
The Interpose PUF: Secure PUF Design against
State-of-the-art Machine Learning Attacks

Phuong Ha Nguyen†, Durga Prasad Sahoo‡, Chenglu Jin†, Kaleel Mahmood†,
Ulrich Rührmair§, and Marten van Dijk†?

† University of Connecticut, USA
‡ Bosch India (RBEI/ESY), India

§ Horst Görtz Institute for IT-Security, Ruhr Universität Bochum, Germany

Abstract. The design of a strong silicon Physical Unclonable Func-
tion (PUF) with a rigorous security argument that is also lightweight
and reliable has been the fundamental problem in PUF research, since
its introduction in 2002. Becker’s reliability based CMA-ES attack in
CHES 2015 showed that as of yet, no silicon PUF design can solve this
fundamental problem. This is due to the attacker’s access to repeated
measurements (this gives reliability information) of Challenge Response
Pairs (CRPs). We are the first to provide a detailed analysis of when
the reliability based CMA-ES attack is successful and when it is not
applicable. We introduce the Interpose PUF (IPUF) design and show
by using reduction type of arguments that the IPUF design is secure
against all known machine learning (ML) attacks that use CRPs (but no
side channel information). We provide simulations and confirm these by
experimenting with an FPGA implementation of the IPUF. The IPUF
design solves the fundamental open problem for strong silicon PUFs with
respect to all state-of-the-art ML attacks.

Keywords: Arbiter physically unclonable function (APUF), majority
voting, modeling attack, propagation criterion, reliability based model-
ing, XOR APUF.

1 Introduction

A PUF is a fingerprint of a chip which behaves as a one-way function in the
following way: it leverages process manufacturing variation to generate a unique

? The IPUF design (formerly called MXPUF) was first proposed in the e-print, “MX-
PUF: Secure PUF Design against State-of-the-art Modeling Attacks”, by a subset
of current author list. However, this paper has significantly more content and new
material as compared to the original paper. This paper presents new simulation
results for machine learning attacks on a larger range of IPUF configurations and
simulation results for the strict avalanche criterion (SAC) property. This paper also
presents experimental results for an IPUF FPGA implementation as well as an anal-
ysis of the security issues related to APUF FPGA implementation. Lastly, almost
all of the original paper has been rewritten with more text and additional figures to
clearly explain the theory behind the IPUF design. The source code for this paper
is publicly available at Github: Defense Attack (DA) PUF Library.

https://github.com/scluconn/DA_PUF_Library

2 Authors Suppressed Due to Excessive Length

function taking ”challenges” as input and generating ”responses” as output. Sil-
icon PUFs were introduced in 2002 by Gassend et al. [12] and are an emerging
hardware security primitive in various applications such as device identification,
authentication and cryptographic key generation [21,16,41,3]. The fundamental
open problem of strong silicon PUFs is: How to exploit silicon manufacturing
variations to realize a reliable PUF design that has a rigorous security argu-
ment1 and is lightweight while offering a large space of Challenge-Response Pairs
(CRPs) which is impractical to enumerate2 – making the PUF ’strong’.

Lightweight Design. In a lightweight silicon PUF design manufacturing vari-
ations are exploited by analogue computing (e.g., two stimuli racing against one
another through a multiplexer circuit in an Arbiter PUF [12] as described in
Fig. 4 in Appendix 9.1). After the analogue computing, an analogue to digi-
tal conversion takes place (e.g., by using an arbiter gate in an APUF). Next,
in order keep the design lightweight two factors must be considered. First, the
implementation must have a small number of gates (small area). Second, only
limited digital computation is allowed with only a small number of gate compu-
tations and without the need for accessing additional memory. This gives a small
hardware footprint and high throughput.

Strong lightweight silicon PUF designs that build on top of the APUF are
the XOR APUF [34], the Feed-Forward PUF [19], LSPUF [23], and Bistable
Ring PUF [4]. Other examples of strong silicon PUF designs are the Power Grid
PUF [13], Clock PUF [40] and Crossbar PUF [27]. Since these other examples
are either not lightweight or lack precise security arguments with respect to
an extensive study of possible attack methodologies, we focus in this paper on
designs that build on top of APUFs.

Security Argument. We consider an adversarial model in which an attacker
attempts to obtain a software model of a PUF by using information extracted
from measured CRPs. Intrinsically, a PUF hides a ”random” function and learn-
ing such functions from input-output pairs is the field of ML – therefore, security
must be argued with respect to the best known applicable ML techniques:

Classical ML Attacks. In this paper we refer to ML attacks that use non-
repeated measurements of CRPs as Classical Machine Learning (CML): This
type of attack was first introduced in 2004, where the 64 bit APUF was shown
to be vulnerable with respect to SVM [18,19]. As a proposed secure alternative,
the 64-bit x-XOR APUF [34] xors the outputs of x APUFs into one response
(see Fig. 5 in Appendix 9.1). However, Ruhrmaier et al. [28] demonstrated how
the x-XOR APUF for x ≤ 5 can be modeled with at least 98% accuracy using
Logistic Regression (LR) with non-repeated measurements of CRPs. Probably

1 Where an attacker only has access to challenge-response pairs. Once a silicon PUF
design can be argued to be secure in this setting with respect to state-of-the-art
machine learning (ML) attacks, it becomes an open problem to improve its imple-
mentation to resist side-channel attacks as well.

2 Assuming no additional physical limitation on the read-out speed of CRPs from the
PUF.

Title Suppressed Due to Excessive Length 3

Approximately Correct (PAC) learning has shown to be successful against the
x-XOR APUF for x ≤ 4 [10,11], while the state-of-the-art implementation of LR
breaks the 64 bit x-XOR APUF up to x ≤ 9 and a 128 bit x-XOR APUF up to
x ≤ 7 [37]. For larger x the XOR APUF has been shown to resist LR due to the
subexponential relationship between x and the amount of training data required
to model the XOR APUF [28,37].

