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Abstract

RankSign [GRSZ14] is a code-based signature scheme proposed to the NIST competition
for quantum-safe cryptography [AGH+17] and, moreover, is a fundamental building block of
a new Identity-Based-Encryption (IBE) [GHPT17]. This signature scheme is based on the
rank metric and enjoys remarkably small key sizes, about 10KBytes for an intended level of
security of 128 bits. Unfortunately we will show that all the parameters proposed for this
scheme in [AGH+17] can be broken by an algebraic attack that exploits the fact that the
augmented LRPC codes used in this scheme have very low weight codewords. Therefore,
without RankSign the IBE cannot be instantiated at this time. As a second contribution we
will show that the problem is deeper than finding a new signature in rank-based cryptography,
we also found an attack on the generic problem upon which its security reduction relies.
However, contrarily to the RankSign scheme, it seems that the parameters of the IBE scheme
could be chosen in order to avoid our attack. Finally, we have also shown that if one replaces
the rank metric in the [GHPT17] IBE scheme by the Hamming metric, then a devastating
attack can be found.

1 Introduction

1.1 An efficient code-based signature scheme: RankSign and a code-
based Identity-Based-Encryption scheme

Code-based signature schemes. It is a long standing open problem to build an efficient and
secure signature scheme based on the hardness of decoding a linear code which could compete in
all respects with DSA or RSA. Such schemes could indeed give a quantum resistant signature for
replacing in practice the aforementioned signature schemes that are well known to be broken by
quantum computers. A first partial answer to this question was given in [CFS01]. It consisted in
adapting the Niederreiter scheme [Nie86] for this purpose. This requires a linear code for which
there exists an efficient decoding algorithm for a non-negligible set of inputs. This means that if
H is an r × n parity-check matrix of the code, there exists for a non-negligible set of elements
s in {0, 1}r an efficient way to find a word e in {0, 1}n of smallest Hamming weight such that
Heᵀ = sᵀ.

The authors of [CFS01] noticed that very high rate Goppa codes are able to fulfill this task, and
their scheme can indeed be considered as the first step towards a solution of the aforementioned
problem. However, the poor scaling of the key size when security has to be increased prevents this
scheme to be a completely satisfying answer to this issue.
The rank metric. There has been some exciting progress in this area for another metric, namely
the rank metric [GRSZ14]. A code-based signature scheme whose security relies on decoding codes
with respect to the rank metric has been proposed there. It is called RankSign. Strictly speaking,
∗Sorbonne Universités, UPMC Univ Paris 06, France
†Inria, SECRET Project, 2 Rue Simone Iff 75012 Paris Cedex

1



the rank metric consists in viewing an element in FNq (when N is a product N = m × n) as an
m× n matrix over Fq and the rank distance between two elements x and y is defined as the rank
of the matrix x − y. This depends of course on how N is viewed as a product of two elements.
Decoding in this metric is known to be an NP hard problem [BFS99, Cou01]. In the particular
case of [GRSZ14], the codes which are considered are not Fq-linear but, as is customary in the
setting of rank metric based cryptography, Fqm -linear: the codes are here subspaces of Fnqm . Here
the elements x = (x1, . . . , xn) of Fnqm are viewed as m× n matrices by expressing each coordinate
xi in a certain fixed Fq-basis of Fqm . This yields a column vector xi in Fmq and the concatenation
of these column vectors yields an m × n matrix Mat(x) =

(
x1 . . . xn

)
that allows to put a

rank metric over Fnqm . This allows to reduce the key size by a factor of m when compared to the
Fq-linear setting (for more details see the paragraph at the end of Section 2).

Decoding such codes for the rank metric is not known to be NP-hard anymore. There is however
a randomized reduction of this problem to decode an Fq-linear code for the Hamming metric
[GZ16] when the degree m of the extension field is sufficiently big. This situation is in some sense
reminiscent to the current thread in cryptography based on codes or on lattices where structured
codes (for instance quasi-cyclic codes) or structured lattices (corresponding to an additional ring
structure) are taken. However the Fqm-linear case has an advantage over the other structured
proposals, in the sense that it has a randomized reduction to an NP complete problem. This is
not the case for the other structured proposals. Relying on Fqm-linear codes is one of the main
reason why RankSign enjoys noticeably small public key sizes: it is about 10KBytes for 128 bits of
security for the parameters proposed in the NIST submission[AGH+17]. Furthermore, RankSign
comes with a security proof showing that there is no leakage coming from signing many times. It
also proved to be a fundamental building block in the Identity-Based-Encryption (IBE) scheme
based on the rank metric suggested in [GHPT17].
A new IBE scheme based on codes. The concept of IBE was introduced by Shamir in 1984
[Sha84]. It gives an alternative to the standard notion of public-key encryption. In an IBE scheme,
the public key associated with a user can be an arbitrary identity string, such as his e-mail address,
and others can send encrypted messages to a user using his identity without having to rely on a
public-key infrastructure, given short public parameters. The main technical difference between
a Public Key Encryption (PKE) and IBE is the way the public and private keys are bound and
the way of verifying those keys. In a PKE scheme, verification is achieved through the use of a
certificate which relies on a public-key infrastructure. In an IBE, there is no need of verification
of the public key but the private key is managed by a Trusted Authority (TA).

There are two issues that makes the design of IBE extremely hard: the requirement that public
keys are arbitrary strings and the ability to extract decryption keys from the public keys. In fact, it
took nearly twenty years for the problem of designing an efficient method to implement an IBE to
be solved. The known methods of designing IBE are based on different tools: from elliptic curve
pairings [SOK00] and [BF01]; from the quadratic residue problem [Cou01]; from the Learning-
With-Error (LWE) problem [GPV08]; from the computational Diffie-Hellman assumption [DG17b]
and finally from the Rank Support Learning (RSL) problem [GHPT17]. The last scheme based
on codes is an adaptation of the [GPV08] technique, but instead of relying on the Hamming
metric it relies on the rank metric. It has to be noted that there has been some recent and
exciting progress in the design of IBE. In [DG17a] it has been shown how to generalize the work
of [DG17b] by introducing a new primitive, One-Time Signatures with Encryption (OTSE), that
enables to construct fully secure IBE schemes. Furthermore it was shown in [DGHM18] how to
instantiate OTSE primitives from LWE and the Low Parity Noise problems (LPN). This gave
after the IBE’s [GPV08] and [GHPT17] the third scheme which may hope to resist to a quantum
computer.

1.2 Our contribution
An efficient attack on RankSign. Our first contribution is that despite the fact that the
security of RankSign might very well be founded on a hard problem (namely distinguishing an
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augmented LRPC code from a random linear code), we show here that all the parameters proposed
for RankSign in [AGH+17] can be broken by a suitable algebraic attack. The problem is actually
deeper than that, because the attack is actually polynomial in nature and can not really be
thwarted by changing the parameters. The attack builds upon the following observations

• The RankSign scheme is based on augmented LRPC codes;

• To have an efficient signature scheme, the parameters of the augmented LRPC codes have
to be chosen very carefully;

• For the whole range of admissible parameters, it turns out rather unexpectedly that these
augmented LRPC codes have very low-weight codewords. This can be proved by subspace
product considerations;

• These low-weight codewords can be recovered by algebraic techniques and reveal enough of
the secret trapdoor used in the scheme to be able to sign like a legitimate user.

This attack has also a significant impact on the IBE proposal [GHPT17] whose security is
based on the security of RankSign. Right now, there is no backup solution for instantiating this
IBE scheme, since RankSign was the only rank-metric code based signature scheme following the
hash and sign paradigm that is needed in the IBE scheme.

An efficient attack on the IBE [GHPT17]. Our second contribution is to show that the
problem is deeper than finding a new hash and sign signature scheme in rank-based cryptography
to instantiate the IBE proposed in [GHPT17]. Actually the security of this IBE scheme does not
solely rely on the rank metric code-based signature scheme and the rank syndrome decoding, it
also relies on the Rank Support Learning (RSL) problem. We show here that the RSL problem
is much easier for the parameters proposed in the IBE scheme [GHPT17] and can be broken by
a suitable algebraic attack. Interestingly enough, the approach for breaking the RSL problem is
similar to what we did for RankSign:

• we exhibit a matrix code that can be deduced from the public data that contains many
low-weight codewords and whose support reveals the secret support of the RSL problem;

• we find such low weight codewords efficiently by solving a largely overdetermined bilinear
system.

However in this case, contrarily to the RankSign scheme, even if the set of parameters that could
defeat our attack is small, it is non empty and our attack could be thwarted by choosing the
parameters appropriately and if an appropriate signature scheme were found.

We have also explored whether it is possible to change in the IBE scheme of [GHPT17] the rank
metric by the Hamming metric. It turns out that the problem is much worse for the Hamming
case. Indeed by adapting the IBE [GHPT17] to the Hamming metric, based on the remark that
signatures must have a small weight, we show that even the simplest generic attack, namely the
Prange algorithm [Pra62], breaks the IBE in the Hamming setting in polynomial time, and this
irrespective of the way the parameters are chosen.

