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Abstract. In multi-prover interactive proofs, the verifier interrogates the provers and
attempts to steal their knowledge. Other than that, the verifier’s role has not been studied.
Augmentation of the provers with non-local resources results in classes of languages that
may not be NEXP. We have discovered that the verifier plays a much more important
role than previously thought. Simply put, the verifier has the capability of providing non-
local resources for the provers intrinsically. Therefore, standard MIPs may already contain
protocols equivalent to one in which the prover is augmented non-locally. Existing MIPs’
proofs of soundness implicitly depend on the fact that the verifier is not a non-local resource
provider. The verifier’s non-locality is a new unused tool and liability for protocol design
and analysis. Great care should have been taken when claiming that ZKMIP = MIP and
MIP = NEXP. For the former case, we show specific issues with existing protocols and
revisit the proof of this statement. For the latter case, we exhibit doubts that we do not
fully resolve. To do this, we define a new model of multi-prover interactive proofs which
we call “correlational confinement form” (CCF-MIP).

1 Introduction

An interactive proof is a dialog between two parties: a polynomial-time verifier and an all-
powerful prover [1, 2]. They agree ahead of time on some language L and a string x. The prover
tries to convince the verifier that x ∈ L. If this is true, the prover should succeed almost all the
time; if not, the prover should fail almost all the time. This is a generalization of the complexity
class NP, except instead of simply being handed a polynomial-sized witness, you are allowed to
quiz the hand that is feeding you. The set of languages that admit an interactive proof is called
IP.

An interactive proof is zero-knowledge if the verifier learns nothing except the truth of “x ∈ L”.
This is usually defined by saying that a distinguisher is unable to tell apart a real conversation be-
tween the prover and the verifier and one which is generated by a lone polynomial-time simulator.
The set of zero-knowledge interactive proofs [1] is called ZKIP.

One of the most important results regarding interactive proofs is that IP = ZKIP =
PSPACE, which follows from seminal works of [3] and [4]. However, the only known way to
achieve the ZKIP = PSPACE equality is to use some kind of commitment scheme which, in
the single-prover model, is dependent on complexity assumptions.

The multi-prover model was introduced in [5]. This model consists of multiple, non-commu-
nicating provers talking solely to a single verifier. The inspiration for this model was that of a
detective interrogating a bunch of suspects, each of whom is isolated in a separate room. The
suspects may share a strategy before being separated, but once the interrogation begins they
are no longer able to talk to one another. The main motivation for studying this model was to
remove the complexity assumptions used in the commitment schemes. We will abbreviate “multi-
prover interactive proof” as MIP, and the set of languages which can be accepted by MIPs as
the boldface MIP.
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An important consequence of having multiple provers is that the verifier can use one prover
to check the consistency of other provers’ answers. This gives the (weak) verifier more power
over the (all-powerful) provers. Consequently, through the works of [5–7], it was shown that
MIP = ZKMIP = NEXP. That is, any language in NEXP can be accepted by a MIP
(optionally by a zero-knowledge MIP).

Our paper takes us all the way back to the foundations of MIP. We have identified a blind
spot in what we call the “standard” MIP model (one verifier talking to a bunch of provers) that
is not addressed in existing literature. As a lead-up to describing this blind spot, we invite the
readers to consider the following ridiculous two-prover protocol:

Protocol 1. ( Ridiculous Protocol )

1. Verifier sends Prover 1 a random string S.
2. Prover 1 replies with a string T .
3. Verifier sends Prover 2 the string T .
4. Prover 2 replies with a string S′.
5. Verifier accepts if S = S′.

Suppose that we claim the following ridiculous theorem:

Theorem 2. (Ridiculous Theorem) The probability that the verifier accepts in the Ridiculous
Protocol is exponentially small.

Proof. By the definition of MIPs, the provers cannot communicate. If Prover 1 can output an
S′ that is the same as the uniformly random S that only Prover 2 knows, then they must have
communicated. Contradiction. ut

The reader is astute in pointing out that steps 2 and 3 of the Ridiculous Protocol clearly show
that the verifier is helping the provers by relaying the very answer it is supposed to keep secret.
The proof of the Ridiculous Theorem overlooked the blind spot that is the verifier’s interactions.
This is our point, exaggerated.

The blind spot we have discovered in the standard MIP model is what we shall call “correla-
tional contamination” by the verifier. Put simply, a verifier talking to one prover and then talking
to another prover risks unwittingly bridge the provers in some non-local capacity. At worst, this
bridge could outright allow the provers to talk. If a MIP assumes that the provers are correlated
in some way (i.e., local), then the verifier could undesirably change that correlation.

In existing MIP literature, the proofs of soundness do not account for this blind spot. It is
easy to see the above verifier as clearly non-local (steps 2 and 3 signals for the provers). It is
not so easy when the verifier is more complex. It is an even subtler point when we consider that
the verifier could be helping the provers in a no-signaling, yet non-local manner. We believe that
proofs within the standard model must be reconsidered in light of this discovery. We will further
discuss this last point in Sections 2 and 7.

