
HYDRAND
Practical Continuous Distributed Randomness

Philipp Schindler, Aljosha Judmayer, Nicholas Stifter and Edgar Weippl

SBA Research, Vienna, Austria
{pschindler,ajudmayer,nstifter,eweippl}@sba-research.org

Abstract—A reliable source of randomness is not only an essential
building block in various cryptographic, security, and distributed
systems protocols, but also plays an integral part in the design
of many new blockchain proposals. Consequently, the topic of
publicly-verifiable, bias-resistant and unpredictable randomness
has recently enjoyed increased attention in a variety of scientific
contributions, as well as projects from the industry. In particular
random beacon protocols, which are aimed at continuous opera-
tion, can be a vital component for many current Proof-of-Stake
based distributed ledger proposals. We improve upon existing
random beacon approaches by introducing HydRand, a novel
distributed protocol based on publicly-verifiable secret sharing
(PVSS) to ensure unpredictability, bias-resistance, and public-
verifiability of a continuous sequence of random beacon values.
Furthermore, HydRand is able to provide guaranteed output
delivery of randomness at regular and predictable intervals in
the presence of adversarial behavior. In comparison to existing
PVSS based approaches, our solution improves scalability by
lowering the communication complexity from O(n3) to O(n2).
Furthermore, we are the first to present a comparison of recently
described schemes in the area of random beacon protocols.

I. INTRODUCTION

The question of how to generate trustworthy random values
among a set of mutually distrusting participants over a message
passing network was first addressed by Blum in 1983, thereby
introducing the notion of coin tossing protocols [5]. Lately,
coin tossing protocols have received increased attention, in part
because randomness is proving to be a vital component of most
scalable distributed ledger design approaches (e.g. [4], [12],
[15]) that do not require a computationally intensive Proof-of-
Work (PoW) mechanism as found in Bitcoin [18] and similar
cryptocurrencies. Specifically, Proof-of-Stake (PoS) blockchain
proposals, which rely on virtual resources in the form of
digital assets, call for manipulation resistant and unpredictable
leader election as part of a secure protocol design. In this
regard Kiayias et al. identified leader election as a fundamental
problem of PoS based protocols, since any introduced entropy
is subject to potential manipulation by an adversary [15]. The
distributed generation of trustworthy random values can hence
be considered a complementary problem to the development
of such protocols.

Random beacon protocols aim to generate publicly-verifiable,
bias-resistant and unpredictable randomness1 in distributed
environments. The concept of a random beacon was first
formalized by Rabin, which proposed a service that emits a
fresh random number at regular intervals [19]. In addition

1In the following we will simply refer to this by the term randomness.

to the scenario of leader election and establishing consensus
in Proof-of-Stake (PoS) based distributed ledgers, random
beacons are also useful in a variety of other scenarios: This
includes gambling and lottery services, publicly-auditable se-
lections such as soccer World Cup draws and the verifiable
assignment of a limited number of resources. Syta et al. [21]
lists additional use cases for randomness including Tor hidden
services, generation of elliptic curve parameters, byzantine
consensus and electronic voting. One prominent example from
the domain of cryptocurrencies is the provision of randomness
to Smart Contracts, which often rely on insecure sources (such
as the hash of block headers which is subject to manipulation
by miners) or trusted third parties (e.g. the NIST random
beacon service) [2], [9].

For all mentioned scenarios the following properties, as out-
lined in [8], [21], are desiderata of a random beacon protocol:

1) Availability/Liveness: Any single participant or a collud-
ing adversary should not be able to prevent progress.

2) Unpredictability: Correct and adversarial nodes should
not be able to predict (precompute) future random beacon
values.

3) Bias-Resistance: Any single participant or colluding ad-
versary should not be able to influence future random
beacon values to their advantage.

4) Public-Verifiability: Third parties, i.e. processes which
are not directly partaking in the protocol, should also be
able to verify generated values. As soon as a new random
beacon value becomes available, all parties can verify the
correctness of the new value using public information
only.

Although not always explicitly stated, practical solutions
should also achieve good efficiency in terms of computational
resources as well as communication complexity. Furthermore,
we suggest that guaranteed output delivery, i.e., the inability
for an adversary to prevent correct nodes of the protocol from
obtaining an output [11], can also be considered a valuable
property in practical random beacon protocols.

Current random beacon protocols aim to provide solutions
by employing different techniques, reaching from Proof-of-
Delay [9] over publicly-verifiable secret sharing (PVSS) [15],
[11], [21] and unique signatures [12], [13] to utilizing Bitcoin
itself as a source of randomness [3], [8]. The diversity of
these approaches, as well as the differences in their underlying
assumptions and characteristics, make them difficult to com-
pare and not equally suited for all use-cases. Moreover, some
recently described protocols in this field tend to be closely

coupled with their respective (PoS) blockchain schemes and
are therefore not easily comparable or deployable in other
settings, e.g. as a stand alone protocol.

A. Contribution

We present HydRand, a new PVSS based distributed random
beacon protocol geared towards the continuous provision of
randomness at regular intervals in a Byzantine failure setting.
HydRand guarantees the generation of new, bias-resistant
randomness in every round of the protocol, and ensures un-
predictability with absolute certainty for every random output
value that is produced after f + 1 rounds in the future. The
protocol assumes a synchronous system model and n = 3f+1
participants. In respect to previous approaches the communi-
cation complexity is hereby lowered from O(n3) to O(n2).
Moreover, to the best of our knowledge, we are the first to
provide a detailed comparative overview of recent random
beacon protocols in this field.

B. Related Work

In recent years a substantial amount of research related to
random beacon protocols for distributed ledgers has been
published in academia as well as the industry:

Algorand [12] proposed by J. Chen and S. Micali builds a
distributed ledger by combining (i) a randomness beacon based
on unique signatures and hash functions with (ii) a newly
proposed randomized Byzantine agreement protocol [17]. The
protocol can be parameterized to achieve good probabilistic
liveness guarantees that are sufficient for all intents and pur-
poses. Although, strictly speaking the produced randomness
is not completely bias-resistant, which is no problem in their
usage scenario. Ouroboros [15] is a provably secure Proof-
of-Stake blockchain protocol. It relies on a combination of
publicly-verifiable secret sharing (PVSS) and other crypto-
graphic primitives to obtain verifiable randomness, which is
identified as a necessary component for the construction of
such protocols. The agreed randomness is then used as the
basis for the respective Proof-of-Stake algorithm, which is the
main focus of Ouroboros. The protocol family RandShare,
RandHound and RandHerd proposed in Syta et al. [21] also
employs PVSS in combination with a Byzantine fault tol-
erant (BFT) consensus algorithm (RandShare, RandHound)
and additionally with Collective Signing (RandHerd). For the
scenario outlined by the authors, the more scalable protocols
RandHound and RandHerd however operate with a failure
probability of 0.08%.

In an orthogonal work, I. Cascudo and B. David [11] present
SCRAPE, which introduces an optimized variant of Schoen-
makers’ secret sharing protocol [20] that can directly be used
to reduce computation complexity in Ouroboros, RandShare,
RandHound and RandHerd as well as the herein presented
HydRand protocol. Scrape builds upon the assumption that a
shared bulletin board, i.e., a distributed ledger, is available for
exchanging information between participants, thereby neces-
sitating some form of external blockchain or other consensus
protocol if it is to be used as a stand-alone random beacon im-
plementation. Hydrand helps to close this gap by presenting a
self-contained protocol that is focused towards a permissioned
system model.

