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Abstract. This work introduces the concept of flexible signatures. In a flexible
signature scheme, the verification algorithm quantifies the validity of a signature
based on the number of computations performed, such that the signature’s val-
idation (or confidence) level in [0, 1] improves as the algorithm performs more
computations. Importantly, the definition of flexible signatures does not assume
the resource restriction to be known in advance, a significant advantage when the
verification process is hard stopped by a system interrupt. Although prominent
traditional signature schemes such as RSA, (EC)DSA, EdDSA seem unsuitable
towards building flexible signatures, we find the use of the Lamport-Diffie one-
time signature and Merkle authentication tree to be suitable for building flexible
signatures. We present a flexible signature construction based on these hash-based
primitives and prove its security with a concrete security analysis. We also per-
form a thorough validity-level analysis demonstrating an attractive computation-
vs-validity trade-off offered by our construction: a security level of 80 bits can
be ensured by performing only around 2

3
rd of the total hash computations for our

flexible signature construction with a Merkle tree of height 20. Finally, we have
implemented our constructions in a resource-constrained environment on a Rasp-
berry Pi. Our analysis demonstrates that the proposed flexible signature design
is comparable to other standard signature schemes in term of running time while
offering a quantified level of security at each step of the verification algorithm.
We see this work as the first step towards realizing the flexible-security crypto-
graphic primitives. Beyond flexible signatures, our flexible-security conceptual-
ization offers an interesting opportunity to build similar primitives in the asym-
metric as well as symmetric cryptographic domains. Apart from being of inde-
pendent theoretical interest, these flexible security primitives can be of practical
value to real-time systems as well as the Internet of things: rigid all-or-nothing
guarantees offered by the traditional cryptographic primitives have been particu-
larly unattractive in these unpredictably resource-constrained environments.

1 Introduction

Security for embedded and real-time systems has become a greater concern with man-
ufacturers increasing connectivity of these traditionally isolated control networks to the
outside world. The computerization of hitherto purely mechanical elements in vehic-
ular networks, such as connections to the brakes, throttle, and steering wheel, has led
to a life-threatening increase of exploitation power. In the event that an attacker gains
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access to an embedded control network, safety-critical message traffic can be manip-
ulated inducing catastrophic system failures. In recent years, numerous attacks have
impressively demonstrated that the software running on embedded controllers could be
successfully exploited, often even remotely [17, 23, 26]. With the rise of the Internet of
Things (IoT), more non-traditional embedded devices have started to get integrated into
personal and commercial computing infrastructures, and security will soon become a
paramount issue for the new-age embedded systems [10, 28].

Well-established authentication and integrity protection mechanisms such as digital
signatures or MACs can effectively solve many of the security issues with embedded
systems. However, the industry is hesitant to adopt those as most embedded devices
pose severe resource constraints on the security architecture regarding memory, com-
putational capacity, energy and time. Given the real-time deadlines, the embedded de-
vices might not be able complete verifications by the deadline rendering all verification
efforts useless.

Indeed, traditional cryptographic primitives are not designed for such uncertain
settings with unpredictable resource constraints. Consider prominent digital signature
schemes (such as RSA, EC-DSA, and EdDSA) that allow a signer who has created a
pair of private and public keys to sign messages so that any verifier can later verify
the signature with the signer’s public key. The verification algorithms of those signa-
ture schemes are deterministic and only return a binary answer for the validity of the
signature (i.e., 0 or 1). Such verification mechanisms may be unsatisfactory for an em-
bedded module with unpredictable computing resources or time to perform the verifica-
tion: if the module can only partially complete the verification process due to resource
constraints or some unplanned real-time system interrupt, there are no partial validity
guarantees available.

This calls for a signature scheme that can quantify the validity of the signature based
on the number of computations performed during the verification. In particular, for a
signature scheme instantiation with 128-bit security, we expect the verification process
to be flexible enough to offer a validity (or confidence) level in [0, 1] based on the
resources available during the verification process. We observe that none of the existing
signature schemes offer such a trade-off between the computation time/resource and the
security level in a flexible manner.

Our Contributions. This paper initiates the study of cryptographic primitives with
flexible security guarantees that can be of tremendous interest to real-time systems and
the emerging IoT. In particular, we investigate the notion of a flexible signature scheme
that offers partial security for an unpredictably partial verification.

As the first step, based on the standard definition of digital signatures, we propose a
new definition of a signature scheme with a flexible verification algorithm. Here, instead
of returning a binary answer, the verification algorithm returns a value, α ∈ [0, 1] ∪ ⊥
that quantifies the validity of the signature based on number of computations performed.

Next, we provide a provably secure construction of the flexible signature scheme
based on the Lamport-Diffie one-time signature construction [19] and the Merkle au-
thentication tree [21]. The security of our signature relies on the difficulty of finding
a `-near-collision pair for a collision-resistant hash function. Through our analysis, we
demonstrate that our construction still offers a high security level against adaptive cho-
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sen message attacks despite performing fewer computations during verification. For
example, a security level of 80-bit security can be secured by performing only around
2
3 rd of the total required hash computations for a Merkle tree of height 20.

Finally, we prototype our solution in a resource-constrained environment by imple-
mented our construction on a Raspberry Pi. We find that performance of the proposed
constructions are comparable to other prominent signature schemes in term of running
time, while offering flexible trade-off between the security level and the number of
computations. Importantly, neither the security level nor the number of computations
have to be pre-determined during verification.

Related Work. Fischlin [13] proposed a similar framework for progressively verifi-
able message authentication codes (MACs). In particular, he presented two concrete
constructions for progressively verifiable MACs that allow the verifier to spot errors or
invalid tags after a reasonable number of computations. Also, the paper introduced the
concept of detection probability to denote the probability that the verifier detects errors
after verifying a certain number of blocks. In this work, we address the open problem
of a progressively verifiable digital signature scheme, and we incorporate the detection
probability concept into the security analysis of our schemes.