To clarify, we are not saying that any existing MIP protocol is unsound, only that their proofs
of soundness all missed this blind spot, and therefore one could have drawn incorrect conclusions
from those protocols. The standard MIP model cannot avoid the fundamental problem of correla-
tional contamination. We believe that this blind spot is critical to the foundations of multi-prover
interaction, and we wish to draw the community’s attention to this issue and offer our solution
– a multi-prover, multi-verifier model (Section 3). This is not a replacement of the single-verifier
model, but rather a generalization of it. Studying this more general model has given us insight
about the standard MIP model.
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Our model is what we shall call the correlational confinement form of multi-prover interactive
proofs. MIPs in this form have prover-verifier pairs who are talking, but no communication
between any of the pairs. At the end of a correlational confinement form protocol, the verifiers
get together and decide to accept or reject, at which point they no longer interact with the
provers. This new model offers the following advantages:

1. If desired, the provers and verifiers are guaranteed to be local.

2. The non-local resources of provers and verifiers are made explicit.

3. It is easy to describe the provers’ and verifiers’ non-local resources in a much more fine-grained
manner, rather than just “entangled” or “no-signaling.”

4. It is possible to enforce “honest non-locality” on the provers by having the verifier provide
them with non-local resources. Our model makes this explicit.

5. A new property of zero-knowledge emerges naturally as a result.

1.1 Our Contributions

In this work:

– We summarize issues with the standard (single-verifier) MIP model (Section 2).

– We describe our solution, a new model of multi-verifier MIP which we call “correlational
confinement form” (CCF-MIP) and justify its definition by expanding on its advantages over
the standard model. We argue that a special case of CCF-MIPs, one in which all provers and
verifiers are local, is what the standard, single-verifier MIPs implicitly assumes. We make
these assumptions explicit and show that there is a local-verifier, local-prover CCF-MIP
which accepts oracle-3-SAT (Section 3).

– We describe a protocol which is local-verifier, local-prover and zero-knowledge which accepts
oracle-3-SAT, achieving zero-knowledge without needing the provers to authenticate any
messages, and prove its security (Section 4).

– We show that, in the CCF-MIP model, a new property of zero-knowledge naturally emerges
that is a distinct stronger flavor of zero-knowledge (Section 5).

– We explore an advantage of our new model: the improved granularity by which we can define
non-local correlations between the provers (and also between the verifiers), and begin to
explore augmenting provers with fine-grained non-locality (Section 6).

– Finally, we explore another advantage of our new model: how to let the verifiers augment the
provers with non-locality which malicious provers cannot exploit arbitrarily, which we call
enforceably honest non-locality. We tentatively suggest that, since this new tool (enforceably
honest non-locality) has yet to be studied by the research community, and may affect the set
of languages accepted by standard MIPs, NEXP = MIP may not be fully settled (Section
7).

2 The Standard MIP Model

When [5] introduced multi-prover interactive proofs, it was formalized as follows:

Definition 1. Let P1, . . . , Pk be computationally unbounded Turing machines and let V be a
probabilistic polynomial-time Turing machine. All machines have a read-only input tape, a private
work tape and a random tape. The Pi’s share a joint, infinitely long, read-only random tape. Each
Pi has a write-only communication tape to V , and vice-versa. We call (P1, . . . , Pk, V ) a k-prover
interactive protocol.
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Since then, there have been augmentations of the model by giving the provers various non-
local resources, such as entanglement [8], or CHSH boxes [9, 10]. There also have been works
studying the security of non-local-resistant protocols [11, 10], . However, the verifier remained
constant throughout the literature.

The first work to point out a problem with the standard MIP model (our aforementioned
blind spot), although it was not worded this explicitly, was [10]. In order to understand their
point, we need to understand the following two-prover protocols.

Protocol 3. ( BGKW-type commitment protocol to b )

P1 and P2 pre-share a random n-bit string w.
1. V sends a random n-bit strings r to P2.
2. P2 replies with x← b× r ⊕ w.
3. P1 announces to V a string w′.
4. V accepts iff (w′ ⊕ x) ∈ {0, r}.

This is a two-prover commitment protocol. Steps 1 and 2 commit, while steps 3 and 4 open.
An intuitive proof of its binding condition is that, since the provers cannot signal, and they both
need to know r in order to open the commitment in the way they want, therefore they cannot
cheat. This intuition is incomplete, as was pointed out in [10], because breaking the binding
condition does not require signaling. The following protocol, known as a CHSH-box, can be used
to break binding without signaling.

c //
CHSH

roo

w′ := c× r ⊕ x //oo x

Fig. 1. a CHSH-box

By having P1, P2 obtain w′, x via the CHSH-box, P1 can open the commitment the way it
wishes, c. This fact will become extremely important in Sections 4 and 5.

The punchline of [10] is that the verifier itself can execute a CHSH-box for the provers without
violating their no-signaling assumption. This is not even the worst part. It is perhaps acceptable
to look at protocol 3 and say that it is clearly not a CHSH-box, but consider the following:

1. Any security proof of protocol 3 must show that it does not contain a CHSH-box as a
subroutine.

2. More generally, any security proof of a protocol must show that no subroutine within itself
can be commandeered by the provers to achieve a non-local functionally (like the CHSH-box).

3. Composition of protocols, for instance between the committing and the opening of commit-
ments, must be done in such a way that provably does not create a non-local box.

The solution proposed in [10] was that of verifier isolation. Practically speaking, this means
that any message an “isolating” verifier sends to a set S of provers must be computed solely
from messages that are received from S. The end result is that an isolating verifier can never
accidentally implement a CHSH-box and, in general, it will always enforce the locality of the
provers. In a sense, we can think of an isolating verifier as “local”; a non-isolating verifier can be
thought of as “non-local”. We will make this precise in the next section.