The Bistable Ring PUF borrows from the APUF design and can be broken
like the APUF using a neural network [32] or SVM [39]. The Feed-Forward APUF
(FFA) [19] is another variant of the APUF and can be broken using SVM, LR and
CRP based CMA-ES for ≤ 8 feedforward positions [28]. For a larger number of
feedforward positions the FFA becomes unreliable and is therefore not considered
to be practical.

The Lightweight Secure PUF (LSPUF) [23] is a variant of the XOR APUF
with multiple outputs. The LSPUF is based on the x-XOR PUF and conse-
quently is vulnerable to LR [31] when x ≤ 9.

Reliability Based ML Attacks. Becker [2] was able to break the XOR APUF
(and as a consequence the LSPUF) with a linear complexity in x using a non-
classical ML attack which uses the reliability information of CRPs. Reliability
information can be extracted from repeated measurements of responses belong-
ing to the same challenge [5]. This allows an attacker to measure the sensitivity
of a response to environmental noise caused by e.g. temperature and voltage vari-
ations. In this paper we refer to attacks that use repeated CRP measurements
as Reliability based Machine Learning (RML).3

Note that if responses are not sensitive to environmental noise, i.e., the PUF
is very reliable, then Becker’s reliability based CMA-ES attack is not applicable.
For this reason one may want to add digital circuitry to the PUF in the form
of a fuzzy extractor [8] or an interface that exploits the LPN problem [15],
but these techniques are not lightweight and therefore do not solve the stated
fundamental problem. A more lightweight solution is presented in [38] where
the reliability of an x-XOR APUF is enhanced using majority voting. However,
this is not sufficiently lightweight as the same circuitry (including memory for
storing a counter) needs to be executed repeatedly a large number of times which
implies a large number of gate computations and reduction in throughput. But
more important, majority voting does not prevent the reliability based CMA-ES
attack as the environment can be pushed to extremes in order to make the PUF
more unreliable again. We introduce the Interpose PUF (IPUF) which resists
all state-of-the-art classical and reliability based ML attacks and, in particular,
prevents the reliability based CMA-ES attack.

3 Reliability information can be regarded as a type of ‘side-channel’ information which
is extracted from CRPs alone without the use of extraneous equipment, whereas
additional equipement is needed in power side-channel analysis etc. [29,36,35]. In
this paper security is argued in an adversarial model where the attacker only has
access to CRPs.

4 Authors Suppressed Due to Excessive Length

ML Categorization. In addition to partitioning ML attacks into classical and
reliability based types, we can further categorize ML into black box (B) and white
box (W) attacks. White box attacks can be further divided into two subcate-
gories, derivative Free (FW) attacks and Derivative based (DW) attacks. Black
box attacks are weaker than white box attacks in terms of modeling efficiency
because they do not use an exact mathematical model of the PUF. Derivative
Free (FW) attacks are less efficient compared to Derivative based (DW) attacks
because they do not use derivative information for optimization. We express this
relationship in

B attacks < FW attacks < DW attacks. (1)

We summarize the state-of-the-art results in Table 1. Due to the existence of re-
liability ML attacks [2], the fundamental problem of designing a secure, reliable,
and lightweight strong silicon PUF becomes even more challenging.

Table 1: Vulnerability of different PUF designs to machine learning attacks.
PUF Design

APUF x-XOR APUF (x,y)-IPUF

A
tt

a
ck

s CB Insecure [28,9] Secure Secure
CFW Insecure [28,10] Secure Secure
CDW Insecure [28] Secure Prevented
RFW Insecure [2] Insecure [2] Prevented
RDW Insecure [5] N/A N/A

CB = Classical Black box attacks (PAC [9], Neural Networks [28])
CFW = Classical derivative Free White box attacks (CRP based CMA-ES [28])
CDW = Classical Derivative based White box attacks (PAC [10], SVM and LR [28])
RFW = Reliability derivative Free White box attacks (reliability based CMA-ES [2])
RDW = Reliability Derivative based White box attacks (reliability based Least Squares
[5])
N/A = Not Applicable and note that there are no known reliability based black box attacks

Contributions, Storyline, and Organization.

1. Contribution - Reliability based ML Analysis. We provide a brief description
of the APUF and the XOR APUF in Appendix 9.1. In Section 2 we cover the
basic delay based and reliability based APUF models. In Section 2 we also go
over the design of the (x, y)-IPUF (see Fig. 1). In Section 3 we describe the
attacks that are relevant to the IPUF: Becker’s reliability based (CMA-ES) ML
attack on APUFs and XOR APUFs (i.e., RFW), as well as how the IPUF can
be linearly approximated as an XOR APUF model in order to later analyze into
what extend the classical and reliability based ML attacks on the XOR APUF
apply to the IPUF.

After this background we comprehensively analyze the working of Becker’s
attack in Section 4. Through theoretical study and rigorous simulation and ex-
perimentation we explain why the attack works on APUFs and XOR APUFs and

Title Suppressed Due to Excessive Length 5

under what circumstances the attack fails. Based on this analysis, we improve
(detailed in Appendices 9.8 and 9.9) Becker’s attack.

2. Contribution - IPUF Design and Analysis. Based on our analysis of enhanced
reliability based ML and our understanding about when this fails, we are now
able to argue the security of the new IPUF design in Section 5:

We will mention in Section 3 that the known reliability derivative based
white box attack (RDW) cannot be used against the XOR APUF and by ex-
tension the IPUF. We show that direct application of Becker’s attack is not
applicable to the IPUF. Therefore, the way to attack an IPUF is through (a) an
indirect application of a reliability derivative free white box attack (RFW) by
approximating the IPUF as an XOR APUF, or (b) through classical ML attacks
(CB, CFW, or CDW). We prove that classical derivative based white box ML
(CDW) reduces to attacks that first approximate the IPUF as an XOR APUF
and then apply classical ML on the approximated XOR APUF (this is detailed
in Appendix 9.4). We further show that, through careful choice of the IPUF de-
sign parameters (x, y, and the ‘interpose’ position), approximating the IPUF by
an XOR APUF introduces modeling inaccuracies and corresponding RFW and
CDW attacks using this approximation can be prevented. We explain that classi-
cal black box attacks (CB) are not feasible against the IPUF (see Appendix 9.6).
This leaves only classical white box ML that is derivative free (CFW), i.e. CRP
based CMA-ES. We experimentally and analytically show that the complexity
of CFW attacks on a (y + x/2)-XOR APUF is equivalent to the complexity of
CFW attacks on a (x, y)-IPUF (as shown in Appendix 9.3). Hence, when x and
y are properly chosen (just like choosing a high x in an XOR APUF) the IPUF
is secure against CFW as well. We conclude that the IPUF design solves the
fundamental problem of strong silicon PUFs with respect to all state-of-the-art
ML attacks.