Bellare, Goldreich, and Goldwasser [3] introduced incremental signatures. Here,
given a signature on a document, a signer can obtain a (new) signature on a similar
document by partially updating the available signature. The incremental signature com-
putation is more efficient than computing a signature from scratch and thus can offer
some advantage to a resource-constrained signer. However, it provides no benefit for a
resource-constrained verifier; the verifier still needs to perform a complete verification
of the signature.

Signature scheme with batch verification [2, 8] is a cryptographic primitive that
offers an efficient verifying property. Namely, after receiving multiple signatures from
different sources, a verifier can efficiently verify the entire set of signatures at once.
Batch verification signature scheme and flexible signature scheme are similar in that
they offer an efficient and flexible verification mechanism. However, while the batch
verification signature merely seeks to reduce the load on a busy server, the flexible
signature focuses on a resource-constrained verifier who can tolerate a partial security
guarantee from a signature.

Freitag et. al. [14] proposed the concept of signature scheme with randomized ver-
ification. Here, the verifying algorithm takes as input the public key along with some
random coin to determine the validity of the signature. In those schemes, the attacker’s
advantage of forging a valid message-signature pair, (m∗, σ∗), is determined by the
fraction of coins that accept (m∗, σ∗). Freitag et. al. constructed a signature scheme
with randomized identity-based encryption (IBE) schemes using Naor’s transformation
and show that the security level of their signature scheme is fixed to size of the underly-
ing IBE scheme’s identity space. While our work can be formally defined as a signature
scheme with randomized verification, our scheme offers a more flexible verification in
which the security level of the scheme can be efficiently computed based on the output
of the verifying algorithm.

Finally, Fan, Garay, and Mohassel [11] proposed the concept of short and adjustable
signature scheme. They offered three variants, namely setup adjustable, signing ad-
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justable, and verification adjustable signatures offering different trade-offs between the
length and the security of the signature. The first two variants allow the signer to adjust
the length of the signature, while the last variant allows the verifier to shorten the signa-
ture during the verification phase. They presented three constructions for each variant
based on indistinguishably obfuscation (iO), and one concrete construction only for the
setup-adjustable variant based on the BLS Signature Scheme [5]. Unfortunately, none
of those constructions is suitable for constructing flexible signatures tolerating unpre-
dictable interrupts.

2 Preliminaries

Fig. 1 presents prominent notational conventions that we use throughout this work. Our
constructions employ the following standard properties of cryptographic hash func-
tions.
We useH : K×M→ {0, 1}n to denote a family of hash functions that is parameterized
by a key k ∈ K and message m ∈ M and outputs a binary string of length n. For
this work, we consider two security properties for hash functions from [25], preimage
resistance, collision resistance, and one weaker security notion from [18, 20], `-near
collision resistance.

Preimage Resistance: We call a family H of hash functions (tow, εow)-preimage re-
sistant, if for any A that runs for at most tow, the adversary’s advantage is:

AdvowH (A) = Pr

[
k

$← K, x $←M
y ← H(k, x), x′ ← A(k, y)

: H(k, x′) = y

]
≤ εow

Collision Resistance: We call a family H of hash functions (tcr, εcr)-collision resis-
tant, if for any A that runs for at most tcr, the adversary’s advantage is:

AdvcrH (A) = Pr

[
k

$← K
(x, x′)← A(k)

: (x 6= x′) ∧ (H(k, x) = H(k, x′))

]
≤ εcr

`-near-collision Resistance: We call a family H of hash functions (t`-ncr, ε`-ncr)-`-
near-collision resistant, if for any A that runs for at most t`-ncr and 0 ≤ ` ≤ n, the
adversary’s advantage is:

AdvncrH,`(A) = Pr

[
k

$← K;
(x, x′)← A(k, `)

: (x 6= x′) ∧ (∆(H(k, x), H(k, x′)) ≤ `)

]
≤ ε`-ncr

Generic Attacks. To find the preimage tow = 2q is required to achieve εow = 1/2n−q

using exhaustive search. Due to the birthday paradox, however, only tcr = 2n/2 is
required to find a collision with a success probability of εcr ≈ 1/2. Finally, Lamberger

et. al. showed in [18] that at least t`-ncr = 2n/2/
√∑`

i=0

(
n
i

)
is required to find a

`-near-collision with a success probability of ε`-ncr ≈ 1/2.
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n Security parameter
[m] {1, . . . ,m}
m1||m2 Concatenation of strings m1 and m2

(di)i∈[m] Concatenation of m elements, d1||d2||...||dm
x

$← X x is chosen uniformly at random from some set X
∆(x, y) Hamming distance between two binary strings x and y
f(m) = poly(m) f(m) is a polynomial function in m
f(m) = negl(m) f(m) is a negligible function in m, if f(m) = o(1/mc) ∀c ∈ N
JrK Optional parameter r in an algorithm definition

Fig. 1: Notations

Unkeyed Hash Functions. In practice, the key for standard hash functions is public;
therefore, from this point, we refer to the cryptographic hash function H as a fixed
function H :M→ {0, 1}n.

3 Security Definition

In this section, we define a flexible signature scheme. We adapt the standard definition
of the signature scheme [16] to the flexible security setting. An instance of an inter-
rupted flexible signature verification is expected to return a validity value, α, in the
range [0, 1].

To model the notion of runtime interruptions in the signature definition, we intro-
duce the concept of an interruption oracle iOracleΣ(1

n) for signature scheme Σ and
give the verification algorithm access to it. The interruption oracle outputs an interrup-
tion position r in the sequence of computation steps involved the verification algorithm.
For simplicity, if we denote max to be the maximum number of computations needed
(e.g. clock cycles, number of hash computations, or modular exponentiations) for a
signature verification, then iOracleΣ(1

n) outputs a value r ∈ {0, . . . ,max}. The spec-
ification of the interruption position may vary depending on the choice of signature
scheme; e.g., in this work, we define the interruption position as the number of hash
computations performed in the verification algorithm.

