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Abstract

RankSign is a code-based signature scheme proposed to the NIST competition for post-
quantum cryptography [AGH+17]. It is based on the rank metric and enjoys remarkably
small key sizes, about 10KBytes for an intended level of security of 128 bits. It is also
one of the fundamental blocks used in the rank metric identity based encryption scheme
[GHPT17]. Unfortunately we will show that all the parameters proposed for this scheme in
[AGH+17] can be broken by an algebraic attack that exploits the fact that the augmented
LRPC codes used in this scheme have very low weight codewords.

1 Introduction

It is a long standing open problem to build an efficient and secure signature scheme based on
the hardness of decoding a linear code which could compete in all respects with DSA or RSA.
Such schemes could indeed give a quantum resistant signature for replacing in practice the
aforementioned signature schemes that are well known to be broken by quantum computers.
A first partial answer to this question was given in [CFS01]. It consisted in adapting the
Niederreiter scheme [Nie86] for this purpose. This requires a linear code for which there exists
an efficient decoding algorithm for a non-negligible set of inputs. This means that if H is
an r × n parity-check matrix of the code, there exists for a non-negligible set of elements s
in {0, 1}r an efficient way to find a word e in {0, 1}n of smallest Hamming weight such that
Heᵀ = sᵀ.

The authors of [CFS01] noticed that very high rate Goppa codes are able to fulfill this
task, and their scheme can indeed be considered as the first step towards a solution of the
aforementioned problem. However, the poor scaling of the key size when security has to be
increased prevents this scheme to be a completely satisfying answer to this issue.

There has been some exciting progress in this area for another metric, namely the rank
metric [GRSZ14]. A code-based signature scheme whose security relies on decoding codes with
respect to the rank metric has been proposed there. It is called RankSign. Strictly speaking,
the rank metric consists in viewing an element in FNq (when N is a product N = m × n) as
an m × n matrix over Fq and the rank distance between two elements x and y is defined as
the rank of the matrix x−y. This depends of course on how N is viewed as a product of two
elements. Decoding in this metric is known to be an NP hard problem [BFS99, Cou01]. In
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the particular case of [GRSZ14], the codes which are considered are not Fq-linear but, as is
customary in the setting of rank metric based cryptography, Fqm-linear. This allows to reduce
the key size by a factor of m when compared to the Fq-linear setting (for more details see the
paragraph at the end of Section 2).

Decoding such codes for the rank metric is not known to be NP-hard anymore. There is
however a randomized reduction of this problem to decode an Fq-linear code for the Hamming
metric [GZ16] when the degree m of the extension field is sufficiently big. This situation is in
some sense reminiscent to the current thread in cryptography based on codes or on lattices
where structured codes (for instance quasi-cyclic codes) or structured lattices (corresponding
to an additional ring structure) are taken. In the case at hand, there is however a randomized
reduction to an NP complete problem. Furthermore, RankSign comes with a security proof
showing that there is no leakage coming from signing many times and enjoys remarkably small
key sizes: it is about 10KBytes for 128 bits of security for the parameters proposed in the
NIST submission[AGH+17]. It also proved to be a fundamental building block in the identity
based encryption scheme based on the rank metric suggested in [GHPT17].

Unfortunately we will show here that all the parameters proposed in [GRSZ14, AGH+17]
can be broken by a suitable algebraic attack. The problem is actually deeper than that,
because we will show in the full-version of this paper that the attack is actually polynomial in
nature and can not really be thwarted by changing the parameters. The attack builds upon
the following observations

• The RankSign scheme is based on augmented LRPC codes;

• To have an efficient signature scheme, the parameters of the augmented LRPC codes
have to be chosen very carefully;

• For the whole range of admissible parameters, it turns out rather unexpectedly that
these augmented LRPC codes have very low-weight codewords. This can be proved by
subspace product considerations;

• These low-weight codewords can be recovered by algebraic techniques and reveal enough
of the secret trapdoor used in the scheme to be able to sign like a legitimate user.

2 Generalities on rank metric and Fqm-linear codes

2.1 Definitions and notation

We provide here some notation and definitions that will be used throughout the paper.

Vector notation. Vectors will be written using bold lower-case letters, e.g. x. The ith
component of x will be denoted by xi. Vectors are in row notation. Matrices will be written
as bold capital letters, e.g. X, and the i-th column of a matrix X is denoted Xi. The rank of
a matrix X will be simply denoted by |X|.

Field notation. Let q be a power of a prime number. We will denote by Fq the finite field
of cardinality q.

Coding theory notation. A linear code C over a finite field Fq of length n and dimension
k is a subspace of the vector space Fnq of dimension k. We say that it has parameters [n, k]
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or that it is an [n, k]-code. A generator matrix G for it is a k× n matrix over Fq that is such
that

C = {uG : u ∈ Fkq}.

In other words, the rows of G form a basis of C . A parity-check matrix H for it is a full-rank
(n− k)× n matrix over Fq such that

C = {c ∈ Fnq : Hcᵀ = 0}.

In other words, C is the null space of H.
Rank metric codes basically consist in viewing codewords as matrices. More precisely, when
N is the product of two numbers m and n, N = mn we will equip the vector space FNq with
the rank metric by viewing its elements as matrices over Fm×nq , i.e.

d(X,Y) = |X−Y|.

An [m× n,K] matrix code of dimension K over Fm×nq is a subspace of Fm×nq of dimension K.
Such a code is equipped in a natural way with the rank metric. There is a particular subclass
of matrix codes that has the nice property to be specified much more compactly than a generic
matrix code. It consists in taking a linear code over an extension field Fqm of Fq of length n.
Such a code can be viewed as a matrix code consisting of matrices in Fm×nq by expressing each
coordinate ci of a codeword c = (ci)1≤i≤n in a fixed Fq basis of Fqm . When the Fqm-linear
code is of dimension k the dimension of the matrix code viewed as an Fq-subspace of Fm×nq is
K = k.m.

More precisely we bring in the following definition.