Finally, note that under state-of-the-art classical ML, the x-XOR APUF
must resists both CFW and CDW attacks, the latter requires x ≥ 8 for 128 bit
challenges. Under state-of-the-art classical ML, the IPUF only needs to resist
the CFW attack (since known CDW attacks can be prevented). The equivalence
proof shows that this means that y + x/2 must be chosen large enough for an
(y + x/2)-XOR APUF to resist CFW. In this case, see Ineq. (1), y + x/2 can
be chosen smaller than 8 (because we do not need to resist CDW). Therefore,
under classical ML with respect to CFW the (1, 4)-IPUF is the best choice (given
simulations in Section 6 using CRP based CMA-ES). This implies a smaller
number of APUFs compared to a 8-XOR APUF, making the IPUF more reliable
and lightweight as compared to the XOR APUF. For all of these reasons, the
IPUF supersedes the XOR APUF as a strong PUF primitive.

Sections 6 and 7 (with Appendices 9.7, 9.10 and 9.11) confirm our results and
model by simulations and experiments with an IPUF FPGA implementation.

3. Contribution - Open Source PUF Library. We provide open source code for
all of our simulations and experiments. This includes code for ML attacks on
APUFs, XOR APUFs and IPUFs in Matlab and C#. Code to create various
PUF models on FPGA hardware is also given.

6 Authors Suppressed Due to Excessive Length

We offer concluding remarks in Section 8.

2 The APUF and Interpose PUF

In this section, we briefly introduce the analytical delay model [18] and relia-
bility model [5] of the APUF. We also discuss the basic design of the newly
proposed (x, y)-IPUF. Descriptions of both designs are necessary to understand
the effectiveness of ML attacks on PUFs in Section 3. The reader can find the
detailed description of the APUF and the XOR APUF in Appendix 9.1.

2.1 The APUF Linear Additive Delay Model

In [18,19], an analytical model called the Linear Additive Delay Model was pre-
sented. As shown in [18], the linear additive delay model of an APUF has the
form:

∆ = w[0]Φ[0] + · · ·+ w[i]Φ[i] + · · ·+ w[n]Φ[n] = 〈w,Φ〉, (2)

where w and Φ are known as weight and parity (or feature) vectors, respectively.
The parity vector Φ is derived from the challenge c as follows:

Φ[n] = 1, and Φ[i] =

n−1∏
j=i

(1− 2c[j]), i = 0, . . . , n− 1. (3)

In this delay model, the unknown weight vector w depends on the process
variation of the APUF instance (i.e. of a specifically manufactured APUF). The
response to a challenge c is defined as: r = 0 if ∆ ≥ 0. Otherwise, r = 1.

2.2 The APUF Reliability Model

Due to noise, the reproducibility or reliability of the output of the PUF is not
perfect, i.e., applying the same challenge to a PUF will not produce a response
bit with the same value every time. The repeatability is the short-term reliability
of a PUF in presence of CMOS noise, and it is not the long-term device ageing
effect [5].

In an APUF we can measure the (short-term) reliability R (i.e., repeatability)
for a specific challenge c in the following way: Assume that the challenge c is
evaluated M times, and suppose the measured responses that are equal to 1 is
N out of M evaluations. The reliability is defined as R = N/M ∈ [0, 1].

In Eq. (2) we showed the mathematical relationship between the parity vector
Φ and the corresponding response ∆. Similarly, there exists a mathematical
relationship between the reliability R of a given challenge and its response ∆ as
shown in [5]:

∆/σN =

n∑
i=0

(w[i]/σN)Φ[i] = −Φ−1(R) (4)

Title Suppressed Due to Excessive Length 7

c = (c[0], . . . , c[i], . . . , c[n− 1])

(c[0], . . . , c[i], a, c[i+ 1] . . . , c[n− 1])

a

y-XOR APUF

x-XOR APUF

r

Fig. 1: The (x, y)-IPUF (Interpose PUF) is comprised of an x-XOR APUF whose
input rx is interposed between c[i] and c[i+ 1] in the input of a y-XOR APUF.

where the noise follows a normal distributionN (0, σN) and Φ(·) is the cumulative
distribution function of the standard normal distribution. In the case where
R ∈ [0.1, 0.9] a further approximation [5] can be made:

∆/σN ≈ R. (5)

2.3 The IPUF Design

A (x, y)-IPUF consists of two layers. The upper layer is an n-bit x-XOR APUF
and the lower layer is an (n + 1)-bit y-XOR APUF. We denote the input to
the x-XOR APUF as cx = (c[0], . . . , c[i], c[i + 1], . . . , c[n − 1]). The response
rx of the x-XOR APUF is interposed in cx to create a new n + 1 bit challenge
cy = (c[0], . . . , c[i], rx, c[i+1], . . . , c[n−1]). The final response bit is the response
ry of the y-XOR APUF with respect to the new challenge cy. The structure of
the (x, y)-IPUF is shown in Fig. 1.

When creating an (x, y)-IPUF three important parameters determine its se-
curity against ML attacks. The three parameters are x which represents the
number of APUFs in the upper layer XOR APUF, y which represents the num-
ber of APUFs in the lower layer XOR APUF, and the place where the response
of the upper layer rx is interposed in the input challenge for the lower layer
y-XOR APUF. In the next two sections we go over more details related to the
ML attacks on PUFs including the (x, y)-IPUF. Based on this knowledge, we
explain how to properly choose the security parameters for the (x, y)-IPUF in
Section 5.3 to secure it against various ML attacks.

