
An Analysis of the NIST SP 800-90A Standard
Joanne Woodage1 and Dan Shumow2

1 Royal Holloway, University of London, and 2 Microsoft Research

Abstract—We conduct a multi-faceted investigation of the se-
curity properties of the three deterministic random bit generator
(DRBG) mechanisms recommended in the NIST SP 800-90A
standard [4]. This standard received a considerable amount of
negative attention, due to the host of controversy and problems
with the now retracted DualEC-DRBG, which was included in
earlier revisions. Perhaps because of the attention paid to the
DualEC, the other algorithms in the standard have received
surprisingly patchy analysis to date, despite widespread deploy-
ment. This paper provides an analysis of the remaining DRBG
algorithms in NIST SP 800-90A. We uncover a mix of positive
and less than positive results, emphasizing and addressing the gap
between theoretical models, and the NIST DRBGs as specified
and used. As an initial positive result, we verify claims in the
standard by proving (with a few caveats) the forward security
of all three DRBGs. However, digging deeper into flexibility in
implementation and usage choices permitted by the standard,
we uncover some undesirable properties of these standardized
DRBGs. Specifically, we argue that these DRBGs have the
property that leaking certain parts of the state may lead to
catastrophic failure of the algorithm. Furthermore, we show that
flexibility in the specification allows implementers and users of
these algorithms to make choices that considerably weaken the
algorithms in these scenarios.

I. INTRODUCTION

The NIST Special Publication 800-90A Recommendation
for Random Number Generation Using Deterministic Random
Bit Generators (NIST SP 800-90A) [4] has had a troubled
history. The first version of this publication included the
now infamous DualEC-DRBG, which was long suspected to
contain a backdoor inserted by the NSA [53]. This suspicion
was reportedly later confirmed by documents included in the
Snowden leaks [47], leading to a revision of the document that
removed the disgraced algorithm.

Perhaps because of the focus on the DualEC-DRBG, the
other algorithms standardized in the document have received
surprisingly little attention and analysis. These DRBGs —
which respectively use a block cipher, a cryptographic hash
function, and HMAC as their basic building blocks — are
widely used. Indeed, any cryptographic software or hardware
seeking FIPS certification must implement a pseudorandom
generator from the standard. While aspects of the constructions
in the SP 800-90A have been analyzed [19], [33], [35],
[36], [50]–[52], and certain implementation considerations
discussed [16], there has not to date been a deeper analysis of
these standardized DRBGs, taking into account the (consider-
able) flexibility in the algorithm specifications.

The constructions presented in this NIST publication are
certainly nonstandard. Even the term Deterministic Random
Bit Generator (DRBG) is rare if not totally absent from
the literature, which favors Pseudorandom Generator (PRG).

Similarly the NIST DRBGs — which return variable (and
sizable) length outputs upon request, and support a variety
of optional inputs and parameters — do not fit cleanly into
the usual security models for PRGs, despite some of these
familiar security properties, such as forward security [14],
being claimed by the standard. With only a modest amount of
formal analysis in the literature to date, coupled with the fact
that the standardization of these algorithms did not follow from
a competition or widely publicly vetted process, this leaves
pseudorandom number generation in large parts of software
relying on relatively unanalyzed algorithms.

The goal of this paper is to bridge some of these gaps in
analysis in order to highlight areas for improvement, and per-
haps motivate a revision to the NIST recommended DRBGs.

Motivation. A secure pseudorandom generator underpins the
vast majority of cryptographic applications. From generating
keys, nonces and IVs to producing random numbers for
challenge responses, the discipline of cryptography — and
hence system security — critically relies on these primitives.
However, it has been well-established by a growing list of
real-world failures [31], [55], [49], [32], [43], [17], that
when a PRG is broken, the security of the reliant application
often crumbles with it. Indeed, with much currently deployed
cryptography being effectively ‘unbreakable’ with today’s
techniques when correctly implemented, exploiting a weakness
in the underlying PRG emerges as a highly attractive target
for an attacker. As such it is of paramount importance that
standardized PRGs are designed to be as secure as possible.

Contributions. In this work, we conduct a thorough inves-
tigation into the security of the NIST SP 800-90A DRBGs.
We pay particular attention to flexibilities in the specification
of these algorithms, which have frequently been abstracted
away in previous analysis. On the positive side, we formally
prove the forward security of each of the NIST DRBGs,
confirming claims made in the standard with concrete bounds.
However, we argue that when the NIST DRBGs are used to
produce many blocks of output per request — a desirable
implementation choice in terms of efficiency, and permitted
by the standard — then the usual forward security model
overlooks important attack vectors against these algorithms.

Taking a closer look, we propose an informal security model
in which we suppose an attacker compromises part of the
state of the DRBG (for example through a side-channel attack)
during an output generation request. Reconsidered within this
framework, we find that each of the constructions admits
serious vulnerabilities, and discuss how these weaknesses may
be exploited in a TLS handshake. We find a further flaw in a



certain variant of the block-cipher based CTR-DRBG, which
allows an attacker who learns a particular part of the state
to recover strings of additional input — which may contain
secrets — previously fed to the DRBG. We conclude with a
number of recommendations for the safe use of these DRBGs
based on our findings.

Related work. A number of works have analyzed the pseu-
dorandomness of variants of the NIST DRBGs, in some cases
under simplifying assumptions. Campagna [19] proves the
pseudorandomness of the CTR-DRBG, under the assumption
that it is rekeyed with an independent random state at the
commencement of each output generation request. More re-
cently, Shrimpton and Terashima [52] introduce a new security
model for block-cipher based constructions, designed to bridge
the gap between the standard and ideal cipher models, and
obtain bounds on the pseudorandomness of the CTR-DRBG
producing a single block of output per request within in. The
use of additional input is not modeled in either case. Ruhault
discusses the CTR-DRBG derivation function in [50].

Hirose [33] proves the pseudorandomness of the
HMAC-DRBG both with and without the use of
additional input. Ye et al. in [36] also give a proof of
the pseudorandomness of the HMAC-DRBG in the case that
additional input is not used, which they use to verify the
security and correctness of the mbedTLS implementation of
the HMAC-DRBG using the Coq proof assistant.

Work by Kan [35] considers the assumptions underlying
the security claims of each of the DRBGs in the standard.
Analysis is quite informal and non-standard, and some unusual
conclusions drawn.1 To the best of our knowledge, this is the
only work to consider the forward security of the DRBGs;
however this is mentioned as an aside and assumed based
on the e.g., one-wayness of a cryptographic hash function, as
opposed to any formal analysis of the constructions.

II. PRELIMINARIES

Notation. The set of binary strings of length n is denoted by
{0, 1}n. We let {0, 1}∗ denote the set of all binary strings, in
which we include the empty string ε. We use ⊥ to represent
the null symbol. We let x⊕ y denote the exclusive-or (XOR)
of two strings x, y ∈ {0, 1}n, and write x||y to denote the
concatenation of two binary strings x and y. We let left(x, β)
to denote the leftmost β bits of the string x, and select(x, α, β)
to denote the substring of x consisting of bits α to β inclusive.
We let [j1, j2] denote the set of integers between j1 and j2
inclusive. For an integer j ∈ Z, we write (j)c to represent j
encoded as a c-bit binary string. The notation x $← X denotes
sampling an element uniformly at random from the set X . All
logs are to base 2.

Cryptographic Components. We let Func(Dom,Rng) de-
note the set of all functions f : Dom → Rng. The

1For example, concluding that the CTR-DRBG is flawed and unsafe to use,
since a block-cipher in counter mode will never produce a repeated output
block.

pseudorandom function (PRF) distinguishing advantage of an
adversary A against a keyed function F : Keys ×Dom →
Rng given q oracle queries is defined

Advprf
F (A, q) = |Pr

[
AF(K,·) ⇒ 1 : K

$← {0, 1}κ
]
−

Pr
[
Aπ(·) ⇒ 1 : π

$← Func(Dom,Rng)
]
| ,

where the superscript denotes a functionality that A is given
oracle access to. In the case that Dom = Rng and F is a
permutation, we refer to the above term as the pseudorandom
permutation (PRP) distinguishing advantage of A against F,
denoted Advprp

F (A, q).
A function E : {0, 1}κ×{0, 1}` → {0, 1}` is called a block-

cipher if for each K ∈ {0, 1}κ, E(K, ·) is a permutation on
{0, 1}`. We let D(K, ·) denote the inverse, or decryption, under
K, so D(K,E(K,m)) = m for all m ∈ {0, 1}`.

Pseudorandom number generators. A pseudorandom num-
ber generator (PRG) is used to convert a small amount of
statistical entropy into pseudorandom bits strings of arbitrary
(bounded) length. Formally, we define a PRG to be a pair
of deterministic algorithms PRG = (setup, generate). The
algorithm setup : {0, 1}∗ → S takes as input a string
I ∈ {0, 1}∗ and returns an initial state S0 ∈ S , where S
denotes the state space of the PRG. Looking ahead, we will
assume that I has a degree of statistical entropy. The algorithm
generate : S × N× {0, 1}∗ → ({0, 1}β ∪ {⊥})× S takes as
input a state S ∈ S, the requested number of bits β, and an
optional string of additional input addin ∈ {0, 1}∗, and returns
an output R ∈ ({0, 1}β ∪ {⊥}), along with an updated state
S′ ∈ S. 2 The SP 800-90A standard uses the term deterministic
random bit generator (DRBG) instead of the more familiar
PRG. We shall use both terms interchangeably throughout the
document.

III. THE NIST SP 800-90A STANDARD

In this section, we give an overview of the NIST SP
800-90A standard. The standard defines three DRBG mech-
anisms, the HASH-DRBG, HMAC-DRBG, and CTR-DRBG,
each based on a different primitive — namely a strong
cryptographic hash function, HMAC and an approved block-
cipher respectively. These algorithms are designed to produce
pseudorandom output of varying length upon request. For the
instantiations described here (and for all those permitted in the
standard, with the exception of the CTR-DRBG instantiated
with 3-KeyTDEA [8]), up to 219 bits of output may be
requested in each generate call.

Entropy sources. The DRBGs must have access to an ap-
proved entropy source during instantiation (that is to say, a
live entropy source as approved in [5] or a (truly) random bit
generator as per [6]) in order to generate its initial state S0. The

2We note that here we have extended the usual PRG definition to better
capture the NIST generators, by allowing variable length outputs to be
requested, and additional input to be incorporated during output generation.
Following Shrimpton et al. in [51], we also allow the generate algorithm to
return ⊥ to represent it blocking in response to an invalid request.



DRBG is initially seeded with entropy equal to the security
strength of the instantiation, a parameter measuring the amount
of work required to ‘break’ the DRBG, and which is equal
to the key size of the underlying block-cipher, or the output
length of the hash function, for the constructions described
here. If the DRBG has continual access to an approved entropy
source, then it may support prediction resistance, in which
case entropy inputs are periodically incorporated into the state
via the reseed algorithm. Reseeds may be explicitly requested
by the consuming application, triggered by a request for
prediction resistance in a generate call, or will be forced
every 248 consecutive output generation requests where a state
component cnt is used to keep track of the number of generate
calls since the last reseed. We do not model reseeding in this
work, and so omit parameters indicating whether prediction
resistance is supported from the state.

Derivation functions. Both the CTR-DRBG and the
HASH-DRBG use a derivation function to condition entropy
inputs and (and in the case of the CTR-DRBG, additional
input strings), prior to their incorporation into the generator
state. Use of the derivation function for the CTR-DRBG in
particular represents a significant computational overhead;
therefore if the DRBG is implemented with a full entropy
source — that is to say a source which returns uniform
bits strings as opposed to just those with high entropy —
then the standard offers a second variant of the CTR-DRBG
which does not use a derivation function. This represents an
“implementation tradeoff” [7], since not using a derivation
function makes for a much more efficient implementation,
however the instantiation is then restricted to be implemented
with a full entropy source, and can only use additional input
strings of at most κ + `-bits in length, where κ, ` denote
the key and block size of the block-cipher respectively. We
discuss both variants in Section III-A.

Additional Input. In addition to inputs drawn from the en-
tropy source, the NIST SP 800-90A standard gives the option
for strings of additional input (denoted addin), to be fed
into the state of the DRBG during generate and reseed calls.
The standard permits these strings to be public information
(e.g., device serial numbers and time stamps), or may contain
secrets provided they do not require protection at a higher
security strength than the DRBG3. Unlike inputs drawn from
the entropy source, these inputs are not required to contain
entropy and the standard emphasizes that they are optional.
That said, if these inputs do contain entropy, then their use
may provide a buffer in the event of a system failure or
compromise.

Validity checks. For simplicity, we have abstracted a number
of checks performed at the commencement of a generate
call — such as confirming the reseed counter has not been

3To quote directly from the standard for clarity, “if the additional input
contains secret / private information (e.g., a social security number), that
information shall not require protection at a higher security strength than
the security strength supported by the DRBG.” [7].

exceeded (which would force a reseed prior to output produc-
tion), and blocking if the number of bits requested exceeds
the maximum allowed length — into a procedure check :
S ×N×{0, 1}∗ → {b} which checks the validity of the input
tuple (S, β, addin), and outputs 1 only if these checks are
passed.

Iterative generate algorithms. The generate algorithm of
each of the NIST DRBGs has the same high-level structure. In
order to track the evolution of the DRBG state during a single
output generation request, it shall be useful to formalize this
structure, and introduce some extra notation to this end here.

We say that a DRBG has an iterative generate algorithm
if the generate algorithm may be decomposed into a tuple of
subroutines C = (init, next, final), where init / final : S×N×
{0, 1}∗ → S update the state prior / post output generation,
and next : S → {0, 1}` × S takes as input a given state S
and returns an output block r of some fixed length ` and an
updated state S′.

The generate algorithm is constructed from these sub-
procedures as follows. When generate is called on some
input (S, β, addin), this tuple is first submitted to the check
algorithm which tests whether the input passes any validity
checks which may be performed by the DRBG. If the input
passes, init updates the state with the additional input string
S0 ← init(S, β, addin), to which next is iteratively applied
to compute (rj , Sj) ← next(Sj−1) for j = 1, . . .m where
m = dβ/`e. The final state Sm is then updated via the
final procedure S′ ← final(Sm, β, addin), and the output of
generate is set to (R,S′) where R = left(r1||. . . ||rm, β). This
decomposition surfaces a distinction between the internal state
updates following the production of each block of output, and
the final state update executed by final at the conclusion of
the generate call.

A diagram showing the evolution of the state within a
generate call in terms of these subroutines is given in Figure 1.
Looking ahead, when we wish to consider the effect of state
leakage ‘within a generate call’, we mean full or partial
leakage of one of the states S0, . . . , Sm passed through during
the iterative output generation process.

S init

addin1

S0 next

r1

S1 next

r2

S2 next

rm

Sm final

addin1

S′

Fig. 1: Diagram showing the production of output block for a DRBG with an iterative
generate algorithm, with associated decomposition C = (init, next, final).

With this in place, we now describe the generate algorithms
of each of the DRBGs. We will assume that each DRBG is
initialized with an ‘ideal’ state, as opposed to one derived
from the entropy source, and so omit the setup algorithms
here. The same simplifying assumption is made in all other
analyses of these DRBGs that we are aware of; extending
analysis to take into account the process by which each of
the DRBGs derives their initial state from the entropy source



is an important direction for future work. For completeness,
we include the setup algorithms in Appendix C. We also
give examples of typical instantiations of the DRBGs; the
corresponding parameter settings are shown in Figure 6 in
Appendix A. The full list of allowed instantiations is given in
the SP 800-90A standard [7].

A. The CTR-DRBG DRBG

The CTR-DRBG is based upon a block cipher E : {0, 1}κ×
{0, 1}` → {0, 1}` used in CTR-mode. The state is of the form
S = (K,V, cnt) where K ∈ {0, 1}κ is used as a key for the
block cipher, V ∈ {0, 1}` is the counter, and cnt denotes
the reseed counter. The standard states that K and V are
the security critical state variables. We assume setup returns
an initial state S0 = (K0, V0, cnt0) where cnt0 = 1 and
K0←$ {0, 1}κ, V0←$ {0, 1}`. We present the generate algo-
rithm for the CTR-DRBG below. For concreteness, one may
assume the CTR-DRBG is instantiated with AES-128 [48].

Algorithms. The update algorithm is used to update the state
variables K and V in a one-way fashion, and incorporate any
additional input (which is passed to the update algorithm via
the parameter provided data). The algorithm (shown below)
runs the block cipher in CTR-mode using the current key and
counter, concatenating the resulting output blocks. These are
then truncated to the leftmost κ + ` bits and the bit-string
provided data is XORed in. Looking ahead, the way in which
the update function is called by each of the other processes
ensures the provided data is always exactly κ+` bits in length.

Algorithm 1 CTR-DRBG update

Require: : provided data,K, V
Ensure: : K,V
temp← ε
m← d(κ+ `)/`e
for j = 1, . . . ,m do
V ← (V + 1) mod 2`

Ci ← E(K,V )
temp← temp||Ci

temp← left(temp, (κ+ `))
K||V ← temp⊕ provided data
return (K,V )

As discussed earlier in the section, there are two variants of
the CTR-DRBG depending on whether a derivation function
is used. The derivation function CTR-DRBG df combines a
CBC-MAC-based conditioning function with a mixing step,
with the aim of extracting a near uniform output from suffi-
ciently high-entropy inputs. A full pseudocode description is
given in Appendix C. In the case that the derivation function
is not used, the strings of additional input addin are restricted
to be at most κ+ `-bits in length.

The init subroutine (lines 3 - 10) incorporates any additional
input via the update function — if a derivation function is
used, the string of additional input is conditioned into a string
of (κ+ `)-bits with the CTR-DRBG df prior to this process.
If additional input is not used, the state is left unchanged and
addin is set to 0(κ+`) (this is to form an input to update
during the final procedure at the conclusion of the call). Output

blocks are then iteratively generated using the block cipher
in CTR-mode (each block / counter increment corresponding
to an iteration of the next subroutine in lines 13 - 14). The
key K remains unchanged throughout these iterations. At
the conclusion of the call, the final process updates both K
and V via an application of the update function (line 17).
A diagrammatic depiction of the generate algorithm for the
CTR-DRBG is given in Figure 2.

Algorithm 2 CTR-DRBG generate

Require: : S = (K,V, cnt), β, addin
Ensure: : S′ = (K′, V ′, cnt′), R
1: if 0← check(S, β, addin) then
2: Return (error,⊥)
3: if addin 6= ε then
4: if derivation function used then
5: addin← df(addin, (κ+ `))
6: else if len(addin) < (κ+ `) then
7: addin← addin||0(κ+`−len(addin))

8: (K0, V 0)← update(addin,K, V )
9: else

10: addin← 0κ+` ; (K0, V 0)← (K,V )

11: temp← ε ;m← dβ/`e
12: for j = 1, . . . ,m do
13: V j ← (V j−1 + 1) mod 2`

14: rj ← E(K0, V j)
15: temp← temp||rj

16: R← left(temp, β)
17: (K′, V ′)← update(addin,K0, Vm)
18: cnt′ ← cnt+ 1
19: return (R, (K′, V ′, cnt′))

init

addin

K
V K0

V 0 +1

E

r11

E E . . . E

r31

K0

+1 +1 . . . +1

r21

K0

rm1

final

addin

K0 K0 K ′

V ′

Fig. 2: Evolution of state of the CTR-DRBG within a single generate call,
with initial state S = (K,V, cnt).

B. The HMAC-DRBG

HMAC is a keyed-hash message authentication code, which
was introduced by Bellare et al. in [10] and subsequently
standardized [54]. The HMAC-DRBG uses HMAC : {0, 1}`×
{0, 1}∗ → {0, 1}` to generate blocks of pseudorandom out-
put. The state is of the form S = (K,V, cnt) where the
standard defines K and V to be the security critical secret
state variables. We assume that setup returns an initial state
S0 = (K0, V0, cnt0) where cnt0 = 1 and K0, V0←$ {0, 1}`.
Here K ∈ {0, 1}` is used as the HMAC key, V ∈ {0, 1}` is
a counter, and cnt denotes the reseed counter. For concrete-
ness, one may assume the HMAC-DRBG is instantiated with
HMAC / SHA-256.

Algorithms. The generate algorithm makes use of a subrou-
tine named update, which is used to incorporate any additional
input into the state variables K and V , and update both in a
one-way manner. Notice that if additional input is included in
the call, an extra pair of updates is executed.



Algorithm 3 HMAC-DRBG update

Require: : addin,K, V,
Ensure: : K,V
K ← HMAC(K,V ||0x00||addin)
V ← HMAC(K,V )
if addin 6= ε then
K ← HMAC(K,V ||0x01||addin)
V ← HMAC(K,V )

return (K,V )

The generate algorithm for the HMAC-DRBG proceeds
as follows. The init process (lines 3 - 5) incorporates any
additional input into the state variables via the update func-
tion; if additional input is not included in the call, the state
is left unchanged. Letting K0, V 0 denote the state variables
following this process, output blocks are then generated by it-
eratively applying HMAC(K0, ·) to the current counter V j−1,
and setting both the next output block rj and the next counter
value V j equal to the the resulting string (this constitutes the
next subroutine, depicted in lines 8 - 9). The key K0 remains
unchanged through each iteration. At the conclusion of the
call, the final process updates both K and V via the update
function (line 12). A diagrammatic depiction of the generate
algorithm for the HMAC-DRBG is given in Figure 3.

Algorithm 4 HMAC-DRBG generate

Require: S = (K,V, cnt), β, addin
Ensure: S′ = (K′, V ′, cnt′), R
1: if 0← check(S, β, addin) then
2: return (error,⊥)
3: if addin 6= ε then
4: (K0, V 0)← update(addin,K, V )
5: else (K0, V 0)← (K,V )

6: temp← ε ;m← dβ/`e
7: for j = 1, . . . ,m do
8: V j ← HMAC(K0, V j−1)
9: rj ← V j

10: temp← temp||rj

11: R← left(temp, β)
12: (K′, V ′)← update(addin,K0, Vm)
13: cnt′ ← cnt+ 1
14: return (R, (K′, V ′, cnt′))

init

addin

K
V V 0

K0

HMAC

r11

HMAC HMAC . . .

. . .

HMAC

rm−11r31r21 rm1

final

addin

K ′

V ′

Fig. 3: Evolution of state of the HMAC-DRBG within a single generate call,
with initial state S = (K,V, cnt).

C. The HASH-DRBG DRBG

The HASH-DRBG is based on an (unkeyed) cryptographic
hash function SH : {0, 1}∗ → {0, 1}`; here we assume that
the HASH-DRBG is instantiated with SHA-256. The state is
of the form S = (V,C, cnt), where V ∈ {0, 1}len is a counter
which is hashed to produce output blocks, and cnt again
denotes the reseed counter. We assume the setup algorithm
returns an initial state S0 = (V0, C, cnt0) where cnt0 = 1,
V ←$ {0, 1}len, and C is deterministically derived from V0
using the HASH-DRBG derivation function. A pseudocode
description of this derivation function is given in Appendix C.

The constant C is only updated during a reseed (when it
is again derived from the new V variable), and is added into
the state variable V during each state update. The standard
does not explicitly state the purpose of C; however slides
from 2004 and written by Kelsey [38] on the NIST DRBGs
describe how they “Hash with constant to avoid duplicating
other hash computations”; thus it would appear its purpose
is to ensure that even if a previous counter V is duplicated
at some point in a different reseed period, the inclusion of
the (almost certainly distinct) counter in the subsequent state
update prevents the previous sequence of states being repeated.
The standard defines V and C to be the security critical state
variables.

Algorithms. We present the generate algorithm for the
HASH-DRBG below. If additional input is used in the generate
call, it is hashed and added into the counter V modulo 2len

during the init process depicted in lines 3 - 5. Output blocks
are then produced by hashing the counter V in CTR-mode
(constituting iterations of the next process given in lines 10
- 11). At the conclusion of the call, the final routine (lines 14
- 15) hashes the counter with a distinct prefix prepended, and
the resulting string — along with the constant C and cnt — are
added to V , the result of which is set as the updated counter.
Notice the domain separation induced by prepending a distinct
byte to the input to SH in the different stages of the algorithm.
A diagrammatic depiction of the generate algorithm for the
HASH-DRBG is given in Figure 4.

Algorithm 5 HASH-DRBG generate

Require: : S = (V,C, cnt), β, addin
Ensure: : S′ = (V ′, C, cnt′), R
1: if 0← check(S, β, addin) then
2: Return (error,⊥)
3: if addin 6= ε then
4: w ← SH(0x02||V ||addin)
5: V 0 = (V + w) mod 2len

6: else V 0 ← V
7: temp← ε
8: m← dβ/`e
9: for j = 1, . . . ,m do

10: rj ← SH(V j−1)
11: V j ← (V j−1 + 1) mod 2len

12: temp← temp||rj
13: R← left(temp, β)
14: H ← SH(0x03||V 0)
15: V ′ ← (V 0 +H + C + cnt) mod 2len

16: cnt′ ← cnt+ 1
17: return(V ′, C, cnt′)

init

addin1

V SH

r11

+1V 0

SH

+1

SH . . . SH

r31

+1

r21 rm1

final

C, cnt

V ′

. . .

. . .

+1 +1

Fig. 4: Evolution of state of the HASH-DRBG within a single generate call,
with initial state S = (V,C, cnt).

IV. SECURITY ANALYSIS IN CONVENTIONAL MODELS

Now that we have described the specification of the NIST
DRBGs, we turn our attention to their security properties.

Security claims. The standard states that each of the DRBG



mechanisms is ‘backtracking resistant’. In the case that the
DRBG is implemented with access to a live entropy source,
it is also claimed to be ‘prediction resistant’.

The former security property is defined in the standard as the
familiar forward security notion for DRBGs, first formalized
by Bellare et al. in [14], which guarantees that if an attacker
compromises the state of the DRBG at some point in time,
then all output bits produced prior to the point of compromise
still appear pseudorandom. The latter property ensures that if
the state of the DRBG is compromised, and then refreshed
with sufficient entropy, then future output will again appear
pseudorandom. Somewhat surprisingly, to the best of our
knowledge, neither of these properties have been formally
investigated and proved for the NIST DRBGs.

In this section, we address this gap and prove the forward
security of each of the NIST DRBGs under standard assump-
tions about the underlying primitives.

Forward security / backtracking resistance. The definition
of forward security / backtracking resistance is defined some-
what informally in the standard via a diagram and written
discussion; for concreteness we recall the formal definition
below, which we extend to better capture the NIST DRBGs
by explicitly modelling the use of additional input strings.

The forward security game is depicted in Figure 5, where
the forward security advantage of an attacker A in the game
is defined

AdvfwdDRBG,β(A, q) = 2

∣∣∣∣Pr [FwdA,qDRBG,β ⇒ 1
]
− 1

2

∣∣∣∣ .
As per the usual forward security definition, we consider a
DRBG responding to a series of q output generation requests
of β bits4. Since we do not wish to model reseeds here, we
assume q < 248, the maximum number of output requests
permitted before a reseed is forced; the size of this number
means that this restriction is of minimal practical concern.
Since we are primarily interested in the security of generated
output, we will assume that all input tuples are valid.

We extend the usual forward security definition to allow
these calls to incorporate additional input strings addin. The
case in which no additional input is captured by setting
addini = ε for i = 1, . . . , q. We make no assumptions on the
entropy or structure of the additional input (other than that it
does not exceed the maximum allowed length), and give all
additional input strings to the attacker in the guessing phase of
the game; this is a conservative assumption since any degree
of entropy in the additional input strings can only make the
attacker’s job harder.

With our security model in place, we now analyze the
forward security of each of the NIST DRBGs. We provide
general security bounds making no assumption on the choice
of underlying primitive.

4Our proofs may easily be extended to the case in which a different number
of output bits are requested in each call.

A. Forward security of the CTR-DRBG.

We begin by proving the forward security of the
CTR-DRBG, via a reduction to the PRP-security of the un-
derlying block-cipher.

Theorem 4.1: Let the CTR-DRBG be as described in Sec-
tion III-A instantiated with a block-cipher E : {0, 1}κ ×
{0, 1}` → {0, 1}`, where we assume setup returns state
S0 = (K0, V0, cnt0) with K0, V0←$ {0, 1}`. Suppose that
additional input is used in every call. Let A be an attacker
in game FwdA,qCTR-DRBG,β against the CTR-DRBG running in
time T . Then there exist adversaries B, C such that

Advfwd
CTR-DRBG,β(A, q) = 3q · Advprp

E (B,m1)

+ q · Advprp
E (C,m1 +m2)

+
q · (3m2

1 + (m1 +m2)
2)

2`+1
.

With the above conditions the same, except that additional
input is not used, then for any attacker A in the game
FwdA,qCTR-DRBG,β , there exists an adversary B such that

Advfwd
CTR-DRBG,β(A, q) = q · Advprp

E (B,m1)+

q · Advprp
E (C,m1 +m2)

+
q · (m2

1 + (m1 +m2)
2)

2`+1
.

In both cases m1 = dκ+`` e, m2 = dβ` e, and B and C run in
time T ′ ≈ T .
The proof follows from a standard hybrid argument, showing

that we can sequentially interchange block-cipher E outputs
with random bit strings, via a reduction to first the PRP-
security of E and then applying the PRP/PRF-switching lemma
(see e.g., [13] for a proof of this result). During state updates,
any additional input is XORed into these (now random)
keys / counters; therefore the updated states are uniform too,
regardless of the content of the additional input. The full proof
is given in Appendix A1. The difference between the two
bounds is due to the the additional m1 block-cipher calls made
at the beginning of each generate call if additional input is
used. Since m1 = dκ+`` e is small (for example, m1 = 2 in
the case that the CTR-DRBG is instantiated with AES-128),
this corresponds to only a small increase in the advantage term.

B. Forward security of the HMAC-DRBG.

In this section, we prove the forward security of the
HMAC-DRBG via a reduction to the PRF security of HMAC.
Bellare [9] proved that HMAC is a PRF under the assumption
that the underlying compression function is a PRF via a non-
uniform reduction; a uniform proof of this result was later
given by Gazi et al. in [30].

A caveat when additional input is not used. An interesting
observation is that — contrary to claims made in the standard
— the HMAC-DRBG is not strictly forward-secure in the usual
sense if additional input is not used. This is because the final
state Sq = (Kq, Vq, cntq) is such that Vq = HMAC(Kq, r

m
q )

where rmq denotes the final output block produced in the



qth generate call. As such the attacker can easily check
whether this block is real or random given the state Sq . This
observation is implicit in the proof of the pseudorandomness
of the HMAC-DRBG by Hirose [33], although the connection
to forward security is not made in this work.

That said, we can still prove that all output produced by the
HMAC-DRBG apart from the last block of the qth generate
call remain pseudorandom conditioned on knowledge of the
state Sq . We do this by defining game Fwd∗A,qDRBG,β to be
identical to game Fwd∗A,qDRBG,β except the attacker is given
R∗q = r1q ||. . . ||rm−1q in his challenge if b = 0 (and a random
bit string of the same length of b = 1), as opposed to the full
output block Rq = left(r1q ||. . . ||rmq , β).

Theorem 4.2: Let the HMAC-DRBG be as described in
Section III-B, where we assume setup returns state S0 =
(K0, V0, cnt0) with K0, V0←$ {0, 1}`. Suppose that addi-
tional input is used in every call. Let A be an attacker in
game FwdA,qHMAC-DRBG,β against the HMAC-DRBG running in
time T . Then there exist adversaries B, C such that

Advfwd
HMAC-DRBG,β(A, q) ≤ 6q · Advprf

HMAC(B, 2)

+ 2q · Advprf
HMAC(C,m+ 2) +

q · (m+ 1)2

2`
.

With the above conditions the same, except that additional
input is not used, then for any attacker A in the game
Fwd∗A,qHMAC-DRBG,β , there exists an adversary B such that

Advfwd∗
HMAC-DRBG,β(A, q) ≤ 2q · Advprf

HMAC(B,m+ 1)

+
q ·m2

2`
.

In both cases m = dβ/`e, and B and C run in time T ′ ≈ T .
The proof follows from a hybrid argument, showing that we
can sequentially interchange HMAC outputs with random bits
strings via a reduction to the PRF-security of HMAC. The first
half of the proof replaces output and state values with random
bit strings, and is similar to the proof of pseudorandomness by
Hirose in [33]. We then argue that we can reverse these steps
for the state computations to return to the real final state, while
preserving the truly random outputs. The full proof is given in
Appendix B1. The difference between the two bounds is due
to the additional HMAC applications (under rotating keys) that
are required to incorporate additional input into the state at the
beginning and conclusion of each generate call.

C. Forward security of the HASH-DRBG.

In this section, we prove the forward security of the
HASH-DRBG under the assumption that the underlying hash
function SH is a random oracle [12], a standard heuristic
approach to modelling the security properties of cryptographic
hash function. Accordingly, the attacker A in the forward
security game is given access to the oracle SH, and we
measure his resources in the number of queries made to the
SH. We provide a proof for the case in which additional input
is not used here; the case in which it is used is likely similar.

FwdA,qDRBG,β

Q ← (addin1, . . . , addinq)

S0←$ setup
For i = 1, . . . , q

(R0
i , Si)← generate(Si−1, β, addini)

R1
i ←$ {0, 1}β

b←$ {0, 1}
b∗←$A(Rb1, . . . , R

b
q, Sq,Q)

Return (b = b∗)

Fig. 5: The forward security game for a DRBG DRBG.

Theorem 4.3: Let the HASH-DRBG be as shown in Sec-
tion III-C, instantiated with a random oracle SH : {0, 1}∗ →
{0, 1}`, where we assume setup returns the initial state
S0 = (V0, C, cnt0) with V0←$ {0, 1}len, and C is derived
from V0 as per the specification of the algorithm. We assume
that ` < len − 48. Suppose that additional input is not used.
Let A be an attacker in game FwdA,qHASH-DRBG,β against the
HASH-DRBG who makes at most queries σ to the random
oracle SH. Then

Advfwd
HASH-DRBG,β(A, q) ≤

q(σ(m+ 1) + 3(q + 1)(m− 1))

2`
,

where m = dβ/`e.
While it may seem obvious that, under the assumption that
the underlying hash function is a random oracle, output pro-
duced by the HASH-DRBG is indistinguishable from random,
actually bounding the attack success probability is surprisingly
fiddly. The proof proceeds by removing collisions in the inputs
to the random oracle SH, allowing us to replace them with
uniform bit strings chosen independently of the inputs, then
arguing that the attacker cannot distinguish this change unless
he can guess one of the previous state values which constitute
the inputs to the random oracle. We assume in the theorem
that ` < len − 48; this holds for all instantiations permitted
by the standard. The full proof is given in Appendix B2.

V. OVERLOOKED ATTACK VECTORS

The positive results on the forward-security of the NIST
DRBGs in Section IV certainly offer reassurance on the
security of previously generated output in the event of state
compromise. However in this section, we argue that by ap-
plying the standard forward-security definition to the (fairly
non-standard) NIST DRBGs without adaptation overlooks
important attack vectors against this particular set of DRBGs,
when they are used in certain ways permitted by the standard.

We emphasize that the forward-security definition used in
this work is set as a goal (albeit stated informally) in the
standard, so this dissonance between model and construction
is not a result of analyzing the security of the constructions
within a framework for which they were not intended. Like-
wise, the points made in this section do not contradict the
security bounds made in the previous section. Rather we argue
that in certain (realistic) scenarios — namely when the DRBG
is used to produce many output blocks per generate call —



it is worth taking a closer look at all the points during output
production at which a state may be compromised.

Variable length outputs. Stateful pseudorandom number gen-
erators in the literature, are typically defined to produce a
single fixed length output block per request, that is to say
each output generation request returns (r, S′)← generate(S)
where r ∈ {0, 1}` (see, for example, [2], [14], [24]–[26] for
examples of this definition in a variety of different contexts).
There is no option to request variable length outputs; therefore
if more output blocks are required than can be returned in one
generate call, the consuming application must make multiple
output generation requests, where each such request triggers
a ‘proper’ state update.

In contrast, the NIST DRBGs allow for variable and large
amounts of outputs— up to 219 bits— to be requested in
each generate call. This corresponds to many blocks of output
being produced to satisfy a single request. The generate
algorithm produces these output blocks by repeatedly calling
the next subroutine to produce (rj , Sj) ← next(Sj−1) for
j = 1, . . . , dβ/me and returning Rj = left(r1||. . . ||rm, β).
As such the next subroutine effectively acts as an internal
PRG (defined in the usual, one block of output per request
sense), which is called multiple times within a single generate
call. As we shall see, the state updates performed by the next
subroutine do not provide forward security after each block.

Side channels and partial state leakage. The result of this is
that when multiple output blocks are generated per generate
request, there is a significant amount of active computation
going on ‘under the hood’ of the generate algorithm. For
a concrete example, using the CTR-DRBG with AES-128 to
generate the maximum 219 bits of output in a given request
corresponds to up to 212 = 4096 AES-128 computations using
a single key K in each generate call. Given that it is well
known that AES invites leaky implementations [15], [18],
[41], [44]–[46], to assume that the attacker can never learn
even partial state information about the key used during these
computations is rather optimistic.

Comparison to existing security models. The standard
forward-security definition for DRBGs shown in Figure 5 only
allows the attacker to compromise the state after it has been
‘properly’ updated by the final process at the conclusion of a
generate call. Other security models which model state com-
promise on pseudorandom number generators with input such
as the various notions of robustness [3], [27], [23], [29], [1]
for DRBGs implemented with a continual access to an entropy
source, allow the attacker to compromise any of the states
S0, . . . , Sq (although security is not then expected until the
state has been refreshed with sufficient entropy). However
there is no means for an attacker to learn any of the inter-
mediate states passed through within a single generate call.
.

This is not to criticize these security models — which were
designed with DRBGs producing a single block of output per
request in mind, in which case this is an entirely reasonable

restriction — but rather to highlight how the NIST DRBGs
do not fit easily into these security models when allowed
to produce many output blocks per request. As such, the
impact of state compromise within a generate call has been
largely overlooked up until now. A notable exception is in
a observation by Bernstein [16], (made concurrently to the
production of this work) which criticizes the inefficiency of
CTR-DRBG’s update function which must be applied for
forward-security. This is used as a motivating example for
the use of ‘fast-key erasure RNGs’, which erase their key as
soon as it is used, and thus this work does not create overlap
without subsequent discussion.

Efficiency. The work by Bernstein [16] raises an important
point — the extra block cipher calls incurred by the state
update process of the CTR-DRBG certainly makes generating
many blocks of output in a single request and buffering them
for use in other processes an appealing implementation deci-
sion. Indeed the SP 800-90A standard says of the performance
of the CTR-DRBG “For large generate requests, CTR-DRBG
produces outputs at the same speed as the underlying block
cipher algorithm encrypts data. Furthermore, CTR-DRBG is
parallelizable.”, reflecting how generating and buffering large
numbers of output blocks per request maximizes the efficiency
of output generation relative to the number of state updates.
The case is similar for the HMAC-DRBG and HASH-DRBG.

Attack scenario. In the remainder of the section, we con-
sider an attacker who manages to compromise part of the
state within a generate call. As discussed in Section ??,
by this we mean that during some generate call with in-
put tuple (S, β, addin), the attacker compromises part of
one of the intermediate states Sj for j ∈ [1,m] where
S0 ← init(S, β, addin), and (rj , Sj) ← next(Sj−1) for
j = 1, . . . ,m. We note that for each of the NIST DRBGs,
if additional input is not used in the call then init returns the
state unchanged, S0 = S. This creates a greater window of
opportunity in which this state may be compromised, as it will
be set in memory following the conclusion of the previous
generate call. As we shall see, not using additional input
simplifies all attacks described, making state compromise in
this case especially troubling.

We assume the DRBG in question is being used to produce
multiple output blocks per request in order to fill a buffer.
Some of the buffered output may be used for public values
such as nonces, whereas other parts may be used for secret
values such as keys or Diffie-Hellman exponents. In particular,
if an attacker can use partial state information in conjunction
with an output block sent in the clear as a nonce to recompute
the unseen output, then they may be able to recover output
blocks used as security critical secrets, thus breaking the
security of the consuming application. After describing attacks
against the NIST DRBGs, we will briefly discuss how work
by Cohney et al. [22], which details how to exploit the
compromised ANSI X9.31 PRG within a TLS implementation,
can be extended to the case in which a compromised NIST



DRBG is used.

Security goals. We take the general view that for a good
DRBG, all security critical state variables must be known to
compute future unseen output5, and recovery of past output
blocks should never be feasible even if the entire secret state
is known. As we shall see, none of the NIST DRBGs satisfies
both of these properties when state information may be leaked
within a generate call, with the CTR-DRBG faring especially
badly.

A. Security of the CTR-DRBG with a Compromised Key

In this section, we describe how the invertibility of the block
cipher used by the CTR-DRBG DRBG — and the fact that
each output block in a given generate call is an encryption
of the secret counter V — makes leakage of the secret key
component of the internal state especially damaging.

While such an observation about block cipher based DRBGs
is not new (see for example [40], [25], [22] for discussion of
attacks against the block-cipher based ANSI X9.31 DRBG),
we have not seen a treatment of state recovery attacks against
the CTR-DRBG before.

Recovery of past / future output with a known key. The
evolution of the state of the CTR-DRBG within a generate
call is depicted in Figure 2 for an initial state S = (K,V, cnt)
and block cipher E : {0, 1}κ × {0, 1}` → {0, 1}`. If
additional input is used in the call, it will be incorporated
into the state variables during the init subroutine via a call
to update; otherwise they are left unchanged. Either way,
we denote the state variables used during the iterative output
generation process as K0, V 0.

To satisfy a request for β bits of pseudorandom output,
the CTR-DRBG generates m = dβ/`e output blocks by
computing

rj = E(K0, V 0 + j)

for j = 1, . . . ,m, and addition is understood to be modulo 2`.
The resulting output blocks are concatenated and returned as
output Rq = left(r1||. . . ||rm), where we emphasize that the
standard permits m to be as large as 212.

Notice that the key K0 never updates through these m
iterations. As such an attacker who is able to compromise the
key component of any of the intermediate states will learn K0,
the key used in the production of every block of output in that
call. To recover the internal counter, all that is then required
is a single (and arbitrary) output block rk produced during
the same output generation request. The attacker can simply
decrypt this output block to recover the underlying counter:

V 0 + k = D(K0, rk) ,

5If state variables are partially known, the amount of work required to
compute unseen future output should be roughly equivalent to brute-forcing
the unknown bits.

from which recovering the initial state counter V 0 is trivial6.
The attacker can then recompute all unseen output blocks
produced within the generate call — including output blocks
produced prior to the compromised state / output block — by
computing

rj = E(K0, (V 0 + j)) ,

for j = 1, . . . ,m. If the output learnt by A is an incomplete
block, A can iterate through possibilities for the remaining
bits; recovering a second output block produced at any point
within the generate call will allow A to verify his guesses
with accuracy close to 1.

In our attack scenario, this instantly provides the attacker
with all pseudorandom output used to fill the buffer — up to
219−` = 262, 016 bits of unseen output — having only learnt
part of the state, including that produced prior to the point of
state compromise.

We now consider the recovery of future output. If additional
input is not used by the implementation, then the deterministic
update function which constitutes the final subroutine at the
conclusion of the generate calls depends only on K0 and
V 0 + m — both of which are known to A. In this case, A
can immediately recover the updated state S′ and then run
the generator forwards to recover all future output up until
the next high entropy reseed (which may not be mandated
for another 248 − 1 generate calls). If additional input is
used, then the attacker will need to guess both the additional
input incorporated into the state at the conclusion of the
compromised generate call, along with that used in each
subsequent generate call in order to execute the same attack.
However, since the standard allows additional input to be low
entropy or even public, this is certainly achievable for such
implementations.

Summary. By allowing the attacker to compute both past and
future output blocks given leakage of only part of the secret
state means that the CTR-DRBG falls down on both of our
criteria. The fact that all output from a given generate call can
be recovered given an arbitrary output block in the event of
key leakage is especially damaging, since any output blocks
used as e.g., secret keys generated in the same call can be
recovered irrespective of their position relative to the block
learnt by the attacker.

In comparison, the infamously backdoored DualEC-DRBG
only allowed recovery of output produced after the block
learnt by the attacker, impacting its practical exploitability
in protocols [20], [21]. Indeed the latter work describes
how in the (presumed backdoored) Juniper Screen OS IKE
implementation, nonces and Diffie-Hellman exponents appear
to be generated in a somewhat unnatural order to sidestep
this issue. In contrast for the CTR-DRBG generating both a

6We assume throughout this section that the attacker has sufficient knowl-
edge of the implementation to know the position within the sequence of output
blocks at which the compromised block lies. If this is not the case, it is easy
to see how encrypting all V j ∈ [V k −m+ 1, V k +m− 1] guarantees all
output blocks will be recovered successfully. The case of the other DRBGs
is similar.



nonce and secret key in the same generate call, the order in
which they were generated is irrelevant, greatly enhancing the
exploitability of the compromised CTR-DRBG.

B. Security of the HMAC-DRBG with a Compromised Key

In this section we describe how compromise of the key
component of the state of the HMAC-DRBG at any point
during a generate call, in conjunction with a single output
block from the same call, facilitates the recovery of all output
produced after the compromised block. However on a more
positive note, computation of any past output blocks — even
given the entire secret state — appears to be infeasible.

We also describe how, in the case that additional input is
not used, the (seemingly fairly superficial) distinguishability
of the final output block produced in the last call prior to state
compromise discussed in Section IV-B in fact offers a chance
to extend the attack.

Recovery of future output with a known key. The evolution
of the state of the HMAC-DRBG within a generate call is
depicted in Figure 3 for an initial state S = (K,V, cnt). If
additional input is used in the call, it will be incorporated
into the state variables during the init subroutine via a call
to update; otherwise they are left unchanged. Either way,
we denote the state variables used during the iterative output
generation process as K0, V 0. The output blocks required to
satisfy the request are then generated by computing

rj = HMAC(K0, V j−1)

for j = 1, . . . ,m where in each iteration the internal counter
V j is updated to the most recent output block produced; as
such V j = rj for j = 1, . . . ,m.

Throughout this process, the key K0 never updates. As
such if the key component of any of the intermediate states
is compromised, the attacker will learn the key K0 used to
produce all output in that generate call. With this in place,
the attacker need only compromise a single output block rk

for some k ∈ [1,m] produced in the same generate call —
which by construction will be equal to the internal counter V k

— to recover all subsequent output blocks generated in that
call as

rj = HMAC(K0, rj−1)

for j = k + 1, . . . ,m. If additional input is not used, then —
armed now with both inputs to the deterministic update func-
tion which constitutes the final subroutine at the conclusion
of the call — the attacker can immediately recover the new
state S′ and run the DRBG forward to recover all subsequent
output values. If additional input is used, then the attacker will
need to guess both the additional input string incorporated into
the state at the conclusion of the compromised generate call,
along with that used in each subsequent generate call in order
to compute output from subsequent generate calls. Guesses
can be tested against output captured from the following call.

Connection to forward security. It was noted in Sec-
tion IV-B that if additional input is not used, then the final

output block produced in a call rm is trivially distinguishable
from random given the updated state at the conclusion of that
call S′ = (K ′, V ′, cnt′), since V ′ = HMAC(K ′, rm).

While this may have appeared a rather pedantic criticism of
the DRBG, and of minor practical concern, it is interesting to
note that it offers an extension of the above attack. Consider
an attacker who learns the final block of output rm produced
in a given generate call, and additionally manages to learn
the key K ′ used for output generation in the following call.
Then since the key K ′ does not update in this period (recall
if additional input is not used, the init subroutine performed
at the start of each generate call returns the state unchanged),
the attacker can recover the remaining secret state variable
as V ′ = HMAC(K ′, rm), and correspondingly compute all
subsequent output in both this and future calls. Since we have
assumed that additional input is not used in this implemen-
tation, no additional effort is required to execute the attack.
This highlights the power of security proofs to surface subtle
security flaws in an algorithm.

Security of past in a compromised generate call. On a more
positive note, it would appear that even if an attacker learns
the entire state Sk = (K0, V k, cnt) of the HMAC-DRBG at
some point within the generate call, it is infeasible recover
the unseen output blocks rj for j ∈ [1, k − 1] which were
produced in the call prior to the point of compromise. We
describe the intuition for this in the case that additional input
is not used (the case in which it is used is similar). Letting
K,V denote the state variables at the commencement of the
compromised generate call, where V = HMAC(K,V ∗) and
V ∗ denotes the final output block / counter from the previous
call, then for j = 1, . . . ,m we have that

rj = V j = HMACj+1(K0, V ∗) , (1)

where HMACi(K0, ·) denotes the ith iterate of HMAC(K0, ·)
on the given input. As such, to recover rj given K0, V k where
j < k, corresponds to finding preimages of HMAC(K0, ·).

Since the key K0 is known to the attacker, we clearly cannot
argue that this is difficult based on the PRF-security of HMAC.
However, that HMAC with a known key behaves like a random
oracle is a fairly common assumption (see e.g., [42], [34], [11],
[28]). This, coupled with the fact that the underlying input
V ∗ in equation 1 is the result of an HMAC computation
under a secret and random key in the previous call — and
so by definition pseudorandom and unpredictable — makes it
reasonable to assume that computing the target preimages is
infeasible. Formalizing this intuition under a standard model
assumption remains an interesting open question.

C. Security of the HASH-DRBG DRBG with a compromised
counter.

We now describe how compromise of the counter compo-
nent of the state of the HASH-DRBG at any point during a
generate call facilitates the recovery of all output produced
in that call, without any need to additionally compromise an
output block. On the positive side, the use of the constant C



during state updates seems to contain the damage to a single
generate call.

Recovery of all output within a generate call with a
compromised counter. The evolution of the state of the
HASH-DRBG within a generate call is depicted in Figure 4
for an initial state S = (V,C, cnt) and hash function SH :
{0, 1}∗ → {0, 1}`. Letting V 0 denote the counter variable
possibly updated with additional input at the start of the
generate call, then to satisfy a request for β of output, the
generator computes

rj = SH(V 0 + j) (2)

for j = 1, . . .m where dβ/`e and additional is understood
to be modulo 2len. It is easy to see that if the attacker can
learn the internal counter V k = V 0 + k for k ∈ [1,m] of the
HASH-DRBG at any point within the generate call, then he
can easily recover the initial counter V 0 recompute all unseen
output from within that call as per equation 2.

Taking the HASH-DRBG instantiated with SHA-256 as
an examples, this corresponds to up to 224 bits of unseen
output — including all output produced prior to the point of
compromise. Unlike the attacks against the CTR-DRBG and
HMAC-DRBG, the attacker need not compromise any output
from the generate call in order to execute the attack; however
if only part of the counter V 0 is learnt and A is forced to
guess the unknown bits, then A would need to capture some
of this output in order to test guesses.

Security of future output. Interestingly — unlike the other
NIST DRBGs— recovering V alone is insufficient to run
the DRBG forward and compute output from future generate
calls. This is due to the fact that at the conclusion of the
compromised generate call, the new state will be updated as

V ′ = (V + SH(0x03||V ) + C + cnt) mod 2len ,

and, for all but the first generate call, it would appear to
be infeasible to extract C from V without inverting the hash
function. (The exception with the first generate call is because
C is derived deterministically from the initial state variable
V0 during the setup process). That said, if an attacker can
additionally compromise the counters V and V ′ from two
consecutive generate calls in the case that additional input
is not used, then he can easily recover C by calculating

C = (V ′ − SH(0x03||V )− cnt) mod 2len ,

thus facilitating the recovery of all subsequent output. If
additional input is used, the same recovery of C is possible,
albeit for a bit more more since th additional input string used
in the second generate call must be guessed also.

Summary.

D. Comparison to ANSI X9.17/X9.31.

The ANSI X9.17 / X9.31 PRG [37] is a legacy block
cipher-based PRG. Like the CTR-DRBG, the ANSI X9.17 /
X9.31 PRG produces a single output block per iteration by

encrypting the state of the PRG under a key K.7 A time stamp
is incorporated with the production of each block. It is well
known that if the key is known, then it is possible recover
the state of the PRG, with attacks being described in work
such as [40], [25] and more recently by Cohney et al. [22]. As
described in the latter work, in addition to the key, the attacker
requires a complete output block (to decrypt an recover the
internal state), plus sufficiently many bits of the following
block in order to test time stamp guesses. Past / future output
blocks can then be recovered, subject to the attacker’s ability
to guess the time stamp used in the production of each target
block.

Attacking compromised DRBGs in TLS implementa-
tions. Checkoway et al. in describe how the Dual EC DRBG
backdoor may be exploited in real world TLS [21] implemen-
tations, which Cohney et al. [22] extend to exploit a known
key attack against the ANSI X9.31 PRG in a TLS handshake.
We briefly recall their findings, and discuss how the NIST
DRBGs fare in the same context.

In the case of the TLS 1.0, 1.1, or 1.2 handshake, a 32-
byte random nonce is sent along with the client / server
hello messages. After establishing a cipher suite, the client
and server negotiate a shared secret accordingly by e.g.,
exchanging Diffie-Hellman shares. If the nonce contains a full
block of ANSI X9.31 output (plus enough of the following
block to guess time stamp guesses), this is sufficient to execute
the state recovery described by Cohney et al. [22].

To see how this attack applies to the NIST SP 800-90
DRBGs, suppose that the 256-bit nonce contains a single
CTR-DRBG output block (128-bits) or HMAC-DRBG output
(256-bits), and that the secret keying material was generated
within the same generate call and buffered. Then an attacker
who learns the output production key K0, can execute the
attacks described in Sections V-A, V-B to recover the secret
keying material. Worse still, for these algorithms there is
no need to guess any additional input, as once incorporated
at the beginning of a generate call, the (up to 219) bits
of output generated within that call are produced entirely
deterministically. Even if the output of the PRG is not buffered,
the attacker can still run the DRBG forward and recover
the keying material generated later in the handshake subject
to guessing the (low-entropy) additional inputs. Each correct
guess, facilitates the recovery of the multiple blocks of output
produced in that call. As such, a CTR-DRBG / HMAC-DRBG
implementation which is susceptible to side channel attacks
functions similarly to an ANSI X9.31 with a poorly generated
key, or the backdoored DualEC-DRBG.

VI. SECURITY OF ADDITIONAL INPUT

In this section, we describe how implementing the
CTR-DRBG without a derivation function can make it sub-
stantially easier to recover strings of additional input fed to

7The X9.17 / X9.31 PRG differs from the CTR-DRBG in that the key
K does not update at all over successive generate calls, and as such is not
forward secure. The CTR-DRBG is certainly a significant improvement in
this important regard.



the DRBG, in the event that the key component of the state
is compromised. This is particularly concerning, since the
standard allows these additional input strings to contain secrets
and sensitive data as long as they are not protected at a higher
strength than the implementation (see Section III). As such,
they may contain secret or private information such as social
security numbers, PINs and passwords.

Use of a derivation function. As detailed in Section III-A,
the standard allows the CTR-DRBG DRBG to be implemented
with or without a derivation function. In the former case,
additional input strings and entropy inputs are first conditioned
with the block cipher derivation function CTR-DRBG df
before being XORed into the state of the DRBG, whereas
if the derivation function is now used, these raw inputs are
XORed in directly.

One can verify from the pseudocode description of the
CTR-DRBG df in Appendix C that to derive a (κ + `)-
length string from a T -bit input, requires N block cipher
computations where

N = d(κ+ `)/`e ·
(
d(T + 72)/`e+ 2

)
,

where κ and ` denote the key and block size of the block
cipher respectively. Since this computation is required for
every generate call which includes additional input on top of
every reseed and setup, this represents a significant overhead
— especially given that the standard permits additional input
strings to be up to T = 235 bits in length. Indeed a set of slides
on the NIST DRBGs by Kelsey from 2004 [39] includes the
comment “Block cipher derivation function is expensive and
complicated. . . When gate count or code size is an issue, nice
to be able to avoid using it!” As such, it is easy to see the
appeal of implementing the CTR-DRBG without a derivation
function.

Recovery of additional input. We first describe the additional
input recovery attack against the CTR-DRBG implemented
without a derivation function in the ideal attack conditions,
and then discuss how to extend this to more general cases.

Consider two successive output generation requests, such
that the string of additional input used in the first call addin1
is either known to the attacker, or is equal to ε (that is to say,
additional input was not used in that call). Suppose further that
the string of additional input addin2 used in the second call is
of the form addin2 = X1||X2 where X1 ∈ {0, 1}κ is known
to the attacker, and X2 ∈ {0, 1}` consists of ` unknown bits,
which include a secret value such as a password which will
be the target of the attack. (Recall that κ and ` denote the key
and block size of the underlying block cipher respectively.)
Let S0 = (K0, V0, cnt0) and S1 = (K1, V1, cnt1) denote the
state of the CTR-DRBG at the commencement of the first and
second call respectively, where adding a superscript of 0 to
those state variables indicated that they have been updated
with additional input via the init subroutine at the start of that
generate call.

Now suppose an attacker has executed the state recovery

attack described in Section V-A against the first generate call,
and so knows the state variables K0

0 , V
0
0 . Since addin1 is

known to the attacker by assumption, he knows all inputs to the
final subroutine, and so can immediately compute the updated
state variables K1, V1 used in the following call.

At the beginning of the second generate call, the state
components K1, V1 are first updated with the additional in-
put string addin2 via (K0

1 , V
0
1 ) ← update(addin2,K1, V1)

during the init subroutine. The update function first computes
Ci ← E(K1, V1+j) for j = 1, . . . ,m where m = dκ+`` e, sets
K∗1 ||V ∗1 ← left(C1||. . . ||Cm), before computing the updated
key / counter K0

1 / V
0
1 as

K0
1 ||V 0

1 ← K∗1 ||V ∗1 ⊕ addin2 .
Since addin1 = X1||X2 ∈ {0, 1}κ+` where X1 ∈ {0, 1}κ is
known to A, it follows that the updated key

K0
1 = K∗1 ⊕X1

is known to A also. The (unknown) counter V 0
1 is of the form

V 0
1 = V ∗1 ⊕X2

where V ∗1 is again known by A, and X2 ∈ {0, 1}` contains
the target secret.

Output during the second generate request is computed by
encrypting the iterating counter under the fixed key K0

1 ; as
such each block of output rk produced in the call will be of
the form

rk = E(K0
1 , V

0
1 + k) = E(K0

1 , (V
∗
1 ⊕X2) + k) ,

for k ∈ [1, dβ` e] and β denotes the number of bits of output
requested in the call. Suppose that A learns a single complete
output block produced in the request, used for example as a
nonce. Then A can recover the target secret X2 — consisting
of 128-bits of unknown and secret data — with probability
one by using the known key K0

1 to decrypt the output block,
and XOR-ing in the known counter value V ∗1 :

X2 = (D(K0
1 , r

k)− k)⊕ V ∗1 .

Extensions. We have discussed the ideal attack conditions
here; however the same attack is still possible even if addin1
and / or X1 = left(addin2, κ) are not known to the attacker.
Supposing these components have γ1, γ2 bits of entropy re-
spectively, then repeating the above process for each possible
pair of candidate values will recover the correct secret X2 =
select(addin2, κ + 1, `) among a list of 2γ1+γ2 candidates.
If the data in X2 is of a distinctive structure, or multiple
output blocks are learnt from the generate call, this can help
A quickly eliminate candidates. Either way, the entropy of X2

is reduced to γ1 + γ2-bits, a loss which — given X2 contains
up to 128 bits of unknown data — may be substantial.

Security benefit of the derivation function. The attack
exploits the way in which raw additional input is XORed
directly into the state of the DRBG; as such the structure
of the additional input is preserved, and any entropy within
it is not mixed into both key and counter. In contrast when
the CTR-DRBG derivation function is used to condition the



input before it is XORed into the state, the structure of the
data is sufficiently destroyed that the above attack no longer
works. Indeed, even if the attacker could compromise the
raw derivation function output, it is difficult to see how they
could recover the underlying additional input string without
exhausting the entropy of that string in a brute-force attack.
The cases of the HASH-DRBG and HMAC-DRBG, where
additional input is either hashed prior to its incorporation into
the state or used as an input to HMAC are similar.

VII. CONCLUSION

We conducted a multi-layered and formal analysis of the
three DRBG algorithms in the NIST SP 800-90A standard. On
the positive side, we verified the forward security of each of
the DRBG mechanisms as claimed in the standard. However
we argue that the usual security models do not adequately
capture the somewhat unconventional design of these DRBGs.
Taking a closer look, we uncovered a number of problems with
the design of these algorithms.

The key cause for concern is that in the event of an attacker
recovering a certain part of the internal state of the DRBG, the
security of the algorithms breaks down in unexpected ways.
The result of this is that an attacker can recover unseen output
— and correspondingly break the security of any consuming
application relying on this output for its secrets. While each of
the algorithms admits varying degrees of security failure, the
CTR-DRBG fares especially badly in the event that the key
component of the state is compromised, due to the invertibility
of the block cipher.

Furthermore, if the design choice to implement the
CTR-DRBG without a derivation function is taken, this allows
an attacker to extend the above attack to recover strings of
additional input fed to the DRBG from public output. This is
especially worrying since the standard allows these strings to
contain secrets.

Flexibility in algorithm specifications. The flaws that we
have pointed out in this paper can be viewed as algorithm
specifications that are overly flexible, allowing both imple-
menters and users of these algorithms to make design choices
that demonstrably weaken the claimed security properties. In
particular, it is the flexibility to request variable amounts of
random bits per generate call which allows a partial state
compromise at any point during these calls to weaken all
subsequent output produced in the call — and in the case of the
CTR-DRBG and HMAC-DRBG, all output up to the next high
entropy reseed. The option to not include additional input in
output generation requests can only make these attacks easier.
Furthermore, the flexibility in the specification that allows
an implementation of the CTR-DRBG to omit the derivation
function, opens up the possibility that additional input may be
recovered. As such, these vulnerabilities may be a warning to
standard writers to avoid unnecessary flexibility as it may lead
to unintended security vulnerabilities.

Recommendations. Fortunately, because these vulnerabilities
arise from choices that are allowed by the specification,

we may offer recommendations to make the use of these
algorithms more secure. First off, if the algorithms are being
run in a setting where side channel attacks — potentially
leading to partial state recovery — are of particular concern,
we can recommend the HASH-DRBG as the safest choice of
a generator. Furthermore, the CTR-DRBG derivation function
should always be used. Additional input should be (safely)
incorporated in output generation requests wherever possible,
and of course the DRBG should be ‘properly’ reseeded with
fresh entropy as often as is practical.

While the standard allows outputs of variable and sizeable
length to be requested in each generate call, users of these
algorithms should not ‘batch up’ calls by making a single call
for all randomness required and separating the randomness
into separate values. For example, although it is faster to
generate all the randomness required in a TLS handshake up
front, this introduces security vulnerabilities.

More generally, using the technique of “fast key era-
sure” [16] to fill a buffer with randomness, taking it out
subsequently when needed, introduces security vulnerabilities.
The most secure way to call this algorithm would be to use
it to generate one block of output at a time, and updating the
state with fresh entropy as often as is feasible, although this
may introduce significant performance degradation over the
algorithms as standardized. While each of these decisions may
introduce additional cost, there are clear security benefits to
avoiding the unnecessary flexibility allowed by the standard.
We conclude with some open problems, and directions for
further work.

Analysis of setup and reseed. We have analyzed the NIST
DRBGs operating as deterministic PRGs. Extending the analy-
sis to model high entropy reseeds within the robust pseudoran-
dom number generator with input (PRNG) framework of Dodis
et al [27], and extended to better capture ‘real world’ PRNGs
in [51], is an important direction for future work. Similarly,
analyzing how well a state output by the setup algorithm
matches the ‘idealized’ states we have assumed here, is an
important extension of our results.

Optimizing security and efficiency. The design flexibilities
we critique above are generally related to efficiency savings.
Designing DRBGs which achieve an optimal balance between
security and efficiency, represents a key direction for future
work. For example, redesigning the CTR-DRBG derivation
function so that it adequately extracts entropy from its inputs
without such a computational overhead would make its use
much more palatable in terms of efficiency.

The gap between the specification of these DRBGs, which
allows for various optional inputs and implementation / usage
choices, and the far simpler manner in which DRBGs are
typically modeled in the literature, could indicate that theo-
retical models are not best capturing real world DRBGs as is.
Extending these models to factor in these concerns, may help
understand the limits and possibilities of what can be achieved
here.
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APPENDIX

A. Examples of Parameter Settings

CTR-DRBG CTR-DRBG HMAC-DRBG HASH-DRBG

with df w/out df

Underlying Primitive AES-128 AES-128 HMAC/SHA-256 SHA-256

Security strength 128 128 256 256

Output block len 128 128 256 256

Max no. of bits / request 219 219 219 219

Minimum len of addin 232 256 232 232

Max no. of requests 248 248 248 248

between reseeds

Fig. 6: Table showing parameter settings for the NIST DRBGs described in Section III.
All quantities are given in bits.

1) Theorem 4.1: Proof: We present the proof in the case
that additional input is used; the case in which additional input
is not used can easily be recovered from this proof by omitting
the extra state update at the start of each generate call which
is only executed when additional input is present.

We shall repeatedly reference the pseudocode in Figure 7,
which depicts the production of output / state variables in
Game FwdA,qCTR-DRBG,β with challenge bit b = 0, and where
each of the q iterations of the for loop corresponds to a
generate call.

We begin by defining two sequences of hybrid games Gj

for j ∈ [0, q] and j ∈ [0, q]. These are defined such that game
G0 is equivalent to Game FwdA,qCTR-DRBG,β with challenge bit
b = 0 (e.g., the adversary receives all real outputs in his
challenge), and for j ∈ [1, q] game Gj is the same as game
Gj−1 except during the jth generate call / iteration we replace
the output Rj (line 20) and the state variables as updated at the
conclusion of the call Vj ,Kj , (line 27) with uniform bit strings
of appropriate length. Similarly for j ∈ [0, q], we let game G0

be identical to game Game FwdA,qCTR-DRBG,β with challenge bit
b = 1 (so the adversary receives all random outputs in his
challenge), and then define Gj to be the same as game Gj−1

proc. main

1: Q ← (addin1, . . . , addinq)
2: K0||V0←$ {0, 1}κ+`
3: cnt0 ← 1
4: for i = 1, . . . , q do
5: if addini 6= ε then
6: addini ← df(addini, κ+ `)
7: temp1 ← ε ;m1 ← d(κ+ `)/`e
8: for k = 1, . . . ,m1 do
9: Vi−1 ← (Vi−1 + 1) mod 2`

10: Ck ← E(Ki−1, Vi−1)
11: temp1 ← temp1||Ck
12: temp1 ← left(temp1, (κ+ `))
13: K0

i−1||V
0
i−1 ← temp1 ⊕ addini

14: else addini ← 0κ+` ; (K0
i−1, V

0
i−1)← (Ki−1, Vi−1)

15: temp2 ← ε ;m2 ← dβ/`e
16: for k = 1, . . . ,m2 do
17: V ki−1 ← (V k−1

i−1 + 1) mod 2`

18: rki ← E(K0
i−1, V

k−1
i )

19: temp2 ← temp2||rki
20: Ri ← left(temp2, β)
21: temp3 ← ε ;m1 ← d(κ+ `)/`e
22: for k = 1, . . . ,m1 do
23: V

m2
i−1 ← (V

m2
i−1 + 1) mod 2`

24: C′k ← E(K0
i−1, V

m2
i−1)

25: temp← temp3||C′k
26: temp← left(temp3, (κ+ `))
27: Ki||Vi ← temp⊕ addini
28: cnti ← cnti−1 + 1
29: b′←$A(R1, . . . , Rq, (Kq, Vq, cntq),Q)
30: return (b = b′)

Fig. 7: Pseudocode for proof of Theorem 4.1.

except that in the jth generate call / iteration state variables
Vj ,Kj (line 27) with random bit string. It follows that

Advfwd
CTR-DRBG,β(A, q) = |Pr

[
G0 ⇒ 1

]
− Pr

[
G0 ⇒ 1

]
|

≤
q−1∑
i=0

(
|Pr
[
Gi ⇒ 1

]
− Pr

[
Gi+1 ⇒ 1

]
|

+ |Pr
[
Gi+1 ⇒ 1

]
− Pr

[
Gi ⇒ 1

]
|
)
.

In order bound the gap between these games, we define for
each j ∈ [0, q − 1] a further set of hybrids Gjk for k ∈ [0, 8],
in which we successively replace outputs of the block cipher
E : {0, 1}κ × {0, 1}` → {0, 1}` under different keys with
random bits strings during (j + 1)st generate call / iteration.
We begin by bounding the gap between games Gj and Gj+1

for j ∈ [0, q − 1]. Fix j ∈ [0, q − 1], and let Gj0 be equivalent
to game Gj .

Next we define game Gj0 to be identical to game Gj0
except the block cipher outputs Ck ← E(Kj , Vj + k) in
line 10 are replaced with uniform bit string Ck←$ {0, 1}`
for k = 1, . . . ,m1. We shall repeatedly invoke a standard
argument to bound variants of this transition; we give a
detailed treatment in this initial case.

We claim that there exists an adversary B in the PRP
distinguishing game against E running in time T ≈ T ′ such
that

|Pr
[
Gj0 ⇒ 1

]
− Pr

[
Gj1 ⇒ 1

]
|



≤ Advprp
E (B,m1) +

m2
1

2`+1
.

To see this, notice that B can perfectly simulate the first j
generate calls by choosing random output / state variable pairs
Ri||Vi||Ki←$ {0, 1}β+`+κ for i = 1, . . . , j. To simulate the
(j + 1)st generate call, B queries Vj + 1, . . . , Vj + m1 to
his RoR oracle, receiving C1, . . . , Cm1 in response. He sets
temp = left(C1||. . . ||Cm1 , κ + `) in line 12, and uses these
values to simulate the remainder of the game for A. At the
conclusion of the game he outputs 1 if and only if A does.

Notice that if B’s oracle implements the real function,
then he perfectly simulates game G0

j ; otherwise he perfectly
simulates an intermediate game in which the block cipher E is
replaced by a random permutation π←$ Perm(`, `). Moreover,
B runs in time T ≈ T ′, and so the gap between these games
may be bounded by a reduction to the PRP-security of E.

Now consider the intermediate game in which the block
cipher E is replaced with the random permutation π, and
notice that, since we iterate a counter with each query, the
inputs to the random permutation π are distinct. As such the
PRP/PRF-switching lemma (see e.g., [13] for a proof of this
result) implies that we can define a further game in which we
replace the permutation outputs Ci ← π(Vj+k) with uniform
bit strings Ci←$ {0, 1}`, and that these games run identically
unless two of the randomly sampled Ci collide (to see this,
notice that since π is a permutation, the outputs produced by
submitting the distinct queries to π will never collide). Since
precisely m1 such strings are sampled, it follows that the gap
between these games is bounded above by m2

1

2`+1 . Now this
game is identical to game G1

j , and so putting this altogether,
it follows that

|Pr
[
Gj0 ⇒ 1

]
− Pr

[
Gj1 ⇒ 1

]
|≤

Advprp
E (B,m1) +

m2
1

2`+1
,

proving the claim. Notice that in this game, since temp1 ←
left(C1||. . . ||Cm1

) (line 12) and Ci ← {0, 1}` for i =
1, . . . ,m1, this is equivalent to choosing temp1←$ {0, 1}κ+`.

Next we define game Gj2, in which instead of set-
ting K0

j ||V 0
j ← temp1 ⊕ addinj+1 in line 13, we

simply sample K0
j ||V 0

j ←$ {0, 1}κ+`. Since in this game
temp1←$ {0, 1}κ+`, it follows that these games are identi-
cally distributed and so

Pr
[
Gj1 ⇒ 1

]
= Pr

[
Gj2 ⇒ 1

]
.

Next we define game Gj3, which is identical to Gj2 except
we replace the block cipher outputs used for output blocks
(line 18), and the final state update (line 24) with random bits
strings. By an analogous argument to that used previously, and
noting that the block cipher key K0 used for these encryptions
is chosen uniformly in this game K0←$ {0, 1}κ, a reduction
to the PRP-security of E implies that there exists an adversary
C in the PRP-distinguishing hame against E such that

|Pr
[
Gj3 ⇒ 1

]
− Pr

[
Gj2 ⇒ 1

]
|≤

Advprp
E (C,m1 +m2) +

(m1 +m2)
2

2`+1
.

The first term in the above equation follows since both
Gj2 and an intermediate game in which the block cipher
E is replaced by a random permutation π can be perfectly
simulated by an attacker in the PRP-security game against
E making (m1 + m2) RoR oracle queries. The second term
then follows since the (m1 + m2) inputs to the random
permutation are distinct, and so the PRP/PRF-switching lemma
allows us to replace the permutation outputs with random
bits strings incurring a loss of (m1+m2)

2

2`+1 . Notice that in
this game, the output Rj+1 = left(C1||. . . ||Cm2

) in line 20,
and temp3 = left(Cm2+1||. . . ||Cm1+m2 in line 26 — where
Ck←$ {0, 1}` for k = 1, . . . ,m1 + m2 are the random bit
strings introduced in this game hop — are now themselves
equivalent to independent random bit strings.

Finally in game Gj4, the state variables Kj+1||Vj ←
temp3 ⊕ addinj+1 in line 27 are replaced with ran-
dom bit strings Kj+1||Vj+1←$ {0, 1}κ+`. Again since
temp3←$ {0, 1}κ+` in this game, it follows that the two
games are identically distributed and so

Pr
[
Gj4 ⇒ 1

]
= Pr

[
Gj3 ⇒ 1

]
.

Furthermore, notice that since both output Rj+1 and updated
state variables Kj+1, Vj+1 have been replaced with random bit
strings in this game, we have that Gj4 is equivalent to game
Gj+1. Putting this all together, we have that for each j ∈
[0, q − 1]

|Pr
[
Gj ⇒ 1

]
− Pr

[
Gj+1 ⇒ 1

]
|

≤ Advprp
E (B,m1) + Advprp

E (C,m1 +m2)+

(m1 +m2)
2 +m2

1

2`+1
,

completing the first part of the proof. With this in place, we
now bound the gaps between games Gj+1 and Gj for j ∈
[0, q − 1]. We argue by a series of analogous steps to those
above in reverse order, working towards returning the state
variables Kj , Vj in each iteration to being computed honestly,
while preserving the random output Rj . Since the steps are
similar, we describe the first couple of steps more fully, and
sketch the rest. We begin by fixing j ∈ [0, q − 1].

We begin by defining game Gj+1
5 to be identical to game

Gj+1 (so the first (j + 1) outputs and updated state variables
Kj+1, Vj+1 are chosen at random, and the rest computed
honestly). We will gradually alter the way in which the state
is computed in the (j + 1)st generate call. Next we define
game Gj+1

6 to be identical to Gj+1
5 except rather than choosing

the updated state variables Kj+1, Vj+1 at random, we instead
compute them as Kj+1||Vj+1 ← temp3 ⊕ addinj+1 where
temp3←$ {0, 1}κ+`. Clearly these games are identically dis-
tributed, and so

Pr
[
Gj+1

6 ⇒ 1
]
= Pr

[
Gj+1

5 ⇒ 1
]
.

Next we define game Gj+1
7 to be identical to Gj+1

6 ex-
cept rather than sampling temp3←$ {0, 1}κ+`, we instead



generate it by choosing by K0
j ||V 0

j ←$ {0, 1}κ+`, computing
Ck = E(K0

j , V
0
j + m2 + k) for k = 1, . . . ,m1, and setting

temp3 = left(C1||. . . ||Cm1
, κ + `) (see line 24). However,

we still sample Rj+1←$ {0, 1}β (line 24), as opposed to
computing this via the block cipher also. Looking ahead,
this is allowed, since the output is chosen randomly and
independently of the state variables in both games.

We may then define an adversary B′ in the PRP-
distinguishing game against E who proceeds as follows.
B′ perfectly simulates the first j calls by choosing
Ri||Ki||Vi←$ {0, 1}β+κ+` for i = 1, . . . , j. For the (j + 1)st

call, A chooses Rj+1←$ {0, 1}β , and V 0
j ←$ {0, 1}`, and

then submits queries V 0
j + m2 + k to his RoR oracle for

k = 1, . . . ,m1, receiving C1, . . . , Cm1 in response. He sets
temp = left(C1||. . . ||Cm1 , κ + `), and continues simulating
the rest of the game as per the pseudocode. By an analogous
argument to that used above using a reduction to the PRP-
security of E and the PRP/PRF-switching lemma, and noting
that the random permutation π is queried on precisely m1

points, it follows that

|Pr
[
Gj+1

7 ⇒ 1
]
− Pr

[
Gj+1

6 ⇒ 1
]
|≤

Advprp
E (B′,m1) +

m2
1

2`+1
.

In game Gj+1
8 , we return to computing K0

j ||V 0
j ← temp1 ⊕

addinj+1 (see line 13) for temp1←$ {0, 1}κ+` rather than
simply sampling these strings at random; clearly the two
games are identically distributed. Finally in game Gj+1

9

we generate temp1 in line 12 via m1 computations with
the block cipher in CTR-mode with key / initial counter
KjVj ←$ {0, 1}` as sampled uniformly at the conclusion of
the jth generate call. Again by an analogous argument to that
used previously, it follows that there exists an adversary B′ in
the PRP-security game against E such that

|Pr
[
Gj+1

8 ⇒ 1
]
− Pr

[
Gj+1

7 ⇒ 1
]
|≤

Advprp
E (B′,m1) +

m2
1

2`+1
.

Now since we have returned to computing the state honestly
in the (j+1)st call, while preserving the random output Rj+1

game Gj8 is equivalent to game Gj ; therefore it follows that
for each j ∈ [0, q − 1], there exists an adversary B running in
time T ≈ T ′ such that

|Pr
[
Gj+1 ⇒ 1

]
− Pr

[
Gj ⇒ 1

]
|

≤ 2 · Advprp
E (B′,m1) +

2m2
1

2`+1
.

Putting this all together, we conclude that

Advfwd
CTR-DRBG,β(A, q) = 3q · Advprp

E (B,m1)

+ q · Advprp
E (C,m1 +m2)

+
q · (3m2

1 + (m1 +m2)
2)

2`+1
.

proc. main

1: Q ← (addin1, . . . , addinq)
2: K∗0 ||V

∗
0 ←$ {0, 1}κ+`

3: cnt← 1
4: For i = 1, . . . , q
5: If addini 6= ε
6: K0

i−1 ← HMAC(K∗i−1, V
∗
i−1||0x00||addini)

7: V 0
i−1 ← HMAC(K0

i−1, V
∗
i−1)

8: K0
i−1 ← HMAC(K0

i−1, V
0
i−1||0x01||addini)

9: V 0
i−1 ← HMAC(K0

i−1, V
0
i−1)

10: temp← ε
11: For k = 1, . . . ,m

12: V ki−1 ← HMAC(K0
i−1, V

(k−1)
i−1 )

13: temp← temp||V ki−1

14: Ki ← HMAC(K0
i−1, V

m
i−1||0x00||addini)

15: Vi ← HMAC(Ki, V
m
i−1)

16: If addini 6= ε
17: K∗i ← HMAC(Ki, Vi||0x01||addini)
18: V ∗i ← HMAC(K∗i , Vi)
19: Ri ← left(temp, β)
20: cnt← cnt+ 1
21: b′←$A(R1, . . . , Rq, K

∗
q , V

∗
q ,Q)

22: Return (b = b′)

Fig. 8: Pseudocode for proof of Theorem 4.2.

B. Proofs from Section IV

1) Theorem 4.2: Proof: We present the proof in the case
that additional input is used; the case in which additional
input is not used can easily be recovered from this proof by
omitting the extra HMAC computations which are only used
when additional input is present.

We shall repeatedly reference the pseudocode in Figure 8,
which depicts the production of output / state variables in
Game FwdA,qHMAC-DRBG with challenge bit b = 0, and where
each of the q iterations of the For loop corresponds to a
generate call.

We begin by defining two sequences of hybrid games Gj

for j ∈ [0, q] and j ∈ [0, q]. These are defined such that
game G0 is equivalent to Game FwdA,qHMAC-DRBG with challenge
bit b = 0 (e.g., the adversary receives all real outputs in his
challenge), and for j ∈ [1, q] game Gj is the same as game
Gj−1 except during the jth generate call / iteration we replace
the output Rj (line 19) and state variables Vj ,K∗j , (lines 15
and 17 respectively) with uniform bit strings of appropriate
length. Similarly for j ∈ [0, q], we let game G0 be identical
to game Game FwdA,qHMAC-DRBG with challenge bit b = 1 (so
the adversary receives all random outputs in his challenge),
and then define Gj to be the same as game Gj−1 except that
in the jth generate call / iteration replace the state variables
Vj ,K

∗
j on lines 15 and 17 with random bit strings. It follows

that

Advfwd
HMAC-DRBG(A, q) = |Pr

[
G0 ⇒ 1

]
− Pr

[
G0 ⇒ 1

]
|

≤
q−1∑
i=0

(
|Pr
[
Gi ⇒ 1

]
− Pr

[
Gi+1 ⇒ 1

]
|

+ |Pr
[
Gi+1 ⇒ 1

]
− Pr

[
Gi ⇒ 1

]
|
)
.



In order bound the gap between these games, we define for
each j ∈ [0, q − 1] a further set of hybrids Gjk for k ∈ [0, 9],
in which we successively replace outputs of HMAC under
different keys with random bits strings during (j+1)st generate
call / iteration. We begin by bounding the gap between games
Gj and Gj+1 for j ∈ [0, q− 1]. Fix j ∈ [0, q− 1], and let Gj0
be equivalent to Game Gj .

We next define game Gj1 which is identical to game Gj0
except we replace all PRF outputs under K∗j — that is to
say K0

j in line 6 of the (j + 1)st generate call, and V ∗j on
line 18 of the previous generate call (with the exception of
j = 0, for which this value is not defined) —with uniform bit
strings. Recall that by the definition of hybrid Gj , key K∗j is
chosen uniformly at random. Throughout this proof, we will
repeatedly invoke a standard argument to bound variants of
this transition; we give a detailed description in this initial
case.

We claim that there exists an adversary B1 in the PRF
distinguishing game against HMAC such that

|Pr
[
Gj0 ⇒ 1

]
− Pr

[
Gj1 ⇒ 1

]
|≤ Advprf

HMAC(B1, 2) .

To see this, notice that B1 can perfectly simulate the first
j generate calls by random output / state variable pairs
Ri||Vi||K∗0 ←$ {0, 1}β+`+κ for i = i, . . . , j. To simulate the
(j+1)st generate call, B1 queries Vj to his RoR oracle, sets V ∗j
to the returned value, and then queries V ∗j ||0x00||addinj+1 to
his oracle, this time setting K0

j equal to the returned string. He
then uses K0

j and V ∗j to simulate the remainder of the game
for A. At the conclusion of the game he outputs 1 if and only
if A does.

Notice that if B1 is receiving real output from his oracle,
then he perfectly simulated game G0

j ; otherwise he perfectly
simulates a variant of the game in which HMAC is replaced by
a random function, and so the gap between these games may
be bounded by a reduction to the PRF security of HMAC. A
standard hybrid argument, which says that if none of the inputs
to a random function collide then we may replace the outputs
with random bit strings, coupled with the fact that domain
separation ensures these two inputs never collide, implies the
result.
Next we define Game Gj2 which is identical to Game Gj1,
except the PRF outputs in lines 7, 8 are again replaced with
random bit strings. By an analogous argument to that above,
coupled with the fact that due to the domain separation these
inputs can never collide, we may define an adversary B2 such
that

|Pr
[
Gj1 ⇒ 1

]
− Pr

[
Gj2 ⇒ 1

]
|≤ Advprf

HMAC(B2, 2) .

Next we define game Gj3 in which the m + 2 PRF HMAC
computations in lines 9, 12, 14 are replaced by uniform bit
strings. By an analogous argument to that above, we may
define an adversary C such that

|Pr
[
Gj2 ⇒ 1

]
− Pr

[
Gj3 ⇒ 1

]
|≤

Advprf
HMAC(C,m+ 2) + (m+ 1)2/2`+1 .

The first term arises since an adversary in the PRF distinguish-
ing game can simulate both games using m+2 queries to his
RoR oracle and in time T ′ ≈ T , allowing us to replace HMAC
with a random function. The second term arises from using
a birthday bound to upper bound the probability that two of
m+1 randomly sampled inputs to the random function collide
(again due to the domain separation of the input in line 14,
this input will never cause a collision with any of the others).

In Game Gj4, the two PRF HMAC calls on lines 15, 17
are replaced with random bit strings; again due to the domain
separation the corresponding inputs can never collide and so
we can define an adversary B3 such that

|Pr
[
Gj3 ⇒ 1

]
− Pr

[
Gj4 ⇒ 1

]
|≤ Advprf

HMAC(B3, 2) .

Finally we define Gj5 which is identical to G4
j except now

we simply sample the output Rj ←$ {0, 1}β at random, as
opposed to concatenating and truncating the random bits
strings sampled during the For loop in line 11. In both cases
Rj is chosen randomly and independently of all other state
variables, and so state variables and so it follows that these
two games are identically distributed and

Pr
[
Gj4 ⇒ 1

]
= Pr

[
Gj5 ⇒ 1

]
.

Furthermore, game Gj5 is identical to game Gj+1, and so
putting this altogether it follows that

|Pr
[
Gj ⇒ 1

]
− |Pr

[
Gj+1 ⇒ 1

]
|

≤ 3 · Advprf
HMAC(B, 2)+

Advprf
HMAC(C,m+ 2) +

(m+ 1)2

2`+1
. (3)

With this in place, we now bound the gaps between games
Gj+1 and Gj for j ∈ [0, q − 1]. We argue by a series
of analogous steps to those above in reverse order, working
towards returning the state variables Vj ,K∗j to being computed
honestly, while preserving the random output Rj . Since the
steps are similar, we describe the first more fully, and sketch
the rest.

We first define a game Gj6 which is identical to game Gj5
except we replace the strings Vj+1 and K0

j+1 in lines 15, 17
of the (j + 1)st generate call with PRF HMAC outputs.

We may then define an adversary B′1 in the PRF secu-
rity game, who proceeds as follows. B′1 perfectly simulates
the first j generate calls by choosing random state pairs
Vi||K∗i ←$ {0, 1}m+`+κ for 0 = 1, . . . , j, and random outputs
Ri←$ {0, 1}β for i = 1, . . . , q. To simulate the (j + 1)st

generate call, B′1 chooses V mj ←$ {0, 1}`, and submits V mj
to his RoR oracle, setting Vj+1 to the returned string. He
then submits Vj+1||0x00||addinj+1 to his RoR oracle, and
sets K∗j+1 to the returned string. He then continues to simulate
the game using these state variables. By the same argument
as those used above, it follows that,

|Pr
[
Gj5 ⇒ 1

]
− Pr

[
Gj6 ⇒ 1

]
|≤ Advprf

HMAC(B
′
1, 2) .

Next we define game Gj7, which is identical to Gj6 except the
randomly sampled strings in lines 9, 12, 14 are replaced with



PRF outputs. By an analogous argument that above, we can
define an adversary C′ running in time T ≈ T ′ such that

|Pr
[
Gj6 ⇒ 1

]
−Pr

[
Gj7 ⇒ 1

]
|≤ Advprf

HMAC(C,m+ 2)+
(m+ 1)2

2`+1
.

In Gj7 and Gj8 in which we replace the random outputs on
first lines 7, 8 of the (j + 1)st call followed by lines 6 of
the (j + 1)st call, and line 18 of the previous generate call
with PRF outputs. As above, we may define adversaries B′2,
B′3 running in time T ′ ≈ T such that these gaps are bounded
by Advprf

HMAC(B
′
2, 2) and Advprf

HMAC(B
′
3, 2) respectively. Further-

more, notice that game Gj8 is identical to game Gj . It follows
that

|Pr
[
Gj+1] ⇒ 1

]
− |Pr

[
Gj ⇒ 1

]
|

≤ 3 · Advprf
HMAC(B

′, 2)+

Advprf
HMAC(C

′,m+ 2) +
(m+ 1)2

2`+1
. (4)

Putting this all together, we conclude that

Advfwd
HMAC-DRBG,β(A, q) ≤ 6q · Advprf

HMAC(B, 2)

+ 2q · Advprf
HMAC(C,m+ 2) +

q · (m+ 1)2

2`
.

2) Theorem 4.3: Proof: We argue by a series of game hops,
shown in Figure 9. All addition is understood to be modulo
2len where SH : {0, 1}∗ → {0, 1}`.

We begin by defining G0 which is identical to game
FwdA,qHASH-DRBG,β with challenge bit b = 0. We also set a
number of flags, although these do not affect the outcome
of the game. For each i ∈ [1, q], we let colli = {Vi−1 −m+
1, . . . , Vi−1 + m − 1} where Vi−1 denotes the state at the
commencement of the jth generate call.

Fix j ∈ [1, q], and notice that at the end of the jth generate
call, the state is updated as Vj = Vj−1 +Hj−1 +C + cntj−1
where Hj−1 = SH(0x03||Vj−1) ∈ {0, 1}` (see line 15 in
Figure 9). Notice that if the updated state Vj is such that
Vj ∈ colli for i ∈ [1, j], then during the (j + 1)st generate
call the random oracle SH will be queried on a point upon
which it was already queried during output generation in the
ith generate call. We denote the event that this occurs bad1,
and let the event that such a collision occurs before or during
the state update at the conclusion of the jth generate call be
denoted badj1.

We then define a modified game G1 which is identical to G0

except that if the jth state update will cause badj1 to be set, we
resample Hj−1 as Hj−1←$ {0, 1}`/Bad-Yj where Bad-Yj
denotes the set of strings which would cause badj1 to be set;
formally

Bad-Yj = {Y ∈ {0, 1}` | ∃i ∈ [1, j] :

Vj−1 + Y + C + cntj−1 ∈ Colli} .

After generating the challenge output, we return SH respond-
ing to all fresh queries with bit strings drawn uniformly from

{0, 1}`. These games run identically unless the flag bad1 is set;
as such the fundamental lemma of game playing [13] implies
that

|Pr [G0 ⇒ 1 ]− Pr [G1 ⇒ 1 ]|≤ Pr [ bad1 = 1 in G1 ] .

We now bound the probability of this event occurring. It
follows that

Pr [ bad1 = 1 ] = Pr [ badq1 = 1 ]

≤
q∑

k=1

Pr
[

badk1 = 1 | badk−11 = 0
]
.

We claim that for each k ∈ [1, q],

Pr
[

badk1 = 1 | badk−11 = 0
]
≤ k(2m− 1)

2`
.

To see this, notice that the fact that badk−11 = 0 means that no
collisions have occurred up to and including the (k−1)st state
update. As such, all intervals colli are disjoint for i ∈ [1, k].
Since each of these k intervals contains 2m−1 distinct points,
it follows that there are k(2m− 1) distinct values with which
the new state Vk might collide and cause the flag badk1 to be
set. Furthermore, badk−11 = 0 implies all Vi−1 for i ∈ [1, k]
are distinct, and so the value Hk−1 = SH(0x03||Vk−1) used
in the kth state update is the result of a fresh oracle query. As
such, each Hk−1 ∈ [0, 2` − 1] is chosen with probability 2−`,
so taking a union bound justifies the claim. It follows that

Pr [ bad1 = 1 ] ≤
q∑

k=1

k(2m− 1)

2`

=
q(q + 1)(2m− 1)

2`+1
.

Notice that in game G1 oracle SH will never be queried upon
the same point twice during the generation of the challenge
output (due to the domain separation of the queries made in
the computation of C in 5, these queries will never collide with
each other or any of the other queries, and by the argument
made above all queries made during output generation and
state updates are distinct also). Furthermore, notice that all
queries to SH contain some element in ∪qi=1Ji where we
define Ji = {Vi−1, Vi−1+1, . . . , Vi−1+(m−1)} where Vi−1
denotes the state at the commencement of the ith generate call.

Next we define game G2 which is identical to G1 except that
now if the attacker queries the random oracle SH on a point
upon which it was queried during the challenge generation
phase, it responds with a fresh string chosen randomly from
{0, 1}` instead of the value previously set. It follows that
these two games run identically unless A queries SH on a
point upon which it was previously queried in the challenge
generation phase, and the flag bad2 is set. As such the
fundamental lemma of game playing implies.

|Pr [G1 ⇒ 1 ]− Pr [G2 ⇒ 1 ]|≤ Pr [ bad2 = 1 in G2 ] .