Definition 1. A flexible signature scheme,Σ, contains three algorithms (Gen,Sign,Ver):

– Gen(1n) is a probabilistic algorithm that takes a security parameter 1n as input
and outputs a pair (pk, sk) of public key and secret key.

– Sign(sk,m) is a probabilistic algorithm that takes a private key sk and a message
m from a message space M as inputs and outputs a signature σ from signature
space S.

– Ver(pk,m, σ, JrK) is a probabilistic algorithm that takes a public key pk, a mes-
sage m, a signature σ, and an optional interruption position r ∈ {0, . . . ,max} as
inputs. If r is not provided, then the algorithm will query an interruption oracle,
iOracleΣ(1

n) to determine r ∈ {0, . . . ,max}. The algorithm outputs a real value
α ∈ [0, 1] ∪ {⊥}. The signature is invalid if α = ⊥.



6 Le et al.

The following correctness condition must hold:

∀(pk, sk)← Gen(1n),

∀m ∈M,∀r ∈ {0, ...,max}
: Pr[Ver(pk,m, Sign(sk,m), r) = ⊥] = 0

Remark 1. The interruption oracle only serves as a virtual party for definitional rea-
sons. In practice, the verification algorithm does not receive the interruption position r
as an input, and the algorithm continues to perform computations until it receives an in-
terruption. To model runtime interruptions using the interruption oracle iOracleΣ(1

n),
in this work, we expect the flow of the verification algorithm to not be affected/biased
by the r value offered by iOracleΣ(1

n) at the beginning of the verification. Also, we
note that depending on signature schemes, there can be more than one way to define the
interruption position, r (e.g. clock cycles, number of hash computations, or modular
exponentiations).

Extracting function. We assume that for a flexible signature scheme, there exists
an efficient function, iExtractΣ(·), that takes as input the validity of the signature α
and outputs the interruption position r. Intuitively, for the case of an unexpected inter-
ruption, the verifier needs not not know when the verification algorithm is interrupted.
However, based on the validity output α, the verifier should be able to use iExtractΣ(·)
to learn the interruption position, r. The definition of extracting function depends on
the specification of the interruption position and signature scheme. We will define our
iExtractΣ(·) for each of our proposed constructions in Section 4 and Section 5.

Security of flexible signature scheme. We present a corresponding definition to the
existential unforgeability under adaptive chosen message attack (EUF-CMA) experi-
ment in order to prove the security of our scheme. For a given flexible signature scheme
Σ = (Gen,Sign,Ver) and α ∈ [0, 1], the attack experiment is defined as follows:
Experiment FlexExpA,Σ(1n, α) :

1. The challenger C runs Gen(1n) to obtain (pk, sk) and iExtractΣ(α) to obtain posi-
tion r. C sends (pk, r) to A.

2. AttackerA queries C for signatures of its adaptively chosen messages. LetQSign(sk,·)
A

= {mi}i∈[q] be the set of all messages that A queries C where the ith query is a
message mi ∈ M. After receiving mi, C computes σi ← Sign(sk,mi), and sends
σi to A.

3. Eventually, A outputs a pair (m∗, σ∗) ∈ M× S , where message m∗ /∈ QSign(sk,·)
A

and sends the pair to C.
4. C computes α∗ ← Ver(pk,m∗, σ∗, r). If (α∗ 6= ⊥) and (α∗ ≥ α), the experiment

returns 1; else, it returns 0.

Definition 2. For the security parameter n and α ∈ [0, 1], a flexible signature scheme
Σ is

(
t, ε, q

)
existential unforgeable under adaptive chosen-message attack if for all

efficient adversariesA that run for at most time t and query Sign(sk, ·) at most q times,
the success probability is:

Advflex
A,Σ(n) = Pr[FlexExpA,Σ(1

n, α) = 1] ≤ ε

Here, t and ε are functions of α and n, and q = poly(n).
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4 Flexible Lamport-Diffie One-time Signature

In this section, we present our concrete construction of the flexible one-time signature
scheme. This construction is based on the Lamport-Diffie one time signature construc-
tion introduced in [19]. The idea of the Lamport Diffie one-time signature scheme is to
sign/verify the message/signature bit-by-bit using a preimage-resistant hash function.

4.1 Construction

We show the concrete construction of the flexible Lamport-Diffie one-time signature
in Fig. 2. In this construction, we use the same key generation and signing algorithms
from the Lamport-Diffie signature and modify the verification algorithm.

Key Generation Algorithm. The key generation algorithm takes a parameter 1n as
input, and generates a private key by choosing 2n bit strings each of length n uniformly
at random from {0, 1}n, namely, SK =(ski[b])i∈[n],b∈{0,1} ∈ {0, 1}2n

2

. The public key
is obtained by evaluating the preimage-resistant hash function on each of the private
key’s n bit string, such that PK = (pki[b])i∈[n],b∈{0,1} where pki[b] = F (ski[b]) and
F (·) is the preimage-resistant hash function.

Signing Algorithm. The signing algorithm takes as input the message m and the
private key SK. First, it computes the digest of the message d = G(m) = (di)i∈[n]
where di ∈ {0, 1} and G(·) is a collision-resistant hash function that outputs digests of
length n. The signature is generated based on the digest d as σ = (ski[di])i∈[n].