The Dfinity [14] project of the equally named foundation
is aiming to build a decentralized verifiable random func-
tion as the key ingredient for reaching consensus among
network nodes. Compared to the other schemes, they utilize
BLS signatures for that purpose [13]. BLS provides signature
uniqueness as well as support for signature aggregation [6],
[7]. Dfinity combines both of these key properties to obtain
a random beacon protocol. However, the security assumptions
required for BLS signatures are less analysed when compared
to traditional elliptic curve cryptography.

C. Structure of this paper

The paper is structured as follows. Section II gives a high
level overview of our protocol. The required background is
outlined starting with cryptographic primitives in section III
and followed by our system model in section IV. Section V
provides a blackbox construction, which outlines the main
protocol design using a standard Byzantine Agreement (BA)
protocol. The details of our protocol are described in section
VI and an example execution of the protocol is provided
in section VII. Proofs showing that the protocol achieves
the desired properties are given in section VIII. Section IX
compares the protocol to other related schemes and sections
X and XI discuss and conclude the paper.

II. PROTOCOL OVERVIEW

The aim of the HydRand protocol is to provide a bias-resistant,
publicly-verifiable and unpredictable stand-alone random bea-
con which emits random values at a regular interval. We
target HydRand at a permissioned setting with a fixed set
of participants and assume a known upper bound ∆ on both
computation and message transmission times.

During the protocol setup, all participants have to exchange
their public keys and prepare an initial commitment. The proto-
col operation itself is separated into rounds, where each round
consists of three distinct phases. In each round, the previously
generated random value is used for uniquely selecting the
current leader of this round. Generally speaking, the selected
leader has two main choices: (i) The leader reveals the correct
secret value he has committed himself to the last time he
was leader (or during protocol setup) and attaches his next
commitment. (ii) The leader does not reveal his secret value
and therefore cannot attach another commitment. In the later
case, this previously committed secret value will be recon-
structed by f + 1 other nodes, including at least one correct
participant. The properties of the underlying Schoenmakers’
PVSS2 scheme [20] ensure that the random beacon value
obtained by reconstruction is equal to the value that would
have been obtained if a leader has revealed his secret. Once
the leader’s previous commitment is reconstructed, the current
leader is excluded from being eligible as leader in further
rounds since he has not provided a new valid commitment.

If the leader is correct he constructs a new dataset, which
(simply speaking) includes: (i) the revealed secret value he
previously committed himself to, (ii) a new commitment to
a randomly chosen value and (iii) a reference to the dataset
of the previous round. The leader signs this dataset using his
private key and broadcasts this message and signature to all

2See Section III for details.

other nodes in the network. After receiving and verifying the
dataset, each node can compute a new random value.

In case a leader fails or purposely does not broadcast any data,
other participants can collaborate to reconstruct the missing
secret value, i.e. the value the leader has previously committed
himself to in (ii). This reconstructed value can be used by
each node to obtain a new random beacon value and thereby
advance the protocol to the next round and hence to the
next leader. This process is repeated until eventually a leader
is selected that creates a new dataset that accounts for all
reconstructed datasets in between.

To ensure that a correct node is selected as leader after (at
most) f + 1 rounds, all previously selected leaders of the
last f rounds are not allowed to become leader in the current
round. Since malicious nodes do not know how a revealed or
reconstructed commitment of a correct node influences future
random beacon values, they cannot precompute future random
values once a correct node has been selected. Moreover, correct
participants agree on a single history after a correct node is
selected as leader, because correct leaders are assumed to build
on top of a single dataset and never sign different datasets in
the same round. The correct node hence acts as a barrier, since
all future values cannot be predicted by the attacker after this
point. Therefore, unpredictability is ensured with certainty for
any round after f + 1 rounds in the future. By leveraging the
properties of the underlying PVSS scheme public-verifiability
is established. Details and proofs regarding these properties
are presented in the section VIII.

To bias the resulting sequence of random beacon values, a
malicious leader could try to construct and send different
commitments and hence different datasets to participating
nodes or selectively withhold information. Such a construction
necessitates some form of (Byzantine) consensus protocol for
participants to reach agreement upon either the existence of
a single, valid commitment or that the leader was faulty. In
this respect HydRand leverages on its intended application as
a continuous random beacon by reducing the communication
overhead of Byzantine agreement (BA) that would be incurred
at each round through bundling messages. Specifically, Hy-
dRand implements its own variation of a Byzantine agreement
protocol that defers consensus decisions for up to f + 1
rounds and combines information from multiple instances of
consensus that are executed with every consecutive new round
in the HydRand protocol. Thereby, the overall communication
(bit) complexity of comparable PVSS based random beacon
schemes is reduced from O(n3) to O(n2) as HydRand only
requires a single PVSS share distribution and potentially a
single PVSS recovery per round. Still the protocol outputs a
new random beacon value once per round, because these values
are not dependent on immediate agreement on the protocol
state.

III. CRYPTOGRAPHIC PRIMITIVES

In this section, we briefly outline cryptographic primitives
that we rely on in the design of HydRand. Whenever we
refer to the term hash function we imply a cryptographically
secure variant. Merkle trees, and Merkle inclusion proofs, first
described by R. Merkle [16], are used to cryptographically
verify that a particular share was previously included in a
commitment without having to resend the entire commitment.

A. Publicly-Verifiable Secret Sharing

We use publicly-verifiable secret sharing (PVSS) as a primary
building block in the HydRand protocol. More specifically, we
make use of Schoenmakers’ PVSS scheme [20], which allows
a node (dealer) to efficiently share a secret value s ∈ Zq among
a set of n recipients, such that any subset of size ≥ t of these
nodes is able to recover / reconstruct the value Gs ∈ Gq .
We follow Schoenmakers’ notation, where the prime number q
denotes the order of a group Gq in which the discrete logarithm
is hard, whereas G and g are two independent generators of this
group. The value of the reconstruction threshold t is set in a
way that does not enable a colluding adversary to successfully
recover a shared secret without requiring the collaboration of
at least one correct node, i.e. t = f + 1. A key property
of a publicly-verifiable secret sharing protocol is that, upon
receiving the secret shares, not only the recipients but any
third party with access to the public keys of the participants
can verify the correctness of the shares prior to reconstruction
of the secret. We use the term PVSS commitment, denoted by
Com(sd), to refer to the result of the share distribution process
of Schoenmakers’ PVSS. To form a PVSS commitment, a
dealer d provides:

• encrypted shares for a secret sd, i.e. one encrypted share
Yi for each node i encrypted by the receiver’s public key

• commitments C0, C1, ..., Ct−1 to the coefficients of the
underlying polynomial

• a non-interactive zero-knowledge (NIZK) proof ensuring
the correctness of the encrypted shares

For additional details we refer to [20].