Definition 1 (Matrix code associated to an Fqm linear code). Let C be an [n, k] linear code
over Fqm , that is a subspace of Fnqm of dimension k over Fqm , and let (β1 . . . βm) be a basis of
Fqm over Fq. Each word c ∈ C can be represented by an m×n matrix Mat(c) = (Mij)1≤i≤m

1≤j≤n
over Fq, with cj =

∑m
i=1Mijβi. The set {Mat(c), c ∈ C } is the [m×n, k.m] matrix code over

Fq associated to the Fqm linear code C . The (rank) weight of c is defined as the rank of the

associated matrix, that is |c| 4= |Mat(c)|.

This definition depends of course of the basis chosen for Fqm . However changing the basis
does not change the distance between codewords. The point of defining matrix codes in this
way is that they have a more compact description. It is readily seen that an [m×n, k.m] matrix
code over Fq can be specified from a systematic generator matrix (i.e. a matrix of the form(
1k.mP

)
with 1k.m being the identity matrix of size k.m) by k(n − k)m2 log2 q bits whereas

an Fqm-linear code uses only k(n − k) log2 q
m = k(n − k)m log2 q bits. This is particularly

interesting for cryptographic applications where this notion is directly related to the public
key size. This is basically what explains why in general McEliece cryptosystems based on
rank metric matrix codes have a smaller keysize than McEliece cryptosystems based on the
Hamming metric. All of these proposals (see for instance [GPT91, GO01, Gab08, GMRZ13,
GRSZ14, ABD+17b, AMAB+17]) are actually built from matrix codes over Fq obtained from
Fqm-linear codes. In a sense, they can be viewed as structured matrix codes, much in the
same way as quasi-cyclic linear codes can be viewed as structured versions of linear codes. In
the latter case, the code is globally invariant by a linear isometric transform on the codewords
corresponding to shifts of a certain length. In the Fqm linear case the code is globally invariant
by an isometric linear transformation that corresponds to multiplication in Fqm .
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2.2 Rank code-based cryptography

Rank-based cryptography relies on the hardness of decoding for the rank metric. This problem
is the rank metric analogue of the well known decoding problem in the Hamming metric
[BMvT78]. We give it here its syndrome formulation:

Definition 2 (Rank (Metric) Syndrome Decoding Problem). Let H be a full-rank (n−k)×n
matrix over Fqm with k ≤ n, s ∈ Fn−kqm and w an integer. The problem is to find e ∈ Fnqm such
that |e| = w and Heᵀ = sᵀ.

This problem has recently been proven hard in [GZ16] by a probabilistic reduction to the
decoding problem in the Hamming metric which is known to be NP-complete [BMvT78].
This problem has typically a unique solution when w is below the Varshamov Gilbert distance
wrVG(q,m, n, k) for the rank metric which is defined as

Definition 3 (Varshamov Gilbert distance for the rank metric). The Varshamov Gilbert
distance wrVG(q,m, n, k) for Fqm linear codes of dimension k in the rank metric is defined as
the smallest t for which

qm(n−k) ≥ Bt
where Bt is the size of the ball of radius t in the rank metric.

Remark 1.

1. qm(n−k) can be viewed as the number of different syndromes s ∈ Fn−kqm .

2. Bt =
∑t

i=0 Si where Si is the size of a sphere of radius i in the rank metric over Fm×nq .
This latter quantity is equal to

Si =
i−1∏
j=0

(qn − qj)(qm − qj)
(qi − qj)

= Θ
(
qi(m+n−i)

)
.

3. From this last asymptotic expression it is straightforward to check that (for more details
see [Loi14])

wrVG =
m+ n−

√
(m− n)2 + 4km

2
(1 + o(1)),

when either m or n tend to infinity.

The best algorithms for solving the decoding problem in the rank metric are exponential in
n2 as long as m = Θ(n), w = Θ(n) but stays below the Singleton bound which is defined by

Definition 4 (Singleton distance in the rank metric). The Singleton distance wrS(q,m, n, k)
for Fqm linear codes of dimension k in the rank metric is defined as

wrS(q,m, n, k)
4
=

⌊
(n− k)m

max(m,n)

⌋
+ 1

The usual notion of the support of a vector is generally relevant to decoding in the Ham-
ming metric and corresponds for a vector x = (xi)1≤i≤n to the set of positions i in {1, . . . , n}
such that xi 6= 0. Various decoding algorithms for the Hamming metric [Pra62, LB88, Ste88,
Dum91, FS09, BLP11, MMT11, BJMM12, MO15, DT17, BM17] use this notion in a rather
fundamental way. The definition of the support of a vector has to be changed a little bit to be
relevant to the rank metric. This notion was first put forward in [GRS13, GRS16] to obtain
an analogue of the Prange decoder [Pra62] for the rank metric.
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Definition 5 (Support). Let x = (xi)1≤i≤n be a vector of Fnqm , its support is defined as:

Supp(x)
4
=〈x1, · · · , xn〉Fq .

This notion of support is relied to the rank metric as it is easily verified that for any x
vector of Fnqm we have:

|x| = dim(Supp(x))

3 The RankSign scheme

We recall in this section basic facts about RankSign. It is based on augmented LRPC codes.
Roughly speaking it is a hash and sign signature scheme: the message m that has to be
signed is hashed by a hash function H and the signature is equal to f−1(H (m)) where f is
a trapdoor one-way function. Here the input to f is the set of vectors of Fnqm of some (rank)

weight w and f is given by f(e)
4
=Heᵀ where H is a fixed r × n parity-check matrix of the

augmented LRPC code used for the scheme. When the underlying LRPC structure is known
(roughly speaking, this is the trapdoor), there is a decoding algorithm based on the LRPC
structure that computes for any (or for a good fraction) s ∈ Frq an e ∈ Fnq of weight w such
that Heᵀ = sᵀ. This decoding algorithm is probabilistic and the parameters of the code have
to be chosen in a very specific fashion in order to have a probability of success very close to 1
(see Fact 1 at the end of this section).
An LRPC code is a code that admits a parity-check check matrix that is homogeneous and of
small weight. A homogeneous matrix is defined as

Definition 6 (Homogeneous Matrix). A matrix H = (Hij)1≤i≤n−k
1≤j≤n

over Fqm is homogeneous

of weight d if all its coefficients generate an Fq-vector space of dimension d:

dim
(
〈Hij : 1 ≤ i ≤ n− k, 1 ≤ j ≤ n〉Fq

)
= d

LRPC (Low Rank Parity Check) codes of weight d and augmented LRPC codes of type (d, t)
are defined from such matrices as

Definition 7 (LRPC and augmented LRPC code). An LRPC code over Fqm of weight d is a
code that admits a parity-check matrix H with entries in Fqm that is homogeneous of weight d
whereas an augmented LRPC code of type (d, t) over Fqm is a code that admits a parity-check
matrix H′ =

[
H|R

]
P where H is a homogeneous matrix of rank d over Fqm , R is a matrix

with t columns that has its entries in Fqm and P is a square and invertible matrix with entries
in Fq that has the same number of columns as H′.

