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Abstract

Fully homomorphic encryption schemes (FHE) allow to apply arbitrary efficient computation
to encrypted data without decrypting it first. In Quantum FHE (QFHE) we may want to apply
an arbitrary quantumly efficient computation to (classical or quantum) encrypted data.

We present a QFHE scheme with classical key generation (and classical encryption and
decryption if the encrypted message is itself classical) with comparable properties to classical
FHE. Security relies on the hardness of the learning with errors (LWE) problem with polynomial
modulus, which translates to the worst case hardness of approximating short vector problems in
lattices to within a polynomial factor. Up to polynomial factors, this matches the best known
assumption for classical FHE. Similarly to the classical setting, relying on LWE alone only
implies leveled QFHE (where the public key length depends linearly on the maximal allowed
evaluation depth). An additional circular security assumption is required to support completely
unbounded depth. Interestingly, our circular security assumption is the same assumption that
is made to achieve unbounded depth multi-key classical FHE.

Technically, we rely on the outline of Mahadev (arXiv 2017) which achieves this functionality
by relying on super-polynomial LWE modulus and on a new circular security assumption. We
observe a connection between the functionality of evaluating quantum gates and the circuit
privacy property of classical homomorphic encryption. While this connection is not sufficient to
imply QFHE by itself, it leads us to a path that ultimately allows using classical FHE schemes
with polynomial modulus towards constructing QFHE with the same modulus.

1 Introduction

A fully homomorphic encryption (FHE) scheme [RAD78,Gen09b] is one where the transformation
Enc(x)→ Enc(f(x)) can be performed efficiently for any efficiently computable f , without violating
the security of the scheme. This primitive is very useful for cryptographic applications, and in
particular it allows private outsourcing of computation. That is, using the resources of a powerful
third party to perform a computation without giving up privacy. In recent years it was shown how
to construct FHE based on standard cryptographic assumptions (mostly lattice related), including
ones that are assumed to be secure against quantum adversaries. In particular, it was shown
[BV11,BGV12,Bra12,GSW13,BV14,AP14] that FHE can be based on the hardness of the learning
with errors (LWE) problem introduced by Regev [Reg05]. LWE was proven to be as hard to solve
as the hardness of finding approximate shortest vectors in arbitrary worst-case lattices, a task for
which no significant quantum speedup is known. The approximation factor directly relates to a
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parameter of the LWE problem known as the noise ratio, expressed as a function of the dimension of
the problem.1 Initial schemes [BV11] relied on LWE with sub-exponential noise ratio, and thus the
hardness of sub-exponential approximation for lattice problems. Extensive research effort improved
the schemes all the way down to only requiring a polynomial noise ratio [BV14], which is the gold
standard for LWE-based security.

Understanding the capabilities and boundaries of FHE in various computational models is a
fundamental question in cryptographic study. In this work, we focus on extending the set of
supported functions f to the set of functions computable in quantum polynomial time, at the
necessary cost of the evaluation process itself becoming quantum as well. This extension is called
Quantum FHE (QFHE).

With developments in quantum computing occurring at an increasing rate, one could anticipate
outsourcing of quantum computation becoming a quite common. Specifically it is quite likely that
the first scalable quantum computers will be very expensive and require specialized maintenance and
thus will not be directly available to the public. Rather, users will need to send their inputs to be
processed by third party providers. If privacy is desired in this scenario, then QFHE could become
a useful tool. While current research on QFHE, including this work, is well within the theoretical
regime, developing theoretical tools and techniques could serve as basis for the development of
concrete systems in due time.

Previous Works. Broadbent and Jeffery [BJ15] showed that any classical FHE scheme can be
translated into a quantum one that supports a limited set of gates (specifically, the evaluation of
Clifford gates). Their idea is quite natural and elegant, and while not explicitly stated in this way, is
related to the well established cryptographic notion of key encapsulation mechanisms (KEM). They
rely on the notion of quantum one time pad (QOTP) that allows to information theoretically encrypt
a quantum state using a single-use classical random pad. They propose to encrypt a quantum state
using a QOTP, and then encrypt the pad itself using a classical homomorphic encryption scheme.
They then show that Clifford operations in the quantum regime translate into applying a public
operation on the quantum part of the QOTP ciphertext, and applying public classical operations
on the classical secret bits of the pad. The latter can be applied homomorphically since the secret
bits of the pad are encrypted using a classical FHE scheme. They also show that evaluating an
a-priori bounded number of non-Clifford gates is possible at the cost of the ciphertext size blowing
up polynomially with the number of supported non-Clifford gates.

Dulek, Schaffner and Speelman [DSS16] showed how to transfer the dependence on the number
of non-Clifford gates from the ciphertext to the key. Specifically, their key generation involves
generating a quantum gadget for every non-Clifford gate to be evaluated throughout the lifetime
of the scheme, and transferring these gadgets to the homomorphic evaluator. The gadgets are
consumed after a single use and their quantum nature prevents them from being duplicated or
shared. This allowed for the first time to outsource quantum computation privately and compactly,
but at the cost of quantum preprocessing. The [DSS16] solution used the KEM approach as
well, but required the decryption complexity of the classical FHE scheme to be bounded (roughly
logarithmic space). They instantiate their scheme with the [BV11] FHE scheme, thus inheriting
its unfavorable properties, but we believe it can also be instantiated using newer schemes such
as [BGV12,Bra12,GSW13], but it is not clear whether it applies to schemes based on the hardness

1To the informed reader we clarify that the noise ratio is the inverse of the Gaussian parameter of the relative
noise, i.e. 1/α in the common notation.
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of polynomial lattice approximation due to the sequentialization technique of [BV14] used in these
schemes.

Mahadev [Mah17] very recently presented a scheme whose key generation process is completely
classical. This immediately implies that the keys can be duplicated and there is no longer a global
bound on the total homomorphic capacity of the system. This scheme also uses key encapsulation,
and requires specific properties of the underlying classical homomorphic encryption. An important
property of the [Mah17] scheme is that the homomorphic evaluation of each quantum gate is not
necessarily perfectly correct, but rather it is only guaranteed to be within small trace distance of the
correct state. These errors accumulate so in the worst case they are multiplied by the total circuit
size. Thus, in order to achieve correctness up to a negligible trace distance, the per-gate error needs
to be negligible as well. In the [Mah17] solution, the per-gate error is (inversely) related to the
noise rate of the underlying LWE assumption, so in order to achieve correctness for all polynomial
size circuits, it is required to rely on the hardness of super-polynomial approximation to lattice
problems (or even larger, depending on the type of computation and the user’s desired level of
confidence).

Another unusual requirement of [Mah17] from the underlying classical FHE scheme is random-
ness recoverability. Namely, that using the secret key it is possible to recover the randomness of a
ciphertext. This is achieved using the dual scheme to the [GSW13, BV14, AP14] scheme, but re-
quires changing the secret key from being a single vector to a trapdoor to the lattice corresponding
to the public key. This would all be in the realm of low order technicalities, except for the issue of
circular security, which we explain next. Even in the classical setting, relying on LWE alone only
allows to construct leveled FHE, where an a-priori bound on the depth (but not on the size) of
evaluated circuits needs to be known. Overcoming this issue to obtain a scheme that is secure for
any depth requires encrypting the scheme’s own secret key, and explicitly assuming that this does
not adversely impact the security of the scheme. Making this assumption for standard LWE-based
encryption is by now the norm, but one might be less confident about making this assumption for
new distributions of secret keys.

To conclude this overview, we note that there is a distinction in the literature between QFHE
for classical vs. for quantum inputs. The former requires that the encryption and key generation
process are completely classical, so that quantum computation on classical inputs can be outsourced
by a classical entity. This distinction could suggest that the two notions are incomparable, however
we believe that it is instructive to aspire to achieve a notion that generalizes both. Specifically,
we propose to aspire for QFHE with classical keys, that can encrypt classical messages using a
classical encryption process, and can encrypt quantum messages using a quantum process, and
likewise if the output of homomorphic evaluation is classical then it should be decryptable by a
classical decryption process. This stronger notion is in fact achieved by [Mah17], although this
property is not highlighted.

Our Results and Approach. We present a QFHE scheme using the high level outline of
[Mah17], but with per-gate error that decays exponentially with the noise rate of the underly-
ing LWE assumption. Thus, using polynomial noise rate we are able to achieve exponentially
small per-gate error, which means that we can securely evaluate any polynomial (or even super-
polynomial) quantum circuit while incurring only an exponentially small skew between the output
of homomorphic evaluation and the desired result. We do this by (again) relying on key encapsu-
lation, this time using the (primal) [GSW13,BV14,AP14] scheme as the KEM component. As for
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the distribution of secret keys, we do not require to use a lattice trapdoor as secret key, but our
scheme requires publishing an encryption of the secret key of a [GSW13]-style scheme, and keeping
the randomness used to generate this encryption as a part of its own secret key.

Therefore, if we wish to create a scheme that works for a-priori unbounded depth, we need to
assume circular security respective to a key containing a standard LWE key as well as randomness
that was used to generate encryptions of this key. Interestingly, this exact assumption is required
in order to construct unbounded depth classical multi-key FHE from [GSW13]-style encryption
[CM15,MW16,BP16,PS16].2

In terms of our approach, we observe that the [Mah17] method is implicitly intimately connected
to the circuit privacy property of the underlying classical homomorphic scheme. Circuit privacy is
the property that after homomorphically evaluating a function f , the resulting ciphertext Enc(f(x))
does not contain any information about f except the value f(x) (even statistically). While circuit
privacy is not a sufficient condition, it appears to be necessary for ensuring functionality in the
[Mah17] method.

Circuit private homomorphic encryption schemes are useful for various applications and this
property has been extensively studied in the FHE literature, e.g. in [Gen09a,GHV10,DS16,BPMW16].
However, this property is usually considered to be a security feature, and we find it quite curious
that in the quantum setting it turns out to be related to the correctness of homomorphic evaluation.