IV. SYSTEM AND THREAT MODEL

We assume a fixed set of known participants, hereby referred
to as nodes, of size n = 3f + 1, of which at most f nodes
may exhibit Byzantine failures and can deviate arbitrarily from
the specified protocol. A node is considered to be correct if
it does not exhibit any incorrect behavior during the entirety
of the protocol execution, else it is considered to be faulty.
The terms Byzantine or malicious are used synonymous to
refer to faulty nodes. The set of nodes is denoted by P =
{1, 2, ..., n} and each node i ∈ P is assumed to have a private
/ public key pair 〈ski, pki〉 known to all other participants. We
assume a synchronous system model with a fully connected
network of authenticated and reliable bidirectional point-to-
point messaging channels.

V. BLACKBOX CONSTRUCTION

Before introducing a detailed description of the HydRand
protocol, we highlight the general idea of the protocol design
by using a black-box construction. Hereby, we rely on a
Byzantine agreement (BA) protocol abstraction instead of our
BA approach described later. Other synchronous BA protocols
that fit well into our continuous agreement setting, such as
the recently proposed protocol in Abraham et al. [1], can be
considered as suitable instantiations3.

3When using the BA protocol from [1], HydRand can theoretically also
work in a n = 2f+1 setting. However, this leads to a trade-off between fault
tolerance and communication (bit) complexity, as their BA protocol requires
each node to broadcast a message of size O(n) during the notify step, while
in our protocol (in a n = 3f + 1 setting) messages that are sent from all
nodes to all nodes are always of constant size.

By leveraging on a BA abstraction, we can obtain a basic
HydRand variant as follows. For the setup phase we use BA
to agree on an initial set of commitments of all nodes, as well
as the initial leader. Each following protocol round consists of
four steps.

1) The (agreed) random beacon value from the previous
round deterministically selects the current rounds leader.

2) The leader reveals his previously shared secret and runs
Schoenmakers’ PVSS protocol to commit to a new ran-
domly choosen secret. The leader broadcasts a message
m with the shared secret as well as the new commitment
to all nodes.

3) All nodes run an instance of BA to agree on the contents
of the broadcasted message (i.e. on v = H(m)) or on the
fact that the leader did not broadcast a correct message
(i.e. on m = ⊥).

4) If the nodes decide on some v = H(m) the current
leader’s commitment is accepted and it can be selected as
leader again after f rounds. Furthermore the new random
beacon value is obtained by combining the revealed share
with the previous random beacon value. Otherwise, the
nodes start the recovery procedure according to Schoen-
makers’ PVSS and still obtain the random beacon value.
In this case, the current leader must not be selected as
leader in any future round.

The above protocol achieves agreement in each round due to
the BA protocol used in step 3. It can be observed that a
round’s result does not (immediately) depend on whether or
not a leader as revealed his previously shares secret v = H(m)
or not v = ⊥, as the secret obtained by reconstruction
is equivalent. This decision on whether a not a node has
published a new commitment only effects the random beacon
after f additional rounds. At the point the set of potential
leaders, and thus the next selected leader, depends on whether
or not to include the current leader into this set. Using this fact
in combination with the stronger assumption of n ≥ 3f+1, we
in the following show how to build a more efficient protocol,
which does not require a full BA instance at each round, but
instead delays the decision for (at most) f + 1 rounds.

VI. DETAILED PROTOCOL

The protocol proceeds in rounds. Each round r ≥ 1 consists
of three phases: propose, acknowledge and vote. Further, each
round has an associated (randomly selected) leader `r ∈ P ,
denoted by ` if r is clear from the context.

In each round, `r is selected uniformly at random from the set
of all nodes, which have not been selected as leader during
the last f +1 rounds. The detailed leader selection mechanism
is described in section VI-D. At the end of each round all
nodes learn a new random beacon value Rr. For simplicity, we
hereby assume that the correct nodes agree on the first random
beacon value R0 used to select the leader of round 0 as well
as the set of initial commitments of all nodes. Ro becomes
public knowledge only after the set of initial commitments
was defined during setup 4.

To simplify our notation we assume that a node or leader,
which broadcasts a message is also recipient of that message.

4In practice this initial random value can be obtained via Proof-of-Delay [9]
or a Proof-of-Work [3].

TABLE I. USED VARIABLES AND SYMBOLS

Symbol Description

f Number of Byzantine nodes
n Number of all nodes, defined as n = 3f + 1

t Reconstruction threshold for PVSS, defined as t = f + 1

i Some or any node as defined by context

H(·) Cryptographic hash function
〈ski, pki〉 Private / public keypair of node i

〈m〉i Some message m signed using the secret key ski of node i

|| String / list concatenation

r, k, x Some round as defined by context
Dx Dataset of some round x

x̂ Previous round of round x, such that there exists a valid dataset for
round x̂

Dx̂ Previous dataset referenced in dataset Dx

H(Dx) Hash of the header(Dx)

P Set of all nodes (processes), P is of size n

Px Set of available nodes for some round x, i.e., set of all nodes excluding
recovered nodes till round x

Lx Set of potential leaders for some round x , i.e., set of all nodes
excluding recovered nodes till round x and excluding nodes that have
been selected as leader within the last f rounds

q Order of group Gq according to Schoenmaker’s PVSS
Gq Some group in which the discrete log problem hard
g,G Two independent generators for the group Gq

d Some node acting as dealer for PVSS
sd Underlying secret value, a dealer wants to share with PVSS, sd ∈ Zq

Com(sd) PVSS commitment to the value sd, includes commitments to the
coefficients of the underlying polynomial, encrypted shares and a
NIZK correctness proof.

Gsd Result of the reconstruction process for a commitment Com(sd)

C0 Commitment to the value of the first coefficient C0 = gsd , part of
Com(sd), used for verification of sd

Yi Encrypted share for node i, part of Com(sd)

Si Decrypted share for node i, result of decrypting Yi using i’s private
key

` The leader of the current round r

`x The leader of round x

s` The current leader’s previously committed secret value.
s?` The current leader’s new randomly selected secret value.

Com(s`) The current leader’s previous commitment
Com(s?`) The current leader’s new commitment

Rx The randomness of round x, defined as Rx ← H(Rx−1 || Gs`x)

CC(Dx) The commit certificate of dataset Dx that contains at least f+1 valid
confirmation messages.

RC(x) The recovery certificate of round x that contains at least f + 1 valid
recover messages.

Mx Root of a Merkle tree for the shares Y1, Y2, ..., Yn for `x’s com-
mitment Com(s`x) in round x

Mx[Yi] Merkle branch for Yi, showing that Yi is under the Merkle root Mx

Similarly, the dealer in the PVSS protocol provides a share for
himself. We denote a cryptographic signature on a message m
by 〈m〉i, where i denotes the node signing the message with
its private key ski. We further assume, that all correct nodes
discard invalidly signed messages and process only messages
for the round and phase it is currently working on. For an
overview of all used variables and symbols see table II.

