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Abstract. One of the main challenges that hinder further adaption of decentralized cryptocurrencies
is scalability. Because current cryptocurrencies require that all transactions are processed and stored on
a distributed ledger – the so-called blockchain – transaction throughput is inherently limited. An im-
portant proposal to significantly improve scalability are off-chain protocols, where the massive amount
of transactions is executed without requiring the costly interaction with the blockchain. Examples of
off-chain protocols include payment channels and networks, which are currently deployed by popular
cryptocurrencies such as Bitcoin and Ethereum. A further extension of payment networks envisioned
for cryptocurrencies are so-called state channel networks. In contrast to payment networks that only
support carrying out off-chain payments between users, state channel networks allow execution of arbi-
trary complex smart contracts. The main contribution of this work is to give the first full specification
for general state channel networks. Moreover, we provide formal security definitions and develop secu-
rity proofs showing that our construction satisfies security against powerful adversaries. An additional
benefit of our construction over most existing payment networks is the use of channel virtualization,
which further reduces latency and costs in complex channel networks.

1 Introduction

In recent years we have witnessed a growing popularity of distributed cryptocurrencies such as Bitcoin [23] or
Ethereum [33]. These systems enable pseudonymous online payments, cheap remittance and many novel ap-
plications such as smart contracts, which allow mutually distrusting parties to engage in complex agreements.
The underlying main innovation of these currencies is a consensus mechanism that allows special parties –
the miners – to maintain the so-called blockchain. The blockchain is an append-only ledger on which the
transactions of the system are stored, and whose entire content is publicly available, and is checked for con-
sistency by the miners. As the name suggests, blockchain is a chain of data blocks (containing transactions),
that are created by the system at some rate. Unfortunately, blockchain-based systems currently face inherent
scalability challenges that significantly hinder further adaption. Since each transaction that is processed via
the network has to be stored on the blockchain, there is a fundamental limit on how many transactions
can be processed per second. For instance, in Bitcoin with its 1MB block size, and a block creation rate of
approx. 10 minutes, the network is currently limited to process up to 7 transactions per second [5].

A natural solution to this problem is to increase the block size, or the block creation rate, but even with
these changes it is unlikely that blockchain-based cryptocurrencies can reach the efficiency of centralized
payment systems, e.g., the VISA network processes during peak times more than 50,000 transactions per
second [5]. Notice that already at the current transaction rate the blockchain in Bitcoin grows by approxi-
mately 5 GB every month – reaching over 150GB in February 2018. Because all miners need to replicate and
verify the entire transaction history, it will be extremely costly to maintain such a system in the long run.

The scalability problem is further amplified by “microtransactions”, which is one of the expected “killer
applications” when blockchain-based currencies go mainstream [32]. Microtransactions allow users to transfer
very small amounts of money, typically less than 1 cent, and can enable many novel business models, e.g.,
fair sharing of WiFi connection, or devices paying to each other in the “Internet of Things”. Besides the
scalability issues that are further amplified by microtransactions, there are also several other challenges
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that need to be addressed by blockchain-based cryptocurrencies before they can handle massive volumes of
microtransactions. First, in many settings microtransactions have to be executed instantaneously (e.g., in the
application of sharing the WiFi connection, or when a user wants to read an article on a news webpage). With
state-of-the-art cryptocurrencies this is however not possible because current systems require significantly
more time to confirm transactions, e.g., in Bitcoin confirmation takes at least around 10 minutes4. Secondly,
and more importantly, when miners process transactions, they can ask for fees. While initially the fees in
major cryptocurrencies were relatively low, they are expected to raise when millions of transactions compete
for the scarce source of fast processing. Once these fees surpass the actual value assigned to a transaction,
micropayments become much less attractive – something which we also witness for traditional online payment
systems via credit cards or PayPal. Both systems do not offer real microtransactions due to their fee structure,
e.g., PayPal asks for at least 30 cents for each transaction.

Payment and state channels. One prominent tool for addressing the above challenges is the so-called payment
channel [4]. Payment channels allow two users to rapidly exchange money between each other without sending
transactions to the blockchain. This is achieved by keeping the massive bulk of transactions off-chain, and
using the blockchain only when parties involved in the payment channel disagree, or when they want to close
the channel. Because off-chain transactions can always be fairly settled by the users via the blockchain, there
is no incentive for them to disagree, and hence honest behavior is enforced. In the normal case, when the two
parties involved in the payment channel play honestly and off-chain transactions never hit the blockchain
before the channel is closed, payment channels significantly improve on the shortcomings mentioned above.
They reduce transaction fees, allow for instantaneous payments and limit the load put on the blockchain.

The concept of payment channels has been extended in several directions. One of the most important
extension is the so-called payment network, which enables users to route transactions via intermediary hubs.
To illustrate the concept of a payment network, suppose that P1 has a payment channel with P2, and P2

has a payment channel with P3, while P1 and P3 are not directly connected via a channel on the ledger.
A channel network allows P1 to route payments to P3 via the intermediate P2 without the need for P1 and
P3 to open a channel between each other on the ledger. This reduces the on-chain transaction load even
further. An example of such a network using the concept of hash-locked transactions has been designed and
implemented by Poon and Dryja over Bitcoin [26]. In a hash-locked based channel network each transaction
that is sent from P1 to P3 is routed explicitly via P2 – meaning that P2 confirms that the transaction can
be carried out between P1 and P3. For further details on hash-locked transactions, we refer the reader to,
e.g., to the description of the Lightning network [26] and to Appendix A.

A further generalization of payment channels are state channels [1], which radically enrich the function-
ality of payment channels. Concretely, the users of a state channel can, besides payments, execute entire
complex smart contracts described in form of self-enforcing programs in an off-chain way. Examples of use
cases for state channels are manifold and include contracts for digital content distribution, online gaming or
fast decentralized token exchanges. Probably the most prominent project whose final goal is to implement
state channels over Ethereum is called Raiden [30], but currently it only supports simple payments, and a
specification of protocols for full state channel networks has not been provided yet. The main contribution of
this work is to address this shortcoming and provide the first construction for building general state channel
networks of arbitrary complexity. We next provide further background on state channels and virtual payment
channels. A detailed discussion of relevant related work is given in Section 1.2.

State channels. At an informal level, a state channel between two parties Alice and Bob provides a method
to implement a “simulated 2-party blockchain supporting contracts” in the following sense. Alice and Bob
who established a state channel between each other can maintain a “simulated transaction ledger” between
themselves and perform the blockchain transactions on it “without registering them on the real blockchain”.
This happens as long as the parties do not enter into a conflict. The security of this solution comes from the
fact that at any time parties can “register” the current off-chain state of the channel on the real blockchain,
and let the blockchain fairly finish the execution of the contract. At a technical level, state channels (and

4 This is reduced in other cryptocurrencies such as Ethereum, or in Bitcoin via zero-confirmation transactions.
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in fact also payment channels) are implemented using smart contracts. That is, during channel opening the
parties deploy a special “channel contract” on the blockchain, which handles fair settlement during channel
closing. Concretely, the users of the channel can at any point in time send their latest state to the channel
contract. In case when two (possibly malicious) parties send conflicting states to the channel contract, the
logic of the contract will select the latest state on which both users have agreed on.

Virtual payment channels. Recently, in [10] Dziembowski et al. show how a payment channel contract
can be extended to offer a more efficient alternative to hash-locked transactions to connect two payment
channels. To this end, the authors introduce a new concept called channel virtualization, where two parties
can open a virtual channel over two “extended payment channels” running on the ledger5. In contrast to
connecting payment channels via hash-locked transactions, virtual payment channels have the advantage
that the intermediate hub that connects the two extended payment channels on the ledger (in the above
example party P2) does not need to confirm each transaction routed via him. As argued in [10], virtual
channels can further reduce latency and fees, while at the same time improving availability.6 To distinguish
the standard channels from the virtual ones, the former ones are also called the ledger channels.

Let us explain the idea of [10] in more detail since our construction will also use the concept of channel
virtualization. Consider the example already mentioned above, where P1 and P3 are not connected by a
ledger payment channel, but each of them has an extended ledger payment channel with an intermediary
called P2. The technique of [10] allows P1 and P3 to establish a virtual payment channel with the help of P2

but without touching the blockchain. More importantly, once the virtual channel is established, P1 and P3

can carry out transactions using the virtual channel without interacting with the intermediate P2. In this
work, we will rely on the idea of channel virtualization from [10], but significantly extend this concept by
introducing full virtual state channel networks of arbitrary length.

1.1 Our contribution

Our main contribution is to design protocols for building state channel networks that (i) allow users to run
arbitrary smart contracts off-chain, and (ii) can be established between any number of intermediates. To the
best of our knowledge this is the first time that these two goals have been achieved simultaneously. Below we
provide further details on our contributions. We give a high-level overview of our construction in Section 2.

Constructing state channel networks. In this paper we construct a system of virtual state channels of arbitrary
length, i.e., channels that generalize the construction of [10] in the following sense. Suppose we have m parties,
P1, . . . , Pm and there is a ledger state channel between each pair (Pj , Pj+1) of them. Our construction allows
to create a virtual state channel between P1 and Pm with P2, . . . , Pm−1 acting as intermediaries. This is
done in such a way that each party can be guaranteed that, no matter how the other parties behave, she will
not lose her coins locked in the channel. In particular whatever an intermediary Pj has to pay to Pj+1 (as
a result of the execution of our protocol), she is aways ensured to get back the same amount of coins from
Pj−1.

A core contribution of our work is a modular way of constructing state channel networks. To this end,
we follow a recursive approach where virtual state channels are built recursively on top of ledger or other –
already constructed – virtual state channels. Concretely, if Alice has a ledger/virtual state channel α with
the intermediate Ingrid, and Ingrid has a ledger/virtual state channel β with Bob, then our system enables
Alice and Bob to build a virtual state channel γ over the channels α and β. Later, γ may be used to construct
higher-level virtual state channels where either Alice or Bob may act as an intermediate. An example of our
recursive approach involving 6 parties is shown in Figure 1, and a high-level description is given in Section 2.

5 Concretely, the contract representing the extended payment channel offers additional functionality to support
connecting two ledger payment channels.

6 Availability is improved because payments via the virtual channel can be completed even if the interemdiate is
temporarily off-line.
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Modeling state channel networks and security proofs. In addition to designing protocols for state channel
networks, we develop a UC-style “state channel theory” – inspired by the universal composability framework
introduced in the seminal work of Canetti [6]. To this end, similarly to [10], we model money via a global ledger
ideal functionality L and describe novel ideal functionalities for state channel networks that provide an ideal
specification of our protocols. Using our abstract model, we formally prove using the simulation paradigm
that our protocols satisfy this ideal specification. Notice that this implies that our protocols satisfy the same
security guarantees as offered by our ideal specification given by the ideal functionalities. Key challenges of
our analysis are a careful study of timings that are imposed by the processing of the ledger, and the fact
that we need to guarantee that honest parties will never lose money even if all other parties collude and are
fully malicious.

We emphasize that in the context of cryptocurrencies, a sound security analysis is of particular importance
because security flaws have a direct monetary value and hence, unlike in many other settings, are guaranteed
to be exploited. The later is, e.g., illustrated by the infamous attacks on the DAO [29]. Thus, we believe that
before complex off-chain protocols are massively deployed and used by potentially millions of users, their
specification must be analyzed using formal methods as done in our work using UC-style proofs.

P1 P2 P3 P4 P5 P6

γ1

γ3

γ4

γ2

Fig. 1: Example of a recursive construction of a virtual state channel γ4 (of length 5) between P1 and P6. A virtual
state channel between P1 and P2 will be denoted by P1 ↔ P2 and a ledger state channel between them will be denoted
by P1 ⇔ P2. To build P1 ↔ P6, we first create a virtual state channel γ1 := P1 ↔ P3 using ledger state channels
P1 ⇔ P2 and P2 ⇔ P3. Then a virtual state channel γ2 := P4 ↔ P6 is created using ledger state channels P4 ⇔ P5

and P5 ⇔ P6. The other virtual state channels are created recursively, as follows: channel γ3 := P1 ↔ P4 is created
using the virtual state channel γ1 and the ledger state channel P3 ⇔ P4, and channel γ4 := P1 ↔ P6 is created using
virtual state channels γ3 and γ2.

Key features of our construction. We highlight some of the key features of our proposal. An important
property of our construction and our model is that we support full concurrency. That is, we allow several
virtual state channels to be created simultaneously over the same ledger state channels, and allow parties
to be involved in several concurrent executions of (possibly complex) contracts. This is possible because our
ledger state channels can store and execute several contracts “independently”. Our UC-style security model
in which we analyze the security of our protocols also takes into account full concurrency.

Another important feature of our construction is the use of channel virtualization inspired by [10]. Besides
the fact that channel virtualization reduces latency, fees and improves availability (as mentioned already
above) it has the advantage that it naturally allows for building channels via multiple (possible incompatible)
cryptocurrencies. For illustration, consider Alice having a ledger state channel with Ingrid in cryptocurrency
A, and Bob having a ledger state channel with Ingrid in cryptocurrency B. Now, Alice and Bob can build
a virtual state channel over Ingrid, where Alice (resp. Bob) is oblivious of the details of cryptocurrency B
(resp. cryptocurrency A). This helps to improve interoperability between multiple blockchain-based systems.

Finally, we point out that our concept of higher-level channel virtualization has the key feature that it
adds further “layers of defense” against malicious parties before honest users need to communicate with the
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blockchain. Consider for example the situation shown in Figure 1. Even if P6 and the intermediary P4 in the
virtual state channel γ4 are corrupt, then P1 can resolve possible conflicts via the intermediary P3 using the
virtual state channel γ1, i.e. P1 does not need to communicate with the ledger.

Optimistic vs. pessimistic execution times. While constructing our protocols we will be providing the “opti-
mistic” and “pessimistic” execution times. The “optimistic” ones refer to the standard case when all parties
behave honestly. In the optimistic case all our protocols allow for instantaneous off-chain contract execution,
and delay depends only on the latency of the network via which parties communicate. The “pessimistic”
case corresponds to the situation when the corrupt parties try to delay the execution as much as they can by
forcing contract execution on the blockchain. While we did not attempt to optimize the pessimistic timings
in our protocols, we emphasize that even the pessimistic execution times grow only linear with the number
of intermediates involved. We leave it as an important direction for future work to fine-tune our construction
to further optimize the optimistic and pessimistic timings.

1.2 Further related work

Related work on payment channels. One of the first proposals for building payment channels is due to
Decker [9], who in particular also introduced a construction for duplex payment channels (i.e., channels
where payments can flow in both directions between Alice and Bob). Today, the most widely discussed
proposals for extending payment channels towards channel networks are Lightning over Bitcoin and Raiden
over Ethereum. Both of them are routing payments using the interactive mechanism based on the hash-locked
transactions (we explain the main ideas of this mechanism in Appx. A). For Bitcoin there have been multiple
implementations of the Lightning protocol including the Eclair implementation or an implementation from
Lightning labs. For the Raiden network the developers currently focus on building a fully functional payment
channel system under the name Raiden Minimum Viable Product [30].

An alternative proposal for payment channel networks has been proposed by Miller et al. [22]. In this
work, the authors show how to reduce the pessimistic timings from linear time to constant time, i.e., the
pessimistic time is independent of the length of the channel path. It is an interesting question for future
work to combine the techniques from [22] with the channel virtualization of [10]. Other approaches focus
on privacy in channel networks, path finding or money re-balancing in payment channels [20, 28, 15]. In
particular, [22, 20, 10] also provide a UC-based security analysis of their constructions.

Channel constructions based on the sequence number maturity (that we also use in this paper) have been
mentioned already in [26], and recently described in more detail (as “stateful duplex off-chain micropayment
channels”) by Bentov et al. in [3]. We notice that version numbering only works in cryptocurrencies with
contracts that can keep state such as offered by the Ethereum network.

Payment channels bare some resemblance with the credit networks prominently used by the cryptocur-
rency Ripple (see, e.g., [13]). In contrast to payment networks, credit networks have the advantage that
parties involved in the network do not need to lock money. On the downside credit networks only rely on
trust relationships between the parties, and hence honest parties may loose money in the worst case. Another
idea to address some of the shortcomings of payment channel systems – in particular for implementations
over Bitcion – is the use of “trusted computing environments” [19].

Finally, other micropayment systems that have been proposed in the literature use, e.g., probabilistic
payments (see [31, 27, 21, 25]).

State channel networks. In contrast to payment channel networks there has been only little work on state
channels. To the best of our knowledge, currently the company Counterfactual [8] is independently also
building generalized state channel networks. We are in contact with Counterfactual and planing future
collaboration to further improve our construction and move state channel networks closer to practice.

2 Overview of our virtual state channel construction

Before we proceed to the technical part of this work, let us give an intuitive explanation of our virtual
state channel construction. We would like to emphasize that the description of our approach as presented
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in this section is very simplified and excludes many important technicalities. Formal definitions, detailed
explanations of our protocols and their full description will be presented later in this work.

Let us start by briefly describing the functionality of ledger state channels and what guarantees they
provide to their users. Two parties can create a ledger state channel by agreeing on a special smart contract
on the blockchain in which each party locks some amount of coins. We call this smart contract state channel
contract (SCC). Once the ledger state channel is successfully created and funded, parties can trade (create
contracts in the channel and execute their functions) off-chain, i.e. without talking to the blockchain. The
state channel contract on the blockchain guarantees that if something goes wrong during the off-chain trading
(parties disagree on a state of some contract, one of the parties stops communicating, etc.), parties can always
fairly resolve their disagreement and continue trading via the state channel contract on the blockchain.

From now on we will assume that ledger state channels exist and we will explain how we can use them to
construct a virtual state channel. Due to the complexity of our construction, we will demonstrate the high
level ideas of the construction by taking a look at a concrete example. To this end, let us assume that two
parties, Alice and Bob, want to play some game with each other. Alice and Bob do not want to create a
new ledger state channel to play the game since that would require a new smart contract on the blockchain
which takes time and, in practice, costs a lot of money. Instead, they want to use the existing ledger state
channels they have with a third party, which we call Ingrid, to create a virtual state channel γ. Let α be the
ledger state channel between Alice and Ingrid and let β be the channel between Ingrid and Bob.

Alice and Bob need that the virtual state channel γ has the same functionality and provides the same
guarantees as if it would be a ledger state channel. In particular, Alice and Bob should be allowed to create
a contract in their channel γ and execute its functions just by communicating with each other (i.e. play their
game without talking to any third party or the blockchain). However, if Alice and Bob run into dispute, there
must be a judging mechanism which resolves their dispute such that honest parties never lose money. For
ledger state channels, a state channel contract on the blockchain takes the role of such a judge. The question
is, who provides this guarantee in case of a virtual state channel? Clearly, it cannot be Ingrid, since she might
be corrupt and, for example, collude with Alice or Bob. The main idea is to create a special contract in each
of the ledger state channels α and β. We will call this contract a virtual state channel contract (VSCC)
since it is an analogy of the state channel contract on the blockchain which allows to create ledger state
channels. The virtual state channel contract in α will provide guarantees for Alice and the virtual state
channel contract in β will provide guarantees for Bob. In addition, these two contracts together guarantee
Ingrid that she never loses money because of the channel γ.

Creating the virtual state channel. Let us explain the virtual state channel creation in more detail. The first
thing Alice and Bob have to do is to inform Ingrid about their intention to use her as an intermediary for
their virtual state channel γ. Alice will do so by proposing to open a VSCC instance in the channel α, let
us denote it VSCCA, which will contain all information about the virtual state channel γ (for example, how
many coins each party wants to invest in the channel). In some sense VSCCA can be viewed as a “copy” of the
virtual state channel γ in which Ingrid plays the role of Bob. So, for example, if the initial balance in γ is 1
coin for Alice and 5 coins for Bob, then Alice would lock 1 coin and Ingrid 5 coins in VSCCA. Symmetrically,
Bob will propose a new VSCC instance VSCCB in the ledger state channel β which can be viewed as a “copy”
of the virtual state channel γ in which Ingrid plays the role of Alice. In the example from above, Ingrid would
lock 1 coin and Bob 5 coins in VSCCB . If Ingrid receives both proposals and she agrees to be the intermediary
of the virtual state channel γ, she confirms both requests. See Figure 2 for pictorial explanation of the virtual
state channel construction.

Off-chain contract execution in the virtual state channel. Alice and Bob now have created a virtual state
channel γ which allows them to run contracts off-chain without the need for interacting with the intermediate
Ingrid. Let us take a closer look how the off-chain contract execution is done via the virtual state channel.
To this end, we take a look at an off-chain contract that allows Alice and Bob to play a game. Informally,
one can think of the game contract as a set of rules of the game which should define how an instance of
the game can be setup, what are the allowed moves in the game, how to determine the winner, what is the
price for winning, but also for example what happens if one party stops playing. Alice and Bob first create
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Alice Ingrid Bob

Blockchain

α

VSCCA

β

VSCCB

γ

SCCA SCCB

Fig. 2: Construction of a virtual state channel of length 2. Alice and Ingrid created a ledger state channel α by
agreeing on a state channel contract SCCA which they published on the blockchain. Bob and Ingrid created a ledger
state channel β by agreeing on a state channel contract SCCB which they published on the blockchain. Alice and Bob
created a virtual state channel γ by agreeing with Ingrid on the virtual state channel contracts VSCCA and VSCCB in
the ledger state channels α and β, respectively.

a new instance of the game in their virtual state channel γ. We will call this initial setup of the game the
version 0 of the game instance and denote it G0. Assume that the first move in the game is made by Alice.
She first locally makes the move to obtain the new version of the game instance G1. Then she increases
the version number to 1, signs the pair (G1, 1) and sends the information about her move together with the
signature to Bob. If Bob is honest, he verifies Alice’s signature and checks if her move follows the rules of
the game. Thereafter he signs Alice’s updated version of the game and sends his signature back to Alice.
As long as both Alice and Bob are honest, they can continue playing the game by exchanging signatures on
new versions of the game instance without talking to Ingrid at all. In other words, Alice and Bob are making
changes in the channel γ but they are not updating the “copies” VSCCA and VSCCB accordingly.

We will now explain what happens if Alice and Bob disagree. Let G be the last version of the game
instance both parties agreed on and let v be its version number. Assume that Alice made a move m which
resulted in a new version G̃. Let us consider the situation when Bob is malicious and stops communicating
with Alice, i.e. does not confirm Alice’s move. In this situation, Alice has to make her move “forcefully” via
the virtual state channel contract VSCCA. The first step is to update both “copies” VSCCA and VSCCB such
that they contain the latest version of the game instance both Alice and Bob agreed on, i.e. G. We call this
step, the registration of the game instance and it is realized via a function “Register” in VSCCA and VSCCB .
Let us next provide further details on how the registration works.

Alice executes VSCCA on the function “Register” with the input parameters (G, v, sA, sB), where sA is
her signature and sB is Bob’s signature on (G, v). If both signatures are valid, Alice’s version is stored in
VSCCA (not registered yet) which gives Ingrid a chance to ask Bob for his version of the game instance. She
does so by executing the contract VSCCB on the function “Register” and the input parameters (G, v, sA, sB).
Bob can now submit his version of the game instance, let us denote it (G′, v′, s′A, s

′
B), where again s′A is

Alice’s signature and s′B is Bob’s signature on (G′, v′). If both signatures s′A and s′B are valid, the version
numbers v and v′ are compared. Since in our example we assume Alice to be honest, it must be that v > v′

(Bob submitted an old version of the game) or (G, v) = (G′, v′) (Bob submitted the same version as Alice).
In any case, the contract instance G is registered in VSCCB ; thus, Ingrid can now also finalize the registration
on the channel with Alice accordingly.

After this step, both VSCCA and VSCCB are updated such that they both contain the game instance G.
Alice can now finally make her move m via VSCCA. She does so by executing VSCCA on the function “Execute”
and providing information about her move m as input parameters.

Her request is stored in VSCCA (the move is not made yet) which again gives Ingrid time to first make
the move in VSCCB and then finalize the execution in VSCCA. Since Alice’s move m was according to the
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Alice BobIngrid
α β

γ

G

VSCCA VSCCB

Stored: (G, v)
Registered: %

Stored: (G, v)
Registered: %

Stored: %
Registered: G

Stored: %
Registered: G

Stored: m
Registered: G

Stored: %

Registered: G̃

Stored:%

Registered: G̃

1. Register
(G, v, sA, sB)

2. Register
(G, v, sA, sB)

3. Register
(G′, v′, s′A, s

′
B)4. Finalize

5. Execute
m

6. Execute
m

7. Finalize

Fig. 3: Illustration of the force execution process from our example in which Alice and Bob have a virtual state channel
γ in which they opened a game contract instance. We assume that G is the latest version Alice and Bob agreed on
before Bob stopped communicating. In the picture, we assume that Ingrid is honest, v ≥ v′ and m represents a valid
move of Alice which, when applied to G, results in a new version of the game instance G̃. The symbol “%” denotes
that nothing is stored, resp. registered.

rule of the game, both VSCCA and VSCCB now contain the updated version of the game instance, i.e. G̃. See
Figure 3 for pictorial explanation of the “forceful” execution.