Flexible Verification Algorithm. This algorithm takes as input a message m, a pub-
lic key PK, a signature σ, and an optional interruption position JrK and outputs the
validity of the signature α. In this construction, we model the interruption condition
r ∈ {0, 1, . . . , n}, as the number of hash F (·) computations performed during verifi-
cation. As mentioned earlier in Section 3, to faithfully model the interruption process,
the flow of the verification algorithm should not be biased by the r value in any in-
telligent manner. First, the verification algorithm will query the interruption oracle to
determine the interruption position r. The algorithm then computes the digest of the
message, d = G(m) = (di)i∈[n]. Now, instead of sequentially verifying the signature
bits like the verification in the standard scheme, the flexible verification algorithm ran-
domly selects a position i of the signature and checks whether F (σi[di]) = pki[di]. If
there is one invalid preimage, the verification aborts and returns α = ⊥. Otherwise,
once the interruption condition is met or all positions are verified, the algorithm returns
the validity as the fraction of the number of bits that passed the verification check over
the length of the signature. In this Lamport-Diffie construction, given the validity α
value output by the verification algorithm, the verifier simply computes the interruption
position as follows: iExtractΣfots

(α) = bα · nc

4.2 Security Analysis

In the flexible Lamport-Diffie one-time signature setting, as the verification algorithm
does not perform verification at every position of the signature, the adversary can in-
crease the probability of winning by outputting two messages whose hash digests are
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Flexible Lamport-Diffie One-time Signature

Given the security parameter n, a preimage resistant hash function F : {0, 1}n → {0, 1}n,
a collision resistant hash function G : {0, 1}∗ → {0, 1}n, the flexible Lamport-Diffie
one-time signature scheme Σfots works as follows:

Gen(1n) : for each i ∈ [n], b ∈ {0, 1} :

choose ski[b]
$← {0, 1}n, set pkj [b] = F (ski[b])

output : SK = (ski[b])i∈[n],b∈{0,1}, PK = (pki[b]))i∈[n],b∈{0,1}

Sign(SK,m) :compute d = G(m) = (di)i∈[n], parse SK = (ski[b])i∈[n],b∈{0,1}.

output : σ = (ski[di])i∈[n]

Ver(PK,m, σ, JrK) : if r is not provided: set r ← iOracle(1n),

kF = 0, N = [n]

compute d = G(m) = (di)i∈[n]

write PK = (pki[b])i∈[n],b∈{0,1}, σ = (σi)i∈[n]

while (r > 0) and (N 6= ∅) :

choose i
$← N

if F (σi) 6= pki(di), return α = ⊥
N = N − {i}, kF = kF + 1, r = r − 1

output : α = kF /n

Fig. 2: Construction of the Flexible Lamport-Diffie Signature

close. This is equivalent to finding an `-near-collision pair where ` is determined by
the adversary. Theorem 1 offers the trade-off between computation time and success
probability for the adversary.

Theorem 1. Let F be (tow, εow) preimage-resistant hash function,G be (t`-ncr, ε`-ncr)
`-near-collision-resistant hash function, kF , kG be the number of times F (·), G(·) eval-
uated in the verification respectively, d be the Hamming distance between two message
digests output by A, and tgen, tsign, tver be the time it takes to generate keys, sign the
message, and verify the signature respectively. With 1 ≤ kF ≤ n, kG = 1, the flexible
Lamport-Diffie one-time signature Σfots is (tfots, εfots, 1) EUF-CMA where:

α = kF /n

tfots = min{tow, t`-ncr} − tsign − tver − tgen where 0 ≤ ` ≤ n− kF

εfots ≤ min

{
1, 2 ·max

{ kF−1∏
i=0

(1− d

n− i
), 4n · εow

}}
where 0 ≤ d ≤ `

Due to space constraints, the proof of Theorem 1 is shifted to Appendix A.

Security Level. Towards making the security of flexible Lamport-Diffie one-time sig-
natures more comprehensible, we adapt the security level computation from [7]. For
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any (t, ε) signature scheme, we define the security of the scheme to be log2 (t/ε). As,
in the flexible setting, the value of the pair (t, ε) may vary as the adversary decides the
Hamming distance `, for each value of kF ∈ {0, . . . , n}, we compute the adversarial
advantage for all values 0 ≤ ` ≤ n− kF and output the minimum value of log2

( tfots

εfots

)
as the security level of our scheme. A detailed security level analysis for the Lamport-
Diffie one-time signature is available in Section 6.1.

5 Flexible Merkle Tree Signature

We use the Merkle authentication tree [21] to convert the flexible Lamport-Diffie one-
time signature scheme into a flexible many-time signature scheme.

5.1 Construction

In the Merkle tree signature scheme, in addition to verifying the validity of the sig-
nature, the verifier uses the authentication nodes provided by the signer to check the
authenticity of the one-time public key. We are interested to quantify such values un-
der an interruption. To achieve such a requirement, we require the signer to provide
additional nodes in the authentication path.

Key Generation Algorithm. Our key generation remains the same as the one pro-
posed in the original Merkle tree signature scheme [21]. For a tree of height h, the
generation algorithm generates 2h Lamport-Diffie one-time key pairs, (PKi,SKi)i∈[2h].
The leaves of the tree are digests of one-time public keys, H(PKi), where H(·) is a
collision-resistant hash function. An inner node of the Merkle tree is the hash digest of
the concatenation of its left and right children. Finally, the public key of the scheme is
the root of the tree, and the secret key is the set of 2h one-time secret keys.

Modified Signing Algorithm. In the original Merkle signature scheme, a signature
consists of four parts: the signature state s, a one-time signature σs, a one-time public
key PKs and a set of authentication nodes Auths = (ai)i∈[h]. The verifier can use PKs
to verify the validity of the σs and use nodes in Auths and state s to efficiently verify
the authenticity of PKs.

For our signing algorithm, along with authentication nodes in the old construction,
we require the signer to send the nodes that complete the direct authentication path from
the one-time public key to the root. We call this set of nodes complement authentication
nodes, Authcs = (a′i)i∈[h]. The reason for including additional authentication nodes is
to allow the verifier to randomly verify any level of the tree. Moreover, with additional
authentication nodes, verifier can verify different levels of the tree in parallel. Fig. 3
describes an example of the new requirement for a tree of height three.