3 Reliability Based ML Attacks

Conceptually, instead of using CRPs like in Classical ML (CML) attacks, the
repeatability (i.e. short-term reliability) of APUF outputs can be used to build
an APUF model based on a set of challenge-reliability (not response) pairs. The
relationship between reliability, R and the weights w of an APUF were shown
in Eq. (4) and Eq. (5). In [5] a Reliability based ML (RML) attack was done
under the assumption that R ∈ [0.1, 0.9]. Based on this assumption a system of
linear equations was established using Eq. (5) so that w[i]/σN could be solved

8 Authors Suppressed Due to Excessive Length

for by using the Least Mean Square algorithm. This approach only applies to
the APUF, and not the XOR APUF and by extension it also does not apply
to the IPUF (i.e. RDW is not applicable). However, RML attacks can be done
without assumptions about the range of R, as we will explain in Section 3.1

In Section 3.2 we show how to model the IPUF as a linear approximation
(LA) of an XOR APUF. This can be used to analyze into what extend the CML
and RML attacks on the XOR APUF apply to the IPUF.

3.1 Reliability Based CMA-ES

In [1,2] a ML attack on APUFs was developed using CMA-ES with reliability
information obtained from the repeated measurements of CRPs. More precisely,
the reliability information R of a challenge c (i.e. (c, R)) is used in the attack
instead of the corresponding response r (i.e. (c, r)).

The rationale behind this attack is as follows: if the delay difference |∆|
between the two competing paths in an APUF for a given challenge c is smaller
than a threshold ε, then the corresponding response r would be unreliable in
the presence of noise; otherwise the response would be reliable. This implies
that reliability information directly leaks information about the ”wire delays”
in an APUF model. Let ri be the i-th measured response of challenge c for
i = 1, . . . ,M . Two different definitions of R, as provided in Eq. (6) and Eq. (7),
are found in [5] and [2], respectively:

R =
1

M

M∑
i=1

ri, (6)

R = |M/2−
M∑
i=1

ri|. (7)

Note similar to Eq. (6) and Eq. (7), repeatability for an APUF was defined
as R = N/M ∈ [0, 1] (see Section 2.2). The objective of CMA-ES is to learn
weights w = (w[0], . . . ,w[n]) together with a threshold value ε. All variables
w[0], . . . ,w[n] are treated as independent and identically distributed Gaussian
random variables. The attack is conducted as follows:

1. Collect N challenge-reliability pairs

Q = {(c1, R1), . . . , (ci, Ri), . . . , (cN , RN)}.

2. Generate K random models:

{(w1, ε1), . . . , (wj , εj), . . . , (wK , εK)}.

3. For each model (wj , εj) (j = 1, . . . ,K), do the following steps:

Title Suppressed Due to Excessive Length 9

(a) For each challenge ci (i = 0, . . . , N), compute the R′i as follows:

R′i =

{
1, if |∆| ≥ ε
0, if |∆| < ε,

(8)

where ε = εj and ∆ follows from (2) and (3) with c = ci and w = wj .
Note that for a given model wj with input ci, R

′
i indicates whether the

output of the response of the model is reliable or noisy.
(b) Compute the Pearson correlation coefficient ρj based on

(R1, . . . , Ri, . . . , RN) and (R′1, . . . , R
′
i, . . . , R

′
N).

4. CMA-ES keeps L models (wj , εj) which have the highest Pearson correlation
ρ, and then, from these L models, another K models are generated based on
the CMA-ES algorithm.

5. Repeat steps (3)-(4) for T iterations and model (w, ε) which has highest
Pearson correlation ρ will be chosen as the desired model. Note that some-
times the chosen model may have low prediction accuracy and in this case
we restart the algorithm to find a model with higher prediction accuracy.

While the above pseudo-code is used to model an APUF, it can also be used
to model an x-XOR APUF. Let

Q = {(c1, R1), . . . , (ci, Ri), . . . , (cN , RN)}

be a set of challenge-reliability pairs of an x-XOR APUF instance. If the CMA-
ES algorithm for modeling an APUF is executed many times with the set Q,
then it can produce x different models for A0, . . . , Ax−1 with high probability [2].
Although there is no proof on how many times the CMA-ES algorithm has to
be executed to get the models of all APUF instances of the x-XOR APUF,
experimentally it is observed that this value needs not to be large. As done
in [2], one can parallelize CMA-ES executions to build models for A0, . . . , Ax−1.

As explained above, the modeling of an x-XOR APUF simplifies to the mod-
eling of x independent APUF instances in the reliability based CMA-ES attack.
This is significant because the relationship between x and the number of CRPs
needed for the reliability based CMA-ES attack is linear. As previously stated,
CML attacks have an exponential relationship between the number of CRPs and
x. Therefore increasing x is a valid way to mitigate the CML attack. However,
the reliability based CMA-ES attack cannot be defeated in the same manner.

In Appendices 9.8 and 9.9, we describe enhancements to the original relia-
bility based CMA-ES attack [2] allowing smaller training sets for achieving the
same accuracy in our simulations and experiments.

3.2 Linear Approximation of the (x, y)-IPUF

A technique that can be used in conjunction with CML or RML is linear approxi-
mation; this technique is specifically designed for use against the (x, y)-IPUF. We
develop the technique based on the following observation: The difference between

10 Authors Suppressed Due to Excessive Length

Table 2: Relationship between the APUF model converged to by CMA-ES and
the APUF’s data set noise rate proportion in each data set Q

Rank n = 1 n = 2 n = 3 n = 4 n = 5 n = 6 n = 7 n = 8 n = 9 n = 10 Failed

Occurrence 36% 5% 9% 5% 12% 7% 7% 5% 7% 5% 2%

Rank : APUF model had the n-th highest data set noise proportion in the data
set.
Failed : Failed to converge to any APUF model.
Occurrence: Percentage of time a convergence occurred.

the input challenge to the y-XOR APUF in an (x, y)-IPUF and the input to a
standard y-XOR APUF is only one bit. Assume i+1 is the interposed bit position
for the input challenge to the y-XOR APUF in an (x, y)-IPUF. The input to the
y-XOR APUF is denoted as clow = (c[0], . . . , c[i], rx, c[i+1], . . . , c[n−1]). Instead
of attempting to learn the x-XOR APUF in the (x, y)-IPUF to estimate rx, we
can give a fixed value for bit i+1, i.e. c′low = (c[0], . . . , c[i], 0, c[i+1], . . . , c[n−1]).