A. Phase: Propose

During this phase the round’s leader reveals his previously
committed value s` and provides a new commitment Com(s?`).
For this purpose, it is the leader’s task to propose a new dataset
Dr for the current round r. A dataset Dr consists of two parts,

TABLE II. MESSAGE SUMMARY AND MESSAGE FORMATS

Message Description〈
propose, 〈header(Dr)〉`, body(Dr)

〉
`

The message that is broadcasted by correct leaders in the propose phase of each round.〈
〈acknowledge, r,H(Dr)〉i, 〈header(Dr)〉`

〉
i

The message that is broadcasted by corrects nodes that received a valid propose messages from the leader of the current
round. Broadcasting this messages ensures that the leader cannot equivocate.〈

confirm, r,H(Dr))
〉
i

The message that is broadcasted by corrects nodes that received 2f +1 valid acknowledge messages from other nodes
during this round. Any node which received f + 1 of these messages can construct a valid confirmation certificate for
round r.〈

〈recover, r〉i, s`, Com(s`)[Si], Yi,Mk[Yi]
〉
i

The message that is broadcasted by correct nodes that did not receive a valid propose message from the leader at the
beginning of this round. Any node which received f +1 of these messages can reconstruct a valid recovery certificate
for round r.

a header and a body, where the hash of the header is simply
denoted by H(Dr) and serves as a way to authenticate the
integrity of a particular dataset. The header header(Dr) of
dataset Dr contains:

• the current round index r
• the rounds random beacon value Rr

• the revealed secret value s`
• the most recent round index r̂ for which `r is in pos-

session of a valid dataset Dr̂, as well as a confirmation
certificate CC(Dr̂) for this dataset. In the first round of
the protocol, this value is set to r̂ = 0 since no such
dataset can exist

• the hash H(Dr̂) for the referenced dataset Dr̂ if r̂ > 0
• a list of random beacon values {Rk, Rk+1, ...]} for all

recovered rounds between r̂ and r such that r̂ < k < r
• coefficient C0 of the new commitment Com(s?`), which

allows for later verification of s?`
• the Merkle tree root hash Mr over all encrypted shares

in the new commitment Com(s?`) (see the definition of
the body below)

The body body(Dr) of dataset Dr contains:

• the commitment Com(s?`) to a new randomly chosen
secret s?`

• a confirmation certificate CC(Dr̂), which confirms that
Dr̂ was previously accepted as valid dataset

• a recovery certificate RC(k) for all rounds k ∈ {r̂+1, r̂+
2, ..., r − 1}, which confirms that there exists a recovery
for all rounds between r̂ and r. If r̂ = r−1 then no such
intermediate round exists and this value is omitted.

A correct leader ` broadcasts a signed propose message〈
propose, 〈header(Dr)〉`, body(Dr)

〉
`

to all nodes.

Each node i, that receives a dataset Dr from the leader before
the end of the propose phase, checks the validity of this dataset.
For this purpose i verifies that Dr is constructed as defined
and properly signed. This includes a check that the revealed
secret s` corresponds to the commitment Com(s`) submitted
previously by the current leader.

Additionally the validity of the confirmation and recovery
certificates is checked. A confirmation certificate for dataset
Dr̂ is valid iff it consists of f + 1 signed messages of the
form 〈confirm, r̂,H(Dr̂)〉i from f + 1 different senders.

Similarly, a recovery certificate for some round k is a collec-
tion of f + 1 signed messages of the form 〈recover, k〉i from
f + 1 different senders. The leader selects r̂ as the highest
possible round index for which he is only in possession of a

valid confirmation certificate CC(Dr̂) but does not know a
recovery certificate RC(q).

B. Phase: Acknowledge

If a node i receives a valid dataset Dr from the
round’s leader `r during the propose phase, it con-
structs and broadcasts a signed acknowledge message〈
〈acknowledge, r,H(Dr)〉i, 〈header(Dr)〉`

〉
i
, thereby also

forwarding the revealed secret value s`. Further, each node
i collects and validates acknowledge messages from all nodes.

C. Phase: Vote

Each node i checks the following conditions:

• During the current propose phase a valid dataset Dr was
received.
• During the current acknowledge phase ≥ 2f+1 acknowl-

edge messages from different senders have been received.
• All of those messages acknowledge the received dataset’s

hash5 H(Dr).

If all conditions are met, node i broadcasts a
signed confirmation message 〈confirm, r,H(Dr)〉i
Otherwise node i, broadcasts a recover message〈
〈recover, r〉i, s`, Com(s`)[Si], Yi,Mk[Yi]

〉
i

Here,
Com(s`)[Si] denotes i’s decrypted share Si and its share
decryption proof according to Schoenmakers’ PVSS, which
cryptographically proves that Si is a valid decryption of Yi

under i’s secret key. Round k denotes the round in which `
has provided the commitment Com(s`) and a Merkle tree
root hash Mk. The Merkle branch Mk[Yi] proofs that the
encrypted share Yi was previously distributed as part of
Com(s`) and therefore also of Dk. The values Yi and Mk[Yi]
are required to enable nodes which are not in possession of
Com(s`) to verify the share decryption proof for Si.

Correct nodes always include values for s` and
Com(s`)[Si], Yi,Mk[Yi] if they are in possession of the
required data. Otherwise the unknown value(s) are omitted.
Upon receiving recovery messages from other nodes, correct
nodes accept messages with omitted values. This is not a
problem since the protocol ensures that there are always at
least f + 1 correct nodes that have received the dataset with
a valid confirmation certificate, and hence can provide the
shares necessary for reconstructing the secret of the respective
dataset. For an example see section VII.

5Valid acknowledge messages for more than one value of H(Dr) form a
cryptographic proof of leader equivocation. E.g. in a Proof-of-Stake setting,
the protocol might be extended such that this equivocation proof in used to
seize the security deposit of the leader.

At the end of this phase each node i can obtain the round’s
random beacon value Rr. We distinguish two cases: (i) node
i already knows the secret value s`, because it received the
dataset Dr or an acknowledge message for Dr, and (ii) node
i has received at least f + 1 valid recover messages which
include at least f + 1 decrypted secret shares for s`. In this
case the reconstruction procedure of Schoenmakers’ PVSS can
be executed to produce the value Gs` . In both cases Rr is then
obtained by computing:

Rr ← H(Rr−1 || Gs`) (1)

D. Leader selection

At the beginning of each round r ≥ 1, a node i determines the
round’s leader `r based on the available local information it
gathered so far. For this purpose node i uses the randomness
Rr−1 of the previous round to deterministically select `r from
the set Lr of potential leaders.

We denote the canonical representation of Lr as
〈l0, l1, ..., l|Lr|−1〉 and obtain `r as follows:

`r ← l(Rr−1 mod |Lr|) (2)

Let Dr̂ denote the most recent valid dataset, for which node
i is not in possession of a corresponding recovery certificate
RC(r̂). If no such dataset exists6 we set r̂ = 0. Now we
introduce a method to determine recovered nodes rn(·) as a
component needed for the definition of Lr. Intuitively, the set
defined by rn(·) contains all nodes, which have not provided
valid datasets for some round where the node has been selected
as leader. We define the set of all leaders which have been
recovered in some round up to a referenced dataset as follows:

rn(Dx) =

{
∅ if x̂ = 0

{`k | RC(k) ∈ Dx} ∪ rn(Dx̂) otherwise
(3)

Here Dx̂ denotes the previous dataset referenced by Dx. This
function is used to construct the set of available nodes Pr for
round r recursively by excluding all nodes which have been
selected as leader in a round for which a valid reconstruction
certificate exists:

Pr = P \ rn(Dr̂) (4)

Based on this notion, the definition of the set of potential
leaders Lr for round r follows:

Lr = Pr \ {`r−f , `r−f+1, ..., `r−1} (5)

Intuitively, the set Lr only includes nodes, which have not been
selected as leader for at least f rounds in the past and have
not been reconstructed in any previous round, i.e., distributed
valid datasets for all rounds in which they have been selected
as leader.