Next we define game G3, in which instead of querying the
random oracle SH on the appropriate inputs during challenge
generation, we simply sample uniform bit strings from the
appropriate ranges. In the attacker’s view these games are



proc. main // Game G0,1,2, G6,7,8

1: V0←$ {0, 1}len
2: α← 0x01
3: temp← ε
4: For i = 1, . . . , dlen/`e
5: Wi ← SH(α||(len)32||0x00||V0)
6: temp← temp||Wi

7: α← α+ 1
8: C ← left(temp, len)
9: cnt0 ← 1

10: S0 ← (V0, C, cnt0)
11: For i = 1, . . . , q
12: V 0

i−1 ← Vi−1

13: temp← ε
14: For k = 1, . . . ,m
15: rki ← SH(V k−1

i−1 )

16: r
k
i ←$ {0, 1}`

17: temp← temp||rki
18: V ki−1 ← V k−1

i−1 + 1
19: Ri ← left(temp, β)
20: Hi−1←$ SH(0x03||Vi−1)
21: Vi ← V 0

i−1 +Hi−1 + C + cnti−1

22: cnti ← cnti−1 + 1
23: Sj ← (Vi, C, cnti)
24: b′←$A(R1, . . . , Rq, Sq)
25: Return (b = b′)

proc. main // Game G3, G4 , G5

1: V0←$ {0, 1}len
2: C←$ {0, 1}len
3: cnt0 ← 1
4: S0 ← (V0, C, cnt0)
5: For i = 1, . . . , q
6: V 0

i−1 ← Vi−1

7: temp← ε
8: For k = 1, . . . ,m
9: rki ←$ {0, 1}`

10: temp← temp||rki
11: V ki−1 ← V k−1

i−1 + 1
12: Ri ← left(temp, β)
13: Hi−1←$ {0, 1}`/{Bad-Yi}

14: Hi−1←$ {0, 1}`

15: Vi ← V 0
i−1 +Hi−1 + C + cnti−1

16: cnti ← cnti−1 + 1
17: Sj ← (Vi, C, cnti)
18: b′←$A(R1, . . . , Rq, Sq)
19: Return (b = b′)

proc. SH(X) // Game G0, G1 , G7 , G8

1: Y ←$ {0, 1}`
2: If X = 0x03||Vj−1 // challenge generation phase only
3: If ∃i ∈ [1, j] : Vj−1 + Y + C + cntj−1 ∈ Colli
4: bad1 ← true

5: Y ←$ {0, 1}`/{Bad-Yj}
6: If SH[X] 6=⊥
7: bad2 ← true
8: Y ← SH[X]
9: SH[X]← Y

10: Return Y
proc. SH(X) // Game G2,3,4,5,6

1: Y ←$ {0, 1}`
2: If X = 0x03||Vj−1 // challenge generation phase only
3: If ∃i ∈ [1, j] : Vj−1 + Y + C + cntj−1 ∈ Colli
4: bad1 ← true

5: Y ←$ {0, 1}`/{Bad− Yj}
6: If SH[X] 6=⊥
7: bad2 ← true
8: SH[X]← Y
9: Return Y

Fig. 9: Pseudocode for proof of Theorem. For each (Vj−1, C, cntj−1), we let Bad-Y = {Y | ∃i ∈ [1, j − 1] : Vj−1 + Y +
C + cntj−1 ∈ Colli}.

identically distributed and so

Pr [G2 ⇒ 1 ] = Pr [G3 ⇒ 1 ] , and

Pr [ bad2 = 1 in G2 ] = Pr [ bad2 = 1 in G3 ] .

To bound Pr [ bad2 = 1 in G3 ], we first move to game G4

in which we sample the strings Hj−1 used for state updates
uniformly from {0, 1}`, instead of from {0, 1}`/Bad-Yj . This
shall simplify bounding the probability that bad2 = 1 is set.
By the same argument as before, it follows that

|Pr [G3 ⇒ 1 ]− Pr [G4 ⇒ 1 ]|≤ q(q + 1)(2m− 1)

2`+1
.

and

Pr [ bad2 = 1 in G3 ] ≤

Pr [ bad2 = 1 in G4 ] +
q(q + 1)(2m− 1)

2`+1
.

We now bound the probability that bad2 = 1 is set in game
G4. Recall that for each i ∈ [1, q], the state Vi is of the form
Vi−1+C+Hi−1+cnti−1 where cnti−1 = i; as such we may
write

Vi = V0 + i · C +

i∑
j=1

j +

i∑
j=1

Hj−1

= Vq − (q − i) · C −
q∑

j=i+1

j −
q∑

j=i+1

Hj−1 , (5)

where recall addition is modulo 2len. As such while the
outputs Ri which A is given in his challenge in game G4

are random and independent of the previous state values, both
Vq and C offer A some information about the previous state

values which he may try to guess. Recalling that any query
which may cause bad2 to be set must contain some element
in ∪qi=1Ji where Ji = {Vi−1, . . . , Vi−1 + (m − 1)}, taking
union bounds implies that Pr [ bad2 = 1 in G4 ] is less than
or equal to:

Pr [A guesses point in ∪qi=1 Ji in σ guesses | (Vq, C) ]

≤ σ
q∑
i=1

Pr [A guesses point in Ji in 1 guess | (Vq, C) ]

≤ σ
q∑
i=1

m−1∑
k=0

Pr [A guesses Vi−1 + k in 1 guess | (Vq, C) ]

≤ σqm× 2−H̃∞(Vi+k|(Vq,C)) .

We claim that for each i ∈ [1, q] and each k ∈ [0,m− 1],

2−H̃∞(Vi−1+k|(Vq,C)) ≤ 2−` .

To see this, recall that

2−H̃∞(Vi−1+k|(Vq,C))

=
∑
Vq,C

max
x

Pr [ Vi−1 + k = x | Vq, C ] · Pr [Vq, C ]

(6)

Now by construction in G4, C←$ {0, 1}len, and the fact that
V0←$ {0, 1}len and Vq = V0+q ·C+

∑q
i=1(Hi−1+i) implies

that Pr [ Vq | C ] = 2−len also. Furthermore, for each Vq =
vq, C = c, it holds that

max
x

Pr [ Vi−1 + k = x | Vq = vq, C = c ]



= max
x

Pr
[
Vq − (q − i) · C −

q∑
j=i+1

j−

q∑
j=i+1

Hj−1 = x− k | Vq = vq, C = c

]

= max
x

Pr

 vq − (q − i) · c−
q∑

j=i+1

j −
q∑

j=i+1

Hj−1 = x− k


= max

x
Pr

 q∑
j=i+1

Hj−1 = vq − (q − i) · c−
q∑

j=i+1

j − x− k


≤ 2−` .

Here the first equality follows from rewriting Vi−1 = Vq−(q−
i)·C−

∑q
j=i+1 j−

∑q
j=i+1Hj−1 as per equation 5. To justify

the final step, notice that since q < 248, and we have assumed
that ` < len−48, the maximum sum of the Hi−1 (not reduced
modulo 2len) is 2`+48 < 2len. (One can verify from [?] that the
same holds for all allowed instantiations of the HASH-DRBG.)
Therefore, we can treat the sum of the Hj−1 in the above
equation as an integer, rather than first reducing modulo 2len.
We argue by induction that for all k ∈ [1, q],

max
z∈[0,k(2`−1)]

Pr

[
j∑
i=1

Hi−1 = z

]
≤ 2−`

where the probability is over the choice of Hi−1←$ {0, 1}`
for i ∈ [1, k]. The base case clearly holds Pr [H0 = z ] = 2−`

for each z ∈ [0, 2` − 1] . We assume the hypothesis holds for
k = n, so maxz∈[0,n(2`−1)] Pr [

∑n
i=1Hi−1 = z ] ≤ 2−l.

Now let Z− denote the distribution of
∑n
i=1Hi−1 where

each Hi−1←$ {0, 1}`. Then for k = n + 1 (and since no
wraparound occurs when adding a further term Hn ← {0, 1}`
to the total) it follows that for any z ∈ [0, (n+ 1)(2` − 1)]

Pr

[
n+1∑
i=1

Hi−1 = z

]
= Pr

[
Hn = z − Z−

]
=

∑
z−∈[0,n(2`−1)]

Pr
[
Hn = z − z−

]
Pr
[
Z− = z−

]
≤

∑
z−∈[z−(2`−1),z]

2−2` = 2−` ,

where the final line follows from the fact that the induction
hypothesis implies Pr [Z− = z− ] ≤ 2−`, and since Hn ∈
[0, (2` − 1)], it holds that Pr [Hn = z − z− ] = 2−` if z− ∈
[z− (2`−1), z)] and 0 otherwise, proving the claim. Plugging
this back into equation 6 yields

2−H̃∞(Vi−1+k|(Vq,C)) ≤
∑
Vq,C

2−` · 2−2len

= 2−l ,

as required. Moving onwards, we define game G5 which
is identical to game G4 except we return to sampling
Hj−1←$ {0, 1}`/Bad-Yj during state updates. As before, it

follows that

|Pr [G4 ⇒ 1 ]− Pr [G5 ⇒ 1 ]|≤ q(q + 1)(2m− 1)

2`+1
.

In game G6, we now return to querying SH to compute the
state variables, although continue to sample the outputs as
uniform random bit strings. Since the random oracle is still
set to return a uniform bit string even if the attacker queries
it on one of these values during the guessing phases of the
game, these two games are identically distributed and so

Pr [G5 ⇒ 1 ] = Pr [G6 ⇒ 1 ] .

In game G7 we return the random oracle SH to answer
honestly if the attacker queries it on a value upon which
queried upon which it was queried in the guessing phase
of the game. Notice that this time since SH is no longer
queried to generate output, all queries to SH contain one of
the state variables {V0, . . . , Vq−1}, a smaller set of possible
‘bad’ queries that we had previously. Therefore an analogous
argument to that above implies that

|Pr [G6 ⇒ 1 ]− Pr [G7 ⇒ 1 ]|≤ Pr [ bad2 = 1 in G6 ]

≤ Pr [ bad2 = 1 in G4 ] +
q(q + 1)(2m− 1)

2`+1

≤ Pr
[
A guesses point in ∪q−1i=0 {Vi} in σ guesses | (Vq, C)

]
+
q(q + 1)(2m− 1)

2`+1

≤ σq

2`
+
q(q + 1)(2m− 1)

2`+1
.

Finally in game G8 we return to oracle SH to sampling the
Hi without replacement, and so again

|Pr [G7 ⇒ 1 ]− Pr [G8 ⇒ 1 ]|≤ q(q + 1)(2m− 1)

2`+1
.

Finally, notice that since in game G8 the attacker receives
random strings as outputs in conjunction with the real final
state Sq , we have that G8 is identical to game FwdA,qHASH-DRBG,β

with challenge bit b = 0. Putting this all together, we conclude
that for any adversary A making at most σ to oracle SH, it
holds that

Advfwd
HASH-DRBG,β(A, q) ≤

q(σ(m+ 1) + 3q(q + 1)(m− 1))

2`
.

C. Additional Algorithms and Sample Parameters

In this section, we describe the setup and derivation function
algorithms of each of the NIST DRBGs. In these descriptions
we omit an optional personalization string which may be
incorporated into the state during the setup process.



Algorithm 6 HMAC-DRBG setup

Require: I , nonce
Ensure: S0 = (K0, V0, cnt0)
seed material← I||nonce
K ← 0x00 . . . 00
V ← 0x01 . . . 01
(K0, V0)← update(seed material,K, V )
cnt0 ← 1
return (K0, V0, cnt0)

The derivation function CTR-DRBG df is shown below.
takes as input a string input string (which must be a multiple
of 8 bits), along with the required number of bits to be
returned num bits. The CTR-DRBG df returns an error if
num bits > 512; we omit this check from the pseudocode
description below for simplicity.

Algorithm 7 CTR-DRBG df

Require: : input string, num bits
Ensure: : req bits
L← (len(input string)/8)32
N ← (num bits/8)32
Z ← L||N ||input string||0x80
while len(Z) mod ` 6= 0 do
Z ← Z||0x00

temp← ε
i = (0)32
K ← left(0x000102...1D1E1F, κ)
while len(temp) < κ+ ` do
IV ← (i)32||0`−32

temp← temp||BCC(K, (IV ||Z))
i← i+ 1

K ← left(temp, κ)
X ← select(temp, κ+ 1, κ+ `)
temp← ε
while len(temp) < num bits do
X ← E(K,X)
temp← temp||X

req bits← left(temp, num bits)
return (req bits)

Algorithm 8 BCC

Require: : K, data
Ensure: : output block
chain = 0`

n = len(data)/`
Starting with the leftmost bits of data, split data into n blocks of ` bits each, forming
B1 to Bn
for i = 1, . . . , n do
M = chain⊕ Bi
chain = E(K,M)

output block ← chain
return (output block)

Algorithm 9 CTR-DRBG setup

Require: : I , nonce
Ensure: : S0 = (K0, V0, cnt0)
1: seed material← I||nonce
2: if derivation function used then
3: seed material← df(seed material, (κ+ `))

4: K ← 0κ

5: V ← 0κ

6: (K0, V0)← update(seed material,K, V )
7: cnt0 ← 1
8: return (K0, V0, cnt0)

Algorithm 10 HASH-DRBG df

Require: : input string, (num bits)32
Ensure: : req bits
temp← ε
m← dnum bits/`e
α← 0x01
for i = 1, . . . ,m do
temp← temp||SH(α||(num bits)32||input string)
α← α+ 1

req bits← left(temp, num bits)
return req bits

Algorithm 11 HASH-DRBG setup

Require: : I, nonce
Ensure: : S0 = (V0, C, cnt0)
seed material← I||nonce
V0 ← HASH-DRBG df(seed material, len)
C ← HASH-DRBG df(0x00||V0, len)
cnt0 ← 1
return (V0, C, cnt0)
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