2 Generalities on rank metric and Fqm-linear codes

2.1 Definitions and notation
We provide here notation and definitions that are used throughout the paper.

Vector notation. Vectors will be written using bold lower-case letters, e.g. x. The ith compo-
nent of x is denoted by xi. Vectors are in row notation. Matrices will be written as bold capital
letters, e.g. X, and the i-th column of a matrix X is denoted Xi. The rank of a matrix X will be
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simply denoted by |X|.

Field notation. Let q be a power of a prime number. We will denote by Fq the finite field of
cardinality q.

Coding theory notation. A linear code C over a finite field Fq of length n and dimension k is a
subspace of the vector space Fnq of dimension k. We say that it has parameters [n, k] or that it is
an [n, k]-code. A generator matrix G for it is a full rank k × n matrix over Fq which is such that

C = {uG : u ∈ Fkq}.

In other words, the rows of G form a basis of C . A parity-check matrix H for it is a full-rank
(n− k)× n matrix over Fq such that

C = {c ∈ Fnq : Hcᵀ = 0}.

In other words, C is the null space of H.
Rank metric codes basically consist in viewing codewords as matrices. More precisely, when

N is the product of two numbers m and n, N = mn we will equip the vector space FNq with the
rank metric by viewing its elements as matrices over Fm×nq , i.e.

d(X,Y) = |X−Y|.

An [m×n,K] matrix code of dimension K over Fm×nq is a subspace of Fm×nq of dimension K. Such
a code is equipped in a natural way with the rank metric. There is a particular subclass of matrix
codes that has the nice property to be specified much more compactly than a generic matrix code.
It consists in taking a linear code over an extension field Fqm of Fq of length n. Such a code can
be viewed as a matrix code consisting of matrices in Fm×nq by expressing each coordinate ci of a
codeword c = (ci)1≤i≤n in a fixed Fq basis of Fqm . When the Fqm-linear code is of dimension k
the dimension of the matrix code viewed as an Fq-subspace of Fm×nq is K = k.m. More precisely
we bring in the following definition.

Definition 1 (Matrix code associated to an Fqm linear code). Let C be an [n, k]-linear code over
Fqm , that is a subspace of Fnqm of dimension k over Fqm , and let (β1 . . . βm) be a basis of Fqm over
Fq. Each word c ∈ C can be represented by an m×n matrix Mat(c) = (Mij)1≤i≤m

1≤j≤n
over Fq, with

cj =
∑m
i=1Mijβi. The set {Mat(c), c ∈ C } is the [m× n, k.m] matrix code over Fq associated to

the Fqm linear code C . The (rank) weight of c is defined as the rank of the associated matrix, that

is |c|4= |Mat(c)|.

This definition depends of course on the basis chosen for Fqm . However changing the basis
does not change the distance between codewords. The point of defining matrix codes in this way
is that they have a more compact description. It is readily seen that an [m × n, k.m] matrix
code over Fq can be specified from a systematic generator matrix (i.e. a matrix of the form[
1k.m|P

]
with 1k.m being the identity matrix of size k.m) by k(n − k)m2 log2 q bits whereas an

Fqm-linear code uses only k(n− k) log2 q
m = k(n− k)m log2 q bits. This is particularly interesting

for cryptographic applications where this notion is directly related to the public key size. This is
basically what explains why in general McEliece cryptosystems based on rank metric matrix codes
have a smaller keysize than McEliece cryptosystems based on the Hamming metric. All of these
proposals (see for instance [GPT91, GO01, Gab08, GMRZ13, GRSZ14, ABD+17b, AMAB+17])
are actually built from matrix codes over Fq obtained from Fqm -linear codes. In a sense, they can
be viewed as structured matrix codes, much in the same way as quasi-cyclic linear codes can be
viewed as structured versions of linear codes. In the latter case, the code is globally invariant by a
linear isometric transform on the codewords corresponding to shifts of a certain length. In the Fqm
linear case the code is globally invariant by an isometric linear transformation that corresponds
to multiplication in Fqm .
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2.2 Rank code-based cryptography
Rank-based cryptography relies on the hardness of decoding for the rank metric. This problem is
the rank metric analogue of the well known decoding problem in the Hamming metric [BMvT78].
We give it here its syndrome formulation:

Problem 1 (Rank (Metric) Syndrome Decoding Problem).
Instance: A full-rank (n− k)× n matrix H over Fqm with k ≤ n, a syndrome s ∈ Fn−kqm and w an
integer.
Output: An error e ∈ Fnqm such that |e| = w and Heᵀ = sᵀ.

This problem has recently been proven hard in [GZ16] by a probabilistic reduction to the decoding
problem in the Hamming metric which is known to be NP-complete [BMvT78]. This problem has
typically a unique solution when w is below the Varshamov-Gilbert distance wrVG(q,m, n, k) for
the rank metric which is defined as

Definition 2 (Varshamov-Gilbert distance for the rank metric). The Varshamov-Gilbert distance
wrVG(q,m, n, k) for Fqm linear codes of dimension k in the rank metric is defined as the smallest
t for which qm(n−k) ≥ Bt where Bt is the size of the ball of radius t in the rank metric.

Remark 1.

1. qm(n−k) can be viewed as the number of different syndromes s ∈ Fn−kqm .

2. Bt =
∑t
i=0 Si where Si is the size of a sphere of radius i in the rank metric over Fm×nq .

This latter quantity is equal to

Si =

i−1∏
j=0

(qn − qj)(qm − qj)
(qi − qj)

= Θ
(
qi(m+n−i)

)
.

3. From this last asymptotic expression it is straightforward to check that (for more details see
[Loi14])

wrVG(q,m, n, k) =
m+ n−

√
(m− n)2 + 4km

2
(1 + o(1)),

when either m or n tends to infinity.

The best algorithms for solving the decoding problem in the rank metric are exponential in n2 as
long as m = Θ(n), w = Θ(n) but stays below the Singleton bound which is defined by

Definition 3 (Singleton distance in the rank metric). The rank Singleton distance wrS(q,m, n, k)

for Fqm linear codes of dimension k is defined as wrS(q,m, n, k)
4
=
⌊

(n−k)m
max(m,n)

⌋
+ 1

The usual notion of the support of a vector is generally relevant to decoding in the Hamming
metric and corresponds for a vector x = (xi)1≤i≤n to the set of positions i in {1, . . . , n} such that
xi 6= 0. Various decoding algorithms for the Hamming metric [Pra62, LB88, Ste88, Dum91, FS09,
BLP11, MMT11, BJMM12, MO15, DT17, BM17] use this notion in a rather fundamental way.
The definition of the support of a vector has to be changed a little bit to be relevant to the rank
metric. This notion was first put forward in [GRS13, GRS16] to obtain an analogue of the Prange
decoder [Pra62] for the rank metric.

Definition 4 (Support). Let x = (xi)1≤i≤n be a vector of Fnqm , its support is defined as:

Supp(x)
4
=〈x1, · · · , xn〉Fq

.

This notion of support is among other things relied to the rank metric as it is easily verified
that for any vector x of Fnqm we have:

|x| = dim(Supp(x))
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3 The RankSign scheme
We recall in this section basic facts about RankSign [GRSZ14]. It is based on augmented LRPC
codes. Roughly speaking it is a hash and sign signature scheme: the message m that has to be
signed is hashed by a hash function H and the signature is equal to f−1(H (m)) where f is a
trapdoor one-way function. In this way the pair (m, f−1(H (m))) forms a valid signature. Recall
now that code-based cryptography relies on Problem 1 (rank syndrome decoding) which amounts
to consider here the following one way-function to build a signature primitive:

fH : Sw −→ Fn−kqm

e 7−→ eHᵀ

where Sw denotes the words of Fnqm of rank weight w, H a parity-check matrix of size (n− k)×n.
To introduce a trapdoor in fH authors of [GMRZ13] proposed to use parity-check matrices of the
family of augmented LRPC codes. Indeed, when the underlying LRPC structure is known (roughly
speaking, this is the trapdoor), there is a decoding algorithm based on the LRPC structure that
computes for any (or for a good fraction) s ∈ Fn−kqm an e ∈ Fnqm of weight w such that Heᵀ = sᵀ.
This decoding algorithm is probabilistic and the parameters of the code have to be chosen in a
very specific fashion in order to have a probability of success very close to 1 (see Fact 1 at the end
of this section).
The following definition will be useful for our discussion.

Definition 5 (Homogeneous Matrix). A matrix H = (Hij)1≤i≤n−k
1≤j≤n

over Fqm is homogeneous of

weight d if all its coefficients generate an Fq-vector space of dimension d:

dim
(
〈Hij : 1 ≤ i ≤ n− k, 1 ≤ j ≤ n〉Fq

)
= d

LRPC (Low Rank Parity Check) codes of weight d and augmented LRPC codes of type (d, t) are
defined from homogeneous matrices of weight d as

Definition 6 (LRPC and augmented LRPC code). An LRPC code over Fqm of weight d is a
code that admits a parity-check matrix H with entries in Fqm that is homogeneous of weight d
whereas an augmented LRPC code of type (d, t) over Fqm is a code that admits a parity-check
matrix H′ =

[
H|R

]
P where H is a homogeneous matrix of rank d over Fqm , R is a matrix with

t columns that has its entries in Fqm and P is a square and invertible matrix with entries in Fq
that has the same number of columns as H′.

