheme is parametrized by:

– The order of the braid group that is being used N .
– The size q of a finite field Fq.
– A rewriting algorithm R : BN → BN .
– L and l, the length of certain random braid words.
– A hash function H.

Table 1. The Walnut parameter sets submitted to the NIST Post Quantum Cryptog-
raphy project, and the corresponding public key and signature sizes.

claimed security level 128-bit 256-bit

N 8 8
q 25 28

L 15 30
l 132 287
H SHA2-256 SHA2-512

|pk| 83 Bytes 128 Bytes
|sig|3 ±646 Bytes ±1248 Bytes

Key generation. The private key consists of two randomly chosen braids
s1, s2 ∈ BN of length l. The braids are chosen such that their underlying permu-
tations σ(s1) and σ(s2) are distinct and not equal to the identity permutation
e. The public key contains of a list T = {τ1 = 1, τ2 = 1, τ3, · · · , τn} ∈ FNq of N
elements of the finite field Fq such that the first two elements are equal to 1, and
such that the remaining values are non-zero and different from 1. The public key
also contains P(s1) and the matrix component of P(s2).

3 Signatures have variable length. The reported signature size is an average, using the
BKL + Dehornoy rewriting method.
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Algorithm GenerateKeys

input: random bits to generate s1, s2 and τi
output: pk — a public key

sk — a corresponding secret key
1: s1, s2 ← a randomly chosen braid words of length l.
2: τ1, τ2 ← 1
3: for i from 3 to N do
4: τi ← a randomly chosen field element, not equal to 0 or 1
5: end for
6: T ← {τ1, · · · , τN}
7: (M1, π1)← P(s1)
8: (M2, π2)← P(s2)
9: return pk = (T,M1,M2, π1) and sk = (s1, s2)

Alg. 2. The Walnut key pair generation algorithm

Encoding a document. In order to sign a document d or verify a signature the
document is converted to a pure braid E(d) ∈ PN . This conversion consists of
two stages. First, a hash digest of d is computed with a standard hash function
(SHA2-256 or SHA2-512), then this hash is converted to a braid. To make the
second conversion 4 pure braids g1, g2, g3, g4 are fixed such that they generate a
free subgroup of PN . The Walnut specification document [8] defines

g1 = bNbN−1 · · · b2 · b21 · b−12 · · · b
−1
N−1b

−1
N

g2 = bNbN−1 · · · b4 · b23 · b−14 · · · b
−1
N−1b

−1
N

g3 = bNbN−1 · · · b6 · b25 · b−16 · · · b
−1
N−1b

−1
N

g4 = bNbN−1 · · · b8 · b27 · b−18 · · · b
−1
N−1b

−1
N .

The encoding process starts from the trivial braid. Two bits are taken from the
hash digest to choose one gi of the 4 generators, and the next two bits of the
digest define an exponent e ∈ {1, 2, 3, 4}. Then gei is appended to the braid, and
four bits are removed from the digest. This is repeated until the entire hash
output is consumed.

Signing algorithm. The signing algorithm produces a signature which is a
braid word of the form

sig′ = v1 · s−11 · v · E(d) · s2 · v2 ,
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Algorithm EncodeDocument

input: A document d
output: b — a pure braid

1: h← H(d)
2: b← e
3: for a from 0 to |h|/4− 1 do
4: i← h[4a : 4a+ 1] . Select index
5: e← h[4a+ 2 : 4a+ 3]+1 . Select exponent
6: b← b · gei
7: end for
8: return b

Alg. 3. The document encoding mechanism.

where v1, v and v2 are so called cloaking elements, which are braids in the sta-
bilizer of P(s1), (1N , e) and P(E(d)s2) respectively. Therefore we have

(1N , e) ? s1 · sig′ = P(s1) ? s−11 · v · E(d) · s2 · v2
= (1N , e) ? v · E(d) · s2 · v2
= P(E(d)s2) · v2
= (1N , e) ? E(d) · s2 ,

so sig′ is a valid signature. To hide the secret key s1 and s2 which are substrings
of sig′ one of three proposed rewriting algorithms (BKL + Dehornoy, Stochastic
+ Dehornoy or Stochastic) is used to produce a different braid word sig which
represents the same braid as sig′. The various rewriting algorithms differ in
performance and in the length of the signatures that are produced.

The cloaking elements are generated using the following lemma.

Lemma 1. Suppose that τ1 = τ2 = 1. Take any pair (M,π) ∈ AN × SN , an
Artin generator bi, and any braid w such that

π ◦ σ(w)(i) = 1 and π ◦ σ(w)(i+ 1) = 2 .

Then the braid v = w · b2i · w−1 is in the stabilizer of (M,π).

To produce a cloaking element for P(s1), (1N , e) or P(E(d)s2) we first pick a
random integer i such that 1 < i < N , then we choose a random braid w
satisfying the conditions of Lemma 1 and we set v = wb2iw

−1. For the details
of how w is chosen (which depends on the parameter L) and the details on
how the various rewriting algorithms work we refer to the WalnutDSA NIST
submission [8].