Longer virtual state channels are constructed in a similar way. The difference is that one or both of the
underlying channels are virtual state channels instead of ledger state channels.

3 The model

We follow the model of [10] which is closely related to the one used on works of Kumaresan and Bentov [2,
17, 16, 18] on modeling protocols that operate with coins7 using a synchronous version of the (simplified) UC
framework [6, 7]. More precisely, an n-party protocol π is run between parties P1, . . . , Pn, which are modeled
as interactive poly-time Turing machines (ITMs). We assume that the Pi’s are connected by authentic
communication channels. A protocol is executed in the presence of an adversary A, formally modeled as
an ITM, which can corrupt any party Pi. By this we mean that A takes full control over Pi. Parties and

7 Throughout this work, the word coin refers to a monetary unit.
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the adversary A receive their inputs from the environment Z, formally modeled as a ITM, which represents
anything “external” to the current protocol execution. The environment also observes all outputs returned by
the parties of the protocol. We consider static corruption, i.e., the environment Z can decide at the beginning
of the protocol execution which parties to corrupt via the adversary A. In addition to the above entities, a
protocol can have access to ideal functionalities G1, . . . ,Gm (which are also ITMs), by which we mean that
all entities can interact with them. In this case we say that the protocol works in the (G1, . . . ,Gm)-hybrid
model. One important difference to the standard UC model is that our ideal functionalities (and also parties)
will have to deal with coins. We model this with a special functionality L which we will describe in more
detail below.

Communication model. Since we assume a synchronous communication network, the execution of the protocol
happens in rounds (see, e.g, [11, 12, 24, 14] for a formalization of this model and its relation to the model
with real time). We assume that if in round i a party sends a message to another party, then it arrives to it
at the beginning of round i + 1. The adversary is rushing, i.e., he can decide about the order in which the
messages arrive in a given round.

The parties, the ideal functionalities, the environment and the adversary are always aware of a given round
(in practice one can think of it as equipping them with clocks that are synchronized). Let time := N ∪ {∞}
denote the set of all possible round numbers. Whenever we say that some operation (e.g. delivering a
message or simply staying in idle state) takes time at most τ ∈ time we mean that it is up to the adversary
to decide how long this operation takes (as long as it takes at most τ rounds). For simplicity we assume
that computation takes no time and is “atomic”. The communication between two Pi’s takes one round. All
other communication – in particular, between the adversary A and the environment Z – takes no time.

Handling coins. Following [10], the money mechanics is modeled using a special functionality L that keeps
track on how much money the parties have. In some sense it is similar in spirit to the model of Bentov and
Kumaresan [2] that model money as a special resource, and the money transfers using a special keyword
“coins”. Unlike [2], we define the state of the user’s accounts as an explicit vector of non-negative (finite
precision) real numbers (x1, . . . , xn), where each xi is the amount of coins that Pi has.8 The vector is
maintained by a special functionality L (see Fig. 4) which can be realized by a cryptocurrency, for instance
Ethereum or Bitcoin.

The state of this functionality is public, i.e., P1, . . . , Pn,Z, and A can freely read all its contents. The
functionality L is initiated by the environment Z that can also freely add and remove money in user’s
accounts, via the operations add and remove. The parties P1, . . . , Pn cannot directly perform any such
operations on L. On the other hand, we will have special functionalities that can perform operations on L
(and hence, indirectly, Pi’s can also modify L, in a way that is “controlled” by the special functionalities).
Every time a special functionality issues an add or remove command, this command is delivered to L and
can be delayed by at most ∆ rounds (for some parameter ∆), i.e., the message is given to the adversary who
can decide when it arrives to L (as long as the delay is at most ∆ rounds). Special functionalities with access
to L (that can be delayed by ∆ rounds) will be denoted with a superscript L(∆) (e.g.: FL(∆)).

By saying that a special functionality added y coins to Pi’s account in ledger L (with session id sid)
we mean that the special functionality issued a query (add, sid , Pi, y) to L. Analogously, by saying that a
special functionality removed yi1 , . . . , yit coins from the accounts of Pi1 , . . . , Pit (respectively) in ledger L
(with session id sid) we mean the special functionality issued a query (remove, sid , {(Pij , yij )}ti=1) to L. For
all the above instructions, if L replies with a message (nofunds, sid) then we say that the operation has not
been performed due to insufficient funds.

Execution of ideal/real processes. We now describe the process in the ideal/real world and in particular the
order of activation. In each round of the protocol/real-world execution the environment Z is activated first,
where the environment Z can add/remove coins from the ledger via add and remove instructions. Next, Z
provides inputs for the honest parties and for the adversary. Then, it activates the adversary.

8 This is similar to the concept of a safe of [2].
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Let π be a protocol working in the GL(∆)-hybrid model (where GL(∆) is a special functionality that has
access to the ledger L). The output of an environment Z interacting with a protocol π and an adversary A
on input 1λ and auxiliary input z is denoted as execG

L(∆)

π,A,Z(λ, z). If π is a trivial protocol in which the parties

simply forward their inputs to a special functionality FL(∆), then we will call the adversary a simulator
S and denote the above output as idealFL(∆),S,Z(λ, z). We will sometime refer to parties of such trivial
protocol as to dummy parties. It will also be useful to restrict the power of the environment, so that, e.g,
Z will not be allowed to send some inputs to the honest parties in certain moments. For example Z will
be forbidden to initiate some protocol when the parties do not have enough coins for its execution, or to
instruct one party to start a protocol without instructing the other party to start the protocol as well. In
this case, we will say that Z is from some class of environments Eres . We will formally define the restrictions
that we put on the environment in Appx. B.

Definition 1. Let Eres be some set of restricted environments Z. We say that a protocol π working in a
GL(∆)-hybrid model emulates a special functionality FL(∆) against environments from class Eres if for every
adversary A there exists a simulator S such that for every environment Z ∈ Eres we have

{execG
L(∆)

π,A,Z(λ, z)}λ∈N,z∈{0,1}∗
c
≈{idealFL(∆),S,Z(λ, z)}λ∈N,z∈{0,1}∗ .

Session identifiers. To simplify the exposition, we omit the session identifiers and the sub-session identifiers
(in other works typically denoted with sid and ssid, respectively). Instead, we will use expressions like
“message m is a reply to message m′” (technically, this would be handled by adding the identifiers to the
message). We believe that this approach helps the readability, and does not lead to confusion.

Setup assumptions. To enable a simpler exposition we assume that before the protocol starts the following
public-key infrastructure setup phase is executed by some trusted party: (1) For every i = 1, . . . , n let
(pkPi , skPi)←$KGen(1λ), (2) For every i = 1, . . . , n send (skPi , (pkP1

, . . . , pkPn)) to Pi. The tuple Π :=
(pkP1

, . . . , pkPn) will also be called the public key tuple. We emphasize that the use of a PKI is only an
abstraction, and can easily be realized using the blockchain.

Functionality L

Functionality L, running with parties P1, . . . , Pn and the environment Z, gets as input (x1, . . . , xn) ∈ Rn≥0 (where
R≥0 are finite-precision non-negative reals). It stores the vector (x1, . . . , xn) and accepts queries of following
types:

Adding money

Upon receiving a message (add, sid , Pi, y) from Z (for y ∈ R≥0):

Let xi := xi + y. We say that y coins are added to Pi’s account in L.

Removing money

Upon receiving a message
(
remove, sid , {(Pij , yij )}tj=1

)
(for some t ∈ {1, . . . , n}) and yij ∈ R≥0):

– Check if for every j ∈ {1, . . . , t} we have that xij ≥ yij ; if not then reply with a message (nofunds, sid) and
stop.

– Otherwise for j ∈ {1, . . . , t} let xij := xij − yij . We say that yi1 , . . . , yit coins were removed from the
accounts of Pi1 , . . . , Pit (resp.) in L.

Fig. 4: The ledger functionality L.
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4 Definitions and notation

We assume that all values like real and natural numbers, poly-time computable functions, tuples of values,
etc. are implicitly encoded as binary strings (e.g. when they are sent as messages). We will also use keywords
which (formally) represent some fixed binary strings. We will frequently present tuples of values using the
following convention. The individual values in a tuple T are identified using keywords called attributes:
attr1, attr2, . . .. Strictly speaking an attribute tuple is a function from its set of attributes to {0, 1}∗. The
value of an attribute attr in a tuple T (i.e. T (attr)) will be referred to as T.attr . This convention will allow us
to easily handle tuples that have dynamically changing sets of attributes. For example when we say that “we
add an attribute attr to T and set it to x” it means that T is replaced by T ′ with and additional attribute
attr and T ′.attr = x.

4.1 Contract

In this section we introduce the formal terminology concerning contracts. We consider contracts between
just two parties, as this is the only type of contract that we need in this paper.

A contract storage over a set of parties P is an attribute tuple σ that contains at least the following
attributes: σ.userL, σ.userR ∈ P that denote the users that are involved in the contract storage, σ.locked ∈ R≥0
that denote the amount of coins locked in the contract storage and σ.cash : {σ.userL, σ.userR} → R that
contains information about the amounts of coins that the users have freely available in the contract storage.

A contract type over a set of parties P is a tuple C = (Λ, g1, . . . , gr, f1, . . . , fs), where Λ is a (possibly
infinite) set of contract storages over P called admissible contract storages, g1, . . . , gr are contract constructors
and f1, . . . , fs are contract functions.

Each σ ∈ Λ must be such that σ.locked ≥ σ.cash(σ.userL) + σ.cash(σ.userR). Informally speaking, the
amount coins freely available to the users of the contract storage must be less or equal to the amount of
locked coins in the contract storage. Each gi is a poly-time computable function that takes as input a tuple
(P, τ, z), with P ∈ P, τ ∈ time, and z ∈ {0, 1}∗, and produces as output an admissible contract storage
σ or a special symbol ⊥ (in which case we say that the storage construction failed). Each fi is poly-time
computable function that takes as input a tuple (σ, P, τ, z), with σ being an admissible contract storage,
P ∈ {σ.userL, σ.userR}, τ ∈ time and z ∈ {0, 1}∗, and outputs a tuple (σ̃, addL, addR,m), where σ̃ is an
admissible contract storage, values addL, addR ∈ R≥0 correspond to the amount of coins that were unlocked
from the contract storage to each user, and an output message m ∈ {0, 1}∗ ∪ {⊥}. If the output message is
⊥, we say that the execution failed (we assume that the execution always fails if a function is executed on
input that does not satisfy the constraints described above, e.g., it is applied to σ that is not admissible). If
the output message m 6= ⊥, then we require that the attributes userL and userR in σ̃ are identical to those in
σ. In addition, it must hold that addL + addR = σ.locked − σ̃.locked. Intuitively, this condition guarantees
that executions of a contract functions can never result in unlocking more coins than what was originally
locked in the contract storage.

A contract instance is an attribute tuple ν with attributes storage and type, where ν.type = (Λ, g1, . . . , gr,
f1, . . . , fs) is a contract type, and ν.storage ∈ Λ is a contract storage.

4.2 State channels

We now present our notation for ledger state channels and virtual state channels. It is essentially an extension
of the notation used in [10] for payment channels.

Ledger state channel. Formally, a ledger state channel γ over a set of parties P is defined as an at-
tribute tuple γ := (γ.id, γ.Alice, γ.Bob, γ.cash, γ.cspace). We call the attribute γ.id ∈ {0, 1}∗ the identifier
of the ledger state channel. Attributes γ.Alice ∈ P and γ.Bob ∈ P are the identities of parties using the
ledger state channel γ. For convenience, we define the set γ.end–users := {γ.Alice, γ.Bob} and the function
γ.other–party as γ.other–party(γ.Alice) := γ.Bob and γ.other–party(γ.Bob) := γ.Alice. The attribute γ.cash

11



is a function mapping the set γ.end–users to R≥0 such that γ.cash(T ) is the amount of coins the party
T ∈ γ.end–users has locked in the ledger state channel γ. Finally, the attribute γ.cspace is a partial function
that takes as input a contract instance identifier cid ∈ {0, 1}∗ and outputs a contract instance ν such that
{ν.storage.userL, ν.storage.userR} = γ.end–users. We will refer to γ.cspace(cid) as the contract instance with
identifier cid in the ledger state channel γ.

We also define a function Value which on input ledger state channel γ outputs the sum of coins locked in
the ledger state channel. More precisely, Value(γ) := γ.cash(γ.Alice) + γ.cash(γ.Bob) +

∑
cid∈N

γ.cspace(cid)6=⊥

(ccidL +

ccidR ), where ccidL := σ.cash(σ.userL) and ccidR := σ.cash(σ.userR) for σ := γ.cspace(cid).storage. In order
to update the contract instances off-chain, the users of the ledger state channel will store some additional
information in their local copies of γ. To this end, we introduce the following terminology. A contract instance
version is an attribute tuple ν that in addition to the attributes of contract instance has an attribute
ν.version ∈ N. As the name suggests, the purpose of ν.version is to indicate the version of the contract
instance. When a contract instance is created, each user locally sets the version number of the contract
instance to 0. Each time users want to update the contract instance off-chain, they increase the value of the
version attribute by one. A contract instance version signed by P ∈ P additionally contains an attribute
ν.sign which is a signature of P on (ν.storage, ν.type, ν.version). In case ν.version = 0, we allow ν.sign = ⊥.
An attribute tuple γ is ledger state channel’s private version of a party P if it is defined as the normal ledger
state channel, except that every γ.cspace(cid) is a contact instance version signed by γ.other-party(P ).

Before we introduce the notation for virtual state channels, let us establish one important convention. If
it is not important for the context whether γ is ledger state channel or a virtual state channel, we will refer
to γ as a state channel.

Virtual state channel. Formally, a virtual state channel γ over a set of parties P is defined as a tuple
γ := (γ.id, γ.Alice, γ.Bob, γ.Ingrid, γ.subchan, γ.cash, γ.cspace, γ.length, γ.validity). The attributes γ.id, γ.Alice,
γ.Bob, γ.cash and γ.cspace, are defined as in the case of a ledger state channel. The same holds for the set
γ.end–users and the functions γ.other–party and Value. The new attribute γ.Ingrid ∈ P denotes the identity
of the intermediary of the virtual state channel. The attribute γ.subchan is a function mapping the set
γ.end–users to {0, 1}∗. The value γ.subchan(γ.Alice) (resp. γ.subchan(γ.Bob)) equals the identifier of the state
channel between γ.Alice and γ.Ingrid (resp. γ.Ingrid and γ.Bob). We call the state channels γ.subchan(γ.Alice)
and γ.subchan(γ.Bob) the subchannels of the virtual state channel γ. The attribute γ.validity denotes the
round in which the virtual state channel will be closed. And finally, the attribute γ.length ∈ N>1 refers to
the length of the virtual state channel, i.e., the number of ledger state channels over which it is built. For
example the state channels on Figure 1 (see Page 4) have the following lengths: γ1.length = 2, γ2.length =
2, γ3.length = 3, γ4.length = 5. Sometimes it will be convenient to refer to ledger state channels as to state
channels of length one. Formally, this would require to define ledger state channels such they additionally
contain the attribute length whose only possible value would be 1.

Each entity (ideal functionality or party in a protocol), stores and maintains a set of all state channels it
is aware of. This set will be called channel space and denoted Γ .

4.3 Abbreviated notation

In order to simplify the notation in the description of ideal functionalities and protocols, we fix the following
abbreviated notation. When it is clear from the context which state channel γ we are talking about, we will
denote the parties of the state channel A := γ.Alice, B := γ.Bob and in case γ is a virtual state channel
I := γ.Ingrid. In addition, for a party P ∈ γ.end–users, we will always denote the other end-user of the state
channel by Q, i.e. Q := γ.other–party(P ).

When we want to emphasize that we are referring to a local version of a state channel stored by some
entity T , we add T to the superscript. So for instance, γT := ΓT (id) denotes T ’s local version of the state
channel γ as stored in T ’s channel space ΓT . We also introduce symbolic notation for sending and receiving

messages. Instead of the instruction “Send the message msg to party P in round τ”, we write msg
τ
↪−→ P.
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Instead of the instruction “Send the message msg to all parties in the set γ.end–users in round τ”, we write

msg
τ
↪−→ γ.end–users. By msg

τ←−↩ P we mean that an entity (party in a protocol, ideal functionality, simulator

etc.) receives a message msg from party P in round τ . And we use msg
τ≤τ1←−−−↩ P when an entity receives a

message msg from party P until round τ1.
In the protocols and ideal functionalities, entities will frequently update their local versions of a state

channel stored in their channel space. Therefore, we define two local update procedure which will shorten the
descriptions later in this work. The purpose of the first procedure, LocalUpdate, is to update the contract
instance and automatically adjust money distribution in the state channel. The other procedure, Local

UpdateAdd, also updates the contract instance but in contrast to LocalUpdate it gets the amount of money
that shall be added back to the state channel explicitly in its input.

LocalUpdate(Γ, id , cid, σ̃, C)

Let γ := Γ (id) and σ := γ.cspace(cid).storage. If σ = ⊥, the set (xA, xB) := (0, 0). Else set (xA, xB) :=
(σ.cash(γ.Alice), σ.cash(γ.Bob)). Make the following updates:
1. Add xA − σ̃.cash(γ.Alice) coins to γ.cash(γ.Alice)
2. Add xB − σ̃.cash(γ.Bob) coins to γ.cash(γ.Bob)
3. Set γ.cspace(cid) equal to the tuple (σ̃, C).

Output Γ with the updated contract instance cid in the state channel γ.

LocalUpdateAdd(Γ, id , cid, σ̃, C, addA, addB)

Let γ := Γ (id) and σ := γ.cspace(cid).storage. Make the following updates:
1. Add addA coins to γ.cash(γ.Alice)
2. Add addB coins to γ.cash(γ.Bob)
3. Set γ.cspace(cid) equal to the tuple (σ̃, C).

Output Γ with the updated contract instance cid in the state channel γ.

Analogously, we define both LocalUpdate and LocalUpdateAdd in case a party wants to update the
private extended version of the contract instance. Notice that in this case procedures will take additional
two parameters: the new version number and the signatures created by the parties.

To further simplify the description of the ideal functionalities and the protocols, we will use two “timing
functions” TimeExecute(i) and TimeRegister(i). Informally, these functions represent the maximal number
of rounds it takes to execute/register a contract instance in a state channel of length i > 0. See Section 8.1
for formal definition of these functions.

5 Ideal functionalities for state channels

In this section, we describe the ideal functionality that defines how ledger state channels and virtual state

channels are created, maintained and closed. We denote this ideal functionality FL(∆)
ch (i, C), where i ∈ N

is the maximal length of a state channel that can be opened via the functionality, and C denotes the set

of contract types that can be open in the state channels. The ideal functionality FL(∆)
ch (i, C) communicates

with parties from the set P, it has access to the global ideal functionality L (the ledger). The functionality
maintains a channel space, that we denote Γ , containing all the open state channels. The set Γ is initially
empty.

Since inputs of parties and the messages they send to the ideal functionality do not contain any private
information, we can implicitly assume that the ideal functionality forwards all messages it receives to the
simulator S. More precisely, upon receiving the message m from party P the ideal functionality sends the
message (P,m) to the simulator. The task of the simulator is to instruct the ideal functionality to make
changes on the ledger and to output messages to the parties in the correct round (this depends on the choice
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made by the adversary A in the real world). We will not explicitly mention the instructions for making
changes at the ledger. By saying “wait for at most ∆ rounds to remove/add x coins from P ’s account on the
ledger” we mean that the ideal functionality should wait until it is instructed by the simulator, which will
happen within ∆ rounds, and then request changes of party P ’s account on the ledger.

Below we first present the formal definition of the FL(∆)
ch (i, C) functionality and then explain it informally.

During the high level explanation, we will also informally introduce the restrictions on the environment (see
Section 3) whose full list is given in Appx. B. The constants that appear in the formal description of the
ideal functionality will become clear later in work (see Section 6.2 and Section 8).

Functionality FL(∆)
ch (i, C)

This functionality accepts messages from parties P := {P1, . . . , Pn}. We use the abbreviated notation
defined in Section 4.3.

Create a ledger state channel

Upon (create, γ)
τ0←−↩ A where γ is a ledger state channel:

1. Within ∆ rounds remove γ.cash(A) coins from A’s account on L.

2. If (create, γ)
τ1≤τ0+∆←−−−−−−↩ B remove within 2∆ rounds γ.cash(B) coins from B’s account on L. Then

set Γ (γ.id) := γ, send (created, γ) ↪−→ γ.end–users and stop.

3. Otherwise upon (refund, γ)
>τ0+2∆←−−−−−↩ A, within ∆ rounds add γ.cash(A) coins to A’s account on L.

Create a virtual state channel

1. In this procedure the ideal functionality waits to receive (create, γ) message from all parties in
γ.end–users∪{γ.Ingrid} (the procedure starts when first such a message is received). These messages
are recorded, and additionally the coins from γ’s subchannels are removed according to the following
rules:
– Upon (create, γ)←−↩ P where P ∈ γ.end–users:

If you have not yet received the message (create, γ) from γ.Ingrid, then remove γ.cash(P )
coins from P ’s balance in γ.subchan(P ) and γ.cash(γ.other-party(P )) coins from γ.Ingrid’s
balance in γ.subchan(P ). Otherwise do nothing.

– Upon (create, γ)←−↩ γ.Ingrid, then for both P ∈ γ.end–users:
If you have not yet received (create, γ) from P then remove γ.cash(P ) coins from P ’s
balance in γ.subchan(P ), and γ.cash(γ.other-party(P )) coins from γ.Ingrid’s balance in
γ.subchan(P ). Otherwise do nothing.

2. If within 3 rounds you record (create, γ) from all users in γ.end–users ∪ {γ.Ingrid}, then define
Γ (γ.id) := γ, send (created, γ) ↪−→ γ.end–users and wait for channel closing in Step 4 (in the mean-
while accepting the update and execute messages that concern γ).

3. Otherwise wait till round γ.validity. Then within time TimeRegister(j) + 2 · TimeExecute(dj/2e)
rounds, where j := γ.length, refund the coins that you removed from the subchannels in Step 1.

Close virtual state channel

4. In the round γ.validity + TimeRegister(j) + 2 · TimeExecute(dj/2e) proceed as follows. Let γ̂ be
the current version of the virtual state channel, i.e. γ̂ := Γ (γ.id) and let ĉA := γ̂.cash(A) and
ĉB := γ̂.cash(B).

5. Add ĉA coins to γ.Alice’s balance and ĉB coins to γ.Ingrid’s balance in γ.subchan(γ.Alice). Add ĉA
coins to γ.Ingrid’s balance and ĉB coins to γ.Bob’s balance in γ.subchan(γ.Bob).

6. Erase γ̂ from Γ and send (closed, γ.id) ↪−→ γ.end–users.

Update contract instance
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Upon (update, id , cid, σ̃, C)
τ0←−↩ P :

1. Let γ := Γ (id) and j = γ.length. If P 6∈ γ.end–users then stop.

2. Send (update–requested, id, cid, σ̃, C)
τ0+1
↪−−−→ γ.other–party(P ).

3. Let T = τ0+TimeRegister(j)+1. If (update–reply, ok, id , cid)
τ1≤T←−−−↩ γ.other–party(P ), then set Γ :=

LocalUpdate(Γ, id , cid, σ̃, C) and send (updated, id , cid)
τ1+1
↪−−−→ γ.end–users and stop. Otherwise stop.

Execute contract instance

Upon (execute, id , cid, f, z)
τ0←−↩ P :

1. Let γ := Γ (id) and j = γ.length. If P 6∈ γ.end–users then stop.
2. If j = 1, then set T = τ0 + 4∆+ 5. Else set T = τ0 + 14 · TimeExecute(dj/2e) + 10.
3. In round τ2 ≤ T , let γ := Γ (id), ν := γ.cspace(cid), and σ := ν.storage.
4. Compute (σ̃, addL, addR,m) := f(σ, P, τ0, z). If m = ⊥, then stop. Else set Γ := LocalUpdate

Add(Γ, id , cid, σ̃, ν.type, addL, addR), send (executed, id , cid, σ̃, addL, addR,m)
τ2
↪−→ γ.end–users and

stop.

Close ledger state channel

Upon (close, id)
τ0←−↩ P , let γ = Γ (id). If P 6∈ γ.end–users then stop. Otherwise wait at most 7∆ rounds.

Then distinguish the following two cases:
1. If there exists cid ∈ {0, 1}∗ such that σcid := γ.cspace(cid) 6= ⊥ and σcid.cash(A)+σcid.cash(B) 6= 0,

then stop.
2. Otherwise wait up to ∆ rounds to add γ.cash(A) coins to A’s account and γ.cash(B) coins to B’s

account on the ledger L. Then set Γ (id) := ⊥, send (closed, id)
τ2≤τ0+8∆
↪−−−−−−−→ γ.end–users and stop.

Let us now provide some intuitions behind this definition. The FL(∆)
ch (i, C) functionality consists of two

“state channel opening” procedures: one for ledger state channels and one for virtual state channels. The
ledger state channel opening procedure starts with a “create” message from A (without loss of generality we
assume that A always initiates the opening process). As a result of this, the functionality removes the coins
that A wants to deposit in the ledger state channel from A’s account on the ledger, and waits for B to also
declare that he wants to open the ledger state channel. If this happens within time ∆ then also B’s coins
are removed form the ledger and the ledger state channel is created (which is communicated to the parties
with the “created” message), otherwise A can get her money back by sending a “refund” message.

The opening procedure for virtual state channel γ works slightly differently since its effects are visible on
the subchannels of γ. It works as follows. The intention to open γ is expressed by P ∈ γ.end–users∪{γ.Ingrid}
by sending a “create” message to the functionality. Once such a message is received from P , the coins that
are needed to create γ are locked immediately on both sides of the subchannel, i.e. if P ∈ γ.end–users sends
the “create” message then also the money of γ.Ingrid is locked in her state channel with P (and symmetrically
when γ.Ingrid sends the “create” message). If the functionality receives the “create” messages from all three
parties, then the virtual state channel is created, which is communicated to γ.end–users by the “created”
message. Note that γ.Ingrid does not receive this message, since she does not need to know whether γ has been
created or not (as she is not going to perform any operations on this virtual state channel). After the virtual
state channel is created γ.end–users can use it until time γ.validity. When this time comes, the parties initiate
the closing procedure that has to end in time at most γ.validity+ TimeRegister(j) + 2 ·TimeExecute(dj/2e).
The functionality then looks at the last version of γ and distributes the coins in the subchannels of γ
according to it.

In both cases (“ledger” and “virtual”) we assume that all the honest parties involved in state channel
opening initiate the procedure in the same round and that they have enough funds for the new state channel.
In case of a virtual state channel, we additionally assume that the lengths of subchannels differ at most by
one. All these assumptions are formally modeled by restricting the environment, see Appx. B.
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The procedure for updating a contract instance is identical for ledger and virtual state channels (this
procedure is also used for creating new contract instances). It is initiated by a party P ∈ γ.end–users that
sends an “update” message to the ideal functionality. This message has parameters id and cid that identify
a state channel γ and a contract instance in this state channel (respectively). The other parameters, σ̃ and
C, denote the new storage and type of the contract instance with identifier cid in γ. Party Q confirms the
update with an “update-reply” message that has to reach the ideal functionality within time T (which is
a function of state channel length, see Step 3.). If the update is confirm, then the contract instance with
identifier cid in γ gets replaced with a contract instance determined by σ̃, C (if no such contract instance
existed before then it gets created). We assume (see Appx. B) that the environment never asks the parties
to do obviously illegal things, like updating a state channel that does not exits, creating a contract instance
when there are not enough coins in the subchannels. Also, changing a type of a contract instance is not
permitted. Moreover, we assume that the environment never asks to update a contract instance when it is
already being updated or executed 9 and, for reasons that will be explained later in the work (see Section 8),
we allow only one contract instance to be created in a virtual state channel.

The procedure for executing a contract instance is initiated by one of the parties P ∈ γ.end–users that
sends an “execute” message to the ideal functionality. This message has parameters id and cid whose meaning
is as in the update procedure. Other parameters are: f denoting the function to be executed, and z which is
an additional input parameter to the function f . The execution results in updating the contract instance with
identifier cid according to the result of computing f(σ, P, τ0, z), where τ0 is the round when the “execute”
message was received, and σ is the current storage of the contract instance. Observe that this storage can
be different than the storage in round τ0. This can sometimes result in a situation when two executions of
a contract instance, happening one after another, will have “reversed” information about the rounds. More
precisely: the first execution will assume that the current round is τ10 , and the second one will assume that
it is τ20 with τ20 < τ10 . The users of our protocol should be aware of this asynchronicity when designing the
contracts. The restrictions on the environment in case of the contract instance execution are straightforward.
In particular, as before, we assume that a given contract instance has to exist.

The procedure for closing a ledger state channel γ starts when a party P ∈ γ.end–users sends to the ideal
functionality a message (close, id) (where id is the identifier of γ). The functionality checks (in Step 1) if
there are no contract instances that are open over γ. If not, then in Step 2 the functionality distributes the
coins from γ to parties’ ledger accounts according to γ’s latest balance, removes the ledger state channel
from Γ , and communicates to the parties that the ledger state channel has been closed. We assume that
Z only asks to close the ledger state channels (as the virtual ones are closed “automatically”) and that γ
exists.10

5.1 Modular approach

Before we define a protocol realizing the ideal functionality FL(∆)
ch (i, C), let us give a short overview of our

approach.

We will first define an ideal functionality FL(∆)
scc (C) which models the behavior of a concrete smart

contract, which we call state channel contract, on a blockchain that allows two parties to open, maintain
and close a ledger state channel. The ideal functionality is parametrized by the set of contract types whose
instances can be opened in the ledger state channels created via this ideal functionality. The ideal functionality

FL(∆)
scc (C) together with the ledger functionality L can be implemented by a cryptocurrency which supports

such a state channel contract on its blockchain (a candidate cryptocurrency would be, e.g., Ethereum).
As already mentioned in Section 1.1, our technique allows to create virtual state channels of arbitrary

length, via applying the state channel functionality recursively. This will be modeled by constructing our
protocols in the “hybrid model”, i.e., a protocol for constructing state channels of length up to i (in other

9 Although we forbid parallel updates of the same contract instance, we do not make any restrictions about parallel
updates of two different contract instances even if they are in the same ledger state channel. This in particular
means that we allow concurrent creation of virtual state channels.

10 We say that a state channel γ exists if the environment received the message (created, γ) but not yet (closed, γ.id).
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words: a protocol realizing functionality FL(∆)
ch (i, C)) will work in a model with access to an ideal functionality

for constructing state channels of length up to i−1. More formally, for every i > 1 we will construct a protocol

Π(i, C) in the FL(∆)
ch (i− 1, C′)-hybrid world, where C′ is a set of contract types defined as C′ := C ∪VSCCi(C),

and VSCCi(C) is a contract type that allows to open a virtual state channel of length i in which contract

instance of type from the set C can be opened. The protocol Π(1, C) realizing FL(∆)
ch (1, C) will be constructed

in the FL(∆)
scc (C)-hybrid model. This, by applying the composition recursively, will give us a construction of a

protocol realizing the FL(∆)
ch (i, C) functionality in the FL(∆)

scc (Ĉ)-hybrid model (where Ĉ is a result of applying
the “C := C ∪ VSCCi(C)” equation i times recursively). See Fig. 5 for an example for i = 3.

FL(∆)
ch (3, C) ∼ Π(3, C)

FL(∆)
ch (2, C′) ∼ Π(2, C′)

FL(∆)
ch (1, C′′) ∼ Π(1, C′′)

FL(∆)
scc (C′′)

Fig. 5: Our modular approach. Above C′ := C ∪ VSCC3(C), C′′ := C′ ∪ VSCC2(C′).

6 Ledger State Channels

In this section, we will first define an ideal functionality FL(∆)
scc (C) which represents the smart contract

allowing two parties to open, maintain and close a ledger state channel. We call such a smart contract a
state channel contract. Then we will describe the protocol Π(1, C) that realizes the state channels ideal

functionality FL(∆)
ch (1, C) (see Sect. 5) in the hybrid world FL(∆)

scc (C) for any set of contract types C.

6.1 Ideal functionality for the State Channel Contract

The ideal functionality FL(∆)
scc (C) is parametrized by a set C defining the contract types whose instance

can be constructed in a ledger state channel. The ideal functionality FL(∆)
scc (C) has access to the global

ideal functionality L (the ledger). The ideal functionality FL(∆)
scc (C) accepts messages from parties P :=

{P1, . . . , Pn}. Let us emphasize that since the ideal functionality models a concrete smart contracts on the
ledger, each communication session (party sends a message to the ideal functionality which potentially makes
some modifications on the ledger and replies) comes with a delay up to ∆ rounds. The exact timing (and
if applicable, the exact round when transaction on the ledger takes place), is determined by the adversary.
In order to shorten the description of the ideal functionality, we do not mention the transact instructions
explicitly.

The functionality FL(∆)
scc (C) maintains a space Γ containing all open ledger state channels. The set Γ is

initially empty. The functionality consists of four parts: “Create a ledger state channel”, “Contract instance
registration”, “Contract instance execution” and “Close a ledger state channel”. These parts will be described
and formally defined together with the protocol for ledger state channels in Section 6.2.
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6.2 Protocol for Ledger State Channels

Create a ledger state channel. In order to create a new ledger state channel γ, the environment sends the
message (create, γ) to both parties in γ.end–users. A new ledger state channel can be built only if both users
of the ledger state channel agree on a state channel contract that is published on the ledger. In this work,
such smart contract modeled via an ideal functionality Fscc which is parametrized by C – a set of contract
types that can be opened in the ledger state channel. The protocol for creating a ledger state channel works
at a high level as follows.

The initiating party γ.Alice requests construction of the state channel contract by sending the message

(construct, γ) to the ideal functionality FL(∆)
scc (C). The ideal functionality locks the required amount of coins

in her account on the ledger and sends the message (initializing, γ) to both parties. If party γ.Bob confirms

the initialization by sending the message (confirm, γ), the ideal functionality FL(∆)
scc (C) outputs (created, γ).

In case γ.Bob does not confirm, the ledger state channel cannot be created and the initiating party γ.Alice
has the option to refund the coins that were locked in her account on the ledger during the first step.

To conclude, creation of a ledger state channels takes up to 2∆ rounds since it requires two interactions
with the hybrid ideal functionality modeling a smart contract on the ledger. In case the ledger state channel
is not created but γ.Alice’s coins were locked in the first phase of the ledger state channel creation, she can
receive them back latest after 3∆ rounds.

Formal description of the protocol for ledger state channel creation and the corresponding part of the
Fscc functionality can be found below.

Protocol Π(1, C): Create a ledger state channel

We use the abbreviated notation from Section 4.3 and let Fscc := FL(∆)
scc (C).

Party A upon (create, γ)
τ0←−↩ Z

1. Send (construct, γ)
τ0
↪−→ Fscc and wait.

Party B upon (create, γ)
τ0←−↩ Z

2. If (initializing, γ)
τ1≤τ0+∆←−−−−−−↩ Fscc , then (confirm, γ)

τ1
↪−→ Fscc and wait. Else stop.

3. If (initialized, γ)
τ2≤τ0+2·∆
←−−−−−−−↩ Fscc , then set ΓB(γ.id) := γ, output (created, γ)

τ2
↪−→ Z and stop. Else

stop.

Back to party A

4. If (initialized, γ)
τ2≤τ0+2·∆
←−−−−−−−↩ Fscc , then set ΓA(γ.id) := γ, output (created, γ)

τ2
↪−→ Z and stop. Else

go to next step.

5. If (refund, γ)
τ3>τ0+2·∆←−−−−−−−↩ Z, then (refund, γ)

τ3
↪−→ Fscc and stop.

Functionality FL(∆)
scc (C): Create a ledger state channel

We use the abbreviated notation from Section 4.3.

Upon (construct, γ)
τ0←−↩ P :

1. If P 6= A, there already exists a state channel γ′ such that γ.id = γ′.id, γ.cspace(cid) 6= ⊥ for
some cid ∈ {0, 1}∗ or Value(γ) < 0, then stop.

2. Within ∆ rounds remove γ.cash(A) coins from A’s account on the ledger L. If it is impossible
due to insufficient funds, then stop. Else (initializing, γ) ↪−→ B and store the pair tamp := (τ0, γ)
in memory.

Upon (confirm, γ)
τ1←−↩ P :
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3. If there is no pair tamp = (τ0, γ) in the storage, (τ1 − τ0) > ∆ or P 6= B, then stop.
4. Within ∆ rounds remove γ.cash(B) coins from B’s account on the ledger L. If it is impossible

due to insufficient funds, then stop. Else set Γ (γ.id) := γ and delete tamp from the memory.
Thereafter send (initialized, γ) ↪−→ γ.end–users.

Upon (refund, γ)
τ2←−↩ P :

5. If there is no pair tamp = (τ0, γ) in the storage, (τ2 − τ0) ≤ 2∆ or P 6= A, then stop.
6. Else within ∆ rounds add γ.cash(A) coins to A’s account on the ledger L and delete tamp from

the storage.

Register a contract instance in a ledger state channel. As long as both end-users of a ledger state
channel behave honestly, they can update, execute and close contract instances running in the ledger state

channel off-chain; i.e. without communicating with the ideal functionality FL(∆)
scc (C). However, once the

parties run into dispute (e.g., one party does not communicate, sends an invalid message, etc.), parties have
to resolve their disagreement on the ledger. We call this process “registration of a contract instance”, and
will describe its basic functionality below.

The registration of a contract instance might be necessary either when the contract instance is being
updated, executed or when a ledger state channel is being closed. To prevent repeating the same part of the
protocol multiple times in each of the protocols, we state the registration process as a separate procedure
Register(P, id , cid) which can be called by parties running one of the sub-protocols mentioned above. The
procedure takes as input party P which initiates the registration and the identifiers defining the contract
instance to be registered, i.e. identifier of the ledger state channel id and the contract instance identifier cid.

At a high level, the initiating party (assume for now that it is γ.Alice) sends her contract instance version

to the ideal functionality FL(∆)
scc (C) which first checks the validity of the received version (for example, if

it is correctly signed by γ.Bob, if the contract type of the instance is in the set C, etc.). If the contract

instance version is valid, within ∆ rounds the hybrid ideal functionality FL(∆)
scc (C) informs both users that

the contract instance is being registered. Party γ.Bob then immediately reacts by sending his own version of

the contract instance to FL(∆)
scc (C). The ideal functionality compares the two received versions, registers the

one with higher version number and within ∆ rounds informs both users which version was registered. In
case γ.Bob did not send in his version, γ.Alice can finalize the registration by sending the message “finalize–
register” to the hybrid ideal functionality.

In the optimistic case when γ.Bob submits a valid version of the contract instance, the registration

procedure takes up to 2∆ rounds since it requires two interactions with the ideal functionality FL(∆)
scc (C). In

the pessimistic case when γ.Bob does not react or submits an invalid version, the procedure takes up to 3∆.

Formal description of this procedure and the corresponding part of the FL(∆)
scc (C) functionality can be found

below.

Procedure Register(P, id , cid)

We use the abbreviated notation from Section 4.3. In addition, we denote Fscc := FL(∆)
scc (C).

Party P :

1. Let γP := ΓP (id), νP := γP .cspace(cid), and let τ0 be the current round. Send (instance–register,

id , cid, νP )
τ0
↪−→ Fscc .

2. If not (instance–registering, id , cid)
τ1≤τ0+∆←−−−−−−↩ Fscc , then stop. Else goto step 4.

Party Q upon (instance–registering, id , cid)
τ1←−↩ Fscc

3. Let γQ := ΓQ(id) and νQ := γQ.cspace(cid). Then send (instance–register, id, cid, νQ)
τ1
↪−→ Fscc and

goto step 5.
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Back to party P :

4. If not (instance–registered, id , cid, ν̃)
τ2≤τ1+∆←−−−−−−↩ Fscc , then send (finalize–register, id, cid)

τ3=τ1+∆
↪−−−−−−→

Fscc .

End for both T = A and T = B

5. Upon (instance–registered, id , cid, ν̃)←−↩ Fscc , mark (id , cid) as registered in ΓT and set ΓT := Local

Update(ΓT , id , cid, ν̃).

Functionality FL(∆)
scc (C): Contract instance registration

We use the abbreviated notation from Section 4.3.

Upon (instance–register, id , cid, ν)
τ0←−↩ P , let γ := Γ (id) and do:

1. If party P 6∈ γ.end–users, one of the signatures ν.sign(A), ν.sign(B) is invalid, ν.type 6∈ C,
γ.cspace(cid) 6= ⊥, ν.storage /∈ ν.type.Λ, then stop.

2. Else let Q := γ.other–party(P ) and consider the following three cases:
– If your memory contains a tuple (P, id , cid, ν̂, τ̂0), then ignore this call.
– If your memory contains a tuple (Q, id , cid, ν̂, τ̂0), then first compare the version number, i.e.

if ν.storage.version > ν̂.storage.version, then set ν̃ := (ν.storage, ν.type) and otherwise set ν̃ :=
(ν̂.storage, ν̂.type). Thereafter wait for at most ∆ rounds to send (instance–registered, id , cid,

ν̃)
τ1≤τ0+∆
↪−−−−−−→ γ.end–users, update Γ := LocalUpdate(Γ, id , cid, ν̃) and erase (Q, id , cid, ν̂, τ̂0)

from your memory.

– Else save (P, id , cid, ν, τ0) to your memory and send (instance–registering, id , cid)
τ1≤τ0+∆
↪−−−−−−→

γ.end–users.

Upon (finalize–register, id , cid)
τ2←−↩ P , let γ := Γ (id) and do

– If P ∈ γ.end–users and your memory contains a value (P, id , cid, ν̂, τ̂0) such that τ2 − τ̂0 ≥ 2∆,

then set ν̃ := (ν̂.storage, ν̂.type), send (instance–registered, id , cid, ν̃)
τ3≤τ2+∆
↪−−−−−−→ γ.end–users, set

Γ := LocalUpdate(Γ, id , cid, ν̃) and erase (P, id , cid, ν̂, τ̂0) from your memory.
– Else ignore this call.

Update a contract instance in a ledger state channel. In order to update the storage of a contract
instance in a ledger state channel, we assume that the environment sends the message (update, id , cid, σ̃, C)
to the initiating party P ∈ γ.end–users. The input parameters σ̃ and C define the new contract instance that
should be stored in γ.cspace under the identifier cid.

The update protocol works on high level as follows. The initiating party P signs the new contract instance
version with increased version number (i.e. if νP is the contract instance version stored by P until now, then
the new contract instance version ν will be such that ν.version = νP .version + 1). Party P then sends her
signature on this value to the party Q := γ.other–party(P ). The other party verifies the signature and informs
the environment that the update was requested. If the environment confirms the update, the party Q signs
the updated contract version and sends the signature to P . In this optimistic case, the update takes 2 rounds.

Let us discuss how parties behave in case the environment does not confirm the update. If Q simply
aborts in this situation, P does not know if update failed because Q is malicious or because the environment
did not confirm the update. Therefore, Q has to inform P about the failure. This is, however, still not
sufficient. Note that Q holds P ’s signature of the new contract instance. If Q is corrupt, it can register the
updated contract instance on the ledger at any later point. Thus, in case the environment does not confirm
the update, party Q must sign the original contract instance but with version number increased by 2 (i.e. will
be equal to νQ.version+2) and send the signature to party P . Now, if P does not receive a valid signature on
either the updated contract instance version or the original contract instance with increased version number
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from Q, it is clear that Q is malicious and therefore P initiates the registration of the contract instance on
the ledger by calling the procedure Register(P, id , cid). Note that Q can still register the updated contract
instance (the one that was signed by P ). But importantly, after at most 2 + 3∆ rounds it will be clear to
both parties what the current contract instance version is. Formal description of the protocol for updating
a contract instance in a ledger state channel can be found below.

Protocol Π(1, C): Contract instance update

We use the abbreviated notation from Section 4.3 .

Party P upon (update, id , cid, σ̃, C)
τ0←−↩ Z

1. Let γP := ΓP (id) and νP := γP .cspace(cid). If νP = ⊥, then set vP := 0, else set vP := νP .version.
2. Compute sP := SignskP (id , cid, σ̃, C, vP + 1).

3. Send (update, sP , id , cid, σ̃, C)
τ0
↪−→ Q and wait.

Party Q upon (update, sP , id , cid, σ̃, C)
τ1←−↩ P

4. Let γQ := ΓQ(id) and νQ := γQ.cspace(cid). If νQ = ⊥, then set vQ := 0, else set vQ := νQ.version.
5. If VfypkP (id , cid, σ̃, C, vQ+1; sP ) 6= 1, then mark (id , cid) as corrupt and stop. Else output (update–

requested, id , cid)
τ1
↪−→ Z and consider the following two cases

– If (update–reply, ok, id , cid)
τ1←−↩ Z, then compute the signature sQ := SignskQ(id , cid, σ̃, C,

vQ + 1), send (update–ok, sQ)
τ1
↪−→ P , set ΓQ := LocalUpdate(ΓQ, id , cid, σ̃, C, vQ + 1, {sP , sQ})

and output (updated, id , cid)
τ1+1
↪−−−→ Z.

– Else compute sQ := SignskQ(id , cid, νQ.storage, νQ.type, vQ + 2), send (update–not–ok, sQ)
τ1
↪−→

P and stop.

Back to party P

6. Distinguish the following three cases:

– If (update–ok, sQ)
τ2=τ0+2←−−−−−↩ Q, where VfypkQ(id , cid, σ̃, C, vP +1; sQ) = 1, then set ΓP := Local

Update(ΓP , id , cid, σ̃, C, vP + 1, {sP , sQ}), output (updated, id , cid)
τ2
↪−→ Z and stop.

– If (update–not–ok, sQ)
τ2=τ0+2←−−−−−↩ Q, where VfypkQ(id , cid, νP .storage, νP .type, vP + 2; sQ) = 1,

then compute sP := SignskP (id , cid, νP .storage, νP .type, vP + 2), set ΓP := LocalUpdate(ΓP ,

id , cid, νP .storage, νP .type, vP + 2, {sP , sQ}) and stop.
– Else mark (id , cid) as corrupt and in round τ0 + 2 call the subprocedure Register(P, id , cid).

After the subprocedure execution (in round τ3 ≤ τ0 + 3∆+ 2), if γP .cspace(cid) = (σ̃, C), then

output (updated, id , cid)
τ3
↪−→ Z.

Execute a contract instance in a ledger state channel. In order to execute a contact instance stored
in a ledger state channel γ, the environment sends the message (execute, γ.id, cid, f, z) to the initiating party
P ∈ γ.end–users. The parameter cid points to the contract instance, f is the contact function to be applied
to the contract instance and z are additional input values of the function f .

The protocol works on a high level as follows (let us for now assume that P = γ.Alice). If the parties never
registered the contract instance with identifier cid, then γ.Alice first tries to execute the contract instance
“peacefully”. This means that she locally executes f on the contract version she stores in Γ γ.Alice, signs the
new contract instance and sends the signature to γ.Bob. Party γ.Bob also executes f locally on his own
version of the contract instance stored in Γ γ.Bob and thereafter verifies γ.Alice’s signature. If the signature
is valid, γ.Bob immediately confirms the execution by sending his signature on the new contract instance to
party γ.Alice.
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A technical challenge occurs when both parties want to peacefully execute the same contract instance in
the same round τ since it becomes unclear what is the new contract instance. To overcome this technical
difficulty, γ.Alice peacefully executes only if τ = 1 mod 4 and γ.Bob only when τ = 3 mod 4. So, for
example, if γ.Alice receives the message “execute” in round τ = 2 mod 4, then she waits for three rounds
and only then starts the peaceful execution. Hence, in the optimistic case when both users are honest, the
execution protocol takes up to 5 rounds.

In case the contract instance with identifier cid has already been registered on the ledger or the peaceful
execution fails, the initiating party executes the contract instance “forcefully”. By this we mean that γ.Alice
first initiates registration of the contract instance by calling the procedure Register(P, id , cid), and then

instructs the ideal functionality FL(∆)
scc (C) to execute the contract instance. The Register procedure can

take up to 3∆ rounds and the contract instance execution on the ledger can take up to ∆ rounds. Thus,
pessimistic time complexity of the execution protocol is equal to 4∆ + 5 rounds. Formal description of
the protocol for executing a contract instance in a ledger state channel and the corresponding part of the

functionality FL(∆)
scc (C) can be found below.

Protocol Π(1, C): Contract instance execution

We use the abbreviated notation from Section 4.3 and denote Fscc := FL(∆)
scc (C).

Party P upon (execute, id , cid, f, z)
τ0←−↩ Z

1. Let γP := ΓP (id), νP := γP .cspace(cid), σP := νP .storage, CP := νP .type and vP := νP .version.
2. Set τ1 := τ0 + x, where x is the smallest offset such that τ1 = 1 mod 4 if P = γP .Alice and τ1 = 3

mod 4 if P = γP .Bob. Wait till round τ1.
3. If (id , cid) is not marked as corrupt in ΓP , then compute (σ̃, addL, addR,m) := f(σP , P, τ0, z).

If m = ⊥, then stop. Otherwise compute sP := SignskP (id , cid, σ̃, CP , vP + 1), send (peaceful–

request, id , cid, f, z, sP , τ0)
τ1
↪−→ Q and goto step 10.

4. If (id , cid) is marked as corrupt, proceed as follows. If (id , cid) not marked as registered, then run

Register(P, id , cid). Let τ3 be the current round. Then send (instance–execute, id , cid, f, z)
τ3
↪−→ Fscc

and goto step 11.

Party Q upon (peaceful–request, id , cid, f, z, sP , τ0)
τQ←−↩ P

5. Let γQ := ΓQ(id), νQ := γQ.cspace(cid), σQ := νQ.storage, CQ := νQ.type, vQ := νQ.version. If
γQ = ⊥ or P,Q 6∈ γQ.end–users or νQ = ⊥, then goto step 9.

6. If P = γQ.Alice and τQ mod 4 6= 2 or if P = γ.Bob and τQ mod 4 6= 0, then goto step 9.
7. If τ0 6∈ [τQ − 4, τQ − 1], then goto step 9.
8. If (id , cid) is not marked as corrupt in ΓQ, do:

(a) Compute (σ̃, addL, addR,m) := f(σQ, P, τ0, z).
(b) If m = ⊥ or VfypkP (id , cid, σ̃, CQ, vQ + 1; sP ) 6= 1, then goto step 9.

(c) Else sign sQ := SignskQ(id , cid, σ̃, CQ, vQ + 1), send (peaceful–confirm, id , cid, f, z, sQ)
τQ
↪−→ P ,

set ΓQ := LocalUpdateAdd(ΓQ, id , cid, σ̃, CQ, addA, addR, v
Q + 1, {sP , sQ}), output (executed,

id , cid, σ̃, addL, addR,m)
τQ+1
↪−−−→ Z and stop.

9. Mark (id , cid) as corrupt in ΓQ. Then goto step 11.

Back to party P

10. Distinguish the following two cases
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– If (peaceful–confirm, id , cid, f, z, sQ)
τ2=τ1+2←−−−−−↩ Q such that VfypkQ(id , cid, σ̃, CP , vP +1; sQ) = 1,

then set ΓP := LocalUpdateAdd(ΓP , id , cid, σ̃, CP , vP+1, {sP , sQ}), output (executed, id , cid, σ̃,

addL, addR,m)
τ2
↪−→ Z and stop.

– Else mark (id , cid) as corrupt in ΓP and execute the Register(P, id , cid). Once the procedure
is executed (in round τ3 ≤ τ0 + 3∆+ 5), distinguish the following two cases:

• If ΓP (id).cspace(cid).storage = σ̃, then output (executed, id , cid, σ̃, addL, addR,m)
τ3
↪−→ Z

and stop.

• Else send (instance–execute, id , cid, f, z)
τ3
↪−→ Fscc and goto step 11.

End for both parties T = A,B

11. If (instance–executed, id , cid, σ̂, addL, addR,m)
τ4≤τ0+4∆+5
←−−−−−−−−↩ Fscc , set ΓT := LocalUpdateAdd(ΓT ,

id , cid, σ̂, CT , addL, addR), output (executed, id , cid, σ̂, addL, addR,m)
τ4
↪−→ Z and stop. Else stop.

Functionality FL(∆)
scc (C): Contract instance execution

We use the abbreviated notation from Section 4.3.

Upon (instance–execute, id , cid, f, z)
τ0←−↩ P, within ∆ rounds proceed as follows. Let γ := Γ (id). If

γ = ⊥, then stop. Else set ν := γ.cspace(cid) and σ := ν.storage. If P 6= γ.end–users or ν = ⊥,
then stop. Else compute (σ̂, addL, addR,m) := f(σ, P, τ0, z). If m = ⊥, then stop. Else update the
channel space Γ := LocalUpdateAdd(Γ, id , cid, σ̂, ν.type, addL, addR), send (instance–executed, id ,

cid, σ̂, addL, addR,m)
τ1≤τ0+∆
↪−−−−−−→ γ.end–users and stop.

Close a ledger state channel. In order to close a ledger state channel with identifier id by party P ∈
γ.end–users, the environment sends the message (close, id) to the initiating party P . Before a ledger state
channel can be closed, the end-users of the ledger state channel have the chance to register all the contract
instances that they have constructed off-chain. Thus, the initiating party P first (in parallel) registers all
the contract instances which have been updated/peacefully executed but not registered at the ledger yet.

This takes up to 3∆ rounds. Next, P asks the ideal functionality FL(∆)
scc (C) representing the state channel

contract on the ledger to close the ledger state channel. Within ∆ rounds, the ideal functionality informs
both parties that the ledger state channel is being closed and gives the other end-user of the ledger state
channel time 3∆ to register contract instances that were not registered by P . If after 3∆ rounds all registered
contract instances are terminated (the locked amount of coins is equal to zero), the ideal functionality adds
γ.cash(γ.Alice) coins to γ.Alice’s account on the ledger, and γ.cash(γ.Bob) coins to γ.Bob’s account on the
ledger, deletes the ledger state channel from its channel space and within ∆ rounds informs both parties
that the ledger state channel was successfully closed. If there exists at least one unterminated contract

instance, the ledger state channel can not be closed in which case the FL(∆)
scc (C) simply aborts. To conclude

our description, it can take up to 8∆ rounds to successfully close a ledger state channel. The protocol and
the contract functionality for the ledger state channel closing are presented formally below.

Protocol Π(1, C): Close a ledger state channel

We use the abbreviated notation from Section 4.3 and denote Fscc := FL(∆)
scc (C)

Party P upon (close, id)
τ0←−↩ Z
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1. Let γP := ΓP (id). For each cid ∈ {0, 1}∗ such that γP .cspace(cid) 6= ⊥ and (id , cid) is not marked as

registered, execute Register(P, id , cid) in round τ0. Then send (contract–close, id)
τ1≤τ0+3∆
↪−−−−−−−→ Fscc

and wait.

Party Q upon (contract–closing, id)
τ2≤τ0+4∆
←−−−−−−−↩ Fscc

2. Let γQ := ΓQ(id). For each cid ∈ N such that (id , cid) is not marked as registered in ΓQ and
γQ.cspace(cid) 6= ⊥, call Register(Q, id , cid) in round τ2

Rest of the protocol for T = P,Q (respectively):

3. If (contract–closed, id)
τ3≤τ0+8∆
←−−−−−−−↩ Fscc , then set ΓT (id) := ⊥ and output (closed, id)

τ3
↪−→ Z.

Functionality FL(∆)
scc (C): Close a ledger state channel

We use the abbreviated notation from Section 4.3.

Upon (contract–close, id)
τ0←−↩ P let γ := Γ (id) and proceed as follows:

1. Within ∆ rounds send (contract–closing, id)
τ1≤τ0+∆
↪−−−−−−→ γ.end–users.

2. Wait for next at most 3∆ rounds. If in round τ2 ≤ τ0 + 4∆ there exists cid ∈ {0, 1}∗ such that
γ.cspace(cid) 6= ⊥ but the contract instance is not terminated, i.e. σcid.cash(A)+σcid.cash(B) 6=
0, where σcid := γ.cspace(cid).storage, then stop.

3. Else wait for at most ∆ round to add γ.cash(A) coins to A’s account and γ.cash(B) coins to B’s

account on the ledger and set Γ (id) = ⊥. Then send (contract–closed, id)
τ3≤τ0+5∆
↪−−−−−−−→ γ.end–users.

We can now state the theorem showing that our construction for ledger state channels emulates the ideal

functionality FL(∆)
ch (1, C) from Section 5. The proof is given in the Appx. C.

Theorem 1. Let Eres be the class of restricted environments defined in Appx. B. The protocol Π(1, C)
working in FL(∆)

scc (C)-hybrid model emulates the ideal functionality FL(∆)
ch (1, C) against environments from

class Eres for every set of contract types C and every ∆ ∈ N.

7 Virtual State Channel Contract

We now define a concrete contract type whose instances can be used to create virtual state channels γ. We
call this contract type a virtual state channel contract and denote it VSCCi(C), where the parameter i > 1
is the length of γ and the parameter C is a set of contract types that can be constructed in γ. Consider
three parties: Alice, Bob, and Ingrid, and suppose that Alice and Ingrid have opened a state channel α, and
Bob and Ingrid have created a state channel β. During the creation of the virtual state channel γ between
Alice and Bob, the parties Alice and Ingrid agree on updating α such that it contains the contract instance
(σA, VSCCi(C)). Here, σA denotes the initial contract storage created by calling InitCi , the constructor of
VSCCi(C), on input tuple (Alice, τ, γ). On a very informal level, one may think of the contract storage
σA := InitCi (Alice, τ, γ) as being a “copy” of the virtual state channel description γ, where Ingrid plays
the role of Bob. This “copy” of the virtual state channel γ will be stored in α.cspace under the identifier
cidA := Alice||γ.id. Symmetrically, Ingrid and Bob agree on updating their state channel β such that it
contains the contract instance (σB , VSCCi(C)), where σB := InitCi (Bob, τ, γ) is the initial state representing
γ. This “copy” of the virtual state channel γ will be stored in β.cspace under the identifier cidB := Bob||γ.id.

The contract functions of VSCCi(C) are defined in such a way that they provide Ingrid with enough time
to react on possible changes in cidA or cidB and to always keep both virtual state channel “copies” in the
same state. Since Ingrid plays the role of Bob in contract cidA, and the role of Alice in contract cidB , in
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order to prevent her from losing money, she has to react to events happening in one of the contracts and
mimic them in the corresponding other contract. In some sense, for the users in γ.end–users, the contracts
referred to by cidA and cidB are now representing the contracts running on the ledger. They guarantee that
as long as the parties γ.end–users behave honestly, they will never lose money.

Before we move to the formal description of our construction, we will now take a look at a simple example
for the case when i = 3 (see Fig. 6). Suppose that each two consecutive parties P1, . . . , P4 have ledger state
channel with each other. If P1 and P4 want to create a virtual state channel using the underlying ledger
state channels, they can proceed recursively as follows. First, P1 and P3 create a virtual state channel γ′ of
length 2 between each other, where P2 takes the role of Ingrid. This is done by creating a contract instance
from type VSCC2(C ∪ VSCC3(C)) in the ledger state channel between P1 and P2, resp. between P2 and P3. Let
us take a closer look at the meaning of the contract type VSCC2(C ∪VSCC3(C)). Very informally, this contract
type says that the virtual state channel is of length 2 (this is the reason for VSCC2), and that γ′ can be used
by its end-users to create contracts of type C and VSCC3(C). The later are contracts that represent virtual
state channels of length 3, which allows its end-users (of the length 3 virtual state channel) to open contracts
from type C. Next, parties P1 and P4 can open the virtual state channel of length 3, where party P3 will
take the role of Ingrid. To this end, P1 and P3 will use their previously created virtual state channel γ′, and
P3 and P4 will update their ledger state channel. The contract instance in these two state channels is from
type VSCC3(C).

P1 P2 P3 P4VSCC2(C ∪ VSCC3(C)) VSCC2(C ∪ VSCC3(C)) VSCC3(C)

VSCC3(C)

C

Fig. 6: The contracts opened in state channels in order to create a virtual state channel of length 3 in which a contract
C ∈ C was opened.

8 Virtual State Channels

We will now describe the protocol Π(i, C) that Eres -realizes the ideal functionality FL(∆)
ch (i, C) for i > 1. The

protocol is in the hybrid world with the hybrid ideal functionality which allows to create, update, execute
and close state channels of lengths up to i− 1 in which contract instances of type from the set VSCCi(C) ∪ C
can be constructed, i.e. the functionality FL(∆)

ch (i− 1, VSCCi(C) ∪ C).
The protocol consists of four subprotocols: Create a virtual state channel, Contract instance update,

Contract instance execute and Close a virtual state channel. Similarly as for ledger state channels, we will
additionally define a procedure Registeri(P, id , cid) that registers a contract instance in a virtual state
channel of length i and can be called by parties of the protocol Π(i, C).

The protocol Π(i, C) has to handle messages about state channels of any length j, where 1 ≤ j ≤ i.
If a party P of the protocol Π(i, C) is instructed by the environment to create, update, execute or close
a state channel of length 1 ≤ j < i, the party forwards this message to the hybrid ideal functionality

FL(∆)
ch (i − 1, VSCCi(C) ∪ C).11 Concretely, in case of create and close P acts as a dummy party and directly

forwards the message without any modifications. In case of update and execute, for technical reasons the
party adds a prefix “external” to the contract instance identifier. So for example, if the party P receives the
message (execute, id , cid, f, z), where id refers to a state channel of length j < i, the forwarded message is

11 Recall that we assume with our restrictions on the environment that the environment never lies to an honest party
about the length of a virtual state channel, so this forwarding can be implemented in a trivial way.
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(execute, id, external||cid, f, z). The purpose of the prefix is to ensure that the contract instance identifiers
which are of the form Alice||id or Bob||id for id ∈ {0, 1}∗ are reserved for contract instances corresponding
to the virtual state channel of length i with the identifier id . These contract instances can be updated or
executed only by parties of the protocol Π(i, C) creating, maintaining or closing the corresponding virtual
state channel of length i.

From now on we will focus on the protocol Π(i, C) in case of virtual state channels of length exactly i.

Create a virtual state channel. To create the virtual state channel γ of length i in which contract
instances of type from set C can be constructed, the environment sends a message (create, γ) to all three
parties γ.Alice, γ.Bob and γ.Ingrid in the same round τ0. The creation of γ then works at a high level as
follows.

As already explained in Section 7, end-users of the virtual state channel, γ.Alice and γ.Bob, both need to
construct a new contract instance of type VSCCi(C) in the subchannels they each have with γ.Ingrid. Let us
denote these state channels by α, β in the outline that follows below. To create these contract instances, party
γ.Alice first locally computes the constructor InitCi (γ.Alice, τ, γ) to obtain the initial admissible contract
storage of type VSCCi(C). Recall that informally this contract storage can be viewed as a “copy” of the
virtual state channel γ. Thereafter, she sends an update request of the state channel α to the hybrid ideal

functionality FL(∆)
ch (i − 1, VSCCi(C) ∪ C). At the same time, γ.Bob analogously requests the update of the

state channel β. If γ.Ingrid receives update requests of both state channels α and β from the hybrid ideal
functionality, she immediately confirms both of them. As already mentioned before, it is crucial for γ.Ingrid
that either both contract instances are created (meaning both her state channels α and β are updated) or
none of them. Only then she has a guarantee that if she loses coins in the subchannel α because of the virtual
state channel γ, she can claim these coins back from the subchannel β.

To ensure that at the end of the protocol two honest users γ.Alice and γ.Bob can conclude whether
the virtual state channel γ was successfully created, there is one additional technicality in our protocol.
Notice that if γ.Alice would know whether γ.Ingrid is honest, once she receives a confirmation that her
update request of α was successfully competed, she could conclude that the virtual state channel is created.
However, γ.Alice does not have any information about the state channel between γ.Ingrid and γ.Bob, and,
in particular, whether it was updated for creating γ. It might be the case that malicious γ.Ingrid did not
confirm the update request of the state channel β which led γ.Bob to conclude that the virtual state channel
γ was not created. To guarantee that when both γ.Alice and γ.Bob are honest they will agree on whether γ
was opened, they exchange confirmation messages at the end of the protocol. Thus, if creation of a virtual
state channel is successful, both end-users output (created, γ) to the environment after 3 rounds. Notice that
internally when something during virtual state channel creation went wrong (e.g., Ingrid misbehaved) the
parties may still run registration of contract instances in the subchannels. This is internally handled by the
hybrid functionality and does not require the end-users of the virtual state channel to wait for in order to
reach an agreement whether γ was created or not.

We emphasize that creating a virtual state channel runs in constant time – independent of the ledger
processing time ∆ and length of the virtual state channel. This is in contrast to the ledger state channels
with require always 2∆ time for creation. Formal description of the protocol for ledger state channel creation
and the corresponding part of the contract type VSCCi(C) can be found below.

Protocol Π(i, C): Create a virtual state channel

We use the notation established in Section 4.3 and denote the hybrid functionality as Fch := FL(∆)
ch (i−

1, VSCCi(C) ∪ C). In addition, let C := VSCCi(C).

Party T ∈ γ.end–users upon (create, γ)
τ0←−↩ Z:
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1. Compute σ̃T := InitCi (T, τ0; γ) and send (update, idT , cidT , σ̃T , C)
τ0
↪−→ Fch , where cidT := T ||γ.id

and idT := γ.subchan(T ).

Party I upon (create, γ)
τ0←−↩ Z:

2. Compute σ̃A := InitCi (γ.Alice, τ0, γ) and σ̃B := InitCi (γ.Bob, τ0, γ). Let idA := γ.subchan(γ.Alice),
idB := γ.subchan(γ.Bob) and cidA := γ.Alice||γ.id and cidB := γ.Bob||γ.id.

3. If both messages (update–requested, idA, cidA, σ̃A, C)
τ0+1←−−−↩ Fch and (update–requested, idB , cidB ,

σ̃B , C)
τ0+1←−−−↩ Fch are received, then set Γ I(γ.id) := γ and send (update–reply, ok, idA, cidA)

τ0+1
↪−−−→

Fch and (update–reply, ok, idB , cidB)
τ0+1
↪−−−→ Fch and wait till time γ.validity. Else stop.

Back to T ∈ γ.end–users

4. If (updated, idT , cidT )
τ0+2←−−−↩ Fch , then send (create–ok, γ)

τ0+2
↪−−−→ γ.other–party(T ). If (create–

ok, γ)
τ0+3←−−−↩ γ.other–party(T ), then set ΓT (γ.id) := γ and output (created, γ)

τ0+3
↪−−−→ Z.

5. Wait till time γ.validity.

Contract VSCCi(C): constructor InitCi (P, τ, γ)

If P 6∈ γ.end–users or γ.cash(γ.Alice) < 0 or γ.cash(γ.Bob) < 0 or γ.cspace(cid) 6= ⊥ for some cid ∈
{0, 1}∗ or γ.validity < τ + 3, then output ⊥. Else output the attribute tuple σ defined as follows:

(σ.userL, σ.userR) :=

{
(γ.Alice, γ.Ingrid), if P = γ.Alice,

(γ.Ingrid, γ.Bob), if P = γ.Bob,

σ.locked := γ.cash(γ.Alice) + γ.cash(γ.Bob),

(σ.cash(σ.userL), σ.cash(σ.userR)) := (γ.cash(γ.Alice), γ.cash(γ.Bob)),

σ.virtual–channel := γ,

σ.cspace(cid) := ⊥, for all cid ∈ {0, 1}∗,
(σ.auxR, σ.auxE) := (∅, ∅).

Resister a contract instance in a virtual state channel. Similarly to the procedure Register defined
for ledger state channels, the subprotocol Registeri is called with parameters (P, id , cid) the first time
end-users of a virtual state channel γ with identifier id disagree on a contract instance ν := γ.cspace(cid).
Intuitively, we need the intermediate party γ.Ingrid to play the role of the ledger and resolve the dispute
between γ.Alice and γ.Bob. If the intermediary would be trusted, then both end-users could simply send
their latest contract instance version to γ.Ingrid, who would then decide whose contract instance version is
the latest valid one. Unfortunately, the situation is more complicated since γ.Ingrid is not a trusted party.
She might, for example, stop communicating or collude with one of the end-users. This is the point where the
contract instances of type VSCCi(C) created in the underlying subchannels during the virtual state channel
creation play an important role. Parties instead of sending versions of ν directly to each other send them
indirectly by executing the contract instances in their subchannels with γ.Ingrid on the contract function
RegisterInstanceCi . Since this execution of the contract instance in the subchannel cannot be stopped (i.e.,
in the worst case it may involve the ledger which will resolve the conflict), this guarantees that the end-users
eventually can settle the latest state on which they both have agreed on.

Let us now take a closer look at how this is achieved by VSCCi(C). Let cidA := γ.Alice||γ.id be the contract
instance of type VSCCCi stored in the state channel α := γ.subchan(γ.Alice) and cidB := γ.Bob||γ.id the con-
tract instance of type VSCCCi stored in the state channel β := γ.subchan(γ.Bob). The initiating party (assume
for now that it is γ.Alice) first executes cidA on the function RegisterInstanceCi with input parameters
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(cid, νA), where νA is γ.Alice’s current off-chain contract instance version. Notice that this execution is in a
state channel of length strictly less than i and hence will be handled by the trusted hybrid ideal functionality

Fch := FL(∆)
ch (i− 1, VSCCi(C) ∪ C).

The contract function RegisterInstanceCi is defined in such a way that it first verifies the validity of
γ.Alice’s contract instance version (it, for example, verifies the signatures, admissibility of the storage with
respect to the type of the contract instance, if the amount of coins locked in the contract instance is not
negative etc.). If all these checks pass, it stores νA together with a time-stamp in the auxiliary attribute auxR.
Then, it outputs γ.Alice’s contract instance version νA and the identifier cid in the output message. The
intermediary γ.Ingrid upon receiving information about the execution of cidA can now symmetrically execute
cidB with inputs (cid, νA) via the ideal functionality Fch . Once γ.Bob is notified about the execution of cidB ,
he immediately reacts by executing cidB again on the contract function RegisterInstanceCi but with input
parameters (cid, νB), where νB is Bob’s contract instance version. If γ.Bob’s version of the contract instance
with identifier cid is valid as well, the contract function RegisterInstanceCi compares γ.Bob’s and γ.Alice’s
versions and stores the one with higher version number in the attribute cspace(cid). It outputs the registered
version and the identifier cid in the output message. In case γ.Bob’s version was registered, γ.Ingrid can
complete the registration procedure by symmetrically executing cidA on input (cid, νB). In case γ.Alice’s
version was registered, then γ.Ingrid only needs to confirm that γ.Alice’s version of cid should be registered.
She does so by executing cidA on function EndRegisterInstanceCi on the input parameter cid.

In case γ.Bob is corrupt and does not submit a valid contract instance version in time, γ.Ingrid can finalize
the registration procedure by executing both cidA and cidB on function EndRegisterInstanceCi on the input
parameter cid. Similarly, if γ.Ingrid is corrupt and stops communicating, γ.Alice can after certain time finalize
the registration by executing cidA on function EndRegisterInstanceCi with the input parameter cid. The
registration procedure of a virtual state channel of length i can take up to

TimeRegister(i) := 5 · TimeExecute(di/2e) (1)

rounds (this corresponds to the pessimistic case when γ.Alice has to finalize the registration).
Before we give the full description of the registration protocol and the corresponding contract parts of

VSCCi(C), let us explain here the reason why we restrict the number of contract instances in a virtual state
channel (although the syntax as defined in Section 4.2 supports infinitely many contract instances as in the
ledger state channel).

Assume the following scenario. Alice and Bob open a virtual state channel on top of two ledger state
channels which they each have with Ingrid and thereafter they create (off-line) a large amount of contract
instances in this virtual state channel. At some point Alice starts registering all the contract instances by
executing the subchannel she has with Ingrid. According to the protocol, Ingrid has to symmetrically execute
the subchannel she has with Bob otherwise she might lose money. If Bob is corrupt and does not react on
peaceful execution requests, Ingrid has to execute all the requests forcefully on the blockchain. While in
our theoretical model this is not an issue, in practice, this step would be very expensive for Ingrid due to
the large amount of fees Ingrid would have to pay to the miners in common cryptocurrencies such as the
Ethereum network.

Thus, if Ingrid has no control on the amount of contract instances that Alice and Bob can create, the
two parties can force Ingrid to pay arbitrary amount of money in fees. Therefore, we restrict the number of
contract instance that Alice and Bob can open in a virtual state channel and hence give Ingrid the ability
to estimate the costs in fees that might result from the virtual state channel (recall that Ingrid had to agree
with the virtual state channel creation; in particular, with the channel length and the contract types that
can be open in the virtual state channel).

Procedure Registeri(P, id , cid)

We use the notation from Section 4.3 and denote Fch := FL(∆)
ch (i − 1, VSCCi(C) ∪ C) and TEsub :=

TimeExecute(di/2e).
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Party P :

1. Let γP := ΓP (id), νP := γP .cspace(cid), idP := γP .subchan(P ), cidP := P ||id and let τP0 be the

current round. Then send (execute, idP , cidP , RegisterInstance
C
i , (cid, ν

P ))
τP0
↪−→ Fch and goto step

7.

Party I:

2. Upon (executed, idP , cidP , σP , LP , RP ,mP )
τI1←−↩ Fch , where mP = (instance–registering, cid, νP )

proceed as follows. Set γI := σP .virtual–channel, P := γI .end–users ∩ {σP .userL, σP .userR}, Q :=
γI .other-party(P ), idQ := γI .subchan(Q) and cidQ := Q||γI .id. Then send (execute, idQ, cidQ,

RegisterInstanceCi , (cid, ν
P ))

τI1
↪−→ Fch and goto step 5.

Party Q:

3. Upon (executed, idQ, cidQ, σQ, LQ, RQ,mQ)
τQ1←−−↩ Fch , where mQ := (instance–registering, cid, νP ),

proceed as follows. Parse Q||id := cidQ, set γQ := ΓQ(id), νQ := γQ.cspace(cid) and then send

(execute, idQ, cidQ, RegisterInstance
C
i , (cid, ν

Q))
τQ1
↪−−→ Fch .

4. Upon (executed, idQ, cidQ, σ̃Q, L̃Q, R̃Q, m̃Q)
τQ2 ≤τ

Q
1 +TEsub

←−−−−−−−−−↩ Fch , where m = (instance–registered,
cid, ν̂), set ΓQ := LocalUpdate(ΓQ, id , cid, ν̂).

Party I:

5. If you receive (executed, idQ, cidQ, σ̃Q, L̃Q, R̃Q, m̃Q)
τI2≤τ

I
1+2·TEsub←−−−−−−−−−−↩ Fch , where m̃Q = (instance–

registered, cid, ν̂), then send (execute, idP , cidP , RegisterInstance
C
i , (cid, ν̂))

τI2
↪−→ Fch .

6. Else send messages (execute, idP , cidP , EndRegisterInstance
C
i , cid)

τI1+2·TEsub

↪−−−−−−−→ Fch and (execute,

idQ, cidQ, EndRegisterInstance
C
i , cid)

τI1+2·TEsub

↪−−−−−−−→ Fch .

Party P :

7. If not (executed, idP , cidP , σ̃P , L̃P , R̃P , m̃P )
≤τP0 +4·TEsub←−−−−−−−−−↩ Fch , where m̃P = (instance–registered,

cid, ν̂), then send (execute, idP , cidP , EndRegisterInstance
C
i , cid)

τP0 +4·TEsub

↪−−−−−−−→ Fch .

8. Upon (executed, idP , cidP , σ̃P , L̃P , R̃P , m̃P )
≤τP0 +5·TEsub←−−−−−−−−−↩ Fch , where m̃P = (instance–registered,

cid, ν̂), then set ΓP := LocalUpdate(ΓP , id , cid, ν̂).

Contract VSCCi(C)

Function RegisterInstanceCi (σ, P, τ ; (cid, νn))

Let γ := σ.virtual–channel, id := γ.id, A := γ.Alice, B := γ.Bob, I := γ.Ingrid. Let C := νn.type, σn :=
νn.storage, v := νn.version, sA := νn.sign(A), sB := νn.sign(B) and TEsub := TimeExecute(di/2e).
1. If P 6∈ {σ.userL, σ.userR}, then output (σ, 0, 0,⊥).
2. If VfypkA(id , cid, σn, C, v; sA) 6= 1 or VfypkB (id , cid, σn, C, v; sB) 6= 1 or {σn.userL, σn.userR} 6=
{A,B} or C 6∈ C or σn 6∈ C.Λ or there exists cid′ ∈ {0, 1}∗ such that σ.cspace(cid′) 6= ⊥, then output
(σ, 0, 0,⊥).

3. Else define σ̃ := σ and consider the following cases:
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– If there is no tuple (Q, τQ; cid, νQn ) in σ.auxR, i.e. none of the parties has registered the contract
instance with identifier cid, and

τ ≤

{
γ.validity if P ∈ {A,B},
γ.validity + TEsub if P = I,

then add (P, τ ; cid, νn) to σ̃.auxR and output (σ̃, 0, 0,m), where m := (instance–registering, cid,
νn).

– If there is (Q, τQ; cid, νQn ) in σ.auxR, where Q 6= P , and

0 < τ − τQ ≤

{
TEsub , if P ∈ {A,B},
3 · TEsub , if P = I,

then set ν̂n := νn if v ≥ νQn .version and otherwise let ν̂n := νQn . Then make the following
changes: set σ̃.cspace(cid) := (ν̂n.storage, ν̂n.type) and modify the cash attributes accordingly
(for example, assuming that σ.userL = σn.userL and denoting the registered instance σ̃n :=
σ̃.cspace(cid).storage, the value σ̃.cash(σ̃.userL) will be set to the value of σ.cash(σ.userL) −
σ̃n.cash(σn.userL)). Finally, delete (Q, τQ; cid, νQn ) from σ̃.auxR and output (σ̃, 0, 0,m), where
m := (instance–registered, cid, ν̂n).

Function EndRegisterInstanceCi (σ, P, τ ; cid)

Let γ := σ.virtual–channel, I := γ.Ingrid, TRi := TimeRegister(i) and TEsub := TimeExecute(di/2e)
1. If P 6∈ {σ.userL, σ.userR} or τ > γ.validity + TRi, then output (σ, 0, 0,⊥).
2. If for every cid′ ∈ {0, 1}∗ it holds that σ.cspace(cid′) = ⊥ and there is (Q, τQ; cid, νQn ) in σ.auxR,

such that either P 6= Q or P = Q and

τ − τQ >

{
4 · TEsub , if P = {A,B},
2 · TEsub , if P = I,

then let σ̃ := σ and make the following changes. Delete (Q, τQ; cid, νQn ) from σ̃.auxR and set
σ̃.cspace(cid) := (νQn .storage, ν

Q
n .type). Thereafter modify the attribute σ̃.cash accordingly and out-

put (σ̃, 0, 0,m), where m := (instance–registered, cid, νQn ).
3. Else output (σ, 0, 0,⊥).

Update a contract instance in a virtual state channel. As long as both end-users of a virtual state
channel are honest, they can update a contract instance exactly the same way as if it would be a ledger state
channel. That means that parties exchange signatures on the new contract instance version (see Section 6.2
for more details). The differences between update of a ledger state channel and a virtual state channel appears
only when end-users of the state channel run into dispute, i.e., when the parties run the contract instance
registration procedure, which was defined above. The pessimistic time complexity of updating a virtual state
channel of length i is equal to TimeRegister(i) + 2.

Execute a contract instance in a virtual state channel. In order to execute a contract instance in a
virtual state channel, the environment sends a message (execute, id , cid, f, z) to one of the end-users of the
virtual state channel. Let us assume for now that this party is γ.Alice. The party γ.Alice first tries to execute
the contract instance “peacefully”, exactly as if γ would be a ledger state channel (see Section 6.2 in the
“Execute a contract instance” protocol). In case the peaceful execution fails, γ.Alice registers the contract
instance by calling the subproderure Registeri(γ.Alice, id , cid). Next, γ.Alice has to execute the contract
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instance “forcefully” via the intermediary of the virtual state channel; γ.Ingrid. Since the intermediary is
not trusted, execution must be performed by executing the contract instances of type VSCCi(C) stored in
the underlying subchannels via the hybrid ideal functionality Fch (recall that the contract instance in the
subchannel α between γ.Alice and γ.Ingrid is stored under the identifier cidA := γ.Alice||γ.id and the contract
instance in the state channel β between γ.Bob and γ.Ingrid is stored under the identifier cidB := γ.Bob||γ.id).

The first attempt would be to let γ.Alice execute cidA on the function ExecuteInstanceCi with parameters
param = (cid, γ.Alice, τ, f, z, sA), where τ is the round in which γ.Alice received the message from the environ-
ment and sA is γ.Alice’s signature on the tuple (cid, γ.Alice, τ, f, z). The contract function ExecuteInstanceCi
would be defined such that it verifies γ.Alice’s signature and then internally executes the contract instance
with identifier cid. After successful execution of cidA, γ.Ingrid would symmetrically execute cidB on the same
contract function ExecuteInstanceCi and the same input parameters param = (cid, γ.Alice, τ, f, z, sA). The
entire process of force execution would then take 5 + TimeRegister(i) + 2 · TimeExecute(di/2e).

Let us explain with the following example why this straightforward solution does not work, which is due to
allowing that parties interact fully concurrently. Assume that while the execution between γ.Alice and γ.Ingrid
is running, γ.Bob wants to forcefully execute the contract instance with identifier cid in round τ ′ = τ + 1
on different inputs. This means that before γ.Ingrid has time to execute cidB on γ.Alice’s request, γ.Bob
executes cidB on the function ExecuteInstanceCi with his own parameters param′ = (cid,B, τ ′, f ′, z′, sB).
Consequently, the order of internal execution of the contract instance cid is different in cidA and cidB .
Depending on the contract type of cid, this asymmetry may lead to γ.Ingrid losing money.

To overcome this difficulty, we define the contract function ExecuteInstanceCi in such a way that when it
is executed by γ.Bob on some parameters param′, the request is stored in the attribute auxE but the internal
execution of the contract instance cid is not performed yet. The function outputs details of the request in its
output message. In other words, execution of the contract instance cidB on the function ExecuteInstanceCi
with param′ = (cid, γ.Bob, τ ′, f, z, sA) only informs γ.Ingrid about γ.Bob’s intention to internally execute
the contract instance cid and gives her time to execute potential ExecuteInstance requests with the same
cid which were made earlier by γ.Alice. Once γ.Ingrid successfully executes γ.Bob’s request in cidA, she can
finalize the execution of cidB via the function EndExecuteInstance. It works analogously for the contract
instance cidA in the state channel between γ.Alice and γ.Ingrid. If γ.Bob’s execution request was not finalized
by γ.Ingrid within certain amount of time, γ.Bob can finalize his execution himself via the function End

ExecuteInstance. To conclude, the contract instance execution protocol of a virtual state channel of length
i can take up to TimeExecute(i) := 2 · (5 + TimeRegister(i) + 2 · TimeExecute(di/2e)) rounds. Using the
Equation (1) we obtain

TimeExecute(i) := 10 + 14 · TimeExecute(di/2e)). (2)

The previous description omits many technicalities and we refer the reader for further details to the full
specification below.

Protocol Π(i, C): Contract instance execution

We use the notation established in Section 4.3 and denote Fch := FL(∆)
ch (i−1, VSCCi(C)∪C). In addition,

let TEsub := TimeExecute(di/2e) and TRi := TimeRegister(i).

Party P upon (execute, id , cid, f, z)
τ0←−↩ Z

1. Let γP := ΓP (id), νP := γP .cspace(cid), σP := νP .storage, CP := νP .type, vP := νP .version.
2. Set τ1 := τ0 + x, where x is the smallest offset such that τ1 = 1 mod 4 if P = γP .Alice and τ1 = 3

mod 4 if P = γP .Bob. Wait till round τ1.
3. If (id , cid) is not marked as corrupt in ΓP , then compute (σ̃, addL, addR,m) := f(σP , P, τ0, z).

If m = ⊥ , then stop. Otherwise compute sP := SignskP (id , cid, σ̃, CP , vP + 1), send (peaceful–

request, id , cid, f, z, sP , τ0)
τ1
↪−→ Q and goto step 10.
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4. If (id , cid) is marked as corrupt, proceed as follows. If (id , cid) not marked as registered, then run
Registeri(P, id , cid). Goto step 11.

Party Q upon (peaceful–request, id , cid, f, z, sP , τ0)
τQ←−↩ P

5. Let γQ := ΓQ(id), νQ := γQ.cspace(cid), σQ := νQ.storage, CQ := νQ.type, vQ := νQ.version. If
γQ = ⊥ or P,Q 6∈ γQ.end–users or νQ = ⊥, then goto step 9.

6. If P = γQ.Alice and τQ mod 4 6= 2 or if P = γ.Bob and τQ mod 4 6= 0, then goto step 9.
7. If τ0 6∈ [τQ − 4, τQ − 1], then goto step 9.
8. If (id , cid) is not marked as corrupt in ΓQ, do:

(a) Compute (σ̃, addL, addR,m) := f(σQ, P, τ0, z).
(b) If m = ⊥ or VfypkP (id , cid, σ̃, CQ, vQ + 1; sP ) 6= 1, then goto step 9.

(c) Else sign sQ := SignskQ(id , cid, σ̃, CQ, vQ + 1), send (peaceful–confirm, id , cid, f, z, sQ)
τQ
↪−→ P ,

set ΓQ := LocalUpdateAdd(ΓQ, id , cid, σ̃, CQ, addL, addR, v
Q + 1, {sP , sQ}), output (executed,

id , cid, σ̃, addL, addR,m)
τQ+1
↪−−−→ Z and stop.

9. Mark (id , cid) as corrupt in ΓQ. Then goto step 14.

Back to party P

10. Distinguish the following two cases

– If (peaceful–confirm, id , cid, f, z, sQ)
τ2=τ1+2←−−−−−↩ Q such that VfypkQ(id , cid, σ̃, CP , vP + 1; sQ) =

1, then set ΓP := LocalUpdateAdd(ΓP , id , cid, σ̃, CP , addL, addR, v
P + 1, {sP , sQ}), output

(executed, id , cid, σ̃, addL, addR,m)
τ2
↪−→ Z and stop.

– Else mark (id , cid) as corrupt in ΓP and execute the Registeri(P, id , cid). Once the procedure
is executed (in round τ3 ≤ τ1 + TRi + 2), distinguish the following two cases:

• If σP = σ̃, then output (executed, id , cid, σ̃, addL, addR,m)
τ3
↪−→ Z and stop.

• Else goto step 11.
11. Let τ4 be the current round, idP := γP .subchan(P ), cidP := P ||id, sn := SignskP (cid, P, τ0, f, z)

and pn := (P, τ0, f, z, sn). Then send (execute, idP , cidP , ExecuteInstance
C
i , (cid, pn))

τ4
↪−→ Fch .

Party I:

12. Upon receiving (executed, idP , cidP , σP , LP , RP ,mP )
τI0←−↩ Fch , where mP = (instance–executing,

cid, pn,m), proceed as follows. Define γI := σP .virtual–channel, P := γI .end–users ∩ {σP .userL,
σP .userR}, Q := γI .other-party(P ), idQ := γI .subchan(Q) and cidQ := Q||γI .id.

13. Send (execute, idQ, cidQ, ExecuteInstance
C
i , (cid, pn))

τI0
↪−→ Fch .

Party Q:

14. Upon receiving (executed, idQ, cidQ, σQ, LQ, RQ,MQ)
τQ0←−−↩ Fch , where the message MQ contains

(instance–executed, cid, σ̃n, pn, addL, addR,mn), then parse Q||id := cidQ, output (executed, id ,

cid, σ̃n, addL, addR,mn)
τQ0
↪−−→ Z, set ΓQ := LocalUpdateAdd(ΓQ, id , cid, σ̃n, C

Q, addL, addR) and
stop.

Back to party I:
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15. Upon receiving (executed, idQ, cidQ, σQ, LQ, RQ,MQ)
τI1≤τ

I
0+TEsub←−−−−−−−−−↩ Fch , where the message MQ

contains (instance–executed, cid, σ̃n, pn, addL, addR,mn), send the message (execute, idP , cidP , End

ExecuteInstanceCi , (cid, pn))
τI1
↪−→ Fch .

Back to party P :

16. Let τ6 := τ4 + 4 + TRi + 2 ·TEsub . If you receive (executed, idP , cidP , σ̃P , L̃P , R̃P ,MP )
τ5≤τ6←−−−−↩ Fch ,

where MP contains (instance–executed, cid, σ̃n, pn, addL, addR,mn), output (executed, id , cid, σ̃n,

addL, addR,mn)
τ5
↪−→ Z, set ΓP := LocalUpdateAdd(ΓP , id , cid, σ̃n, C

P , addL, addR) and stop.

17. Else send (execute, idP , cidP , EndExecuteInstance
C
i , (cid, pn))

τ6
↪−→ Fch and when you receive the

message (executed, idP , cidP , σ̃P , L̃P , R̃P ,MP )
τ7≤τ6+TEsub←−−−−−−−−↩ Fch , where MP contains (instance–

executed, cid, σ̃n, pn, addL, addR,mn), then output (executed, id , cid, σ̃n, addL, addR,mn)
τ7
↪−→ Z, set

ΓP := LocalUpdateAdd(ΓP , id , cid, σ̃n, C
P , addL, addR) and stop.

We will now define the contract functions ExecuteInstanceCi and EndExecuteInstanceCi of the contract
type VSCCi(C). Both of these functions have to internally execute contract functions. Not to repeat the same
code several times, we separately define an auxiliary procedure Evaluate.

Contract VSCCi(C)

Procedure Evaluate(σ, cid, Pn, τn, fn, zn)

Let γ := σ.virtual–channel, I := γ.Ingrid, ν := σ.cspace(cid), σn := ν.storage and P := γ.end–users ∩
{σ.userL, σ.userR}
1. Compute (σ̃n, addL, addR,mn) = fn(σn, Pn, τn, zn)
2. If mn = ⊥, then output (σ, 0, 0,⊥).
3. Otherwise let σ̃ := σ and make the following changes:

(a) Set σ̃.cspace(cid) := (σ̃n, ν.type)
(b) If P = σn.userL, then σ̃.cash(P ) := σ.cash(P ) + addL and σ̃.cash(I) := σ.cash(I) + addR.
(c) If P = σn.userR, then σ̃.cash(P ) := σ.cash(P ) + addR and σ̃.cash(I) := σ.cash(I) + addL.

4. Output (σ̃, addL, addR,mn).

Function ExecuteInstanceCi (σ, P, τ, (cid, Pn, τn, fn, zn, sn))

Let γ := σ.virtual–channel, A := γ.Alice, B := γ.Bob, I := γ.Ingrid, ν := σ.cspace(cid) and σn :=
ν.storage. In addition, let TEsub := TimeExecute(di/2e) and TRi := TimeRegister(i).
1. If P 6∈ {σ.userL, σ.userR}, then output (σ, 0, 0,⊥).
2. If ν = ⊥, Pn 6∈ {A,B}, VfypkPn (cid, Pn, τn, fn, zn; sn) 6= 1 or fn is not a contract function with

respect to ν.C, then output output (σ, 0, 0,⊥).
3. Distinguish the following two situations:

– P ∈ {A,B}:
If τ − τn > 5 + TRi or P 6= Pn, then output (σ, 0, 0,⊥). Else let σ̃ := σ, add (τ ; cid, Pn, τn, fn,
zn) to σ̃.auxE and output (σ̃, 0, 0,m) for m := (instance–executing, cid, Pn, τn, fn, zn, sn).

– P = I:
If τ − τn > 5 + TRi + TEsub , then output (σ, 0, 0,⊥).
Else proceed as follows
(a) Let Qn := {A,B} ∩ {σ.userL, σ.userR} and σ̃(0) := σ.
(b) Let E ⊆ σ.auxE consisting of all tuples (τ ′; cid,Qn, τ

′
n, f
′
n, z
′
n), where τ ′n ≤ τn.
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(c) Let |E| = ` and (e(1), . . . , e(`)) be such that e(k) = (τ (k); cid,Qn, τ
(k)
n , f

(k)
n , z

(k)
n ) ∈ E for

every k ∈ [1, `] and τ
(1)
n ≤ · · · ≤ τ (`)n .

(d) For k = 1 to `

i. Compute (σ̃(k), add
(k)
L , add

(k)
R ,m(k)) := Evaluate(σ̃(k−1), cid,Qn, τ

(k)
n , f

(k)
n , z

(k)
n ).

ii. Delete e(k) from σ̃(k).auxE .
(e) Compute (σ̃, addR, addR,m) := Evaluate(σ̃(`), cid, Pn, τn, fn, zn).
(f) Output (σ̃, 0, 0,M ||M (1)|| . . . ||M (`)), for M := (instance–executed, σ̃.cspace(cid), p, addL,

addR,m) for p = (cid, Pn, τn, fn, zn), and M (k) := (instance–executed, σ̃.cspace(cid), p(k),

add
(k)
L , add

(k)
R ,m(k)) for p(k) = (cid,Qn, τ

(k)
n , f

(k)
n , z

(k)
n ) for every k ∈ [`].

Function EndExecuteInstanceCi (σ, P, τ, (cid, Pn, τn, fn, zn))

Let γ := σ.virtual–channel, A := γ.Alice, B := γ.Bob, ν := cspace(cid), σ := ν.storage, TEsub :=
TimeExecute(di/2e) and TRi := TimeRegister(i).
1. If P 6∈ {σ.userL, σ.userR}, then output (σ, 0, 0,⊥).
2. If there is no entry (τ ′; cid, Pn, τn, fn, zn) in σ.auxE , then output (σ, 0, 0,⊥).
3. If P = Pn and τ − τ ′ < 5 + TRi + 2 · TEsub , then output (σ, 0, 0,⊥).
4. Else compute (σ̃, addL, addR,m) := Evaluate(σ, cid, Pn, τn, fn, zn), and output (σ̃, 0, 0, (instance–

executed, σ̃.cspace(cid), p, addL, addR,m)) for p = (cid, Pn, τn, fn, zn).

Close a virtual state channel. Recall that in case of ledger state channels, the environment instructs one
party to close the ledger state channel. The parties of the ledger state channel have some time to register
all contract instances that were opened in the ledger state channel offline. If thereafter there is a contract
instance in the ledger state channel which is not terminated (the amount of coins locked in the instance is
greater than zero), then the ledger state channel is not closed.

The situation is different for virtual state channels. We require that the closing procedure of a virtual
state channel γ always starts in round γ.validity and always results in γ being closed. In other words, both
contract instances with type VSCCCi that were opened in the subchannels of γ must be terminated (also in the
case when the virtual state channel was not created). Let us now explain how the protocol “Close a virtual
state channel” works.

In round γ.validity both end-users of the virtual state channel start registering the contract instance (if
it has been created in the virtual state channel γ but have never been registered before). This takes up to
TimeRegister(i) rounds. Afterwards, γ.Alice requests execution of the contract instance cidA := γ.Alice||γ.id
stored in the subchannel idA := γ.subchan(γ.Alice), on the contact function CloseCi . Party γ.Bob behaves
analogously. In case one of the end-users of the virtual state channels does not request the closure of the
underlying contract instance, γ.Ingrid can request it herself after certain time has passed.

The contract function CloseCi first checks if there is a registered but unterminated contract instance in
the virtual state channel γ. The first idea would be to let CloseCi ignore such contract instance. However, this
would lead to the problem that the intermediary of the virtual state channel, γ.Ingrid, loses money (because
some money may still be locked in the contract) without ever having the chance to react to virtual state
channel closing. Instead, the contract function CloseCi fairly distributes the locked coins to accounts of the
users. For example, if userL’s cash balance in the contract instance with identifier cid is 3 and userR’s balance
is −2, then 1 coin is added to userL’s account.

Next, the contract function verifies that the current value of the attribute cash is non-negative for both
users and that the amount of coins that were originally invested into the virtual state channel is equal to
the current amount of coins in the virtual state channel. If this is the case, CloseCi unlocks for each user
the current amount of coins it holds in the channel contract. If one of the users have negative balance in
the virtual state channel or the amount of invested coins is not equal to the current amount of coins, then
any trading that happened between the end-users is reverted by CloseCi . This again guarantees that γ.Ingrid

34



cannot lose money when γ.Alice and γ.Bob are malicious. The time complexity of closing a virtual state
channel of length i can be computed as TimeRegister(i) + 2 · TimeExecute(di/2e).

Before we provide the full specification of the protocol and the corresponding part of VSCCi(C), let us
briefly explain one additional technicality. Recall that in case γ.Ingrid is corrupt, it can happen that the
contract instances of type VSCCi(C) are opened in the subchannels of γ although the virtual state channel γ
was is not successfully created. This in particular means that the coins needed to create γ are locked in the
subchannels and can be unlocked only after round γ.validity by executing the contact function CloseCi .

Protocol Π(i, C): Close a virtual state channel

We use the notation established in Section 4.3 and denote Fch := FL(∆)
ch (i − 1, VSCCi(C) ∪ C). In ad-

dition, let TV := γ.validity, TRsub := TimeRegister(di/2e),TRi := TimeRegister(i) and TEsub :=
TimeExecute(di/2e).

Party T ∈ γ.end–users in round TV

1. If ΓT (γ.id) = ⊥ and you received (updated, idT , cidT )
≤τ0+2+TRsub←−−−−−−−−−↩ Fch , then goto step 3.

2. If γT := ΓT (γ.id) 6= ⊥, then for cid ∈ {0, 1}∗ such that γT .cspace(cid) 6= ⊥ and (id , cid) is not
marked as registered in ΓT , call Registeri(T, id , cid). Thereafter, goto step 3.

3. Send (execute, idT , cidT , Close
C
i , ∅)

TV+TRi
↪−−−−−−→ Fch .

Party I

For both T ∈ {A,B} behave as follows:

4. If you did not receive (executed, idT , cidT , σT , LT , RT ,mT )
≤TV+TRi+TEsub←−−−−−−−−−−−↩ Fch where mT =

(contract–closed, finalA, finalB), then send (execute, idT , cidT , Close
C
i , ∅)

TV+TRi+TEsub
↪−−−−−−−−−−→ Fch .

Party T = A,B

5. Upon (executed, idT , cidT , σT , LT , RT ,mT )
≤TV+TRi+2TEsub←−−−−−−−−−−−−↩ Fch where mT = (contract–closed,

finalA, finalB), delete γT from ΓT and output (closed, id , finalA, finalB)
TV+TRi+2TEsub
↪−−−−−−−−−−−→ Z.

Contract VSCCi(C): function CloseCi (σ, P, τ)

Let L := σ.userL, R := σ.userR, γ := σ.virtual–channel, A := γ.Alice, B := γ.Bob.
1. If P 6∈ {L,R}, τ < γ.validity + TimeRegister(i) or γ = ⊥, then output (σ, 0, 0,⊥).
2. Let σ̃ := σ. If there exists cid ∈ {0, 1}∗ such that σ.cspace(cid) 6= ⊥ and we have that σn.locked > 0,

where σn := σ.cspace(cid).storage (i.e. the contract instance with identifier cid still has some locked
coins), then distribute the coins fairly between the users as follows:
– If σn.cash(L) > 0 and σn.cash(R) > 0, then set σ̃.cash(L) := σ.cash(L) + σn.cash(L) and
σ̃.cash(R) := σ.cash(R) + σn.cash(R).

– If σn.cash(L) > 0 and σn.cash(R) ≤ 0, then set σ̃.cash(L) := σ.cash(L) + (σn.cash(L) +
σn.cash(R)).

– If σn.cash(L) ≤ 0 and σn.cash(R) > 0, then set σ̃.cash(R) := σ.cash(R) + (σn.cash(L) +
σn.cash(R)).

3. Let investL := γ.cash(A), investR := γ.cash(B) denote the balance when the contract was opened
and let finalL := σ̃.cash(L) and finalR := σ̃.cash(R) denote the current balance. Distinguish the
following two situations
– If (investL − finalL) + (investR − finalR) = 0, then set σ̃.cash(L) := (investL − finalL) and
addL := finalL. Analogously for σ̃.cash(R) and addR.
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– Otherwise set both σ̃.cash(L) := 0 and σ̃.cash(R) := 0 and (addL, addR) := (investL, investR).
4. Set σ̃.locked := 0, σ̃.virtual–channel := ⊥ and output (σ̃, addL, addR,m), where m = (contract–

closed, addL, addR).

We can now state the final theorem showing that our constructions emulates the ideal functionality from
Section 5. The proof is given in the Appx. D.

Theorem 2. Let Eres be the class of restricted environments defined in Appx. B and let VSCC be the contract

type defined in Section 7. The protocol Π(i, C) working in FL(∆)
ch (i− 1, VSCCi(C) ∪ C)-hybrid model emulates

the ideal functionality FL(∆)
ch (i, C) against environments from class Eres for every set of contract types C,

every i > 1 and every ∆ ∈ N.

8.1 Time complexity

Let us summaries the complexities of the protocol Π(i, C) and define the timing functions TimeCreate(i,∆),
TimeUpdate(i,∆), TimeRegister(i,∆), TimeExecute (i,∆) and TimeClose(i,∆). These functions, informally
speaking, on input the channel length i ∈ N and the delay parameter ∆ ∈ N, output the maximal number
of rounds the corresponding part of the protocol Π(i, C) takes.

Recall that for protocol parts that do not require interaction with the ledger (in case all parties behave
honestly), we define optimistic time complexity in addition to the pessimistic time complexity. The optimistic
time complexity of updating a contract instance in a state channel is equal to 2 rounds. Executing a contract
instance in a state channel takes in the optimistic case at most 5 rounds. Let us emphasize that the optimistic
time complexity of these protocol parts is independent of the channel length. This is also the case for virtual
channel creation which takes at most 3 rounds for any i > 1.

The pessimistic time complexities of the protocol Π(1, C), i.e. for ledger state channels, are the following.
It takes at most 2∆ rounds to create a ledger state channel, i.e. TimeCreate(1, ∆) = 2∆. The pessimistic
time complexity for registering a contract instance in a ledger state channel is TimeRegister(1, ∆) := 3∆
rounds. The pessimistic time complexity for updating a contract instance is TimeUpdate(1, ∆) := 2 +
3∆ rounds. Execution of a contract instance in a ledger state channel takes in the pessimistic case up to
TimeExecute(1, ∆) := 5+4∆ rounds and closing a ledger state channel takes TimeClose(1, ∆) := 8∆ rounds.

The pessimistic time complexities of the protocol Π(i, C) for a virtual state channel of length i can be
expressed in terms of the time complexities to execute its subchannels (which are state channels of length
di/2e), using recursively Equation (2). After solving the recurrence we obtain

TimeExecute(i,∆) :=
14dlog2 ie · (75 + 52∆)

13
− 10.

Registering a contact instance in a virtual state channel of length i takes at most TimeRegister(i,∆) :=
5 ·TimeExecute(di/2e, ∆) rounds. Updating a contract instance in a virtual state channel of length i is upper
bounded by TimeUpdate(i,∆) := 2 + 5 ·TimeExecute(di/2e, ∆) and closing a virtual state channel of length
i takes in the pessimistic case TimeClose(i,∆) := 7 · TimeExecute(di/2e, ∆).
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A Routing payments using hash-locked transactions

Consider the situation when Alice has a payment channel with Ingrid and Ingrid has a payment channel
with Bob. Assume that Alice wants to send one coin to Bob and route the payment via Ingrid. The first
idea would be to let Alice update the channel with Ingrid such that Alice pays one coin to Ingrid and then
let Ingrid symmetrically update the channel with Bob such that Ingrid pays one coin to Bob. However, this
naive solution allows a malicious Ingrid to abort after receiving the coin from Alice and never pay anything
to Bob.

Let us briefly explain how to solve the above problem using hash-locked transactions. Let H be some
fixed hash function. Bob first picks a random value x ∈ {0, 1}∗ and sends the hash value h = H(x) to Alice
who creates a hash-locked transaction HLTA. Informally, this transaction promises to update the channel
between Alice and Ingrid such that Ingrid earns one coin if she publishes a preimage of h before a timeout
tA. Ingrid, upon receiving the hash-locked transaction HLTA from Alice, creates a hash-locked transaction
HLTB which promises to update the channel between Ingrid and Bob such that Bob earns one coin if he
publishes a preimage of h before the timeout tB < tA. Hence, if Bob reveals x before time tB , he gets one
coin from Ingrid. Since tB < tA, Ingrid has time to use the value x to get one coin from Alice and thus
finalize the payment. In case Bob does not reveal x to Ingrid before the timeout tB , Ingrid can refund her
coin locked in HLTB . Analogously, in case Ingrid does not reveal x, Alice can refund her coin locked in HLTA
after round tA.
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B Restrictions on the Environment

In order to simplify the description of the ideal functionality FL(∆)
ch (i, C) and the protocol Π(i, C) realizing

it, we define a set of restricted environments Eres . Every Z ∈ Eres has to satisfy the following
– Z never sends the same message to the same party twice.
– Z sends a message (create, γ), where γ is a ledger state channel, to all honest parties in the set γ.end–users

in the same round τ0 (and it never send this message to any other honest party). In addition, we assume
the following: there does not exist a state channel γ′ with γ.id = γ′.id (and no such state channel is
currently being created); parties of the ledger state channel are from the set P; Value(γ.id) ≥ 0; both
parties of the ledger state channel have enough funds on the ledger for the channel creation;12 the set
of contract instances is empty; and γ.length = 1. In addition, we assume that if γ.Alice is honest and
the environment does not receive the message (created, γ) from γ.Alice within 2∆ rounds, it sends the
message (refund, γ) to party γ.Alice.

– Z sends the message (create, γ), where γ is a virtual state channel, to all honest parties in the set
γ.end–users ∪ {γ.Ingrid} in the same round τ0 (and it never send this message to any other honest
party). In addition, we assume the following: there does not exists a state channel γ′ with γ.id = γ′.id
(and no such state channel is currently being created); parties of the virtual state channel are from the
set P; Value(γ.id) ≥ 0; the set of contract instances is empty; γ.validity < τ0+3. Additionally, we assume
the following about the subchannels of γ:
• if honest P ∈ γ.end–users receives the message (create, γ), then the following must be satisfied:

the subchannel α := γ.subchan(P ) must exist; α.end–users = {P, γ.Ingrid}; α.length ≤ dγ.length/2e;
γ.validity > α.validity+TimeClose(γ.length); α.cspace(cid) = ⊥ for every cid ∈ {0, 1}∗ if α is a virtual
state channel; both P and γ.Ingrid have enough funds in α.

• if honest γ.Ingrid receives the message (create, γ), then both subchannels α := γ.subchan(γ.Alice),
β := γ.subchan(γ.Bob) exist; α.end–users = {γ.Alice, γ.Ingrid} and β.end–users = {γ.Bob, γ.Ingrid};
α.length ≤ dγ.length/2e, β.length ≤ dγ.length/2e and γ.length = α.length + β.length; γ.validity >
max{α.validity, β.validity} + TimeClose(γ.length); α.cspace(cid) = ⊥ for every cid ∈ {0, 1}∗ if α is a
virtual state channel; β.cspace(cid) = ⊥ for every cid ∈ {0, 1}∗ if β is a virtual state channel; γ.Alice
and γ.Ingrid have enough funds in α and γ.Bob and γ.Ingrid have enough funds in β.

– If Z sends the message (update, id , cid, σ̃, C) or (update–reply, ok, id , cid) to an honest party P , then a
state channel γ with identifier id exists in Γ ; P ∈ γ.end–users, the state channel supports the contract
type; if the contract instance has already been updated before, then the contract type remains the same,
i.e. if ν := γ.cspace(cid) 6= ⊥, then ν.type = C; the new contract instance σ̃ is admissible with respect to
C, i.e. σ̃ ∈ C.Λ; and both parties have enough cash in the state channel for the contract instance update.13

Z never asks to update a contract instance that is currently being updated or executed. In addition, if
Γ (id) is a virtual state channel, then we assume that there is no other contract instance in the virtual
state channel (and no other instance is being created).

– If Z sends the message (execute, id, cid, f, z) to an honest party P , then a state channel γ with identifier id
exists in Γ , P ∈ γ.end–users, the contract instance cid has already been defined in γ, i.e. γ.cspace(cid) 6=
⊥, and f is a contract function with respect to γ.cspace(cid).type.

– If Z sends the message (close, id) to honest party P , then state channel γ with identifier id exists in Γ ,
γ is a ledger state channel and P ∈ γ.end–users.

C Security analysis of the ledger state channel protocol

In this section, we will show that for any set of contract types C, the Π(1, C) protocol Eres -emulates the ideal

functionality FL(∆)
ch (1, C) in FL(∆)

scc (C)-hybrid world. In other words, for any PPT adversary A we construct

12 In case the environment requests opening more ledger state channels at the same time, we require that all parties
have enough funds for all ledger state channels that are being created.

13 In case the environment requests constructing more contract instances at the same time, we require that both
parties have enough funds in the state channel for all of them.
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a simulator S1 that operates in the FL(∆)
ch (1, C) world and simulates the FL(∆)

scc (C)-hybrid world to any
environment Z ∈ Eres .

The two main challenges of our analysis are the following: (i) ensure the consistency of timings (if an
honest party P outputs a message m in round τ in the hybrid world, then P must output the same message
m in the same round τ in the ideal world as well) and (ii) ensure the consistency of balances of parties on the
ledger (i.e. if the state of accounts on the ledger in round τ is equal (x1, . . . , xn) in the hybrid world, then
the state of user’s accounts in round τ must be (x1, . . . , xn) in the ideal world as well). Recall that the ledger
L is a global ideal functionality thus the environment can read its state at any point in time. Inconsistencies
on the ledger could therefore reveal to the environment whether it is communicating with the real or ideal
world.

The simulator S1 constructed in this section will internally run a copy the hybrid world. It will maintain
a channel space ΓT for every honest party T and the channel space Γ for the hybrid ideal functionality

FL(∆)
scc (C). In addition, the simulator will generate a key pair (pkT , skT )←$KGen(1λ) for every honest party

T during the setup phase. Recall that since there are no private inputs or messages being sent, we implicitly

assume that the ideal functionality FL(∆)
ch (1, C) on receiving a message m from party P immediately sends

a message (P,m) to the simulator S1 (this convention was introduced in Section 5). The simulator S1
thus receives all the input messages of the honest parties from the ideal functionality FL(∆)

ch (1, C). Since
S1 receives messages addressed to the adversary A (which it internally runs) from the environment Z, it
knows the behavior of corrupt parties in the protocol as well as the instruction given by the adversary to

the hybrid ideal functionality FL(∆)
scc (C). This, in particular, means that our simulator S1 can instruct the

ideal functionality FL(∆)
ch (1, C) to make changes on the ledger L in the same round as the adversary A

would instruct the hybrid ideal functionality FL(∆)
scc (C) to make the changes on the ledger. To simplify the

pseudocode description of the simulator S1, we do not write these instructions explicitly.
We will discuss each part of the protocol separately and for each of them distinguish all possible corruption

combinations: both parties are honest, only one party is honest and both parties are corrupt. We present a
full description of the simulator S1 for all of these cases and provide a detailed proof sketch of the ideal and
hybrid world indistinguishability for the ledger state channel creation when A is honest and B is corrupt.
The argumentation in the remaining cases is very similar and thus omitted from this version of the paper.

Create a ledger state channel. Let us begin with the description of the simulator S1 for the ledger state
channel creation. We will first discuss in detail the case when A is honest and B is corrupt (the corresponding
pseudocode description of the simulator can be found below).

According to the protocol Π(1, C), honest party A upon receiving the message (create, γ) from the

environment Z sends the message (construct, γ) to the hybrid ideal functionality FL(∆)
scc (C). Since we assume

that Z ∈ Eres , all checks made by the hybrid ideal functionality FL(∆)
scc (C) will pass. This can be verified

by careful inspection of Eres definition (see page 39) and the description of the ideal functionality FL(∆)
scc (C)

for ledger state channel creation (see page 18). The hybrid ideal functionality FL(∆)
scc (C) within ∆ rounds

removes coins from A’s account on the ledger L. The exact round is determined by the adversary A. The
simulator S1 is receiving messages from Z addressed to the adversary A; thus, it can instruct the ideal

functionality FL(∆)
ch (1, C) to remove coins from A’s account in the same round (recall our convention that

these messages from the simulator to the ideal functionality are implicit in our descriptions to for better

readability). After removing the coins from A’s account, the hybrid ideal functionality FL(∆)
scc (C) sends the

message (initializing, γ) to party B which is exactly what the simulator S1 does as well.

If B is instructed by the environment Z to immediately reply to the hybrid ideal functionality FL(∆)
scc (C)

with the message (confirm, γ), the ledger state channel γ will be created in the hybrid world. Therefore,

the simulator S1 sends the message (create, γ) to the ideal functionality FL(∆)
ch (1, C) on behalf of B which

ensures the channel creation in the ideal world as well. The simulator again instructs the ideal functional-

ity FL(∆)
ch (1, C) to remove coins from B’s account in the same round the adversary A would instruct the

hybrid ideal functionality FL(∆)
scc (C). After removing coins from B’s account, the hybrid ideal functionality
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immediately sends the message (initialized, γ) to both end–users which makes honest A output the message
(created, γ) to the environment. Therefore, the simulator S1 sends the message (initialized, γ) to B right

after the coins are removed. In addition, the ideal functionality FL(∆)
ch (i, C) after removing coins from B’s

account sens the message (created, γ) to both end-users which results in the honest party A forwarding it to
the environment. Thus, the content and timing of the honest party’s output message to the environment is
the same in both worlds. Finally, the simulator Si stores the new ledger state channel γ in the channel space
of the hybrid ideal functionality Γ and the channel space of the honest party ΓA and stops.

If B is not instructed by the environment Z to confirm the channel creation by sending the message

(confirm, γ) to the hybrid ideal functionality FL(∆)
scc (C), the ledger state channel γ will not be created in the

hybrid world. Thus, simulator S1 does not send any message to FL(∆)
ch (1, C) on B’s behalf in this case. By

our assumption that Z ∈ Eres , the honest party A receives the message (refund, γ). In the hybrid world, A

forwards this message to the hybrid ideal functionality FL(∆)
scc (C) who adds coins back to A’s account on

the ledger within ∆ rounds. In the ideal world, A is a dummy party and thus forwards the message to the

ideal functionality FL(∆)
ch (1, C). Hence, the only thing that the simulator S1 has to do is to instruct the ideal

functionality FL(∆)
ch (1, C) to add the coins back to A’s account in the correct round and then stop.

We will now present the pseudocode description of the simulator S1 that we just defined as well as the
description of S1 for the remaining corruption combinations.

Simulator S1: Create a ledger state channel

We use the abbreviated notation from Section 4.3. Let Fch := FL(∆)
ch (1, C).

Case A is honest and B is corrupt:

Upon (A, create, γ)
τ0←−↩ Fch , proceed as follows:

1. Wait till round τ1 ≤ τ0 +∆ to send (initializing, γ)
τ1
↪−→ B.

2. If (confirm, γ)
τ1←−↩ B, then send (create, γ)

τ1
↪−→ Fch on behalf of B. Send (initialized, γ)

τ2≤τ1+∆
↪−−−−−−→ B

and set ΓA(γ.id) := γ, Γ (γ.id) := γ and stop.

Case A is corrupt and B is honest:

Upon (construct, γ)
τ0←−↩ A proceed as follows:

1. If A does not have enough funds on the ledger, there already exists a state channel γ′ such that
γ.id = γ′.id in Γ , γ.cspace 6= ∅, or Value(γ) < 0, then stop.

2. Else send (create, γ)
τ0
↪−→ Fch on behalf of A and in round τ1 ≤ τ0 +∆ send (initializing, γ)

τ1
↪−→ A.

3. Distinguish the following two situations:

– If (B, create, γ)
τ0←−↩ Fch , then send (initialized, γ)

τ0+2∆
↪−−−−→ A and set ΓB(γ.id) := γ, Γ (γ.id) := γ

and stop.

– Else wait. If (refund, γ)
τ3>τ0+2∆←−−−−−−−↩ A, then send (refund, γ)

τ3
↪−→ Fch .

Case A and B are corrupt:

Upon (construct, γ)
τ0←−↩ A proceed as follows:

1. If A does not have enough funds on the ledger, there already exists a state channel γ′ such that
γ.id = γ′.id, γ.cspace 6= ∅ or Value(γ) < 0, then stop.

2. Else send (create, γ)
τ0
↪−→ Fch on behalf of A and in round τ1 ≤ τ0 + ∆ send (initializing, γ)

τ1
↪−→

γ.end–users.
3. Distinguish the following two situations:
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– If (confirm, γ)
τ1←−↩ B and B has sufficient funds on the ledger, then (create, γ)

τ1
↪−→ Fch and on

behalf of B and wait till round τ2 ≤ τ0 + 2∆ to send (initialized, γ)
τ2
↪−→ γ.end–users. Then set

Γ (γ.id) := γ and stop.

– Else wait if (refund, γ)
τ3>τ0+2∆←−−−−−−−↩ A. In such a case send (refund, γ)

τ3
↪−→ Fch and stop.

It remains to discuss the case when both parties of the ledger state channel are honest. The only thing
the simulator has to do is to instruct the ideal functionality to remove coins from ledger accounts in the
correct round which can be done since it received the message addressed to the adversary A. After removing
the coins from both user’s accounts, the simulator updates the channel space sets, i.e. defines ΓA(γ.id) =
ΓB(γ.id) = Γ (γ.id) = γ.

Registration of a contract instance in a ledger state channel. Since registration of a contract
instance is defined as a separate procedure that can be called by parties of the protocol Π(1, C), we define a
“subsimulator” SimRegister(P, id , cid) which can be called as a procedure by the simulator S1. Before we
define the subsimulator formally, let us discuss one technicality.

As already mentioned, one of the main challenges of the simulation is to ensure the consistency of the
ledger accounts in the ideal and hybrid world. In particular, if two parties created a ledger state channel
between them (i.e. their coins were subtracted from their ledger accounts), the simulator has to ensure that
once this ledger state channel is closed, the amount of coins returned to each party’s account on the ledger
is the same in the real and hybrid world. In case at least one party of the ledger state channel is honest,

every time the channel is updated or executed, the ideal functionality FL(∆)
ch (1, C) receives the corresponding

message from the honest party and thus has the same view on the channel’s state as the honest party in the
hybrid world. The situation is more tricky in case both parties are corrupt.

If two corrupt parties have a ledger state channel between them, they can update its state arbitrarily (even
to an invalid state). As long as these updates are done off-chain (parties exchange messages with each other

and do not send any message to the hybrid ideal functionality FL(∆)
scc (C)), no changes in the channel space

Γ of ideal functionality FL(∆)
ch (1, C) are needed. Only when parties successfully register a contract instance

with the hybrid ideal functionality FL(∆)
scc (C), the update of the ledger state channel resulting from the new

contract instance becomes “official”. Thus, the simulator has to ensure that these changes to the ledger state

channel are also made in the ideal functionality FL(∆)
ch (1, C). This is the reason, why the simulator has to

send update message to the ideal functionality on behalf of the corrupt parties, in case they successfully
register a contract instance in the hybrid world.

Sub-simulator : SimRegister(P, id , cid)

We use the abbreviated notation from Section 4.3. Let Fch := FL(∆)
ch (1, C).

Case P and Q are honest:

1. Let γP := ΓP (id), νP := γP .cspace(cid) and γQ := ΓQ(id), νQ := γQ.cspace(cid).
2. Wait up to 2∆ rounds and then proceed as follows. If νP .version ≥ νQ.version, then set ν̃ :=

(νP .storage, νP .type). Else set ν̃ := (νQ.storage, νQ.type).
3. Mark (id , cid) as registered in Γ, ΓP , ΓQ and update all three sets, i.e. set Γ := LocalUpdate(Γ,

id , cid, ν̃), ΓP := LocalUpdate(ΓP , id , cid, ν̃), ΓQ := LocalUpdate(ΓQ, id , cid, ν̃).

Case P is honest and Q is corrupt:

1. Let γP := ΓP (id), νP := γP .cspace(cid), σP := νP .storage.

2. Set τ0 be the current round. Send (instance–registering, id , cid, νP )
τ1≤τ0+∆
↪−−−−−−→ Q.
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3. If (instance–register, id , cid, νQ)
τ1←−↩ Q where νQ is a valid contract instance (both signatures

νQ.sign(A) and νQ.sign(B) are valid, the amount of locked coins in νQ is non-negative, users of the
contract instance are A and B, the contract instance storage is admissible and the contract type is
from the set C), then proceed as follows. If νP .version ≥ νQ.version, then ν̃ := (νP .storage, νP .type)

and otherwise set ν̃ := (νQ.storage, νQ.type). Thereafter (instance–registered, id , cid, ν̃)
τ2≤τ1+∆
↪−−−−−−→ Q

and goto step 5.

4. Else define ν̃ := (νP .storage, νP .type), send (instance–registered, id , cid, ν̃)
τ2≤τ0+3∆
↪−−−−−−−→ Q and goto

step 5.
5. Mark (id , cid) as registered in ΓP , Γ and set Γ := LocalUpdate(Γ, id , cid, ν̃) and ΓP := Local

Update(ΓP , id , cid, ν̃).

Case P is corrupt and Q is honest:

Upon (instance–register, id , cid, νP )
τ0←−↩ P , s.t. Γ (id) 6= ⊥, Γ (id).cspace(cid) = ⊥, νP is a valid contract

instance (both signatures νP .sign(A) and νP .sign(B) are valid, the amount of locked coins in νP is non-
negative, users of the contract instance are A and B, the contract instance storage is admissible and
the contract type is from the set C), then do:

1. Within ∆ rounds, send (instance–registering, id , cid, νP )
τ1≤τ0+∆
↪−−−−−−→ P .

2. Let γQ := ΓQ(id), νQ := γQ.cspace(cid). If νP .version ≥ νQ.version, then ν̃ := (νP .storage, νP .type)
and otherwise set ν̃ := (νQ.storage, νQ.type).

3. Send (instance–registered, id , cid, ν̃)
τ2≤τ1+∆
↪−−−−−−→ P , mark (id , cid) as registered in ΓQ and Γ and then

set Γ := LocalUpdate(Γ, id , cid, ν̃) and ΓQ := LocalUpdate(ΓQ, id , cid, ν̃).

Case P and Q are corrupt :

Upon (instance–register, id , cid, νP )
τ0←−↩ P , s.t. Γ (id) 6= ⊥, Γ (id).cspace(cid) = ⊥, νP is a valid contract

instance (both signatures νP .sign(A), νP .sign(B) are valid, the amount of locked money in νP is non-
negative, users of the contract instance are A and B, the contract instance storage is admissible and
the contract type is from the set C), then do:

1. Within ∆ rounds, send (instance–registering, id , cid, νP )
τ1≤τ0+∆
↪−−−−−−→ Γ (id).end–users.

2. If (instance–register, id , cid, νQ)
τ1←−↩ Q s.t. νQ is a valid contract instance (both νQ.sign(A) and

νQ.sign(B) are valid signatures, the amount of locked money in νQ is non-negative, users of the con-
tract instance are A and B, the contract instance storage is admissible and the contract type is from
the set C), then proceed as follows. If νP .version ≥ νQ.version, then ν̃ := (νP .storage, νP .type) and

otherwise set ν̃ := (νQ.storage, νQ.type). Thereafter send (instance–registered, id , cid, ν̃)
τ2≤τ1+∆
↪−−−−−−→

Γ (id).end–users and goto step 4.

3. Else proceed as follows. If (finalize–register, id , cid)
τ0+2∆←−−−−↩ P , then define ν̃ := (νP .storage, νP .type),

send (instance–registered, id , cid, ν̃)
τ2≤τ0+3∆
↪−−−−−−−→ Γ (id).end–users and goto step 4.

4. Mark (id , cid) as registered Γ and update the channel space Γ := LocalUpdate(Γ, id , cid, ν̃). Then
send (update, id , cid, ν̃.storage, ν̃.type) ↪−→ Fch on behalf of P and (update–reply, ok, id , cid) ↪−→ Fch

on behalf of Q.

Update a contract instance in a ledger state channel If both parties are honest, the simulator does
not need to give any instructions to the ideal functionality and only updates the sets ΓP , ΓQ, when the
messages (P,update, id , cid, σ̃, C) and (Q,update–reply, ok, id , cid) are received from the ideal functionality.

In case both parties are corrupt, the simulator can internally simulate the communication of the two
corrupt parties and in case the registration procedure is started by one of them, it executes the subsimulator
SimRegister for the case when both parties are corrupt. Note that if the registration procedure is successful
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(a contract instance gets registered), the subsimulator SimRegister instructs the ideal functionality to
update the contract instance accordingly.

Below we define the simulator S1 for the remaining two case; i.e. when only the initiating party is corrupt
and if only the reacting party is corrupt.

Simulator S1: Contract instance update

We use the abbreviated notation from Section 4.3. Let Fch := FL(∆)
ch (1, C).

Case P is honest and Q is corrupt:

Upon (P,update, id , cid, σ̃, C)
τ0←−↩ Fch do:

1. Let γP := ΓP (id), νP := γP .cspace(cid), σP := νP .storage. If νP = ⊥, then set vP := 0, else set
vP := νP .version.

2. Sign sP := SignskP (id, cid, σ̃, C, vP + 1) and send (update, sP , id , cid, σ̃, C)
τ0+1
↪−−−→ Q of behalf of P .

3. Distinguish the following cases:

– If (update–ok, sQ)
τ1≤τ0+1
←−−−−−↩ Q such that VfypkQ(id, cid, σ̃, C, vP +1; sB) = 1, then send (update–

reply, ok, id , cid)
τ1
↪−→ Fch on behalf of Q and set ΓP := LocalUpdate(ΓP , id , cid, σ̃, C, vP + 1,

{sP , sQ}).
– If (update–not–ok, sQ)

τ1≤τ0+1
←−−−−−↩ Q such that VfypkB (id, cid, σP , C, vP + 2; sQ) = 1, then com-

pute sP := SignskP (id , cid, σP , C, vP + 2) and set ΓP := LocalUpdate(ΓP , id , cid, σP , C, vP +
2, {sP , sQ}).

– Else execute SimRegister(P, id , cid). If after the sub-simulator is executed (in round τ2 ≤
τ0 + 3∆+ 1) it holds that ΓP (id).cspace(cid) = (σ̃, C), then (update–reply, ok, id , cid)

τ2
↪−→ Fch

on behalf of Q.

Case P is corrupt and Q is honest:

Upon (update, sP , id , cid, σ̃, C)
τ0←−↩ P do:

1. Let γQ := ΓQ(id). If γQ = ⊥ or there exists cid′ 6= cid such that γ.cspace(cid) 6= ⊥, then stop; else
let νQ := γQ.cspace(cid). If νQ = ⊥, then set vQ := 0, else set vQ := νQ.version.

2. If VfypkP (id , cid, σ̃, C, vQ + 1; sP ) 6= 1, then mark (id , cid) as corrupt in ΓQ and stop. Else send

(update, id , cid, σ̃, C)
τ0
↪−→ Fch on behalf of P .

3. Distinguish the following cases:

– If (Q,update–reply, ok, id , cid)
τ1≤τ0+1
←−−−−−↩ Fch , then compute sQ := SignskQ(id , cid, σ̃, C, vQ+1),

set ΓQ := LocalUpdate(ΓQ, id , cid, σ̃, C, vQ + 1, {sP , sQ}) and send (update–ok, sQ)
τ0+2
↪−−−→ P

on behalf of Q and stop.
– Else compute sQ := SignskQ(id , cid, νQ.storage, νQ.type, vQ + 2) and on behalf of Q send

(update–not–ok, sQ)
τ0+2
↪−−−→ P .

Execute a contract instance in a ledger state channel In case both parties are honest, the simulator
only has to instruct the ideal functionality to output the result in the correct round. Let τ0 be the round in
which the environment instructed the initiating party P to execute. Then the simulator sets τ1 := τ0 + x,
where x is the smallest offset such that τ1 = 1 mod 4 if P = γ.Alice and τ1 = 3 mod 4 if P = γ.Bob and
waits till round τ1 to instruct the ideal functionality to output the result. The it updates both channel space
ΓP and ΓQ accordingly.

Below we describe in detail the situation when one or two parties are corrupt.
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Simulator S1: Contract instance execution.

We use the abbreviated notation from Section 4.3. Let Fch := FL(∆)
ch (1, C).

Case P is honest and Q is corrupt:

Upon (P, execute, id , cid, f, z)
τ0←−↩ Fch , let γP := ΓP (id), νP := γP .cspace(cid), σP := νP .storage and

vP := νP .version. In addition, set τ1 := τ0 + x, where x is the smallest offset such that τ1 = 1 mod 4
if P = γP .Alice and τ1 = 3 mod 4 if P = γP .Bob. Wait till round τ1 and then proceed as follows:
1. If (id , cid) is not marked as corrupt in ΓP , do:

(a) Set (σ̃, addL, addR,m) := f(σP , P, τ0, z). If m = ⊥, then stop.
(b) Else compute sP := SignskP (id , cid, σ̃, νP .type, vP + 1) and send (peaceful–request, id , cid, f, z,

sP , τ0)
τ1+1
↪−−−→ Q.

(c) If (peaceful–confirm, id , cid, f, z, sQ)
τ1+1←−−−↩ Q such that VfypkQ(id , cid, σ̃, νP .type, vP + 1; sQ) =

1, then set ΓP := LocalUpdateAdd(ΓP , id , cid, σ̃, νP .type, addL, addR, v
P + 1, {sP , sQ}) and

instruct the ideal functionality to output the result. Else execute SimRegister(P, id , cid) in
round τ1 + 2. If after the execution of the sub-simulator (in round τ1 ≤ τ0 + 3∆ + 5) it holds
that σP = σ̃, then set ΓP := LocalUpdateAdd(ΓP , id , cid, σ̃, νP .type, addL, addR), instruct the
ideal functionality to output the result and stop. Else goto step 2e.

2. If (id , cid) is marked as corrupt
(d) If (id , cid) is not marked as registered in ΓP , then execute the sub-simulator SimRegister(P,

id , cid).

(e) Let τ3 be the current round. If (executed, id , cid, σ, addL, addR,m)
τ4≤τ3+∆←−−−−−−↩ Fch , then update

the channel space ΓP and Γ and send (instance–executed, id , cid, σ, addL, addR,m)
τ4
↪−→ Q and

stop. Else stop.

Case P is corrupt and Q is honest:

Upon (peaceful–request, id , cid, f, z, sP , τ0)
τ1←−↩ P

1. Let γQ := ΓQ(id), νQ := γQ.cspace(cid), σQ := νQ.storage, vQ := νQ.version. If γQ = ⊥, P 6∈
γQ.end–users, νQ = ⊥ or f 6∈ νQ.type, then goto step 4.

2. If P = γQ.Alice and τ1 mod 4 6= 1 or if P = γ.Bob and τ1 mod 4 6= 3, then goto step 4.
3. If (id , cid) is not marked as corrupt in ΓQ, do:

(a) Compute (σ̃, addL, addR,m) := f(σQ, P, τ0, z).
(b) If m = ⊥ or VfypkP (id , cid, σ̃, νQ.type, vQ + 1; sP ) 6= 1, then goto step 4.

(c) Send (execute, id , cid, f, z)
τ0
↪−→ Fch on behalf of P and instruct the functionality to deliver the

result.
(d) Compute the signature sQ := SignskQ(id , cid, σ̃, νQ.type, vQ + 1), send (peaceful–confirm, id ,

cid, f, z, sQ)
τ1+1
↪−−−→ P , set ΓQ := LocalUpdateAdd(ΓQ, id , cid, σ̃, νQ.type, addL, addR) and stop.

4. Mark (id , cid) as corrupt in ΓQ and stop.

Upon P starting the registration procedure for id , cid, then execute the sub-simulator SimRegister(P,
id , cid).

Upon (instance–execute, id , cid, f, z)
τ2←−↩ P , then

1. Let γ := Γ (id). If γ = ⊥ or P 6∈ γ.end–users, then stop. Else let ν := γ.cspace(cid), σ := ν.storage.
If ν = ⊥ or f 6∈ ν.type, then stop.

2. Else send (execute, id , cid, f, z)
τ2
↪−→ Fch on behalf of P and within ∆ round instruct the functionality

to output the result.
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3. If (executed, id , cid, σ, addL, addR,m)
τ3≤τ2+∆←−−−−−−↩ Fch , then update the sets ΓQ and Γ , send (instance–

executed, id , cid, σ, addL, addR,m)
τ3
↪−→ P and stop.

Case P and Q are corrupt:

Internally simulate the communication of the corrupt parties. If P starting the registration procedure
for id , cid, then execute the sub-simulator SimRegister(P, id , cid) for the case when both parties are
corrupt. Note that if the registration procedure is successful (a contract instance gets registered), the
subsimulator SimRegister instructs the ideal functionality to update the contract instance accordingly.

If (instance–execute, id , cid, f, z)
τ2←−↩ P , then

1. Let γ := Γ (id). If γ = ⊥ or P 6∈ γ.end–users, then stop. Else let ν := γ.cspace(cid), σ := ν.storage.
If ν = ⊥ or f 6∈ ν.type, then stop.

2. Else send (execute, id , cid, f, z)
τ2
↪−→ Fch on behalf of P and within ∆ round instruct the functionality

to output the result.

3. If (executed, id , cid, σ, addL, addR,m)
τ3≤τ2+∆←−−−−−−↩ Fch , then update Γ , send (instance–executed, id ,

cid, σ, addL, addR,m)
τ3
↪−→ P and stop.

Close a ledger state channel. Below we describe the simulator in case of ledger state channel closure.
We discuss all four possible situations.

Simulator S1: Close a ledger state channel

We use the abbreviated notation from Section 4.3. Let Fch := FL(∆)
ch (1, C).

Case P,Q are honest

Upon (P, close, id)
τ0←−↩ Fch , proceed as follows. Let γP := ΓP (id). For every cid ∈ {0, 1}∗ such that

γP .cspace(cid) 6= ⊥, execute SimRegister(P, id , cid) for the case when both parties are honest. In

round τ1 ≤ τ0 + 8∆ instruct the ideal functionality to output the result. If (closed, id)
τ1≤τ0+8∆
←−−−−−−−↩ Fch ,

set Γ (id) := ⊥, ΓP (id) := ⊥, ΓQ(id) := ⊥ and stop.

Case P is honest and Q is corrupt:

Upon (P, close, id)
τ0←−↩ Fch , do:

1. Let γP := ΓP (id). For every cid such that γP .cspace(cid) 6= ⊥ but the contract instance has never
been registered, execute SimRegister(P, id , cid).

2. After the execution of the subsimulator, wait for at most ∆ rounds to send the message (contract–

closing, id)
τ2≤τ0+4∆
↪−−−−−−−→ Q.

3. Execute the sub-simulator SimRegister(Q, id , cid) if registration started by Q for some cid.

4. In round τ3 ≤ τ0 + 8∆ instruct the ideal functionality to output the result. If (closed, id)
τ3←−↩ Fch ,

set Γ (id) := ⊥ ΓP (id) := ⊥ and send (contract–closed, id)
τ3
↪−→ Q. Then stop.

Case P is corrupt and Q is honest:

1. Execute the sub-simulator SimRegister(P, id , cid) if registration started by P for some cid in round
τ0.

2. After the execution (in round τ1 ≤ τ0 + 2∆), if (contract–close, id)
τ1←−↩ P , where Γ (id) 6= ⊥, then

send (close, id)
τ1
↪−→ Fch on behalf of P .

3. Wait at most ∆ rounds to (contract–closing, id)
τ2≤τ0+3∆
↪−−−−−−−→ P .
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4. Let γQ := ΓQ(id). If there exists cid such that γQ.cspace(cid) 6= ⊥ but the contract instance has
never been registered, execute the sub-simulator SimRegister(Q, id , cid).

5. Upon (closed, id)
τ5≤τ0+8∆
←−−−−−−−↩ Fch , ΓQ(id) := ⊥ and (contract–closed, id)

τ5
↪−→ P and stop.

Case P and Q are corrupt:

1. Execute the sub-simulator SimRegister(P, id , cid) if registration started by P for some cid. Note
that if the registration procedure is successful (a contract instance gets registered), the subsimulator
SimRegister instructs the ideal functionality to update the contract instance accordingly.

2. After the execution (in round τ1 ≤ τ0 + 2∆), if (contract–close, id)
τ1←−↩ P , where Γ (id) 6= ⊥, then

send (close, id)
τ1
↪−→ Fch on behalf of P .

3. Wait at most ∆ rounds to (contract–closing, id)
τ2≤τ0+4∆
↪−−−−−−−→ Γ (id).end–users.

4. Execute the sub-simulator SimRegister(Q, id , cid) if registration started by Q for some cid. Again,
if the registration procedure is successful, the subsimulator SimRegister instructs the ideal func-
tionality to update the contract instance accordingly.

5. In round τ3 ≤ τ0 + 8∆ instruct the ideal functionality to output the result. If (closed, id)
τ1≤τ0+8∆
←−−−−−−−↩

Fch , set Γ (id) := ⊥ and stop.

D Security analysis of the virtual state channel protocol

The purpose of this section is to show that for any i > 1 and any set C of contract types, the protocol Π(i, C)
emulates the ideal functionality FL(∆)

ch (i, C) in FL(∆)
ch (i− 1, VSCCi(C)∪C)-hybrid world against environments

from the set Eres .
The proof consists of two parts. First, we need to prove an auxiliary lemma stating that an instance of

the protocol Π(i, C) called by an environment Z ∈ Eres is Eres -respecting. This is because the hybrid ideal

functionality FL(∆)
ch (i − 1, VSCCi(C) ∪ C) is emulated by the protocol Π(i − 1, VSCCi(C) ∪ C) only against

environments from the set Eres . This proves that the hybrid world is well defined and the composition of
state channel protocols is possible. Thereafter we can construct the simulator Si in order to prove that the

protocol Π(i, C) in the hybrid world of FL(∆)
ch (i−1, VSCCi(C)∪C) emulates the ideal functionality FL(∆)

ch (i, C)
against environments from the set Eres .

Lemma 1. For any i > 1, set of contract types C, PPT adversary A and environment Z ∈ Eres , the protocol
Π(i, C) is Eres-respecting.

Proof. We need to prove that for any PPT adversary A and any environment Z ∈ Eres , honest parties

of the protocol Π(i, C) make calls to the hybrid ideal functionality FL(∆)
ch (i − 1, VSCCi(C) ∪ C) according

to the restrictions defining the set Eres . In other words, honest parties of the protocol jointly represent an
environment from the set Eres .

If the environment Z sends a message to an honest party in the protocol regarding a state channel of
length j < i, then the party simply forwards the message to the hybrid ideal functionality. Since Z ∈ Eres ,
no invalid calls can be made to the hybrid functionality in this way. It remains to show that the protocol is
Eres -respecting even if the environments sends a message regarding a virtual state channel of length i.

First note that honest parties in the protocol Π(i, C) upon receiving a message about a virtual state
channel of length i only ask the hybrid ideal functionality to update or execute a contract instance in a state
channel but never to create or close a state channel. Thus, none of the restrictions regarding creating or
closing a state channel can be violated.

Parties of the protocol send messages regarding update of a contract instance to the hybrid ideal func-

tionality FL(∆)
ch (i − 1, VSCCi(C) ∪ C) only during the protocol “Create a virtual state channel”. Since we

assume that parties of the protocol receive messages from an environment Z ∈ Eres , we have the guaran-
tee that they all receive the message (create, γ) in the same round τ0. According to the protocol, party
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γ.Alice sends in round τ0 the message (update, idA, cidA, σ̃A, VSCCi(C)), where σ̃A := InitCi (γ.Alice, τ0, γ),
idA := γ.subchan(γ.Alice) and cidA := γ.Alice||γ.id. Hence clearly σ̃A is admissible with respect to VSCCi(C).
We can argue similarly with the update of the subchannel between γ.Ingrid and γ.Bob. Since Z ∈ Eres , we
know that both subchannels of the virtual state channel γ exist, that they contain no contract instances and
that they have enough funds. In addition, the subchannels do support contracts of type VSCCi(C) since they

were created via the hybrid ideal functionality FL(∆)
ch (i− 1, VSCCi(C) ∪ C).

Parties of the protocol send messages regarding execution of a contract instance to the hybrid ideal

functionality FL(∆)
ch (i−1, VSCCi(C)∪C) during (i) the protocol “Update a contract instance in a virtual state

channel” (more specifically in the procedure Registeri), during (ii) the protocol “Execute a contract instance
in a virtual state channel” and (iii) during the protocol “Close virtual state channel”. Since Z ∈ Eres , we know
that none these protocols is ever called for a state channel that does not exists. This in particular implies that
the contract instance that is being executed by parties of the protocol in the underlying subchannels must
have been constructed and could not have been closed yet. In other words, we know that α.cspace(cidA) 6= ⊥
and β.cspace(cidB) 6= ⊥, where cidA := γ.Alice||γ.id, α := ΓA(γ.subchan(γ.Alice)) and cidB := γ.Bob||γ.id,
β := ΓB(γ.subchan(γ.Bob)), where ΓA and ΓB are the channel spaces of Alice and Bob, respectively. ut

In order to complete the proof that Π(i, C) protocol Eres -emulates the ideal functionality FL(∆)
ch (i, C) in

FL(∆)
ch (i − 1, VSCCi(C) ∪ C)-hybrid world for any set of contract types C, we need for every adversary A to

construct a simulator Si that simulates the hybrid world for any environment Z ∈ Eres .
The simulator Si constructed in this section will maintain a channel space ΓT for every honest party

T ∈ P and Γ for the hybrid ideal functionality FL(∆)
ch (i − 1, VSCCi(C) ∪ C). In addition, the simulator will

generate a key pair (pkT , skT )←$KGen(1λ) for every honest party T during the setup phase which allows
Si to internally run a copy of the hybrid world. Recall that there are no private inputs or messages being

sent, thus we assume that the ideal functionality FL(∆)
ch (i, C) upon receiving a message m from party P

immediately sends the message (P,m) to the simulator Si.
We will discuss in detail the most interesting case, when the ideal functionality FL(∆)

ch (i, C) sends message
about a virtual state channel of length exactly i or when a corrupt party P is instructed by the environment
to update or execute a subchannel of a virtual state channel of length exactly i, where the other user of the
subchannel is not corrupt. The simulation in the remaining cases is straightforward. Let us describe it here
only briefly.

If the ideal functionality FL(∆)
ch (i, C) sends a message about a state channel of length j, where 1 ≤ j < i,

the simulator internally executes the hybrid ideal functionality FL(∆)
ch (i − 1, VSCCi(C) ∪ C) on the received

message and sends the result to the adversary A (recall that honest parties in the protocol Π(i, C) act like

dummy parties and only forward messages to the hybrid ideal functionality FL(∆)
ch (i−1, VSCCi(C)∪C)). If the

corrupt parties are instructed to send valid replies to the hybrid ideal functionality FL(∆)
ch (i−1, VSCCi(C)∪C),

the simulator Si sends the messages to the ideal functionality FL(∆)
ch (i, C) on their behalf and further instructs

the ideal functionality FL(∆)
ch (i, C) as the simulator Sj would do. Thus specially, if all parties of a state channel

are honest, then the simulator Si is defined exactly as the simulator Sj . Let us give one example on how the
simulator is defined in case there are corrupt parties.

Let us consider the situation when γ.Alice and γ.Ingrid are honest, γ.Bob is corrupt and the ideal func-

tionality FL(∆)
ch (i, C) sends the messages (γ.Alice, create, γ) and (γ.Ingrid, create, γ), where 1 < γ.length < i,

in round τ0. Then the simulator waits till round τ0 + 3 if the corrupt party γ.Bob is instructed to send

(create, γ) to the hybrid ideal functionality FL(∆)
ch (i− 1, VSCCi(C)∪C). In that case, Si forwards the message

to the ideal functionality FL(∆)
ch (i, C) on behalf of γ.Bob, adds the new virtual state channel γ to the channel

spaces ΓA and Γ . The simulator then waits till round γ.validity.
The simulator Si is defined similarly in the remaining case when it does not receive any message from

the ideal functionality FL(∆)
ch (i, C) but a corrupt party is instructed to send a message to the hybrid ideal

functionality FL(∆)
ch (i− 1, VSCCi(C)∪C) about a state channel of length 1 ≤ j < i. This happens if a corrupt

party is the initiator of execute or update procedure or when all parties of the state channel are corrupt. In
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this situation, the simulator Si internally executes the hybrid ideal functionality FL(∆)
ch (i− 1, VSCCi(C)∪ C).

In case the message satisfies the restrictions on the environment, Si forwards it to the ideal functionality

FL(∆)
ch (i, C) on behalf of the corrupt party and further instructs the ideal functionality FL(∆)

ch (i, C) as the
simulator Sj would do.

From now on, we will focus on the simulator Si for the most challenging case when at least one party of
a virtual state channel of length exactly i is honest.

Create a virtual state channel. We begin with the definition of the simulator for virtual state channel
creation.

Simulator Si: Create a virtual state channel

We use the notation established in Section 4.3 and denote the ideal functionality Fch(i) := FL(∆)
ch (i, C)

and Fch(i− 1) := FL(∆)
ch (i− 1, C).

Case A, I,B are honest

Upon receiving (A, create, γ)
τ0←−↩ Fch(i), (B, create, γ)

τ0←−↩ Fch(i) and (I, create, γ)
τ0←−↩ Fch(i) proceed

as follows:

1. Set idA := γ.subchan(γ.id), cidA := A||γ.id and idB := γ.subchan(B), cidB := B||γ.id. Compute
σ̃A := InitCi (A, τ0, γ) and σ̃B = InitCi (B, τ0, γ).

2. For both T ∈ {A,B}, internally simulate Fch(i− 1) upon receiving the message (update, idT , cidT ,

σ̃T , VSCCi(C))
τ0←−↩ T .

3. For both T ∈ {A,B} internally simulate Fch(i− 1) upon receiving the message (update–reply, ok,

idT , cidT )
τ0+1←−−−↩ I.

4. Set ΓA(γ.id) := γ, ΓB(γ.id) := γ and wait till round γ.validity.

Case A,B are honest and I is corrupt:

Upon receiving (A, create, γ)
τ0←−↩ Fch(i) and (B, create, γ)

τ0←−↩ Fch(i) proceed as follows:
1. Set idA := γ.subchan(γ.id), cidA := A||γ.id and idB := γ.subchan(B), cidB := B||γ.id. Compute
σ̃A := InitCi (A, τ0, γ) and σ̃B = InitCi (B, τ0, γ).

2. For both T ∈ {A,B}, internally simulate Fch(i− 1) upon receiving the message (update, idT , cidT ,

σ̃T , VSCCi(C))
τ0←−↩ T and forward the result to I.

3. If (update–reply, ok, idT , cidT )
τ0+1←−−−↩ I for T ∈ {A,B}, then internally simulate Fch(i − 1) upon

receiving this message and forward the result to I.

4. If in round τ0 + 1, party I confirms both updates, then send (create, γ)
τ0+1
↪−−−→ Fch(i) on behalf of

I, set ΓA(γ.id) := γ, ΓB(γ.id) := γ
5. Wait till round γ.validity.

Case A, I are honest and B is corrupt:

Upon (A, create, γ)
τ0←−↩ Fch(i) and (I, create, γ)

τ0←−↩ Fch(i), proceed as follows:
1. Set idA := γ.subchan(γ.id), cidA := A||γ.id and idB := γ.subchan(B), cidB := B||γ.id. Compute
σ̃A := InitCi (A, τ0, γ) and σ̃B = InitCi (B, τ0, γ).

2. In round τ0, internally simulate Fch(i− 1) upon receiving (update, idA, cidA, σ̃A, VSCCi(C))
τ0←−↩ A.

3. If (update, idB , cidB , σ̃B , VSCCi(C))
τ0←−↩ B, then internally simulate Fch(i − 1) upon receiving this

message and proceed. Else stop.
4. For both T ∈ {A,B} internally simulate Fch(i− 1) upon receiving the message (update–reply, ok,

idT , cidT )
τ0+1←−−−↩ I and forward the result of updating idB to B.
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5. Send (create–ok, γ)
τ0+3
↪−−−→ B on behalf of A.

6. If (create–ok, γ)
τ0+2←−−−↩ B, then send (create, γ)

τ0+3
↪−−−→ Fch(i) on behalf of B, add γ to ΓA.

7. Wait till round γ.validity.

Case I,B are honest and A is corrupt:

Analogous to the case when only B is corrupt.

Case I,B are corrupt and A is honest:

Upon receiving (A, create, γ)
τ0←−↩ Fch(i) proceed as follows:

1. Set idA := γ.subchan(γ.id), cidA := A||γ.id and idB := γ.subchan(B), cidB 6= B||γ.id. Compute
σ̃A := InitCi (A, τ0, γ).

2. In round τ0, internally simulate Fch(i − 1) upon receiving (update, idA, cidA, σ̃A, VSCCi(C))
τ0←−↩ A

and forward the result to I.

3. If (update–reply, ok, idA, cidA)
τ0+1←−−−↩ I, then internally simulate Fch(i − 1) upon receiving this

message, send (create, γ)
τ0+1
↪−−−→ Fch(i) on behalf of I and send (create–ok, γ)

τ0+3
↪−−−→ B on behalf of

A.

4. If (create–ok, γ)
τ0+2←−−−↩ B, then send (create, γ)

τ0+3
↪−−−→ Fch(i) on behalf of B and add γ to ΓA.

5. Wait till round γ.validity.

Case A, I are corrupt and B is honest:

Analogous to the case when only A is honest.

Case A,B are corrupt and I is honest:

Upon receiving (I, create, γ)
τ0←−↩ Fch(i) proceed as follows:

1. Set idA := γ.subchan(γ.id), cidA := A||γ.id and idB := γ.subchan(B), cidB 6= B||γ.id. Compute
σ̃A := InitCi (A, τ0, γ) and σ̃B := InitCi (B, τ0, γ).

2. If (update, idA, cidA, σ̃A, VSCCi(C))
τ0←−↩ A and in the same round (update, idB , cidB , σ̃B , VSCCi(C))

τ0←−↩
B, then proceed. Else stop.

3. For both T ∈ {A,B}, internally simulate Fch(i− 1) upon receiving the message (update, idT , cidT ,

σ̃T , VSCCi(C))
τ0←−↩ T .

4. For both T ∈ {A,B} internally simulate Fch(i− 1) upon receiving the message (update–reply, ok,

idT , cidT )
τ0+1←−−−↩ I and forward the result to T .

5. Wait till round γ.validity.

Register a contact instance in a virtual state channel. Similarly as for the ledger state channels, we
will separately define a sub-simulator SimRegisteri which can be called as a procedure by the simulator Si.
The subsimulator is defined below.

Subsimulator: SimRegisteri(P, id , cid)

We use the notation established in Section 4.3. In addition, let TEsub := TimeExecute(di/2e), Fch(i) :=

FL(∆)
ch (i, C) and Fch(i− 1) := FL(∆)

ch (i− 1, C).
All parties are honest:

1. Let γ := ΓP (id), idP := γ.subchan(P ), cidP := P ||γ.id, idQ := γ.subchan(Q), cidQ := Q||γP .id,
νP := γ.cspace(cid), νQ := ΓQ(id).cspace(cid) and let τ0 be the current round.
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2. In round τ0, internally simulate Fch(i− 1) upon receiving (execute, idP , cidP , RegisterInstance
C
i ,

(cid, νP ))
τ0←−↩ P .

3. In round τ1 ≤ τ0 + 5, internally simulate Fch(i − 1) upon receiving (execute, idQ, cidQ, Register

InstanceCi , (cid, ν
P ))

τ1←−↩ I.
4. In round τ2 ≤ τ1 + 5, internally simulate Fch(i − 1) upon receiving (execute, idQ, cidQ, Register

InstanceCi , (cid, ν
Q))

τ2←−↩ Q.
5. In round τ3 ≤ τ2 + 5, internally simulate Fch(i − 1) upon receiving (execute, idQ, cidQ, Register

InstanceCi , (cid, ν
Q))

τ3←−↩ I.

Case P, I are honest and Q is corrupt:

1. Let γ := ΓP (id), idP := γ.subchan(P ), cidP := P ||γ.id, idQ := γ.subchan(Q), cidQ := Q||γ.id,
νP := γ.cspace(cid) and let τ0 be the current round.

2. In round τ0, internally simulate Fch(i− 1) upon receiving (execute, idP , cidP , RegisterInstance
C
i ,

(cid, νP ))
τ0←−↩ P .

3. In round τ1 ≤ τ0 + 5, internally simulate Fch(i − 1) upon receiving (execute, idQ, cidQ, Register

InstanceCi , (cid, ν
P ))

τ1←−↩ I and forward the result of the execution to Q.
4. Let τ2 ≤ τ1 + TEsub be the current round. Distinguish the following two cases

– If (execute, idQ, cidQ, RegisterInstance
C
i , (cid, ν

Q))
τ2←−↩ Q, where νQ is a valid contract in-

stance, then
(a) Internally simulate Fch(i−1) upon receiving (execute, idQ, cidQ, RegisterInstance

C
i , (cid,

νQ))
τ2←−↩ I and forward the result of execution to Q.

(b) Let ν̃ be the internally registered version of the contract instance cid in the state channel
idQ. In round τ3 ≤ τ2 + TEsub , internally simulate Fch(i− 1) upon receiving (execute, idP ,

cidP , RegisterInstance
C
i , (cid, ν̃))

τ3←−↩ I.
– Otherwise in round τ3 := τ1 + 3 · TEsub proceed as follows

(a) Internally simulate Fch(i − 1) upon receiving (execute, idQ, cidQ, EndRegisterInstancei,

cid)
τ3←−↩ I and forward the result of execution to Q.

(b) Internally simulate Fch(i − 1) upon receiving (execute, idP , cidP , EndRegisterInstancei,

cid)
τ3←−↩ I.

Case P,Q are honest and I is corrupt:

1. Let γ := ΓP (id), idP := γ.subchan(P ), cidP := P ||γ.id, idQ := γ.subchan(Q), cidQ := Q||γ.id.
2. Let νP := γ.cspace(cid) and νQ := ΓQ(id).cspace(cid).
3. Internally simulate Fch(i−1) upon receiving the message (execute, idP , cidP , RegisterInstance

C
i ,

(cid, νP ))
τ0←−↩ P and forward the result of the execution to I.

4. Let τ1 ≤ τ0 + TEsub be the current round. The distinguish the following two situations

– If (execute, idQ, cidQ, RegisterInstance
C
i , (cid, ν

P ))
τ1←−↩ I, then

(a) Internally simulate Fch(i−1) upon receiving (execute, idQ, cidQ, RegisterInstance
C
i , (cid,

νP ))
τ1←−↩ I and forward the result of execution to I.

(b) Let τ2 ≤ τ1 + TEsub be the current round. Internally simulate Fch(i − 1) upon receiving

(execute, idQ, cidQ, RegisterInstance
C
i , (cid, ν

Q))
τ2←−↩ Q and forward the result of execu-

tion to I and goto step 5.
– Else go to step 5.

5. Distinguish the following two cases
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– If (execute, idP , cidP , RegisterInstance
C
i , (cid, ν̃))

τ3≤τ0+3·TEsub←−−−−−−−−−↩ I for some ν̃ or if (execute,

idP , cidP , EndRegisterInstancei, cid)
τ3≤τ0+3·TEsub←−−−−−−−−−↩ I, then internally simulate Fch(i − 1)

upon receiving one of these messages and forward the result of execution to I .
– Otherwise in round τ4 := τ1 + 3 ·TEsub , internally simulate Fch(i− 1) upon receiving (execute,

idP , cidP , EndRegisterInstancei, cid)
τ4←−↩ P and forward the result of execution to I.

Case I,Q are honest and P is corrupt:

Upon (execute, idP , cidP , RegisterInstance
C
i , (cid, ν

P ))
τ0←−↩ P , such that α 6= ⊥ for α := Γ (idP ),

ν 6= ⊥ for ν := α.cspace(cidP ), ν.type = VSCCi(C), ν.storage.cspace(cid′) = ⊥ for every cid′ ∈ {0, 1}∗
and νP is a valid contract instance, proceed as follows

1. Set γ := ν.storage.virtual–channel, Q := γ.other-party(P ), idQ := γ.subchan(Q), cidQ := Q||γ.id and
νQ := ΓQ(γ.id).cspace(cid).

2. In round τ0, internally simulate Fch(i− 1) upon receiving (execute, idP , cidP , RegisterInstance
C
i ,

(cid, νP ))
τ0←−↩ P and forward the result of the execution to P .

3. Let τ1 ≤ τ0 + TEsub be the current round. Internally simulate Fch(i− 1) upon receiving (execute,

idQ, cidQ, RegisterInstance
C
i , (cid, ν

P ))
τ1←−↩ I.

4. In round τ2 ≤ τ1 + 5, internally simulate Fch(i − 1) upon receiving (execute, idQ, cidQ, Register

InstanceCi , (cid, ν
Q))

τ2←−↩ Q.
5. In round τ3 ≤ τ2 + 5, internally simulate Fch(i − 1) upon receiving (execute, idP , cidP , Register

InstanceCi , (cid, ν
Q))

τ3←−↩ I and forward the result of the execution to P .

Case I is honest and P,Q are corrupt:

Upon (execute, idP , cidP , RegisterInstance
C
i , (cid, ν

P ))
τ0←−↩ P , such that α 6= ⊥ for α := Γ (idP ),

ν 6= ⊥ for ν := α.cspace(cidP ), ν.type = VSCCi(C), ν.storage.cspace(cid′) = ⊥ for every cid′ ∈ {0, 1}∗
and νP is a valid contract instance, proceed as follows:

1. Set γ := ν.storage.virtual–channel, Q := γ.other-party(P ), idQ := γ.subchan(Q), cidQ := Q||γ.id.
2. Internally simulate Fch(i−1) upon receiving the message (execute, idP , cidP , RegisterInstance

C
i ,

(cid, νP ))
τ0←−↩ P and forward the result of execution to P .

3. Let τ1 ≤ τ0 + TEsub be the current round. Internally simulate Fch(i− 1) upon receiving (execute,

idQ, cidQ, RegisterInstance
C
i , (cid, ν

P ))
τ1←−↩ I and forward the result of execution to Q.

4. Let τ2 ≤ τ1 + TEsub be the current round. Then distinguish two cases

– If (execute, idQ, cidQ, RegisterInstance
C
i , (cid, ν

Q))
τ2←−↩ Q, then proceed as follows

(a) Internally simulate Fch(i−1) upon receiving (execute, idQ, cidQ, RegisterInstance
C
i , (cid,

νQ))
τ2←−↩ Q and forward the result of the execution to Q. Let ν̃ be the registered contract

instance.
(b) In round τ3 := τ2 + TEsub , internally simulate Fch(i − 1) upon receiving (execute, idP ,

cidP , RegisterInstance
C
i , (cid, ν̃))

τ3←−↩ I and forward the result of the execution to P .
– Otherwise set ν̃ := νP and in round τ3 := τ1 + 2 · TEsub do the following

(a) Internally simulate Fch(i − 1) upon receiving (execute, idQ, cidQ, EndRegisterInstancei,

cid)
τ3←−↩ I and forward the result of execution to Q.

(b) Internally simulate Fch(i − 1) upon receiving (execute, idP , cidP , EndRegisterInstancei,

cid)
τ3←−↩ I and forward the result of execution to P .

5. Let τ4 be the current round. Then (update, id , cid, ν̃.storage, ν̃.type)
τ4
↪−→ Fch(i) on behalf of P and

(update–reply, ok, id , cid)
τ4+1
↪−−−→ Fch(i) on behalf of Q.

Case Q is honest and P, I are corrupt:
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1. If (execute, idQ, cidQ, RegisterInstance
C
i , (cid, ν

P ))
τ0←−↩ I, such that β 6= ⊥ for β := Γ (idQ),

ν 6= ⊥ for ν := β.cspace(cidQ), ν.type = VSCCi(C), ν.storage.cspace(cid′) = ⊥ for every cid′ ∈ {0, 1}∗
and νP is a valid contract instance, then proceed. Otherwise stop.

2. Set γ := ν.storage.virtual–channel, Q := γ.other-party(P ) and νQ := ΓQ(γ.id).cspace(cid).
3. Internally simulate Fch(i−1) upon receiving the message (execute, idQ, cidQ, RegisterInstance

C
i ,

(cid, νP ))
τ0←−↩ I and forward the result of execution to I.

4. Let τ1 ≤ τ0 + TEsub be the current round. Internally simulate Fch(i− 1) upon receiving (execute,

idQ, cidQ, RegisterInstance
C
i , (cid, ν

P ))
τ1←−↩ I and forward the result of execution to I.

Case P is honest and Q, I are corrupt:

1. Let γ := ΓP (id), idP := γ.subchan(P ), cidP := P ||γ.id, idQ := γ.subchan(Q), cidQ := Q||γ.id and
νP := γ.cspace(cid).

2. Internally simulate Fch(i−1) upon receiving the message (execute, idP , cidP , RegisterInstance
C
i ,

(cid, νP ))
τ0←−↩ P and forward the result of execution to I.

3. Then distinguish the following two situations

– If (execute, idP , cidP , RegisterInstance
C
i , (cid, ν̂))

τ1≤τ0+3·TEsub←−−−−−−−−−↩ I, then internally simulate

Fch(i − 1) upon receiving (execute, idP , cidP , RegisterInstance
C
i , (cid, ν̂))

τ1←−↩ I and forward
the result of execution to I.

– Else, in round τ2 := τ0 + 4 ·TEsub , internally simulate Fch(i− 1) upon receiving (execute, idP ,

cidP , EndRegisterInstance
C
i , cid)

τ2←−↩ I and forward the result of execution to I.

Update a contract instance in a virtual state channel. The description of the simulator Si for
the contract instance update in a virtual state channel of length i will be very similar to the simulator S1.
Therefore, we refer the reader to the described in Appx. C and discuss here only the main differences. Firstly,
the simulator Si internally calls the subsimulator SimRegisteri instead of the subsimulator SimRegister

and secondly, in case the initiating party P is corrupt the simulator Si also checks if there is no other contract
instance cid′ already created in the virtual state channel (recall that we allow only one contract instance to
be opened in each virtual state channel).

Execute a contract instance in a virtual state channel. In case both end-users of the virtual state
channel are honest, the simulator Si is defined exactly as the simulator S1, see Appx. C. Let us below define
the simulator for the cases when at least one of the end-users is corrupt.

Simulator Si: Contract instance execution

We use the abbreviated notation from Section 4.3. Let TEsub := TimeExecute(di/2e), Fch(i) :=

FL(∆)
ch (i, C) and Fch(i− 1) := FL(∆)

ch (i− 1, VSCCi(C) ∪ C).

Case P and I are honest and Q is corrupt:

Upon (P, execute, id , cid, f, z)
τ0←−↩ Fch , let γP := ΓP (id), νP := γP .cspace(cid), σP := νP .storage and

vP := νP .version. In addition, set τ1 := τ0 + x, where x is the smallest offset such that τ1 = 1 mod 4
if P = γP .Alice and τ1 = 3 mod 4 if P = γP .Bob. Wait till round τ1 and then proceed as follows:
1. If (id , cid) is not marked as corrupt in ΓP , do:

(a) Set (σ̃, addL, addR,m) := f(σP , P, τ0, z). If m = ⊥, then stop.
(b) Else compute sP := SignskP (id , cid, σ̃, νP .type, vP + 1) and send (peaceful–request, id , cid, f, z,

sP , τ0)
τ1+1
↪−−−→ Q.
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(c) If (peaceful–confirm, id , cid, f, z, sQ)
τ1+1←−−−↩ Q such that VfypkQ(id , cid, σ̃, νP .type, vP + 1; sQ) =

1, then set ΓP := LocalUpdateAdd(ΓP , id , cid, σ̃, νP .type, addL, addR, v
P + 1, {sP , sQ}) and

instruct the ideal functionality to output the result. Else execute SimRegisteri(P, id , cid) in
round τ1 + 2. If after the execution of the sub-simulator (in round τ1 ≤ τ0 + TEsub + 5) it holds
that σP = σ̃, then set ΓP := LocalUpdateAdd(ΓP , id , cid, σ̃, νP .type, addL, addR), instruct the
ideal functionality to output the result and stop. Else goto step 3.

2. If (id , cid) is marked as corrupt and (id , cid) is not marked as registered in ΓP , then execute the
sub-simulator SimRegisteri(P, id , cid).

3. Let τ3 be the current round and let γ := ΓP (id), idP := γ.subchan(P ), cidP := P ||γ.id. Compute
sn := SignskP (cid, P, τ0, f, z) and set pn := (P, τ0, f, z, sn). Then internally simulate Fch(i − 1)

upon receiving (execute, idP , cidP , ExecuteInstance, (cid, pn))
τ3←−↩ P .

4. Let Q := γ.other–party(P ), idQ := γ.subchan(Q), cidQ := Q||γ.id. In round τ4 ≤ τ3 + 5 inter-

nally simulate Fch(i− 1) upon receiving (execute, idQ, cidQ, ExecuteInstance, (cid, pn))
τ4←−↩ I and

forward the result to Q.
5. In round τ5 ≤ τ4 + TEsub internally simulate Fch(i − 1) upon receiving (execute, idP , cidP , End

ExecuteInstance, (cid, pn))
τ5←−↩ I

6. Let τ6 ≤ τ5 + 5 be the current round. Then instruct the ideal functionality to output the result and
update the channel space ΓP .

Case Q and I are honest and P is corrupt:

Upon (peaceful–request, id , cid, f, z, sP , τ0)
τ1←−↩ P

1. Let γQ := ΓQ(id), νQ := γQ.cspace(cid), σQ := νQ.storage, vQ := νQ.version. If γQ = ⊥ or
P 6∈ γQ.end–users or νQ = ⊥ or f 6∈ νQ.type, then goto step 4.

2. If P = γQ.Alice and τ1 mod 4 6= 1 or if P = γ.Bob and τ1 mod 4 6= 3, then goto step 4.
3. If (id , cid) is not marked as corrupt in ΓQ, do:

(a) Compute (σ̃, addL, addR,m) := f(σQ, P, τ0, z).
(b) If m = ⊥ or VfypkP (id , cid, σ̃, νQ.type, vQ + 1; sP ) 6= 1, then goto step 4.

(c) Send (execute, id , cid, f, z)
τ0
↪−→ Fch on behalf of P and instruct the functionality to deliver the

result.
(d) Compute the signature sQ := SignskQ(id , cid, σ̃, νQ.type, vQ + 1), send (peaceful–confirm, id ,

cid, f, z, sQ)
τ1+1
↪−−−→ P , set ΓQ := LocalUpdateAdd(ΓQ, id , cid, σ̃, νQ.type, addL, addR) and stop.

4. Mark (id , cid) as corrupt in ΓQ and stop.

Upon P starting the registration procedure for id , cid, then execute the sub-simulator SimRegisteri(P,
id , cid).

Upon (execute, idP , cidP , ExecuteInstance, (cid, pn))
τ2←−↩ P proceed as follows:

1. Let α := Γ (idP ), νP := α.cspace(cidP ), γ := νP .storage.virtual–channel, Q := γ.other–party(P ),
idQ := γ.subchan(Q) and cidQ := Q||γ.id. In addition, parse pn := (P, τ0, f, z, sn).

2. Send (execute, γ.id, cid, f, z)
τ3
↪−→ Fch(i) and internally simulate Fch(i− 1) upon receiving (execute,

idP , cidP , ExecuteInstance, (cid, pn))
τ2←−↩ P and forward the result to P . If the result of exe-

cution is (executed, idP , cidP , σ̃P , LP , RP ,mP ), where mP = (instance–executing, cid, pn,m), pro-
ceed. Else stop.

3. In round τ3 ≤ τ2 + TEsub , internally simulate Fch(i − 1) upon receiving (execute, idQ, cidQ,

ExecuteInstance, (cid, pn)
τ3←−↩ I and update the set ΓQ.

4. In round τ4 ≤ τ3 + 5, internally simulate Fch(i− 1) upon receiving (execute, idP , cidP , EndExecute

Instance, (cid, pn)
τ4←−↩ I and forward the result to P .
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5. Let τ5 ≤ τ4 + TEsub be the current round. Instruct the ideal functionality to output the result.

Case P and Q are corrupt and I is honest:

Internally simulate the communication of the corrupt parties. If P starting the registration procedure
for id , cid, then execute the sub-simulator SimRegister(P, id , cid) for the case when both parties are
corrupt. Note that if the registration procedure is successful (a contract instance gets registered), the
subsimulator SimRegisteri instructs the ideal functionality to update the contract instance accordingly.

Upon (execute, idP , cidP , ExecuteInstance, (cid, pn))
τ2←−↩ P proceed as follows:

1. Let α := Γ (idP ), νP := α.cspace(cidP ), γ := νP .storage.virtual–channel,Q := γ.other–party(P ),
idQ := γ.subchan(Q) and cidQ := Q||γ.id. In addition, parse pn := (P, τ0, f, z, sn).

2. Send (execute, γ.id, cid, f, z)
τ3
↪−→ Fch(i) and internally simulate Fch(i− 1) upon receiving (execute,

idP , cidP , ExecuteInstance, (cid, pn))
τ2←−↩ P and forward the result to P . If the result of exe-

cution is (executed, idP , cidP , σ̃P , LP , RP ,mP ), where mP = (instance–executing, cid, pn,m), pro-
ceed. Else stop.

3. In round τ3 ≤ τ2 + TEsub , internally simulate Fch(i − 1) upon receiving (execute, idQ, cidQ,

ExecuteInstance, (cid, pn)
τ3←−↩ I and forward the result to Q.

4. In round τ4 ≤ τ3 + TEsub , internally simulate Fch(i − 1) upon receiving (execute, idP , cidP , End

ExecuteInstance, (cid, pn)
τ4←−↩ I and forward the result to P .

5. Let τ5 ≤ τ4 + TEsub be the current round. Instruct the ideal functionality to output the result.

Closing a virtual state channel. Finally, we finalize the definition of the simulator Si by defining its
behavior in time γ.validity, where γ is a virtual state channel of length i whose creation environment requested
earlier.

Simulator Si: Closing a virtual state channel

We use the abbreviated notation from Section 4.3. Let TEsub := TimeExecute(di/2e), Fch(i) :=

FL(∆)
ch (i, C) and Fch(i− 1) := FL(∆)

ch (i− 1, VSCCi(C) ∪ C).
Case A,B, I are honest

Let γ the virtual state channel to be closed. In round γ.validity proceed as follows for both T ∈ {A,B}.

1. Set idT := γ.subchan(γ.id), cidT := T ||γ.id.
2. In parallel, run the subsimulator SimRegisteri with parameters T, γ.id, cid for every cid ∈ {0, 1}∗

such that ΓT (γ.id).cspace(cid) 6= ⊥.
3. After the subsimulator is executed, then internally simulate Fch(i−1) upon receiving (execute, idT ,
cidT , Close

C
i , ∅)←−↩ T .

4. After the execution, set ΓT (γ.id) := ⊥.

Case A,B are honest and I is corrupt

In round γ.validity for both T ∈ {A,B} proceed as follows.

1. Set id := γ.id, idT := γ.subchan(T ), cidT := T ||id.
2. If ΓT (id) = ⊥ and Γ (idT ).cspace(cidT ) = ⊥, then stop.
3. If ΓT (id) = ⊥ but Γ (idT ).cspace(cidT ) 6= ⊥, then goto step 5.
4. If ΓT (id) 6= ⊥, then in parallel, run the subsimulator SimRegisteri with parameters T, γ.id, cid for

every cid ∈ {0, 1}∗ such that ΓT (γ.id).cspace(cid) 6= ⊥ and after the execution goto step 5.
5. In round τ1 := γ.validity + TimeRegister(i) + TEsub , internally simulate Fch(i− 1) upon receiving

(execute, idT , cidT , Close
C
i , ∅)

τ1←−↩ T .
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6. After the execution, set ΓT (γ.id) := ⊥.

Case A, I are honest and B is corrupt

In round γ.validity proceed as follows.

1. Set id := γ.id, idA := γ.subchan(A), cidA := A||id, idB := γ.subchan(B), cidB := B||id.
2. If ΓA(id) = ⊥, then stop.
3. If ΓA(id) 6= ⊥, then in parallel, run the subsimulator SimRegisteri with parameters A, γ.id, cid for

every cid ∈ {0, 1}∗ such that ΓA(γ.id).cspace(cid) 6= ⊥ and (id , cid) is not marked as registered in
ΓA. After the execution goto step 5.

4. If B starts the registration procedure with parameters B, id , cid for some cid ∈ {0, 1}∗, then execute
the subsimulator SimRegisteri with the same parameters.

5. In round τ1 := γ.validity + TimeRegister(i) + TEsub , internally simulate Fch(i− 1) upon receiving

(execute, idA, cidA, Close
C
i , ∅)

τ1←−↩ A. After the execution, set ΓA(γ.id) := ⊥.

6. Upon receiving (execute, idB , cidB , Close
C
i , ∅)

τ1←−↩ B, internally simulate the functionality Fch(i−1)
upon receiving this message and forward the result to B.

7. If B does not initiate the execution, then in round τ2 := τ1 + TEsub internally simulate the func-

tionality Fch(i − 1) upon receiving (execute, idB , cidB , Close
C
i , ∅)

τ2←−↩ I and forward the result to
I.

Case B, I are honest and A is corrupt

Analogous to the previous case.

Case A is honest and I,B are corrupt

In round γ.validity proceed as follows.

1. Set id := γ.id, idA := γ.subchan(A), cidA := A||id
2. If ΓA(id) = ⊥ and Γ (idA).cspace(cidA) = ⊥, then stop.
3. If ΓA(id) = ⊥ but Γ (idA).cspace(cidA) 6= ⊥, then goto step 6.
4. If ΓA(id) 6= ⊥, then in parallel, run the subsimulator SimRegisteri with parameters A, γ.id, cid for

every cid ∈ {0, 1}∗ such that ΓA(γ.id).cspace(cid) 6= ⊥ and (id , cid) is not marked as registered in
ΓA. After the execution goto step 6.

5. If B starts the registration procedure with parameters B, id , cid for some cid ∈ {0, 1}∗, then execute
the subsimulator SimRegisteri with the same parameters.

6. In round τ1 := γ.validity + TimeRegister(i) + TEsub , internally simulate Fch(i− 1) upon receiving

(execute, idA, cidA, Close
C
i , ∅)

τ1←−↩ A. After the execution, set ΓA(γ.id) := ⊥.

Case B is honest and I, A are corrupt

Analogous to the previous case.
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