6In this scenario all rounds since protocol start can be recovered.

VII. EXAMPLE PROTOCOL EXECUTION

Figure 1 shows four rounds of an example execution of the
HydRand protocol in a setting of f = 2 byzantine nodes.
We assume that the leaders in this specific execution got
selected randomly as described in section VI-D. The sequence
of leaders in this example execution includes a worst case
scenario, where f succinct leaders come from the set of
byzantine nodes (nodes n3 and n4), followed by a correct node
and then again the first byzantine node (n4).

r0

propose

acknowledge

vote

1 2 3 4 5 6 7

r1

r2

r3

propose

acknowledge

vote

propose

acknowledge

vote

propose

acknowledge

vote

byzantine
node

node selected leader
node

valid confirmation
certificate for round

valid recovery certificate for round
secret of this round was reconstructed

Fig. 1. Example execution of four rounds of the HydRand protocol with
n = 3f + 1 = 7.

Round 0: In this execution the first node that is selected
as the leader (i.e., node n4) belongs to the set of byzantine
nodes. This leader selectively sends a propose message only
to a subset of correct nodes. In our case the nodes n5, n6

and n7. Moreover, the byzantine nodes n3 and n4 only send
acknowledge messages to nodes n5, n6 and n7. After that
phase, the byzantine node n3 sends a recover message to the
nodes n1 and n2.

This leads to a situation where the correct nodes n5, n6 and
n7 receive f + 1 acknowledge messages. Therefore, those
nodes (n5, n6 and n7) broadcast confirm messages which
together form a valid confirmation certificate of size f + 1
known to every node. Further, the nodes n1 and n2 as well as
the adversary are in possession of a valid recovery certificate
RC(0), as nodes n1, n2 and n3 sent a recover messages.

Round 1: The next node (n3) that gets selected as leader is
also in the set of byzantine nodes and does not broadcast any
message in this case. Therefore, the secret value of the rounds
leader `1 gets reconstructed in the vote phase and all nodes
are only in possession of a reconstruction certificate RC(1)
for this round.

Round 2: The leader of this round (n5) belongs to the set of
correct nodes and has received f+1 confirm messages in round
0. However, node n5 is not in possession of a valid recovery
certificate since he has only received a recover message from
node n1 and n2 but not from node n3. Therefore, it proposes
a new dataset D2 containing a valid confirmation certificate
CC(D0) for round 0 as well as a recovery certificate RC(D1)
for round 1 by broadcasting a corresponding message.

After receiving the propose message, all correct nodes, includ-
ing n1 and n2, are safe to assume that at least f + 1 correct
nodes are in possession of dataset D0 and hence accept this
rounds new dataset D2 containing CC(D0). This holds true,
even for nodes n1 and n2 although they have not received
dataset D0.

If node n1 or n2 would have been selected, then they would
have constructed a dataset D2 that contains a valid recovery
certificate RC(0) for round 0 as well. In that case the nodes
n5, n6 and n7 would have thrown away their dataset D(0).

Round 3: In this round node n4 is again selected as leader.
This is valid since f + 2 rounds have passed since this node
has been selected as leader. Therefore, at least one correct
node was selected as leader in between - in this case node
n5. Since there is no recovery certificate RC(2) for round 2
available. All further leaders have to include the confirmation
certificate CC(D2) for round 2 to extend upon the chain of
valid datasets. Otherwise their datasets would not be valid and
rejected by all correct nodes. Therefore, all nodes including
node n4, have to accept the view of node n5 in this case.

In our example, node n4 tries to stall the protocol by selectively
releasing a new dataset D3 only to the nodes n3, n4, n5 and n6.
But since those nodes are not able to reach the required number
of 2f + 1 acknowledge messages, no correct node will send
a confirmation message in the last phase of this round. As a
result all correct nodes will send reconstruct messages leading
to a total of 2f + 1 reconstruct messages, which is clearly
enough for a reconstruction certificate and to reconstruct the
secret Gs`3 of the rounds leader `3 = n4.

Note that, although possible, the PVSS reconstruction of the
secret would not be necessary here, since in this example
the leader selectively sent out a new dataset and therefore
revealed the secret to at least one correct node. Per definition,
correct nodes broadcast the revealed secret in their acknowl-
edge messages. Therefore, all other correct nodes receive the
revealed secret s`3 in this round even if they have not received

the dataset D3 directly and therefore they send out recover
messages in the vote phase.

VIII. PROTOCOL PROPERTIES

In this section, we show that HydRand achieves the de-
sirable properties of a random beacon protocol as outlined
in section I: liveness, unpredictability, bias-resistance, and
public-verifiability. We furthermore show that our protocol also
achieves uniform agreement.

Lemma 1. (Possibility of construction of valid datasets) For
each round r a correct leader `r can construct a valid dataset
Dr.

Proof: Since we are in a fully synchronous setting, we
assume a correct leader always knows the round number r.
Further, a correct leader is in possession of its own secret
s` and thus knows Rr. Furthermore, the leader can always
construct a new PVSS commitment for a new secret Com(s?`)
and is able to provide valid values for Mr and C0. Therefore,
it only remains to show that each correct node is able to
provide the required confirmation certificate CC(·) (and its
round number) and recovery certificates RC(·). During the
vote phase of all previous rounds, all correct nodes either
broadcast a recover or confirm message. As there are at least
2f +1 correct nodes, each node receives at least f +1 recover
messages or at least f +1 confirm messages (or both) for each
of these rounds. As f + 1 recover messages form recovery
certificate and f + 1 confirm messages form a confirmation
certificate, each node is in possession of a recovery certificate
or a confirmation certificate (or both) for each previous round,
and is therefore able to provide the required certificates for
Dr.

Lemma 2. (No recovery of correct leaders) If the leader `r is
correct, there does not exist a node i, which is in possession
of a valid recovery certificate RC(r).

Proof: A correct leader `r sends valid proposal Dr to all
nodes during the propose phase. By lemma 1, `r can always
construct such a dataset. As all correct nodes consider Dr as
valid, at least 2f + 1 nodes broadcast acknowledge messages
for Dr during the acknowledge phase. All 2f + 1 correct
nodes therefore receive 2f+1 valid acknowledge messages for
Dr. As there cannot exist a valid acknowledge for a different
dataset D′r (because the leader only provided his signature for
Dr) all correct nodes broadcast confirm messages during the
vote phase. As correct nodes only broadcast either confirm or
recover messages, there are at most f recover messages (from
Byzantine nodes). A valid recovery certificate RC(r) however
requires at least f + 1 recover messages from different nodes,
and therefore cannot exist.

Lemma 3. (Availability of leaders) For each round r ≥ 1,
the set of potential leaders Lr contains at least f + 1 correct
nodes.