Through the circuit privacy lens, the [Mah17] scheme can be viewed as applying the most
rudimentary method for achieving function privacy, known as noise flooding [Gen09a]. This method
guarantees privacy that is roughly relative to the noise rate of the underlying LWE assumption,
hence super-polynomial rate is required to achieve privacy with all but negligible probability. It is
not immediately clear how to apply more modern circuit privacy approaches in the QFHE setting
(due to the additional properties required for quantum homomorphic evaluation), and the bulk
of our technical work goes towards developing techniques to allow this application. We elaborate
more on our techniques below.

1.1 Technical Overview

Our basic approach, traced back to [BJ15], is to rely on key encapsulation. The ciphertext is
encrypted using a quantum one time pad (QOPT), and the (classical) secret pad is encrypted using a
classical FHE. QOTP encryption of a qubit can be expressed as applying a random Pauli operation,
namely a random bit flip and a random phase flip. This allows to easily evaluate Clifford gates. As
observed in previous works [DSS16,Mah17], a missing piece that would imply QFHE is being able
to homomorphically evaluate the CNOT operation on a given quantum state, but given a classical
control bit in encrypted form. To be more explicit, given a 2-qubit superposition

∑
a,b αa,b|a, b〉

and an encrypted control bit x, output an encapsulated encryption of
∑

a,b αa,b|a, b⊕ ax〉, i.e. a
two-qubit register and a classically encrypted pad that would decrypt the quantum register to the
aforementioned superposition. The encapsulated version we produce will be a superposition of the
form

∑
a,b(−1)aγphaseαa,b|a, b⊕ ax⊕ γflip〉 for some bits γflip, γphase, together with encryptions of the

bits γflip, γphase. One can verify that indeed
∑

a,b(−1)aγphaseαa,b|a, b⊕ ax⊕ γflip〉 can be corrected
to the prescribed output using a proper bit flip and phase flip. We start by describing at a high
level the [Mah17] approach and its relation to circuit privacy.

2Curiously, there is a syntactic resemblance between the randomness of a [GSW13, BV14, AP14] ciphertext and
lattice trapdoors generated using the method of [MP12].
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The [Mah17] Approach and Circuit Privacy. Given
∑

a,b αa,b|a, b〉 and Enc(x), the idea is
to apply classical homomorphic evaluation to generate a superposition of the form∑

a,b,µ

αa,b|a, b⊕ µ〉|Enc(ax⊕ µ)〉|µ〉

(we ignore normalization factors). This can be done using the properties of the classical FHE by ap-
plying to Enc(x) the function fa,µ(x) = ax⊕µ. Now, measure the register containing |Enc(ax⊕ µ)〉
to obtain some ciphertext c′, let γflip denote the bit that it encrypts and note that µ = ax ⊕ γflip.
Then the remainder superposition is:

∑
a,b αa,b|a, b⊕ ax⊕ γflip〉|ax⊕ γflip〉. So far we used the ho-

momorphic ciphertext to introduce an added ax term into the |b〉 register. Finally, to remove the
last register |ax⊕ γflip〉, measure it in the Hadamard basis, or alternatively, apply Fourier Transform
and measure the result. We get a measured bit w and the state

∑
a,b(−1)(wx)aαa,b|a, b⊕ ax⊕ γflip〉

(with a global factor (−1)wγflip that can be ignored). Therefore, setting γphase = wx should complete
the proof.

Unfortunately, this outline is too simplistic. We ignored the fact that there are many possi-
ble ciphertexts of the form Enc(ax ⊕ µ), and the specific ciphertext output by homomorphically
evaluating fa,µ might depend on a, µ, which means that measuring it might collapse the super-
position completely. This is why circuit privacy seems useful, since it will ensure that regardless
of a, µ the distribution of Enc(ax ⊕ µ) depends only on the bit it encrypts. However, making a
ciphertext private necessarily requires randomness, and we cannot use classical randomness since
it will cause the superposition to collapse just as before. Therefore, the randomness is taken in
superposition, and after measuring c′ we are left with an additional register containing the ran-
domness conditioned on c′. In a sense the privacy transformation transferred the information
about the applied circuit from the ciphertext to the randomness register. We are thus left with∑

a,b(−1)aγphaseαa,b|a, b⊕ ax⊕ γflip〉|ra〉 and we need to find a way to get rid of this additional
randomness register.

In [Mah17] it is shown that using their specific scheme, it is possible to express ra as r0⊕ (ar1)
where r0, r1 are binary vectors, and thus again measuring this register in the Hadamard basis will
be effective. This crucially relies on having a one-to-one mapping between the randomness in the
privacy transformation and the ciphertext c′. This property indeed holds for noise flooding, but
not for later privacy techniques.

To complete this description, we note that after the Hadamard measurement, the value of r1

now contributes to γphase, and an additional process involving the lattice trapdoor is introduced in
order to show that a classical encryption of the new γphase can be recovered.

Our Solution. We are inspired by the circuit privacy argument of Bourse et al. [BPMW16] which
is applicable to encryption schemes of the type introduced in [GSW13] (henceforth referred to as
GSW) and shows how to achieve circuit privacy with polynomial noise rate. In GSW an encryption
of a bit x is represented by a matrix over Zq for some modulus q of the form C = ARc+xG, where
A is the public key of the scheme, Rc is a matrix of low norm (say all entries are � q) and G is
a special “gadget” matrix. For our purposes it will be useful to choose the modulus q to be even
(this does not have an effect on the resulting hardness assumption). The circuit privacy argument
of [BPMW16] implies that if we sample a integer vector r from a discrete Gaussian distribution over
the set {r : Gr = a q2∆ (mod q)} (for some vector ∆), and compute the vector c′ = Cr+( q2µ+y)∆,
where y is a discrete Gaussian over Z, then c′ is a circuit private representation of ax ⊕ µ, i.e. c′
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does not reveal information about a, µ beyond the value ax⊕ µ.3

Let us now see how this method fits into the [Mah17] outline. Specifically, every c′ in this
setting will have multiple randomness values associated with it, so there is no longer a single ra
associated with each c′. We will therefore try to find an alternative structural property of the
randomness register that will allow us to remove it without collapsing the superposition. Looking
closely, we see that the randomness consistent with c′ is a discrete Gaussian over variables r, y, µ
s.t. {r : Gr = a q2∆ (mod q)} and c′ = Cr + ( q2µ + y)∆ = ARcr + ( q2(ax ⊕ µ) + y)∆. Indeed we
observe that this is a Gaussian superposition over the solutions of a set of linear equations modulo
q. In other words over a coset of a q-ary lattice, where the coset is determined by c′ and by a q2∆.
This suggests a way out, if we are willing to replace the binary Fourier Transform with q-ary Fourier

Transform
(
FTq : |x〉 →

∑
|w〉e−

2πi
q
〈w,x〉)

. As a rule of thumb, applying FTq on different cosets of
the same lattice, results in the same output, up to a phase that depends on the difference between
the cosets. In our case, the difference is a multiple of a, just like we wanted.

Unfortunately, things are not so simple. First of all, indeed the phase is a multiple of a, but
since we applied FTq, this phase might be relative to a q-ary root of unity, and not to (−1) as
we require for our key encapsulation.4 Luckily, in our case the difference between the cosets is a
multiple of q

2 , which translates to a phase relative to (−1). A greater difficulty comes from the
fact that we are not actually uniform over a the coset, but rather Gaussian, which makes the
transference between the pre-FTq and post-FTq regimes more messy. In particular, instead of all
points having the same phase shift, each measured value receives phase contributions from many
sources which can interfere with each other. It is known that if the Gaussian parameter is large
enough (larger than the so called “smoothing parameter” of the lattice), then the interference is
negligible. Unfortunately this is not the case here, and we need to explicitly analyze the post-FTq

superposition in order to show that the effect of the interference only amounts to exponentially
small trace distance.

Finally, we note that in order to make the analysis go through, we add an additional component
to the privacy transformation and actually set c′ = Cr+Ar̂+( q2µ+y)∆, with r̂ being an additional
Gaussian parameter. This allows us to prove useful properties for the resulting lattice, as well as
provides us with a way to recover the new γphase without requiring lattice trapdoors, but rather
using only an encrypted form of Rc and the LWE secret key.

1.2 Paper Organization

The main technical contribution of this paper is the homomorphic evaluation of classically controlled
CNOT, which is outlined above in Section 1.1 and formally analyzed in Section 5.

General preliminaries appear in Section 2, preliminaries related to the definition of homomorphic
encryption and results from previous works that we use appear in Section 3. In Section 4 we describe
how to put together the components from previous works together with our classically controlled
CNOT to create the QFHE scheme.

3Indeed, c′ does not have the same form as the original ciphertext C, but it can be correctly decrypted, which is
the property we care about.

4One could consider using q-ary QOTP, but this introduces other difficulties since it changes the class of circuits
that are “easy”, analogous to Clifford in the binary setting.
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2 Preliminaries

We denote the unit ball by Bm = {x ∈ Rm : ‖x‖2 ≤ 1}, we omit the subscript when m is clear
from the context. Similarly we denote the unit cube by Hm = {x ∈ Rm : ∀i. x[i] ∈ (−1, 1]}. We
will sometimes use the shorthand Btm, Htm to denote t · Bm, t · Hm respectively.

Let F : X → C, and let W ⊆ X, then we denote F (W ) =
∑

x∈W F (x). For all q ∈ N we let
Zq denote the ring of integers modulo q. We represent elements in Zq using numbers in the range
(− q

2 ,
q
2 ] ∩ Z. We denote by [x]q the value y s.t. y = x (mod q) and y ∈ (− q

2 ,
q
2 ]. We let [Z]q denote

the set Z ∩ (− q
2 ,

q
2 ].

We say that we δ-compute a quantum state if we compute a superposition that is within trace
distance O(δ) of that state.