Remark 2. Note that P ∈ Fn×nq is an isometry for the rank metric, since for any x ∈ Fnqm we
have Supp(x) = Supp(xP) and therefore

|x| = |xP|.

The public key and the secret key for RankSign are given by:
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public key: Hpub which is a random (n − k) × n parity-check matrix of an augmented
LRPC code of type (d, t). It is of the form

Hpub = QH′

with H′ =
[
H|R

]
P where Q is an invertible (n−k)×(n−k) matrix over Fqm , H is a homoge-

neous matrix of rank d over Fqm , R is a matrix with t columns that has its entries in Fqm and P
is a square and invertible matrix with entries in Fq that has the same number of columns as H′.

secret key: The matrix Hsec
4
=
[
H|R

]
.

From the knowledge of this last matrix a signature is computed by using a decoding algorithm
devised for LRPC codes. Recall that LRPC codes can be viewed as analogues of LDPC codes
for the rank metric. In particular, they enjoy an efficient decoding algorithm based on their
low rank parity-check matrix. Roughly speaking, Algorithm 1 of [GMRZ13] decodes up to w
errors when dw ≤ n− k in polynomial time (see [GMRZ13, Theorem 1]). It uses in a crucial
way the notion of the linear span of a product of subspaces of Fqm :

Definition 8. Let U and V be two subspaces of Fqm , then

U · V 4=〈uv : u ∈ U, v ∈ V 〉Fq .

Roughly speaking, Algorithm 1 of [GMRZ13] works as follows when we have to recover an
error e of weight w from the knowledge of its syndrome s with respect to a parity-check matrix
H = (Hij)1≤i≤n−k

1≤j≤n
over Fqm that is homogeneous of weight d, that is

sᵀ = Heᵀ. (1)

1. Let U 4=〈Hij : 1 ≤ i ≤ n − k, 1 ≤ j ≤ n〉Fq , V
4
= Supp(e) and W 4

= Supp(s). U and W
are known, whereas V is unknown to the decoder. By definition U is of dimension d and
it is convenient to bring in a basis {f1, . . . , fd} for it.

2. It turns out that we typically have W = U · V . Moreover it is clear that in such a case
V ⊂ f−11 W ∩ f−12 W · · · f−1d W . It also turns out that we typically have

V = f−11 W ∩ f−12 W · · · f−1d W.

V is therefore computed by taking the intersection of all the f−1i W ’s.

3. Once we have the support of e (V = Supp(e)), the error e = (e1, . . . , en) can be recovered
by solving the linear equation Heᵀ = sᵀ with the additional constraints ei ∈ Supp(e)
for i ∈ {1, . . . , n}. There are in this case enough linear constraints to recover a unique
e.

The last algorithm seems to apply when there is a unique solution to (1). It can also be used
with a slight modification (by adding “erasures” [GRSZ14]) for weights for which there are
many solutions to it (this is typically the regime which is used for the RankSign scheme).
It namely turns out, see [GRSZ14], that this decoder can for a certain range of parameters
be used for a large fraction of possible syndromes s ∈ Frqm to produce an error e of weight
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w that satisfies (1). It can even be required that Supp(e) contains a subspace T of some
dimension t. Furthermore this procedure can also be generalized to a parity-check matrix of
an augmented LRPC code. More precisely to summarize the discussion that can be found in
[GRSZ14, AGH+17]

Fact 1. Let H be a random homogeneous matrix of weight d in F(n−k)×n
qm , H′ =

[
H|R

]
P

where R is a matrix with t columns that has its entries in Fqm and P is a square and invertible
matrix with entries in Fq that has the same number of columns as H′. There is a probabilistic
polynomial time algorithm that outputs for a large fraction of syndromes s ∈ Fn−kqm , subspaces
T of Fqm of Fq–dimension t′, an error e of weight w whose support contains the subspace T
that satisfies

H′eᵀ = sᵀ

as soon as the parameters n, k, t, t′, d, w satisfy

m = (w − t′)(d+ 1) (2)
n− k = d(w − t− t′) (3)

n = (n− k)d. (4)

4 Attack on RankSign

4.1 The problem with RankSign : low rank codewords in the augmented
LRPC code

A natural way to attack RankSign is to find low weight codewords in the dual of the augmented
LRPC code. Recall that the public parity-check matrix used in the scheme is a matrix Hpub
where

Hpub = QH′

with H′ =
[
H|R

]
P where H is a homogeneous matrix of rank d over Fqm , R is a matrix with

t columns that has its entries in Fqm , P is a square and invertible matrix with entries in Fq
that has the same number of columns as H′ and Q is a square and invertible matrix over Fqm
which has the same number of rows as H′. If we call Cpub the “public code” with parity-chek
matrix Hpub, then the dual code C⊥pub that has for generator matrix Hpub has codewords of
weight ≤ d + t since rows of H′P belong to this code, and all of its rows have rank weight
≤ d+t since the rows of H′ have weight at most d+t and P is an isometry for the rank metric.
The authors have chosen the parameters of the RankSign scheme so that finding codewords
of weight t + d in C⊥pub is above the security level of the scheme. However, it turns out that
due to the peculiar parameters chosen in the RankSign scheme (see Fact 1), Cpub has many
very low weight codewords. This is the main problem in RankSign. Before we give a precise
statement together with its proof, we will give a general result showing that LRPC codes may
have under certain circumstances low weight codewords.