Let us look at another problem which inspired us to pose the question of verifier non-locality.
Existing zero-knowledge MIP protocols such as [12] require that the verifier courier an authenti-
cated message between the provers in order to obtain soundness while ensuring zero-knowledge.
The gist of it goes like this:
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1. V asks P1 a bunch of questions.
2. V wants to check one of P1’s answers with P2 for consistency.
3. In order for zero-knowledge to hold, V must ask P2 a question it has already asked P1.
4. P1 authenticates a question with a key that was committed at the beginning of the protocol

and sends it to V .
5. V sends the question and the authentication to P2, who proceeds only if authentication

succeeds.

Steps 4 and 5 consists of V sending a message from P1 to P2. It was not shown that this act
cannot be used to signal. Moreover, as we have discussed above, it is not necessary to signal in
order to break commitments, and therefore soundness. We do not know whether it is possible
for the provers to actually succeed in commandeering the verifier in order to execute a non-local
task; however, this needs to be proven, and the proof contained in [12] does not address this
issue. Moreover, the zero-knowledge protocol of [12] allows P1 to send an arbitrary message to
P2 (via the authentication key). Therefore one cannot even compose such a protocol in a nested
fashion (as a subroutine call) since the inner instance would violate the assumption of the outer
instance that no communication has occurred after commitment and before opening.

We quickly mention that existing simulators for a protocol such as those found in [12] needs
to know how to break commitments in order to simulate. The simulator accomplishes this by
acting as both provers, thereby receiving the secret strings r0 and r1 which are meant for one
prover only. This standard model of zero-knowledge gives the simulator unnecessary power, in a
sense. We will discuss this further in section 5. For more details on the problems of the standard
MIP model, see [13].

2.1 Correlational Contamination as a Tool

There is a flip side to the fact that the verifier is capable of performing non-local tasks for the
provers. In general, when provers become more correlated, for example through entanglement or
other no-signaling distributions, it is not always clear whether the classes of languages accepted
in these augmented models should shrink or expand (or change in other ways). This is because
the increased correlations give both honest and dishonest provers more power, and the sum of
their expanded capabilities could go either way.

With this in mind, recall that it was claimed that MIP = NEXP [6, 7]. When provers are
augmented with quantum entanglement a priori, this is a potentially different class of languages
which is denoted by MIP∗. At the time of this writing, we only know that MIP∗ ⊇ NEXP
[8]. Equality has not been established. It is possible that there exists some language L ∈MIP∗

such that L 6∈ NEXP. If this turns out to be the case, and that in a MIP for L, the quantum
processing used by the provers can be simulated within classical polynomial-time, then we can
ask a classical verifier to simulate entanglement for classical provers in the protocol itself, and the
provers would not need to be quantum. This would falsify the result that MIP = NEXP. We
have one of two possibilities:

1. The existing proof [6] that MIP ⊆ NEXP overlooked the cases where V provides extra
non-local resources to the provers.

2. All languages accepted by MIPs where P ’s are local with arbitrary extra non-local resources
(in polynomial amount) are contained in NEXP3 (bringing no extra power at all).

If the first case turns out to be true, then the overall power of MIPs would increase. Otherwise,
the second case being true would imply that we would only need to consider MIPs where the

3 According to [14] this is already the case if V provides arbitrary non-locality achievable via polynomial
amount of entanglement.
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verifiers are also confined to local; this would simplify soundness proofs considerably. We do not
know which of the two possibilities is correct, but they both seem worthy of further investigation.

We will discuss the idea of using the verifier to form enforceable and honest non-locality for
the provers in section 7.

3 Correlational Confinement Form MIP

As discussed above, the standard MIP model of a single verifier talking to multiple provers could
make the verifier a non-local bridge between the provers. If a protocol does not desire this – and
all existing MIPs do not – it must be proven impossible.

We neutralize this problem by defining a model with multiple verifiers, each of which talks to
a single prover; in turn, each prover talks to a single verifier. There are no communication tapes
between the verifiers. There is a special verifier V0 which only reads the outputs of the other
verifiers; this is the verifier that will decide to accept or reject. We call this model “correlation-
confined” since the provers and verifiers are explicitly local, and all of their non-local correlations
(if any) are delegated to two machines called P̂ and V̂ .

This model is a generalization of the standard model because the special setting where P̂ is
empty and V̂ signals for the verifiers corresponds to the standard MIP model. In this section, we
focus on a specific sub-case of the standard model where both P̂ and V̂ are empty, which we call
“local.” But first, let us define our model in full.

Definition 2. Let (V̂ , V0, V1, . . . , Vk, P̂ , P1, . . . , Pk) be a tuple of interactive Turing machines,
where the P’s are computationally all-powerful and the V’s are polynomial-time. Every machine
has a read-only input tape, a local work tape, and a random tape initialized uniformly at random.
For each i, there are two-way communication tapes between Vi and Pi, and that for all j, there
is a two-way communication tape between V̂ and Vj and also between P̂ and Pj. In addition, for
each `, there is a read-only tape going from V` to V0 (where V0 reads). Then, this is said to be a
multi-prover interactive proof in correlational confinement form (CCF-MIP).

It is perhaps easier to understand our definition with the help of figure 2.

.	

.	

.
P

P1

Pk

V1

Vk

V0.	
.	
.

P2 V2
V

Fig. 2. MIP in Correlation Confinement Form

The solid lines are two-way communication tapes and the dotted arrows are read-only tapes,
with the arrow indicating the direction of information flow. We call V̂ and P̂ “non-local tasks”.
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They will be used to generalize the model by explicitly giving the provers and verifiers non-local
resources. For now, we are concerned only with what it means for the provers and verifiers to be
local.