Proof: We first show that for each round r, the set of
available nodes Pr contains at least 2f + 1 correct nodes. By
definitions 3 and 4, we have that only leaders `k for some
round k, in which a recovery certificate RC(k) exists, are
excluded from the set P to form Pr. As we have shown in
lemma 2 there are no recovery certificates for rounds with
correct leaders. Therefore correct nodes cannot be excluded

from P to form Pr, and thus Pr contains at least 2f + 1
correct nodes.

Using the above result and definition 5, which excludes at most
f + 1 nodes from Pr to form Lr, Lr contains at least f + 1
correct nodes.

Lemma 4. If a correct node knows the random beacon value
Rr−1, it can output the random beacon value Rr by the end
of round r (independent of the actions of the round’s leader
`r).

Proof: Following lemma 3 we guarantee the existence
of a leader `r. Since `r ∈ Lr and Lr ⊂ Pr, we know that
`r ∈ Pr. By applying definition 4 we get `r 6∈ rn(Dr̂). This
means that there exists some history of datasets with head Dr̂

in which there does not exist a recovery certificate RC(k) for
any round k < r̂ in which `r was also leader. Such a history for
any valid dataset Dk can only exist if at least one correct node
confirmed that Dk was correctly distributed and acknowledged
by 2f + 1 nodes by providing a confirm message. Hence, at
least f + 1 correct nodes know a common dataset Dk for
all rounds k where `r was previously selected as leader. In
addition all nodes know the shares for `r’s first commitment
provided (and agreed upon) during the protocol setup. Thus at
least f+1 correct nodes can (and will) broadcast the decrypted
share in case a recovery of the leader `r in round r is necessary.
Hence all nodes learn the value Gs` corresponding to `r’s
last commitment Com(s`), and thus obtain Rr using Gs` and
Rr−1 via definition 1.

Theorem 1. (Liveness / Guaranteed Output Delivery) For each
round r correct nodes output a new random beacon value Rr.

Proof: We use lemmas 3 and 4 and proof the theorem by
induction on the round index r. For the base case we have an
agreed random beacon value R0 as given by the protocol setup.
For the induction step, we assume that Rr−1 is known by all
correct nodes. Lemma 3 ensures that the set of potential leaders
Lr contains at least f + 1 correct nodes. Therefore, definition
2 can always be applied to selected a leader `r using Lr and
Rr+1. Hence, we can use lemma 4, to show that by the end
of round r each correct node outputs a value Rr.

Lemma 5. (Selection of correct leaders) In each interval
{k, k + 1, k + 2, ..., k + f} of f + 1 consecutive rounds there
is at least one round k̂ ∈ {k, k + 1, k + 2, ..., k + f} such that
the leader `k̂ of that round is correct.

Proof: We assume that there is no correct leader in
{`k, `k+1, `k+2, ..., `k+f} and derive a contradiction. We apply
the definiton of the set of potential leaders for round k + f :

Lk+f = Pk+f \ {`k, `k+1, ..., `k+f−1}

Notice that {`k, `k+1, ..., `k+f−1} denotes a set of f Byzantine
nodes. As there are only f Byzantine nodes in total, Lr+f

cannot contain any Byzantine nodes. However, the Byzantine
node `k+f is leader of round k+f and therefore `k+f ∈ Lk+f ,
which completes the contradiction.

Lemma 6. (Agreement on potential leaders) If a node con-
structs a valid set of potential leaders Lr in round r then
every correct node constructs the same value for Lr.

Proof: Using lemma 5, for the interval {r − f − 1, r −
f, ..., r−1}, we know that there is some round r̂ with a correct

leader `r̂ in this interval. Using lemma 1, we know that `r̂
is able to construct a valid dataset Dr̂ in round r̂. As `r̂
is correct, it has distributed this dataset to all nodes during
the propose phase of round r̂. All correct nodes therefore
acknowledge Dr̂ in the acknowledge phase of round r̂. Since
there are at least 2f + 1 correct nodes, all correct nodes
receive at least 2f + 1 valid acknowledge messages for Dr̂

by the end of the acknowledge phase. No node can receive a
valid acknowledge for some different dataset D′r̂, because the
correct leader `r̂ does not provide a signature for a different
value. Therefore, all correct nodes broadcast confirm messages
for Dr̂. As all correct nodes broadcast either one confirm or
one recovery message, there are at most f recover messages
(by Byzantine nodes). Therefore, there is no valid recovery
certificate RC(r̂) for round r̂. Thus, any valid future dataset
needs to (indirectly) reference the common and unique dataset
Dr̂. Consequently, we established agreement on Dr̂ and its
common history provided by the references to the predecessor
datasets.

As the set of available nodes Pr̂ for round r̂ is defined using
only the agreed set of all nodes P and Dr̂, Pr̂ is also agreed
upon. Since the definition of Lr does not depended on whether
or not leaders are recovered during the rounds {r− f, r− f +
1, ..., r−1} and r̂ ≥ r−f−1 agreement on the set Lr follows.

Theorem 2. (Uniform Agreement) If a node outputs a valid
random beacon value Rr in round r then every node that
outputs a valid beacon value in round r outputs the same Rr.

Proof: We proof the theorem by induction on the round
index r. For the base case we have an agreed common random
beacon value R0 as given by the protocol setup.

For the induction step, we assume that every node that outputs
a valid beacon value in round r − 1 output the same Rr−1.
We have agreement on Rr−1 by the induction hypothesis and
shown agreement on the set of potential leaders Lr in lemma
6. As the leader selection mechanism given in definition 2
only depends on those two argument, all correct nodes agree
on a common unique leader `r. By applying lemma 4 we
obtain that each correct nodes learns the leader’s previously
commited secret Gs` . By either checking the revealed value
of s` against the leaders commitment7 or verifiying the validity
of the share decryption proof accoring to Schoenmakers’ PVSS
description [20], uniqueness of a valid Gs` and consequently
Rr is ensured.

Theorem 3. (Unpredictability) At the beginning of round r,
no node can predict the outcome Rr+f of the random beacon
protocol in round r + f .

Proof: By applying lemma 5 we know that there is at least
one correct leader during the interval of the f + 1 consecutive
rounds {r, r+1, r+2, ..., r+f}. Let k denote any round during
this interval in which the leader `k is correct. As `k follows
the protocol, it has not distributed the its secret value s`k to
any node at the beginning of round r. Additionally no correct
nodes does provide a decrypted secret share, which could be

7It is sufficient to compare coefficient C0, a part of the PVSS commitment
Com(s`), to the value of gs` , where g denotes one of the generators used
in the PVSS scheme by Schoenmakers. The value of s` is valid if and only
if C0 = gs` holds.

used for the recovery process of the secret value. Therefore
only f secret share are available to Byzantine nodes which try
to recover the secret in order to compute Rk (and potentially
consecutive random beacon values). However, the protocol
defines the reconstruction threshold t used by the PVSS
scheme to be f + 1. Therefore, an adversary cannot obtain
the underlying secret before it is revealed or recovered during
round k. Consequently, Rk and all consecutive random beacon
values (including Rr+f) are unpredictable at the begining of
round r.

Theorem 4. (Bias-Resistance) No node i can, for any round
r, influence the value Rr of the random beacon protocol in a
meaningful (i.e. predictable) way.