Lemma 1. Let C be an LRPC code of length n and dimension k over Fqm that is associated
to a homogeneous matrix H that has all its entries in a subspace F of Fqm . Furthermore we
suppose there exists a subspace F ′ of Fqm such that

(n− k) dim(F · F ′) < n · dimF ′.
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Then there exist nonzero codewords in the LRPC code whose support is included in F ′.
They are therefore of rank weight at most dimF ′. Furthermore this set of codewords, that
is C ′

4
= {c ∈ C : ci ∈ F ′, ∀i ∈ J1, nK}, forms an Fq subspace of Fnqm that is of dimension ≥

n dimF ′ − (n− k) dim(F · F ′).

Proof. Denote the entry in row i and column j of H by Hi,j . A codeword c of the LRPC code
satisfies

∀i ∈ J1, n− kK
n∑
j=1

Hi,jcj = 0. (5)

Looking in addition for a codeword c that has all its entries in F ′ and expressing these n− k
linear equations over Fqm in a basis of F · F ′ (since

∑n
j=1Hi,jcj belongs by definition to

F · F ′) and expressing each cj in a Fq basis {f ′1, . . . , f ′d′} of F ′ as cj =
∑d′

`=1 cj,`f
′
` we obtain

(n − k) dim(F · F ′) linear equations over Fq involving n · dimF ′ unknowns (the cj ’s) in Fq.
The solution space is therefore of dimension greater ≥ n · dimF ′ − (n− k) dim(F · F ′).

Remark 3. This theorem proves the existence of low rank codewords in an LRPC-code under
some conditions but it does not give any efficient way to find them.

By using this lemma, we will prove the following corollary that explains that the augmented
LRPC codes that are used in the RankSign signature necessarily contain many rank weight 2
codewords. This is in a sense a consequence of Equation (4) on the parameters of RankSign.

Corollary 2. Let Cpub be an [n+ t, k + t] public code of RankSign over Fqm which has been
obtained from an [n, k] LRPC-code that is associated to a homogeneous matrix H that has all
its entries in an Fq subspace F of Fqm . Consider a subspace F ′ of F of dimension 2 and let

C ′pub
4
=
{
c ∈ Cpub : ci ∈ F ′, ∀i ∈ J1, nK

}
.

C ′pub is an Fq subspace of Fnqm . If (4) holds, that is n = (n− k)d, then

dimFq C ′pub ≥ n/d.

Proof. Let Hpub ∈ F(n−k)×(n+t)
qm be the public parity-check matrix for the RankSign public

code Cpub. Recall that Hpub has been obtained as Hpub = Q
[
H|R

]
P where:

• P is a non-singular matrix with entries in Fq of size (n+ t)× (n+ t),

• Q is an invertible matrix of Fqm of size (n− k)× (n− k),

• R is a random matrix of Fqm of size (n− k)× t,

• H is a homogeneous (n− k)× n matrix of weight d with all its entries in F .

Choose a basis {x1, x2, . . . , xd} of F such that {x1, x2} is a basis of F ′. We observe now that

F · F ′ = 〈xixj : i ∈ J1, dK, j ∈ J1, 2K〉Fq .

The cardinality of the set {xixj : i ∈ J1, dK, j ∈ J1, 2K} is actually 2d−1 because x1x2 = x2x1.
This implies that

dim(F · F ′) ≤ 2d− 1.
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It leads to the following inequalities,

n · dim(F ′)− (n− k) dim(F · F ′) ≥ 2n− (n− k)(2d− 1)

= 2d(n− k)− (n− k)(2d− 1) (since n = (n− k)d)
= n− k

=
n

d
(since n = (n− k)d).

Let CLRPC be the LRPC code of weight d associated to the parity-check matrix H and let
C ′LRPC be an Fq subspace of it that is defined by

C ′LRPC
4
=
{
c ∈ CLRPC : ci ∈ F ′, ∀i ∈ J1, nK

}
.

By applying Lemma 1 we know that

dimFq C ′LRPC ≥
n

d
. (6)

Consider now
C ′pub

4
={(cLRPC,0t)(P

−1)
ᵀ

: cLRPC ∈ C ′LRPC},

where 0t denotes the vector with t zeros. From (6) we deduce that

dimFq C ′pub ≥
n

d
.

Moreover the entries of any element c′ in Cpub belong to F ′ because the entries of P are in
Fq. Let us now prove that C ′pub is contained in Cpub. To verify this, consider an element c′ in
C ′pub. It can be written as

c′ = (cLRPC,0t)(P
−1)

ᵀ
.

We observe now that

Hpubc
′ᵀ = HpubP

−1(cLRPC,0t)
ᵀ

= Q
[
H|R

]
PP−1(cLRPC,0t)

ᵀ

= Q
[
H|R

]
(cLRPC,0t)

ᵀ

= QHcLRPC
ᵀ ( R ∈ F(n−k)×t

qm )

= 0 (cLRPC belongs to the code of parity-check matrix H)

This proves that C ′pub ⊂ Cpub which concludes the proof.

4.2 Weight 1 codewords in a projected code

Corollary 2 shows that there are many weight 2 codewords in Cpub. We can even restrict our
search further by noticing that without loss of generality we may assume that the space F in
which the entries of the secret parity-check matrix H of the LRPC code are taken contains
1. Indeed, for any α in F×qm , αH is also a parity-check matrix of the LRPC code and has its
entries in αF . By choosing α such that αF contains 1 we get our claim.

Consider now a supplementary space V of 〈1〉Fq = Fq with respect to Fqm , that is an
Fq-space of dimension m− 1 such that

Fqm = V ⊕ Fq.
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The previous discussion implies that there is a matrix-code in F(m−1)×(n+t)
q which can be

deduced from Cpub by projecting the entries onto V that contains codewords of weight 1.
More specifically, consider an Fq basis {β1, β2, · · · , βm} of Fqm such that βm = 1 and for
c = (ci)1≤i≤n+t ∈ Fn+tqm consider

Matproj(c) = (Mij)1≤i≤m−1
1≤j≤n+t

∈ F(m−1)×n
q

where cj =
∑m

i=1Mijβi. Now let C proj
pub be the matrix-code in F(m−1)×(n+t)

q defined by

C proj
pub

4
=
{
Matproj(c)

}
.