By making this approximation we can effectively ignore the x-XOR APUF
component of the (x, y)-IPUF and treat the (x, y)-IPUF as a y-XOR APUF.
Through this approximation we can do both CML and RML attacks on the
(x, y)-IPUF while still using the XOR APUF model. These attacks are denoted
as LA-CML and LA-RML. In Section 5.2 we analyze under what conditions
the linear approximation accurately approximates the (x, y)-IPUF and how this
attack can be mitigated.

4 Analysis of the Reliability based CMA-ES Attack

The reliability based CMA-ES attack is a serious security issue when designing a
PUF. Our goal is to create a secure PUF design (the (x, y)-IPUF) that prevents
this attack. To do this, it is necessary to understand under what conditions the
reliability based CMA-ES attack works. In this section, we consider the following
questions for in-depth analysis of the reliability based CMA-ES attack:

1. In [2] it is noted that CMA-ES converges more often to some APUF instances
than others when modeling the components of an x-XOR APUF. Essentially
this means some APUFs in an x-XOR APUF are easier and some are harder
to model using the given challenge-reliability pairs. Why does this happen?

2. What are the conditions such that CMA-ES never converges to a particular
APUF instance? In other words, under which condition does the reliability
based CMA-ES attack fail?

The first question was posed in [2] without any theoretical answer and the
second question has not been investigated in literature. The next experiments are
aimed at answering these questions. Based on the knowledge gained from these
experiments, we develop the (x, y)-IPUF that is secure against the reliability
based CMA-ES attack as well as the other machine learning attacks mentioned
in Section 3.

Title Suppressed Due to Excessive Length 11

4.1 Experiment-I: Understanding CMA-ES Convergence

The objective of this experiment is to analyze why some APUF instances are
easier and some are harder to model using reliability based CMA-ES. More
specifically, we want to verify whether the probability of converging to an APUF
model in CMA-ES is correlated with the ”data set noise proportion” of that
APUF instance present in a given data set Q. Here we define the data set noise
proportion for a particular APUF in an x-XOR APUF as the number of noisy
(unreliable) CRPs due to the specified APUF divided by the number of total
CRPs in Q.

Experimental Setup: We run the CMA-ES algorithm 100 times on a 10-XOR
APUF. Each time we run CMA-ES we use a new randomly generated dataset Q
which contains 70× 103 CRPs. The noise rate of each individual APUF is 20%.
It is important to note that while the noise rate of each APUF is the same, the
data set noise proportion of each APUF in Q will change each time we generate a
new Q. For each Q, we generate the challenge-reliability pair for Q by measuring
the response to each challenge 11 times.

Experimental Results: The results of experiment I are summarized in Table 2.
In each run of CMA-ES, a model w is generated. We classify the model in the
following way: if the model w matches one of the APUF models with probability
≥ 0.9 or ≤ 0.1 (complement model), then we accept it as a correct model for that
particular APUF instance. If the generated model w does not match any of the
APUF models we consider the CMA-ES algorithm to have failed to correctly
converge. Note that w can match with at most one APUF instance. This is
because if the model w corresponds to a particular APUF instance, then only
that instance will have a matching probability ≥ 0.9 or ≤ 0.1, and the other
APUF instances will have a matching probability around 0.5. This is due to the
good uniqueness property of simulated APUF instances.

For the given Q, we measure the data set noise proportion of each APUF
with respect to the challenges present in Q. If CMA-ES converges to the APUF
model with the highest data set noise proportion in the current Q, we increment
the count in column one. If CMA-ES converges to the APUF model with the
second highest data set noise proportion in the current Q, we increment the
count in column two and so on. If the CMA-ES algorithm generates a model
that corresponds to none of the APUFs then we say it failed to converge to any
model.

Analysis of Results: The experimental results can be explained as follows.
Every time we generate a new set Q, the challenge-reliability pairs {(ci, Ri)}
of Q can be divided into two parts. The first part is made up of the reli-
able challenge reliability pairs Qr and the second part is made up of the noisy
challenge-reliability pairs Qn. Each APUF instance Ai has its own set of noisy
challenge-reliability pairs Qi,n ⊂ Qn, i = 0, . . . , 9. The CMA-ES algorithm tries
to converge to the APUF instance which has the largest number of pairs in the
combined set Qr ∪Qi,n, i.e., highest Pearson correlation (see Step-4 of the relia-
bility based CMA-ES attack in Section 3.1). Since Qr is useful for modeling all

12 Authors Suppressed Due to Excessive Length

the APUF instances, the set Qi,n should be large to make the Qr∪Qi,n sufficient
enough for modeling the i-th APUF instance. In other words, CMA-ES tries to
converge to the APUF instance that has the largest value for |Qi,n|/|Q|.

The PUF with the highest data set noise rate proportion in Q should have
the highest Pearson correlation coefficient and therefore be the global maxi-
mum. However CMA-ES does not guarantee convergence to the global maxi-
mum. When CMA-ES converges to a local maximum, it produces another one
of the valid APUF models, or an invalid model. For this reason we can see in
Table 2 that we can converge to a PUF model that does not have the highest
noise proportion with small probability compared to the highest case, i.e.,

5

100
,

7

100
,

9

100
,

12

100
� 36

100
.

Overall every time we generate Q, the PUF with the highest noise proportion
in Q will have a high probability of being found by CMA-ES (i.e., 36/100).
Likewise, the PUFs with a smaller noise proportion in Q will have a smaller
probability of being found.