Definition 3. A CCF-MIP is local if V̂ = P̂ = ∅ and all of the provers’ (resp. verifiers) random
tapes are initialized with an identical uniform random string.

It is accepted that isolated parties sharing (classical) randomness is considered local, hence
our need for identical random tapes in the above definition.

We can define that a CCF-MIP accepts a language L if the usual soundness and completeness
conditions hold:

Definition 4. A CCF-MIP (V̂ , V0, V1, . . . , Vk, P̂ , P1, . . . , Pk) accepts a language L if and only if

– (completeness) ∀x ∈ L,Pr[V0(x, t1, . . . , tk) = accept] > 2/3,
– (soundness) ∀x /∈ L,∀P ′1, . . . , P ′k,Pr[V0(x, t1, . . . , tk) = accept] < 1/3,

where ti is the read-only tape from Vi to V0 at the end of the interaction of Vi with Pi (or P ′i )
on input x.

Note that we do not quantify over P̂ (nor V̂ ), as soundness would be impossible for all

languages outside PSPACE since one possible P̂ is simply a signaling task for the provers. We
want to use P̂ and V̂ not as (possibly malicious) participants to the protocol, but as a description
of non-local resources available to the provers and verifiers.

With CCF-MIPs, the special verifier V0 decides to accept or reject. This verifier cannot
communicate with anyone else, avoiding the aforementioned correlational contamination. This is
in contrast with standard, single-verifier MIPs where the verifier talks to all the provers and then
decides to accept or not.

Local-prover CCF-MIPs form a subclass of standard MIPs. They are, by design, more re-
stricted in what you can make the verifier do. An immediate question is whether this is too
restrictive. Perhaps, in all interesting cases, it is necessary for a single verifier to go back-and-
fourth between provers, using previous discussions to generate new questions.

The answer is that, surprisingly, of all the literature we have surveyed, almost all protocols
can be re-written in such a way that the single verifier is “split” in our sense without any loss
of functionality. We have explicitly demonstrated this in [15] for the multi-prover protocol for
oracle-3-SAT in [7]. We briefly discuss how below.

The protocol details can be found in [7], section 3. For our purposes, we only need the form
of the protocol, which is as follows:

Protocol 4. ( BFL Classic )

1. V asks P1 some questions non-adaptively.
2. V chooses a question Q from the pool of questions which was asked to P1.
3. V asks Q to P2.
4. V accepts if the interaction with P1 was successful, and the answer from P2 is con-

sistent with those of P1.

The crucial observation is that V does not adaptively ask questions to P1. Therefore, the
questions asked on that entire side of the conversation might as well have been selected in
advance; and if they can be selected in advance, they can be shared in advance with a second
verifier. We can therefore naturally rewrite the [7] protocol as a local CCF-MIP in the following
way. We ask that the reader fills in the details from [7], section 3.
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Protocol 5. ( BFL in correlational confinement form )

1. V1 prepares the questions which it will ask P1.
2. V1 chooses a question Q from the above list and shares it with V2.
3. CCF-MIP begins. All parties are confined as per definitions.
4. V1 asks the questions to P1.
5. V2 asks Q to P2.
6. V0, reading the responses, decides to accept or reject, based on the same criteria as

in protocol 4.

The [7] protocol is for oracle-3-SAT, which is NEXP-complete. Thus we can conclusively say
that NEXP ⊆MIP, at least. Why inclusion and not equality? We have partially discussed that
in section 2.1, and we will discuss it further in section 7.

The non-trivial question is whether there exists a local zero-knowledge CCF-MIP for NEXP.
The existing technique for achieving zero-knowledge in MIP [5, 12] requires the (single) verifier
to courier an authenticated message between provers. This is not possible with local CCF-MIPs.
In the next section, we show that there is a way around that constraint.

4 A Local ZKMIP in Correlational Confinement Form for NEXP

We describe here a CCF-MIP with the following properties (in addition to completeness and
soundness):

– Local, as defined in the previous section.
– Zero-knowledge, in the traditional sense as well as an expanded sense discussed in the next

section.

As discussed above, the oracle-3-SAT protocol from [7] is local in the sense that the interaction
with P2 involves only a single question, sampled from the pool of questions the verifier has asked
P1. This can be “localized” by a pair of verifiers by asking them to share a random tape before
the protocol begins.

The existing, generic way of turning an interactive proof into a zero-knowledge one is by
running it in committed form. That is, instead of answering a question directly, P1 commits his
answers, then at the end convinces V that the answers are correct. V then asks P2 a question, and
receives a committed answer. The provers would then show that the answers are equal, without
opening the commitments. The problem is that during the P2 phase, the verifier must ask a
question that it has asked P1 in order to ensure zero-knowledge.

This is addressed in [5] and [12] by asking the first prover to compute the verifier’s question in
committed form, add a message authentication tag using a secret key that the provers shared, and
finally asks the verifier to send the message to P2, who then checks whether the authentication is
valid before executing its part of the protocol. This type of protocol cannot be made into local,
correlational confinement form, since the verifiers of a CCF-MIP cannot talk to each other.

We present a local zero-knowledge CCF-MIP which addresses this problem. Our solution
basically asks the provers to encrypt an answer with a key that is based on the verifier’s question.
That is, we force V2 to behave honestly (to ask a question that V1 has asked), without having the
provers to sign off on the question, by saying, “If the verifiers ask the provers the same question,
they will receive the same random string. Otherwise, they will receive two unrelated random
strings.” Since these questions can be chosen by the verifiers in advance, there is no need for
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the provers to authenticate the questions before answering, nor for the verifier to courier said
question between provers.