The modified signature now consists of five parts: a state s, a Lamport-Diffie one-
time signature σs, a one-time public key PKs, a set of authentication nodes Auths, and
a set of complement authentication nodes Authcs.
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root

a′3

a2

PK1 PK2

a′2

a′1

PK3

a1

PK4

a3

PK5 PK6 PK7 PK8

Fig. 3: An example of new authentication nodes for PK3 where Auth3 = (a1, a2, a3)
is the set of authentication nodes in the original scheme and Authc3 = (a′1, a

′
2, a
′
3) is the

set of additional authentication nodes

Flexible Verification Algorithm. With additional authentication nodes, the verifica-
tion algorithm can verify the authenticity of the public key at arbitrary levels of the
authentication tree as well as use the flexible verification described in Section 4 to par-
tially verify the validity of the one-time signature. In the end, the verification returns
α = (αv, αa) that contains both the validity of the signature and the authenticity of the
public key. In this construction, we define the interruption r ∈ {0, 1, . . . , n + h + 1},
as the number of computations performed during the verification step.

In contrast to the verification performed in the one-time signature scheme, the secu-
rity guarantee the verifier gains from the authenticity verification of the one-time public
key only increases linearly as the number of computations performed on the authen-
tication path increase: The adversary can always generate a new one-time key pair to
sign the message that is not a part of one-time key pairs created by the generation al-
gorithm. In the original Merkle scheme, such key pair will fail the authenticity check
with overwhelming probability because the verifier can use the authentication nodes to
compute and verify the root. However, in the flexible setting, the verifier may not be
able to complete the authenticity verification, and there is a non-negligible probability
that an invalid one-time public key will be used to verify the validity of the signature.
Therefore, the verifier gains exponential security guarantee about the validity of the
one-time signature but only a linear guarantee about the authenticity of the public key
as the number of computations increases.

To address this issue, the verification algorithm needs to balance the computations
performed on the authentication path and the computations performed on the one-time
signature. We define the confidence for the validity of the one-time signature as 1 −
1/2kF /2 and the confidence for authenticity of the one-time public key as kH/(h+ 1),
where kF is the number of computations performed on the one-time signature, kH is the
number of computations performed on the one-time public key, and h is the height of
the Merkle tree. To balance the number of computations, the verifier needs to maintain
1 − 1/2kF /2 ≈ kH/(h + 1). With the new signing and verifying algorithms described
above, we present a detailed construction of the flexible Merkle signature scheme in
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Flexible Merkle Tree Signature Scheme
Given the security parameter n, the height of the tree h, a preimage resistant hash function
F : {0, 1}n → {0, 1}n, a collision resistant hash function H : {0, 1}∗ → {0, 1}n,
G : {0, 1}∗ → {0, 1}n, and a flexible Lamport-Diffie one-time signature scheme Σfots =
(Genfots, Signfots,Verfots). The stateful flexible Merkle scheme Σfms works as follows:

Gen(1n) : generate 2h ots pairs {(PKi, SKi)}i∈[2h] using Genfots(1
n)

compute the inner nodes of the Merkle tree as follows:

nodei[j] = H(nodei−1[2j − 1]||nodei−1[2j])

2 ≤ i ≤ h+ 1, 1 ≤ j ≤ 2h+1−i

node1[i] = H(PKi), 1 ≤ i ≤ 2h

output : SK = {SKi}i∈[2h],PK = root (i.e. nodeh+1[1]), s = 1

Sign(SK,m, s) : compute σs = Signfots(SKs,m)

compute Auths = (ai)i∈[h], where

ai =

{
nodei[ds/2i−1e+ 1] if ds/2i−1e ≡ 1mod 2

nodei[ds/2i−1e − 1] if ds/2i−1e ≡ 0mod 2

compute Authc
s = (a′i)i∈[h], where a

′
i = nodei[ds/2i−1e]

output : σ = (s, σs,PKs,Auths,Auth
c
s), s = s+ 1

Ver(PK,m, σ, JrK) : if r is not provided: set r ← iOracle(1n),

set N = [n], T = [h+ 1], kF = 0, kH = 0

compute G(m) = d = (di)i∈[n]

extract (s, σfots,PKfots,Auth,Auth
c)← σ

write σots = (σi)i∈[n], PKfots = (pki[b])i∈[n],b∈{0,1},

Auths = (ai)i∈[h], Auth
c
s = (a′i)i∈[h]

while r > 0 and H 6= ∅ and N 6= ∅ do :

if 1− 1/2kF /2 ≤ kH/(h+ 1) :

choose i
$← N, if F (σi) 6= pki(di), output : α = ⊥

N = N − {i}, kF = kF + 1

else : choose j
$← T, set a′h+1 = PK

if j = 1 : if a′1 6= H(PKs), output : α = ⊥
if j > 1 : if a′j is not a parent of aj−1 and a

′
j−1 :

output α = ⊥.
T = T − {j}, kH = kH + 1

r = r − 1

output : α = (kF /n, kH/(h+ 1))

Fig. 4: The Flexible Merkle Signature Construction
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Fig. 4. In this Merkle signature construction, given the validity α = (αv, αa) value
output by the verification algorithm, the verifier can compute the interruption position
as follow: iExtractΣfms

(α) = bαvnc+ bαa(h+ 1)c.

5.2 Security Analysis

Theorem 2 presents the trade-off between computation time and success probability for
the adversary A.

Theorem 2. Let F be (tow, εow) preimage-resistant hash function,G be (t`-ncr, ε`-ncr)
`-near-collision-resistant hash function, H be (tcr, εcr) collision-resistant hash func-
tion, kF , kG, kH be the number of times F (·), G(·), H(·) performed respectively, d be
the smallest Hamming distance between the forged message digest and other queried
message digests, and tgen, tsign, tver be the time it takes to generate keys, sign the mes-
sage, and verify the signature respectively. With 1 ≤ kF ≤ n, 0 ≤ kH ≤ h + 1, and
kG = 1, the flexible Merkle signature construction (Σfms) from flexible Lamport-Diffie
one-time signature scheme is (tfms, εfms, 2h) EU-CMA, where

α = (kF /n, kH/(h+ 1))

tfms =

{
O(1) when kH < h+ 1,

min
{
tow, t`-ncr, tcr

}
− 2h · tsign − tver − tgen where 0 ≤ ` ≤ n− kF

εfms ≤ min

{
1, 4 ·max

{
1− kH

(h+ 1)
, 2h

kF−1∏
i=0

(
1− d

n− i
)
, 2h+log2 4n · εow, εcr

}}
where 0 ≤ d ≤ `

Due to space constraints, the proof of Theorem 2 is shifted to Appendix A.