4.2 Experiment-II: CMA-ES Reliability Conditions

The objective of this experiment is to understand under which condition the
reliability based CMA-ES attack fails to build a model for a particular APUF in
an x-XOR APUF. From experiment I we know that CMA-ES is most likely to
converge to the APUF model which has the highest data set noise proportion in
Q. We want to show that if the noise rate of the APUF instances in the x-XOR
APUF’s output are not equal (i.e., drawn from different distribution), then some
APUF models cannot be generated by CMA-ES.

Experimental Setup: We simulate a 2-XOR APUF consisting of two APUF
instances, denoted as A0 and A1. The noise rate of both APUFs are set at 1%.
We run CMA-ES on the 2-XOR APUF 100 times. In each run of CMA-ES we
generate a Q of size 70 × 103, where in Q each challenge is evaluated 11 times
to generate the reliability information.

In this experiment we hypothesize that CMA-ES fails to build a certain
APUF model when that model always has a lower noise rate (and therefore a
lower data set noise proportion in Q). To do this we manipulate the reliability
information presented in the final output, such that A0 always has lower data set
noise proportion. This is achieved by applying majority voting to the responses
of A0 before XOR-ing it with the response of A1. In majority voting, we have
experimented with 5 and 10 votes to observe the performance of CMA-ES.

Experimental Results: The experimental results are shown in Table 3. The
first column corresponds to the number of times the output was measured on
A0 before majority voting was done. The second and the third columns refer to
the number of times the correct model was found by CMA-ES for A0 and A1,
respectively.

Title Suppressed Due to Excessive Length 13

Analysis of Results: From Table 3, it is clear that if M is sufficiently large
(M ≥ 10), then the reliability based CMA-ES attack cannot build a model for
A0. This is because we decreased the noise rate of A0 by applying majority
voting. Since A0 is less noisy, it will have a lower data set noise proportion in
Q. As we established in the first experiment, CMA-ES tends to converge to the
model with highest data set noise proportion with high probability. In Table 3
we can clearly see this happening when M = 10, as CMA-ES is never able to
build a model for A0 (the APUF with the lower data set noise proportion).

It is important to also note that just because the APUFs have different noise
rates, it does not make the XOR APUF secure against the reliability based
CMA-ES attack. In the setup described in this experiment, an attacker could
simply learn a model for A1. Once the model for A1 has been learned the attacker
could then use that model to remove most of the noisy challenge-reliability pairs
corresponding to A1 from Q. Doing this would create a new dataset Qreduced
from Q in which A0 would have the highest data set noise proportion. The
attacker could then run CMA-ES on Qreduced to get a model for A0.

Table 3: Results of Experiment-II
M† Number of times A0

found
Number of times A1

found

5 8 92

10 0 ‡ 99 ‡

† No. of measurements used in the majority voting
of A0.
‡ The sum of the two counts is not equal to 100
because one attack failed.

4.3 Inferences from the Experiments

Two important points can be understood from the experiments in this section.
In order for the reliability based CMA-ES attack to be successful the following
conditions must be met:

1. All APUF instances outputs must have the same influence on the final output
of the PUF.

2. The noise rate of all APUF instances should be similar.

In the next section, we leverage the knowledge from these experiments to show
how the proposed IPUF can be secured against the reliability based CMA-ES
attack.

14 Authors Suppressed Due to Excessive Length

5 Security and Reliability Analysis of IPUF

In this section, we analyze the security and reliability of the proposed (x, y)-
IPUF design. There are three main parameters to choose when designing an
(x, y)-IPUF: x, y and the position of the interposed bit. By selecting the right
parameter values, we show that our (x, y)-IPUF can be secured against all the
aforementioned ML attacks enumerated in Table 1.

This section is organized as follows: To explain how to properly choose the
(x, y)-IPUF parameters in Section 5.1 we first show how a single challenge bit in
an APUF effects its output r. We then use this analysis to determine the most
secure position for the interposed bit in a (1, 1)-IPUF in Section 5.2. Since the
IPUF is developed to prevent RML attacks, we need to study the reliability of the
(1, 1)-IPUF as shown in Section 5.2. After that, we explain why IPUF’s design
can prevent RML attacks. While the (1, 1)-IPUF can prevent RML attacks,
properly choosing the interposed bit position alone is not enough. The (1, 1)-
IPUF still suffers from CML, LA-CML and LA-RML attacks (see Section 3.2).
Therefore, in Section 5.3 we expand our analysis to the (x, y)-IPUF where x ≥ 1
and y > 1. By using a middle interposed bit and properly choosing x and y ≥ 2
we are able to show that the (x, y)-IPUF is secure against all current state-
of-the-art ML attacks. We comprehensively study the reliability of the IPUF
in Appendix 9.7. Based on our analysis we claim properly designed IPUFs are
superior to XOR APUFs in terms of security, reliability and hardware overhead.

5.1 Influence of Challenge Bit c[j] on the Response r in the APUF

The influence of a challenge bit on an APUF’s response depends on its position in
the challenge c [25,6,26]. From Eq. (2), it can be observed that Φ[j+1], . . . ,Φ[n−
1] does not depend on the challenge bit c[j]. For a given challenge c, based on
the linear delay model of the APUF, the delay difference ∆ can be described as:

∆ = (1− 2c[j])×∆Flipping +∆Non−Flipping (9)

where ∆Flipping is the term affected by the flipping of bit c[j] and is given by

∆Flipping =
∑j
i=0 w[i] Φ[i]

(1−2c[j]) . Likewise, the term that is not dependent on the

flipping of c[j] is denoted as ∆Non−Flipping =
∑n
i=j+1 w[i]Φ[i].

If c[j] = 0 then ∆ = ∆Flipping + ∆Non−Flipping and we will denote this ∆
as ∆c[j]=0 with corresponding response rc[j]=0. Similarly when c[j] = 1 we will
have ∆ = −∆Flipping + ∆Non−Flipping. We denote this ∆ as ∆c[j]=1 and the
response as rc[j]=1.