It is clear that

Fact 2. C proj
pub contains codewords of rank weight 1.

These are just the codewords c′ which are of the form Matproj(c) where c ∈ C ′pub with C ′pub
being defined from a subspace F ′ of F that contains 1 (we can make this assumption since we
can assume that F contains 1).

C proj
pub has the structure of an Fq-subspace of F(m−1)×(n+t)

q . It is typically of dimension
(k + t)m (i.e. the same as the Fq dimension of Cpub). Moreover once we have these rank
weight 1 codewords in C proj

pub we can lift them to obtain rank weight ≤ 2 codewords in Cpub

because for any c ∈ Cpub the first row ofMat(c) can be uniquely recovered fromMatproj(c) by
performing linear combinations of the entries of Matproj(c). We call this operation deducing
c from Matproj(c) lifting from C proj

pub to Cpub.

4.3 Outline of the attack

Finding codewords of rank 1 in C proj
pub obviously reveals much of the secret LRPC structure.

Lifting elements in C proj
pub that are of rank 1 to Cpub as explained at the end of Subsection 4.2

yields codewords of Cpub that have typically rank weight 2. This can be used to reveal F ′

and actually the whole subspace F by finding enough rank 1 codewords in C proj
pub . Once F is

recovered a suitable form for a parity-check matrix of Cpub can be found that allows signing like
a legitimate user. For the case of the parameters of RankSign proposed in [GRSZ14, AGH+17]
for which we always have d = 2 we will proceed slightly differently here. Roughly speaking,
our attack can be decomposed as follows

1. We find a particular element M in C proj
pub of rank weight 1 by solving a certain bilinear

system with Gröbner bases techniques.

2. We lift M ∈ C proj
pub to c ∈ Cpub and compute F ′ 4= Supp(c).

3. We compute from F ′ the Fq-subspace C ′pub
4
= {c = (ci)1≤i≤n+t ∈ Cpub : ci ∈ F ′ ∀i ∈ J1, n+ tK}.

When d = 2 this set has typically dimension k.

4. We use this subspace of Cpub to find a suitable parity-check matrix for Cpub which allows
us to sign like a legitimate user.

Steps 2. and 3. are straightforward. We just give details for Steps 1. and 4. in what follows.
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4.4 Finding rank 1 matrices in C proj
pub by solving a bilinear system

The basic bilinear system. Finding rank 1 matrices in C proj
pub can be formulated as an

instance of the MinRank problem [BFS99, Cou01]. We could use standard techniques for
solving this problem [KS99, FLdVP08, FDS10, Spa12] but we found that it is better here
to use the algebraic modeling suggested in [AGH+17]. It basically consists in setting up an
algebraic system with unknowns x = (x1, . . . , xm−1) ∈ Fm−1q and y ∈ Fn+tq where the unknown
matrix M in C proj

pub that should be of rank 1 has the form

M =


x1y1 x1y2 . . . x1yn+t
x2y1 x2y2 . . . x2yn+t
...

...
...

...
xm−1y1 xm−1y2 . . . xm−1yn+t

 .

Recall that C proj
pub has the structure of an Fq subspace of F(m−1)×(n+t)

q of dimension (k + t)m.

By viewing the elements of C proj
pub as vectors of F(m−1)(n+t)

q , i.e. the matrix M = (Mij)1≤i≤m−1
1≤j≤n+t

is viewed as the vector m = (m`)1≤`≤(m−1)(n+t) wherem(i−1)(n+t)+j = Mi,j , we can compute a
parity-check matrix Hproj

pub for it. It is an ((m−1)(n+t)−(k+t)m)×(m−1)(n+t) matrix that
we denote by Hproj

pub = (Hproj
ij )1≤i≤(m−1)(n+t)−(k+t)m

1≤j≤(m−1)(n+t)
. This matrix gives (m−1)(n+t)−(k+t)m

bilinear equations that have to be satisfied by the xi’s and the yj ’s:

n+t∑
j=1

m−1∑
i=1

Hproj
1,(i−1)(n+t)+jxiyj = 0

...
n+t∑
j=1

m−1∑
i=1

Hproj
(n+t)(m−1)−(k+t)m,(i−1)(n+t)+jyjxl = 0

(7)

Restricting the number of solutions. We have solved the bilinear system (7) with standard
Gröbner bases techniques that are implemented in Magma. To speed-up the resolution of
the bilinear system with Gröbner bases techniques (especially the change of order that is
performed after a first computation of a Gröbner basis for a suitable order to deduce a basis
for the lexicographic order which is more suited for outputting a solution) it is helpful to use
additional equations that restrict the solution space which is otherwise really huge in this case.
The purpose of the following discussion is to show where these solutions come from and how
to restrict them.

By bilinearity of System (7) we may fix x1 = 1 (when there is a solution x such that
x1 6= 0). Furthermore, the fact that C ′pub is an Fq vector space of dimension n/d induces that
for a given x solution to (7) the set of corresponding y’s also forms a vector space of dimension
n/d. We may therefore rather safely assume that we can choose

∀i ∈ J1,
n

d
− 1K, yi = 0 and yn/d = 1.

There is an additional degree of freedom on x coming from the fact that even if d = 2 there
are several spaces αF for which 1 ∈ αF . To verify this, let us study in more detail the case
when F is of dimension 2, say

F = 〈a, b〉Fq .
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Intended Security [AGH+17] (n, k,m, d, t, q) Time Maximum Memory Usage
128 bits (20, 10, 21, 2, 2, 232) 20.12 s 49 MB
128 bits (24, 12, 24, 2, 2, 224) 31.75 s 65 MB
192 bits (24, 12, 27, 2, 3, 232) 125.64 s 97 MB
256 bits (28, 14, 30, 2, 3, 232) 256.90 s 137 MB

Table 1: Attack on NIST’s parameters of RankSign

We wish to understand what are the possible values for z ∈ Fqm such that there exists c 6= 0
for which

〈a, b〉Fq = c〈1, z〉Fq . (8)

The possible values for x will then be the projection of those z to the Fq space 〈β1, . . . , βm−1〉Fq .
The possible values for z are then obtained from studying the possible values for c. There are
two cases to consider:

• Case 1: c = µ
a+bν for µ ∈ F×q and ν ∈ Fq. In such a case

z =
βb

a+ bν
+ δ

for β ∈ F×q , δ ∈ Fq.