5.3 Other Signature Schemes

Over the last few years, several optimized versions of Merkle tree signature and one-
time signature schemes have been proposed. This includes XMSS [6] and SPHINCS [4]
for the tree signatures, and HORS [22], BIBA [24], HORST [4] and Winternitz [21] for
one-time signatures. While the security analysis for each scheme may vary a little, we
can use the same technique described above to transform those schemes into signa-
ture schemes with a flexible verification. In this work, we choose to use Lamport-Diffie
One-time signature for our construction because of two reasons. First, the number of
hash evaluations in Lamport-Diffie Signature verification is fixed for constant size mes-
sages, and this gives better and more precise security proofs. Second, Lamport-Diffie
one-time signature has better performance in term of the running time. Also, other op-
timized versions of hash-based signature schemes like Winternitz reduce the size of the
public key and the signature with the expense of verification time and generation time.
Thus, according to our experiment and analysis, Lamport-Diffie One-time signature
combined with Merkle Tree provides a better speed performance and more concrete
security proofs.

We also investigate number-theoretic signature schemes and observe that the sim-
ilar verification technique can be applied to the Fiat-Shamir Signature Scheme [12]
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as its signature is partitioned into different verifiable sets. However, compared to hash
function evaluations, the computation of modular exponentiation is significantly more
expensive and thus may not be suitable for flexible security application environments.
Moreover, lattice-based signature schemes such as GPV signatures [15] can be an in-
teresting candidate for a flexible signature construction. For GPV signatures, a public
key is a matrix output by a trapdoor sampling algorithm, and a signature is output by
a pre-image sampling algorithm. The signature verification is performed using matrix
and vector multiplication. The same randomized verification technique seems to be ap-
plicable here on different rows of the matrix. In the future, we plan to explore a flexible
version of GPV signatures.

6 Evaluation, Performance Analysis and Discussion

In this section, we evaluate the performance and the security level of the flexible Lamport-
Diffie one-time signature and flexible Merkle signature schemes. For both schemes, the
validity value α suggests the number of computations performed (i.e., kH , kF ) during
verification. Based on the value α, the verifier determines the security level achieved by
the (interrupted) verification instance.

6.1 Security Level of Flexible Lamport-Diffie One-time Signature

The security level of a flexible Lamport-Diffie signature depends on the actual Ham-
ming distance between two message digests output by the adversary, and it can in-
crease its advantage by putting more time to find a near-collision pair. However, it
is unclear how to precisely measure an exact Hamming distance between those two
digests. Therefore, we outline some possible assumptions in order to estimate pre-
cisely the value of ∆(G(m), G(m∗)). Using the generic attack on finding near col-
lision pair [18], we can assume that an adversary A who uses a generic birthday at-
tack can always output a pair (m,m∗) such that ∆(G(m), G(m∗)) ≤ ` after spend-

ing t`-ncr = 2n/2/
√∑`

i=0

(
n
i

)
. Second, for a fixed value `, if the adversary finds

a pair (m,m∗) such that ∆(G(m), G(m∗))≤ `, we let d = ∆(G(m), G(m∗)) is
equal to the expected value of ∆(G(m), G(m∗)). The intuition behind the second as-
sumption is that as we let the Hamming distance d decrease by 1, the probability that
∆(G(m), G(m∗)) = d decreases by factor of n; therefore, the actual value of d should
be closer to ` than to 0.

We define the set B`(G(m)) = {x | x ∈ {0, 1}n ∧ ∆(x,G(m)) ≤ `}. If G(m)
and G(m∗) is a `-near-collision pair, then G(m∗) ∈ B`(G(m)). If G(·) behaves as an
uniformly random function, then given `, the expected value of ∆(G(m), G(m∗)) is:

E(∆(G(m), G(m∗))) =
∑̀
j=0

j ·
(
n
j

)
|B`(G(m))|

=
∑̀
j=0

j ·
(
n
j

)∑`
i=0

(
n
i

) (1)
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For the case of Lamport-Diffie one-time signature, we have tgen = 2n, tsign = tver =
n. Combining Theorem 1 and equation 1, we have:

tfots = max

{
1,

2n/2√∑`
i=0

(
n
i

) − 4 · n

}
for ` ≤ n− kF

εfots ≤ min

{
1, 2 ·

kF−1∏
i=0

(1− d

n− i
)

}
where d = E(∆(G(m), G(m∗)),

given ∆(G(m), G(m∗)) ≤ `

Finally, the adversary’s advantage varies depending on the value of `. Therefore, for a
fixed value kF , we compute the adversarial advantage all values ` ≤ n−kF and output
the minimum value of log2

( tfots

εfots

)
as the security level of the scheme.

Fig. 5 gives the trade-off between the number of computations and the security
level of the flexible Lamport-Diffie scheme. Compared to the original Lamport-Diffie
scheme, our construction offers a reasonable security level despite a smaller number of
computations. For example, while a complete verification requires 256 evaluations of
F (·) to achieve the 128-bit security level, with only 128 evaluations of F (·), the scheme
still offers around the 92-bit security level.

6.2 Security Level of Flexible Merkle Tree Signature

For the Merkle tree signature scheme, using the results from [9], [27], we have tgen =
2h · 2n+ 2h+1 − 1, tver = n+ h+ 1, tsign = (h+ 1) · n. There are two cases for the
Merkle tree signature: the authenticity check is complete, kH = h+1 or the authenticity
check is not complete, kH < h+ 1.