We want to know the influence of flipping c[j] on the output r. We measure
this influence by computing the probability that the output remains the same if
we flip bit c[j] while keeping the rest of c constant:

Prc(rc[j]=0 = rc[j]=1). (10)

In Appendix 9.2, we prove:

Prc(rc[j]=0 = rc[j]=1) ≈ (n− j)
n

, j = 0, . . . , n− 1 (11)

Title Suppressed Due to Excessive Length 15

This implies that an expected probability Prc(rc[j]=0 = rc[j]=1) decreases
with the increasing value of j, so the influence of each challenge bit is not equal.
This undesirable security property means we must carefully consider the position
of the interposed bit. In the next section we analyze how the interposed bit
position effects the security and reliability of the (1, 1)-IPUF.

5.2 Security and Reliability Analysis of the (1,1)-IPUF

The most basic form of the (x, y)-IPUF is the (1, 1)-IPUF, with the upper layer
consisting of a single APUF Aup and the lower layer consists of a single APUF
Alow. Let us denote the responses to Aup and Alow by rup and rlow, respectively.
The final output of the (1, 1)-IPUF is the response rlow. Based on the (1, 1)-
IPUF structure we analyze where to interpose the bit in the lower APUF and
how this affects the reliability and security of the (1, 1)-IPUF.

Reliability of the (1,1)-IPUF In order to determine the effect of measure-
ment noise in the (1, 1)-IPUF, we evaluate a challenge c twice. Let us denote
rup,0 as the response of the upper APUF and rlow,0 as the response of the lower
APUF the first time the challenge is applied. Likewise, let us denote rup,1 and
rlow,1 as the APUF’s responses the second time the challenge is evaluated.

Assume APUF Aup has noise rate βup such that Prc(rup,0 6= rup,1) = βup.
Similarly, assume that APUF Alow has noise rate βlow such that Prc(rlow,0 6=
rlow,1|rup,0 = rup,1) = βlow.

Let us denote i + 1 as the interposed bit position for rup in the (n + 1)-bit
challenge of Alow. We use Eq. (11) to derive

Prc(rlow,0 6= rlow,1)

= Prc(rlow,0 6= rlow,1|rup,0 = rup,1)Prc(rup,0 = rup,1) +

Prc(rlow,0 6= rlow,1|rup,0 6= rup,1)Prc(rup,0 6= rup,1)

= βlow(1− βup) +

(
i+ 1

n+ 1

)
βup. (12)

In practice βup � 1 and βlow � 1, thus Eq. (12) can be approximated as:

Prc(rlow,0 6= rlow,1) ≈ βlow + βup
i

n
(13)

From Eq. (12) and Eq. (13) it can be seen that the reliability information of
Aup and Alow available at the output of (1, 1)-IPUF are not equal even when
βlow = βup. If we assume βlow = βup = β then Alow contributes approximately
β while Aup contributes approximately β i

n . The unequal reliability contribution
shown by our analysis has important implications for the success of the reliability
based CMA-ES attack.

16 Authors Suppressed Due to Excessive Length

Security of (1, 1)-IPUF We will now discuss the security of the (1,1)-IPUF
with respect to the reliability based CMA-ES attack (i.e. RML), CML and ML
attacks that use the linear approximation technique (i.e. LA-CML and LA-
RML).

Reliability Based CMA-ES Attack: The (1,1)-IPUF is theoretically secure
against the CMA-ES reliability attack for two reasons if the interposed bit posi-
tion for rup is properly chosen: The first reason is based on the conditions under
which the CMA-ES attack operates and the second is based on the computation
done to learn the APUF model in CMA-ES.

First, recall the conditions under which the reliability based CMA-ES attack
works as described in Section 4.2. In order to successfully model the APUF com-
ponents Aup and Alow, each APUF must contribute equal reliability information
to the output. For the (1,1)-IPUF, we showed in Eq. (13) that the contributions
of Alow and Aup are not equal, i.e., β is not equal to β i

n when i is between 0
and n

2 . Due to the unequal contribution of reliability information in the output
when the interposed bit position (i + 1) is not close to n, CMA-ES will not
converge to the model for Aup. We did the following experiment to determine
the importance of the interposed bit position. We launched the reliability based
CMA-ES attack on a 64-bit (1,1)-IPUF with 30,000 challenge-reliability pairs.
In this experiment, the noise rate of each APUF was 20% (β = 0.2). The number
of iterations for CMA-ES was 30,000. We repeated the attack 20 times with the
interposed bit position at 0 (i = 0), i (i = n/2) and 64 (i = n). The result
shows that Aup can be modeled (i.e., the prediction accuracy of the
model of Aup is 98%) when i = n = 64. However, if the inserted position
is in the middle (i = 32) or at first stage (i = 0), then Aup can not be
modeled (i.e., the prediction accuracy of the model of Aup is 51%).

Since we cannot first build a model for Aup we must first try to build a model
for Alow. This brings us to the second reason the (1,1)-IPUF is secure against
the reliability based CMA-ES attack. Recall in Section 3.1 that ∆ is needed to
compute the fitness of each model w. ∆ is based on the input to Alow. However
we do not know one of the input bits (the interposed bit) to Alow so we cannot
compute ∆ (see the calculation of ∆ in Eqs. (2) and (3)).

However, we should take a closer look at the way the computa-
tion of ∆ is done to know how the interposed bit position affects
the modeling attack on Alow. In Section 5.1, we have ∆ = (1 − 2c[j]) ×
∆Flipping + ∆Non−Flipping (see Eq.(9)) and thus, if j gets closer to 0, then ∆
and ∆Non−Flipping become similar. Strictly speaking, we cannot run CMA-ES
to build a model for Alow when the interposed bit position i is NOT close to 0,
for example the interposed bit position is in the range of [n/2, n].

Conclusion: We cannot modelAup due to the unequal reliability information
on the output and we cannot model Alow due to the unknown value of the
interposed bit when the interposed bit position is properly chosen. Therefore,
we claim the (1, 1)-IPUF is secure against the reliability based CMA-ES attack
when the interposed bit position is properly chosen in the middle of the input
to Alow.