11



Algorithm Sign

input: d — a document to sign
sk = (s1, s2) — a secret key

output: sig — a signature for document d

1: v1 ← GetCloakingElement(σ(s1))
2: v ← GetCloakingElement(e)
3: v2 ← GetCloakingElement(σ(s2))
4: Ed ← EncodeDocument(d)
5: sig′ ← v1 · s−1

1 · v · Ed · s2 · v2
6: sig←R(sig′)
7: return sig

Alg. 4. The Walnut signature generation algorithm

Verification Algorithm. Given a document d, a public key pk = (T,M1,M2, π1)
and a signature sig. The verification algorithm simply calculates the encoding of
the message E(d) and the matrix components of (M1, π1) ? sig and P(E(d)). It
then accepts the signature if the computed matrices satisfy the equation

mat((M1, π1) ? sig) = mat(P(E(d))) ·M2 .

Algorithm Verify

input: d — a document
pk = (T,M1,M2, π1) — a secret key
sig — a signature

output: True if sig is a valid signature for d, False otherwise

1: Ed ←EncodeDocument(d)
2: LHS ← mat( E-Multiplication((M1, π1), sig, T ))
3: RHS ← mat( E-Multiplication((1N , e), Ed, T )) ·M2

4: if LHS equals RHS then
5: return True
6: end if
7: return False

Alg. 5. The Walnut signature verification algorithm

3 A factorization attack

This section describes an adaptation of the factorization attack of Hart et al. [14]
on an earlier version of Walnut [6]. This earlier version is a special case of the
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newer construction where the two secret braids s1 and s2 are equal. This means
that the secret key essentially consists of only a single braid s, and that the
public key is a single matrix-permutation pair (M,π) = P(s). The signing and
verification algorithms of the earlier version are the same as the algorithms de-
scribed in the previous section after substituting s for s1 and s2, and substituting
M for M1 and M2. The attack of Hart et al. exploits the following malleability
property:

Theorem 1. (for the earlier version of Walnut with s1 = s2) Suppose
d, d1, d2 are three documents. Let h, h1, h2 be the matrix part of P(E(d)),P(E(d1))
and P(E(d2)) respectively. Then we have

1. If h = h−11 and sig1 is a valid signature for d1, then sig−11 is a valid signature
for d.

2. If h = h1 · h2 and sig1, sig2 are valid signatures for d1 and d2 respectively,
then sig1sig2 is a valid signature for d.

This opens up the following strategy to attack the signature scheme. First
we collect a set of valid document-signature pairs (di, sigi) and we let hi =
mat(P(E(di). Then, if we want to forge a signature for a document d with

h = mat(P(E(d))) it suffices to write h as a product
∏k
j=1 h

ej
ij

of the hi. Once

we have this, a valid signature for d is given by
∏k
j=1 sig

ej
ij

. This reduces breaking
the signature scheme to breaking the factorization problem in AN :

Factorization problem in a group G. Given a list of elements g1, · · · , gk that
generate the group G and a target element g, write the target g as a (preferably
short) product of the gi and their inverses.

The paper of Hart et al [14] proposes an algorithm to solve the factorization
problem in AN , exploiting a chain of subgroups. This allows them to forge sig-
natures in minutes, but the factorizations that are found by the algorithm are
very long, so this results in very long signatures. The forged signatures are many
orders of magnitude longer than legitimate signatures, so the Walnut scheme
can be saved by imposing an upper limit to the length of the signatures.

The Walnut signature scheme was adapted to destroy the malleability prop-
erty of Theorem 1. In the remainder of this section we prove that an adapted
version of the maleability property still holds for the new WalnutDSA scheme
and we show how the property can be used to reduce breaking Walnut to solving
the factorization problem in AN , which can be solved with the techniques of [14].
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3.1 Signature malleability of Walnut

Walnut has the following malleability property, which is a generalization of the
property discovered by Hart et al. (Theorem 1).

Theorem 2. Suppose d, d1, d2 are three documents. Let h, h1, h2 be the matrix
part of P(E(d)),P(E(d1)) and P(E(d2)) respectively. Let s1, s2, s3 ∈ BN be three
braids. Then

1. If h = h−11 and sig1 is a valid signature for d1 under the public key (P(s1),P(s2)),
then sig−11 is a valid signature for d under the public key (P(s2),P(s1)).

2. If h = h1 ·h2 and sig1, sig2 are valid signatures for d1 and d2 under the public
keys (P(s1),P(s2)) and (P(s2),P(s3)) respectively, then sig1 · sig2 is a valid
signature for d under the public key (P(s1),P(s3)).

Proof. We start by proving 1. Since sig1 is a valid signature for d1 we have

P(s1) ? sig1 = P(E(d1)) ? s2.