Quantum Rejection Sampling. We recall that quantum rejection sampling allows to take a
superposition

∑
x∈X αx|x〉 and any sequence {α′x}x s.t. |α′x| ≤ 1 for all x, and produce a superpo-

sition 1
A

∑
x∈X αxα

′
x|x〉, where A =

∑
x∈X |αxα′x|

2. The success probability of this procedure (i.e.
the probability of not rejecting) is A. If it is efficient to generate the original superposition then
the process can be repeated until successful, 1/A times in expectation.

Log-Infinity Uniformity. It will be convenient for us to consider a measure we call log-infinity
variance.5

Definition 2.1. The log-infinity variance of a vector v ∈ (R+)m is defined as

loginf(v) = ln

(
maxi v[i]

mini v[i]

)
. (1)

If loginf(v) ≤ ε, we say that v is ε-loginf uniform.

We will often use loginf-uniformity for general indexed sets V = {vz ∈ R+}z∈M , where M is
some set of indices.

The following properties are easy to verify by definition.

Lemma 2.2. Let V = {vz}z∈M be ε-loginf uniform. Then the following hold:

1. Conditioning. ∀M ′ ⊆M the sequence V ′ = {vz}z∈M ′ is ε-loginf uniform.

2. Aggregation. ∀a1, . . . , ak ∈ R+ the sequence {a1vz1 + · · · + akvzk}z1,...,zk∈M is ε-loginf uni-
form.

3. `pp-Uniformity. Let p ∈ R+. The distribution defined on M by assigning probabilities
Pr[z] ∝ vpz is within statistical distance O(pε) of uniform.

5We suspect that this measure has been considered before, but were not able to find any reference or a well
established name for it.
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2.1 Quantum One Time Pad

The quantum one time pad (QOTP) allows to encrypt a qubit in an information theoretically secure
manner using two random classical bits as symmetric key. Encrypting a multi-qubit state can be
done in a bit by bit manner (using an independently sampled symmetric key for each qubit in the
state).

• QOTP.Keygen(). Sample two classical bits x, z
$← {0, 1} and outputs (x, z).

• QOTP.Enc((x, z), φ). Given a qubit φ apply the Pauli transformation XxZz to φ and output
the resulting φ̂. More explicitly, the applied transformation is: (α0|0〉 + α1|1〉) → (α0|x〉 +
(−1)zα1|x̄〉).

• QOTP.Dec((x, z), φ̂). Apply the reverse transformation ZzXx to φ̂.

We note that if the message to be encrypted φ is classical, then it is possible to generate a syntacti-
cally correct and unconditionally secure QOTP of φ using a classical algorithm by simply applying
a classical one time pad using randomness x, and setting z = 0. Furthermore, given any QOTP
encryption of a classical value, it is possible to measure φ̂ and the resulting classical value can
be correctly decrypted using the key (x, z) (or even (x, 0)) by the standard classical one time pad
decryption.

2.2 Discrete and Periodic Gaussians

For s > 0 we define the Gaussian density function ρs(x) := e−π(‖x‖/s)2
, where x ∈ Rn. For a set of

points X ⊆ Rn we denote ρs(X) =
∑

x∈X ρs(x). The discrete Gaussian distribution DZn,s is one
that is supported only over x ∈ Zn and such that Pr[DZn,s = x] ∝ ρs(x).

Definition 2.3 (Periodic Gaussian). The q-periodic Gaussian function ρs,q is the periodic contin-
uation of ρs. Namely ρs,q(x) = ρs(x + qZm).

We show next that when s is sufficiently smaller than q, ρs,q(x) is close to the non-periodic (but
truncated) Gaussian.

Lemma 2.4. Let s > 0, q ∈ N, x ∈ Zm be such that ‖[x]q‖ < q/4. Then

1 ≤ ρs,q(x)

ρs([x]q)
< 1 + 2−( 1

2
(q/s)2−m) (2)

Proof. The lower bound holds by definition. For the upper bound,

ρs,q(x)

ρs([x]q)
=

∑
v∈Zm(ρs([x]q + qv)

ρs([x]q)
(3)

=
∑

v∈Zm
exp

(
−π
(
‖[x]q + qv‖2 − ‖[x]q‖

2
)
/s2
)

(4)

= 1 +
∑

v∈Zm\{0}

exp
(
−π
(
‖[x]q + qv‖2 − ‖[x]q‖

2
)
/s2
)

︸ ︷︷ ︸
denote by δ

(5)
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However, since ‖[x]q‖ < q/4, it holds that for all v ∈ Zm \ {0}

‖[x]q + qv‖2 − ‖[x]q‖
2 ≥ ‖qv‖ · (‖qv‖ − 2‖[x]q‖) (6)

> ‖qv‖ · (‖qv‖ − q/2) (7)

≥ ‖qv‖ · (‖qv‖/2) (8)

= ‖qv‖2/2 (9)

Therefore

δ ≤ ρ
((

q

s
√

2
Zm
)
\ {0}

)
(10)

≤ 2m−
1
2

(q/s)2
, (11)

where the last inequality follows by Lemma 2.10, with t = q

s
√

2
.

For one dimensional Gaussians, another bound can be achieved.

Lemma 2.5. Let q ∈ N, s > 0 and x ∈ [Z]q. Then

ρs,q(x) ≤ 2ρs(x)/(1− ρs(q)) (12)

Proof. We expand the expression:

ρs,q(x) =
∑
j∈Z

e−π(
x+jq
s )

2

(13)

=
∑
j∈N

e
−π
(
|x|+jq
s

)2

+
∑
j∈N

e
−π
(

(q−|x|)+jq
s

)2

(14)

≤
∑
j∈N

e−π(
x
s )

2

· e−πj(
q
s)

2

+
∑
j∈N

e
−π
(

(q−|x|)
s

)2

· e−πj(
q
s)

2

. (15)

Since e
−π
(

(q−|x|)
s

)2

≤ e−π(
x
s )

2

, and
∑

j∈N e
−πj( qs)

2

= 1/(1− e−π(
q
s)

2

), the lemma follows.

Corollary 2.6. Let s > 0, q ∈ N, x ∈ Zm be such that ‖[x]q‖ ≥ t. Then

ρs,q(x) ≤ 2mρs(t)

1−mρs(q)
, (16)

Proof. We will use Lemma 2.5 as follows:

ρs,q(x) ≤
m∏
i=1

ρs,q(xi) ≤
m∏
i=1

2ρs(x)

1− ρs(q)
≤ 2m

1−mρs(q)
· ρs(x) ≤ 2mρs(t)

1−mρs(q)
.
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2.3 Lattices

A lattice, formally, is a discrete subgroup of Rm. In this work we focus on integer lattices, which
are subgroups of Zm. Any lattice can be represented as the Z-span of a set of basis vectors. The
basis is usually represented as a matrix B whose columns are the elements of the basis. The lattice
spanned by the basis B ∈ Zm×k is denoted L(B) = {Bt : t ∈ Zk}. We will usually consider full
rank lattices where B is a square matrix. A coset of a lattice is defined by a vector c ∈ Rm and
denoted as c + Λ = {x : x−v ∈ Λ} (note that many different c vectors can define the same coset).
The dual of Λ is the set Λ∗ = {y : ∀x ∈ Λ. 〈y,x〉 ∈ Z}.

The following is an immediate corollary from Banaszczyk’s transference theorems [Ban93].

Corollary 2.7. Let Λ be a rank n lattice, and assume that Λ contains k linearly independent vectors
of length ≤ `. Then any set of (n− k + 1) linearly independent vectors in Λ∗ contains a vector of
length ≥ 1/`.

Specifically, if Λ contains (n− 1) linearly independent vectors of length ≤ `, then all vectors in
Λ∗ of length < 1/` are on the same line.

Given a lattice Λ ⊆ Rm, we say that T ∈ Zm×m′ is a σ-trapdoor for Λ if it has the same rank as

Λ and its orthogonalized norm
∥∥∥T̃∥∥∥ is at most σ. The orthogonalized norm is the maximal norm of

the columns of T̃, which is in turn the Gram-Schmidt orthogonalization of the columns of T. An
upper bound on the norm of the columns of T itself is also an upper bound for its trapdoor quality.

The ε-smoothing parameter of the lattice Λ, denoted ηε(Λ) is defined as the maximal Gaussian
measure over Λ whose Fourier Transform is concentrated around 0. For our purposes we will only
require the following two properties proven in [MR04,Reg05,GPV08].

Lemma 2.8. If Λ is of rank m and has a σ-trapdoor then for all ε < 1/2 it holds that ηε(Λ) ≤
σ ·
√

1
π log(4m/ε).

Lemma 2.9. If ηε(Λ) ≤ s then the sequence {ρs(Λ + d)}d∈Rm is O(ε)-loginf uniform.

We also use the following lemma, a parameterized version of [RV04, Lemma 7], which is in turn
a simplified version of [Ban93], and follows by an identical proof.

Lemma 2.10. For any m dimensional lattice Λ, for all d ∈ Rm and for all s, t it holds that

ρs((Λ + d) \ Btm) ≤ 2m−(t/s)2
ρs(Λ) . (17)

2.4 The Class of q-Ary Lattices

This class of lattices that is very useful in cryptography, and plays a prominent role in this work
as well. A lattice is q-ary, for a modulus q ∈ N, if it contains all of the vectors in qI (where I is the
identity matrix). All such lattices have full rank.

Every matrix of the form L ∈ Zn×mq defines two useful q-ary lattices. The “perp lattice”

Λ⊥q (L) = {x : Lx = 0 (mod q)}, and the row span Spanq(L) = {y ∈ Zm : ∃s ∈ Znq . y = sL
(mod q)}, which contrary to our usual convention will be considered as a lattice of row vectors.
The dual of Spanq(L) is 1

qΛ⊥q (L). For all v ∈ Znq define Λ⊥q (L,v) = {x : Lx = v (mod q)} and

note that these are cosets of Λ⊥q (L).
Translating Corollary 2.7, we get the following.
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Corollary 2.11. If Λ⊥q (L) contains (n − 1) linearly independent vectors of length ≤ `, then all
vectors in Spanq(L) of length < q/` are on the same line.