The rest of the protocol consists of P1 and V1 evaluating the verifier’s circuit from the “BFL
classic” protocol from section 3 of [7], which we call Λ, in committed form. We refer the reader
to that reference for the detailed description of their protocol.

The gist of our local zero-knowledge CCF-MIP (protocol 7) is the prover saying to the verifier,
“You filled in the randomness for the BFL verifier, and I filled in the answers. If I were to open
the commitments, you would see that the BFL verifier would accept.”

To begin, we will first need the CHSH commitment (protocol 6), which is secure in the local
setting as previously proved in [16].

4.1 The Protocols

The following is a CHSH-type commitment that is perfectly concealing and statistically binding.

In general, we use the commitment-box notation “ b ” as the name of a commitment to bit b in
the next two protocols.

Protocol 6. A statistically binding, perfectly concealing commitment protocol.

All parties agree on a security parameter 1k.
P1 and P2 partition their private random tape into two k-bit strings w1, w2.

Pre-computation phase:

– V1 samples two k-bit strings z1, z2 independently and uniformly, and provides them
to V2.

– V1 sends z1 to P1 and V2 sends z2 to P2.

Commit phase:

– P1 commits b to V1 as b = (b× z1)⊕ w1, where b× z1 is a multiplication in F2n .
– P2 sends V2: d = (w1 × z2)⊕ w2.

Opening phase:

– P1 sends w1, w2 to V1.

– V1 computes b = 1 if b ⊕ w1 = z1, or b = 0 if b = w1.

– V0 rejects if b ⊕ w1 is anything but z1 or 0, or if d⊕ w2 6= z1 × z2 and accepts b
otherwise.

Below is the local zero-knowledge CCF-MIP for oracle-3-SAT, Protocol 7. The basis of Pro-
tocol 7 is the (non-zero-knowledge) MIP for oracle-3-SAT found in [7], the notations of which we
borrowed4. Following it we will give a proof sketch of its completeness, soundness, zero-knowledge
and locality.

Protocol 7. A local zero-knowledge CCF-MIP for oracle-3-SAT

4 For this extended abstract, we assume the reader is already familiar with the detailed protocol of [7].
If you are not, chances are, you will not be able to make sense of Protocol 7. We also use statements

such as “P1 proves to V1 that Ω1 was computed correctly”. The reader is expected familiarity with

zero-knowledge computations on committed circuits as put forward by [17–19, 12].
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Let x, an instance of oracle-3-SAT, be the common input, let |x| = k, and let Λ be the
verifier’s program in the BFL classic protocol [7].

1. Pre-computation:

(a) All parties agree on a family of strongly-universal-2 hash functions {Hi} indexed
by k-bit keys.

(b) V1 samples two k-bit strings z1, z2 independently and uniformly, and provides
them to V2.

(c) V1 selects k random K-bit strings r1, ..., rk and evaluates the circuit of Λ on input
ri, resulting in questions Q1, ..., Qk, and provides them to V2

(d) V1 randomly chooses i, 1 ≤ i ≤ k + 3, the index of an oracle query that will be
made to both P1 and P2. V1 provides i to V2.

(e) V1 sends z1 to P1 and V2 sends z2 to P2.
(f) P1 and P2 agree on a k-bit string γ.
(g) P1 commits γ to V1.

2. Multilinearity test: Let k be the number of oracle queries in this phase.
For 1 ≤ i ≤ k:

(a) V1 sends Qi to P1, the question that would be asked by Λ with coins ri.

(b) P1 commits his answer as A(Qi) .

(c) After committing all of his answers, P1 and V1 evaluate a circuit description of

Λ in committed form with inputs A(Q1) , . . . , A(Qk) . P1 opens the circuit’s

output. If it rejects, V1 instructs V0 to reject.

3. Sumcheck with oracle:

– Let g(z,Qk+1, Qk+2, Qk+3, A(Qk+1), A(Qk+2), A(Qk+3))
be the arithmetization obtained by section 3.2 of [7], let z be a string of length r
and Qk+1, Qk+2, Qk+3 be strings of length s, as appropriate. V1 and P1 execute
the protocol of section 3.3 of [7] in committed form, using coins selected by P1

whenever randomness is required. At the end of this phase, P1 shows that the
committed final value is equal to

g
(
z,Qk+1, Qk+2, Qk+3, A(Qk+1) , A(Qk+2) , A(Qk+3)

)
,

an evaluation in committed form of g using the committed random bits that were
used during the protocol’s loop. If this fails, V1 instructs V0 to reject.

4. Consistency test:

(a) V1 sends i to P1.

(b) P1 computes Ω1 = A(Qi) ⊕H γ (Qi) and sends Ω1 to V1.

(c) P1 proves to V1 that Ω1 was computed correctly, from the existing commitments.

(d) P1 opens Ω1 for V1, who gets Ω1.