Acting on this by sig−11 and using the definition of P we get

(1N , e) ? s1 = (h1, e) ? s2 · sig−11 ,

where we have used the fact that E(d1) is a pure braid. Multiplying the matrix
part of this equality by h−11 from the left (multiplying on the left by a matrix
commutes with ?), we get

(h−11 , e) ? s1 = (1N , e) ? s2 · sig−11 ,

or equivalently

P(E(d)) ? s1 = P(s2) ? sig−11 ,

which shows that sig−11 is a valid signature for d for the public key (P(s2),P(s1)).

To prove 2 we start by acting with sig2 on the verification equation for sig1
to get

P(s1) ? sig1 · sig2 = P(E(d1)) ? s2 · sig2
= (h1 · CBM(s2)↓T ·σ(s2) (CBM(sig2))↓T , σ(s2) ◦ σ(sig2)) .

Using the fact that sig2 is a valid signature for d2 under the public key (P(s2),P(s3)),
we see that

P(s1) ? sig1 · sig2 = (h1 · h2 · CBM(s3)↓T , σ(s3))

= (h1 · h2, e) ? s3
= P(E(d)) ? s3 ,

which shows that sig1 · sig2 is a valid signature for d under the public key
(P(s1),P(s3)).
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3.2 The factorization attack

Given an oracle Of (which can be instantiated by the algorithm of [14]) that
solves the factorization for the group AN , we can now break Walnut as follows.
Suppose we want to forge a signature for a document d under the public key
(P(s1),P(s2)). Let h be the matrix part of P(E(d)). We start by collecting a
number of document-signature pairs (d1, sig1), · · · , (dk, sigk) that are valid un-
der the same public key, and we compute the the matrix part hi of each pair
P(E(di)). Now it suffices to find a factorization h = hi1 · h−1i2 · hi3 · · ·h

−1
im−1

· him
whose factors have powers that alternate between 1 and −1. Indeed, combining
properties of Theorem 2 we see that sigi1 ·sig

−1
i2

is a valid signature for any docu-

ment d′ such that mat(P(E(d′))) = hi1 ·h−1i2 under the public key (P(s1),P(s1)).

Adding an extra factor, we get that sigi1 · sig
−1
i2
· sigi3 is a valid signature for

an appropriate document under the public key (P(s1),P(s2)). Continuing the
same argument for the odd number m of factors of the product we get that
sigi1 · sig

−1
i2
· sigi3 · · · sig

−1
im−1

· sigim is a valid document for d under the desired

public key (P(s1),P(s2)).

We can use the oracle Of to find the factorization h = hi1 ·h−1i2 ·hi3 · · ·h
−1
im−1
·

him . We construct the list of generators

gens = {hi · h−1j | i 6= j ∈ {1, · · · , k}}

and call the oracle Of to obtain a factorization for h · h−11 with factors in this
set of generators. Appending the factor h1 to the resulting factorization we then
get a factorization of h of the desired form.

3.3 Implications and countermeasures

The factorization algorithm of [14] has a time complexity of O
(
q

N−1
2

)
and for

the 128 bit security parameters of Walnut (i.e. N = 8, q = 25) the algorithm finds
a factorization in minutes. However, these factorizations contain roughly 225

factors, so the forged signatures are the concatenation of roughly 225 legitimate
signatures. This implies that the forged signatures are many orders of magnitude
longer than legitimate signatures and so they can be detected easily by the
verifier. To protect against this attack it suffices to impose a limit on the length of
signatures. Interestingly, when the WalnutDSA scheme was updated to counter
the attack of [14], no such upper limit was included in the design. Our adaptation
of the attack shows that this limit is necessary for the security of the scheme,
because long forgeries can be produced in a matter of minutes.

The implementation submitted to the NIST PQC standardization project
implicitly imposes such an upper limit by specifying that the length of the sig-
nature (measured by the number of Artin generators) be encoded by two bytes.
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This effectively limits the signature braids to be at most 216 Artin generators
long. Therefore the attack cannot be used to break the NIST implementation of
WalnutDSA.

4 A collision search attack

From the verification equation

P(s1) ? sig = P(E(d)) ? s2

it is clear that the only dependence on the document d is through the encod-
ing mechanism E and the mapping P. This implies that if d1 and d2 are two
documents such that P(E(d1) = P(E(d2)), then any signature that is valid for
d1 is automatically valid for d2 and vice versa. Therefore breaking EUF-CMA
security reduces to finding such a pair of documents. Once an attacker has found
two such documents he can ask the signing oracle to produce a signature sig for
d1, and return (sig, d2) to win the EUF-CMA game. Since the first step of the
encoding function E is the application of a cryptographically secure hash func-
tion to the document d we cannot reasonably expect to have a more efficient
way of finding collisions than with a generic collision search. A generic collision
search requires roughly |P(E({0, 1}∗))|1/2 evaluations of P ◦ E. In the rest of
this section we give an upper bound for this quantity and we demonstrate with
computer experiments that a collision attack is practical.