• Case 2: c = µ
b for µ ∈ F×q . Here

z = α
a

b
+ δ

for α ∈ F×q , δ ∈ Fq.

Since the δ term vanishes after projecting x onto 〈β1, . . . , βm−1〉Fq we have essentially two
degrees of freedom over Fq for x. One has already been taken into account when setting
x1 = 1. We can add a second one x2 = α where α is arbitrary in Fq. We have actually chosen
in our experiments that (x2 − α)(x2 − β) = 0 for some random α and β in Fq. This has
resulted in some gain in the computation of the solution space.

4.5 Numerical results

We give in Table 1 our numerical results to find a codeword of rank 2 in any public code of
the RankSign scheme for parameters chosen according to [AGH+17].

4.6 Finishing the attack

We present in this subsection the end of our attack which consists in being able to sign
with only the knowledge of the public key. It holds for the parameters chosen for the NIST
competition [AGH+17] for which d = 2. Observe that (4) implies that we have k = n−k = n/2.

We have at that point obtained the code C ′pub that is dimension (over Fq)≥ n/d = n/2 = k.
This code is just Fq-linear, but it will be convenient to extend this code by considering its
Fqm-linear extension, that we denote Fqm ⊗C ′pub that is defined by the Fqm-linear subspace of
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Fn+tqm obtained from linear combinations over Fqm of codewords in C ′pub. In other words if we
denote by {c′1, . . . , c′k′} an Fq-basis of C ′pub, then

Fqm ⊗ C ′pub = 〈c′1, . . . , c′k′〉Fqm
.

To simplify the discussion we make now the following assumption (which was corroborated
by our experiments)

Assumption 1.
dimFqm ⊗ C ′pub = k.

The rationale behind this assumption is that (i) the dimension of C ′pub is very likely to be n/d
which is equal to k and (ii) an Fq basis of C ′pub is very likely to be an Fqm basis too.

Lemma 3. Under Assumption 1 the code
(
Fqm ⊗ C ′pub

)⊥
has length n+t, dimension n+t−k

and is an LRPC-code that is associated to a homogeneous matrix that has all its entries in an
Fq subspace F of Fqm of dimension 2 which contains 1. Furthermore, the sets

D
4
={c ∈

(
Fqm ⊗ C ′pub

)⊥
: Supp(c) ⊆ Fq} and D ′

4
={c ∈

(
Fqm ⊗ C ′pub

)⊥
: Supp(c) ⊆ F}

are Fq-subspaces of dimension ≥ t. and ≥ n− k + 2t respectively.

Proof. By Assumption 1, Fqm ⊗ C ′pub is of dimension k and its dual
(
Fqm ⊗ C ′pub

)⊥
has

therefore dimension n+ t− k. There is a generator matrix for Fqm ⊗ C ′pub that is formed by
rows taken from C ′pub. It is homogeneous of weight 2. Say that its entries generate a space

F . This is also a parity-check matrix of the dual code.
(
Fqm ⊗ C ′pub

)⊥
is therefore an LRPC

code of weight 2.
By applying now Lemma 1 to it with F ′ = Fq, we have

(n+ t) · dimFq(Fq)− (n+ t− (n+ t− k)) dim(F · Fq) = n+ t− 2k

= t (because 2k = n)

which gives the result for the set D . We apply once again Lemma 1 but this time with F ′ = F .
Say F = 〈1, x1〉Fq . This gives a lower bound on the dimension of D ′ which is

(n+ t) dim(F )− (n+ t− (n+ t− k)) dim(F · F ) ≥ 2(n+ t)− 3k (because F · F = 〈1, x1, x21〉Fq)

= n− k + 2t (because 2k = n).

To end our attack we make now the following assumption that was again corroborated in our
experiments.

Assumption 2. We can extract from sets D and D ′ a basis of
(
Fqm ⊗ C ′pub

)⊥
with

1. t codewords of support Fq,

2. n− k codewords of a same support of rank 2 which contains 1.

13



Lemma 4. Under Assumptions 1 and 2 there exists a parity-check matrix H′ ∈ F(n+t−k)×(n+t−k)
qm

of Fqm ⊗ C ′pub, an invertible matrix P of size n + t with entries in the small field Fq and an
invertible matrix S of size n+ t− k with entries in Fqm such that

SH′P =

(
It 0
0 R

)
where R is homogeneous of degree 2 and of size (n− k)× n.

Proof. Under Assumptions 1 and 2 there is a generator matrix of
(
Fqm ⊗ C ′pub

)⊥
and thus

a parity-check matrix of Fqm ⊗ C ′pub which is homogeneous of degree 2 with the particularity
that t rows of it are of rank 1. Let H′ be such a matrix, thus by making a Gaussian elimination
on its rows we have an invertible matrix S ∈ F(n+t−k)×(n+t−k)

qm such that:

SH′ =

(
It Q
0 R

)
where Q is a matrix of size t × (n + t) whose entries lie in the small field Fq and R is a
homogeneous matrix of weight 2 and of size (n− k)×n. In this way there exists an invertible
matrix P of size (n+ t)× (n+ t) with coefficients in the field Fq such that

SH′P =

(
It 0
0 R

)
which concludes the proof.

The idea now to sign as a legitimate user will be to use the matrix R and the decoder of Fact 1
(see Section §3). Recall that to make a signature for the matrix Hpub (which defines the public
code Cpub) and a message m, we look for an error e of rank w satisfying n− k = d(w− t− t′)
(see Equation (3) of Fact 1), such thatHpube

ᵀ = sᵀ with s = H (m) (the hash of the message).
The algorithm that follows performs this task:

1. We compute y ∈ Fn+tqm such that Hpuby
ᵀ = sᵀ.

2. Let y′ = y(P−1)
ᵀ and we compute s′ = (SH′P)y′ᵀ.

3. Let s′1 be the first t coordinates of s′, s′2 its last n − k ones. We apply the
decoder of §3 with:

- The subspace T 4= Supp(s′1) + T ′ where T ′ is a random subspace of Fqm
of dimension t′.

- The parity-check matrix R and the syndrome s′2.

Then we get a vector e′ such that T ⊆ Supp(e′) and Re′ᵀ = s′2
ᵀ.

4. We compute e = (s′1, e
′)Pᵀ.

Let us now show the correctness of this algorithm, in other words we show that Hpube
ᵀ = sᵀ

with |e| = w satisfying n− k = 2(w − t− t′).
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Proof of Correctness. First we have:

H′e
ᵀ

= H′P(s′1, e
′)
ᵀ

= S−1(SH′P)(s′1, e
′)
ᵀ

= S−1
(
It 0
0 R

)
(s′1, e

′)
ᵀ

= S−1
(

s′1
ᵀ

Re′ᵀ

)
(because s′1 of size t)

= S−1s′
ᵀ (because Re′

ᵀ
= s′2

ᵀ
)

= S−1(SH′P)y′
ᵀ

= H′P(P−1yᵀ)

= H′yᵀ

which implies that H′(e− y)ᵀ = 0 and y−e ∈ Fqm⊗C ′pub. Recall now that Fqm⊗C ′pub ⊆ Cpub
and therefore Hpub(e− y)ᵀ = 0. By linearity we get Hpube

ᵀ = Hpuby
ᵀ = sᵀ.

Thus under the condition that the decoder in Point 3 works for the matrix H′, the syndrome
s and the subspace T our algorithm decodes the syndrome s relatively to Hpub.
The parity-check matrix R is homogeneous of degree 2, has n − k rows and n columns. We
can therefore apply to it the decoder of §3. It will output (we use here Fact 1) an error e′

of weight w′ that satisfies n − k = 2(w′ − t − t′). Note that this implies that w′ = w which
is the error weight we want to achieve. Then the error e = (s′1, e

′)Pᵀ has the same rank as
Supp(s′1) ⊆ T ⊆ Supp(e′) and P is an invertible matrix in the small field which concludes the
proof.

To summarize, in essence with codewords of rank 2 in the public code of RankSign and under
Assumptions 1 and 2 we find the decoder that was used to sign with the secret key.

5 Concluding remarks

This paper is only a preliminary version of our work which gives a quick report on our attack on
RankSign. It will be followed by a more elaborated version which will analyze more precisely
the complexity of this attack and which will show that it is actually polynomial for all possible
strategies for choosing the parameters of RankSign. Repairing the RankSign seems to require
to modify the scheme itself and not just adjust the parameters.

It might be tempting to conjecture that this approach could also be used to mount an attack
on the NIST submissions based on LRPC codes such as [ABD+17a, ABD+17b]. Roughly
speaking our approach consists in looking for low weight codewords in the LRPC code instead
of looking for low weight codewords in the usual suspect, that is the dual of the LRPC code,
that has in this case low weight codewords by definition of the LRPC code. This approach
does not seem to carry over to the LRPC codes considered in these submissions. The point
is that our approach was successful for RankSign because of the way the parameters of the
LRPC code had to be chosen. In particular the length n, the dimension k and the weight of
the LRPC code have to satisfy

n = (n− k)d.
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It is precisely this equality that is responsible for the weight 2 codewords in the LRPC code. If
d is not too small (say > 3) and (n−k)d is not too close to n then all the approach considered
here fails at the very beginning.

References

[ABD+17a] Nicolas Aragon, Olivier Blazy, Jean-Christophe Deneuville, Philippe Gaborit,
Adrien Hauteville, Olivier Ruatta, Jean-Pierre Tillich, and Gilles Zémor. LAKE–
Low rAnk parity check codes Key Exchange —-. first round submission to the
NIST post-quantum cryptography call, November 2017.

[ABD+17b] Nicolas Aragon, Olivier Blazy, Jean-Christophe Deneuville, Philippe Gaborit,
Adrien Hauteville, Olivier Ruatta, Jean-Pierre Tillich, and Gilles Zémor.
LOCKER–LOw rank parity ChecK codes EncRyption –. first round submis-
sion to the NIST post-quantum cryptography call, November 2017.

[AGH+17] Nicolas Aragon, Philippe Gaborit, Adrien Hauteville, Oliver Ruatta, and Gilles
Zémor. Ranksign -a signature proposal for the NIST’s call-. first round submis-
sion to the NIST post-quantum cryptography call, November 2017. NIST Round
1 submission for Post-Quantum Cryptography.

[AMAB+17] Carlos Aguilar Melchor, Nicolas Aragon, Slim Bettaieb, Loïc Bidoux, Olivier
Blazy, Jean-Christophe Deneuville, Philippe Gaborit, and Gilles Zémor. Rank
quasi cyclic (RQC). first round submission to the NIST post-quantum cryptog-
raphy call, November 2017.

[BFS99] Jonathan F. Buss, Gudmund S. Frandsen, and Jeffrey O. Shallit. The computa-
tional complexity of some problems of linear algebra. J. Comput. System Sci.,
58(3):572–596, June 1999.

[BJMM12] Anja Becker, Antoine Joux, Alexander May, and Alexander Meurer. Decoding
random binary linear codes in 2n/20: How 1 + 1 = 0 improves information set
decoding. In Advances in Cryptology - EUROCRYPT 2012, LNCS. Springer,
2012.

[BLP11] Daniel J. Bernstein, Tanja Lange, and Christiane Peters. Smaller decoding ex-
ponents: ball-collision decoding. In Advances in Cryptology - CRYPTO 2011,
volume 6841 of LNCS, pages 743–760, 2011.

[BM17] Leif Both and Alexander May. Optimizing BJMM with Nearest Neigh-
bors: Full Decoding in 22/21n and McEliece Security. In WCC Work-
shop on Coding and Cryptography, September 2017. To appear, see
https://www.google.fr/?gfe_rd=cr&ei=lEyVWcPPBuXU8gfAj5ygBg.

[BMvT78] Elwyn Berlekamp, Robert McEliece, and Henk van Tilborg. On the inherent in-
tractability of certain coding problems. IEEE Trans. Inform. Theory, 24(3):384–
386, May 1978.