For all n, we define the gadget matrix G ∈ Zn×ndlog qe
q as the block matrix G = [I‖2I‖ · · · ‖2dlog qe−1I]

(where I is the n × n identity matrix). For all V ∈ {0, 1}n×k we define G−1(V) ∈ {0, 1}ndlog qe×k

to be the binary matrix s.t. GG−1(V) = V (mod q). The matrix G has a
√

5-trapdoor (for any
values of n, q).

By the leftover hash lemma, for all m > (n log q + 2), all but 2−n fraction of the matrices
L ∈ Zn×mq have a

√
m-trapdoor. The matrix G also has a

√
m-trapdoor (which is efficiently

computable, but we will not require it for the purpose of this work).
Lastly, the following is a direct corollary of the fact that 1

qSpanq(D) is the dual of Λ⊥q (D), the
Poisson summation formula and basic properties of the Fourier Transform (see, e.g., [RK04]).

Corollary 2.12. For any full rank D ∈ Zn×mq , for all v ∈ Znq , w ∈ Zmq and any σ ∈ R+ it holds
that ∑

x∈Λ⊥q (D,v)

ρσ(x)e
− 2πi

q
〈w,x〉

= σm

qn ·
∑
t∈Zn

ρq/σ(w + tD) · e
2πi
q
〈t,v〉

(18)

= σm

qn ·
∑
t∈Znq

ρq/σ,q(w + tD) · e
2πi
q
〈t,v〉

. (19)

2.5 Learning with Errors

The learning with errors (LWE) problem was defined by Regev [Reg05]. In this work we exclusively
use the decisional version. The LWEn,m,q,χ problem, for n,m, q ∈ N and for a distribution χ
supported over Z is to distinguish between the distributions (A, sA + e (mod q)) and (A,u),
where A is uniform in Zn×mq , s is a uniform row vector in Znq , e is a uniform row vector drawn
from χm, and u is a uniform vector in Zmq . Often we consider the hardness of solving LWE for any
m = poly(n log q). This problem is denoted LWEn,q,χ.

As shown in [Reg05, PRS17], the LWEn,q,χ problem with χ being the discrete Gaussian distri-
bution with parameter σ = αq ≥ 2

√
n (i.e. the distribution over Z where the probability of x is

proportional to e−π(|x|/σ)2
, see more details below), is at least as hard as approximating the shortest

independent vector problem (SIVP) to within a factor of γ = Õ(n/α) in worst case dimension n
lattices. This is proven using a quantum reduction. Classical reductions (to a slightly different
problem) exist as well [Pei09, BLP+13] but with somewhat worse parameters. The best known

(classical or quantum) algorithm for these problems run in time 2Õ(n/ log γ), and in particular are
conjectured to be intractable for γ = poly(n).

2.6 The q-Ary Fourier Transform

We will use the following flavor of Fourier Transform over the ring Zq for q ∈ N (this is sometimes

called discrete Fourier Transform) which maps functions f : Zn → C to f̂ : Znq → C as

f̂q(w) =
∑

x∈Zn
f(x) · e−

2πi
q
〈w,x〉

. (20)

We note that if f is only supported over the cube modulo q, i.e. over Hq/2n ∩ Znq , then the q-ary
Fourier Transform operator is unitary (up to a global normalization factor).
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2.7 Generating Gaussian Superpositions Over Lattices

It has been shown in previous works [GPV08,BLP+13] how to sample from a Gaussian superposition
over a lattice, or a coset of a lattice, given a good enough basis. We observe that these methods
can be extended to generating a Gaussian superposition by carefully repeating the argument from
[BLP+13, Section 5], replacing rejection sampling with quantum rejection sampling, and neglecting
the far tail of the Gaussian distribution. We state the result only for integer lattices to avoid
handling matters of precision.

Lemma 2.13 (Lattice Superposition Generation). Let Λ = L(B) ⊆ Zm be an m-dimensional
lattice, let c ∈ Zm and let r ≥

√
ln(2m+ 4)/π · ‖B̃‖. Let δ ∈ (0, 1). Then there exists a quantum

expected polynomial time algorithm GenGauss s.t. GenGauss(B, c, r, 1/δ) outputs a quantum state
which is within O(δ) trace distance of

1√
ρr(Λ + c)

∑
x∈Λ+c

ρ√2r(x)|x〉 . (21)

Furthermore if r ≥
√

log(4m/δ)/π · ‖B̃‖ then the resulting quantum state is supported only over

Zm ∩ Br
√
m+log(1/δ)

m .

We provide a proof for the sake of completeness in Appendix A.

3 Homomorphic Encryption Tools and Techniques

3.1 Classical Homomorphic Encryption and Bootstrapping

We now define fully homomorphic encryption in the classical and quantum setting, and introduce
Gentry’s bootstrapping theorem.

A homomorphic (public-key) encryption scheme HE = (HE.Keygen,HE.Enc,HE.Dec,HE.Eval) is
a tuple of ppt algorithms as follows (λ is the security parameter):

• Key generation (pk, sk)←HE.Keygen(1λ): Outputs a public encryption key pk and a secret
decryption key sk.

• Encryption c←HE.Enc(pk, x): Using the public key pk, encrypts a single bit message x ∈
{0, 1} into a ciphertext c.

• Decryption x←HE.Dec(sk, c): Using the secret key sk, decrypts a ciphertext c to recover
the message x ∈ {0, 1}.

• Homomorphic evaluation ĉ←HE.Eval(C, (c1, . . . , c`), pk): Using the public key pk, applies
a circuit C : {0, 1}` → {0, 1}`′ to c1, . . . , c`, and outputs ciphertexts ĉ1, . . . , ĉ`′ .

We overload the functionality of the encryption and decryption procedures by allowing the encryp-
tion to take multi-bit messages as input, and produce a sequence of ciphertexts corresponding to a
bit-by-bit encryption. Similarly we allow the decryption to take as input a sequence of ciphertexts,
decrypt them one after the other and output the result. We note that when we refer to the “de-
cryption complexity” of the scheme, we refer to the single ciphertext procedure (although we will
mostly be concerned with computation depth which remains the same in the overloaded version.)

12



A homomorphic encryption scheme is said to be secure if it is semantically secure.
Full homomorphism and leveled full homomorphism is defined next.6

Definition 3.1 (compactness and full homomorphism). A scheme HE is fully homomorphic, if for
any efficiently computable circuit C and any set of inputs x1, . . . , x`, letting (pk, sk)←HE.Keygen(1λ)
and ci←HE.Enc(pk, xi), it holds that

Pr [HE.Dec(sk,HE.Eval(C, (c1, . . . , c`), pk)) 6= C(x1, . . . , x`)] = negl(λ) .

A fully homomorphic encryption scheme is compact if its decryption circuit is independent of
the evaluated function. The scheme is leveled fully homomorphic if it takes 1L as additional input
in key generation, and can only evaluate depth L Boolean circuits.

Gentry’s bootstrapping theorem shows how to go from limited amount of homomorphism to
full homomorphism. This method has to do with the augmented decryption circuit and, in the case
of pure fully homomorphism, relies on the weak circular security property of the scheme.

Definition 3.2 (Bootstrappable Homomorphic Encryption). Consider a homomorphic encryption
scheme HE. Let (sk, pk) be properly generated keys and let C be the set of properly decryptable
ciphertexts. Then the set of augmented decryption functions, {fc1,c2}c1,c2∈C is defined by

fc1,c2(x) = HE.Decx(c1) ∧ HE.Decx(c2) .

Namely, the function that uses its input as secret key, decrypts c1, c2 and returns the NAND of the
results.

The scheme HE is bootstrappable if it can homomorphically evaluate its family of augmented
decryption circuits.

Definition 3.3. A public key encryption scheme PKE is said to be weakly circular secure if it is
secure even against an adversary who gets encryptions of the bits of the secret key.

The bootstrapping theorem is thus as follows.

Theorem 3.4 (bootstrapping [Gen09b,Gen09a]). A bootstrappable homomorphic encryption scheme
can be transformed into a leveled fully homomorphic encryption scheme with the same decryption
circuit, ciphertext space and public key.

Furthermore, if the aforementioned scheme is also weakly circular secure, then it can be made
into a (non-leveled) fully homomorphic encryption scheme.

3.2 Quantum Fully Homomorphic Encryption

A quantum fully homomorphic encryption (QFHE) is one that can encrypt qubit registers and
apply quantum circuits to encrypted data. For the purpose of this paper we will only consider
QFHE schemes with classical keys.

We start by considering quantum homomorphic encryption. This is a scheme with similar
syntax to the classical setting described above, and is likewise defined as a sequence of algorithms
(HE.Keygen,QHE.Enc,QHE.Dec,QHE.Eval). The syntactic differences are as follows.

6An informed reader will notice that we define single-hop homomorphism. However this notion is sufficient and
implies the multi-hop version via bootstrapping.
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1. HE.Keygen remains a classical probabilistic algorithm.

2. QHE.Enc takes as input a qubit x rather than a bit, and outputs a ciphertext represented in
qubits.

3. QHE.Dec takes as input a ciphertext represented as a quantum register and outputs the
plaintext as a qubit.

4. QHE.Eval takes as input a classical description of a quantum circuit with ` input qubits and
`′ output qubits, and a sequence of ` quantum ciphertexts. Its output is a sequence of `′

quantum ciphertexts.

A quantum homomorphic encryption scheme is secure if it is semantically secure. For the definition
of quantum semantic security see [BJ15].

Definition 3.5 (compactness and full homomorphism). A scheme QHE is fully homomorphic, if
for any BQP circuit C and any `-qubit state x1, . . . , x`, the states ρ1, ρ2 defined henceforth are
within negligible trace distance.