When kH < h+1, the adversary’s probability of winning is non-negligible, and the
time it needs to spend on the attack is constant; therefore, when the authenticity check is
not complete, we simply let: tfms = 1, εfms = 1−kH/(h+1). When the authenticity
verification is complete, kH = h + 1, using the equation described in Theorem 2, we
obtain the following parameters for the flexible Merkle tree scheme:

tfms = max

{
1, t`-ncr − 2h+log2(h+1)n − 2h·log2 2n − 2log2(n−h−1)

}
for ` ≤ n− kF

εfms ≤ min

{
1, 2h ·

kF−1∏
i=0

(1− d

n− i
)

}
where d = E(∆(G(m), G(m∗)))

Using those formulas, we compute the security level of the flexible Merkle signa-

ture as log2(
tfms
εfms

). Fig. 6 shows the trade-off between the security level of the scheme

and the number of computations of the flexible Merkle tree signature with h = 20.
Notice that, for small number of computations, the security level of Merkle tree con-
struction does not increase. The reason is that if the authenticity of the public key is not
completely checked, the probability that the adversary wins the forgery experiment is
always the fraction of the number of computations on the authentication path over the
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Fig. 5: Security Level of Flexible
Lamport-Diffie One-time Signature
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Fig. 6: Security Level of Flexible Merkle
Tree Signature

height of the tree, and the forging time remains constant. Moreover, for a tree of height
h, there are 2h instances of flexible Lamport-Diffie one-time signature. Therefore, if
F (·) evaluated only for a small number of times, the cost of finding an `-near-collision
pair (for ` ≤ n − kF ) is cheap. The probability that such a pair passes the one-time
verification step in one instance of 2h instances of flexible Lamport-Diffie one-time
signature is high. This leads to an undesirable security level during the first few com-
putations.

6.3 Implementation and Performance

We have implemented prototypes of our proposed constructions in C, using the SHA-256
implementation of OpenSSL1. We evaluated the performance of our proposed construc-
tions on a Raspberry Pi 3, Model B equipped with 1GB RAM.

Table 1 gives the performance and security levels of the flexible verification algo-
rithm of both schemes compared to other standard signature schemes (i.e., RSA, DSA,
ECDSA, and EdDSA) based on the percentage of computations p = 20%, 40%, 60%,
80%, and 100% for messages of size 256.2 For other signature schemes, we obtain
the performance of those schemes using the OpenSSL library. More specifically, for
ECDSA, we used two standard curves: Ed25519 and nistp256. For the RSA signature
scheme, we used the smallest recommended public key 216 + 1 for the verification
algorithm. For the security levels of other signature schemes, we use the information
from [1, 6]. As shown in Table 1, the performance of both flexible signature schemes
is comparable to other standard schemes in term of the verification running time. More
importantly, both constructions offer an increasing security level at each step of the al-
gorithm while other signature schemes can only provide such information at the end of
the verification algorithm, and Table 1 demonstrates that in the form of (Timings, Secu-
rity Level) pairs. Also, notice that as the number of verification computations increases,
the Lamport-Diffie OTS gives higher security level than the signing shorter hash digest

1 https://www.openssl.org/
2 We focus on the verification algorithm in this work, and for the performance of signing and

generation algorithms we refer readers to [6, 7].
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Signature Verification; Output Format: (Timings, Security Level)
Percentage of Computa-
tions

20% 40% 60% 80% 100%

RSA 3072, pk = 216 + 1 - - - - (1.43ms, 128)
DSA 2048 - - - - (4.93ms, 87)
EdDSA (Ed25519 curve ) - - - - (3.21ms, 128)
ECDSA (nistp256 curve ) - - - - (3.39ms, 128)
Lamport-Diffie OTS veri-
fication, n = 256

(0.16ms, 35) (0.31ms, 79) (0.43ms, 105) (0.47ms, 121) (0.54ms, 127)

Merkle signature verifica-
tion, n = 256, h = 20

(0.85ms, 1) (0.93ms, 19) (1.00ms, 61) (1.06ms, 99) (1.23ms, 127)

Table 1: Comparing flexible signature schemes performance for different levels of sig-
nature verification with other signature schemes

approach which offers the security level that is equal to half of the length of the hash
digest. The main reason is that the verification algorithm verifies the signature at ran-
dom locations, and while the adversary may learn about the number of computations
performed, the adversary does not know which indices of the signature get verified.
Thus, the adversary has to decide how close the two digests should be to maximize
his adversarial advantage. For the case of Merkle tree signature scheme, we do not see
a huge improvement in the performance of the verification despite smaller number of
computations. This is because the computation of H(PKfots) is costly, bebause the use
the Merkle-Damgård transformation in SHA2 hash family, as it requires n calls to the
compression function for an one time public key of size 2n2.

7 Conclusion

In this paper, we defined the concept of a signature scheme with a flexible verifica-
tion algorithm. We presented two concrete constructions based on the Lamport-Diffie
one-time signature scheme and the Merkle signature scheme and formally proved their
security. We also implemented prototypes of our proposed construction and showed that
the running time performance of our proposed designs is comparable to other signature
schemes in a resource-constrained environment. More importantly, compared to stan-
dard signature schemes with deterministic verification, our schemes allow the verifier to
put different constraints on the verification algorithm in a spontaneous manner and still
guarantee a reasonable security level. Our proposed signature scheme is one of the few
cryptographic primitives that offers a trade-off between security and resources. It can
be highly useful for cryptographic mechanisms in unpredictably resource constrained
environments such as real-time systems and the IoT.

In the long run, significant research will be required in this challenging flexible se-
curity area. We plan to explore similar ideas for confidentiality in (symmetric or asym-
metric) encryptions, integrity with MACs, and possibly beyond. We believe these cryp-
tographic protocols will make the security mechanisms more prevalent in the real-time
systems and IoT in general.
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A Proofs

In this section, we provided the formal proofs of two stated theorems.