Remark 2. Note that P ∈ Fn×nq is an isometry for the rank metric, since for any x ∈ Fnqm we
have Supp(x) = Supp(xP) and therefore

|x| = |xP|.

The public key and the secret key for RankSign are given by:

public key: Hpub which is a random (n − k) × n parity-check matrix of an augmented LRPC
code of type (d, t). It is of the form

Hpub = QH′

with H′ =
[
H|R

]
P where Q is an invertible (n−k)×(n−k) matrix over Fqm , H is a homogeneous

matrix of rank d over Fqm , R is a matrix with t columns that has its entries in Fqm and P is a
square and invertible matrix with entries in Fq that has the same number of columns as H′.

secret key: The matrix Hsec
4
=
[
H|R

]
.

From the knowledge of this last matrix a signature is computed by using a decoding algorithm
devised for LRPC codes. Recall that LRPC codes can be viewed as analogues of LDPC codes for
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the rank metric. In particular, they enjoy an efficient decoding algorithm based on their low rank
parity-check matrix. Roughly speaking, Algorithm 1 of [GMRZ13] decodes up to w errors when
dw ≤ n − k in polynomial time (see [GMRZ13, Theorem 1]). It uses in a crucial way the notion
of the linear span of a product of subspaces of Fqm :

Definition 7. Let U and V be two subspaces of Fqm , then

U · V 4=〈uv : u ∈ U, v ∈ V 〉Fq
.

Roughly speaking, Algorithm 1 of [GMRZ13] works as follows when we have to recover an error
e of weight w from the knowledge of its syndrome s with respect to a parity-check matrix H =
(Hij)1≤i≤n−k

1≤j≤n
over Fqm that is homogeneous of weight d, that is

sᵀ = Heᵀ. (1)

1. Let U 4=〈Hij : 1 ≤ i ≤ n − k, 1 ≤ j ≤ n〉Fq , V
4
= Supp(e) and W 4

= Supp(s). U and W are
known, whereas V is unknown to the decoder. By definition U is of dimension d and it is
convenient to bring in a basis {f1, . . . , fd} for it.

2. It turns out that we typically have W = U · V . Moreover it is clear that in such a case
V ⊂ f−11 W ∩ f−12 W · · · f−1d W . It also turns out that we typically have

V = f−11 W ∩ f−12 W · · · f−1d W.

V is therefore computed by taking the intersection of all the f−1i W ’s.

3. Once we have the support of e (V = Supp(e)), the error e = (e1, . . . , en) can be recovered
by solving the linear equation Heᵀ = sᵀ with the additional constraints ei ∈ Supp(e) for
i ∈ {1, . . . , n}. There are in this case enough linear constraints to recover a unique e.

The last algorithm seems to apply when there is a unique solution to (1). It can also be used
with a slight modification (by adding “erasures” [GRSZ14]) for weights for which there are many
solutions to it (this is typically the regime which is used for the RankSign scheme). It namely
turns out, see [GRSZ14], that this decoder can for a certain range of parameters be used for a
large fraction of possible syndromes s ∈ Fn−kqm to produce an error e of weight w that satisfies (1).
It can even be required that Supp(e) contains a subspace T of some dimension t. Furthermore this
procedure can also be generalized to a parity-check matrix of an augmented LRPC code. More
precisely to summarize the discussion that can be found in [GRSZ14, AGH+17]

Fact 1. Let H be a random homogeneous matrix of weight d in F(n−k)×n
qm , H′ =

[
H|R

]
P where

R is a matrix with t columns that has its entries in Fqm and P is a square and invertible matrix
with entries in Fq that has the same number of columns as H′. There is a probabilistic polynomial
time algorithm that outputs for a large fraction of syndromes s ∈ Fn−kqm , subspaces T of Fqm of
Fq–dimension t′, an error e of weight w whose support contains the subspace T that satisfies

H′eᵀ = sᵀ

as soon as the parameters n, k, t, t′, d, w satisfy

m = (w − t′)(d+ 1) (2)
n− k = d(w − t− t′) (3)

n = (n− k)d. (4)
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Figure 1: IBE in the GPV context

4 Identity-Based-Encryption in code-based cryptography
We recall in this section the [GHPT17] approach for obtaining an IBE scheme whose security
relies on code-based assumptions. In some sense, this scheme can be viewed as an adaptation of
the first quantum-safe IBE which was introduced by [GPV08] in the paradigm of lattice-based
cryptography. It relies among other things on two fundamental building blocks: a hash and sign
primitive and an encryption scheme related to it. The adaptation relies on two building blocks:
i) a signature scheme, RankSign whose security relies on code-based assumptions for the rank
metric, ii) a new encryption scheme, namely RankPKE [GHPT17], based on the Rank Support
Leaning (RSL) problem. [GHPT17] gives a security proof of the IBE scheme that relies on two
assumptions: i) the key security of RankSign and ii) the difficulty of RSL. Furthermore, the work
of [GHPT17] can be easily generalized to the more common Hamming metric. It is why we present
in what follows the [GHPT17] IBE scheme with codes independently of the metric.

Roughly speaking, an IBE is a specific public-key encryption scheme that allows senders to
encrypt messages thanks to the receiver’s identity (such as its email address). To permit this
protocol there is a third party, say a Key Derivation Center, which owns a master secret-key MSK
and an associated public-key MPK that allows to compute from any identity id a related secret
quantity skid that will be used in a public-key encryption scheme involving an arbitrary sender and
the receiver of identity id, with the pair of public/secret key ((id,MPK), skid). In this paradigm
any identity id needs to be matched with a secret key skid and to achieve this goal it was proposed
in [GPV08] to use a hash and sign primitive. Roughly speaking, for a trapdoor function f and a
hash function H the Key Derivation Center will compute from id the quantity f−1(H (id)) which
will be used as skid. We summarize in Figure 1 how this IBE works. In the case of [GPV08],
signatures sample short vectors whose addition with the hash of the identity gives lattice points.
Then this is used as a secret-key of an encryption scheme whose security relies on the hardness of
the LWE problem (see [GPV08, Section 7.1, p26]).

IBE in code-based cryptography. We give now the general framework of [GHPT17] for
obtaining a code-based IBE scheme. It is only given in the rank metric case in [GHPT17], but the
approach is really more general than this and can be given for the Hamming metric too. We will
detail what happens for both metrics here. As explained above, this scheme builds upon a hash
and sign primitive and the authors of [GHPT17] proposed RankSign there but in our description
the signature scheme is just a black-box.

Let Csgn be a code of length nsgn and dimension ksgn for which there is a trapdoor that enables
to compute for any y ∈ Fnsgn

2 a codeword cy ∈ Csgn at distance wsgn. Let d be an integer, Cdec be
a code of length Ndec and dimension kdec such that it exists a polynomial algorithm to decode a
linear (in the length) error weight. Let GCsgn and GCdec be generator matrices of the codes Csgn
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and Cdec respectively. Then it is proposed in [GHPT17] to set master secret and public keys as:

• MSK be the trapdoor which enables to decode at distance wsgn in Csgn;

• MPK4= (Csgn,Cdec).

Let id be an identity and H be a hash function whose range is Fnsgn
2 or Fnsgn

qm according to the
metric which is used. The key derivation center computes with MSK and id a vector uid such
that:

|uidGCsgn −H (id)| = wsgn where | · | denotes either the Hamming or rank metric (5)

This is used as the secret key associated to the identity id:

• skid
4
=uid.

We are now ready to present the encryption scheme whose public/secret key is ((GCsgn ,GCdec , id),uid)
and which in the particular case of the rank metric is the RankPKE scheme introduced in
[GHPT17]. This primitive is related to the work of Alekhnovich [Ale11].

• Encryption. Let m be the message that will be encrypted. We will denote by F the
finite field F2 or Fqm depending on the Hamming or rank metric. The authors of [GHPT17]
introduced the trapdoor function:

gGCsgn ,GCdec ,id
: Fkdec −→ F(ksgn+1)×Ndec

m 7−→
[

GCsgnE
H (id)E + mGCdec

]
where E has a size nsgn×Ndec. In the case of the rank metric E is a matrix uniformly picked
at random among the homogeneous matrices of weight d and in the case of the Hamming
metric, E is picked uniformly at random among the matrices whose columns have all weight
d.

• Decryption. The secret key uid is used as

(uid,−1)gGCsgn ,GCdec ,id
(m) = (uid,−1)

[
GCsgnE

H (id)E + mGCdec

]
=
(
uidGCsgn −H (id)

)
E−mGCdec

It can be verified that under certain restrictions on wsgn and d, the weight of the vector(
uidGCsgn −H (id)

)
E is low enough, so that a decoding algorithm for Cdec will recover m.

The following proposition gives a constraint on these parameters so that decoding is possible
in principle.