We define ρ1 to be the `′-qubit state of the output of C(x1, . . . , x`). We define ρ2 to be the
`′-qubit state produced as follows. Generate (pk, sk)←HE.Keygen(1λ) and ci←HE.Enc(pk, xi), and
output QHE.Dec(sk,QHE.Eval(C, (c1, . . . , c`), pk)). As in the classical case, a fully homomorphic
encryption scheme is compact if its decryption circuit is independent of the evaluated function.
The scheme is leveled fully homomorphic if it takes 1L as additional input in key generation, and
can only evaluate depth L Boolean circuits.

3.3 GSW-Style Classical FHE with Polynomial Modulus

We consider the LWE based fully homomorphic encryption scheme of Gentry, Sahai and Wa-
ters [GSW13]. Specifically we use a result due to Brakerski and Vaikuntanathan [BV14] showing
that it is possible to achieve secure FHE using polynomial modulus.

Theorem 3.6 ( [BV14]). There exist polynomials q0(n), Br(n), Be(n), and a (classical) bootstrap-
pable fully homomorphic encryption scheme parameterized by any function q(n) s.t. ∀n. q(n) ∈
[q0(n), 2n], with the following properties.

1. The scheme is secure based on the LWEn,q,χ assumption, with χ = DZ,2
√
n, and thus on the

hardness of SIVPγ for γ = Õ(
√
n · q). Specifically if q is polynomial then so is γ.

2. The public key of the scheme is a matrix A ∈ Zn×mq for some m = O(n log q), for m >

n(log q + 2), of the form A =
[

B
sB+e

]
(mod q), where B ∈ Z(n−1)×m

q is a random matrix,

s
$← Zn−1

q , and ‖e‖ ≤ Be(n). The secret key is the vector s.

3. When the output of a homomorphic evaluation is a ciphertext encrypting a bit x ∈ {0, 1},
this ciphertext is a matrix C ∈ Zn×ndlog qe

q of the form C = ARc + xG (mod q) where
Rc ∈ Zm×ndlog qe. Furthermore, the maximum Euclidean norm of any column in Rc is at
most Br(n) (note that this bound is independent on q, so long as q is in the aforementioned
regime).
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4. There exists a deterministic polynomial time computable function

TrackRand((C, (c1, . . . , c`), pk), (r1, . . . , r`), (x1, . . . , x`))

whose input consists of (C, (c1, . . . , c`), pk) which is an input to the homomorphic evaluation
function, as well as the random tapes and messages ri, xi used to generate each of the cipher-
texts ci. Its output is the matrix Rc (where C = ARc + xG is the output of the original
homomorphic evaluation). Furthermore, the depth of TrackRand is only dependent on the
depth of C.

We note that property 4 was not proven directly in [BV14] but follows from analysis of the
GSW method in followups [AP14,BGG+14].

3.4 A Randomness Propagating Classical FHE Scheme

We show that using the scheme from Theorem 3.6 it is possible to generate a cryptosystem with
the same properties, but that in addition produces, as the output of Eval an encryption of the
randomness Rc of the output ciphertext. We call such a scheme randomness propagating.

Corollary 3.7 (Randomness Propagating Classical FHE). There exists a (parameterized) scheme
with the exact same properties as that of the scheme from Theorem 3.6, but with an additional
property:

5. The output of homomorphic evaluation is a ciphertext C as above, in addition to an encryption
of Rc (in bit representation).

The idea for constructing the scheme relies on bootstrapping and is similar to the construction
of fully-dynamic multi-key FHE by [BP16] via bootstrapping the schemes of [CM15,MW16].

Proof. Since the scheme from Theorem 3.6 is bootstrappable, it can be extended to one that
supports homomorphic evaluation of depth L circuits, for any a-priori polynomial L. In the new
scheme, we change the encryption procedure to first encrypt the message and then encrypt the
randomness that was used to generate that first ciphertext. Then, to perform the new homomorphic
evaluation, first produce C using the homomorphic evaluation of the original scheme, and then
homomorphically evaluate TrackRand on the encryption of the randomness in order to produce the
encryption of Rc. Since the decryption function did not change, it is possible to choose L large
enough so that the scheme remains bootstrappable.

4 Our Quantum FHE Scheme

Our scheme follows an outline going back to Broadbent and Jeffery [BJ15] and used also in
[DSS16, Mah17]. The idea is to encrypt messages using a quantum one-time pad (QOTP), and
then encrypt the secret pad using a classical FHE scheme (this is often called key encapsulation or
hybrid encryption in cryptographic literature). It is shown in [BJ15] that applying Clifford gates
on the encrypted message can be carried out by applying it to the QOTP encrypted state, and
applying an appropriate classical operation on the encapsulated key. Since the encapsulated key
is encrypted using a classical FHE, this classical operation can be carried out thus completing the
homomorphic evaluation.
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However, to allow evaluating general BQP functionality, it is required to evaluate gates beyond
the Clifford family, in particular it is sufficient to evaluate the Toffoli gate. It has been shown (see,
e.g., [Mah17, Appendix A.3]) that in order to carry out this operation, it is sufficient to be able to
evaluate a CNOT operation on a quantum input with an encrypted classical control bit. Specifically,
it is sufficient to support the operation that takes as input a register encoding a general 2-qubit
superposition

∑
a,b αa,b|a, b〉 and an encrypted control bit x, and output an encapsulated encryption

of
∑

a,b αa,b|a, b⊕ ax〉. Namely a QOTP encrypted state together with a classical encryption of the
QOTP key.

Our encryption scheme will be based on the key encapsulation methodology, using the random-
ness propagating scheme from Corollary 3.7 as the key encapsulation scheme (this is sometimes
called a “key encapsulation mechanism”, or KEM). To show that this scheme can indeed evaluate
a CNOT with a classical control bit we prove the following theorem which constitutes the main
technical contribution of this work. We present the theorem here and explain how to use it to
construct our quantum FHE scheme. The theorem is then proven in Section 5 below.

Theorem 4.1. For all δ and an appropriately set value of q = poly(n, log(1/δ)), let A =
[

B
sB+e

]
(mod q) and C = ARc + xG (mod q) be such that there exist global poly(n log q) bounds on the
norms of e,Rc and such that B has a

√
m-trapdoor (which does not need to be known to any entity).

There exists a quantum polynomial time algorithm taking as input A,C and a general superpo-
sition over two qubits

∑
a,b αa,b|a, b〉. Its output, with probability 1 − O(δ), is a superposition over

two qubits of the form ∑
a,b

(−1)a·γphaseαa,b|a, b⊕ ax⊕ γflip〉 , (22)

as well as two vectors cflip, cphase and two implicit vectors sflip, sphase, defined as a function of
s, e,Rc, x, s.t.

|
[
〈cflip, sflip〉 − q

2γflip

]
q
| ≤ q/10 , (23)

and likewise for 〈cphase, sphase〉.

We note that we purposely provide a theorem with parameterized dependence on δ, even though
it would have been sufficient to just show that there exists a negligible δ for which the theorem
holds. We do this to emphasize the robustness of our techniques that allow taking the error to be
even exponentially small in the security parameter while still keeping q polynomial.

Putting the Components Together. We follow a similar outline to [Mah17], with the required
changes from our different method of evaluating classically controlled CNOT. Security follows
immediately from the KEM mechanism by combining the security of the quantum one time pad
and the security of the classical homomorphic encryption. This argument is identical to previous
works.

Let δ > 2−poly(n) be some negligible function. We start with instantiating the randomness prop-
agating scheme from Corollary 3.7. We let q be the (polynomial in n) value implied by Theorem 4.1,
when instantiated with the bounds Be(n), Br(n) from Corollary 3.7 (note that these bounds are in-
dependent of q so there is no circularity here), and instantiate the randomness propagating scheme
accordingly. We furthermore notice that since the matrix B in the public key is uniformly sampled,
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it has a
√
m-trapdoor with all but negligible probability. Since the scheme is bootstrappable, it

can be extended to support depth L computation for any predefined polynomial L. We will set a
proper value for L later.

As explained, we use this scheme as KEM (key encapsulator) for a QOTP. As in previous
works, homomorphically evaluating a BQP circuit is done gate by gate (or rather layer by layer).
Clifford gates are evaluated as in [BJ15]. To evaluate CNOT with classical control, we recall
that by Corollary 3.7, and our definition of q, the structure of the matrices A,C allows to apply
Theorem 4.1 to obtain an output 2-bit register, along with the values cflip, cphase.

From this point and on, our outline is again similar to [Mah17]. We note that the values
γflip, γphase can be recovered via a (classical) polynomial time process out of cflip, cphase using
(s, e,Rc, x) by computing the vectors sflip, sphase, evaluating the respective inner product and round-
ing to the nearest multiple of q/2. Since we have encryptions of these values, we can set L to be
large enough to allow us to apply this process homomorphically, followed by bootstrapping the
resulting value, thus getting a bootstrapped KEM encryption of γflip, γphase. In other words, we
set L to be large enough so that the resulting scheme is bootstrappable even after evaluating the
quantum circuit.

This completes the proof. We can use Theorem 3.4 to bootstrap the resulting scheme to a
leveled FHE of any desired depth, while still relying on the same LWE assumption as the original
scheme. Recalling Theorem 3.6, the LWE parameters used imply hardness under the hardness of
approximating SIVP to within a factor of Õ(

√
nq) = poly(n). Alternatively, if we assume circular

security, we get a (non-leveled) FHE scheme. We will need to assume the circular security of
the randomness propagating scheme, i.e. of a scheme that also encrypts the randomness used to
generate ciphertexts. Interestingly, as we mention above, this assumption was already proposed in
the literature for bootstrapping LWE-based multi-key FHE schemes [CM15,MW16,BP16].

5 Evaluating a Classically Controlled CNOT

In this section we prove Theorem 4.1 by providing a BQP algorithm, setting parameters and a
value for q and proving that the requirements of the theorem are met.