(e) V2 sends Qi to P2 (recall that this was pre-agreed in step 1.(c))
(f) P2 responds to V2 with Ω2 = A(Qi)⊕Hγ(Qi).
(g) V0 accepts if and only if all of the following conditions are met:

– Ω1 = Ω2

– All commitments which have been opened are valid.
– V1 did not reject in the two previous cases
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4.2 Proof Sketches of Security

Locality

In both the commitment protocol (protocol 6) and the CCF-MIP (protocol 7), the provers do
not interact with each other, making them trivially local as per definition 3; V0 does not interact
with the remaining verifiers once the protocol begins; V1 and V2 do not interact with the provers
once the protocol ends; therefore, since neither the provers nor the verifiers share any additional
resources, the verifiers are local.

Completeness

Completeness follows from the completeness of the underlying protocol [7], and the fact that
the commitment protocol (protocol 6) is well-defined for honest provers (who will never send a
commitment that they cannot open).

Soundness

The scaffolding for our soundness proof will be the following. Suppose that there is a trusted
third party handling commitments that are perfectly binding, and that this third party sends the
receiver a unique identifying receipt for every commitment. If we were to use this commitment to
execute a protocol in committed form (as we do in protocol 7), then to each committed transcript
of an execution there would be a unique real transcript (of the BFL protocol in our case). In
this case, a committed transcript shows that it ends in accept if and only if the associated real
transcript, which one would obtain by running the base protocol, also ends in accept. Thus, if
the base protocol has a soundness error of, say, 1/3, then so does this committed version.

We can remove the scaffolding by replacing the trusted third-party with protocol 6. This does
not change the argument, except with exponentially small change to the soundness error. To begin
with, local probabilistic provers are equivalent to local deterministic provers. This is because the
success probability α of randomized provers is an average over the randomized provers’ random
tapes. Each instance of a random tape represents a deterministic strategy. Therefore there is a
deterministic strategy which succeeds with probability at least α. Therefore, we only need to
consider local deterministic provers.

Let us analyze our commitment protocol. Since P1 is deterministic, we may unambiguously
consider what happens if we were to “rewind” it. Suppose that at some point P1 opens a particular
commitment c to 0, and that by rewinding P1 and have V1 make different choices, P1 then opens
the same commitment c to 1 (an attempt to break binding). Because of locality, P1’s behavior is
independent of what P2 receives (namely z2). Therefore, there is only one such z2 which V0 will
ultimately accept as a valid opening of c in both ways (recall that our commitment is statistically
binding).

In the worst case, for every commitment there exists a sequence of interaction between V1 and
P1 such that P1 will attempt to break the binding of that commitment. Each such commitment-
breaking corresponds to at most one string z2 that will actually work.

Let us denote the set of such binding-breaking strings by B. If z2 /∈ B, then the provers will
not break binding, and the soundness error is reduced to that of the underlying protocol (at most
1/3). On the other hand, since |B| < poly(k), the probability that z2 ∈ B is at most poly(k)/2k.

Therefore, the soundness error of our protocol is at most

Pr[z2 /∈ B and underlying protocol accepts] + Pr[z2 ∈ B] ≤ 1

3
+

poly(k)

2k
.
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Zero-Knowledge

Our use of the multi-verifier setup as a guarantee of locality leads us to an unforeseen problem.
The participants of our protocol are two pairs of prover-verifiers and a “decision” verifier. In
attempting to prove zero-knowledge in this new picture of MIPs, we must rethink about the
purpose of the (sole) simulator. Before we do that, however, let us describe how to simulate in
the standard case of a single simulator.

The simulation will be divided in two parts. In the first part, the simulator produces a
transcript of the pre-computation, multilinearity test and sumcheck with oracle parts, which
involves only interactions with V1. In the second part, the simulator will fake a valid consistency
test.

We begin with the simple observation that if the provers can signal, then they can break the
commitment of protocol 6. This is the basis of our simulation strategy, because if the provers
can break the binding condition of commitments, then it does not matter what was actually
committed. Put another way, if the simulator knows everything that both verifiers tell their
respective provers, then the simulator can satisfy any cut-and-choose challenge by V1 and convince
it of anything, even though the simulator would have been committing random answers.

Since the simulator speaks to both verifiers, it does indeed know how to break binding.
Therefore it can behave as if it were an honest P1, except the simulator’s answers are commitments
of independent and uniformly random strings. The simulator then breaks binding whenever V1
challenges it to open a commitment. This is the simulator’s strategy for everything except the
consistency check question.

For the consistency check question, which we had denoted as Qi, the behavior of the simulator
should be:

– V1 asks Qi and V2 asks Q′i.
– The simulator computes Ω1 honestly, from the random gibberish it has committed.
– If the verifiers are honest, then Qi = Q′i and the simulator outputs Ω1 = Ω2.
– Otherwise, the simulator outputs Ω1 and an independent and uniformly random Ω2.

But since the simulator knows which question was chosen (Qi) and which was sent to the
second prover (Q′i), it can behave as expected.

The hiding strength of our commitment is perfect, therefore the transcripts for V1 and V2
are identically distributed to real transcripts. The simulator sends them to V0 for acceptance or
rejection (remember that V0 can behave arbitrarily).

This is how zero-knowledge is handled in the standard MIP model. In the CCF-MIP model,
a new, natural property of zero-knowledge emerges. Namely, if there are multiple provers and
verifiers which are correlation-confined (whether they are local or not), should there not also be
multiple simulators?

For protocol 7, it turns out that having a single simulator is unnecessary. It is possible to
produce the same transcript with multiple, confined simulators, each interacting with a verifier.
The trick is that they might need to be less confined than the verifiers – that is, they may need
more non-local resources. We will discuss this in the next section.