4.1 Sizes of orbits of E-multiplication

To estimate the time complexity of the collision search attack we need to find
the size of P(E({0, 1}∗)). Without much motivation the designers of WalnutDSA
claim that qN(N−3)N ! is a conservative lower bound to the number values that P
can take [5]. For 128-bit and 256-bit security parameters this number is roughly
2216 and 2336 respectively, which means that finding a collision should require
more than 2108 and 2168 evaluations of P ◦ E. Note that this is already signif-
icantly less than the claimed security levels. Moreover, an elementary analysis
will reveal that this “conservative lower bound” is actually much larger than the
true value of |P(BN )|. Even worse, when P is restricted to the set of braids that
can be produced by the encoding mechanism E, the number of values that can
be reached is much smaller still.

We know that P, when restricted to the subgroup of pure braids, is a ho-
momorphism from PN to AN . This implies that the full twist braid ∆2 (see
Sect. 2.2) which generates the center of PN is mapped to a matrix in the center
of P(PN ). It can be verified that the only matrix in the center of AN is the
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identity matrix, but for a randomly chosen set of T-values P(∆2) is typically
not the identity matrix. This means that P(AN ) sits inside the centralizer of
P(∆2), which is typically a proper subspace of 〈AN 〉. This begs the question of
what the dimension of 〈P(PN )〉 is. From computer experiments we can conclude
that for randomly chosen T-values this is equal to the dimension of the central-
izer of P(∆2), which is equal to (N − 1)2 + 1 (since P(∆2) has one eigenspace
of dimension N − 1 and one of dimension 1). However, if we impose the extra
condition the first two T-values are equal to one, P(PN ) is contained in an affine

subspace of dimension (N − 2)2 + 1, so |P(PN )| is at most q(N−2)
2+1. Our com-

puter experiments suggest that this upper bound is reasonably tight, and so we
estimate |P(PN )| ≈ q(N−2)

2+1. Since PN is a subgroup of BN of index N ! we

have |P(BN )| < q(N−2)
2+1N !. Note that this upper bound is strictly lower than

the lower bound which was claimed by the designers of Walnut.

Any braid output by the encoding mechanism E is a product of the genera-
tors g1, g2, g3, g4. From computer experiments we conclude that when applying
P to braids of this form we end up with matrices in an affine subspace of sur-
prisingly low dimension. We found that they live in a subspace of dimension 13,
independent of the values of q or N (provided that N2 > 13). This means that
|P(E({0, 1}∗))| is at most q13, and that finding a collision cannot take much more
than q13/2 evaluations of P ◦ E. For 128-bit security parameters this number is
as low as 232.5, and for 256-bit security parameters this is 252.

4.2 Implementation

We implemented the generic collision finding algorithm of van Oorschot and
Wiener [24] (briefly explained in Sect. 2.1) and used it to find collisions for
the function g ◦ P ◦ E, where g is a function that takes the ouput of P, and
converts it to some plausible document d. Even though the method is completely
generic, it is still efficient enough to find colliding documents in practice. It took
approximately 232.2 evaluations of f (which agrees very well with the expected
value of 232.5) or one hour on a standard desktop PC to find the following pair
of colliding documents.

d1 ="I would like to receive 7181666883746416503 free

samples of delicious cookies."

d2 ="I pledge to donate 3519533052089988469 USD to Ward Beullens."

The documents are cunningly crafted such that a victim would be eager to sign
the first document with his/her secret key. However, by producing a signature
for this document, the victim would unknowingly also sign the second document.
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4.3 Implications and countermeasures

This practical attack shows that the Walnut signature scheme should not be
used with the parameters that are submitted to the NIST PQC project.

Increasing q to raise q13/2 to the required security level would lead to q = 220

and q = 240 for 128-bit and 256-bit security parameters respectively. For 256-bit
of security parameters this would increase the size of the public key by a factor
of 5 and we estimate that this would slow down the verification algorithm by
a factor of 25. A better approach would be to change the encoding algorithm
to output pure braids that are not restricted to the subgroup generated by
g1, g2, g3, g4 (or any other proper subgroup). Since P(PN ) is contained in an
affine subspace of dimension (N −2)2 + 1, this would lead to an upper bound on

the complexity of the attack of
√
q(N−2)2+1 evaluations of P ◦E. We would then

only need a slight increase in the parameters. For example, 256 bits of security
would be achieved (against this attack) by the parameters q = 28 and N = 10,
leading to an increase of the key size of roughly 50%, the signature size by at
least 25% and an expected slowdown of the verification algorithm by a factor of
2.

5 Reversing E-multiplication

A fundamental hard problem underlying the Walnut signature scheme is the
“Reversing E-Multiplication” (REM) problem. This problem asks, given a pair
(M,σ) ∈ AN ×SN , such that (M,σ) = (1N , e)?s for some braid s ∈ BN , to find
a braid s′ ∈ BN such that (1N , e) ? s

′ = (M,σ). In other words, the problem is
to break the one-wayness of the function

P : BN → AN × SN : s 7→ (1N , e) ? s.