Proposition 1. In order to be able to decode asymptotically at constant rate R, there should
exist an ε(R) > 0 such that all the parameters nsgn, wsgn and d have to verify

– in the rank metric case

wsgnd = (1− ε(R)) min(m,Ndec) (6)

– in the Hamming metric case
wsgnd = O(nsgn). (7)
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Proof. We separate the proof in two parts.
Rank metric. In this case, as proved in [GHPT17, §3.2] the rank weight of the error term(
uidGCsgn −H (id)

)
E is with high probability wsgnd. Recall that Cdec is a code over the

alphabet Fqm . A necessary condition to be able to decode with a fixed rate code is that
the dimension of the support of the error is at most some fraction of the dimension m
of the whole space Fqm and of the length Ndec of the code we decode. This means that
wd ≤ (1− ε(R)) min(m,Ndec).
Hamming metric. Recall that uidGCsgn −H (id) has Hamming weight wsgn (see (5)). It
is easily verified that the probability for one bit of

(
uidGCsgn −H (id)

)
E to be equal to

1 is of the form (1/2)(1 − e−2wd/n(1+O(1))) when the columns of E are picked uniformly
at random among the words of Hamming weight d. Furthermore the relative weight of(
uidGCsgn −H (id)

)
E concentrates around this probability and a necessary condition to

be able to decode at constant rate asymptotically is that this relative weight is a constant
< 1/2. Therefore it is necessary to have wsgnd = O(nsgn).

The constraint set on the parameters by this proposition is crucial to instantiate the IBE in
code-based cryptography. Unfortunately, this constraint implies a fatal weakness for the Hamming
based scheme and a hard to meet condition for the rank metric in order to have a secure scheme
as we will see in what follows.

The RSL problem. We recall here the assumption upon which the security of RankPKE relies
(the previous encryption scheme in rank metric), namely the Rank Support Leaning (RSL) problem
introduced in [GHPT17]. This problem is a rank syndrome decoding problem with syndromes that
are associated to errors that all share the same support which is the secret.

Problem 2 (RSL - Rank Support Learning).
Parameters: n, k,N, d
Instance: (A,AE) where A is a full rank matrix of size (n − k) × n, E a matrix of size n × N
where all its coefficients belong to a same subspace F of Fqm of dimension d
Output: the subspace F .
The decisional version of RSL, namely DRSL, is to distinguish distributions (A,AE) from (A,R)
where A,R and E are random variables whose distribution is uniform over matrices of size (n−
k)× n, (n− k)×N and over homogeneous matrices of size n×N .

Remark 3. Let (A,AE) be an instance of RSL. The matrix A is of full-rank of size (n− k)× n
and we can perform Gaussian elimination on its rows to get a matrix S such that SA = [In−k|A′].
The pair (SA,SAE) is still an instance of RSL with the same parameters and secret subspace F ,
it is why we can always assume that for any instance of RSL the matrix A is in systematic form.

As proved in [GHPT17, §3.3, p13, Theorem 1] the security of RankPKE relies on the DRSL
problem.

5 Attack on RankSign

5.1 The problem with RankSign : low rank codewords in the augmented
LRPC code

A natural way to attack RankSign is to find low weight codewords in the dual of the augmented
LRPC code. Recall that the public parity-check matrix used in the scheme is a matrix Hpub where

Hpub = QH′

with H′ =
[
H|R

]
P where H is a homogeneous matrix of rank d over Fqm , R is a matrix with t

columns that has its entries in Fqm , P is a square and invertible matrix with entries in Fq that has

10



the same number of columns as H′ and Q is a square and invertible matrix over Fqm which has
the same number of rows as H′. If we call Cpub the “public code” with parity-check matrix Hpub,
then the dual code C⊥pub that has for generator matrix Hpub has codewords of weight ≤ d+ t since
rows of H′P belong to this code, and all of its rows have rank weight ≤ d + t since the rows of
H′ have weight at most d+ t and P is an isometry for the rank metric. The authors have chosen
the parameters of the RankSign scheme so that finding codewords of weight t+ d in C⊥pub is above
the security level of the scheme. However, it turns out that due to the peculiar parameters chosen
in the RankSign scheme (see Fact 1), Cpub has many very low weight codewords. This is the
main problem in RankSign. Before we give a precise statement together with its proof, we will
give a general result showing that LRPC codes may have under certain circumstances low weight
codewords.

Lemma 2. Let C be an LRPC code of length n and dimension k over Fqm that is associated to an
homogeneous matrix H that has all its entries in a subspace F of Fqm . Furthermore we suppose
there exists a subspace F ′ of Fqm such that

(n− k) dim(F · F ′) < ndimF ′.

Then there exist nonzero codewords in the LRPC code whose support is included in F ′. They are
therefore of rank weight at most dimF ′. Furthermore this set of codewords, that is

C ′
4
= {c ∈ C : ci ∈ F ′, ∀i ∈ J1, nK}

forms an Fq subspace of Fnqm that is of dimension ≥ n dimF ′ − (n− k) dim(F · F ′).

Proof. Denote the entry in row i and column j of H by Hi,j . A codeword c of the LRPC code
satisfies

∀i ∈ J1, n− kK,
n∑
j=1

Hi,jcj = 0. (8)

Looking in addition for a codeword c that has all its entries in F ′ and expressing these n−k linear
equations over Fqm in a basis of F · F ′ (since

∑n
j=1Hi,jcj belongs by definition to F · F ′) and

expressing each cj in a Fq basis {f ′1, . . . , f ′d′} of F ′ as cj =
∑d′

`=1 cj,`f
′
` we obtain (n−k) dim(F ·F ′)

linear equations over Fq involving n dimF ′ unknowns (the cj,`’s) in Fq. The solution space is
therefore of dimension greater ≥ ndimF ′ − (n− k) dim(F · F ′).

Remark 4. This theorem proves the existence of low rank codewords in an LRPC-code under
some conditions but it does not give any efficient way to find them.

By using this lemma, we will prove the following corollary that explains that the augmented
LRPC codes that are used in the RankSign signature necessarily contain many rank weight 2
codewords. This is in a sense a consequence of the constraint (4) on the parameters of RankSign.

Corollary 3. Let Cpub be an [n + t, k + t] public code of RankSign over Fqm which has been
obtained from an [n, k] LRPC-code that is associated to a homogeneous matrix H that has all its
entries in an Fq subspace F of Fqm . Consider a subspace F ′ of F of dimension 2 and let

C ′pub
4
= {c ∈ Cpub : ci ∈ F ′, ∀i ∈ J1, n+ tK} .

C ′pub is an Fq subspace of Fn+tqm . If (4) holds, that is n = (n− k)d, then

dimFq
C ′pub ≥ n/d.

Proof. Let Hpub ∈ F(n−k)×(n+t)
qm be the public parity-check matrix for the RankSign public code

Cpub. Recall that Hpub has been obtained as Hpub = Q
[
H|R

]
P where:

• P is a non-singular matrix with entries in Fq of size (n+ t)× (n+ t),
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• Q is an invertible matrix of Fqm of size (n− k)× (n− k),

• R is a random matrix of Fqm of size (n− k)× t,

• H is a homogeneous (n− k)× n matrix of weight d with all its entries in F .

Choose a basis {x1, x2, . . . , xd} of F such that {x1, x2} is a basis of F ′. We observe now that

F · F ′ = 〈xixj : i ∈ J1, dK, j ∈ J1, 2K〉Fq
.

The cardinality of the set {xixj : i ∈ J1, dK, j ∈ J1, 2K} is actually 2d − 1 because x1x2 = x2x1.
This implies that

dim(F · F ′) ≤ 2d− 1.

It leads to the following inequalities,

n dim(F ′)− (n− k) dim(F · F ′) ≥ 2n− (n− k)(2d− 1)

= 2d(n− k)− (n− k)(2d− 1) (since n = (n− k)d)
= n− k

=
n

d
(since n = (n− k)d).

Let CLRPC be the LRPC code of weight d associated to the parity-check matrix H and let C ′LRPC
be an Fq subspace of it that is defined by

C ′LRPC
4
= {c ∈ CLRPC : ci ∈ F ′, ∀i ∈ J1, nK} .

By applying Lemma 2 we know that

dimFq C ′LRPC ≥
n

d
. (9)

Consider now
C ′pub

4
={(cLRPC,0t)(P

−1)
ᵀ

: cLRPC ∈ C ′LRPC},

where 0t denotes the vector with t zeros. From (9) we deduce that

dimFq
C ′pub ≥

n

d
.

Moreover the entries of any element c′ in C ′pub belong to F ′ because the entries of P are in Fq.
Let us now prove that C ′pub is contained in Cpub. To verify this, consider an element c′ in C ′pub.
It can be written as

c′ = (cLRPC,0t)(P
−1)

ᵀ
.

We observe now that

Hpubc
′ᵀ = HpubP

−1(cLRPC,0t)
ᵀ

= Q
[
H|R

]
PP−1(cLRPC,0t)

ᵀ

= Q
[
H|R

]
(cLRPC,0t)

ᵀ

= QHcLRPC
ᵀ ( R ∈ F(n−k)×t

qm )

= 0 (cLRPC belongs to the code of parity-check matrix H)

This proves that C ′pub ⊂ Cpub which concludes the proof.
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5.2 Weight 1 codewords in a projected code
Corollary 3 shows that there are many weight 2 codewords in Cpub. We can even restrict our search
further by noticing that without loss of generality we may assume that the space F in which the
entries of the secret parity-check matrix H of the LRPC code are taken contains 1. Indeed, for
any α in F×qm , αH is also a parity-check matrix of the LRPC code and has its entries in αF . By
choosing α such that αF contains 1 we get our claim.