5.1 The Algorithm

We define m′ = m + n dlog qe + 2. The choice of parameters for the values σ, q is described in
Section 5.2 below. We recall that we use the term “δ-computing a quantum state” to refer to
computing a state that is within O(δ) trace distance of the prescribed state.

1. We start with a superposition
∑

a,b αa,b|a, b〉 stored in a register we denote by INP.

2. Use the algorithm from Section 2.7 to δ-compute the superposition

|ψ〉 =
1√

ρ σ√
2
(Zm+2)

∑
r̂∈Zm
y,µ∈Z

ρσ(r̂, y, µ)|r̂, y, µ〉 . (24)

Specifically, our choice of parameters will ensure that we generate a quantum state which is

supported only over Zm+2 ∩Hq/2m+2 but is within trace distance O(δ) from the above.
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3. We note that it is possible to δ-compute, for any vector v ∈ Znq , the superposition

|ψv〉 =
1√

ρ σ√
2
(Λ⊥q (G,v))

∑
r∈Λ⊥q (G,v)

ρσ(r)|r〉 , (25)

again we will show that we generate a superposition supported only over Zndlog qe ∩ Hq/2ndlog qe
which is within trace distance O(δ) from the above.

For all a ∈ {0, 1} we define va = a ·
[ 0
q/2

]
∈ Znq , and using the above we δ-compute the

superposition ∑
a,b

αa,b|a, b〉 |ψva〉|ψ〉︸ ︷︷ ︸
register Ψ

. (26)

4. Let µ0 denote the least significant bit of µ (the last coordinate in the Ψ register), we apply
the transformation |a, b〉 → |a, b⊕ µ0〉 to the INP register.

5. Consider the (classical, deterministic) ciphertext randomization function RandCTA,C(r̃) :

Zm′ → Zndlog qe
q which is defined as follows. Parse r̃ as a concatenation of r ∈ Zndlog qe,

r̂ ∈ Zm, y, µ ∈ Z and compute

RandCTA,C(r̃) = Cr + Ar̂ +
[

0
1

]
y +

[ 0
q/2

]
µ (mod q) . (27)

Apply RandCT to the register Ψ, and add the output to a new |0〉 register. Measure the new
register to obtain a value c′.

6. Apply q-ary Fourier Transform (see Section 2.6) over Zq to the register Ψ, and measure the
result to obtain a value w. We note that since Ψ contains a superposition which is supported

over Zm′ ∩Hq/2m′ , the q-ary Fourier Transform is indeed a unitary transformation.

7. Output the register INP, and the vectors cflip = c′ and cphase = w, relative to sflip = [−s, 1]
and

sphase = υ =

[
G−1( q

2
∆)

−Rc·G−1( q
2
∆)

0
−x

]
.

5.2 Parameters and Definitions

The following matrix D ∈ Z2n×m′
q , where m′ = m+n dlog qe+ 2, and the lattices induced by it will

play a central role in our analysis. This matrix is defined as follows.

D =

[
G 0 0 0

C A 0
1

0
q/2

]
. (28)

The m′ − 1 columns of the following matrix are all in the lattice Λ⊥q (D):

T′ =


TG 0 0

−RcTG TB 0
0 −eTB 0
0 0 2

 ∈ Zm
′×(m′−1) , (29)
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where TG ∈ Zndlog qe×ndlog qe is a
√
n dlog qe-trapdoor for G and TB ∈ Zm×m is a

√
m-trapdoor for

B. Note that we will never need to explicitly compute T′. We furthermore notice that the columns
of T′ are vectors in Λ⊥q (D) since

DT′ = 0 (mod q) . (30)

An additional important vector is the offset vector:

υ =

[
G−1( q

2
∆)

−Rc·G−1( q
2
∆)

0
−x

]
, (31)

where ∆ =
[

0
1

]
∈ {0, 1}n (i.e. all zeros except the last coordinate). We note that

D · υ =

[
G 0 0 0

C A 0
1

0
q/2

]
·

[
G−1( q

2
∆)

−Rc·G−1( q
2
∆)

0
−x

]
=
[
q
2
∆
0

]
. (32)

Finally we consider the row vector d∗ = [2eRc‖2e‖2‖0] (which we prove below is the shortest
vector in Spanq(D)).

Setting the Parameters. We let p = poly(n log q) denote a polynomial upper bound on
max {‖T′‖, 10 · ‖υ‖, ‖d∗‖} (where ‖T′‖ refers to the maximal column norm), and set

σ = p ·
√

2n log q +m′(log q + 1) + 2 log(4m′/δ) + 1 , (33)

finally we set q = 2 ·
⌈
10 · p · σ ·

√
m′ + log(1/δ)

⌉
, it will be useful for us that q is even.

One might be worried about circularity of this definition, since p, σ are used to determine the
value of q but depend themselves on log q. Indeed this situation frequently occurs when choosing
parameters for LWE-based constructions, but it is easily resolved since the dependence of p, σ on
q is logarithmic. Specifically, upper bound log q in the expressions for p, σ by, e.g., log2 n, and
compute the value of q that is implied by these values of p, σ. The result will be q = poly(n) which
indeed justifies the bound log q < log2 n.

Properties of Lattices Induced by D. We prove a few properties that will be useful down the
line.

We let p denote an upper bound on the `2 norm of the columns of T′, note that p = poly(n log q)
for a suitable polynomial. We now invoke Corollary 2.11 to conclude that Spanq(D) has at most a
single nonzero vector of norm < q/p (up to multiplication by scalar). The next claim identifies the
shortest vector in Spanq(D).

Claim 5.1. The shortest vector in Spanq(D) is the vector d∗ = [2eRc‖2e‖2‖0] (where d∗ = t∗D
(mod q) for t∗ = 2 · [−x(s,−1)‖(s,−1)]). All vectors in Spanq(D) that are not integer multiples of
d∗ are of length at least q/p.

Proof. Since T′ contains (m′ − 1) vectors in Λ⊥q (D) of length at most p, Corollary 2.11 guarantees
that Spanq(D) has at most a single nonzero vector of norm < q/p (up to integer multiplications).
We next verify that the shortest of these vectors is d∗.
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We can verify that indeed d∗ ∈ Spanq(D) since d∗ = t∗D (mod q). Furthermore, ‖d∗‖ ≤ p <
q/p, and therefore either d∗ is the shortest vector, or is an integer multiple of a shorter vector.
However, d∗ is only divisible by 2 (recall that Spanq(D) is an integer lattice), and the vector
d∗/2 = [eRc‖e‖1‖0] is not in Spanq(D) since q|2. �

For the next claim we recall the definition of loginf-uniformity in Definition 2.1 and its properties
from Lemma 2.2.

Claim 5.2. The sequence
{
ρσ̃(Λ⊥q (D, v̂))

}
v̂∈Z2n

q
is O(δ)-loginf uniform for any σ̃ ≥ p·

√
1
π log(4m′/δ).

Proof. Denote h = [eRc‖e‖1‖0] and notice that h is orthogonal to all columns of T′. By definition
it holds that ρσ̃(Λ⊥q (D, v̂)) =

∑
r̃∈Λ⊥q (D,v̂) ρσ̃(r̃), and we can decompose each element in this sum

to a component parallel to h and one orthogonal to h:

ρσ̃(Λ⊥q (D, v̂)) =
∑

r̃∈Λ⊥q (D,v̂)

ρσ̃(r̃)

=
∑
k∈Z

ρσ̃(k/ ‖h‖)
∑

r̃∈Λ⊥q (D,v̂)
hr̃=k

ρσ̃(r̃− kh/ ‖h‖2) .

Fix a value of k ∈ Z and consider the sum
∑
ρσ̃(r̃ − kh/ ‖h‖2) ranging over all r̃ ∈ Λ⊥q (D, v̂) for

which hr̃ = k. Consider the lattice Λ̂D containing all vectors in Λ⊥q (D) which are orthogonal to h.

Then the set of vectors S = {(r̃− kh/ ‖h‖2) : r̃ ∈ Λ⊥q (D, v̂),hr̃ = k} is exactly a coset of Λ̂D, and
furthermore is supported only over the hyperplane that is orthogonal to h.

Since T′ is an p-trapdoor for Λ̂D (for p defined above), then ηδ(Λ̂D) ≤ p ·
√

1
π log(4(m′ − 1)/δ) ≤

σ̃. Lemma 2.9 implies therefore that the sequence {ρσ̃(Λ̂D + d)}d⊥h is O(δ)-loginf uniform. Since
the decomposition above shows that ρσ̃(Λ⊥q (D, v̂)) is a linear combination of elements from the
above sequence, applying Lemma 2.2 concludes the proof. �

5.3 Analysis

We now prove that the algorithm described above indeed has the properties required in the theorem
statement.

Before Ciphertext Randomization. Recall that in the end of Step 3 of the algorithm, we
δ-compute the superposition ∑

a,b

αa,b|a, b〉|ψva〉|ψ〉 , (34)

which can also be written as∑
a,b

αa,b|a, b〉 1√
ρ σ√

2
(Zm+2
q )ρ σ√

2
(Λ⊥q (G,va))

∑
r,r̂,y,µ

ρσ(r, r̂, y, µ)|r, r̂, y, µ〉 , (35)

where the sum is over all r ∈ Λ⊥q (G,va), r̂ ∈ Zm, y, µ ∈ Z.
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Recall that by Lemma 2.8, since G has a O(1)-trapdoor then ηδ(Λ
⊥
q (G)) ≤ O(log(n log q/δ)). It

follows by Lemma 2.9 that the set
{
ρ σ√

2
(Λ⊥q (G,v))

}
v∈Znq

is δ-loginf uniform. Therefore, the above

is within O(δ) trace distance of the superposition

1√
ρ σ√

2
(Λ⊥q (G)×Zm+2)

∑
a,b

αa,b|a, b〉
∑

r,r̂,y,µ

ρσ(r, r̂, y, µ)|r, r̂, y, µ〉 , (36)

with r, r̂, y, µ as before.
After applying Step 4, the resulting superposition is thus (ignoring global normalization)∑

a,b

αa,b
∑

r,r̂,y,µ

ρσ(r, r̂, y, µ)|a, b⊕ µ0〉|r, r̂, y, µ〉 . (37)

Ciphertext Randomization. In Step 5 we compute∑
a,b

αa,b
∑

r,r̂,y,µ

ρσ(r, r̂, y, µ)|a, b⊕ µ0〉|r, r̂, y, µ〉 |RandCTA,C(r, r̂, y, µ)〉︸ ︷︷ ︸
c′

, (38)

and measure c′. We prove next that with all but O(δ) probability, c′ is a ciphertext that decrypts
to the value µ′ = µ0 ⊕ ax.

Claim 5.3. It holds that

|
[
(−s, 1) · c′ − q

2µ
′]
q
| < q/10 (39)

with probability 1−O(δ).

Proof. Consider the register holding c′ before it is measured, we have (recalling that r is only
supported over values where Gr = va (mod q) and that q is even)

c′ = Cr + Ar̂ +
[

0
1

]
y +

[ 0
q/2

]
µ (mod q)

= ARcr + Ar̂ +
[

0
1

]
y +

[ 0
q/2

]
(µ+ ax) (mod q)

= A(Rcr + r̂) +
[

0
1

]
y +

[ 0
q/2

]
(µ⊕ ax) (mod q) .

Recalling that (−s, 1)A = e, we get that for c′ as above

(−s, 1)c′ = (eRcr + er̂ + y) + q
2µ
′ (mod q)

= hr̃ + q
2µ
′ (mod q) ,

where the vector h = [eRc‖e‖1‖0] (which also equals d∗/2) is as defined in Claim 5.2. By definition
of p we have that ‖h‖ ≤ p/2.

Therefore, it holds that in order for c′ to not comply with Eq. (39), it must be the case that
|hr̃| > q/10. Due to the bound on the norm of h, this means that it must be the case that
‖r̃‖ > q/(5p) ≥ σ

√
m′ + log(1/δ). The probability that this happens, by Lemma 2.10, is at most

ρ σ√
2

(
Λ⊥q (G)× Zm+2 \ Bq/(5p)m′

)
ρ σ√

2
(Λ⊥q (G)× Zm+2)

≤ δ , (40)

and the claim follows. �
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We note that by definition after measuring c′, it holds that r, r̂, y, µ are only supported over
values for which

D ·
[ r

r̂
y
µ

]
︸︷︷︸

denote r̃

= v̂a =
[

va
c′

]
(mod q) , (41)

where D is as defined in Eq. (28).
Namely, up to this point, we δ-computed the superposition∑

a,b

αa,b√
ρ σ√

2
(Λ⊥q (D, v̂a))

|a, b⊕ ax⊕ µ′〉
∑

r̃∈Λ⊥q (D,v̂a)

ρσ(r̃)|r̃〉 , (42)

where we note that since we defined µ′ = ax⊕ µ0 then it holds that b⊕ µ0 = b⊕ ax⊕ µ′.

Fourier Transform and Measurement. From Claim 5.2 we deduce that we can remove the
v̂a-dependent normalization factor from Eq. (42) at the cost of O(δ) trace distance, so we conclude
that at this point, before Step 6 of the algorithm, we δ-computed∑

a,b

αa,b|a, b⊕ ax⊕ µ′〉
∑

r̃∈Λ⊥q (D,v̂a)

ρσ(r̃)|r̃〉

︸ ︷︷ ︸
denote |φa〉

. (43)

In Step 6, we apply a q-ary Fourier transform on the register holding |r̃〉. We recall that this

register is actually supported only over Zm′ ∩ Hq/2m′ , and therefore we can perform q-ary Fourier
Transform as a unitary operation. Since the state of the register is O(δ)-close in trace distance to
the superposition in Eq. (43), the output of this operation will be O(δ) close in trace distance to
the q-ary Fourier transform of Eq. (43). Formally, the q-ary Fourier transform of |φa〉 is

|φ̂a〉 =
∑

w∈Zm′q

|w〉
∑

r̃∈Λ⊥q (D,v̂a)

ρσ(r̃)e
− 2πi

q
〈w,r̃〉

. (44)

By Corollary 2.12 it holds that∑
r̃∈Λ⊥q (D,v̂a)

ρσ(r̃)e
− 2πi

q
〈w,r̃〉

= σm
′

q2n ·
∑

t∈Z2n
q

ρq/σ,q(w + tD) · e
2πi
q
〈t,v̂a〉 , (45)

where we recall the definition of periodic Gaussian from Section 2.2: ρσ′,q(x) = ρσ′(x + qZ).
Therefore it holds that

|φ̂a〉 = σm
′

q2n ·
∑

w∈Zm′q

|w〉
∑

t∈Z2n
q

ρq/σ,q(w + tD) · e
2πi
q
〈t,v̂a〉 (46)

= σm
′

q2n ·
∑

w∈Zm′q

|w〉
∑

t∈Z2n
q

ρq/σ,q((w − dw) + tD) · e
2πi
q
〈t−tw,v̂a〉 . (47)
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For all w, let dw denote the vector in Spanq(D) that is closest to w and let tw ∈ Z2n
q be s.t.

twD = dw (mod q). We let W denote the set of vectors that are close to Spanq(D)

W = {w ∈ Zm
′

q : ‖w − dw‖ ≤ q/p} . (48)

We define

|φ̂′a〉 = σm
′

q2n

∑
w∈W

|w〉
∑
k∈Zq

ρq/σ,q((w − dw) + kd∗) · e
2πi
q
〈kt∗−tw,v̂a〉 . (49)

Claim 5.4. The trace distance between (the normalized versions of) the superpositions |φ̂a〉 and
|φ̂′a〉 is O(δ).

Proof. We start by bounding the norm of the difference ‖φ̂a − φ̂′a‖2. We first consider w ∈ Zm′q \W .

Then in particular it holds that
∥∥∥[w + d]q

∥∥∥ ≥ q/p for all d ∈ Spanq(D) and therefore∣∣∣∣∣∣
∑

t∈Z2n
q

ρq/σ,q(w + tD) · e
2πi
q
〈t,v̂a〉

∣∣∣∣∣∣ ≤ q2n · 2m′ · ρq/σ(q/p)

(1−m′ρq/σ(q))
(50)

= 22n log q+m′ · e−π(σ/p)2

1−m′e−πσ2 . (51)

Since we chose σ = p ·
√

2n log q +m′(log q + 1) + 2 log(4m′/δ) + 1 then in particular m′e−πσ
2
<

1/2 and 22n log q+m′ · e−π(σ/p)2
< δ · q−m′/2 which implies that the above is bounded by δ · q−m′ .

Now let us consider w ∈W , the absolute value of the difference between φ̂a, φ̂
′
a at w is at most∑

{t∈Z2n
q :

t 6=kt∗ mod q}

ρq/σ,q((w − dw) + tD) . (52)

If t 6= kt∗ (mod q) then [tD]q ≥ q/p. This is since d∗ = [t∗D]q is the only vector in Spanq(D) of
length < q/p, up to integer multiples. Since ‖[x]q‖ ≤ ‖x‖ it follows that for all x, if ‖[x]q‖ < q/p
then [x]q = [kd∗]q for some k ∈ Zq.

By definition ofW we have ‖w − dw‖ ≤ q/p and therefore by triangle inequality ‖[(w − dw) + tD]q‖ ≤
2q/p. Using a similar argument to above we get

∑
{t∈Z2n

q :

t 6=kt∗ mod q}

ρq/σ,q((w − dw) + tD) ≤
q2n · 2m′ · ρq/σ(2q/p)

(1−m′ρq/σ(q))
< δ · q−m′ . (53)

It follows that:

‖φ̂a − φ̂′a‖2 ≤
(
σm
′

q2n

)2
qm
′ · (δ · q−m′)2 <

(
σm
′

q2n

)2
· δ . (54)

We now lower bound ‖φ̂a‖ by simply looking at w = 0:

‖φ̂a‖ ≥
∑

r̃∈Λ⊥q (D,v̂a)∩Hq/2
m′

ρσ,q(r̃) =
∑

r̃∈Λ⊥q (D,v̂a)

ρσ(r̃) , (55)
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however by Claim 5.2, this is lower bounded by

(1−O(δ))ρσ(Λ⊥q (D)) = (1−O(δ))σ
m′

q2n ρq/σ(Spanq(D)) ≥ (1−O(δ))σ
m′

q2n .

Where the first equality follows from Corollary 2.12. The claim thus follows. �

We conclude that up to this point we δ-computed the superposition∑
a,b

αa,b|a, b⊕ ax⊕ µ′〉
∑

w∈W
|w〉

∑
k∈Zq

ρq/σ,q((w − dw) + kd∗) · e
2πi
q
〈kt∗−tw,v̂a〉 . (56)

The next step is to measure the register |w〉. Since w ∈ W it holds that ‖w − dw‖ < q/p. We
are left with the superposition∑

a,b

αa,b|a, b⊕ ax⊕ µ′〉
∑
k∈Zq

ρq/σ,q((w − dw) + kd∗) · e
2πi
q
〈kt∗−tw,v̂a〉 . (57)

We recall that v̂a can be written as v̂a = v̂0 + a · q2 ·
[

∆
0

]
for ∆ =

[
0
1

]
∈ {0, 1}n. Let

us now analyze the term 〈kt∗ − tw, v̂a〉 (mod q) that is the exponent of the above expression
(the modq comes from this term bing in the exponent of the q-th root of unity). We recall that
t∗ = 2 · [−x(s,−1)‖(s,−1)] is a multiple of 2, and therefore q

2t∗ = 0 (mod q). Let us also denote
tw = [t1‖t2], where t1, t2 ∈ Znq . We get that

〈kt∗ − tw, v̂a〉 = 〈kt∗ − tw, v̂0〉+ a · q
2
〈kt∗ − tw,

[
∆
0

]
〉 (58)

= 〈kt∗ − tw, v̂0〉 − a ·
q

2
〈t1,∆〉 (mod q) (59)

and plugging into the superposition above we have∑
a,b

αa,b|a, b⊕ ax⊕ µ′〉
∑
k∈Zq

ρq/σ,q((w − dw) + kd∗) · e
2πi
q
〈kt∗−tw,v̂0〉 · (−1)a·〈t1,∆〉 .

Rearranging, we get that the above is equal to

∑
a,b

αa,b(−1)a·〈t1,∆〉|a, b⊕ ax⊕ µ′〉 ·

∑
k∈Zq

ρq/σ,q((w − dw) + kd∗) · e
2πi
q
〈kt∗−tw,v̂0〉


︸ ︷︷ ︸

Constant scaling factor, independent of a, b.

.

We can thus remove the constant scaling factor and remain with∑
a,b

αa,b(−1)a·〈t1,∆〉|a, b⊕ ax⊕ µ′〉 . (60)

It is left to be shown that 〈t1,∆〉 (mod 2) is efficiently recoverable given Rc, x. We recall that
we can write w = twD + ew (mod q) with ‖ew‖ ≤ q/p. Next, we consider the vector

υ =

[
G−1( q

2
∆)

−Rc·G−1( q
2
∆)

0
−x

]
, (61)

24



and note that

D · υ =

[
G 0 0 0

C A 0
1

0
q/2

]
·

[
G−1( q

2
∆)

−Rc·G−1( q
2
∆)

0
−x

]
=
[
q
2
∆
0

]
, (62)

which implies that

w · υ = (twD + ew) · υ = twDυ + ewυ = q
2〈t1,∆〉+ ewυ (mod q) , (63)

and since |ewυ| ≤ ‖ew‖ · ‖υ‖ ≤ q/p · (p/10) ≤ q/10, the theorem follows.
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A Proof of Lemma 2.13

We start by showing how to generate in quantum polynomial time a quantum state that is within
O(δ) trace distance of Eq. (21) in quantum polynomial time. We recall the following facts from
[BLP+13]:

1. For all r ≥
√

ln(2m+ 4)/π and for all c ∈ R: ρr(Z+c)
ρr(Z) ∈

(
1− 2

m+2 , 1
]
.

2. For all r, c the value ρr(Z + c) is efficiently computable to within t bits of precision in time
poly(t), for any t.

One-Dimensional Gaussian Superposition. We show that there is a quantum polynomial
time procedure GenZ(r, c, 1/δ) that on inputs r ≥

√
ln(2m+ 4)/π, c ∈ R, δ ∈ (0, 1), outputs a

superposition which is within O(δ) trace distance of

1√
ρr(Z + c)

∑
x∈Z

ρ√2r(x+ c)|x〉 . (64)

We note that in the classical setting [BLP+13] show the analogous result without the restriction
on r, and indeed it appears to us that the argument goes through in the quantum setting as well.
However, due to the added complication we chose to only show the simpler case here.

Our sampler is extremely simple, we assume w.l.o.g that c ∈ [−1/2, 1/2). By Lemma 2.10 and

the fact that ρr(Z+c)
ρr(Z) ≥ 1− 2

m+2 , we have that

ρr(Z + c \ Br
√

log(1/δ)
1 ) ≤ δ · ρr(Z) ≤ (1− 2

m+2) · δ · ρr(Z + c) ≤ 3δ · ρr(Z + c) . (65)

Let N = r ·
√

log(1/δ) and generate the superposition 1√
2N+1

∑N
x=−N |x〉. Then apply quan-

tum rejection sampling with α′x =
ρ√2r(x+c)

ρ√2r(c)
. In the event of non-rejection, we get the required
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superposition up to O(δ) trace distance (due to Eq. (65)). We now bound the success probability:

N∑
x=−N

ρr(x+ c)

(2N + 1)ρr(c)
≥ (1− 3δ)ρr(Z + c)

(2N + 1)ρr(c)
≥

(1− 3δ)(1− 2
m+2)ρr(Z)

(2r ·
√

log(1/δ) + 1)ρr(c)
. (66)

Finally, recalling that ρr(Z) ≥ r, ρr(c) = O(1), it follows that the success probability is at least
Ω
(

1√
log(1/δ)

)
, which is polynomial in the input size. Repeating the process polynomially many

times to amplify the success probability to 1− δ completes the result since by the union bound the
total trace distance from the desired superposition will be the sum of the failure probability and
the trace distance condition on success, namely O(δ).

The General Case. We let b1, . . . ,bm denote the columns of the basis matrix B, and let
b̃1, . . . , b̃m denote the columns of B̃, and we denote their norms by `i = ‖b̃i‖. Finally, b̄1, . . . , b̄m
denote the normalized Gram-Schmidt vectors, i.e., b̄i = b̃i/`i.

We start by stating definitions and notation that will be used by our superposition generator.
Specifically we define the following functions which are all efficiently computable, deterministic and
linear.

1. The function ĉ(k) = ĉ(ki, . . . , km) : Z≤m → Rm as follows. If k is an empty vector then
ĉ(k) = ĉ() = c. Otherwise

ĉ(k) = c′ − 〈c′, b̄i〉 · b̄i + ki(bi − b̃i) , (67)

where c′ is defined recursively as c′ = ĉ(ki+1, . . . , km).

Note that ĉ(k) is a linear function, this property will be important for our procedure.
Furthermore, for all i it holds that ĉ(ki, . . . , km) does not have a component in the direc-
tion b̄i, . . . , b̄m, as can be shown by a straightforward inductive argument. It follows that
ĉ(k1, . . . , km) = 0 for all k.

2. Similarly we define β(k) = β(ki, . . . , km) : Z≤m → R as β(k) = 〈ĉ(k), b̃i−1〉/`2i−1. From the
definition of ĉ(·) in Eq. (67) we get that

ĉ(ki+1, . . . , km)− ĉ(ki, . . . , km) = β(ki+1, . . . , km)b̃i + ki(b̃i − bi) . (68)

The generation procedure is as follows.

1. Let ϕm+1 be an empty quantum state. For i ← m, . . . , 1, let ri = r/`i and consider the
quantum operator for which |k〉〈k| → GenZ(ri, β(k),m/δ) ⊗ |k〉〈k|. Note that the input
and output spaces do not have the same dimension, but this operator is still well defined
and efficiently computable (computing it involves appending a zero ancilla register and then
computing GenZ as described above). Let ϕi denote the result of applying this operator on
ϕi+1.

2. Consider the transformation defined by |k〉 → |Bk + c〉, this transformation is unitary since
B is invertible (i.e. the corresponding unitary operator is a permutation). Let ϕ′ be the
output of applying this operator on ϕ1.
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3. Use quantum rejection sampling on ϕ′ with

α′k =

∏m
i=1 ρ

√
2r/`i

(Z + β(ki+1, . . . , km))∏m
i=1 ρ

√
2r/`i

(Z)
∈

((
1− 2

m+ 2

)m/2
, 1

]
⊆ (e−1, 1] . (69)

and let ϕ′′ denote the output of this operator condition on the rejection sampling being
successful. Since |α′k| ≥ e−1, it follows that the success probability is at least e−2. In case of
failure, repeat the entire procedure.

In the event of successful rejection sampling, the procedure outputs a quantum state supported
over Λ + c.

To analyze the the algorithm, we note that by the properties of GenZ, the quantum state ϕ1 is
within O(δ) trace distance from the pure state

∑
k∈Zm αk|k〉 with

αk =

∏m
i=1 ρ

√
2r/`i

(ki + β(ki+1, . . . , km))∏m
i=1 ρ

√
2r/`i

(Z + β(ki+1, . . . , km))
, (70)

and therefore ϕ′ is within O(δ) trace distance of the pure state
∑

k∈Zm αk|Bk + c〉, and if rejection
sampling is successful then ϕ′′ is within O(δ) trace distance of

∑
k∈Zm α

′′
k|Bk + c〉, where up to

normalization

α′′k =
m∏
i=1

ρ√2r/`i
(ki + β(ki+1, . . . , km)) = ρ√2r

( m∑
i=1

(ki + β(ki+1, . . . , km)) b̃i
)
. (71)

To complete the proof, we recall Eq. (68) and notice that

Bk + c =

m∑
i=1

kibi + ĉ() (72)

=

m∑
i=1

kibi +

m∑
i=1

(ĉ(ki+1, . . . , km)− ĉ(ki, . . . , km)) + ĉ(k1, . . . , km)︸ ︷︷ ︸
=0

(73)

=
m∑
i=1

kibi +
m∑
i=1

(
ki(b̃i − bi) + β(ki+1, . . . , km)b̃i

)
(74)

=
m∑
i=1

(ki + β(ki+1, . . . , km)) b̃i , (75)

and therefore (again up to global normalization) α′′k = ρ√2r(Bk + c). Which shows that indeed
the superposition we generated is within O(δ) trace distance of

∑
k∈Zm ρ

√
2r(Bk + c)|Bk + c〉 =∑

v∈Λ+c ρ
√

2r(v)|v〉.

Bounding the Support. In the case where r ≥
√

log(4m/δ)/π · ‖B̃‖, it holds by Lemmas 2.8,

2.9, 2.10 that the probability to measure the state ϕ′′ outside the ball Br
√
m+log(1/δ)

m is at most O(δ).
Therefore, one can apply quantum rejection sampling with α′ = 0 outside the aforementioned ball
and α′ = 1 inside the ball. The success probability is 1−O(δ) and therefore repeating the process
polynomially many times will ensure success with probability < δ. Furthermore, if the rejection
process is successful then the resulting quantum state is within O(δ) trace distance of ϕ′′ and thus
O(δ) trace distance of the superposition in Eq. (21).
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