16



[CFS01] Nicolas Courtois, Matthieu Finiasz, and Nicolas Sendrier. How to achieve a
McEliece-based digital signature scheme. In Advances in Cryptology - ASI-
ACRYPT 2001, volume 2248 of LNCS, pages 157–174, Gold Coast, Australia,
2001. Springer.

[Cou01] Nicolas Courtois. Efficient zero-knowledge authentication based on a linear alge-
bra problem MinRank. In Advances in Cryptology - ASIACRYPT 2001, volume
2248 of LNCS, pages 402–421, Gold Coast, Australia, 2001. Springer.

[DT17] Thomas Debris-Alazard and Jean-Pierre Tillich. Statistical decoding. preprint,
January 2017. arXiv:1701.07416.

[Dum91] Ilya Dumer. On minimum distance decoding of linear codes. In Proc. 5th Joint
Soviet-Swedish Int. Workshop Inform. Theory, pages 50–52, Moscow, 1991.

[FDS10] Jean-Charles Faugère, Mohab Safey El Din, and Pierre-Jean Spaenlehauer. Com-
puting loci of rank defects of linear matrices using gröbner bases and applications
to cryptology. In Symbolic and Algebraic Computation, International Sympo-
sium, ISSAC 2010, Munich, Germany, July 25-28, 2010, Proceedings, pages
257–264, 2010.

[FLdVP08] Jean-Charles Faugère, Françoise Levy-dit Vehel, , and Ludovic Perret. Crypt-
analysis of Minrank. In David Wagner, editor, Advances in Cryptology -
CRYPTO 2008, volume 5157 of LNCS, pages 280–296, 2008.

[FS09] Matthieu Finiasz and Nicolas Sendrier. Security bounds for the design of code-
based cryptosystems. In M. Matsui, editor, Advances in Cryptology - ASI-
ACRYPT 2009, volume 5912 of LNCS, pages 88–105. Springer, 2009.

[Gab08] Ernst. M. Gabidulin. Attacks and counter-attacks on the GPT public key cryp-
tosystem. Des. Codes Cryptogr., 48(2):171–177, 2008.

[GHPT17] Philippe Gaborit, Adrien Hauteville, Duong Hieu Phan, and Jean-Pierre Tillich.
Identity-based encryption from rank metric. In Advances in Cryptology -
CRYPTO2017, volume 10403 of LNCS, pages 194–226. Springer, August 2017.

[GMRZ13] Philippe Gaborit, Gaétan Murat, Olivier Ruatta, and Gilles Zémor. Low rank
parity check codes and their application to cryptography. In Proceedings of
the Workshop on Coding and Cryptography WCC’2013, Bergen, Norway, 2013.
Available on www.selmer.uib.no/WCC2013/pdfs/Gaborit.pdf.

[GO01] Ernst M. Gabidulin and Alexei V. Ourivski. Modified GPT PKC with right
scrambler. Electron. Notes Discrete Math., 6:168–177, 2001.

[GPT91] Ernst M. Gabidulin, A. V. Paramonov, and O. V. Tretjakov. Ideals over a
non-commutative ring and their applications to cryptography. In Advances in
Cryptology - EUROCRYPT’91, number 547 in LNCS, pages 482–489, Brighton,
April 1991.

[GRS13] Philippe Gaborit, Olivier Ruatta, and Julien Schrek. On the complexity of the
rank syndrome decoding problem. CoRR, abs/1301.1026, 2013.

17



[GRS16] Philippe Gaborit, Olivier Ruatta, and Julien Schrek. On the complexity of the
rank syndrome decoding problem. IEEE Trans. Information Theory, 62(2):1006–
1019, 2016.

[GRSZ14] Philippe Gaborit, Olivier Ruatta, Julien Schrek, and Gilles Zémor. New results
for rank-based cryptography. In Progress in Cryptology - AFRICACRYPT 2014,
volume 8469 of LNCS, pages 1–12, 2014.

[GZ16] Philippe Gaborit and Gilles Zémor. On the hardness of the decoding and the
minimum distance problems for rank codes. IEEE Trans. Information Theory,
62(12):7245–7252, 2016.

[KS99] Aviad Kipnis and Adi Shamir. Cryptanalysis of the HFE public key cryptosystem
by relinearization. In Advances in Cryptology - CRYPTO’99, volume 1666 of
LNCS, pages 19–30, Santa Barbara, California, USA, August 1999. Springer.

[LB88] Pil J. Lee and Ernest F. Brickell. An observation on the security of McEliece’s
public-key cryptosystem. In Advances in Cryptology - EUROCRYPT’88, volume
330 of LNCS, pages 275–280. Springer, 1988.

[Loi14] Pierre Loidreau. Asymptotic behaviour of codes in rank metric over finite fields.
Des. Codes Cryptogr., 71(1):105–118, 2014.

[MMT11] Alexander May, Alexander Meurer, and Enrico Thomae. Decoding random linear
codes in O(20.054n). In Dong Hoon Lee and Xiaoyun Wang, editors, Advances in
Cryptology - ASIACRYPT 2011, volume 7073 of LNCS, pages 107–124. Springer,
2011.

[MO15] Alexander May and Ilya Ozerov. On computing nearest neighbors with applica-
tions to decoding of binary linear codes. In E. Oswald and M. Fischlin, editors,
Advances in Cryptology - EUROCRYPT 2015, volume 9056 of LNCS, pages 203–
228. Springer, 2015.

[Nie86] Harald Niederreiter. Knapsack-type cryptosystems and algebraic coding theory.
Problems of Control and Information Theory, 15(2):159–166, 1986.

[Pra62] Eugene Prange. The use of information sets in decoding cyclic codes. IRE
Transactions on Information Theory, 8(5):5–9, 1962.

[Spa12] Pierre-Jean Spaenlenhauer. Résolution de systèmes multi-homogènes et determi-
nantiels. PhD thesis, Univ. Pierre et Marie Curie- Paris 6, October 2012.

[Ste88] Jacques Stern. A method for finding codewords of small weight. In G. D. Cohen
and J. Wolfmann, editors, Coding Theory and Applications, volume 388 of LNCS,
pages 106–113. Springer, 1988.

18