Proof: This property follows from unpredictability and
the fact that the protocol is constructed in a way that ensures
that any action a (Byzantine) nodes takes in some round r,
can only influence the value of the random beacon at round
r+f+1 or later. In theorem 3 we have shown that the random
beacon value at round r + f is unpredictable at the beginning
of round r. Therefore, a (Byzantine) node cannot influence the
random beacon values for rounds r to r + f , and may only
influence values at round r+f +1 or later in an unpredictable
manner.

Theorem 5. (Public-Verifiability) For each round r, an exter-
nal verifier can check the correctness of the random beacon
value Rr, at the end of round r.

Proof: The external verifier v asks any correct node (i.e.
at most f +1 nodes) to provide its history up to and including
round r. Then v can, by following the protocol rules, obtain
the same random beacon value Rr if and only if the provided
history is correct. Additionally, any dataset Dr and a its
confirmation certificate CC(Dr) allow an external verifier to
obtain and check the random beacon value for round r and all
rounds k ∈ {r̂ + 1, r̂ + 2, ..., r − 1}.

IX. COMPARISON OF RANDOM BEACON PROTOCOLS

In this section, we provide an overview regarding the char-
acteristics of various random beacon protocols. Thereby, we
focus on designs that are suitable as building blocks in (PoS)
blockchain protocols. For the sake of comparison, we are also
include Proof of Work (PoW) and its iterated variant [10] in
the given table. Simply speaking, a random beacon value via
iterated PoW is computed by repeated hashing of a PoW block
hash. Hereby, the number of iterations is set such that a miner
cannot bias the random beacon value before the successor
blocks are found with high probability.

The underlying models, assumptions, notations as well as
the context may differ from protocol to protocol. Therefore,
comparing existing approaches in this field is a non trivial
task. We performed the hereby presented comparison to the
best of our knowledge and explicitly state whenever we have
not been able to pinpoint certain properties or had to estimate
them. Table III presents a first step towards comparing current
approaches. A property prop is marked as uncertain using
the notation ∼prop if we have not been able to fully assess
the property using the available information. For cells marked
with ’?’ we cannot provide an adequate evaluation due to
a lack of available information. The symbol ! is used to

describe that a property is fulfilled, whereas % refers to
unfulfilled properties. Additionally, we use (!) to indicate that
a property is achieved with probabilistic guaranties or over
time. Further information on specific properties is indicated
using the notation prop(1−11). For the complexity evaluations,
n refers to the number of participants in the network, and c
describes the size of the subset used in the specific protocol.
Notice that c is different depending on the protocol. In
the following, we provide additional details in regard to the
assessment provided in table III:

(1) In Algorand, a custom communication model is specified
in great detail. Although synchrony is assumed to some
extent by using time bounds, other protocols have stronger
synchrony requirements.

(2) The authors of the RandShare, RandHound and RandHerd
protocols explicitly state asynchronous communication
only for their RandShare protocol. However, the author’s
statement “The client chooses a subset of server inputs
from each group, omitting servers that did not respond
on time or with proper values [...]” [21] indicates that the
communication model for RandHound is synchronous.

(3) The exact probability is configurable as a protocol param-
eter. The given value represents a suggestion by the by
the respective authors.

(4) Liveness in the asynchronous communication model is
only achieved after a barrier point. Whether or not this
point is reached depends on the outcome of a Byzantine
agreement protocol, which RandShare uses as a subpro-
tocol [21].

(5) Due to a lack of information, we can only estimate
the communication complexity. Assuming that the only
communication strictly necessary to produce the random
beacon values is the broadcast of partial signatures, which
each member of the correct group has to perform, the
complexity O(cn) can be derived. This estimate excludes
further potential messages exchange required for Dfinity’s
group setup.

(6) Using the optimization of Schoenmakers’ PVSS proposed
by the authors of the Scrape protocol, the complexity can
be further reduced by a factor of n.

(7) Again using Scrape’s optimization, the complexity can
be reduced. Since the PVSS protocol is executed among
a subset of participants, a reduction by a factor of c is
possible.

(8) The computation complexity is not dependent on the
number of participants and therefore is O(1). However,
as PoW is inherently computation intensive, the notation
of O(1) would be misleading compared to other schemes.

(9) HydRand reaches unpredictability with absolute certainty
after f+1 rounds in the future. Before that point, the pro-
tocol can only provide unpredictability with increasingly
high probability.

(10) For Algorand, bias-resistance is not achieved because the
corresponding leader selection algorithm does not ensure
leader uniqueness. Further, malicious leaders can selec-
tively withhold values to bias the produced randomness.

(11) According to our interpretation, RandHerd’s communi-
cation complexity O(c2 log n) is stated per server only.
Therefore, this value is not comparable to the other ap-
proaches, which consider the communication complexity
of the overall system.

TABLE III. COMPARISON OF RANDOM BEACON PROTOCOLS

C
om

m
un

ic
at

io
n

m
od

el

L
iv

en
es

s
/

Fa
ilu

re
pr

ob
ab

ili
ty

C
om

m
.c

om
pl

ex
ity

(o
ve

ra
ll

sy
st

em
)

U
np

re
di

ct
ab

ili
ty

B
ia

s-
R

es
is

ta
nc

e

C
om

p.
co

m
pl

ex
ity

(p
er

pa
rt

ic
ip

an
t)

V
er

ifi
ca

tio
n

co
m

pl
ex

ity
(p

er
ve

ri
fie

r)

C
ha

ra
ct

er
is

tic
cr

yp
to

gr
ap

hi
c

pr
im

iti
ve

(s
)

Algorand syn.(1) 1e−12(3) ? (!) %(10) ? ∼O(1) unique signatures
Dfinity ? 1e−17 ∼O(cn)(5) ! ! ? ∼O(1) BLS signatures
RandShare asyn. %(4) O(n3) ! ! O(n3)(6) O(n3)(6) PVSS
RandHound ∼syn. (2) 0.08% ∼O(c2n) ! ! ∼O(c2n)(7) ∼O(c2n)(7) PVSS & CoSi
RandHerd ∼syn. (2) 0.08% ?(11) ! ! O(c2 log n) O(c2 log n) PVSS & CoSi
Ouroboros syn. ! O(n3) ! ! O(n3)(6) O(n3)(6) PVSS
Scrape syn. ! O(n3) ! ! O(n2) O(n2) PVSS
PoW syn. ! O(n) (!) % very high(8) O(1) hash function
PoW iterated syn. ! O(n) ! ! very high(8) very high(8) hash function
HydRand syn. ! O(n2) (!)(9) ! O(n2)(6) O(n2)(6) PVSS

X. DISCUSSION

For easier comparison and evaluation, HydRand is designed
as stand-alone protocol, but with its applicability in the area
of blockchains in mind. Potential areas of application are seen
as part of future Proof-of-Stake approaches or permissioned
blockchains. A desirable property for random beacons that our
protocol can provide is guaranteed output delivery, i.e., a new
random beacon value is guaranteed to be produced at each
round regardless of the adversary’s actions. This is important
for all application scenarios in which continuous operation is
required and a benefit compared to other commitment schemes,
such as collateral based approaches which cannot guarantee
output deliver at every round.