A.1 Proof of theorem 1

Proof. Let m be the message asked by A during the experiment FlexExpΣ,A(1
n, α),

and (m∗, σ∗) be the forgery pair. We define the distance, d = ∆(G(m), G(m∗)).
We notice that for a pair (m,m∗) output by the adversary during the forgery exper-

iment, if ∆(G(m), G(m∗)) > n − kF , then by pigeonhole principle, at least one of
different positions will be checked. Therefore, in order to maximize the success proba-
bility, the adversary has to choose ` and find a `-near-collision pair where the Hamming
distance ofG(m) andG(m∗) is less than ` where ` ≤ (n−kF ). In order to output such

near-collision pair, A requires at least t = t`-ncr = 2n/2/
√∑`

i=0

(
n
i

)
. Also, on the

other hand, A may win the forgery experiment by spending tow to break the underly-
ing preimage resistant hash function. Thus, subtracting the running time of generating,
signing, and verifying algorithms, we have:

tfots = min{tow, t`-ncr} − tsign − tgen − tver where 0 ≤ ` ≤ n− kF (2)
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For the success probability, we let Miss be the event that no different bit gets verified.
Since d is the Hamming distance between 2 message digests, either none of those dif-
ferent positions were checked, or some of those positions passed the check (i.e. the
preimage was found). Thus, we rewrite A’s advantage for the forging experiment as
follows: Pr[FlexExpA,Σ(1

n, α) = 1] ≤ Pr[Miss]+Pr[FlexExpA,Σ(1
n, α) = 1∧Miss]

The event (FlexExpA,Σ(1
n, α) = 1∧Miss) implies thatA wins the forgery experi-

ment by providing a preimage of F (·). Therefore, we can useA to construct a preimage
finder B. The reduction is presented in [7]. One can show:

Pr[FlexExpA,Σ(1
n, α) = 1 ∧Miss] ≤ 4n · Advpre

B,F(n) (3)

Finally, Pr[Miss] implies the adversary can win the forging experiment if the challenger
does not perform verification on the different bits. Since d is the number of different bits
between two digests, the probability that the challenger does not perform verification
on those positions is:

Pr[Miss] =

kF−1∏
i=0

n− d− i
n− i

=

kF−1∏
i=0

(1− d

n− i
) (4)

From (3) and (4), we have:

Pr[FlexExpA,Σ(1
n, α) = 1] ≤

kF−1∏
i=0

n− d− i
n− i

+ 4n · Advpre
B,F(n)

≤ min

{
1, 2 ·max

{ kF−1∏
i=0

(1− d

n− i
), 4n · εow

}}
which completes the proof. �

A.2 Proof of theorem 2

Proof. Intuitively, if adversary A provides an invalid one-time public key, the verifica-
tion must fail for at least one level of tree. Otherwise, A successfully finds a collision
of H . However, in our scheme, since every level of the tree may not be verified, there
is a possibility that the forged level is not checked. We formalize the intuition as fol-
lowing; we let InvalidOPK be the event that A provides an invalid one-time public key.
Consider the Merkle tree construction based on the one-time signature construction.

Pr[FlexExpA,Σ(1
n, α) = 1] = Pr[FlexExpA,Σ(1

n, α) = 1 ∧ InvalidPK]

+ Pr[FlexExpA,Σ(1
n, α) = 1 ∧ InvalidPK]

(5)

The FlexExpA,Σ(1
n, α) = 1 ∧ InvalidPK implies that A provided an invalid one-

time public key but won the forgery experiment. Thus, either the verifier failed to check
a “bad” level of the tree or A found a collision of H(·). For a tree of height h, there are
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h + 1 levels that one needs to verify for the complete authentication. Since kH is the
number of times H(·) is evaluated, using a union bound, we have:

Pr[FlexExpA,Σ(1
n, α) = 1 ∧ InvalidPK] ≤ 2 ·max

{
1− kH

h+ 1
, εcr

}
(6)

If A found a collision of H(·), then we can construct a collision finder [7].
The event FlexExpA,Σ(1

n, α) = 1 ∧ InvalidPK implies that A won the flexible
forgery experiment for one-time signature scheme. Since we defined kF to be the num-
ber of F (·) evaluated, the underlying flexible one-time signature is (tfots, εfots, 1).
Therefore, using Theorem 1, we get:

εfots ≤ 2 ·max

{ kF−1∏
i=0

(1− d

n− i
), 4n · εow

}
where 0 ≤ d ≤ ` ≤ n− kF (7)

Since there are 2h instances of the flexible Lamport-Diffie one-time signature, it means
that A wins the forgery game with probability:

Pr[FlexExpA,Σ(1
n, α) = 1 ∧ InvalidPK]

≤ 2 ·max

{
2h ·

kF−1∏
i=0

(1− d

n− i
), 2h+log2 4n · εow

}
where 0 ≤ d ≤ ` ≤ n− kF

(8)

From 5 and 7, we have:

εfms ≤ 4 ·max

{
1− kH/(h+ 1), 2h·

kF−1∏
i=0

(1− d

n− i
), 2h+log2 4n · εow, εcr

}
where 0 ≤ d ≤ ` ≤ n− kF

(9)

When kH < h + 1 we simply let tfms = O(1) because A will win the forgery ex-
periment with probability 1 − kH/(h + 1). Consider the case when kH = h + 1, we
have:

εfms ≤ 4·max

{
2h ·

kF−1∏
i=0

(1− d

n− i
), 2h+log2 4n ·εow, εcr

}
where 0 ≤ d ≤ ` ≤ n−kF

and using [7, Theorem 5], we have tfms = min{tcr, tfots} − 2h · tsign − tver − tgen.
Now, using Theorem 1, we get:

tfms = min{tow, t`-ncr, tcr} − 2h · tsign − tver − tgen where 0 ≤ ` ≤ n− k (10)

This completes the proof. �


