
Revisiting Proxy Re-Encryption: Forward
Secrecy, Improved Security, and Applications

David Derler1, Stephan Krenn2, Thomas Lorünser2, Sebastian Ramacher1,
Daniel Slamanig2, and Christoph Striecks2

1 IAIK, Graz University of Technology, Austria
2 AIT Austrian Institute of Technology, Vienna, Austria

{firstname.lastname}@tugraz.at, {firstname.lastname}@ait.ac.at

Abstract. We revisit the notion of proxy re-encryption (PRE), an en-
hanced public-key encryption primitive envisioned by Blaze et al. (Euro-
crypt’98) and formalized by Ateniese et al. (NDSS’05) for delegating
decryption rights from a delegator to a delegatee using a semi-trusted
proxy. PRE notably allows to craft re-encryption keys in order to equip
the proxy with the power of transforming ciphertexts under a delega-
tor’s public key to ciphertexts under a delegatee’s public key, while not
learning anything about the underlying plaintexts.
We study an attractive cryptographic property for PRE, namely that of
forward secrecy. In our forward-secret PRE (fs-PRE) definition, the proxy
periodically evolves the re-encryption keys and permanently erases old
versions while the delegator’s public key is kept constant. As a conse-
quence, ciphertexts for old periods are no longer re-encryptable and, in
particular, cannot be decrypted anymore at the delegatee’s end. More-
over, delegators evolve their secret keys too, and, thus, not even they
can decrypt old ciphertexts once their key material from past periods
has been deleted. This, as we will discuss, directly has application in
short-term data/message-sharing scenarios.
Technically, we formalize fs-PRE. Thereby, we identify a subtle but sig-
nificant gap in the well-established security model for conventional PRE
and close it with our formalization (which we dub fs-PRE+). We present
the first provably secure and efficient constructions of fs-PRE as well as
PRE (implied by the former) satisfying the strong fs-PRE+ and PRE+ no-
tions, respectively. All our constructions are instantiable in the standard
model under standard assumptions and our central building block are
hierarchical identity-based encryption (HIBE) schemes that only need to
be selectively secure.

Keywords: Forward secrecy, proxy re-encryption, improved security
model

This is the full version of a paper which appears in Public-Key Cryptography - PKC
2018 - 21st IACR International Conference on Practice and Theory in Public-Key
Cryptography, Rio De Janeiro, Brazil, March 25-28, 2018, Proceedings. ©IACR,
2018.

1

mailto:david.derler@tugraz.at,stephan.krenn@ait.ac.at,thomas.loruenser@ait.ac.at,sebastian.ramacher@tugraz.at,daniel.slamanig@ait.ac.at,christoph.striecks@ait.ac.at?subject=[fs-PRE Paper]

Table of Contents

Revisiting Proxy Re-Encryption: Forward Secrecy, Improved Security,
and Applications . 1

David Derler, Stephan Krenn, Thomas Lorünser, Sebastian
Ramacher, Daniel Slamanig, and Christoph Striecks

1 Introduction . 3
1.1 Contribution . 6
1.2 Intuition and Construction Overview . 7
1.3 Related Work and Outline . 8

2 Preliminaries . 8
3 Security of (Forward-Secret) Proxy Re-Encryption 13

3.1 Syntax of Forward-Secret Proxy Re-Encryption 13
3.2 Security of Forward-Secret Proxy Re-Encryption 14
3.3 Stronger Security for Proxy Re-Encryption 19

4 Constructing fs-PRE from Binary Tree Encryption 20
4.1 Forward-Secret Delegatable Public-Key Encryption 21
4.2 Constructing fs-DPKE from BTE . 23
4.3 Constructing fs-PRE from fs-DPKE . 25
4.4 Separating fs-PRE− from fs-PRE+ . 31

A Cryptographic Assumptions . 35
B A Linearly Homomorphic PKE Scheme . 36
C Security of Hierarchical Identity-Based Encryption 37
D Fully Puncturable Encryption . 37

D.1 FuPE from HIBE . 39
D.2 FuPE to fs-PRE . 41

1 Introduction

The security of cryptosystems essentially relies on the secrecy of the respective
secret key. For example, if for an encryption scheme a secret key is (acciden-
tally) leaked, the confidentiality of all the data encrypted with respect to this
key so far is immediately destroyed. One simple mitigation strategy for such
a secret-key leakage is to frequently change secret keys such that leaking a se-
cret key only affects a small amount of data. Implementing this in a näıve way,
for instance in context of public-key encryption, means that one either has to
securely and interactively distribute copies of new public keys frequently or to
have huge public keys3, which is rather inconvenient in practice. Consequently,
cryptographic research focused on the design of cryptosystems that inherently
provide such a property, being denoted as forward secrecy (or, forward secu-
rity) [Gün89]. The goal hereby is that key leakage at some point in time does
not affect the data which was encrypted before the key leakage, while miti-
gating the drawbacks of the näıve solution discussed before. That is, one aims
at efficient non-interactive solutions that have fixed sublinear-size public keys
in the number of key switches/time periods. Those (strong) properties are the
minimal requirements in the de-facto standard notion of forward secrecy in the
cryptographic literature.

Within the last two decades, forward secrecy has been identified as an impor-
tant property of various different cryptographic primitives such as digital signa-
tures [BM99], identification schemes [AABN02], public-key encryption [CHK03],
and private-key cryptography [BY03]. Only recently, another huge step forward
has been made by Green and Miers [GM15] as well as Günther, Jager, Hale, and
Lauer [GHJL17] to bring forward secrecy to important practical applications in
the context of asynchronous messaging and zero round-trip time (0-RTT) key
exchange. Given revelations and leaks about large-scale surveillance activities of
security agencies within the last years, it is of utmost importance to further de-
velop and deploy cryptosystems that inherently provide forward secrecy. We aim
at advancing the research on forward secrecy with respect to other practically
important public-key primitives, ideally, to ones with slightly more functionality.

Proxy re-encryption. Proxy re-encryption (PRE), envisoned by Blaze, Bleu-
mer, and Strauss [BBS98] and formalized by Ateniese, Fu, Green, and Hohen-
berger [AFGH05, AFGH06], is a cryptographic primitive that can be seen as an
extension of public-key encryption. A central feature of PRE is that senders can
craft so-called re-encryption keys, which are usually created using only public
information of the designated delegatee and the delegators’ key material. Those
re-encryption keys have the power to transform ciphertexts under a delegator’s
public key to ciphertexts under the delegatees’ public keys. Within PRE, this
transformation is done by a semi-trusted4 proxy. The widely accepted model
for PRE security (i.e., the conventional or plain PRE model) [AFGH05] requires

3 With size O(n) for n key switches/time periods.
4 A semi-trusted proxy honestly follows the protocols, i.e., stores consistent re-

encryption keys and re-encrypts correctly.

3

that the proxy does not learn anything about the plaintexts which underlie the
ciphertexts to be transformed.5

Proxy re-encryption is considered very useful in applications such as en-
crypted e-mail forwarding or access control in secure file systems, which was
already discussed heavily in earlier work, e.g., in [AFGH05]. Furthermore, PRE
has been object of significant research for almost two decades now, be it in a
conventional setting [BBS98, AFGH05, AFGH06], PRE with temporary dele-
gation [AFGH05, AFGH06, LV11], identity-based PRE [GA07, RGWZ10], ex-
tensions to the chosen-ciphertext setting [CH07, LV11], type-based/conditional
PRE [Tan08, WYT+09], anonymous (or key-private) PRE [ABH09], traceable
PRE [LV08a], or PRE from lattice-based assumptions [CCL+14, PRSV17]. Gen-
eric constructions of PRE schemes from fully-homomorphic encryption [Gen09]
and from non-standard building blocks such as resplittable-threshold public key
encryption as proposed in [HKK+12] are known, where different constructions of
secure obfuscators for the re-encryption functionality have been given [HRSV11,
CCV12, CCL+14]. Despite PRE being an object of such significant research,
forward-secret constructions remain unknown.6

On modeling forward-secret proxy re-encryption. Forward secrecy in the
context of PRE is more complex than in standard public-key primitives, as PRE
involves multiple different parties (i.e., delegator, proxy, and delegatees), where
delegator and delegatees all have their own secret-key material and the proxy
additionally holds all the re-encryption keys. One may observe that the proxy
needs to be considered as a semi-trusted (central) party being always online,
and, thus, it is reasonable to assume that this party is most valuable to attack.
Consequently, we model forward secrecy in the sense that the re-encryption-
key material can be evolved by the proxy to new periods while past-period
re-encryption keys are securely erased. Hence, ciphertexts under the delegator’s
public key with respect to past-periods can no longer be re-encrypted. In addi-
tion, we model forward secrecy for the delegator’s key material in a way that it
is consistent with the evolution of the re-encryption material at the proxy.

For now, we do not consider forward secrecy at the delegatee, who can be
seen as a passive party and does not need to take any further interaction with
the delegator during the life-time of the system, except providing her public key
once after set-up (e.g., via e-mail or public key server). It also does not have to
be online when ciphertexts are re-encrypted for her by the proxy. Nevertheless,
we leave it as a path for future research to cover the third dimension, i.e., model
forward secrecy for the delegator and proxy as well as forward secrecy for the
delegatee with efficient non-trivial constructions. However, it seems highly non-
trivial to achieve efficient constructions that support forward secrecy for the

5 The well-established security notions for PRE leave a potentially critical gap open.
To look ahead, our proposed security model for forward-secret PRE closes this gap
(implicitly also for plain PRE) and goes even beyond.

6 We stress that we only aim at efficient non-trivial (non-interactive) forward-secret
PRE constructions that have sublinear-size public and re-encryption keys in the
number of time periods.

4

delegatee additionally. In particular, we believe that the difficulty of achieving
such strong type of forward secrecy is due to the circumstance that one has to
carefully integrate three dimension of evolving key-material, one at the delegator,
one at the proxy, and one at the delegatee. All dimensions seem to interfere
with each other.7 As it will be confirmed by our application, covering the two
dimensions already yields an interesting tool.

Moreover, to achieve forward secrecy for delegator and proxy key material,
we face the following obstacles. First, it has to be guaranteed that the honest
proxy must not be able to gain any information from the ciphertexts while at the
same time being able to transform such ciphertexts and to update re-encryption
key material consistently to newer time periods without any interaction with
the delegator. Secondly, any delegatee must not be able to decrypt past-period
ciphertexts. In this work, we give an affirmative answer to overcome those ob-
stacles.

A practical application of forward-secret PRE. We believe that forward se-
crecy is an essential topic nowadays for any application. Also PRE is increasingly
popular, be it in applied cryptographic literature [BBL16, BGP+16, XXW+16,
PRSV17, MS17], working groups such as the CFRG of the IRTF8, large-scale
EU-funded projects9, and meanwhile also companies10 that foster transition of
such technologies into applications.

A practical application for forward-secret PRE is disappearing 1-to-n mes-
saging. Here, a user encrypts a message under his public key and sends it to
the proxy server that is responsible for distributing the encrypted messages to
all pre-determined n receivers (note that receivers do not have to be online at
the time the encrypted message is sent and an initial public-key exchange has
to be done only in the beginning, but no more interactivity is needed). During
setup time, the user has equipped the server with re-encryption keys (one for
each receiver) while new keys can be added any time once a new receiver is
present. Furthermore, the user does not need to manage a potentially huge list
of public keys for each message to be sent. After a period, the data gets deleted
by the proxy server, the re-encryption keys get evolved to a new period (without
any interactions), and old-period re-encryption keys get deleted. The security
of forward-secret PRE then guarantees that the proxy server does not learn the
sensitive messages, neither can the two types of parties access disappeared mes-
sages later on. Once period-i re-encryption keys leak from the proxy server, only
present and future encrypted messages (from period i onward) are compromised,
while period-(i− 1) messages stay confidential. More generally, we believe that
forward-secret PRE can be beneficially used in all kinds of settings that require
access revocation, e.g., in outsourced encrypted data storage.

7 It is currently unknown to us how to solve the problem with efficient cryptographic
tools, e.g., in the bilinear-maps setting. For efficiency reasons, multilinear maps and
obfuscation are out of focus.

8 https://www.ietf.org/id/draft-hallambaker-mesh-recrypt-00.txt
9 https://credential.eu/

10 e.g., http://www.nucypher.com, https://besafe.io/

5

https://www.ietf.org/id/draft-hallambaker-mesh-recrypt-00.txt
https://credential.eu/
http://www.nucypher.com
https://besafe.io/

We also stress that within our forward-secret PRE instantiations, each user
is only required to manage her own public and secret keys on her device and
not a list of recipient public keys (or, identities). This deviates significantly
from other primitives such as broadcast encryption (BE) [BGW05, Del07, SF07],
which could also be suitable in such scenarios. However, practical BE schemes,
e.g., [BW06], need large public keys and are computationally expensive.

1.1 Contribution

In this paper, we investigate forward secrecy in the field of proxy re-encryption
(PRE) and term it fs-PRE. More precisely, our contributions are as follows:

– We first port the security model of PRE to the forward-secret setting (fs-
PRE−). Thereby, we observe a subtle but significant gap in existing (plain)
security models for conventional PRE with regard to the granularity of del-
egations of decryption rights. In particular, existing models allow that a
recipient, who has once decrypted a re-encrypted ciphertext, can potentially
decrypt all re-encryptable ciphertexts of the same sender without further
involvement of the proxy. In the forward-secret setting, it would essentially
require to trust the delegatees to delete their re-encrypted ciphertexts when-
ever the period is switched, which is a problematic trust assumption.11

– We close this gap by introducing an additional security notion which in-
herently requires the involvement of a proxy in every re-encryption and in
particular consider this notion in the forward-secret setting (fs-PRE+). We
also note that, when considering only a single time interval, this implicitly
closes the aforementioned gap in the conventional PRE setting.12 We also
provide an explicit separation of the weaker fs-PRE− notion (resembling ex-
isting PRE models) and our stronger notion fs-PRE+.

– We then continue by constructing the first forward-secret PRE schemes (in
the weaker as well as our stronger model) that are secure in the stan-
dard model under standard assumptions. On a technical side, only few
approaches to forward secrecy are known. Exemplary, in the public-key-
encryption (PKE) setting, we essentially have two ways to construct forward
secrecy, i.e., the Canetti-Halevi-Katz (CHK) framework [CHK03] from selec-
tively secure hierarchical identity-based encryption (HIBE) [GS02] schemes
and the more abstract puncturable-encryption (PE) approaches by [GM15,
GHJL17] (where both works either explicitly or implicitly use the CHK tech-
niques). Particularly, we are not aware of any framework to achieve forward
secrecy for PKE schemes based on “less-complex” primitives in comparison
to selectively secure HIBE schemes. Consequently, we also base our construc-
tions on selectively secure HIBE schemes [GS02], which we combine with
linearly homomorphic encryption schemes, e.g., (linear) ElGamal.

11 Clearly, we still have to trust that the proxy deletes past-period re-encryption key
material.

12 In the conventional PRE setting, this gap was very recently independently addressed
by Cohen [Coh17].

6

– As a side result, we generalize the recent work of PE [GM15, CHN+16,
CRRV17, GHJL17] to what we call fully puncturable encryption (FuPE) in
the Appendix and show how we can use FuPE to construct fs-PRE.

1.2 Intuition and Construction Overview

To obtain more general results and potentially also more efficient instantiations,
we use a relaxation of HIBEs denoted as binary-tree encryption (BTE) which
was introduced by Canetti, Halevi, and Katz (CHK) in [CHK03]. As an inter-
mediate step, we introduce the notion of a forward-secret delegatable public-key
encryption (fs-DPKE) scheme and present one instantiation which we obtain by
combining the results of CHK with a suitable homomorphic public-key encryp-
tion (HPKE) scheme. Loosely speaking, a fs-DPKE scheme allows to delegate the
decryption functionality of ciphertexts computed with respect to the public key
of some user A to the public key of some other user B. Therefore, A provides
a public delegation key to B. B then uses the delegation key together with the
secret key corresponding to B’s public key to decrypt any ciphertext that has
been produced for A. A fs-DPKE scheme moreover incorporates forward secrecy
in a sense that the originator A can evolve it’s secret key and the scheme addi-
tionally allows to publicly evolve delegation keys accordingly. Interestingly, such
a scheme is already sufficient to construct a fs-PRE−-secure PRE scheme. Fi-
nally, we demonstrate how to strengthen this construction to a fs-PRE+-secure
PRE scheme, by solely relying on a certain type of key-homomorphism of the
underlying fs-DPKE scheme. The intermediate step of introducing fs-DPKE is
straightforward yet interesting, since we believe fs-DPKE is the “next natural
step” to lift PKE to a setting which allows for controlled delegation of decryp-
tion rights.

Instantiation. In Table 1, we present an instantiation including the resulting
key and ciphertext sizes. Thereby, we only look at fs-PRE instantiations that are
fs-PRE+-secure and note that the asymptotic sizes for fs-PRE−-secure fs-PRE
schemes are identical. For our instantiation, we use the BTE (or any selectively
secure HIBE) from [CHK03] and the linear encryption scheme from [BBS04] as
HPKE scheme under the Bilinear Decisional Diffie-Hellman (BDDH) and decision
linear (DLIN) assumption respectively.

Building Blocks |pk| |rk(i)| |sk(i)| |C| Assumption

BTE [CHK03],
HPKE [BBS04]

O(logn) O((logn)2) O((logn)2) O(logn) BDDH, DLIN

Table 1. Our fs-PRE+-secure instantiation. All parameters additionally scale asymp-
totically in a security parameter k which is, hence, omitted. Legend: n . . .number of pe-
riods, |pk| . . .public key size, |rk(i)| . . . size of re-encryption key for period i, |sk(i)| . . . size
of secret key for period i, |C| . . . ciphertext size.

A note on a side result. Additionally, in the Appendix, we include the def-
inition and a construction of a so called fully puncturable encryption (FuPE)
scheme which is inspired by techniques known from HIBEs and the recent PE

7

schemes in [GM15, GHJL17]. We then show that FuPE schemes closely capture
the essence which is required to construct fs-PRE+-secure schemes by presenting
a construction of a fs-PRE+-secure PRE scheme from FuPE and HPKE.

1.3 Related Work and Outline

Work related to forward-secret PRE. Tang et al. [Tan08, WYT+09] in-
troduced type-based/conditional PRE, which allows re-encryption of ciphertexts
at the proxy only if a specific condition (e.g., a time period) is satisfied by
the ciphertext. Furthermore, PRE with temporary delegations was proposed
by Ateniese et al. [AFGH05, AFGH06] and improved by Libert and Vernaud
(LV) [LV11]. All those approaches yield a weak form of forward secrecy. No-
tably, the LV schemes provide fixed public parameters and non-interactivity
with the delegatee as well. However, in contrast to our approach, LV and Tang
et al. require at least to update the re-encryption keys for each time period with
the help of the delegator (i.e., one message per time period from the delegator
to the proxy) and also do not allow for exponentially many time periods, which
do not suit our (stronger) forward-secret scenario.

Concurrent work on PRE. There is a considerable amount of very recent
independent and concurrent work on different aspects of PRE and its applica-
tions [Coh17, BL17, MS17, FL17]. The works in [BL17, MS17, FL17] are only
related in that they also deal with various aspects of PRE, but not fs-PRE. Those
aspects are however unrelated to the work presented in this paper. In contrast,
the work presented in [Coh17] is related to one aspect of our work. It formalizes
a security property for conventional PRE, which can be seen as a special case of
our fs-PRE+ notion which we introduce in context of fs-PRE. More precisely, our
notion generalizes the notion of [Coh17] and implies it if we fix the numbers of
time periods to n = 1.

Outline. After discussing preliminaries in Section 2, we define fs-PRE in Sec-
tion 3, discuss the gap in previous models and also briefly discuss its conse-
quences to conventional PRE. We then give the first construction of a fs-PRE
scheme from binary tree encryption in Section 4. We also show a separation re-
sult for the weaker fs-PRE− (resembling existing PRE models) and our stronger
notion fs-PRE+.

2 Preliminaries

For n ∈ N, let [n] := {1, . . . , n} and let k ∈ N be the security parameter.
For an algorithm A, let y ← A(1k, x) be the process of running A, on input
1k and x, with access to uniformly random coins and assigning the result to
y. We assume that all algorithms take 1k as input and we will sometimes not
make this explicit in the following. To make the random coins r explicit, we write
A(1k, x; r). An algorithm A is probabilistic polynomial time (PPT) if its running
time is polynomially bounded in k. A function f is negligible if ∀c∃k0∀k ≥ k0 :
|f(k)| ≤ 1/kc. For binary trees, we denote the root node with ε and all other

8

nodes are encoded as binary strings, i.e., for a node w we denote child nodes as
w0 and w1.

Homomorphic public-key encryption. A F-homomorphic public key en-
cryption (HPKE) scheme is a public-key encryption (PKE) scheme that is homo-
morphic with respect to a class of functions F , i.e., given a sequence of cipher-
texts to messages (Mi)i∈[n] one can evaluate a function f : Mn → M ∈ F on
the ciphertexts such that the resulting ciphertext decrypts to f(M1, . . . ,Mn).

Definition 1 ((F-)HPKE). A F-homomorphic public key encryption (F-HPKE
or HPKE for short) scheme with message space M, ciphertext space C and a
function family F consists of the PPT algorithms (Gen,Enc,Dec,Eval):

Gen(1k) : On input security parameter k, outputs public and secret keys (pk, sk).
Enc(pk,M) : On input a public key pk, and a message M ∈ M, outputs a ci-

phertext C ∈ C.
Dec(sk, C) : On input a secret key sk, and ciphertext C, outputs M ∈M∪ {⊥}.
Eval(f, (Ci)i∈[n]) : On input a function f :Mn →M ∈ F , a sequence of cipher-

texts (Ci)i∈[n] encrypted under the same public key, outputs C.

In addition to the standard and folklore correctness definition for public-key
encryption (PKE), we further require for HPKE that for all security parameters
k ∈ N, all key pairs (pk, sk) ← Gen(1k), all functions f : Mn → M ∈ F , all
message sequences (Mi)i∈[n] it holds that Dec(sk,Eval(f, (Enc(pk,Mi))i∈[n])) =
f(M1, . . . ,Mn). We are particularly interested in the case where M is a group
and F is the set of all linear functions on products of M. In that case, we call
the HPKE scheme linearly homomorphic. For a HPKE, we require conventional
IND-CPA security as with PKE schemes and recall an efficient instantiation of
a linearly homomorphic scheme, i.e., linear ElGamal [BBS04], in Appendix B.

Hierarchical identity-based encryption. Hierarchical identity-based encryp-
tion (HIBE) [GS02] is a generalization of IBE [BF01] that organizes the identities
in a tree, where identities at some level can delegate secret keys to its descen-
dant entities, but cannot decrypt ciphertexts intended for other (hierarchical)
identities.

Definition 2 (HIBE). An hierarchical identity-based encryption (HIBE) scheme
with message space M and identity space ID≤`, for some ` ∈ N, consists of the
PPT algorithms (Gen,Del,Enc,Dec):

Gen(1k, `) : On input security parameter k and hierarchy parameter `, outputs a
keypair (pk, skε), where we implicitly assume that skε := (pk, dkε, ekε), for
decryption key dkε and evolution key ekε.

Del(skid′ , id) : On input secret key skid′ = (pk, dkid′ , ekid′) and id ∈ ID≤`, out-
puts a secret key skid = (pk, dkid , ekid) for id if and only if id ′ is a prefix of
id, otherwise skid′ .

Enc(pk,M, id) : On input public key pk, message M ∈ M and identity id ∈
ID≤`, outputs a ciphertext Cid for identity id.

Dec(skid′ , Cid) : On input a secret key skid′ and a ciphertext Cid , outputs M ∈
M∪ {⊥}.

9

For all k, ` ∈ N, all (pk, skε)← Gen(1k, `), all M ∈ M, all id , id ′ ∈ ID≤` where
id ′ is a prefix of id , all skid ← Del(skid′ , id), all Cid ← Enc(pk,M, id), we have
that Dec(skid , Cid) = M . Discussion of the HIBE security notion is provided in
Appendix C .

Proxy re-encryption. Subsequently, we define proxy re-encryption.

Definition 3 (PRE). A proxy re-encryption (PRE) scheme with message space
M consists of the PPT algorithms (Setup,Gen,Enc,Dec,ReGen,ReEnc) where

Enc = (Enc(j))j∈[2] and Dec = (Dec(j))j∈[2]. For j ∈ [2], they are defined as
follows.

Setup(1k) : On input security parameter k, outputs public parameters pp.
Gen(pp) : On input public parameters pp, outputs public and secret keys (pk, sk).

Enc(j)(pk,M) : On input a public key pk, and a message M ∈M outputs a level
j ciphertext C.

Dec(j)(sk, C) : On input a secret key sk, and level j ciphertext C, outputs M ∈
M∪ {⊥}.

ReGen(skA, pkB) : On input a secret key skA and a public key pkB for B, outputs
a re-encryption rkA→B.

ReEnc(rkA→B , CA) : On input a re-encryption key rkA→B, and a ciphertext CA
for user A, outputs a ciphertext CB for user B.

Subsequently, we restate the standard security notions of proxy re-encryption
schemes [AFGH05, AFGH06, LV08b]. The oracles available in the experiment
are as follows. For all experiments defined in this section, the environment keeps
initially empty lists of dishonest (DU) and honest users (HU). The oracles are
defined as follows:

Gen(h)(pp, n) : Run (pk, sk) ← Gen(pp, n), set HU ← HU ∪ {(pk, sk)}, and return
pk.

Gen(d)(pp, n) : Run (pk, sk) ← Gen(pp, n), set DU ← DU ∪ {(pk, sk)}, and return
(pk, sk).

ReGen(h)(pku, pk) : On input a public key pku and a public key pk, abort if
(pku, ·) 6∈ HU. Otherwise, look up sku corresponding to pku from HU. Return
ReGen(sku, pk).

ReGen(h
′)(sk, pku) : On input a secret key sk and a public key pku, abort if

(pku, ·) 6∈ HU. Otherwise, return ReGen(sk, pku).

ReGen(d)(sk, pkd) : On input a secret key sk and a public key pkd, abort if
(pkd, ·) 6∈ DU. Otherwise, return ReGen(sk, pkd).

Definition 4 (IND-CPA-1). For a PPT adversary A, we define the advantage
function in the sense of IND-CPA for level 1 ciphertexts as

Advind-cpa-1PRE,A (1k) :=

∣∣∣∣Pr
[
Expind-cpa-1PRE,A (1k) = 1

]
− 1

2

∣∣∣∣ .
10

Experiment Expind-cpa-1PRE,A (1k)

pp← Setup(1k), (pk, sk)← Gen(pp), b←R {0, 1}
O ← {Genh,ReGenh(·, pk),ReGenh

′
(sk, ·),Gend,ReGend(sk, ·)}

(M0,M1, st)← AO(pk)
b∗ ← A(st,Enc(1)(pk,Mb))
if b = b∗ return 1, else return 0

Experiment 1. The IND-CPA security experiment for level 1 ciphertexts of fs-PRE
schemes.

Experiment Expind-cpa-2fs−PRE,A(1k)

pp← Setup(1k), (pk, sk)← Gen(pp), b←R {0, 1}
O ← {Genh,ReGenh(·, pk),ReGenh

′
(sk, ·)}

(M0,M1, st)← AO(pk)
b∗ ← A(st,Enc(2)(pk,Mb, j

∗))
if b = b∗ return 1, else return 0

Experiment 2. The IND-CPA security experiment for level 2 ciphertexts of fs-PRE
schemes.

If for any PPT adversary A there exists a negligible function ε such that

Advind-cpa-1PRE,A (1k) < ε(k)

then a PRE scheme is IND-CPA-1 secure.

Definition 5 (IND-CPA-2). For a polynomially bounded function n, a PPT
adversary A, we define the advantage function in the sense of IND-CPA for level
2 ciphertexts as

Advind-cpa-2PRE,A (1k) :=

∣∣∣∣Pr
[
Expind-cpa-2PRE,2,A (1k) = 1

]
− 1

2

∣∣∣∣ .
If for all polynomially bounded functions n, and any PPT adversary A there
exists a negligible function ε such that

Advind-cpa-2PRE,A (1k) < ε(k)

then a PRE scheme is IND-CPA-2 secure.

Binary tree encryption. Binary tree encryption (BTE) [CHK03] is a relaxed
version of hierarchical identity-based encryption (HIBE) [GS02]. Similar to a
HIBE scheme, a BTE scheme has a (master) public key associated to a binary
tree where each node in the tree has a corresponding secret key. To encrypt
a message for some node, one uses both the public key and the name of the
target node. Using the node’s secret key, the resulting ciphertext can then be
decrypted. Additionally, the secret key of a node can be used to derive the secret
keys of its child nodes.

In contrast to BTE defined in [CHK03], we make the part of the secret key
used to perform the key derivation explicit, i.e., we will have secret keys for the

11

decryption and derivation keys to derive secret keys. In case, an instantiation
does not support a clear distinction, it is always possible to assume that the
derivation key is empty and everything is contained in the secret key.

Definition 6. A binary tree encryption (BTE) scheme with message space M
consists of the PPT algorithms (Gen,Evo,Enc,Dec) as follows:

Gen(1k, `) : On input security parameter k and depth of the tree `, outputs public,

secret, and derivation keys (pk, sk(ε), dk(ε)).

Der(sk(w), dk(w)) : On input secret key sk(w) and derivation key dk(w), for node

w ∈ {0, 1}<`, outputs secret keys sk(w0), sk(w1) and derivation keys dk(w0),

dk(w1) for the two children of w.
Enc(pk,M,w) : On input a public key pk, a message M ∈ M, and node w ∈
{0, 1}≤`, outputs a ciphertext C.

Dec(sk(w), C) : On input a secret key sk(w), for node w ∈ {0, 1}≤`, and ciphertext
C, outputs M ∈M∪ {⊥}.

For correctness, we require that for all security parameters k ∈ N, all depths
` ∈ N, all key pairs (pk, (sk(ε), ek(ε))) generated by Gen(1k, `), any node w ∈
{0, 1}≤`, any derived key sk(w) derived using Der from (sk(ε), dk(ε)), and all

messages M ∈M, it holds that Dec(sk(w),Enc(pk,M,w)) = M.
The indistinguishability against selective node, chosen plaintext attacks (IND-

SN-CPA) is a generalization of the standard IND-CPA security notion of PKE
schemes. Essentially, the security notion requires the adversary to commit to
the node to be attacked in advance. The adversary gets access to all secret keys
except the secret keys for all nodes that are on the path from the root node to
the targeted node.

Experiment Expind-sn-cpaBTE,A (1k, `)

(pk, sk(ε), dk(ε))← Gen(1k, `)
b←R {0, 1}
(w∗, st)← A(1k, `)
Let W be the set of all nodes that are siblings to the path from the root node to w∗

and (if possible) w∗0 and w∗1.
Compute (sk(w), dk(w)) for all w ∈W from (sk(ε), dk(ε)) using Der.
(M0,M1, st)← A(st, pk, (sk(w), dk(w))w∈W)
b∗ ← A(st,Enc(pk,Mb, w

∗))
if b = b∗ return 1, else return 0

Experiment 3. The IND-SN-CPA security experiment for a BTE scheme.

Definition 7 (IND-SN-CPA). For a polynomially bounded function `, a PPT
adversary A, we define the advantage function in the sense of IND-SN-CPA as

Advind-sn-cpaBTE,A (1k, `(k)) =

∣∣∣∣Pr
[
Expind-sn-cpaBTE,A (1k, `(k)) = 1

]
− 1

2

∣∣∣∣ .
If for all `, and any A there exists a negligible function ε such that Advind-sn-cpaBTE,A (

1k, `(k)) < ε(k), then a BTE scheme is IND-SN-CPA secure.

12

The CHK Compiler. The technique of Canetti et al. [CHK03] can be sum-
marized as follows. To build a forward-secret PKE scheme with n periods, one
uses a BTE of depth ` such that n < 2`+1. Associate each period with a node
of the tree and write wi to denote the node for period i. The node for period
0 is the root node, i.e. w0 = ε. If wi is an internal node, then set wi+1 = wi0.
Otherwise, if wi is a leaf node and i < N − 1, then set wi+1 = w′1 where w′ is
the longest string such that w′0 is a prefix of wi. The public key is simply the
public key of the BTE scheme. The secret key for period i consists of the secret
key for node wi.

3 Security of (Forward-Secret) Proxy Re-Encryption

Proxy re-encryption (PRE) schemes can exhibit several important properties. In
the following, we focus on the most common PRE properties in the cryptographic
literature, i.e., uni-directionality (Alice is able to delegate decryption rights to
Bob but not from Bob to Alice), non-interactivity (Alice can generate delegation
key material without interacting with Bob), and collusion-safeness (even if Bob
and other delegatees are colluding with the proxy, they cannot extract Alice’ full
secret key). Moreover, we consider PRE schemes that only allow a single hop, i.e.,
a ciphertext can be re-encrypted only a single time in contrast to multiple times
in a row (multi-hop). Latter can be problematic due to unwanted transitivity.

In this work, we examine a further property of PRE schemes, namely the
property of forward secrecy and propose the first uni-directional, non-interactive,
collusion-safe, single hop, and forward-secret PRE scheme (dubbed fs-PRE) in
the standard model from generic assumptions. Subsequently, in Section 3.1, we
present the formal model for fs-PRE, while in Section 3.3 we discuss the rela-
tion and application of our stronger model to the conventional (i.e., plain) PRE
security model.

3.1 Syntax of Forward-Secret Proxy Re-Encryption

To realize forward-secure PRE (fs-PRE), we lift the definitions and security mod-
els of uni-directional, single-hop, non-interactive, and collusion-safe PRE to a
setting where we can have several periods. Thereby, we allow re-encryptions in
every period such that re-encryption keys—in the same way as secret keys—are
bound to a period. Furthermore, we align our PRE definitions with Ateniese et
al. as well as Libert and Vergnaud [AFGH05, AFGH06, LV08b] such that if we
only have a single period, then they are equivalent to the definitions for plain
PRE in [AFGH06, LV08b].13

Definition 8 (fs-PRE). A forward-secure proxy re-encryption (fs-PRE) scheme
with message space M consists of the PPT algorithms (Setup,Gen,Evo,Enc,

13 Observe that for a single period, i.e., n = 1, Evo and ReEvo in Definition 8 are not
defined. Dropping these algorithms and the corresponding evolution keys ek and rek
yields a plain PRE scheme.

13

Dec,ReGen,ReEvo,ReEnc) where Enc = (Enc(j))j∈[2] and Dec = (Dec(j))j∈[2]
for levels j ∈ [2]. We denote level-2 ciphertext as re-encryptable ciphertexts,
whereas level-1 ciphertexts are not re-encryptable.

Setup(1k) : On input security parameter k, outputs public parameters pp.
Gen(pp, n) : On input public parameters pp, and number of periods n ∈ N, out-

puts public and secret keys (pk, (sk(0), ek(0))).

Evo(sk(i), ek(i)) : On input secret key sk(i) and evolution key ek(i) for period i ∈
{0, . . . , n−2}, outputs a secret key sk(i+1) and evolution key ek(i+1) for period
i+ 1.

Enc(j)(pk,M, i) : On input a public key pk, a message M ∈ M, and period i ∈
{0, . . . , n− 1}, outputs a level-j ciphertext C.

Dec(j)(sk(i), C) : On input a secret key sk(i), for period i ∈ {0, . . . , n − 1}, and
level-j ciphertext C, outputs M ∈M∪ {⊥}.

ReGen(sk
(i)
A , ek

(i)
A , pkB) : On input a secret key sk

(i)
A and a evolution key ek

(i)
A (or

⊥) for A and period i ∈ {0, . . . , n− 1}, and a public key pkB for B, outputs

a re-encryption rk
(i)
A→B and re-encryption-evolution key rek

(i)
A→B (or ⊥).

ReEvo(rk
(i)
A→B , rek

(i)
A→B) : On input a re-encryption key rk

(i)
A→B, and a re-encryption-

evolution key rek
(i)
A→B for period i ∈ {0, . . . , n− 2}, outputs a re-encryption

key rk
(i+1)
A→B and re-encryption evolution key rek

(i+1)
A→B for the period i+ 1.

ReEnc(rk
(i)
A→B , CA) : On input a re-encryption key rk

(i)
A→B, and a (level-2) ci-

phertext CA for user A, outputs a (level-1) ciphertext CB for user B.

Correctness. For correctness, we basically require on the one hand that ev-
ery ciphertext encrypted for some period i can be decrypted with the respec-
tive secret key from period i. On the other hand—when also considering re-
encryptable and re-encrypted ciphertexts—we require that level-2 ciphertexts
encrypted for period i can be re-encrypted with a suitable re-encryption key
for the same period and then decrypted using the (delegatee’s) respective se-
cret key for period i. More formally, for all security parameters k ∈ N, all
public parameters pp ← Setup(1k), any number of periods n ∈ N and users

U ∈ N, all key tuples (pku, sk
(0)
u , ek(0)u)u∈[U] generated by Gen(1k, n), any pe-

riod i ∈ {0, . . . , n − 1}, for any u ∈ [U], any evolved key sk(i+1)
u generated by

Evo(sk(i)u), for all u′ ∈ [U], u 6= u′, any (potentially evolved) re-encryption and

re-encryption-evolution keys rk
(i)
u→u′ and rek

(i)
u→u′ , respectively, for period i gen-

erated using ReGen from (potentially evolved) secret and evolution keys as well
as the target public key, and all messages M ∈M, it holds that

∀j ∈ [2] ∃j′ ∈ [2] : Dec(j
′)(sk(i)u ,Enc(j)(pku,M, i)) = M,

Dec(1)(sk
(i)
u′ ,ReEnc(rk

(i)
u→u′ ,Enc

(2)(pku,M, i))) = M.

3.2 Security of Forward-Secret Proxy Re-Encryption

The security notions for fs-PRE are heavily inspired by the security notions of
(plain) PRE [AFGH05, AFGH06, LV08b] and forward-secret PKE [CHK03]. We

14

will discuss multiple notions, combine them carefully, and introduce forward-
secret indistinguishably under chosen-plaintext attacks for level-1 and level-2
ciphertexts (termed fs-IND-CPA-1 and fs-IND-CPA-2, respectively) which we
argue to be reasonable notions in our setting. Additionally, we define a new
(stronger) variant of indistinguishably-under-chosen-plaintext-attacks security
for fs-PRE (dubbed fs-RIND-CPA) that focuses on malicious users in the face
of honest proxies. In particular, the latter strengthen the folklore PRE security
notion.

For all experiments defined in this section, the environment keeps initially
empty lists of dishonest (DU) and honest users (HU). The oracles are defined as
follows:

Gen(h)(pp, n) : Run (pk, sk, ek) ← Gen(pp, n), set HU ← HU ∪ {(pk, sk, ek)}, and
return pk.

Gen(d)(pp, n) : Run (pk, sk, ek) ← Gen(pp, n), set DU ← DU ∪ {(pk, sk, ek)}, and
return (pk, sk, ek).

ReGen(h)(j, pku, pk) : On input a period j, a public key pku and a public key

pk, abort if (pku, ·, ·) 6∈ HU. Otherwise, look up sk(0)u and ek(0)u corresponding

to pku from HU. If j > 0 set (sk(i)u , ek(i)u) ← Evo(sk(i−1)u , ek(i−1)u) for i ∈ [j].

Return ReGen(sk(j)u , ek(j)u , pk).

ReGen(h
′)(j, sk(0), ek(0), pku) : On input a period j, secret key sk(0), evolution

key ek(0), and a public key pku, abort if (pku, ·, ·) 6∈ HU. Otherwise, if j > 0

set (sk(i), ek(i)) ← Evo(sk(i−1), ek(i−1)) for i ∈ [j]. Return ReGen(sk(j), ek(j),
pku).

ReGen(d)(j, sk(0), ek(0), pkd) : On input a period j, secret key sk(0), evolution key

ek(0), and a public key pkd, abort if (pkd, ·, ·) 6∈ DU. Otherwise, if j > 0

set (sk(i), ek(i)) ← Evo(sk(i−1), ek(i−1)) for i ∈ [j]. Return ReGen(sk(j), ek(j),
pkd).

fs-IND-CPA-i security. We start with the definition of fs-IND-CPA-1 and fs-
IND-CPA-2 security for fs-PRE. Inspired by the work on forward secrecy due to
Canetti, Halevi, and Katz [CHK03], our experiments lift standard PRE security
notions as defined in Ateniese et al. [AFGH05] (AFGH) to the forward-secrecy
setting. More concretely, after the selection of a target period j∗ by the adversary
A, A gets access to the secret and the evolution key (sk(j

∗), ek(j
∗)) of the target

period j∗, while the challenge ciphertext for A-chosen message Mb is generated
for period j∗ − 1, for uniform b ← {0, 1}. Eventually, A outputs a guess on b.
We say A is valid if A only outputs equal-length messages |M0| = |M1| and
1 ≤ j∗ ≤ n.

Furthermore, we adapted the AFGH security experiment such that A has
access to re-encryption and re-encryption-evolution keys for period j∗−1. Anal-
ogously to previous work on PRE, we present two separate notions for level-1 and
level-2 ciphertexts. The corresponding security experiments are given in Experi-
ment 4 and Experiment 5. The only difference in Experiment 4 is that for level-1
ciphertexts, i.e., the ones which can no longer be re-encrypted, the adversary

15

gets access to more re-encryption and re-encryption-evolution keys (obviously,
the challenge ciphertext in that experiment is a level-1 ciphertext).

Experiment Expfs-ind-cpa-1fs-PRE,A (1k, n)

pp← Setup(1k), (pk, sk(0), ek(0))← Gen(pp, n), b←R {0, 1}
(j∗, st)← A(pp, n, pk)
(sk(j), ek(j))← Evo(sk(j−1), ek(j−1)) for j ∈ [j∗].

O ← {Gen(h),ReGen(h)(j∗ − 1, ·, pk),ReGen(h
′)(j∗ − 1, sk(0), ek(0), ·),Gen(d),

ReGen(d)(j∗ − 1, sk(0), ek(0), ·)}
(M0,M1, st)← AO(st, sk(j

∗), ek(j
∗))

b∗ ← A(st,Enc(1)(pk,Mb, j
∗ − 1))

if b = b∗ return 1, else return 0

Experiment 4. The fs-IND-CPA-1 security experiment for level-1 ciphertexts of fs-
PRE schemes.

Experiment Expfs-ind-cpa-2fs-PRE,A (1k, n)

pp← Setup(1k), (pk, sk(0), ek(0))← Gen(pp, n), b←R {0, 1}
(j∗, st)← A(pp, n, pk)
(sk(j), ek(j))← Evo(sk(j−1), ek(j−1)) for j ∈ [j∗].

O ← {Gen(h),ReGen(h)(j∗ − 1, ·, pk),ReGen(h
′)(j∗ − 1, sk(0), ek(0), ·)}

(M0,M1, st)← AO(st, sk(j
∗), ek(j

∗))
b∗ ← A(st,Enc(2)(pk,Mb, j

∗ − 1))
if b = b∗ return 1, else return 0

Experiment 5. The fs-IND-CPA-2 security experiment for level-2 ciphertexts of fs-
PRE schemes.

Definition 9 (fs-IND-CPA-i). For a polynomially bounded function n(·) > 1,
a PPT adversary A, we define the advantage function for A in the sense of
fs-IND-CPA-i for level-i ciphertexts as

Advfs-ind-cpa-ifs−PRE,A(1k, n(k)) :=

∣∣∣∣Pr
[
Expfs-ind-cpa−ifs−PRE,A (1k, n(k)) = 1

]
− 1

2

∣∣∣∣ .
A fs-PRE scheme is fs-IND-CPA-i secure if for all polynomially bounded n(·) > 1

and any valid PPT A there exists a negligible function ε such that Advfs-ind-cpa-ifs−PRE,A(

1k, n(k)) < ε(k), where Expfs-ind-cpa−ifs−PRE,A , for all i ∈ [2], are defined in Experiment 4
and Experiment 5, respectively.

Master-secret security. As discussed in [LV08b], the security notion for level-
1 (i.e., non re-encryptable) ciphertexts already implies classical master-secret
security notion for PRE [AFGH05].14 However, this must not be the case in the
forward-secret setting. To formally close this gap, we give a trivial lemma (cf.
Lemma 1) which states that fs-IND-CPA-1 implies master-secret security in the
sense of Experiment 6 in the forward-secrecy setting. Essentially, master-secret

14 As we will discuss below, this notion seems to suggest false guarantees and leaves a
critical gap in the security model open.

16

security ensures collusion safeness such that re-encryption keys in period j do
not leak the secret key corresponding to level-1 ciphertexts which can not be
re-encrypted in period j − 1. In Experiment 6, we lift master-secret security
in the classical PRE sense to the forward-secret setting. In the experiment, the
adversary A selects an target period j∗ and receives the secret and evolution
keys (sk(j

∗), ek(j
∗)) for the target period in return. Within the experiment, A has

access to several oracles, e.g., to obtain re-encryption and re-encryption-evolution
keys for period j∗. Eventually, A outputs secret and evolutions keys (sk∗, ek∗)

and the experiment returns 1 (i.e., A wins) if (sk∗, ek∗) = (sk(j
∗−1), ek(j

∗−1)).
We say A is valid if A only outputs 1 ≤ j∗ ≤ n.

Experiment Expfs-msk
fs−PRE,A(1k, n)

pp← Setup(1k), (pk, sk(0), ek(0))← Gen(pp, n)
(j∗, st)← A(pp, n, pk)
(sk(j), ek(j))← Evo(sk(j−1), ek(j−1)) for j ∈ [j∗].

O ← {Gen(h),ReGen(h)(j∗, ·, pk),ReGen(h
′)(j∗, sk(0), ek(0), ·),Gen(d),ReGen(d)(j∗,

sk(0), ek(0), ·)}
(sk∗, ek∗)← AO(st, sk(j

∗), ek(j
∗))

if (sk∗, ek∗) = (sk(j
∗−1), ek(j

∗−1)) return 1, else return 0

Experiment 6. The forward secure master secret security experiment for fs-PRE
schemes.

Definition 10 (fs-master-secret security). For a polynomially bounded func-
tion n(·) > 1 and a PPT adversary A, we define the advantage function for A
in the sense of fs-master-secret security as

Advfs-msk
fs−PRE,A(1k, n(k)) := Pr

[
Expfs-msk

fs−PRE,A(1k, n(k)) = 1
]

.

A fs-PRE scheme is fs-master-secret secure if for all polynomially bounded n(·) >
1 and any valid PPT A there exists a negligible function ε such that Advfs-msk

fs−PRE,A(

1k, n(k)) < ε(k), where Expfs-msk
fs−PRE,A is defined in Experiment 6.

We now show that this notion in the sense of Definition 10 is trivially implied
by fs-IND-CPA-1 security for fs-PRE in the sense of Definition 9.

Lemma 1. If a fs-PRE scheme is fs-IND-CPA-1 secure in the sense of Defi-
nition 9, then the same fs-PRE scheme is fs-master-secret secure in the sense
of Definition 10.

Proof sketch. It is trivial to see that any successful PPT adversary on the fs-
master-secret security of a fs-PRE scheme can be transformed into a PPT ad-
versary on the fs-IND-CPA-1 security of that fs-PRE scheme. (Essentially, any
PPT adversary that is able to gain access to the secret key of the prior period
can trivially distinguish ciphertexts for the same period.)

The problem with (fs-)PRE security. A problem with the notion of standard
(i.e., IND-CPA and master secret) security for (plain) PRE and also our fs-PRE

17

notions so far is that the secret keys used for level-1 (i.e., non re-encryptable)
and level-2 (i.e., re-encryptable) ciphertexts can be independent. Consequently,
although ciphertexts on both levels can be shown to be indistinguishable, this
does not rule out the possibility that ciphertexts on level-2 reveal the respective
level-2 secret key of the sender to an legitimate receiver. This is exactly the reason
for the gap in the plain PRE model which allows to leak a “level-2 secret key”
once a re-encryption has been performed while all security properties are still
satisfied (we provide an example for such a scheme in Section 4.4). In particular,
this allows the receiver to potentially decrypt any level-2 ciphertext. We provide
a solution in form of a stronger security notion which we term fs-RIND-CPA
security in the following.

fs-RIND-CPA security. We observe that existing PRE notions only consider
that (1) as long as the users are honest, the proxy learns nothing about any
plaintext, and (2) if proxies and users collude they do not learn anything about
the ciphertexts which are not intended to be re-encrypted. We go a step further
and consider malicious users in the face of an honest proxy in the forward-
secret and, hence, also in the plain PRE sense. That is, we want to enforce that a
malicious user can only read the ciphertexts which were actually re-encrypted by
the proxy and can not tell anything about the ciphertexts which can potentially
be re-encrypted. We capture this via the notion of fs-RIND-CPA security. In this
scenario, an adversary receives re-encrypted ciphertexts generated by an honest
proxy, that it is able to decrypt. Nevertheless, for all other level-2 ciphertexts,
the adversary should still be unable to recover the plaintext. In Experiment 7,
we model this notion where the adversary gets access to a ReEnc-oracle which
is in possession of the re-encryption key from the target user to the adversary.
We say A is valid if A only outputs 1 ≤ j∗ ≤ n and equal length messages
|M0| = |M1|.

Experiment Expfs-rind-cpafs−PRE,A(1k, n)

pp← Setup(1k), (pk, sk(0), ek(0))← Gen(pp, n), b←R {0, 1}
(j∗, pk∗, st)← A(pp, n, pk)
(sk(j), ek(j))← Evo(sk(j−1), ek(j−1)) for j ∈ [j∗]
rk← ReGen(sk(j

∗),⊥, pk∗)
(M0,M1, st)← A{ReEnc(rk,·)}(st)
b∗ ← A(st,Enc(2)(pk,Mb, j

∗))
if b = b∗ return 1, else return 0

Experiment 7. The fs-RIND-CPA security experiment for fs-PRE schemes.

Definition 11 (fs-RIND-CPA). For a polynomially bounded function n(·)
and a PPT adversary A, we define the advantage function for A in the sense of
fs-RIND-CPA as

Advfs-rind-cpafs−PRE,A(1k, n(k)) :=

∣∣∣∣Pr
[
Expfs-rind-cpafs−PRE,A(1k, n(k)) = 1

]
− 1

2

∣∣∣∣ .
18

A fs-PRE scheme is fs-RIND-CPA if for all polynomially bounded n(·) and

any valid PPT A there exists a negligible function ε such that Advfs-rind-cpafs−PRE,A(

1k, n(k)) < ε(k), where Expfs-rind-cpafs−PRE,A is defined in Experiment 7.

We distinguish fs-PRE schemes based on this last notion:

Definition 12 (fs-PRE−-security). If a fs-PRE scheme is fs-IND-CPA-1 and
fs-IND-CPA-2 secure, then we say this fs-PRE scheme is fs-PRE−-secure.

Definition 13 (fs-PRE+-security). If a fs-PRE scheme is fs-IND-CPA-1, fs-
IND-CPA-2, and fs-RIND-CPA secure, then we say this fs-PRE scheme is fs-
PRE+-secure.

3.3 Stronger Security for Proxy Re-Encryption

To conclude the discussion of the security model of fs-PRE schemes, we first
observe that it is interesting to consider the notion of fs-RIND-CPA security
in the classical setting for PRE, i.e., Experiment 7 with fixed n = 1 and no
call to the Evo algorithm. The notion again ensures involvement of the proxy
for the re-encryption of every ciphertext, and can, thus, enforce that malicious
users cannot learn anything beyond the explicitly re-encrypted ciphertexts. This
immediately leads to a stronger security model for classical PRE (given in the
full version), which we denote as PRE+. In particular, it extends the classical
model [AFGH05], dubbed PRE−, which covers standard (IND-CPA) and master-
secret security definitions, by our fs-RIND-CPA security notion ported to the
PRE setting. As our fs-IND-CPA-i notions for fs-PRE are generalizations of the
established standard security notions of PRE as defined in [AFGH05], we con-
sequently obtain a PRE+-secure PRE scheme from any fs-PRE+-secure fs-PRE
scheme. We formalize this observation via Lemma 2.

Lemma 2. Any fs-PRE+-secure fs-PRE scheme yields a PRE+-secure PRE sch-
eme.

Before proving this lemma, we state the definition of RIND-CPA in in the context
of PREs.

Experiment Exprind-cpaPRE,A (1k)

pp← Setup(1k), (pk, sk)← Gen(pp), b←R {0, 1}
(pk∗, st)← A(pp, pk)
rk← ReGen(sk, pk∗)
(M0,M1, st)← A{ReEnc(rk,·)}(st)
b∗ ← A(st,Enc(2)(pk,Mb))
if b = b∗ return 1, else return 0

Experiment 8. The RIND-CPA security experiment for PRE schemes.

19

Definition 14 (RIND-CPA). For a PPT adversary A, we define the advan-
tage function for A in the sense of RIND-CPA as

Advrind-cpaPRE,A (1k) :=

∣∣∣∣Pr
[
Exprind-cpaPRE,A (1k) = 1

]
− 1

2

∣∣∣∣ .
A PRE scheme is RIND-CPA if for any valid PPT A there exists a negligible
function ε such that Advrind-cpaPRE,A (1k) < ε(k), where Exprind-cpaPRE,A is defined in Exper-
iment 8.

Proof (of Lemma 2). To prove the Lemma, we first present a black-box con-
struction of a PRE scheme from any fs-PRE scheme in Scheme 1.

Let (Setupfs-PRE,Genfs-PRE,Evofs-PRE,Encfs-PRE,Decfs-PRE,ReGenfs-PRE,ReEvofs-PRE,
ReEncfs-PRE) be fs-PRE scheme with adaption of ciphertexts and delegation keys.

Setup(1k) : Return pp← Setupfs-PRE(1k).

Gen(pp) : Set (pkPRE, sk
(0)
PRE, ek

(0)
PRE)← Genfs-PRE(pp, 1), and return (pkPRE, sk

(0)
PRE).

Enc(j)(pk,M) : Return Enc
(j)
fs-PRE(pk,M, 0).

Dec(j)(sk, C) : Return Dec
(j)
fs-PRE(sk,M, 0).

ReGen(skA, pkB) : Return ReGenfs-PRE(skA,⊥, pkB).
ReEnc(rkA→B , CA) : Return ReEncfs-PRE(rkA→B , CA).

Scheme 1. PRE scheme from a fs-PRE scheme.

Based on this, we show that fs-IND-CPA-i security of the underlying fs-PRE
implies IND-CPA-i security of the PRE. Let B be an IND-CPA-i adversary. A
fs-IND-CPA-i adversary A can be built in a straightforward manner:

– When A is started on pp, n and pk, output 1 as A’s target period.
– When A is started on the state and the secret key for period 1, start B on

pk and return the challenge plaintexts and the state st. All oracle queries
by B are simply forwarded to the respective oracles of the fs-IND-CPA-i
experiment.

– When A is started on the challenge ciphertext, first note that this ciphertext
is a level i ciphertext for period 0. Thus we can again forward the challenge
ciphertext to B. Once B outputs its guess b′, A forwards b′ as its own guess
to the fs-IND-CPA-i challenger.

Note that all values are consistently distributed. Thus it follows that if B has
a non-negligible advantage in the IND-CPA-i-game, then A has a non-negligible
advantage in winning the fs-IND-CPA-i game.

Additionally, with a similar reduction as above, fs-RIND-CPA of the fs-PRE
straightforwardly implies RIND-CPA of the PRE scheme. ut

4 Constructing fs-PRE from Binary Tree Encryption

In this section we present our construction of fs-PRE which is based on BTEs.
Along the way, we introduce the notion of forward-secret delegatable PKE (fs-
DPKE) as intermediate step. Such a fs-DPKE scheme then directly gives us a

20

first fs-PRE satisfying fs-PRE− security. To extend our construction to satisfy the
stronger fs-PRE+ notion generically, we require a relatively mild homomorphic
property of the fs-DPKE. This property is in particular satisfied by our fs-DPKE
instantiation, which yields the first fs-PRE scheme with strong security.

4.1 Forward-Secret Delegatable Public-Key Encryption

We now formalize fs-DPKE. In such a scheme decryption rights within a public-
key encryption scheme can be delegated from a delegator to a delegatee and
secret keys of delegators can be evolved so that a secret key for some period ei
is no longer useful to decrypt ciphertexts of prior periods ej with j < i.

Definition 15 (fs-DPKE). A forward-secret delegatable PKE (fs-DPKE) scheme
with message space M consists of the PPT algorithms (Setup,Gen,Evo,Del,Enc,
Dec,DelEvo,DelDec) as follows:

Setup(1k) : On input security parameter k, outputs public parameters pp.
Gen(pp, n) : On input public parameters pp, and maximum number of periods n,

outputs public, secret and evolution keys (pk, sk(0), ek(0)).

Evo(sk(i), ek(i)) : On input secret key sk(i), and evolution key ek(i) for period

i ∈ {0, . . . , n − 2}, outputs secret key sk(i+1) and evolution key ek(i+1) for
period i+ 1.

Del(sk
(i)
A , ek

(i)
A , pkB) : On input secret key sk

(i)
A and evolution key ek

(i)
A (or ⊥) for

A and period i ∈ {0, . . . , n− 1}, and public key pkB for B, outputs delegated

key dk(i) and delegated evolution key dek(i) (or ⊥) for period i.
Enc(pk,M, i) : On input a public key pk, a message M ∈ M, and period i ∈
{0, . . . , n− 1}, outputs a ciphertext C.

Dec(sk(i), C) : On input a secret key sk(i), for period i ∈ {0, . . . , n − 1}, and
ciphertext C, outputs M ∈M∪ {⊥}.

DelEvo(dk(i), dek(i)) : On input a delegation key dk(i) and delegated evolution key

dek(i) for period i ∈ {0, . . . , n−2}, output delegation key dk(i+1) and delegated

evolution key dek(i+1) for period i+ 1.

DelDec(sk
(i)
B , dk

(i)
A→B , CA) : On input secret key sk

(i)
B for B and period i ∈ {0, . . . ,

n− 1}, delegation key dk
(i)
A→B from A for B and period i, and ciphertext CA

for A, outputs M ∈M∪ {⊥}.

We note that the existence of the DelEvo algorithm is entirely optional. If pro-
vided, it allows the user in possession of a delegation key to evolve it for later
periods without additional interaction with the delegator.

Correctness. For correctness we require that period i ciphertexts encrypted
for user u can be decrypted if one is in possession of the secret key of u evolved
to that period or one possess a delegation key of u to another user u′ and the
secret key for u′ for that period. More formally, we require that for all security
parameters k ∈ N, all public parameters pp generated by Setup(1k), all number

of periods n ∈ N, all users U ∈ N, all key tuples (pku, sk
(0)
u , ek(0)u)u∈[U] generated

21

by Gen(pp, n), any period i ∈ {0, . . . , n − 1}, for any u ∈ [U], any evolved

keys (sk(i)u , ek(i)u) generated by Evo from (sk(0)u , ek(0)u), for all u′ ∈ [U], u 6= u′,

any (potentially evolved) delegation key dk
(i)
u→u′ for period i generated using

Del from a (potentially evolved) secret key and the target public key, and all
messages M ∈M it holds that

Dec(sk(i)u ,Enc(pku,M, i)) = DelDec(sk
(i)
u′ , dk

(i)
u→u′ ,Enc(pku,M, i)) = M.

Security notions. The forward-secret IND-CPA notion is a straight-forward
extension of the typical IND-CPA notion: the adversary selects a target period
and gets access to secret and evolution keys of the targeted user for the selected
period and is able to request delegation keys with honest and dishonest users
for that period. The adversary then engages with an IND-CPA style challenge
for the previous period. For the experiment, which is depicted in Experiment 9,
the environment keeps a list of an initial empty list of honest users HU.

Gen(h)(pp, n) : Run (pk, sk, ek) ← Gen(pp, n), set HU ← HU ∪ {(pk, sk, ek)}, and
return pk.

Del(h)(j, pku, pk) : On input a period j, a public key pku and a public key pk,

abort if (pku, ·) 6∈ HU. Otherwise, look up sk(0)u , ek(0)u corresponding to pku
from HU, set (sk(i)u , ek(i)u) ← Evo(sk(i−1)u , ek(i−1)u) for i ∈ [j] if j > 0, and

return Del(sk(j)u , ek(j)u , pk).

Del(h
′)(j, sk(0), ek(0), pku) : On input a period j, a secret key sk(0), a evolution key

ek(0), and a public key pku, abort if (pku, ·) 6∈ HU. Otherwise, set (sk(i), ek(i))←
Evo(sk(i−1), ek(i−1)) for i ∈ [j] if j > 0, and return Del(sk(j), ek(j), pku).

Experiment Expfs-ind-cpafs−DPKE,A(1k, n)

pp← Setup(1k), (pk, sk(0), ek(0))← Gen(pp, n), b←R {0, 1}
(j∗, st)← A(pp, n, pk)
sk(j), ek(j) ← Evo(sk(j−1), ek(j−1)) for j ∈ [j∗].

O ← {Gen(h),Del(h)(j∗ − 1, ·, pk),Del(h
′)(j∗ − 1, sk(0), ek(0), ·)}

(M0,M1, st)← AO(st, sk(j
∗), ek(j

∗)))
b∗ ← A(st,Enc(pk,Mb, j

∗ − 1))
if b = b∗ return 1, else return 0

Experiment 9. The fs-IND-CPA security experiment for a fs-DPKE scheme.

Definition 16 (fs-IND-CPA). For a polynomially bounded function n(·) > 1,
a PPT adversary A, we define the advantage function in the sense of fs-IND-
CPA as

Advfs-ind-cpafs−DPKE,A(1k, n(k)) :=

∣∣∣∣Pr
[
Expfs-ind-cpafs−DPKE,A(1k, n(k)) = 1

]
− 1

2

∣∣∣∣ .
If for all n(·) > 1, and any A there exists a negligible function ε such that
fs− DPKE, A(1k, n(k)) < ε(k), then a fs-DPKE scheme is fs-IND-CPA secure.

22

4.2 Constructing fs-DPKE from BTE

Now we construct a fs-DPKE scheme from a BTE scheme by applying the CHK
compiler to a BTE and combining it with an F-HPKE scheme for handling the
delegation keys, i.e., the fs-DPKE key contains a BTE and an F-HPKE key. The
evolution key contains the secret and derivation keys for all right siblings on the
path from the root node to wi as well as the evolution key for wi. The evolution
algorithms traverse the tree in a depth-first manner, hence the evolution keys
are viewed as stack and when visiting a node, the derived secret and derivation
keys are pushed onto the stack. To simplify the presentation of the scheme, we
define an algorithm DFEval that performs the stack manipulation on a stack of
pairs:

DFEval(s
(wi)
1 , s,Eval) : On input the stack s and first element s

(wi)
1 of the pair

for node wi, an algorithm Eval, perform the following steps:

– Pop the topmost element, (⊥, s(w
i)

2), from the stack s.

– If wi is an internal node, set s(w
i0), s(w

i1) ← Eval(s
(wi)
1 , s

(wi)
2) and push

s(w
i1), s(w

i0) onto s.

– Replace the topmost element, (s
(wi+1)
1 , s

(wi+1)
2), with (⊥, s(w

i+1)
2).

– Return s
(wi+1)
1 and the new stack s.

The overall idea is now to encrypt the BTE secret key of the current period using
the F-HPKE scheme’s public key of the target user. Using the homomorphic
property of the encryption scheme, we are able to evolve the delegation keys in
the same way as the secret keys of the nodes. In particular, we will require that
the key derivation algorithm of the BTE can be represented by functions in F ,
i.e., DerBTE = (fi)i∈[m]. For notional simplicity, we will write EvalHPKE(DerBTE, ·)
instead of repeating it for each fi that represents DerBTE.

For our fs-DPKE scheme we need keys of different users to live in compatible
key spaces. To that end, we introduce Setup algorithms for both schemes that fix
the key spaces and we change the key generation algorithms to take the public
parameters instead of the security parameter as argument. Note that when using
the BTE from [CHK03], linear ElGamal [BBS04] as F-HPKE to encrypt the BTE
keys suffices for our needs.

Our construction. The fs-DPKE scheme is detailed in Scheme 2. We note that
only the definition of DelEvo relies on the homomorphic properties of the HPKE
scheme. So to obtain a fs-DPKE scheme without DelEvo algorithm, a compatible
PKE scheme is sufficient. Yet, we will require the homomorphic properties later to
achieve a suitable notion of adaptability regardless of the availability of DelEvo.

Similar to Canetti et al.’s construction, our fs-DPKE scheme inherits the
fs-IND-CPA security from the BTE’s IND-SN-CPA security.

Theorem 1. If instantiated with an IND-SN-CPA secure BTE scheme and a
IND-CPA secure HPKE scheme, then Scheme 2 is a fs-IND-CPA secure fs-
DPKE.

23

Let (SetupBTE,GenBTE,DerBTE,EncBTE,DecBTE) be a BTE scheme and (SetupHPKE,
GenHPKE,EncHPKE,DecHPKE,EvalHPKE) a compatible F-HPKE scheme with DerBTE ∈ F .

Setup(1k) : Set ppBTE ← SetupBTE(1k), ppHPKE ← SetupHPKE(1k), and return (ppBTE,
ppHPKE).

Gen(pp, n) : Parse pp as (ppBTE, ppHPKE). Choose ` such that n < 2`+1, set (pkBTE,

sk
(ε)
BTE, dk

(ε)
BTE) ← GenBTE(ppBTE, `) and (pkHPKE, skHPKE) ← GenHPKE(ppHPKE), and

return ((pkBTE, pkHPKE), (sk
(ε)
BTE, skHPKE), (⊥, dk(ε)BTE)).

Evo(sk(i), ek(i)) : Parse sk(i) as (sk
(wi)
BTE , skHPKE) and view ek(i) organized as a stack of

secret key and evolution keys pairs. Set sk
(wi+1)
BTE , ek(i+1) ← DFEval(sk

(wi)
BTE , ek

(i),

DerBTE), and sk(i+1) ← (sk
(wi+1)
BTE , skHPKE). Return sk(i+1), ek(i+1).

Enc(pk,M, i) : Parse pk as (pkBTE, ·), and return EncBTE(pkBTE,M,wi).

Dec(sk(i), C) : Parse sk(i) as (sk
(wi)
BTE , ·), and return DecBTE(sk

(wi)
BTE , C).

Del(sk
(i)
A , ek

(i)
A , pkB) : Parse sk

(i)
A as (sk

(wi)
BTE , ·) and pkB as (·, pkHPKE). If ek

(i)
A = ⊥, return

EncHPKE(pkHPKE, sk
(wi)
BTE). Otherwise parse ek

(i)
A as (sk

(w)
BTE, dk

(w)
BTE)w∈W , (·, dk(w

i)
BTE), and

set dk(w) ← EncHPKE(pkHPKE, sk
(w)
BTE) and dek(w) ← EncHPKE(pkHPKE, dk

(w)
BTE) for w ∈

W ∪ {wi}. Set dk(i) ← dk(w
i) and dek(i) ← (dk(w), dek(w))w∈W , (⊥, (dek(w

i))) and
return dk(i), dek(i).

DelEvo(dk
(i)
A→B , dek

(i)
A→B) : Parse dk

(i)
A→B as dk

(wi)
A→B and view dek

(i)
A→B organized as

a stack of encrypted evolution keys. Set dk
(wi+1)
A→B , dek

(i+1)
A→B ← DFEval(dk

(wi)
A→B ,

dek
(i)
A→B ,EvalHPKE(DerBTE, ·)), and dk(i+1) ← dk

(wi+1)
BTE . Return dk(i+1), dek(i+1).

DelDec(sk
(i)
B , dk

(i)
A→B , CA) : Parse sk

(i)
B as (·, skHPKE), set sk

(wi)
BTE ← DecHPKE(skHPKE,

dk
(i)
A→B), and return DecBTE(sk

(wi)
BTE , CA).

Scheme 2. fs-DPKE scheme from BTE scheme and a compatible HPKE scheme.

Proof. We prove the theorem using a sequence of games. We denote by W all
the relevant nodes in the binary tree for period j. We note that the size of W is
bounded by log2(n). We index W as wi for i ∈ [|W |].

Game 0: The original game.

Game 1i,j (1 ≤ i ≤ qDelh , 1 ≤ j ≤ 2|W |): As the previous game, but we replace
all HPKE ciphertexts up to the j-th one in the i-th query with ciphertexts

encrypting random plaintexts. That is, we modify the Delh
′

in the i-th query
as follows:

Delh
′
(j, sk(0), ek(0), pki) : Up to the j-th call to EncHPKE, encrypt a uniformly

random value.

Transition0→11,1 , Transition1i,j→1i,j+1 , Transition1i,2|W |→1i+1,1 : A distingu-
isher D0→11,1 (respectively D1i,j→1i,j+1 or D1i,2|W |→1i+1,1) is an IND-CPA
adversary against the HPKE scheme. We construct a reduction where we

let C be a IND-CPA challenger. We modify Delh
′

in the i-th query in the
following way:

24

Delh
′
(j, sk(0), ek(0), pki′) : Simulate everything honestly, but on the j-th query

choose r uniformly at random and run

c← C(sk(w(j/2)−1)

BTE , r) if j is odd and c← C(ek(wj/2)

BTE , r) if j is even,

where c← C(m0,mb) denotes a challenge ciphertext with respect to m0

and m1.
Now, the bit b chosen by C switches between the distributions of the Games.

In Game 1q
Delh

,2|W | all ciphertexts obtainable from Delh
′

are with respect to ran-
dom values. Now, an adversary B winning Game 1q

Delh
,2|W | can be transformed

into a IND-SN-CPA adversary A against the underlying BTE scheme:

1. When A is first started on 1k, `, choose i∗←R [n] and output w(i∗−1).

2. When A is started on pkBTE, (sk
(w), dk(w))w∈W , compute (pkHPKE, skHPKE)←

GenHPKE(1k). The secret key skHPKE is stored in the state st and we extend
the public key to pk← (pkBTE, pkHPKE). Now start B on the extended public
key, i.e. (j∗, st) ← B(1k, n, pk). If i∗ 6= j∗, output a random bit and halt.
Otherwise we have the secret-derivation key pairs of all nodes that are right
siblings on the path from the root node to w(j∗−1) and (if they exist) all
child nodes of w(j∗−1), hence we are able to simulate all oracle queries from
B honestly. Similarly, we can compute (sk(j

∗), dk(j
∗)) from the given keys.

Thus we run BO(st, sk(j
∗), dk(j

∗)) and forward its result.
3. When A is finally started on the challenge ciphertext, the ciphertext is simply

forwarded to B and when B outputs the bit b, A returns b and halts.

When B is running within A and j∗ = i∗, B has exactly the same view as in
Game 1q

Genh
,2|W |. In this case the probability of A to win is exactly the same

as the winning probability of B, and Game 1q
Genh

,2|W | is computationally in-
distinguishable from the initial game. The random guess of i∗ so that i∗ = j∗

induces a loss of 1
n , which is however bounded by a polynomial in the security

parameter. ut

4.3 Constructing fs-PRE from fs-DPKE

Now we present a construction of a fs-PRE+-secure fs-PRE scheme from a fs-
DPKE scheme. Therefore, we define additional properties of fs-DPKE and show
that a fs-PRE can be directly obtained from a fs-DPKE. For our transformation to
work, we need to define an additional algorithm that allows us to homomorphi-
cally shift ciphertexts and delegation keys. That is, ciphertexts and delegation
keys are modified in such a way that the delegation keys look like randomly
distributed fresh keys, which are only useful to decrypt ciphertexts adapted to
this key. Formally, we introduce an algorithm Adapt that enables this adaption:

Adapt(dk, C) : On input a delegation key dk, a ciphertext C, outputs an adapted
delegation key dk′ and ciphertext C ′.

25

Since the delegation keys in our construction are encrypted BTE secret keys, we
essentially adapt secret keys and ciphertexts from a BTE. We will see that this
adaption is possible as long as the HPKE scheme used to encrypt the BTE keys
provides a suitable homomorphism on the message space.

To adapt ciphertexts and delegation keys we extend correctness to addi-
tionally require that for any message M encrypted under the public key of A,

any delegation key dk
(i)
A→B , and any adapted delegation key-ciphertext pairs

(dk′, C ′)← Adapt(dk
(i)
A→B , CA), it holds that M = DelDecDPKE(sk

(i)
B , dk′, C ′).

As security notion we introduce the fs-ADAP-IND-CPA notion, where the
adversary may see multiple adapted delegation keys and ciphertexts, but the
adversary should be unable to win an IND-CPA game for non-adapted cipher-
texts. We give the formal definition of the security experiment in Experiment 10.
This notion gives the delegator more control over the ciphertexts that should be
readable for the delegatee. If given the delegation key, the delegatee can always
decrypt all ciphertexts, but if just given an adapted delegation key, only a se-
lected subset of ciphertexts is decryptable.

Experiment Expfs-adap-ind-cpafs−DPKE,A (1k, n)

pp← Setup(1k), (pk, sk(0), ek(0))← Gen(pp, n), b←R {0, 1}
(j∗, pk∗, st)← A(pp, n, pk)
sk(j), ek(j) ← Evo(sk(j−1), ek(j−1)) for j ∈ [j∗], dk← Del(sk(j

∗),⊥, pk∗)
(M0,M1, st)← A{Adapt(dk,·)}(st)
b∗ ← A(st,Enc(pk,Mb, j

∗))
if b = b∗ return 1, else return 0

Experiment 10. The fs-ADAP-IND-CPA security experiment for a fs-DPKE scheme.

Definition 17 (fs-ADAP-IND-CPA). For a polynomially bounded function
n(·) > 1, a PPT adversary A, we define the advantage function in the sense of
fs-IND-CPA as

Advfs-adap-ind-cpafs−DPKE,A (1k, n(k)) :=

∣∣∣∣Pr
[
Expfs-adap-ind-cpaDPKE,A (1k, n(k)) = 1

]
− 1

2

∣∣∣∣ .
If for all n(·) > 1, and any A there exists a negligible function ε such that

Advfs-adap-ind-cpafs−DPKE,A (1k, n(k)) < ε(k), then a fs-DPKE scheme is fs-ADAP-IND-CPA
secure.

For Scheme 2, this adaption can be achieved solely from key-homomorphic prop-
erties of the BTE and homomorphic properties of the HPKE, respectively. Subse-
quently, we define the required homomorphisms. Our definitions are inspired by
[AHI11, TW14]. We focus on schemes where the secret/derived key pairs, and
public keys live in groups (G,+), and (H, ·), respectively. We will require two
different properties: first, the public key is the image of the secret key under a
group homomorphism, and second, given two secret keys with a known differ-
ence, we can map the binary tree of derived keys from one key to the other key.
In other words, the difference in the keys propagates to the derived keys.

26

Definition 18. Let Ω be a BTE scheme with secret/derived key space (G,+)
and public key space (H, ·).

1. The scheme Ω provides a secret-key-to-public-key homomorphism, if there
exists an efficiently computable group homomorphism µ : G → H such that
for all (pk, sk)← Gen, it holds that pk = µ(sk).

2. The scheme Ω provides a derived-key homomorphism, if there exists a family
of efficiently computable group homomorphisms ν(w) : G→ G2 such that for
all (pk, sk(ε)) ← Gen, all nodes w it holds that (sk(w0), sk(w1)) = ν(w)(sk(w))

and for all messages M it holds that Dec(sk(w),Enc(pk,M,w)) = M .

We denote by Φ+ the set of all possible secret key differences in G. Alternatively,
it is possible to view Φ+ as set of functions representing all linear shifts in G
and we simply identify each shift by an element ∆ ∈ G.

Definition 19. A BTE scheme Ω is called Φ+-key-homomorphic, if it provides
both a secret-key-to-public-key homomorphism and a derived key homomorphism
and an additional PPT algorithm Adapt, defined as:

Adapt(pk, C,∆) : On input a delegation key dk, a ciphertext C and a secret key
difference ∆, outputs a public key pk′ and a ciphertext C ′.

such that for all ∆ ∈ Φ+, and all (pk, sk) ← Gen(. . .), all message M , and all
C ← Enc(pk,M), and (pk′, C ′) ← Adapt(pk, C,∆) it holds that pk′ = pk · µ(∆)

and Dec(sk(w) + ν(w)(∆), C ′) = M .

Definition 20 (Adaptability of ciphertexts). A Φ+-key-homomorphic BTE
scheme provides adaptability of ciphertexts, if for every security parameter k ∈
N, any public parameters pp ← Setup(1k), every message M and every period
j, it holds that Adapt(pk,Enc(pk,M, j), ∆) and (pk · µ(∆),Enc(pk · µ(∆),M, j))
as well as (sk, pk) and (sk′, µ(sk′)) are identically distributed, where (pk, sk) ←
Gen(pp, n), sk′←R G and ∆← Φ+.

Next, we discuss the BTE from [CHK03] with respect to our notion of cipher-
text adaptability. We first recall the BTE scheme in Scheme 3 where BGGen is a
bilinear group generator. By [CHK03, Proposition 1] this scheme is IND-SN-CPA
secure if the decisional BDH assumption holds relative to BGGen.

Now we show that Scheme 3 also provides adaptability of ciphertexts:

Lemma 3. Scheme 3 provides adaptability of ciphertexts under shared H.

Proof. We show the existence of the homomorphisms and give the Adapt al-
gorithm. Note that the master secret key can easily be viewed as containing α,
hence, the secret-to-public-key homomorphism is simply µ : α 7→ αP . As the Der
algorithm simply computes sums, the existence of the homomorphism is clear.

We now show the existence of Adapt:

Adapt(pk, C,∆) : Parse pk as (Q, `,H) and C as (U0, . . . , Ut, V). Let Q′ ← Q+
∆ · P and set pk′ ← (Q′, `,H). Let V ′ ← V e(U0, ∆ · H(ε)) and set C ′ ←
(U0, . . . , Ut, V

′) and return (pk′, C ′).

27

Setup(1k) : Run to BGGenp(1
k) to generate groups G1,G2 of prime order q and a

bilinear map e and select a random generator P ∈ G1. Set pp ← (G1,G2, e, q, P)
and return pp.

Gen(pp, `) : Choose α ← Zq and set Q ← α · P . Set sk(ε) ← αH(ε) and pk ← (Q,H).
Return (pk, sk(ε)).

Der(sk(i)) : Parse sk(w) as (Rw|1, . . . , Rw, Sw). Choose r0, r1←R Zq and set
Rwi ← riP and Swi ← Sw + ri · H(wi) for i ∈ [2] and return
((Rw|1, . . . , Rw, Rw0, Sw0), (Rw|1, . . . , Rw, Rw1, Sw1))).

Enc(pk,M, i) : Choose γ ← Zq and set C ← (γ ·P, γ ·H(w|1), . . . , γ ·H(w),M · e(Q, γ ·
H(ε))). Return C.

Dec(sk(w), C) : Parse sk(w) as (Rw|1, . . . , Rw, Sw) and C as (U0, . . . , Ut, V). Return M =
V/d where

d =
e(U0, Sw)∏t

i=1 e(Rw|i, Ui)
.

Scheme 3. BTE scheme from [CHK03]

The adapted C ′ ciphertext is an encryption of the original message under the
public key Q′ = Q+∆ · P . ut

Now, given any Φ+-key-homomorphic BTE scheme, it can be turned into an
adaptable fs-DPKE by defining Adapt in a publicly computable way as follows:

Adapt(dk
(i)
A→B , C) : Sample ∆←R Φ+ and compute dk∆ ← EncHPKE(pkB , ν

(wi)(

∆)), and then dk′ ← EvalHPKE(+, dk
(i)
A→B , dk∆). Set (·, C ′)← AdaptBTE(pkA,

C,∆). Return (dk′, C ′).

Theorem 2. If in addition to the premise in Theorem 1 the BTE scheme also
provides adaptability of ciphertexts, then Scheme 2 is a fs-ADAP-IND-CPA se-
cure fs-DPKE scheme.

Proof. We prove this theorem with a sequence of games.

Game 0: The original game.
Game 1: We modify the simulation of the Adapt oracle as follows, where we

denote the modified oracle by Adapt′:

Adapt′(sk(i), pk, pk∗ , C) : Parse sk(i) as (sk
(wi)
BTE , ·), pk as (pkBTE, ·), and pk∗

as (·, pk∗HPKE). Choose ∆← Φ+, run

dk′ ← EncHPKE(pk∗HPKE, sk
(wi)
BTE + ν(w

i)(∆)) and

C ′ ← EncBTE(pk · µ(∆),DecBTE(sk(i), C), i) . Return (dk′, C ′).

Transition0→1: The distributions of Game 0 and Game 1 are indistinguishable
under the BTE’s adaptability of ciphertexts.

Game 2: We further modify the simulation of Adapt′ as follows:

Adapt′(sk(i), pk∗ , C) : Parse sk(i) as (sk
(wi)
BTE , ·), pk as (pkBTE, ·), and pk∗ as

(·, pk∗HPKE). Choose pk′BTE, sk
′,(ε)
BTE , ek

′,(ε)
BTE ← GenBTE and evolve the secret

28

key to period i, run

dk′ ← EncHPKE(pk∗HPKE, sk
′,(wi)
BTE) and

C ′ ← EncBTE(pk′BTE,DecBTE(sk(i), C), i) . Return (dk′, C ′).

Transition1→2: The change is conceptual.

In Game 2 all the secret BTE keys the adversary gets are chosen independently
from the challenge key. Hence, Game 2 is a standard IND-CPA game and thus
the success probability of Game 2 is negligible by Theorem 1. ut

Now, given an adaptable fs-DPKE scheme, we use the Adapt algorithm to obtain
a fs-PRE+ secure fs-PRE scheme. While the algorithms Setup, Gen, Evo, Enc(i),
and Dec(i) can simply be lifted from the fs-DPKE scheme, we note that for
each period j in the fs-PRE scheme, we use two periods, i.e., 2j − 1 and 2j, of
the fs-DPKE scheme. The period 2j − 1 is used for level 1 ciphertexts whereas
the period 2j is used for level 2 ciphertexts15. We use DelDPKE and DelEvoDPKE

for ReGen and ReEvo, respectively. For the re-encryption algorithm ReEnc, we
apply Adapt. Dec(1) for re-encrypted ciphertexts then decrypts the ciphertext
by running DelDecDPKE on the adapted delegation key and ciphertext. The full
scheme is presented in Scheme 4.

We prove that our scheme is both fs-IND-CPA-1 and fs-IND-CPA-2 secure.
Both security notions follow from the fs-IND-CPA security of the underlying
fs-DPKE scheme. In contrast, to achieve fs-RIND-CPA, we require an fs-ADAP-
IND-CPA fs-DPKE scheme.

Theorem 3. If instantiated with a fs-IND-CPA and fs-ADAP-IND-CPA secure
fs-DPKE scheme, Scheme 4 is a fs-PRE+-secure fs-PRE scheme.

Proof. Informally speaking, the security experiment for fs-IND-CPA-2 with a
fixed period j∗ corresponds to the fs-IND-CPA experiment for fs-DPKE for period
2j∗. We can build a straightforward reduction from an adversary against fs-IND-
CPA-2, A2 to fs-IND-CPA for fs-DPKE:

– When started on pp, n and pk, run (j∗, st)← A2(pp, dn2 +1e, pk). Set j′ ← 2j∗

and return (j′, st).

– When started on st, sk
(j′)
DPKE, ek

(j′)
DPKE, we simulate the ReGen(h) and ReGen(h

′)

oracles using Del(h) and Del(h
′). Indeed, Del(h) and Del(h

′) return delegation
keys for period j′−1 = 2j∗−1, which are re-encryption keys for period j∗−1.

Using Evo we evolve sk
(j′)
DPKE, ek

(j′)
DPKE to period j′ + 1. Set (sk(j

∗), ek(j
∗)) ←

((sk
(j′)
DPKE, sk

(j′+1)
DPKE), (ek

(j′)
DPKE, ek

(j′+1)
DPKE)) and start A2 on st, (sk(j

∗), ek(j
∗)) and

simply forward the result.
– Finally, when started on st and Cj′−1, Cj′−1 is a level 2 ciphertext for j∗−1.

Hence we start A2 on the ciphertext and return its’ result.

15 One can see the keys for period 2j as weak keys in the sense of [AFGH05, Third
Attempt] whereas the keys for period 2j − 1 constitute the master secret keys.

29

Let (SetupDPKE,GenDPKE,EvoDPKE,DelDPKE,EncDPKE,DecDPKE,AdaptDPKE) be fs-DPKE
scheme with adaption of ciphertexts and delegation keys.

Setup(1k) : Return SetupDPKE(1k).

Gen(pp, n) : Set (pkDPKE, sk
(0)
DPKE, ek

(0)
DPKE)← GenDPKE(pp, 2n+1), obtain (sk

(1)
DPKE, ek

(1)
DPKE)

← EvoDPKE(sk
(0)
DPKE, ek

(0)
DPKE), and return (pkDPKE, sk

(0), ek(0)), where

sk(0) ← (sk
(0)
DPKE, sk

(1)
DPKE), ek(0) ← (ek

(0)
DPKE, ek

(1)
DPKE).

Evo(sk(i), ek(i)) : Parse (sk(i), ek(i)) as ((sk
(2i)
DPKE, sk

(2i+1)
DPKE), (ek

(2i)
DPKE, ek

(2i+1)
DPKE)) and return

(sk(i+1), ek(i+1)) = (sk
(2i+2)
DPKE , sk

(2i+3)
DPKE), (ek

(2i+2)
DPKE , ek

(2i+3)
DPKE)), where

(sk
(2i+1+j)
DPKE , ek

(2i+1+j)
DPKE)← EvoDPKE(sk

(2i+j)
DPKE , ek

(2i+j)
DPKE) for j ∈ [2].

Enc(1)(pk,M, i) : Return EncDPKE(pk,M, 2i).

Enc(2)(pk,M, i) : Return EncDPKE(pk,M, 2i+ 1).

Dec(1)(sk(i), C) : Parse sk(i) as (sk
(2i)
DPKE, sk

(2i+1)
DPKE) and return DecDPKE(sk(2i), C) if C

was not re-encrypted. Otherwise parse C as (C1, rk) and return DelDecDPKE(
sk(2i+1), rk, C1).

Dec(2)(sk(i), C) : Parse sk(i) as (sk
(2i)
DPKE, sk

(2i+1)
DPKE) and return DecDPKE(sk(2i+1), C).

ReGen(sk
(i)
A , ek

(i)
A , pkB) : Parse (sk(i), ek(i)) as ((sk

(2i)
DPKE, sk

(2i+1)
DPKE), (ek

(2i)
DPKE, ek

(2i+1)
DPKE)),

and DelDPKE(sk
(2i+1)
A , ek

(2i+1)
A , pkB).

ReEvo(rk
(i)
A→B , rek

(i)
A→B) : Return DelEvoDPKE(DelEvoDPKE(rk

(i)
A→B , rek

(i)
A→B)).

ReEnc(rk
(i)
A→B , CA) : Choose τ ←R G and return AdaptDPKE(rk

(i)
A→B , CA, τ).

Scheme 4. fs-PRE scheme from an adaptable fs-DPKE scheme.

To show fs-IND-CPA-1 security, we perform a similar reduction:

– When started on pp, n and pk, run (j∗, st) ← A1(pp, dn2 + 1e, pk). Set j′ ←
2j∗ − 1 and return (j′, st).

– When started on st, sk
(j′)
DPKE, ek

(j′)
DPKE, we simulate the ReGen(h) and ReGen(h

′)

oracles using Del(h) and Del(h
′) and by running DelEvo on the result. Indeed,

Del(h) and Del(h
′) return delegation keys for period j′−1 = 2j∗−2, hence af-

ter applying DelEvo we obtain re-encryption keys for period j∗−1. ReGen(d)

is simulated honestly by delegating sk
(j′)
DPKE, ek

(j′)
DPKE to a dishonest user. Us-

ing Evo we evolve sk
(j′)
DPKE, ek

(j′)
DPKE to period j′ + 2. Set (sk(j

∗), ek(j
∗)) ←

((sk
(j′+1)
DPKE , sk

(j′+2)
DPKE), (ek

(j′+1)
DPKE , ek

(j′+2)
DPKE)) and start A1 on st, (sk(j

∗), ek(j
∗)) and

simply forward the result.
– Finally, when started on st and Cj′−1, Cj′−1 is a level 1 ciphertext for j∗−1.

Hence we start A1 on the ciphertext and return its’ result.

To show receiver-IND-CPA security we build an fs-ADAP-IND-CPA adversary
against the fs-DPKE scheme. The fs-RIND-CPA adversary is denoted as Ar.

– When started on pp, n and pk, run (j∗, st) ← Ar(pp, dn2 + 1e, pk). Set j′ ←
2j∗ + 1 and return (j′, st).

30

– When started on st, we can simulate ReEnc honestly using Adapt.
– Wen started on st and C, the ciphertext is a level 2 ciphertext for period j∗,

hence we return Ar(st, C).

Note that all values are consistently distributed in all three reductions. ut

4.4 Separating fs-PRE− from fs-PRE+

To expand on the gap between fs-PRE+ and fs-PRE− schemes and to provide an
explicit separation, we construct a counterexample. In particular, it is clear that
every scheme that satisfies fs-PRE+ also satisfies fs-PRE−. For our separation
we now present a scheme that is fs-PRE− but trivially violates fs-PRE+. The
scheme is also built from a fs-DPKE scheme and presented in Scheme 5. In this
scheme however, ReEnc simply embeds the delegation key in the re-encrypted
ciphertext. The shortcomings of this construction compared to Scheme 4 are
obvious: once the receiver is presented with one valid re-encrypted ciphertext, it
can recover the delegation key from that ciphertext and can decrypt all level 2
ciphertexts for this period.

Let (SetupDPKE,GenDPKE,EvoDPKE,DelDPKE,EncDPKE,DecDPKE) be fs-DPKE scheme.

Setup(1k) : Return SetupDPKE(1k).

Gen(pp, n) : Set (pkDPKE, sk
(0)
DPKE, ek

(0)
DPKE)← GenDPKE(pp, 2n+1), obtain (sk

(1)
DPKE, ek

(1)
DPKE)

← EvoDPKE(sk
(0)
DPKE, ek

(0)
DPKE), and return (pkDPKE, sk

(0), ek(0)), where

sk(0) ← (sk
(0)
DPKE, sk

(1)
DPKE), ek(0) ← (ek

(0)
DPKE, ek

(1)
DPKE).

Evo(sk(i), ek(i)) : Parse (sk(i), ek(i)) as ((sk
(2i)
DPKE, sk

(2i+1)
DPKE), (ek

(2i)
DPKE, ek

(2i+1)
DPKE)) and return

(sk(i+1), ek(i+1)) = (sk
(2i+2)
DPKE , sk

(2i+3)
DPKE), (ek

(2i+2)
DPKE , ek

(2i+3)
DPKE)), where

(sk
(2i+1+j)
DPKE , ek

(2i+1+j)
DPKE)← EvoDPKE(sk

(2i+j)
DPKE , ek

(2i+j)
DPKE) for j ∈ [2].

Enc(1)(pk,M, i) : Return EncDPKE(pk,M, 2i).

Enc(2)(pk,M, i) : Return EncDPKE(pk,M, 2i+ 1).

Dec(1)(sk(i), C) : Parse sk(i) as (sk
(2i)
DPKE, sk

(2i+1)
DPKE) and return DecDPKE(sk(2i), C) if C

was not re-encrypted. Otherwise parse C as (C1, rk) and return DelDecDPKE(
sk(2i+1), rk, C1).

Dec(2)(sk(i), C) : Parse sk(i) as (sk
(2i)
DPKE, sk

(2i+1)
DPKE) and return DecDPKE(sk(2i+1), C).

ReGen(sk
(i)
A , ek

(i)
A , pkB) : Parse (sk(i), ek(i)) as ((sk

(2i)
DPKE, sk

(2i+1)
DPKE), (ek

(2i)
DPKE, ek

(2i+1)
DPKE)),

and return (rk
(i)
A→B , rek

(i)
A→B), where

(rk
(i)
A→B , rek

(i)
A→B)← DelDPKE(sk

(2i+1)
A , ek

(2i+1)
A , pkB).

ReEvo(rk
(i)
A→B , rek

(i)
A→B) : Return DelEvoDPKE(DelEvoDPKE(rk

(i)
A→B , rek

(i)
A→B)).

ReEnc(rk
(i)
A→B , CA) : Return (CA, rk

(i)
A→B).

Scheme 5. fs-PRE scheme from a fs-DPKE scheme without adaption.

31

In the following Theorem, we first show that Scheme 5 is indeed fs-PRE−

secure, i.e., satisfies fs-IND-CPA-1 and fs-IND-CPA-2 security, but trivially does
not satisfy fs-RIND-CPA security and thus is not fs-PRE+ secure.

Theorem 4. Scheme 5 when instantiated with a fs-IND-CPA secure fs-DPKE
scheme satisfies fs-IND-CPA-1 and fs-IND-CPA-2 security, but not fs-RIND-
CPA security.

Proof. We follow the same strategy as for Theorem 3 to show fs-IND-CPA-2.

– When started on pp, n and pk, run (j∗, st)← A2(pp, dn2 +1e, pk). Set j′ ← 2j∗

and return (j′, st).

– When started on st, sk
(j′)
DPKE, ek

(j′)
DPKE, we simulate the ReGenh and ReGenh

′

oracles using Delh and Delh
′
. Indeed, Delh and Delh

′
return delegation keys

for period j′ − 1 = 2j∗ − 1, which are re-encryption keys for period j∗ − 1.

Using Evo we evolve sk
(j′)
DPKE, ek

(j′)
DPKE to period j′ + 1. Set (sk(j

∗), ek(j
∗)) ←

((sk
(j′)
DPKE, sk

(j′+1)
DPKE), (ek

(j′)
DPKE, ek

(j′+1)
DPKE)) and start A2 on st, (sk(j

∗), ek(j
∗)) and

simply forward the result.
– Finally, when started on st and Cj′−1, Cj′−1 is a level 2 ciphertext for j∗−1.

Hence we start A2 on the ciphertext and return its’ result.

To show fs-IND-CPA-1 security, we perform a similar reduction:

– When started on pp, n and pk, run (j∗, st) ← A1(pp, dn2 + 1e, pk). Set j′ ←
2j∗ − 1 and return (j′, st).

– When started on st, sk
(j′)
DPKE, ek

(j′)
DPKE, we simulate the ReGenh and ReGenh

′

oracles using Delh and Delh
′

and by running DelEvo on the result. Indeed,

Delh and Delh
′

return delegation keys for period j′ − 1 = 2j∗ − 2, hence
after applying DelEvo we obtain re-encryption keys for period j∗−1. ReGend

is simulated honestly by delegating sk
(j′)
DPKE, ek

(j′)
DPKE to a dishonest user. Us-

ing Evo we evolve sk
(j′)
DPKE, ek

(j′)
DPKE to period j′ + 2. Set (sk(j

∗), ek(j
∗)) ←

((sk
(j′+1)
DPKE , sk

(j′+2)
DPKE), (ek

(j′+1)
DPKE , ek

(j′+2)
DPKE)) and start A1 on st, (sk(j

∗), ek(j
∗)) and

simply forward the result.
– Finally, when started on st and Cj′−1, Cj′−1 is a level 1 ciphertext for j∗−1.

Hence we start A1 on the ciphertext and return its’ result.

Following the initial observation on the recoverability of delegation keys, an
receiver-IND-CPA adversary is straightforward to define:

– When started on pp, n and pk, honestly generate a key (pk∗, sk(0), ek(0)) ←
Gen(pp, n) and store it in st. Choose j∗←R [n] and store it together with pk
in st, and return (j∗, pk∗, st).

– When started on st to output the challenge messages, chooseM0,M1,M2←R M.
Invoke the ReEnc oracle as (·, dk) ← ReEnc(rk,Enc(2)(pk,M2, j

∗)) and store
M0,M1, dk in st. Return M0,M1, st.

32

– Now when started on st and the challenge ciphertext C, use dk stored in st
and obtain M ← DelDecDPKE(sk(2j

∗+1), dk, C). Check for which i ∈ {0, 1}
M = Mi and return i.

Regardless of the chosen period the adversary always wins, rendering the scheme
insecure with respect to the fs-RIND-CPA notion. ut

From this theorem we obtain the following corollary:

Corollary 1. fs-PRE+ is a strictly stronger notion than fs-PRE−.

Note that this also shows that for conventional PRE scheme there is a separa-
tion between the classical security notion of PRE (PRE−) as defined by Ateniese
et al. and the PRE+ notion.

Acknowledgments. Supported by H2020 project Prismacloud, grant agree-
ment n◦644962 and by H2020 project Credential, grant agreement n◦653454.
We thank all anonymous reviewers for their valuable comments.

References

[AABN02] M. Abdalla, J. H. An, M. Bellare, and C. Namprempre. From identification
to signatures via the fiat-shamir transform: Minimizing assumptions for
security and forward-security. In EUROCRYPT, 2002.

[ABH09] G. Ateniese, K. Benson, and S. Hohenberger. Key-private proxy re-
encryption. In CT-RSA, 2009.

[AFGH05] G. Ateniese, K. Fu, M. Green, and S. Hohenberger. Improved proxy re-
encryption schemes with applications to secure distributed storage. In
NDSS, 2005.

[AFGH06] G. Ateniese, K. Fu, M. Green, and S. Hohenberger. Improved proxy re-
encryption schemes with applications to secure distributed storage. ACM
Trans. Inf. Syst. Secur., 9(1), 2006.

[AHI11] B. Applebaum, D. Harnik, and Y. Ishai. Semantic Security under Related-
Key Attacks and Applications. In ICS, 2011.

[BBG05] D. Boneh, X. Boyen, and E. Goh. Hierarchical identity based encryption
with constant size ciphertext. In EUROCRYPT, 2005.

[BBL16] O. Blazy, X. Bultel, and P. Lafourcade. Two secure anonymous proxy-based
data storages. In SECRYPT, 2016.

[BBS98] M. Blaze, G. Bleumer, and M. Strauss. Divertible protocols and atomic
proxy cryptography. In EUROCRYPT, 1998.

[BBS04] D. Boneh, X. Boyen, and H. Shacham. Short group signatures. In CRYPTO,
2004.

[BF01] D. Boneh and M. K. Franklin. Identity-based encryption from the weil
pairing. In CRYPTO, 2001.

[BGP+16] C. Borceaa, A. B. D. Guptaa, Y. Polyakova, K. Rohloffa, and G. Ryana.
Picador: End-to-end encrypted publish-subscribe information distribution
with proxy re-encryption. Future Generation Comp. Syst., 2016.

[BGW05] D. Boneh, C. Gentry, and B. Waters. Collusion resistant broadcast encryp-
tion with short ciphertexts and private keys. In CRYPTO, 2005.

33

[BL17] E. Berners-Lee. Improved security notions for proxy re-encryption to en-
force access control. In Latincrypt, 2017.

[BM99] M. Bellare and S. K. Miner. A forward-secure digital signature scheme. In
CRYPTO, 1999.

[BW06] D. Boneh and B. Waters. A fully collusion resistant broadcast, trace, and
revoke system. In CCS, 2006.

[BY03] M. Bellare and B. S. Yee. Forward-security in private-key cryptography. In
CT-RSA, 2003.

[CCL+14] N. Chandran, M. Chase, F. Liu, R. Nishimaki, and K. Xagawa. Re-
encryption, functional re-encryption, and multi-hop re-encryption: A frame-
work for achieving obfuscation-based security and instantiations from lat-
tices. In PKC, 2014.

[CCV12] N. Chandran, M. Chase, and V. Vaikuntanathan. Functional re-encryption
and collusion-resistant obfuscation. In TCC, 2012.

[CH07] R. Canetti and S. Hohenberger. Chosen-ciphertext secure proxy re-
encryption. In CCS, 2007.

[CHK03] R. Canetti, S. Halevi, and J. Katz. A forward-secure public-key encryption
scheme. In EUROCRYPT, 2003.

[CHN+16] A. Cohen, J. Holmgren, R. Nishimaki, V. Vaikuntanathan, and D. Wichs.
Watermarking cryptographic capabilities. In STOC, 2016.

[Coh17] A. Cohen. What about bob? the inadequacy of cpa security for proxy
reencryption. Cryptology ePrint Archive, Report 2017/785, 2017.

[CRRV17] R. Canetti, S. Raghuraman, S. Richelson, and V. Vaikuntanathan. Chosen-
ciphertext secure fully homomorphic encryption. In PKC 2017, 2017.

[CW14] J. Chen and H. Wee. Dual system groups and its applications - compact
HIBE and more. IACR ePrint, 2014.

[Del07] C. Delerablée. Identity-based broadcast encryption with constant size ci-
phertexts and private keys. In ASIACRYPT 2007, 2007.

[FL17] X. Fan and F.-H. Liu. Proxy re-encryption and re-signatures from lattices.
Cryptology ePrint Archive, Report 2017/456, 2017.

[GA07] M. Green and G. Ateniese. Identity-based proxy re-encryption. In ACNS,
2007.

[Gen09] C. Gentry. Fully homomorphic encryption using ideal lattices. In STOC,
2009.

[GHJL17] F. Günther, B. Hale, T. Jager, and S. Lauer. 0-rtt key exchange with full
forward secrecy. In EUROCRYPT, 2017.

[GM15] M. D. Green and I. Miers. Forward secure asynchronous messaging from
puncturable encryption. In IEEE S&P, 2015.

[GPSW06] V. Goyal, O. Pandey, A. Sahai, and B. Waters. Attribute-based encryption
for fine-grained access control of encrypted data. In ACM CCS, 2006.

[GS02] C. Gentry and A. Silverberg. Hierarchical id-based cryptography. In ASI-
ACRYPT, 2002.

[Gün89] C. G. Günther. An identity-based key-exchange protocol. In EUROCRYPT,
1989.

[HKK+12] G. Hanaoka, Y. Kawai, N. Kunihiro, T. Matsuda, J. Weng, R. Zhang,
and Y. Zhao. Generic construction of chosen ciphertext secure proxy re-
encryption. In CT-RSA, 2012.

[HRSV11] S. Hohenberger, G. N. Rothblum, A. Shelat, and V. Vaikuntanathan. Se-
curely obfuscating re-encryption. J. Cryptology, 2011.

[LV08a] B. Libert and D. Vergnaud. Tracing malicious proxies in proxy re-
encryption. In Pairing, 2008.

34

[LV08b] B. Libert and D. Vergnaud. Unidirectional chosen-ciphertext secure proxy
re-encryption. In PKC, 2008.

[LV11] B. Libert and D. Vergnaud. Unidirectional chosen-ciphertext secure proxy
re-encryption. IEEE Trans. Information Theory, 2011.

[LW10] A. B. Lewko and B. Waters. New techniques for dual system encryption
and fully secure HIBE with short ciphertexts. In TCC, 2010.

[MRY04] P. D. MacKenzie, M. K. Reiter, and K. Yang. Alternatives to non-
malleability: Definitions, constructions, and applications. In TCC, 2004.

[MS17] S. Myers and A. Shull. Efficient hybrid proxy re-encryption for practical
revocation and key rotation. Cryptology ePrint Archive, Report 2017/833,
2017.

[OSW07] R. Ostrovsky, A. Sahai, and B. Waters. Attribute-based encryption with
non-monotonic access structures. In ACM CCS, 2007.

[PRSV17] Y. Polyakov, K. Rohloff, G. Sahu, and V. Vaikuntanathan. Fast proxy re-
encryption for publish/subscribe systems. ACM Trans. Priv. Secur., 20(4),
2017.

[RGWZ10] Y. Ren, D. Gu, S. Wang, and X. Zhang. Hierarchical identity-based
proxy re-encryption without random oracles. Int. J. Found. Comput. Sci.,
21(6):1049–1063, 2010.

[SF07] R. Sakai and J. Furukawa. Identity-based broadcast encryption. IACR
Cryptology ePrint Archive, 2007.

[Tan08] Q. Tang. Type-based proxy re-encryption and its construction. In IN-
DOCRYPT, 2008.

[TW14] S. Tessaro and D. A. Wilson. Bounded-collusion identity-based encryption
from semantically-secure public-key encryption: Generic constructions with
short ciphertexts. In PKC, 2014.

[WYT+09] J. Weng, Y. Yang, Q. Tang, R. H. Deng, and F. Bao. Efficient conditional
proxy re-encryption with chosen-ciphertext security. In ISC 2009, 2009.

[XXW+16] P. Xu, J. Xu, W. Wang, H. Jin, W. Susilo, and D. Zou. Generally hybrid
proxy re-encryption: A secure data sharing among cryptographic clouds. In
AsiaCCS, 2016.

A Cryptographic Assumptions

First, we formally define a bilinear group generator.

Definition 21 (Prime-order bilinear group). A bilinear-group generation
algorithm BGGenp is a PPT algorithm that takes a security parameter k and
outputs a bilinear group description BG = (q,G,GT , e, g,g) with G = 〈g〉 and
GT = 〈g〉, both of order q being a prime of bitlength k and a pairing e : G×G→
GT .

Definition 22 (Composite-order bilinear group). A bilinear-group gener-
ation algorithm BGGenn is a PPT algorithm that takes a security parameter k
and outputs a bilinear group description BG = (n,G,GT , e, g,g) with G = 〈g〉
and GT = 〈g〉, both of composite order n = pq of bitlength k with p and q primes
of equal length and a pairing e : G×G→ GT .

35

Subsequently, we recall the decision linear assumption as well as the bilinear
decisional Diffie-Hellman assumption, both standard assumption in the bilinear
setting.

Definition 23 (DLIN). The decisional linear assumption holds relative to BG-
Gen, if for all PPT adversaries A there is a negligible function ε such that

Pr
[
ExpdlinBGGen,A(k) = 1

]
− 1

2
< ε(k).

Experiment ExpdlinBGGen,A(k)

BG← BGGen(1k)
g1, g2←R G, r, s, t←R Zq, b←R {0, 1}
b∗ ← A(BG, g1, g2, g

r
1 , g

s
2, g

b·(r+s)+(1−b)t)
if b = b∗ return 1, else return 0

Experiment 11. The DLIN experiment for BGGen.

Definition 24 (BDDH). The bilinear decisional Diffie-Hellman assumption
holds relative to BGGen, if for all PPT adversaries A there is a negligible function
ε such that

Pr
[
ExpbddhBGGen,A(k) = 1

]
− 1

2
< ε(k).

Experiment ExpbddhBGGen,A(BG)

BG← BGGen(1k)
r, s, t, u←R Zq, b←R {0, 1}
b∗ ← A(BG, gr, gs, gt,gb·rst+(1−b)u)
if b = b∗ return 1, else return 0

Experiment 12. The BDDH experiment for BGGen.

B A Linearly Homomorphic PKE Scheme

In the following we sketch linear encryption as introduced by Boneh et al. in
[BBS04] in prime order groups.

Linear Encryption. Let G be a group of prime order p with generator g where
the DLIN assumption holds. Then the following scheme is an IND-CPA secure
linearly homomorphic PKE scheme.

Gen(1k) : On input security parameter k, choose a group G or order p of bitlength
k generated by g and denote the group parameters by pp. Choose ξ, µ←R (Zp)2,
choose h←R G compute u ← h1/ξ and v ← h1/µ and output public key
pk = (pp, u, v, h) and secret key sk = (pp, ξ, µ).

Enc(pk,M) : Parse public key pk = (pp, u, v, h), and message M ∈ G, choose
α, β←R (Zp)2 and output C = (C1, C2, C2)← (uα, vβ ,Mhα+β).

Dec(sk, C) : Parse sk = (pp, ξ, µ), ciphertext C = (C1, C2, C3) and output M ←
C3/(C

ξ
1C

µ
2).

36

Eval(f, (Ci)i∈[n]) : Parse function f : Mn → M ∈ F as (w1, . . . , wn) and pp,
and the sequence of ciphertexts Ci = (C1, C2, C3)i∈[n] output

C ← (
∏
i∈[n]

Cwi
1,i ,

∏
i∈[n]

Cwi
2,i ,

∏
i∈[n]

Cwi
3,i).

C Security of Hierarchical Identity-Based Encryption

HIBE-IND-CPA-security. A HIBE scheme defined as above is HIBE-IND-
CPA-secure if and only if any PPT adversary A succeeds in the following exper-
iment only with probability at most negligibly larger than 1/2. First, A receives
an honestly generated public key pk. Let Ext be a PPT auxiliary key-extraction
oracle that, given skε and an identity id ∈ ID≤`, outputs a secret key skid
for id . During the experiment, A may adaptively query an Ext(skε, ·)-oracle, for
corresponding secret key skε to pk. At some point, A outputs two equal-length
messages M0,M1 and a target identity id∗, and receives a target ciphertext
C∗id∗ ← Enc(pk,Mb, id

∗) in return, for uniform b← {0, 1}. Eventually, A outputs
a guess b∗. We say that A is valid if and only if A never queried the Ext-oracle
on a prefix of id∗ and only outputs equal-length messages. We say that A suc-
ceeds if and only if A is valid and b = b∗. More formally, the previous described
experiment is given in Experiment 13.

Experiment Exphibe-ind-cpaHIBE,A (1k, `)

(pk, skε)← Gen(1k, `)
(M0,M1, id

∗, st)← AExt(skε,·)(pk)
b←R {0, 1}
C∗ ← Enc(pk,Mb, id

∗)
b∗ ← AExt(skε,·)(st, C∗)
if b = b∗ and A is valid return then 1, else return 0

Experiment 13. The HIBE-IND-CPA-security experiment for a HIBE scheme.

Definition 25. For any PPT adversary A, we define the advantage function in
the sense of HIBE-IND-CPA as

Advhibe-ind-cpaHIBE,A (1k, `) :=

∣∣∣∣Pr
[
Exphibe-ind-cpaHIBE,A (1k, `) = 1

]
− 1

2

∣∣∣∣ ,
for integer ` ∈ N.

D Fully Puncturable Encryption

The concept of puncturable encryption (PE) was introduced by Green and Miers
(GM) in [GM15]. Loosely speaking, a PE scheme is a tag-based public-key en-
cryption scheme [MRY04], where each ciphertext can be encrypted with respect
to one or more tags. In addition, and most importantly, PE needs to provide a

37

Puncture algorithm that takes a secret key and a tag τ as input and produces
an updated secret key that is able to decrypt all ciphertexts except those tagged
with τ . We call such a puncturing a negative puncturing. Recently, inspired by
this work of GM, Günther, Hale, Jager and Lauer (GHJL) [GHJL17] constructed
puncturable forward-secret key encapsulation. While the work of GM requires
a BTE scheme (or selectively secure HIBE scheme) together with an attribute-
based encryption (ABE) scheme [GPSW06] for non-monotonic (NM) formulas
with specific properties16, GHJL provide a construction solely based on any se-
lectively secure HIBE scheme.17 In contrast to GM, who puncture a key with
respect to a tag (and, thus, to a potentially unknown set of ciphertexts), GHJL
puncture a secret key with respect to a specific ciphertext which is required as
input to the Puncture algorithm.18

In addition to the concept of negative puncturing as described above, we
introduce the concept of positive puncturing. Latter allows to puncture a secret
key with respect to a tag τ in a way that the punctured secret key can only
decrypt ciphertexts tagged with τ . We merge both functionalities into what we
term fully puncturable encryption (FuPE).

Definition 26 (FuPE). A fully puncturable encryption (FuPE) scheme with
message space M, positive tag space T+ and negative tag space T−, consists
of the PPT algorithms (Gen,Enc,PPunc,NPunc,Dec):

Gen(1k) : On input security parameter k, output public and secret keys (pk, sk),
where we implicitly assume that sk contains pk and that pk determines
M, T+, and T−.

Enc(pk,M, τ+, τ−) : On input a public key pk, a message M ∈M, a positive tag
τ+, and a negative tag τ−, output a ciphertext C.

PPunc(sk, τ+) : On input a secret key sk and a positive tag τ+, output a positively

punctured key sk
(τ+)
+ punctured at τ+.

NPunc(sk, τ−) : On input a secret key sk and a negative tag τ−, output a nega-

tively punctured key sk
(τ−)
− punctured at τ−.

Dec(sk, C, τ+, τ−) : On input a secret key sk, a ciphertext C, a positive tag τ+,
and a negative tag τ−, output M ∈M∪ {⊥}.

Correctness. For all k ∈ N, all (pk, sk) ← Gen(1k), all M ∈ M, all τ+ ∈ T+,
all τ− ∈ T− , all C ← Enc(pk,M, τ+, τ−), we have that Dec(sk, C, τ+, τ−) =
M . Moreover, for all n ∈ [|T−| − 1], all i ∈ [n], all {τ1,−, . . . , τn,−} ∈ P(T− \
{τ−}), and sk

(τi,−)
− ← NPunc(sk

(τi−1,−)
− , τi,−) where sk

(τ0,−)
− = sk, we have that

Dec(sk
(τn,−)
− , C, τ+, τ−) = M . Additionally, for all sk

(τ+)
+ ← PPunc(sk

(τn,−)
− , τ+),

we have that Dec(sk
(τ+)
+ , C, τ+, τ−) = M .

16 The ABE scheme needs to provide a mechanism to enhance existing secret keys with
additional NOT -gates, which works with the NM-ABE scheme by Ostrovsky, Sahai
and Waters [OSW07].

17 For completeness, we also want to mention PE from iO in [CHN+16, CRRV17].
18 Assuming that one uses a unique tag for every encryption, i.e., ciphertext, these two

notions are identical in a selective setting (while GM achieve adaptive security).

38

Note that we explicitly allow secret keys as input to Dec that are not punc-
tured. In that case the Dec algorithm can always run PPunc and NPunc internally
as it has all the required information available.

Security notions. Next, we define security notions for FuPE we dub FPuE-IND-
CPA and FPuE-IND-CCA. In the FPuE-IND-CPA security experiment, a PPT
adversary A gets an honestly generated public key pk and selects a positive target
tag, a sequence of negative tags as well as a negative target tag (which must
be contained in the sequence of negative tags). Then, A may adaptively query
PPunc and NPunc oracles, outputs two message and receives a target ciphertext
encrypted with respect to the selected negative and positive target tags. We
call an adversary A valid if it never queries the PPunc oracle on the positive
target tag and only outputs equal-length messages. Note that both negatively
and positively punctured keys were first punctured with the sequence of negative
tags. In Experiment 14, we formally state the FPuE-IND-CPA experiment.

Experiment Expfpue-ind-cpaFuPE,A (1k)

(pk, sk(τ
∗
0,−))← Gen(1k), b←R {0, 1}

(τ∗+, (τ
∗
i,−)i∈[n], i

∗, st)← A(pk)

sk
τ∗i,−
− ← NPunc(sk

(τ∗i−1,−)

− , τ∗i,−) for all i ∈ [n]

O ← {PPunc(sk(τ
∗
n,−)

− , ·),NPunc(sk(τ
∗
n,−)

− , ·)}
(M0,M1, st)← AO(st)
b∗ ← A(st,Enc(pk,Mb, τ

∗
+, τ

∗
i∗,−))

if b = b∗ and A is valid return then 1, else return 0

Experiment 14. The FPuE-IND-CPA-security experiment for a FuPE scheme.

Definition 27. For any PPT adversary A, we define the advantage function in
the sense of FPuE-IND-CPA as

Advfpue-ind-cpaFuPE,A (1k) :=

∣∣∣∣Pr
[
Expfpue-ind-cpaFuPE,A (1k) = 1

]
− 1

2

∣∣∣∣ .
The FPuE-IND-CCA experiment follows the same outline as the FPuE-IND-
CPA experiment, but additionally gives access to a Dec-oracle. In this case, the
adversary A is considered valid if A never queries the Dec oracle on the challenge
ciphertext and the target tags, never queries the PPunc on the positive target
tag, and only outputs equal-length messages. In Experiment 15, we formally
state the FPuE-IND-CCA experiment.

Definition 28. For any PPT adversary A, we define the advantage function in
the sense of FPuE-IND-CCA as

Advfpue-ind-ccaFuPE,A (1k) :=

∣∣∣∣Pr
[
Expfpue-ind-ccaFuPE,A (1k) = 1

]
− 1

2

∣∣∣∣ .
D.1 FuPE from HIBE

Our approach to construct a FuPE scheme from any HIBE scheme can be seen
as variation of the work from [GHJL17]. Implicitly, we arrange positively and

39

Experiment Expfpue-ind-ccaFuPE,A (1k)

(pk, sk(τ
∗
0,−))← Gen(1k), b←R {0, 1}

(τ∗+, (τ
∗
i,−)i∈[n], i

∗, st)← A(pk)

sk
τ∗i,−
− ← NPunc(sk

(τ∗i−1,−)

− , τ∗i−1,−) for all i ∈ [n]

O ← {PPunc(sk(τ
∗
n,−)

− , ·),NPunc(sk(τ
∗
n,−)

− , ·),Dec(sk(τ
∗
0,−)

− , ·, ·, ·)}
(M0,M1, st)← AO(st)
b∗ ← AO(st,Enc(pk,Mb, τ

∗
+, τ

∗
i∗,−))

if b = b∗ and A is valid then return 1, else return 0

Experiment 15. The FPuE-IND-CCA-security experiment for a FuPE scheme.

negatively punctured secret keys as well as positive and negative tags of the
FuPE scheme in a complete binary tree, where the root of the tree is associated
with the secret key sk of FuPE (where sk is output by GenHIBE). More concretely,
negatively punctured keys are assigned to inner tree nodes (and, hence, not
to the leafs) while positively punctured keys are associated to the leafs of the
tree. Intuitively, the negatively punctured keys can be seen as HIBE secret keys
(that have decryption and evolution abilities) and the positively keys are HIBE
decryption keys (without the evolution ability). Furthermore, for set ID, the
negative and positive tags are of size ` · |ID| and |ID|, respectively, i.e., we set
T− = ID` and T+ = ID, where ` is an integer polynomially bounded by the
security parameter and ID`+1 is the identity space of the HIBE scheme.19

We define an additional PPT algorithm Trunc within a FuPE scheme as fol-
lows. Trunc can be seen as efficient algorithm to truncate the binary tree and
output a negatively punctured FuPE secret key that corresponds to a given
negative tag. The negatively punctured secret key can contain several HIBE se-
cret keys. Notation-wise, we define T [i] := ID \ {τ [i]}, for some i ∈ [`] and
τj = (τj [1], τj [2], . . .) ∈ ID≤`+1, for some integer j.

Trunc(sk
(τ ′)
− , τ−) : Trunc, on input secret key sk

(τ ′)
− =: (sk′τ1 , . . . , sk

′
τm), for some

integer m bounded by a polynomial in k, and negative tag τ− ∈ T−, succes-
sively choose τ ′j′ := (τj [1], · · · , τj [i−1]) or τ ′j′ := (τj [1], · · · , τj [i−1], τj [i], · · ·),
for all τj [i] ∈ T [i], for all |τj | < i ≤ ` until τ ′j′ is no prefix of τ−, and runs

sk′′j ← Del(sk′τj , τ
′
j′), for all (j, j′) ∈ [m]× [m′], for some integer m′ bounded

by a polynomial in k. Finally, Trunc outputs (sk′′1 , · · · , sk
′′
m′).

The full scheme is detailed in Scheme 6.

Theorem 5. If the HIBE scheme is HIBE-IND-CPA-secure, then FuPE from
Scheme 6 is FPuE-IND-CPA-secure.

Proof. We prove this theorem with a reduction. An adversary B against FPuE-
IND-CPA of the FuPE scheme can be transformed into a HIBE-IND-CPA-
adversary A:

19 Recall that in a HIBE scheme, secret keys are associated with identities. The same
holds in FuPE schemes with negative and positive tags.

40

Let (GenHIBE,DelHIBE,EncHIBE,DecHIBE) be a HIBE scheme with identity space ID`+1,
for some ` ∈ N polynomially bounded by k. We set T− := ID` and T+ := ID.

Gen(1k) : Return (pk, sk)← GenHIBE(1k, `+ 1).
Enc(pk,M, τ+, τ−) : Return C ← EncHIBE(pk,M, (τ−, τ+)).

PPunc(skτ ′− , τ+) : Return sk
(τ+)
+ , where (·, sk(τ+)

+ , ·)← Del(skτ ′− , (τ
′
−, τ+)).

NPunc(sk
(τ ′−)

− , τ−) : Return sk
(τ−)
− ← Trunc(sk

(τ ′−)

− , τ−).

Dec(sk, C, τ+, τ−) : Return DecHIBE(sk, C).

Scheme 6. FuPE scheme from a HIBE scheme.

– A is started on pk and A obtains (τ∗+, (τ
∗
i,−)i∈[n], i

∗)← B(pk).

– Next, A queries its HIBE challenger on Del(sk, τ∗1,−), receives sk
(τ∗1,−)

− , and

computes secret keys sk
(τ∗i,−)

− ← NPunc(sk
(τ∗i−1,−)

−), for all i ∈ [n] \ {1}.
– Further, A answers B-queries to NPunc and to PPunc using sk

τ∗n,−
− .

– A receives (M0,M1) from B and forwards (M0,M1) to its HIBE-IND-CPA
challenger with target identity (τ∗i∗,−, τ

∗
+).

– The received challenge ciphertext is forwarded to B. Eventually, B outputs a
guess b′ which is forward as A’s guess to its own HIBE-IND-CPA challenger.

Note that all values are consistently distributed. It follows that if B has a non-
negligible advantage in the FPuE-IND-CPA-game, then A has a non-negligible
advantage in winning the HIBE-IND-CPA-game. ut

Theorem 6. If the HIBE scheme is HIBE-IND-CCA-secure, then FuPE from
Scheme 6 is FPuE-IND-CCA-secure.

Proof. This proof is very similar to the proof of FPuE-IND-CPA for FuPE above
except that A sends decryption-oracle queries to its own HIBE-IND-CCA chal-
lenger and returns the answer to the FPuE adversary. All values are consistently
distributed. Hence, if the FPuE adversary B has a non-negligible advantage in
the FPuE-IND-CCA-game, then A has a non-negligible advantage in winning
the HIBE-IND-CCA-game. ut

D.2 FuPE to fs-PRE

Starting from a FuPE scheme, we define two additional algorithms PPunc′ and
NPunc′ that are compatible with PPunc and NPunc of the FuPE scheme but work
on encrypted secret keys:

PPunc′(Csk, τ+) : Computes positively punctured Csk′ using the tag τ+.
NPunc′(Csk, τ−) : Computes negatively punctured Csk′ using the tag τ−.

We require this PPunc′ algorithm to be compatible with PPunc in the sense
that for all valid inputs sk, τ+ to PPunc it holds that for all k ∈ N, for all
(pkHPKE, skHPKE)← GenHPKE(1k), for all Csk ← EncHPKE(pkHPKE, sk) we have

DecHPKE(skHPKE,PPunc
′(Csk, τ+)) = PPunc(sk, τ+).

41

Analogously, we require such a functionality for NPunc′. From a theoretical view-
point, this means no additional assumption on the FuPE scheme, since one can
use a fully-homomorphic encryption (FHE) scheme as HPKE. From a practi-
cal viewpoint, we observe that many suitable candidate HIBE schemes for FuPE
only require linear operations for PPunc and NPunc, and thus PPunc′ as well as
NPunc′ may be instantiated very efficiently using linear encryption [BBS04].

HIBE with public delegation. To generically implement the PPunc′ and
NPunc′ algorithms, we introduce another property of HIBE schemes. In particu-
lar, we define a delegation algorithm PDel which operates on encryptions of the
actual secret key instead of the secret key itself. Using this algorithm, one can
then straight forwardly implement the PPunc′ and NPunc′ algorithms analogous
to PPunc and NPunc in Scheme 6, but replacing every call to Del by PDel.

More formally, let HPKE = (GenHPKE,EncHPKE,DecHPKE) be a HPKE scheme
as defined above, and (pkHPKE, skHPKE)← GenHPKE(1k). A publicly delegateable
HIBE scheme HIBE with message space M and identity space ID≤` is a HIBE
scheme as defined in Section 3 with a additional delegation algorithm as follows
(and we further need that the message space of HPKE is the secret-key space of
HIBE):

PDel(CHPKE,id′ , id) : On input a HPKE ciphertext CHPKE,id′ ← EncHPKE(pkHPKE,
skid′) and identity id , output an encryption Enc(pkHPKE, skid) of a secret key
skid if and only if id ′ is a prefix of id (encryption is component-wise).

Correctness of delegation. For all k, ` ∈ N, all (pk, skε)← Gen(1k, `), all M ∈M,
all id , id ′ ∈ ID≤` where id ′ is a prefix of id , all skid ← Del(skid′ , id), all Cid ←
Enc(pk,M, id), for all (pkHPKE, skHPKE) ← GenHPKE(1k), for all CHPKE,id′ ←
EncHPKE(pk, skid′), all CHPKE,id ← PDel(CHPKE,id′ , id), all skid := DecHPKE(
skHPKE, CHPKE,id), we have Dec(skid , Cid) = M .

Example of HIBE with public delegation. Consider the adaptively secure HIBE
scheme of Chen and Wee [CW14] for depth ` — which is similar to the HIBE
schemes of Boneh, Boyen, Goh [BBG05] and Lewko, Waters [LW10] — and a
linearly homomorphic HPKE scheme. We choose the message space of the HPKE
scheme to be the secret-key space of the Chen-Wee HIBE. The HIBE scheme uses
BGGenn to generate a composite-order bilinear group BG = (n,G,GT , e, g,g).
The secret keys and the first two parts of the ciphertext lie in G while the third
element of the ciphertext lies in GT .

Concretely, the public and secret keys of the Chen-Wee HIBE are given by

pk := (g, u1, . . . , u`, u`+1, e(g, g)α),

skid′ := (gr, gα(u`+1 · u
id′1
1 · · ·uid

′
`′

`′)r, ur`′+1, . . . , u
r
`)

for secret key gα with exponent α←R Zn, for (u0, . . . , u`+1)←R G`+2, for exponent

r←R Zn, and identity id ′ = (id ′1, . . . , id
′
`′) ∈ ID

`′ , for `′ ∈ [`]. The ciphertext is

C := (gs, (u`+1u
id1
1 · · ·uid`′

`′)s, e(g, g)α·s ·M),

42

for s←R Zn and identity id = (id1, . . . , id `′) ∈ ID`
′
, for some integer `′ ∈ [`]. The

key delegation is as follows: For a secret key skid′ = (K0,K1,K`′+1, . . . ,K`) =

(gr, gα(u`+1 · u
id′1
1 · · ·uid

′
`′

`′)r, ur`′+1, . . . , u
r
`), we sample r′←R Zn and compute

skid ← (K0 · gr
′
,K1 · ur

′

`+1 · u
id′1·r

′

1 · · ·uid
′
`·r
′

`′ · uid`′+1·r
′

`′+1 · · ·uid`′′ ·r
′

`′′ ,

K`′+1 · ur
′

`′+1, . . . ,K` · ur
′

`),

for some identity id = (id1, . . . , id `′′), where id ′ = (id ′1, . . . , id
′
`′) is a prefix of

id , for some `′′ ∈ [`]. It is easy to see that this yields a correctly distributed
secret key for identity id in the sense of the Chen-Wee HIBE.

Let (SetupFuPE,GenFuPE,EncFuPE,DecFuPE,NPuncFuPE,PPuncFuPE) be a FuPE scheme and
(SetupHPKE,GenHPKE,EncHPKE,DecHPKE,EvalHPKE) be a F-HPKE scheme such that the
secret-key space of the FuPE scheme is contained in the message space of the HPKE
scheme and a compatible PPunc′ algorithm exists.

Setup(1k) : Set ppFuPE ← SetupFuPE(1k), ppHPKE ← SetupHPKE(1k), and return (ppFuPE,
ppHPKE).

Gen(pp, n) : Choose an injective map h : [0, 2n + 1] → T−, set τ− ← h(0) and return

(pkFuPE, h, pkHPKE), (skFuPE, sk
′
FuPE, skHPKE),⊥), where

(pkFuPE, skFuPE)← GenFuPE(ppFuPE), (pkHPKE, skHPKE)← GenHPKE(ppHPKE),
sk′FuPE ← NPunc(skFuPE, τ−).

Evo(sk(i)) : Parse as sk(i) as (sk
(2i)
FuPE, sk

(2i+1)
FuPE , skHPKE). Set τ1,− ← h(2i) and τ2,− ← h(

2i+ 1) and return sk(i+1) = (sk
(2i+2)
FuPE , sk

(2i+3)
FuPE , skHPKE), where

sk
(2i+2)
FuPE ← NPunc(sk

(2i+1)
FuPE , τ1,−), sk

(2i+3)
FuPE ← NPunc(sk

(2i+2)
FuPE , τ2,−).

Enc(1)(pk,M, i) : Choose τ+←R T+ and return EncFuPE(pk,M, τ+, h(2i)).

Enc(2)(pk,M, i) : Choose τ+←R T+ and return EncFuPE(pk,M, τ+, h(2i+ 1)).

Dec(1)(sk(i), C) : Parse sk(i) as (sk
(2i)
FuPE, ·, skHPKE) and return DecFuPE(sk

(2i)
FuPE, C, τ+, h(2i))

if C was not re-encrypted. Otherwise parse C as (C1, rk) and return DecFuPE(
DecHPKE(skHPKE, rk), C1, τ+, h(2i+ 1)).

Dec(2)(sk(i), C) : Parse sk(i) as (·, sk(2i+1)
FuPE , ·) and return DecFuPE(sk

(2i+1)
FuPE , C, τ+, h(2i +

1)).

ReGen(sk
(i)
A , pkB) : Parse sk(i) as (·, sk(2i+1)

FuPE , ·), and return EncHPKE(sk
(2i+1)
A , pkB).

ReEvo(rk
(i)
A→B) : Return NPunc′(NPunc′(rk

(i)
A→B , h(2i)), h(2i+ 1)).

ReEnc(rk
(i)
A→B , CA) : Let τ+ ∈ T+ be the tag for CA. Compute rk′ ← PPunc′(

rk
(i)
A→B , τ+) and return rk′, CA.

Scheme 7. fs-PRE scheme from a FuPE scheme.

Since the delegation operation uses only linear operations on group elements,
we can use any linearly homomorphic HPKE where the message space suits
the secret-key space of the respective HIBE scheme. Then, one can perform the
same operations on ciphertexts in a component-wise manner, i.e, each secret-key
component is encrypted separately under the public key of the HPKE.

43

Hence, we observe that the Chen-Wee HIBE scheme together with a linear
HPKE scheme exhibit the publicly delegatable property of a HIBE scheme in the
sense of the definition above.

fs-PRE instantiation. Now given a FuPE scheme and a HPKE scheme that
allow compatible PPunc′ and NPunc′ algorithm as outlined above, the fs-PRE
be constructed by combining these two schemes. Forward secrecy is achieved
by selecting a mapping of periods to negative tags. The re-encryption keys are
composed of encrypted FuPE keys and the re-encryption performs positive punc-
turing of the encrypted keys using PPunc′. The NPunc′-algorithm is used for the
evolution of the re-encryption keys. The full scheme is given in Scheme 7.

Remark 1. When instantiating the fs-PRE scheme with the HIBE-based FuPE
scheme, we choose h so that it preserves the ordering on the elements. This
reduces the size of the keys to O(log n).

Theorem 7. If instantiated with FPuE-IND-CPA secure FuPE and IND-CPA
HPKE schemes, Scheme 7 is a fs-PRE+-secure fs-PRE scheme.

Proof. fs-IND-CPA-1 security follows with a direct reduction from a fs-IND-
CPA-1 adversary A1:

– When started on pp and pk, we select h and the HPKE keys honestly. We
extend pk with the public HPKE key and h, and start A1 on the extended
pk. We choose τ+←R T+ and from the period j∗ chosen by the adversary
compute τi,− ← h(i) for i ∈ [0, 2j∗ − 2]. We return the computed tags and
request the challenge ciphertext for τ2j∗−2,−.

– Now, when started to select the challenge messages, all oracles of the fs-IND-
CPA game that involve the target secret key, can be simulated using h and
the access to the NPunc oracle. The secret keys given to the adversary can
be computed in the same vein. The challenge messages returned by A1 are
simply forwarded.

– Now when given the challenge ciphertext, it is a ciphertext for τ2j∗−2,−,
which is a level 1 ciphertext for j∗ − 1 hence we can simply forward the
challenge ciphertext to A1 and return the result.

To show fs-RIND-CPA security we build again an adversary against FPuE-IND-
CPA. The fs-RIND-CPA adversary is denoted as Ar.

– When started on pp, and pk, we set up the HPKE keys and h as above.
We start Ar and compute τi,− ← h(i) for i ∈ [0, 2j∗ + 1] where j∗ is the
targeted period chosen by the adversary. Choose τ+ ← T+ and return τ+,
the sequence of negative tags and choose τ2j∗+1,− as target negative tag.

– When started on st, we can simulate ReEnc honestly using PPunc′.
– When started on st and C, the ciphertext is a level 2 ciphertext for period
j∗, hence we return Ar(st, C).

For fs-IND-CPA-2 security we first replace all encrypted secret keys with random
values using the IND-CPA security of the HPKE scheme. This game changes

44

requires the same game changes as in Theorem 1, hence we skip them here for
the sake of brevity. Since the re-encryption keys are now encryptions of random
values, we only need to simulate secret keys of the target period. The reduction
is as follows from a fs-IND-CPA-2 adversary A2:

– When started on pp and pk, we select h and the HPKE keys honestly. We
extend pk with the public HPKE key and h, and start A1 on the extended
pk. We choose τ+←R T+ and from the period j∗ chosen by the adversary
compute τi,− ← h(i) for i ∈ [0, 2j∗ − 1]. We return the computed tags and
request the challenge ciphertext for τ2j∗−1,−.

– Now, when started on select the challenge messages, the secret keys given
to the adversary can be simulated using NPunc. The challenge messages
returned by A2 are simply forwarded.

– Now when given the challenge ciphertext, it is a ciphertext for τ2j∗−1,−,
which is a level 2 ciphertext for period j∗ − 1 hence we can simply forward
the challenge ciphertext to A2 and return the result.

The adversaries succeed if and only if A1, A2 and Ar, respectively, succeed.
ut

fs-PKE from FuPE. Finally, we also note that one can construct fs-PKE from
the negative puncturing functionality of FuPE. This can be straight forwardly
done using similar ideas as in the construction above, which is why we do not
present an explicit construction.

45

	Revisiting Proxy Re-Encryption: Forward Secrecy, Improved Security, and Applications
	Introduction
	Contribution
	Intuition and Construction Overview
	Related Work and Outline

	Preliminaries
	Security of (Forward-Secret) Proxy Re-Encryption
	Syntax of Forward-Secret Proxy Re-Encryption
	Security of Forward-Secret Proxy Re-Encryption
	Stronger Security for Proxy Re-Encryption

	Constructing fs-PRE from Binary Tree Encryption
	Forward-Secret Delegatable Public-Key Encryption
	Constructing fs-DPKE from BTE
	Constructing fs-PRE from fs-DPKE
	Separating fs-PRE- from fs-PRE +

	Cryptographic Assumptions
	A Linearly Homomorphic PKE Scheme
	Security of Hierarchical Identity-Based Encryption
	Fully Puncturable Encryption
	FuPE from HIBE
	FuPE to fs-PRE