The secret key in Walnut consists of two braids s1, s2 ∈ BN . The corresponding
public key is P(s1) and the matrix part of P(s2). The fact that the permuta-
tion part of P(s2) is not available to the attacker is not a problem, because
given a single signature sig which is valid for any message (which might be un-
known to the attacker), the attacker can deduce the permutation of s2 from the
permutation component of the verification equation (2)

σ(s1) ◦ σ(sig) = σ(s2).

After solving the REM problem to get s′1, s
′
2 such that P(s1) = P(s′1) and

P(s2) = P(s′2), an attacker can use the pair (s′1, s
′
2) as a secret key to sign any

message. Alternatively, instead of solving two instances of the REM problem to
obtain an equivalent secret key, it is also possible to solve a single instance of the
REM problem to obtain a signature for a document which can be chosen freely.

18



In this section we give an algorithm that solves the REM problem in practice
for the parameters that are proposed for Walnut. First, we describe a generic
birthday attack that can reverse any group action. Then, we introduce an algo-
rithm that exploits the subgroup structure of BN and is much more efficient.

5.1 Birthday attack

A brute force attack would repeatedly pick a random s ∈ BN , compute (1N , e)?s
and check if this is equal to the target (M,σ). This attack would take O(|P(BN )|)
attempts, where |P(BN )| is the size of the orbit of (1N , e). A more efficient
approach is to look for s1, s2 ∈ BN such that

(M,σ) ? s1 = (1N , e) ? s2 .

If such s1 and s2 are found, the solution to the REM problem is given by s2s
−1
1 . A

naive way of finding s1 and s2 is to compute a large table containing
√
|P(BN )|

values of s1 and the corresponding values of (M,σ)?s1 and check for random val-
ues of s2 whether (1N , e)?s2 lies in this table. This method takes O(

√
|P(BN )|)

E-Multiplications, but requires a lot of memory. The problem can be reduced to
collision finding for a function f : P(BN ) → P(BN ). Then, distinguished point
methods (see Sect. 2.1) can solve the REM problem with the same time com-
plexity as the naive approach but with constant memory complexity. Concretely,
suppose b : P(BN )→ {0, 1} and s : P(BN )→ BN are hash functions that take
a matrix and a permutation from the orbit of (1N , e) as input, and output a bit
or a braid respectively. Then we can define

f(x) =

{
(1N , e) ? s(x) if b(x) = 0,

(M,σ) ? s(x) if b(x) = 1.

If s outputs sufficiently long braids such that P(s(x)) is distributed uniformly
in the orbit of (1N , e), then the distinguished point method will yield colli-
sions f(x1) = f(x2) such that b(x1) 6= b(x2) with probability 1/2. Once such
a collision is found, a solution to the REM problem is given by s(x1)s(x2)−1

or s(x2)s(x1)−1 when b(x1) is 0 or 1 respectively. For the security parameters
aiming for 128 bits of security, the size of the orbit P(BN ) is bounded by 2200

(see Sect. 4.1), so the number of E-multiplications required to solve REM is not
much more than 2100, considerably less than 2128 but still far from practical.
For the 256 bit security parameters the number of E-multiplications is not much
more than 2157.

5.2 Subgroup chain attack

We next propose a practical method for solving the REM problem that improves
the attack above by exploiting the following chain of subgroups of BN :

{e} = P1 ⊂ P2 ⊂ · · · ⊂ PN ⊂ BN .
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The map P sends a braid to an element of AN × SN and, when restricted to
Pi it is a homomorphism to Ai (see Sect. 2.3). Therefore we have the following
commuting diagram:

{e} P2 · · · PN BN

{(1N , e)} A2 · · · AN AN × SN

P P P P

The meet-in-the-middle attacks in the previous subsection attempt to find a
braid s such that (M,σ)?s = (1N , e) in one step. Given this subgroup structure,
it is more efficient to solve REM in several steps. The first step is to find a braid
s′ ∈ BN such that (M,σ) ? s′ = (M ′, e) ∈ AN . This is trivial because any
s′ ∈ BN whose underlying permutation is σ−1 will do the job. The next step
is to find a pure braid sN ∈ PN such that (M ′, e) ? sN ∈ AN−1. Then, one
continues iteratively to find si ∈ Pi such that (M,σ) ? s′sN · · · si ∈ Ai−1. After
the last step we have found s′sN · · · s2 such that (M,σ) ? s′sN · · · s2 = (1N , e),
so (s′sn · · · s2)−1 is a solution to the REM problem.

One caveat when using this method is that, a priori, it is possible to get
stuck. After each step, we get a new target (M,σ) ? s′sN · · · si which is sampled
randomly from P(Pi) ∩ Ai−1. However, from that point on, we will only act on
this taget with pure braids from Pi−1. This means that if the new target is not
in P(Pi−1) we will not be able to complete the attack. If we assume for each i
that

P(Pi) ∩Ai−1 = P(Pi−1) ,

then the attack is guaranteed to work. In practice, this assumption seems to
hold with large probability for the parameter sets that are proposed, because
the algorithm works without having to backtrack. We encounter this problem
when instantiating the Walnut scheme with a smaller finite field such as F5.
Then, it occurs for a small but noticeable fraction of the choices of T-values that
for some small i all the generators of P(Pi−1) have determinant 1 or -1, while the
subgroup P(Pi) ∩ Ai−1 contains matrices with any determinant. This problem
is unlikely to occur in large finite fields and with large i, because then there are
many generators of P(Pi−1) that all have to map to a matrix with determinant
±1.

Each step can be solved with a collision search in the space Ai−1P(Pi)\Ai−1
of cosets of Ai−1 in Ai−1P(Pi). Let b : Ai−1P(Pi)\Ai−1 → {0, 1} and s :
Ai−1P(Pi)\Ai−1 → Pi be hash functions that take a right coset and output
a bit or a pure braid respectively. Then we can define f : Ai−1P(Pi)\Ai−1 →
Ai−1P(Pi)\Ai−1 as

f(x) =

{
Ai−1P(s(x)) if b(x) = 0,

Ai−1M
′P(sN · · · si+1s(x)) if b(x) = 1.
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The distinguished point method can find collisions f(x1) = f(x2) at a cost of
roughly

√
|Ai−1P(Pi)\Ai−1| E-Multiplications. Under the assumption we made

earlier that P(Pi) ∩ Ai−1 = P(Pi−1) this is equal to
√
|P(Pi)|/|P(Pi−1)| E-

Multiplications.

If we plug the estimate of |P(Pi)| ≈ q(i−2)
2+1 from Sect. 4.1 into this formula,

we get an estimate of

√
q(i−2)2+1

q(i−3)2+1
= qi−5/2 E-Multiplications to find si. The

runtime of the algorithm is dominated by the step that searches for sN , which is
estimated to require qN−5/2 E-Multiplications. For 128-bit security parameters
this number is 227.5 and this agrees very well with our computer experiments.
For 256-bit security parameters, the required number of E-Multiplications is
estimated to be 244.

5.3 Representing and manipulating cosets of Ak.

In order to implement the hash functions b and s we need to be able to uniquely
represent right cosets with respect to Ak. We give a method to do this efficiently
in this subsection. Suppose, X,Y are two matrices in AN , that are in the same
right coset of AN−1. That is, there exists a matrix A ∈ AN−1 such that AX = Y.
If we split up the matrices to make their structure visible we get:

A1 A2 0
0 1 0
0 0 1

X1 X2

X3 X4

0 1

 =

Y1 Y2

Y3 Y4

0 1

 .

From this it is obvious that the (N − 1)-th row of X and Y are identical,
and that the first (N − 1) rows of X and Y span the same (N − 1)-dimensional
subspace. It is easily checked that the converse also holds, which implies that the
right coset of AN−1 that contains a matrix X ∈ AN is completely determined
by the (N − 1)-th row of X and the subspace spanned by the first N − 1 rows
of X. In turn, this subspace is uniquely represented by the row reduced echelon
form of the upper (N − 1)-by-N submatrix of X, which will be of the form(

IN−1 v
)

for some v ∈ FN−1. Therefore, the coset containing X is completely determined
by the (N−1)-th row of X, and the last column of the first N−1 rows of X after
putting it in row reduced echelon form. More generally, we have the following
lemma.

Lemma 2. A right coset of Ak\Ak−1 with representative X ∈ Ak is completely
determined by the pair of vectors (v1,v2) ∈ FNq ×Fk−1q , where v1 is the (k−1)-th
row of X and v2 is the k-th column of the matrix X′, which is obtained from X
by taking the first k − 1 rows and putting them in row reduced echelon form.
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This lemma gives a method for deciding whether two matrices X and Y are
in the same coset. One simply computes the pair of vectors for both matrices X
and Y and checks whether they are equal. To run the algorithm we also need
a way to act on cosets by multiplying on the right by matrices. One way to
do this is to work with a representative from the coset and carry out a matrix
multiplication to get a representative from the next coset. It is more efficient to
compute directly with the two-vector representation of the coset. The following
lemma gives a way to do this.

Lemma 3. Suppose M is a matrix in Ak for some k with 1 < k ≤ N . Let
A ∈ GLk−1(Fq) and b ∈ Fk−1q be submatrices of M such that

M =

A b 0
0 1 0
0 0 1N−k

 .

If (v1,v2) is the representation of a coset S as in Lemma 2, then the represen-
tation of the coset SM is given by (v1M,A−1(b + v2)).

Proof. It is clear that if v1 is the (k − 1)-th row of a representative of S, then
v1M is the (k−1)-th row of a representative SM. For the second vector, suppose
that the subspace spanned by the first k− 1 rows of a representative of S is the
row subspace of (

1 v2 0
)
.

Then there is a representative of SM whose first k − 1 rows span the rowspace
of (

1 v2 0
)
M =

(
A b + v2 0

)
.

Putting this in row reduced echelon form we get(
1 A−1(b + v2) 0

)
,

which shows that the second vector in the representation of SM is equal to
A−1(b + v2).

5.4 Permuting T-values to improve the attack

From Sect. 4.1 we know that the size of P(PN ) is influenced by the fact that the
first two T-values are chosen to be equal to 1. This also impacts the performance
of the subgroup chain attack, since at each step we carry out a search in the
space of cosets P(Pk)\P(Pk + 1). In the first column of Tab. 2 we see that if the
T-Values would have been chosen randomly, the most expensive step would have
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been the first step, where we would have to perform a collision search in a set of
at most q13 elements. However, Walnut fixes the two first T-values to be 1, so
the most expensive step consists of a collision search in a space of at most q11

elements. In the last column of Tab. 2 we see that if the designers had chosen to
fix the last two T-values to one instead, the complexity of the subgroup chain
attack would be reduced: the most expensive step would have been a collision
search in a space with only at most q9 elements. It turns out that we can first
apply a transformation to the REM instance to reduce it to an instance of the
REM problem where the final two T-values are set to one. Solving this REM
instance then only takes

√
q9 E-Multiplications, so this approach reduces the

amount of work by a factor of q. For general values of N , the new method
requires approximately qN−7/2 E-Multiplications. The reduction relies on the
following lemma.

Lemma 4. Let s1, s2 be braids, let (M,π) be a matrix-permutation pair and let
T be a set of T-values. Then s1s2 is a solution for the REM problem for the
pair (M,π) with respect to the list of T-values T if and only if s2 is a solution
for the REM problem for the pair ((CBM(s1) ↓T )−1M,σ(s1)−1π) with respect
to the permuted list of T-values σ(s1)(T ).

Proof. By applying the definition of E-Multiplication we find that

(1N , e) ?T s1s2 = (CBM(s1) ↓T ·σ(s1)(CBM(s2) ↓T ), σ(s1s2)) .

By multiplying from the left by CBM(s1) ↓−1T and σ(s1)−1 we see that the value
above is equal to (M,π) if and only if

(σ(s1)(CBM(s2) ↓T ), σ(b2)) = ((CBM(s1) ↓T )−1M,σ(s1)−1π) .

The main insight is that permuting the variables ti 7→ tσ(b1)(i) and then eval-
uating at the values of T leads to the same result as evaluating at the set of
permuted values σ(s1)(T ). Therefore the left hand side is equal to

(CBM(s2) ↓σ(b1)(T ), σ(s2)) = (1N , e) ?σ(s1)(T ) s2 .

Given this lemma, the reduction is straightforward. In order to solve the REM
problem for (M,π) we fix a “transport braid” s1 = b2b3 · · · bN−1b1b2 · · · bN−2
whose underlying permutation transports the first two entries to the back of
the list. Then we calculate the pair ((CBM(s1) ↓T )−1M,σ(s1)−1π) and use our
REM solving algorithm with respect to the permuted T-values σ(s1)(T ) on this
pair to find s2. This is now faster by a factor q because the last two T-values are
equal to one. Then s1s2 is a solution to the original REM problem.
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Table 2. The dimension of the subspaces containing various subgroups, depending on
the T-Values

generic First two T-values Last two T-values
T-values are equal to 1 are equal to 1

dim ∆ dim ∆ dim ∆

P(P2) 1 1 0 0 1 1
P(P3) 4 3 2 2 4 3
P(P4) 9 5 5 3 9 5
P(P5) 16 7 10 5 16 7
P(P6) 25 9 17 7 25 9
P(P7) 36 11 26 9 31 6
P(P8) 49 13 37 11 37 6

5.5 Using a finer chain of subgroups

With a complexity ofO(qN/2), the factorization algorithm of Hart et al is more ef-
ficient (asymptotically) than the REM solving algorithm that we have described
so far. This is due to the fact that Hart et al use a finer chain of subgroups,
which leads to smaller spaces of cosets to search in. In the next paragraph we
describe a faster variant of our REM solving algorithm that uses a finer chain of
subgroups, similar to the chain used by Hart et al. This variant is much faster
than the previous REM solver, but yields solution braids that are longer.

In each step of our REM solving algorithm we have a matrix M ∈ Ai and
we are looking for a braid si ∈ Pi such that mat((M, e) ? si) lies in Ai−1. To
speed this process up, we can split each step in two substeps. Let Ci−1 be the
subgroup of invertible N -by-N matrices that only differ from the identity matrix
in the upper left (i − 1)-by-(i − 1) submatrix. This is a proper subgroup of Ai,
which itself contains Ai−1 as a proper subgroup. To solve the step of the REM
solving algorithm we can first search for an s′i ∈ Pi such that mat((M, e) ? s′i)
lies in the intermediate group Ci−1, then we search for a braid s′′i such that
mat((M, e) ? s′is

′′
i ) lies in Ai−1. The first substep of finding s′i can be carried

out with a meet in the middle search. In order to be able to complete the
second substep we start by searching for a list of braids c1, c2, · · · , ck such that
mat(P(ci)) ∈ C1. Then, to solve the second substep, we search for a braid s′′i
in the subgroup generated by the braids ci such that mat((M, e) ? s′is

′′
i ) lies in

Ai−1.

5.6 Implications and countermeasures

With this method we split each step into two much easier substeps, which greatly
improves the efficiency of the algorithm. The downside is that the solutions to
the REM problem that are produced are longer than those produced by the
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original algorithm. This is because the solution now contains braids s′′i which
are themselves a concatenation of several slightly longer braids ci. To avoid
inflating the size of the output signature needlessly, it is best to only use this
technique for solving the most expensive steps. For 128-bit security parameters
the signatures output are longer than legitimately produced signatures, but still
small enough to be accepted by the NIST implementation. For 256-bit security
parameters, the forged signatures are smaller than some legitimately produced
signatures, depending on which variant of the signing algorithm is used. Hence,
we cannot defend Walnut against this attack by imposing an upper limit on the
length of the signatures. Note that it is trivial to convert a short signature into
a longer signature, so imposing a lower bound does not help either.

With this method the most expensive step of the algorithm requires only
qN/2−1 E-Multiplications. The attack is very efficient in practice. We can produce
a forgery for 128-bit security parameters in less than one second. Even for 256-
bit security parameters we can forge signatures for any document in less than a
minute.

There does not seem to be a better way to block the attack other than
just increasing the parameters to ensure that qN/2−1 is higher than the desired
security level. One way to do this is to take N = 10, q = 232 to achieve 128 bits
of security, and N = 10, q = 264 for 256 bits of security. For 128-bit security
parameters, this leads to a public key of 762 Bytes (a × 9 increase ), signatures
of about one kB (an increase of roughly 50%) and an expected slowdown of the
signing and verification algorithms by a factor 2 and a factor 30 respectively.

6 Conclusion

In this paper we presented three different practical methods to break the Wal-
nut digital signature scheme (See Table 3). All three attacks are made possible
because of the rich algebraic structure of the E-Multiplication map, which is
central to the Walnut scheme (and other protocols developped by SecureRF).
The first method exploits a signature malleability property of Walnut, and ex-
pands on the work of [14] which attacks an earlier version of the Walnut scheme.
The second attack is purely generic. It is much more efficient that expected be-
cause E-Multiplication maps a certain subgroup of PN into a subspace of very
low dimension. The last attack exploits the fact that E-Multiplication, when
restricted to pure braids, is a homomorphism of groups and that this homomor-
phism maps the chain of subgroups P2 ⊂ P3 ⊂ · · · ⊂ PN to a nice chain of
subgroups of GLN (Fq). Some poor design choices such as adopting an encoding
mechanism that produces matrices in a low dimensional subspace and a failed
attempt to block the attack of Hart et al. [14] seem to be symptomatic of a
lack of understanding of the algebraic structure of E-Multiplication. It is the
opinion of the authors that E-Multiplication can not be credibly used as a basis
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Table 3. An overview of the attacks introduced in this paper, compared with the
legitimate signing algorithms.

Complexity 128 bits of security 256 bits of security
(in number of Length of Length of

E-Mults or Time signature Time signature
Mat mults) (Artin generators) (Artin generators)

Legitimate signing:

BKL < 1 sec ±1480 < 1 sec ±2661
Stoch. w/o Dehornoy < 1 sec ±2788 < 1 sec ±5260

Attacks:

factorization q(N−1)/2 5 min > 232 — —

collision 4 q13/2 68 min ±1480 — —

subgroup chain qN−7/2 4 sec 899 58 hours 1374

fine subgroup chain qN/2−1 < 1 sec 4534 39 sec 4525

for cryptography until this structure and its implications for cryptography are
better understood.

The security of the parameter sets submitted to the NIST PQC project is
completely broken by the attacks. We show that it is possible to forge signatures
or compute equivalent secret keys in under a second for 128-bit security parame-
ters. Even for 256-bit security parameters this takes less than a minute. Updating
the parameters to resist the best known attack (see Sect. 5) would significantly
increase the public key and signature sizes. This would make the scheme more
difficult to implement on the low-resource processors that SecureRF is targeting
and destroy the size advantages of Walnut over other post-quantum signature
schemes such as lattice-based, hash-based and multivariate signature schemes.
We note also that these latter schemes have been subject to much more scrutiny,
which improves our confidence in their security.
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