Consider now a supplementary space V of 〈1〉Fq
= Fq with respect to Fqm , that is an Fq-space

of dimension m− 1 such that
Fqm = V ⊕ Fq.

The previous discussion implies that there is a matrix-code in F(m−1)×(n+t)
q , deduced from Cpub

by projecting the entries onto V , that contains codewords of weight 1. More specifically, consider
an Fq basis {β1, β2, · · · , βm} of Fqm such that βm = 1 and for c = (ci)1≤i≤n+t ∈ Fn+tqm consider

Matproj(c) = (Mij)1≤i≤m−1
1≤j≤n+t

∈ F(m−1)×(n+t)
q

where cj =
∑m
i=1Mijβi. Now let C proj

pub be the matrix-code in F(m−1)×(n+t)
q defined by

C proj
pub

4
=
{
Matproj(c)

}
.

It is clear that

Fact 2. C proj
pub contains codewords of rank weight 1.

These are just the codewords c′ which are of the form Matproj(c) where c ∈ C ′pub with C ′pub
being defined from a subspace F ′ of F that contains 1 (we can make this assumption since we can
assume that F contains 1).

C proj
pub has the structure of an Fq-subspace of F(m−1)×(n+t)

q . It is typically of dimension (k+ t)m
(i.e. the same as the Fq dimension of Cpub). Moreover once we have these rank weight 1 codewords
in C proj

pub we can lift them to obtain rank weight ≤ 2 codewords in Cpub because for any c ∈ Cpub the
last row of Mat(c) can be uniquely recovered from Matproj(c) by performing linear combinations
of the entries of Matproj(c). We call this operation deducing c from Matproj(c) lifting from C proj

pub
to Cpub.

5.3 Outline of the attack
Finding codewords of rank 1 in C proj

pub obviously reveals much of the secret LRPC structure. Lifting
elements in C proj

pub that are of rank 1 to Cpub as explained at the end of Subsection 5.2 yields
codewords of Cpub that have typically rank weight 2. This can be used to reveal F ′ and actually
the whole subspace F by finding enough rank 1 codewords in C proj

pub . Once F is recovered a suitable
form for a parity-check matrix of Cpub can be found that allows signing like a legitimate user. For
the case of the parameters of RankSign proposed in [GRSZ14, AGH+17] for which we always have
d = 2 we will proceed slightly differently here. Roughly speaking, our attack can be decomposed
as follows

1. We find a particular element M in C proj
pub of rank weight 1 by solving a certain bilinear system

with Gröbner bases techniques.

2. We lift M ∈ C proj
pub to c ∈ Cpub and compute F ′ 4= Supp(c).

3. We compute from F ′ the Fq-subspace
C ′pub

4
= {c = (ci)1≤i≤n+t ∈ Cpub : ci ∈ F ′ ∀i ∈ J1, n+ tK}. When d = 2 this set has typically

dimension k.
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4. We use this subspace of Cpub to find a suitable parity-check matrix for Cpub which allows us
to sign like a legitimate user.

Steps 2. and 3. are straightforward. We just give details for Steps 1. and 4. in what follows.

5.4 Finding rank 1 matrices in C proj
pub by solving a bilinear system

The basic bilinear system. Finding rank 1 matrices in C proj
pub can be formulated as an instance of

the MinRank problem [BFS99, Cou01]. We could use standard techniques for solving this problem
[KS99, FLdVP08, FDS10, Spa12] but we found that it is better here to use the algebraic modeling
suggested in [AGH+17]. It basically consists in setting up an algebraic system with unknowns
x = (x1, . . . , xm−1) ∈ Fm−1q and y ∈ Fn+tq where the unknown matrix M in C proj

pub that should be
of rank 1 has the form

M =


x1y1 x1y2 . . . x1yn+t
x2y1 x2y2 . . . x2yn+t
...

...
...

...
xm−1y1 xm−1y2 . . . xm−1yn+t

 .

Recall that C proj
pub has the structure of an Fq subspace of F(m−1)×(n+t)

q of dimension (k + t)m. By

viewing the elements of C proj
pub as vectors of F(m−1)(n+t)

q , i.e. the matrix M = (Mij)1≤i≤m−1
1≤j≤n+t

is

viewed as the vector m = (m`)1≤`≤(m−1)(n+t) where m(i−1)(n+t)+j = Mi,j , we can compute a
parity-check matrix Hproj

pub for it. It is an ((m− 1)(n+ t)− (k+ t)m)× (m− 1)(n+ t) matrix that
we denote by Hproj

pub = (Hproj
ij )1≤i≤(m−1)(n+t)−(k+t)m

1≤j≤(m−1)(n+t)
. This matrix gives (m− 1)(n+ t)− (k+ t)m

bilinear equations that have to be satisfied by the xi’s and the yj ’s:

n+t∑
j=1

m−1∑
i=1

Hproj
1,(i−1)(n+t)+jxiyj = 0

...
n+t∑
j=1

m−1∑
i=1

Hproj
(n+t)(m−1)−(k+t)m,(i−1)(n+t)+jxiyj = 0

(10)

Restricting the number of solutions. We have solved the bilinear system (10) with standard
Gröbner bases techniques that are implemented in Magma. To speed-up the resolution of the bi-
linear system with Gröbner bases techniques (especially the change of order that is performed after
a first computation of a Gröbner basis for a suitable order to deduce a basis for the lexicographic
order which is more suited for outputting a solution) it is helpful to use additional equations that
restrict the solution space which is otherwise really huge in this case. The purpose of the following
discussion is to show where these solutions come from and how to restrict them. By bilinearity of
System (10) we may fix

x1 = 1 (11)

when there is a solution x such that x1 6= 0). Furthermore, the fact that C ′pub is an Fq vector
space of dimension n/d induces that for a given x solution to (10) the set of corresponding y’s
also forms a vector space of dimension n/d. We may therefore rather safely assume that we can
choose

∀i ∈ J1,
n

d
− 1K, yi = 0 and yn/d = 1. (12)

There is an additional degree of freedom on x coming from the fact that even if d = 2 there are
several spaces αF for which 1 ∈ αF . To verify this, let us study in more detail the case when F
is of dimension 2, say

F = 〈a, b〉Fq
.
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Intended Security [AGH+17] (n, k,m, d, t, q) Time Maximum Memory Usage
128 bits (20, 10, 21, 2, 2, 232) 20.12 s 49 MB
128 bits (24, 12, 24, 2, 2, 224) 31.75 s 65 MB
192 bits (24, 12, 27, 2, 3, 232) 125.64 s 97 MB
256 bits (28, 14, 30, 2, 3, 232) 256.90 s 137 MB

Table 1: Attack on NIST’s parameters of RankSign

We wish to understand what are the possible values for z ∈ Fqm such that there exists c 6= 0 for
which

〈a, b〉Fq
= c〈1, z〉Fq

.

The possible values for x will then be the projection of those z to the Fq space 〈β1, . . . , βm−1〉Fq .
The possible values for z are then obtained from studying the possible values for c. There are two
cases to consider:

• Case 1: c = µ
a+bν for µ ∈ F×q and ν ∈ Fq. In such a case

z =
βb

a+ bν
+ δ

for β ∈ F×q , δ ∈ Fq.

• Case 2: c = µ
b for µ ∈ F×q . Here

z = α
a

b
+ δ

for α ∈ F×q , δ ∈ Fq.

Since the δ term vanishes after projecting x onto 〈β1, . . . , βm−1〉Fq
we have essentially two degrees

of freedom over Fq for x. One has already been taken into account when setting x1 = 1. We can
add a second one x2 = α where α is arbitrary in Fq. We have actually chosen in our experiments
that

(x2 − α)(x2 − β) = 0 (13)

for some random α and β in Fq. This has resulted in some gain in the computation of the solution
space. Finally the following proposition summarizes the system we have solved.

Proposition 4. By eliminating variables using Equations (11),(12) and (13) in (10) we have

• nm− k(m+ 1)− t+ 2 equations;

• m− 1 + n+ t unknowns.

In the “typical regime” where m ≈ n, k ≈ n
2 and t� n we have a number of equations of order

n2 and a number of unknowns of order n, therefore typically the regime where we expect that the
Gröbner basis techniques take polynomial time.

5.5 Numerical results
We give in Table 1 our numerical results to find a codeword of rank 2 in any public code of the
RankSign scheme for parameters chosen according to [AGH+17]. These results have been obtained
with an Intel Core i5 processor, clocked at 1.6 GHz using a single core, with 8 Go of RAM.
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5.6 Finishing the attack
We present in this subsection the end of our attack which consists in being able to sign with only
the knowledge of the public key. It holds for the parameters chosen for the NIST competition
[AGH+17] for which d = 2. Observe that (4) implies that we have k = n− k = n/2.

We have at that point obtained the code C ′pub (see §5.3, Point 3.) that has dimension (over Fq)
≥ n/d = n/2 = k. This code is just Fq-linear, but it will be convenient to extend it by considering
its Fqm-linear extension, that we denote Fqm ⊗ C ′pub that is defined by the Fqm -linear subspace
of Fn+tqm obtained from linear combinations over Fqm of codewords in C ′pub. In other words if we
denote by {c′1, . . . , c′k′} an Fq-basis of C ′pub, then

Fqm ⊗ C ′pub = 〈c′1, . . . , c′k′〉Fqm
.

To simplify the discussion we make now the following assumption (which was corroborated by
our experiments)

Assumption 1.
dimFqm ⊗ C ′pub = k.

The rationale behind this assumption is that (i) the dimension of C ′pub is very likely to be n/d
which is equal to k and (ii) an Fq basis of C ′pub is very likely to be an Fqm basis too.

Lemma 5. Under Assumption 1 the code
(
Fqm ⊗ C ′pub

)⊥ has length n + t, dimension n + t − k
and is an LRPC-code that is associated to a homogeneous matrix that has all its entries in an Fq
subspace F of Fqm of dimension 2 which contains 1. Furthermore, the sets

D
4
={c ∈

(
Fqm ⊗ C ′pub

)⊥
: Supp(c) ⊆ Fq} and D ′

4
={c ∈

(
Fqm ⊗ C ′pub

)⊥
: Supp(c) ⊆ F}

are Fq-subspaces of dimension ≥ t and ≥ n− k + 2t respectively.

Proof. By Assumption 1, Fqm ⊗ C ′pub is of dimension k and its dual
(
Fqm ⊗ C ′pub

)⊥ has therefore
dimension n + t − k. There is a generator matrix for Fqm ⊗ C ′pub that is formed by rows taken
from C ′pub. It is homogeneous of weight 2. Say that its entries generate a space F . This is also a

parity-check matrix of the dual code.
(
Fqm ⊗ C ′pub

)⊥ is therefore an LRPC code of weight 2.
By applying now Lemma 2 to it with F ′ = Fq, we have

(n+ t) dimFq
(Fq)− (n+ t− (n+ t− k)) dim(F · Fq) = n+ t− 2k

= t (because 2k = n)

which gives the result for the set D . We apply once again Lemma 2 but this time with F ′ = F .
Say F = 〈1, x1〉Fq

. This gives a lower bound on the dimension of D ′ which is

(n+ t) dim(F )− (n+ t− (n+ t− k)) dim(F · F ) ≥ 2(n+ t)− 3k

(because F · F = 〈1, x1, x21〉Fq )

= n− k + 2t (because 2k = n).

To end our attack we make now the following assumption that was again corroborated in our
experiments.

Assumption 2. We can extract from sets D and D ′ a basis of
(
Fqm ⊗ C ′pub

)⊥ with

1. t codewords of support Fq,
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2. n− k codewords of a same support of rank 2 which contains 1.

Lemma 6. Under Assumptions 1 and 2 there exists a parity-check matrix H′ ∈ F(n+t−k)×(n+t)
qm of

Fqm ⊗C ′pub, an invertible matrix P of size n+ t with entries in the small field Fq and an invertible
matrix S of size n+ t− k with entries in Fqm such that

SH′P =

(
It 0
0 R

)
where R is homogeneous of degree 2 and of size (n− k)× n.

Proof. Under Assumptions 1 and 2 there is a generator matrix of
(
Fqm ⊗ C ′pub

)⊥ and thus a
parity-check matrix of Fqm ⊗C ′pub which is homogeneous of degree 2 with the particularity that t
rows of it are of rank 1. Let H′ be such a matrix, thus by making a Gaussian elimination on its
rows we have an invertible matrix S ∈ F(n+t−k)×(n+t−k)

qm such that:

SH′ =

(
It Q
0 R

)
where Q is a matrix of size t×(n+t) whose entries lie in the small field Fq and R is a homogeneous
matrix of weight 2 and of size (n− k)× n. In this way there exists an invertible matrix P of size
(n+ t)× (n+ t) with coefficients in the field Fq such that

SH′P =

(
It 0
0 R

)
which concludes the proof.

The idea now to sign as a legitimate user will be to use the matrix R and the decoder of Fact 1
(see Section §3). Recall that to make a signature for the matrix Hpub (which defines the public
code Cpub) and a message m, we look for an error e of rank w satisfying n− k = d(w− t− t′) (see
Equation (3) of Fact 1), such that Hpube

ᵀ = sᵀ with s = H (m) (the hash of the message). The
algorithm that follows performs this task:

1. We compute y ∈ Fn+tqm such that Hpuby
ᵀ = sᵀ.

2. Let y′ = y(P−1)
ᵀ and we compute s′ = (SH′P)y′

ᵀ.

3. Let s′1 be the first t coordinates of s′, s′2 its last n− k ones. We apply the decoder
of §3 with:

- The subspace T 4= Supp(s′1) + T ′ where T ′ is a random subspace of Fqm of
dimension t′.

- The parity-check matrix R and the syndrome s′2.

Then we get a vector e′ such that T ⊆ Supp(e′) and Re′
ᵀ

= s′2
ᵀ.

4. We compute e = (s′1, e
′)Pᵀ.

Let us now show the correctness of this algorithm, in other words we show that Hpube
ᵀ = sᵀ

with |e| = w satisfying n− k = 2(w − t− t′).
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Proof of Correctness. First we have:

H′e
ᵀ

= H′P(s′1, e
′)
ᵀ

= S−1(SH′P)(s′1, e
′)
ᵀ

= S−1
(
It 0
0 R

)
(s′1, e

′)
ᵀ

= S−1
(

s′1
ᵀ

Re′
ᵀ

)
(because s′1 of size t)

= S−1s′
ᵀ (because Re′

ᵀ
= s′2

ᵀ
)

= S−1(SH′P)y′
ᵀ

= H′P(P−1yᵀ)

= H′yᵀ

which implies that H′(e− y)
ᵀ

= 0 and y − e ∈ Fqm ⊗ C ′pub. Recall now that Fqm ⊗ C ′pub ⊆ Cpub

and therefore Hpub(e− y)
ᵀ

= 0. By linearity we get Hpube
ᵀ = Hpuby

ᵀ = sᵀ.
Thus under the condition that the decoder in Point 3 works for the matrix H′, the syndrome s
and the subspace T , our algorithm decodes the syndrome s relatively to Hpub.
The parity-check matrix R is homogeneous of degree 2, has n − k rows and n columns. We can
therefore apply to it the decoder of §3. It will output (we use here Fact 1) an error e′ of weight w′
that satisfies n− k = 2(w′ − t− t′). Note that this implies that w′ = w which is the error weight
we want to achieve. Then the error e = (s′1, e

′)Pᵀ has the same rank as Supp(s′1) ⊆ T ⊆ Supp(e′)
and P is an invertible matrix in the small field which concludes the proof.

6 Attack on the IBE in the rank metric
In the previous section we showed that RankSign is not a secure signature scheme. This also shows
the insecurity of the IBE proposal made in [GHPT17] since it is partly based on it. It could be
thought that it just suffices to replace in the IBE scheme [GHPT17] RankSign by another signature
scheme in the rank metric. This is already problematic, since RankSign was the only known rank
metric code-based signature scheme up to now. We will actually show here that the problem is
deeper than this. We namely show that the parameters proposed in [GHPT17] can be broken
by an algebraic attack that attacks the RSL problem directly and not the underlying signature
scheme. We will however show that the constraints on the parameters of the scheme coming from
Proposition 1 together with the new constraint for avoiding the algebraic attack exposed here can
in theory be met. In the IBE [GHPT17] we are given a matrix GCsgn of size ksgn × nsgn whose
coefficients live in Fqm and the matrix GCsgnE where E has size nsgn×Ndec with all its coefficients
which live in a same secret subspace F of dimension d and an attacker wants to recover F . We
show in §6.1 that under the condition Ndec > d(nsgn − ksgn) (which is verified in [GHPT17]) the
code C defined by

C = {e(GsgnE)
ᵀ

: e ∈ FNdec
q } ⊆ Fksgnqm . (14)

is an Fq-subspace which contains words of weight ≤ d which reveal F . It turns out that the

subspace C ′
4
= C ∩ FNdec of words of C whose coordinates all live in F is of dimension ≥ Ndec −

d(nsgn − ksgn). We then apply standard algebraic techniques in Subsection §6.2 to recover C ′ and
therefore F from it. This breaks all the parameters proposed in [GHPT17]. We conclude this
section by showing that there is in principle a way to choose the parameters of the IBE scheme to
possibly avoid this attack.

18



6.1 Low rank codewords from instances of the RSL problem
We prove here that a certain Fq-linear code that contains many low-weight codewords can be
computed by the attacker. This is explained by

Theorem 1. Let (A,AE) be an instance of RSL for parameters n, k,N, d with A ∈ F(n−k)×n
qm in

systematic form and E ∈ Fn×Nqm where all its coefficients belong to a same subspace F of dimension
d. Furthermore, we suppose that

N > dk. (15)

Let

C
4
= {e(AE)

ᵀ
: e ∈ FNq }

C ′
4
= C ∩ Fn−k.

C ′ is an Fq-subspace of C of dimension ≥ N − dk.

Proof. Let us first decompose E in two parts
[
E1

E2

]
where E1 is formed by the first n − k rows

of E and E2 by the last k ones. The matrix A is in systematic form, namely (In−k|A′) where
A′ ∈ F(n−k)×k

qm , which gives:
AE = E1 + A′E2

Therefore, to prove our theorem we just need to show that

S
4
={e ∈ FNq : E2e

ᵀ = 0}

is an Fq-subspace of dimension greater than N − dk. Indeed, for each error e of S we have
(AE)eᵀ = E1e

ᵀ which belongs to Fn−k as coefficients of E1 are in the Fq-subspace F and those
of e are in Fq.
Denote the entry in row i and column j of E2 by Ei,j . A word of S satisfies

∀i ∈ J1, kK,
N∑
j=1

Ei,jej = 0.

Looking in addition for e that has all its entries in Fq and expressing these k linear equations over
Fqm in a basis of F (since

∑N
j=1Ei,jej belongs by definition to F ·Fq = F ) we obtain k dim(F ) = kd

linear equations over Fq involving N unknowns (the ej ’s) in Fq. The solution space is therefore of
dimension greater than N − dk which concludes the proof of the theorem.

6.2 How to find low rank codewords in instances of the RSL problem
Theorem 1 showed that there are many codewords of weight ≤ d in the code C defined in (14).
Let us show now how these codewords can be recovered by an algebraic attack. The sufficient
condition Ndec > d(nsgn−ksgn) ensuring the existence of such codewords is met for the parameters
proposed in [GHPT17].

To explain our algebraic modeling of the problem, let us first recall that for a fixed basis
(β1, · · · , βm) of Fqm over Fq we can view elements of Fksgnqm as matrices of size m× ksgn:

∀x ∈ Fksgnqm , Mat(x) = (Xi,j) ∈ Fm×ksgnq where xj =

m∑
i=1

βiXi,j .

The associated matrix code C Mat is defined as:

C Mat 4={Mat(c) : c ∈ C } ⊆ Fm×ksgnq .
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It is easily verified that this matrix-code has dimension Ndec. It is clear now by applying Theorem
1 that:

Fact 3. C Mat contains codewords of rank ≤ dim(F ) which form a Fq-subspace of dimension
≥ Ndec − d(nsgn − ksgn).

These are just the codewords c′ which are of the form Mat(c) where c ∈ C with Supp(c) ⊆ F .
We do not expect other codewords of this rank in C Mat since d is much smaller than the Varshamov-
Gilbert bound in the case of the parameters proposed in [GHPT17].

The basic bilinear system. Finding codewords of rank d in C Mat can be expressed as an instance
of the MinRank problem [BFS99, Cou01]. Once again we propose the algebraic modeling which
was suggested in [AGH+17]. It consists here in setting up the algebraic system with unknowns
xi = (xi1, · · · , xim) ∈ Fmq and yij ∈ Fksgnq for 1 ≤ i ≤ d and 1 ≤ j ≤ ksgn where the xi’s can be
thought as a basis of the unknown subspace F and the yij ’s as coordinates of the codeword in this
basis. In that case the codeword M of C Mat of rank d has the following form:

M =


∑d
i=1 x

i
1y
i
1

∑d
i=1 x

i
1y
i
2 . . .

∑d
i=1 x

i
1y
i
ksgn∑d

i=1 x
i
2y
i
1

∑d
i=1 x

i
2y
i
2 . . .

∑d
i=1 x

i
2y
i
ksgn

...
...

...
...∑d

i=1 x
i
my

i
1

∑d
i=1 x

i
my

i
2 . . .

∑d
i=1 x

i
my

i
ksgn

 .

Recall now that C Mat has the structure of an Fq-subspace of F
m×ksgn
q of dimension N . By viewing

the elements of C Mat as vectors of Fmksgnq , i.e. the matrix M = (Mij) 1≤i≤m
1≤j≤ksgn

is viewed as the

vectorm = (m`)1≤`≤mksgn wherem(i−1)ksgn+j = Mi,j , we can compute a parity-check matrixHMat

for it. It is an (mksgn −Ndec)×mksgn matrix that we denote by HMat = (HMat
ij )1≤i≤mksgn−Ndec

1≤j≤mksgn
.

This matrix gives mksgn − Ndec bilinear equations that have to be satisfied by the xli’s and the
ylj ’s: 

d∑
l=1

ksgn∑
j=1

m∑
i=1

HMat
1,(i−1)ksgn+jx

l
iy
l
j = 0

...
d∑
l=1

ksgn∑
j=1

m∑
i=1

HMat
mksgn−Ndec,(i−1)ksgn+jx

l
iy
l
j = 0

(16)

Restricting the number of solutions. We have solved the bilinear system (16) with Gröbner
basis techniques that are implemented in Magma. To speed-up the resolution, as in the case of
the attack on RankSign, we add new equations to (16) which come from the vectorial structure of
F and the set of solutions.
With our notation we can view F as an Fq subspace of Fmq of dimension d generated by the rows
of the matrix: 

x11 · · · x1m
x21 · · · x2m
...

...
xd1 · · · xdm


In this way, we can put this matrix into systematic form, it will generate the same subspace.
Therefore we can add equations

∀(i, j) ∈ J1, dK2, j 6= i, xji = 0 and xii = 1 (17)
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Intended Security (nsgn, ksgn,m, d,Ndec, q) Time Maximum Memory Usage
128 bits (100, 80, 96, 4, 96, 2192) 626s 1.7 GB

Table 2: Attack on parameters of the rank-based IBE [GHPT17]

without modifying the set of codewords of rank d. Furthermore, this set is an Fq-subspace of
dimension greater than Ndec− (nsgn−ksgn)d and as in the case of the attack on RankSign we may
assume that for a random subset I ⊆ J1, ksgnK× J1, dK of size Ndec − (nsgn − ksgn)− 1 there is an
element in this set for which:

∀(j, i) ∈ I, yij = 0 and yi0j0 = 1 for (i0, j0) /∈ I. (18)

Equations (17) and (18) enable us to reduce the number of variables of the previous bilinear
system. The following proposition summarizes the number of equations and variables that we
finally get.

Proposition 7. By eliminating variables using Equations (17) and (18) in (16) we obtain

• mksgn + d2 + (nsgn − ksgn) equations;

• md+ ksgnd unknowns.

In the “typical regime” where m ≈ nsgn ≈ ksgn and d ≈ nε for some ε in (0, 1) we have a
number of equations of order n2 and a number of unknowns of order n1+ε, therefore typically the
regime where we expect that the Gröbner basis techniques take subexponential time.

6.3 Numerical results
We give in Table 2 our numerical results to find codewords of rank d in instances of the RSL
problem for the parameters chosen according to [GHPT17]. These results have been obtained
with an Intel Core i5 processor, clocked at 1.6 GHz using a single core, with 8 Go of RAM. In our
implementation, we verified that when we generated an instance whose associated secret is the
subspace F we only got codewords whose coordinates live in this subspace and therefore revealed
it.

6.4 Avoiding the attack
Although our attack breaks the parameters proposed in [GHPT17], there might in principle be a
way to instantiate the IBE with a new signature scheme. Recall that the constraints that are to
be satisfied are given by

wrVG(q,m, nsgn, ksgn) ≤ wsgn ≤
m(nsgn − ksgn)

max(m,nsgn)
(signature constraint) (19)

wsgnd ≤ wrVG(q,m,Ndec, kdec) (decoding works) (20)
d(nsgn − ksgn) ≥ Ndec (for avoiding our attack). (21)

The lower-bound in (19) ensures that we can find a signature whereas the role of the upper-
bound is to ensure that the problem of finding a signature does not become easy. The constraint
(20) is here to ensure that the decoding procedure used for recovering the plaintext works and
the last constraint is here to avoid our attack. It seems that the set of parameters can be chosen
to be non-empty. We first propose to choose m = nsgn and a signature code for which the ratio
wrVG(q,m,nsgn,ksgn)

nsgn−ksgn is sufficiently small (it can even approach 1
2 ) and we choose

wsgn = (1− ε)(nsgn − ksgn) (22)
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for some appropriate ε. We then choose an Fqm-linear code of parameters [Ndec, kdec] of length
Ndec � wsgn and sufficiently small dimension such that

wrVG(q,m,Ndec, kdec) ≥ (1− ε)Ndec. (23)

This is possible in principle. We then choose a d such that (20) holds. By satisfying the two first
constraints (19) and (20) in this way, we also satisfy the last one, namely Equation (21). This can
be verified by arguing that

d(nsgn − ksgn) =
wsgnd

1− ε
(we use (22))

≤ wrVG(q,m,Ndec, kdec)

1− ε
(we use (20))

≤ Ndec (we use (23))

7 Attack on the IBE in the Hamming metric
The purpose of this section is to show that there is an even more fundamental problem with the
general IBE scheme given in Section 4 in the Hamming metric. We will namely prove here that due
to the constraint on the parameters coming from Proposition 1, we can not find a set of parameters
which would avoid an attack based on using generic decoding techniques. Even the simplest of
those techniques, namely the Prange algorithm [Pra62], breaks the IBE in the Hamming metric
in polynomial time. We refer the reader to Section §4 where we introduced all the notations that
we are going to use.

To show that the IBE can be attacked in the Hamming metric we proceed as follows. The
attacker knows GCsgnE and that the columns of E have weight d. We will show that we can solve
efficiently for the range of parameters admissible for the IBE the following syndrome decoding
problem: given a matrix GCsgn ∈ Fksgn×nsgn

2 and s ∈ Fksgn2 such that there exists e ∈ Fnsgn
2 of

weight d for which GCsgne
ᵀ = sᵀ, we want to recover e. This allows to recover the columns of

E and therefore E. The scheme is broken with this knowledge, since the attacker also knows
H (id)E + mGCdec , H (id) and GCdec . This is used to derive mGCdec and finally m.

To solve this decoding problem, we use the Prange algorithm (see [Pra62]) whose complexity
is, up to a polynomial factor in nsgn, equal to:(

nsgn
d

)(
ksgn
d

) (24)

In the special case of the IBE we proved in Proposition 1 that the parameters have to verify the
following constraint:

wsgnd = O(nsgn).

Now the parameter wsgn can not be too small either, since for fixed wsgn the algorithms for
decoding linear codes also solve the signature forgery in polynomial time. This problem amounts
in the case of the IBE to find a uid such that

|uidGCsgn −H (id)| = wsgn.

We will therefore make a minimal assumption that ensures that the decoding algorithms for
solving this problem have at least some (small) subexponential complexity. We also make the
same assumption for the aforementioned recovery of e. This is obtained by assuming that

Assumption 3.

d = Ω(nε) for some ε > 0 (25)

wsgn = Ω(nε
′
) for some ε′ > 0 (26)
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Proposition 8. Under Assumption 3, the Prange algorithm breaks the IBE scheme in Hamming
metric in polynomial time in nsgn.

Proof. Recall that parameters of the IBE in Hamming metric are nsgn, ksgn, wsgn. For the sake of
simplicity let,

n
4
=nsgn ; k

4
= ksgn ; w

4
=wsgn.

We start the proof by noticing that wd = O(n) and Assumption 3 actually imply the “converse”
inequalities

d = O(n1−ε
′
)

wsgn = O(n1−ε)

Let us now derive an asymptotic expression for (24) by studying:

log2

(
n

d

)
− log2

(
k

d

)
This is obtained through:

Lemma 9.
log2

(
n

l

)
= nh

(
l

n

)
+O (log2 n)

for h being defined over [0, 1] as:

h(x)
4
=−x log2 x− (1− x) log2 x

Therefore to show that the Prange algorithm is polynomial in n it is sufficient to prove that:

nh

(
d

n

)
− kh

(
d

k

)
(27)

is an O (log2 n). Recall now that in a context of code-based hash and sign, the weight of the
decoding has to be greater than the Varshamov Gilbert bound, namely:

w ≥ nh−1
(

1− k

n

)
⇐⇒ k

n
≥ 1− h

(w
n

)
From w = O

(
n1−ε

)
, k ≤ n and by using that h(x) =

x→0
O (−x log2 x) we get:

k

n
= 1 +O

(
−w
n

log2

w

n

)
(28)

and k ∼ n. We are now ready to show that (27) is asymptotically an O(log2 n). As k ∼ n

and d = O(n1−ε
′
) by using now that h(x) =

x→0
−x log2 x+ 1

ln(2)

(
x−

∑p−1
l=2

xl

l(l−1) +O(xp)
)
for an

integer p greater than 1
ε′ we have:

nh

(
d

n

)
− kh

(
d

k

)
= a(n) + b(n) + c(n) (29)

where
a(n)

4
= k

d

k
log2

d

k
− nd

n
log2

d

n

b(n)
4
=n

d

ln(2)n
− k d

ln(2)k
+

1

ln(2)

p−1∑
l=2

k
(d/k)l

l(l − 1)
− n (d/n)l

l(l − 1)
(30)

23



and
c(n)

4
=nO

(
dp

np

)
+ kO

(
dp

kp

)
We easily have:

c(n) = O

(
dp

np−1

)
= O

(
1

npε′−1

)
(because d = O(n1−ε

′
))

= o(1) (because p > 1/ε′)

Let us now compute a(n):

a(n) = k
d

k
log2

d

k
− nd

n
log2

d

n

= d log2

d

k
− d log2

d

n

= −d log2

k

n

= −d log2

(
1 +O

(w
n

log2

w

n

))
(because of (28))

Recall now that we have w = O(n1−ε) and by using log2(1 + x) =
x→0

O(x) we get:

a(n) = −dO
(w
n

log2

w

n

)
which gives as wd = O(n) and w = O(n1−ε):

a(n) = O
(

log2

w

n

)
= O (log2 n) (31)

Let us now compute b(n) which is defined in (30):

b(n) = n
d

ln(2)n
− k d

ln(2)k
+

1

ln(2)

p−1∑
l=2

k
(d/k)l

l(l − 1)
− n (d/n)l

l(l − 1)

=
1

ln(2)

p−1∑
l=2

dl
1

nl−1
(k/n)1−l − 1

l(l − 1)

Recall now that
k

n
= 1 +O

(
−w
n

log2

w

n

)
therefore, (

k

n

)1−l

− 1 =
(

1 +O
(
−w
n

log2

w

n

))1−l
− 1

= 1 +O
(
−w
n

log2

w

n

)
− 1

= O
(
−w
n

log2

w

n

)
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Then we get:

b(n) =
1

ln(2)

p−1∑
l=2

dl

nl−1
1

l(l − 1)
O
(
−w
n

log2

w

n

)
=

1

ln(2)

p−1∑
l=2

dl−1

l(l − 1)nl−1
O

(
−dw
n

log2

w

n

)

=
1

ln(2)

p−1∑
l=2

o(1)O
(
− log2

w

n

)
(because d = O(n1−ε

′
) = o(n) as ε′ > 0 and dw = O(n)).

= o
(
− log2

w

n

)
= O (log2 n)

Therefore, by combining this result with (29) and (31) we get:

kh

(
d

k

)
− nh

(
d

n

)
= O (log2 n)

which concludes the proof.

8 Concluding remarks
We have presented here our attacks against the rank-based signature scheme RankSign and the
IBE scheme proposed in [GHPT17]. Several comments can be made.

Attack on RankSign. We actually showed that in the case of RankSign, the complexity is
polynomial for all possible strategies for choosing the parameters. Repairing the RankSign scheme
seems to require to modify the scheme itself, not just adjust the parameters. It might be tempting
to conjecture that the approach against RankSign could also be used to mount an attack on the
NIST submissions based on LRPC codes such as [ABD+17a, ABD+17b]. Roughly speaking our
approach consists in looking for low weight codewords in the LRPC code instead of looking for
low weight codewords in the usual suspect, that is the dual of the LRPC code, that has in this
case low weight codewords by definition of the LRPC code. This approach does not seem to carry
over to the LRPC codes considered in those submissions. The point is that our approach was
successful for RankSign because of the way the parameters of the LRPC code had to be chosen.
In particular the length n, the dimension k and the weight of the LRPC code have to satisfy

n = (n− k)d.

It is precisely this equality that is responsible for the weight 2 codewords in the LRPC code. If d
is not too small (say > 3) and (n−k)d is sufficiently above n, then the whole approach considered
here fails at the very beginning.

Attack on the IBE [GHPT17]. The attack on RankSign also breaks the IBE proposal of
[GHPT17] since it is based partly on the RankSign primitive. We have shown here that the
problem is actually deeper than this by showing that even if a secure signature scheme replaces
in the IBE, RankSign, then an attack that breaks directly the RSL problem which is the other
problem on which the IBE is based, can be mounted for the parameters proposed in [GHPT17].
Again, as in the case of RankSign, the reason why this attack was successful comes from the fact
that the constraints on the parameters that are necessary for the scheme to work properly work
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in favor of ensuring that a certain code that can be computed from the public data has low weight
codewords. These low codewords are then found by an algebraic attack. However, contrarily to
the RankSign case, where the conditions on the parameters force a certain code to have codewords
of low weight, this phenomenon can be avoided by a very careful choice of the parameters in the
IBE. This opens the way for repairing the scheme of [GHPT17] if a secure signature scheme is
found for the rank metric.

We have also studied whether the [GHPT17] approach for obtaining an IBE scheme based on
coding assumptions could work in the Hamming metric. However in this case, and contrarily to
what happens in the rank metric, we have given a devastating polynomial attack in the Hamming
metric relying on using the simplest generic decoding algorithm [Pra62] that can not be avoided
by any reasonable choice of parameters. It seems that following the GPV [GPV08]/[GHPT17]
approach for obtaining an IBE scheme is a dead end in the case of the Hamming metric.

To conclude this discussion on [GHPT17], we would like to stress that our result in the Ham-
ming case does not imply the impossibility of designing an IBE based on coding theory. It only
suggests to investigate other paradigms rather than trying to adapt the GPV strategy. For in-
stance, the recent progress of [DG17b, DG17a, DGHM18] made on the design of IBE’s, particularly
with the concept of one-time signatures with encryption, might be applied to cryptography based
on decoding assumptions.
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