The main benefit of HydRand, compared to other protocols
in this field, is its low communication complexity of O(n2)
compared to O(n3) of other related schemes. Based on the
message format specified in table VI, we estimated the required
amount of communication for the overall system for n = 100
and n = 250. For n = 100, a typical round without recovery
results in an overall communication amount of ∼ 5.4 MB,
while a round with recovery leads to ∼ 5.6 MB transmitted. In
the scenario of n = 250, the respective values are ∼ 34.0 MB
and ∼ 31.0 MB. This is an important improvement regarding
the practicality of such approaches, and a further step towards
their wide deployment in applications. Compared to the BA
protocol from [1], our protocol makes a trade-off in favor
better communication complexity while requiring a stronger
fault tolerance assumption (n ≥ 3f + 1). We achieve this
by shifting the transmission of messages of size n to the
leader and use cryptographically signed conformation/recovery
certificates to converge on a history of datasets. Messages sent
by all nodes are always of constant size. Moreover, the protocol
does not force immediate agreement on whether or not a new
commitment was submitted by a selected leader. Instead, the
protocol guarantees that upon every correct node being selected
as leader, all other nodes converge on one view, i.e., (at most)
after f +1 rounds, while in the meantime the protocols output
is independent of the exact state of the nodes.

A. Future work

A promising approach for improving the scalability of Hy-
dRand to a larger number of participating nodes desirable in a
permissionless setting, is to divide the overall number of nodes
into different subsets/quorums. Although such an approach
has been briefly indicated in [15], it was not further outlined
and evaluated in the paper. For future work we consider a
quorum based variant of HydRand, that only provides strong
probabilistic guarantees but is able to scale to a very large
number of nodes. The core modification is that leaders only
provide shares for a subset of nodes. This subset is randomly
selected for each leader based on the randomness produced by
the protocol. Also during reconstruction, only members of the
respective quorum (which was previously selected to receive
the commits) are required to broadcast messages for recon-
struction. Since the quorum sizes and reconstruction thresholds
of the PVSS instances can potentially be much smaller than the
total number of nodes (effective constant), the scalability and
efficiency is hereby markedly improved. The design of such an
approach would require an alternative agreement mechanism
within the quorums and careful optimization of the protocols
parameters for thresholds, quorum sizes and total number
of nodes, such that liveness and unpredictability of random
beacon values can be ensured with high probability.

XI. CONCLUSION

We propose HydRand, a synchronous Byzantine fault tolerant
random beacon protocol that tolerates up to f < 1/3 Byzantine
nodes and show that the protocol achieves liveness, public-
verifiability, bias resistance and unpredictability for all output
values after (at most) f +1 rounds in the future. The presented
protocol is designed for stand-alone usage, but it could also
find utility in the context of current and future (PoS) and
permissioned blockchain protocols. Furthermore, we provide
the first step towards a systematization of novel random beacon
proposals, which enables researchers to compare current as
well as future designs objectively with each other. Thereby,
we show that the HydRand protocol poses an improvement
regarding performance and scalability in respect to comparable
random beacon solutions.

REFERENCES

[1] I. Abraham, S. Devadas, D. Dolev, K. Nayak, and L. Ren. Efficient
synchronous byzantine consensus. Cryptology ePrint Archive, Report
2017/307, 2017. Accessed:2018-02-07.

[2] N. Atzei, M. Bartoletti, and T. Cimoli. A survey of attacks on Ethereum
smart contracts. In International Conference on Principles of Security
and Trust, pages 164–186. Springer, 2017. Accessed: 2017-08-30.

[3] I. Bentov, A. Gabizon, and D. Zuckerman. Bitcoin beacon.
https://arxiv.org/pdf/1605.04559v2, 2016. Accessed: 2016-06-06.

[4] I. Bentov, R. Pass, and E. Shi. Snow white: Provably secure proofs of
stake. https://eprint.iacr.org/2016/919.pdf, 2016. Accessed: 2016-11-08.

[5] M. Blum. Coin Flipping by Telephone A Protocol for Solving Impos-
sible Problems. ACM SIGACT News, 15(1):23–27, 1983. Accessed:
2017-08-30.

[6] D. Boneh, C. Gentry, B. Lynn, and H. Shacham. Aggregate and
Verifiably Encrypted Signatures from Bilinear Maps. In Eurocrypt,
volume 2656, pages 416–432. Springer, 2003. Accessed: 2017-08-20.

[7] D. Boneh, B. Lynn, and H. Shacham. Short Signatures from the Weil
Pairing. Advances in CryptologyASIACRYPT 2001, pages 514–532,
2001. Accessed: 2017-08-20.

[8] J. Bonneau, J. Clark, and S. Goldfeder. On Bitcoin as a public
randomness source. IACR Cryptology ePrint Archive, 2015:1015, 2015.
Accessed: 2017-08-22.

[9] B. Bunz, S. Goldfeder, and J. Bonneau. Proofs-of-delay and randomness
beacons in Ethereum. In S&B ’17: Proceedings of the 1st IEEE Security
& Privacy on the Blockchain Workshop, April 2017. Accessed: 2017-
08-21.

[10] B. Bünz, S. Goldfeder, and J. Bonneau. Proofs-of-delay and randomness
beacons in ethereum. 2017.

[11] I. Cascudo and B. David. Scrape: Scalable randomness attested by
public entities. http://eprint.iacr.org/2017/216, 2017. Accessed: 2017-
03-24.

[12] J. Chen and S. Micali. Algorand. arXiv preprint arXiv:1607.01341,
2017. Accessed: 2017-08-20.

[13] Dfinity Stiftung. Threshold Relay: How to Achieve Near-Instant Finality
in Public Blockchains using a VRF, 2017. Accessed: 2017-08-20.

[14] T. Hanke, M. Movahedi, and D. Williams. Dfinity technology overview
series consensus system, Jan 2018.

[15] A. Kiayias, A. Russell, B. David, and R. Oliynykov. Ouroboros: A
provably secure proof-of-stake blockchain protocol, 2016. Accessed:
2017-02-20.

[16] R. C. Merkle. A digital signature based on a conventional encryption
function. In C. Pomerance, editor, Advances in Cryptology — CRYPTO
’87, pages 369–378, Berlin, Heidelberg, 1988. Springer Berlin Heidel-
berg.

[17] S. Micali. Byzantine agreement, made trivial.
https://people.csail.mit.edu/silvio/SelectedApr 2017. Accessed:2018-
02-21.

[18] S. Nakamoto. Bitcoin: A Peer-to-Peer Electronic Cash System, 2008.
Accessed: 2017-20-08.

[19] M. O. Rabin. Transaction protection by beacons. Journal of Computer
and System Sciences, 27(2):256–267, 1983.

[20] B. Schoenmakers. A Simple Publicly Verifiable Secret Sharing Scheme
and its Application to Electronic Voting. In Annual International
Cryptology Conference, pages 148–164. Springer, 1999. Accessed:
2017-08-20.

[21] E. Syta, P. Jovanovic, E. K. Kogias, N. Gailly, L. Gasser, I. Khoffi, M. J.
Fischer, and B. Ford. Scalable Bias-Resistant Distributed Randomness.
In Security and Privacy (SP), 2017 IEEE Symposium on, pages 444–
460. IEEE, 2017. Accessed: 2017-08-20.