5 Zero-Knowledge with Simulators of Minimal Correlation

For single-prover interactive proofs and standard MIPs, we typically discuss the “flavor” of zero-
knowledge. Broadly speaking, there are computational, statistical and perfect zero-knowledge
interactive proofs, corresponding to an increasing indistinguishability of the simulated transcript.
For almost all known languages, the flavor of an interactive proof’s zero-knowledge corresponds
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to the hiding property of the commitment used. A detailed discussion about this can be found
in [20].

If we directly adapt the existing definition of zero-knowledge for CCF-MIPs, we end up with
something like, “For every set S of local verifiers, there exists a simulator M such that M can
output a transcript indistinguishable from that of S interacting with real provers.” As mentioned
in protocol 7’s proof of zero-knowledge, by giving the simulator the ability to converse with both
verifiers, it is trivial to break the binding condition of the commitment scheme. The simulator
can satisfy every cut-and-choose challenge issued by the verifiers. Therefore it is easy to simulate
a real conversation since the simulator can convince the verifiers of anything.

By moving to a multi-verifier model, we were able to make the non-local resources of the
provers and verifiers explicit. For protocol 7, no one involved has any non-local resources; specifi-
cally, the verifiers do not. It stands to reason that there should be as many simulators as verifiers,
and that the simulators should have as little additional non-local resources as possible (ideally,
it would have the same as those of the verifiers). This leads to the following definition:

Definition 5. Let M = (M̂,M1, . . . ,Mk) be a tuple of polynomial-time interactive Turing ma-
chines. Each machine has a random tape, and every random tape is initialized with the same
random bits. For 1 ≤ i ≤ k, there is a two-way communication tape between M̂ and Mi. There
are no communication tapes between any of the Mi’s. Then this is called a set of correlation-
confined simulators and M̂ is the confinement class of M.

Definition 6. Let T = (V̂ , V0, V1, . . . , Vk, P̂ , P1, . . . , Pk) be a CCF-MIP. If there exists an M̂
such that for all verifiers (V ′0 , V

′
1 , . . . , V

′
k), there exists (M1, . . . ,Mk), such that the transcripts of

conversations between
(V̂ ′, V ′0 , V

′
1 , . . . , V

′
k, P̂ , P1, . . . , Pk)

and
(V̂ ′, V ′0 , V

′
1 , . . . , V

′
k, M̂ ,M1, . . . ,Mk)

are identically distributed, where (M̂,M1, . . . ,Mk) is a set of correlation-confined simulators,

then we say that T is a perfectly indistinguishable, M̂ -confined zero-knowledge CCF-MIP.

To summarize, the zero-knowledge of CCF-MIPs has two attributes:

– Strength of indistinguishability : how indistinguishable is the simulated transcript from a real
one.

– Simulator’s confinement class: how much extra non-local resources do the simulators need
to produce the transcript.

The single-simulator zero-knowledge of standard model MIPs is equivalent to a signaling set
of simulators; that is, those whose M̂ is a signaling box. This is what protocol 7’s proof of
zero-knowledge actually described. However, we can do better.

Recall that the single simulator had two parts, the first part consists of passing V1’s challenges,
and the second consists of passing the consistency test. We will begin by describing the first part
(pre-computation, multilinearity test and sumcheck with oracle) for multiple simulators. Given
two arbitrary verifiers V1 and V2:

Protocol 8. ( Perfectly Indistinguishable, CHSH-Confined Simulator for Protocol 7,
Part 1)

The setup:

– Let (M̂,M1,M2) be a set of correlation-confined simulators.
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– M1 and M2 can send M̂ an index along with a bit.

– M̂ completes the indexed CHSH box (protocol 3) for both simulators.

The simulation strategy:

1. The simulators agree on unique indices for every commitment used in the protocol.

2. M1 interacts with V1 the way P1 would. Whenever P1 should commit, M1 commits
to random bits, just like the single-simulator from section 4.

3. For each commitment, V2 sends M2 a string s. M2 sends to M̂ the index of the
commitment and s.

4. M̂ runs the CHSH box (protocol 3) and replies with V2’s half of the output.

5. Whenever M1 needs to open a commitment, it can be opened in the way M1 desires
by sending the corresponding index and bit to M̂ .

6. M̂ completes the corresponding CHSH box which outputs t. M̂ sends t to M1.

7. M1 sends t to V1.

The gist of the first part of the simulation is simple. CHSH boxes can break the commitment
scheme used in protocol 7 without giving the parties the ability to signal. Make M̂ compute CHSH
boxes for the simulators, who then have the ability to break commitments without signaling. The
rest of part one of the simulation is exactly as in the single-simulator case.

The second part (the consistency test) can be done by having the simulators ignore the
question:

Protocol 9. ( Perfectly Indistinguishable, CHSH-Confined Simulator for Protocol 7,
Part 2)

1. V1 sends i to M1.

2. M1 computes Ω1 = H γ (Qi).

3. Using M̂ to break binding, M1 convinces V1 that Ω1 is actually A(Qi) ⊕H γ (Qi).

4. M1 opens Ω1 for V1, who gets Ω1 = H γ (Qi).

5. V2 sends Q′i to M2.

6. M2 responds with Ω2 = H γ (Q′i).

By the properties of the strongly-universal-2 hash H, if Qi = Q′i then Ω1 = Ω2. Otherwise
Ω1 6= Ω2 with exponentially high probability. This produces the result as desired. The simulators
then feed the transcripts to V0, and terminates simulation.

We close this section with two open questions. First, although protocol 7 is a local CCF-MIP,
the only known ways of simulating the transcript are to give the simulators some kind of non-local
resource such as a CHSH box (or a fully signaling box, but that is not necessary). We do not
know whether it is possible to simulate protocol 7 with local simulators, but we are unable to
show this to be impossible.

Second, the simulators’ confinement class is not unique. We can modify the behavior of a
CHSH box (by adding useless steps, for example) without reducing its non-localness. Therefore,
it is not clear whether we can speak of a “maximal” confinement class for a given CCF-MIP. We
have only shown, in our case, that the simulators can be relatively more confined (less non-locally
correlated) than it was believed.
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6 Non-Local Resources via P̂

The M̂ -confined simulators of the previous section hint at how we would like to utilize our
correlational confinement form MIPs in general. In existing literature, non-local resources of
provers are typically given as entanglement (for quantum provers) [9], a no-signaling probability
distribution from which the provers can sample [10], or arbitrary no-signaling resources [21].
There is a lack of granularity to them.

This is where P̂ , what we call a non-local task, comes in. P̂ , being a Turing machine, can
be defined operationally. It is much more flexible than just letting provers sample from some
distribution. First, a couple of definitions:

Definition 7. Let T = (V̂ , V0, V1, . . . , Vk, P̂ , P1, . . . , Pk) be a CCF-MIP. Then T has V̂ -confined

verifiers and P̂ -confined provers. We call T a (V̂ , P̂ )-confined MIP.

In this section, we will focus on what we can do with P̂ and not V̂ . We begin with the
observation that when the provers’ non-local resources change, it changes as a tool (for honest
provers) and as a liability (for dishonest provers), and it is not always clear how the resulting
accepted class of languages should change as a result.

For example, with local verifier/provers, we have MIP = NEXP. Increase the provers’ non-
local resources to arbitrary entanglement (MIP∗), and we get MIP∗ ⊇ NEXP [8], a possible
increase of accepted languages. Increase the provers’ non-local resources again to arbitrary no-
signaling distributions (MIPns), however, and we end up with MIPns = EXP [21], a possible
decrease of accepted languages (EXP vs. NEXP being open at the time of this writing).

The behavior of P̂ can be more complex than those correlations studied in existing literature,
as P̂ is computationally unbounded. We believe that the consequences of this most general form
of correlations between provers has not been explored. We end this section with the following
question, which, sadly, we are unable to answer:

Question 1. Does there exist a (V̂ , P̂ )-confined MIP which accepts a language not in NEXP?

More questions arise when a P̂ in question is computable in polynomial-time, since this means
that whatever non-local resources P̂ is providing the provers can actually be simulated by a set
of signaling verifiers (or a single verifier, in the standard MIP model). We discuss this in the next
section.

7 Non-Local Resources via the Verifiers

The MIP = NEXP result is the combination of two works. First, [6] showed that MIP ⊆
NEXP. Second, [7] showed that MIP ⊇ NEXP. In this work, we began by describing how the
second inclusion’s proof of soundness overlooked a blind spot (correlational contamination). We
then suggested a new, more restrictive model and presented a protocol for NEXP in this form,
with the guarantee that the verifiers are now local. We believe that what the existing results
really show is that “(∅, ∅)-confined MIPs accept NEXP.”

We make the argument below that the full generality of local-prover MIPs has not been
explored, and that it is still possible that MIP ) NEXP. We state upfront that, unfortunately,
we do not have a specific example to back up our generic argument below.

So far in our discussion, verifier non-locality has been undesirable. This follows from the
fact that verifier non-locality leads to prover non-locality, and the latter breaks many protocols.
For example, [9] showed that certain MIPs for 3-SAT break down if the provers are entangled;
[10] showed that certain multi-prover commitment schemes are no longer binding if the provers
have a CHSH box; more recently [21] showed that if the provers are allowed to sample arbitrary
no-signaling distributions, then the set of languages accepted decreases to EXP.
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However, properly utilized, we believe that verifier non-locality is a hitherto unused tool for
protocol design. Consider this generic argument: Suppose that there exists T , a (∅, P̂ )-confined

MIP which accepts a language L /∈ NEXP, and P̂ is polynomial-time computable (T /∈ MIP

since the provers are not local). Then, we can construct a new (V̂ , ∅)-confined MIP T ′ in which

we run T , except V̂ of T ′ identical to P̂ of T . When running T ′, whenever P̂ is needed by the
provers, they will ask the verifiers to compute it for them by calling V̂ . If this series of miracles
occurs, then MIP ) NEXP, because (V̂ , ∅)-confined MIPs are a subset of standard, single-
verifier MIPs (and therefore T ′ ∈MIP). We agree that this may seem too many miracles to ask
for, however they have not yet shown to be impossible.

We need to make clear that giving the provers a (polynomial-time) non-local task P̂ is not the

same as having the verifiers compute P̂ for the provers by calling V̂ . Giving the provers non-local
resources means that malicious provers can exploit them in arbitrary ways. However, if we make
the provers local, and let the verifiers provide the provers the same non-local resources, then
malicious provers can no longer exploit them arbitrarily. For instance, the verifiers can control
the timing and the amount of the non-local resources are used, as dictated by the protocol. If
the provers deviate, then the verifiers abort. This is an example of how verifiers (and in the case
of standard MIPs, the lone verifier) can enforce honest non-locality on the provers.

We leave as an open problem the following question:

Question 2. Does there exists a (V̂ , ∅)-confined MIP which accepts a language not in NEXP?
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