Title Suppressed Due to Excessive Length 17

Classical Machine Learning Attacks: The (1, 1)-IPUF is not secure against
classical machine learning attacks due to its low model complexity. Instead of
modeling the APUF components individually, any machine learning algorithm
can be used to learn the model for Alow and Aup simultaneously. Experiments
to support our claim are given in Section 6 (see Table 4). Note that, while the
IPUF is vulnerable to classical derivative free machine learning, we will prove
that derivative based classical machine attacks are not possible on an IPUF in
the next section. As a result, we only need to consider derivative free classical
machine learning attacks on an IPUF.

Attacks Using Linear Approximation (LA-CML and LA-RML): The
security of the (1, 1)-IPUF against an ML attack that use the linear approxima-
tion (see Section 3.2) depends on the choice of the interposed bit position. In
this attack, any CML or RML attack on an XOR PUF can be adapted to work
on an (x, y)-IPUF. This adaptation is done by approximating the (x, y)-IPUF
as a y-XOR APUF by fixing the interposed bit from the x-XOR APUF to be
0. In the case of the (1, 1)-IPUF this means that we ignore the component Aup
and approximate (1, 1)-IPUF by APUF Alow.

Let us denote clow as the input to Alow and c′low to be the approximation of
clow where we fix the interposed bit rup in clow to be 0. We can write Alow(c′low)
as the output of the linear approximation and Alow(clow) as the output of the
(1, 1)-IPUF. We can now analyze how effective the linear approximation is. We
measure the effectiveness of the approximation by computing the probability that
the output of the linearized model Alow(c′low) matches the output of Alow(clow):

papprox = Prc(Alow(c′low) = Alow(clow)) (14)

If papprox is high, then the (1, 1)-IPUF is accurately approximated by
APUF Alow(c′low) and can be modeled with an ML attack.

Let us assume the following conditions for the analysis of the attack and for
the sake of explanation, we drop low from c′low or clow. We model a (x, 1)-IPUF
with APUF components that are 100% reliable and the output rup of the x-XOR
APUF is uniform, i.e., Prc(rup = 0) = Prc(rup = 1) = 1

2 . Then,

papprox = Prc(Alow(c′) = Alow(c))

= Prc (Alow(c′) = Alow(c)|rup = 0) Prc(rup = 0)

+Prc(Alow(c′) = Alow(c)|rup = 1)Prc(rup = 1)

= 1× 1/2 +
n− i
n
× 1/2 = 1/2 +

n− i
2n

. (15)

Eq. (15) shows that papprox decreases as i increases. Note that our discus-
sion holds for any (x, 1)-IPUF and thus, it is applicable to the (1, 1)-
IPUF. We model a 64-bit (1,1)-IPUF using the reliability based CMA-ES attack
with the linear approximation (LA-RML). The number of challenge-reliability
pairs was 30,000 and the noise rate was 20%. From the experiment, the predic-
tion accuracy of LA-RML on a 64-bit (1,1)-IPUF when i = 0, 32, 64 is equal to

18 Authors Suppressed Due to Excessive Length

97%, 70% and 51%, respectively. Likewise, a similar result can be achieved by
using CRP based CMA-ES (classical machine learning).

A prediction accuracy of 50% is the worst a machine learning attack can do
on a PUF with uniform binary output. Therefore, it would seem that picking
the interposed bit positon to be as high as possible would result in the most
secure (x, y)-IPUF design. However, below we will explain why choosing a high
interposed position is not ideal.

Interposed Bit Position: In the (1, 1)-IPUF the only design parameter we
must choose is the interposed bit position. The higher the interposed bit position,
the more influence Aup has on the (1, 1)-IPUF. As a result the PUF model is
more complex. It is more difficult to attack with CML attacks and the linear
approximation is less accurate. However, a high bit position yields high noise on
the output (less reliable). In addition, with a high interposed bit position and
large enough number of input bits, the (1, 1)-IPUF becomes equivalent to an
XOR APUF in terms of susceptibility to RML attacks.

The conclusion from the analysis of the (1, 1)-IPUF is that using the inter-
posed bit position as the only security parameter is not enough to mitigate all
the different ML attacks. We seek a tradeoff between all the factors by choosing
the interposed bit to be the middle bit position. Based on this choice we then
analyze how to modify x and y to further secure our design in Section 5.3.

5.3 Security and Reliability Analysis of the (x, y)-IPUF

The analysis in Section 5.2 showed that the (1, 1)-IPUF with a middle inter-
posed bit position could defeat the reliability based CMA-ES attack. However
the (1, 1)-IPUF was still vulnerable to CML attacks and both types of attacks
that employ the linear approximation (LA-CML and LA-RML). In this section,
we show how selecting x and y can mitigate the remaining ML attacks and
we prove that the derivative based classical machine learning attacks (CDW
and see Table 1 for the classification of ML attacks) are not available. We also
analyze other important properties of the (x, y)-IPUF including reliability (Ap-
pendix 9.7), the strict avalanche property (SAC) (Appendix 9.5) and the resis-
tance of IPUF against PAC learning attacks (Appendix 9.6).

Security Analysis In this section we show how the (x, y)-IPUF can mitigate
the reliability based CMA-ES attack (RML), CML attacks, LA-CML and LA-
RML.

Reliability based CMA-ES Attack: The security argument for the (1, 1)-
IPUF in Section 5.2 also applies to the (x, y)-IPUF. Using challenge-reliability
pairs and CMA-ES, an adversary cannot build models for the x component
APUFs in the x-XOR APUF. This is due to the unequal contribution of noise on
the output between the x-XOR APUFs and the y-XOR APUFs (see Section 9.7).
Also an adversary cannot build models for the y component APUFs in the y-XOR
APUF as rx (the interposed bit position) is not known. Therefore, we consider
the (x, y)-IPUF to be secure against the reliability based CMA-ES attack.

Title Suppressed Due to Excessive Length 19

Classical Machine Learning Attacks: There is no known way the APUF
components of the (x, y)-IPUF can be modeled individually. As a result, the
only way to attack an (x, y)-IPUF is by modeling all the (x + y) component
APUFs simultaneously using classical machine learning, e.g., neural network or
CRP based CMA-ES. Ruhrmair et al. [28] showed that the more APUFs that
influence (contribute) to the output of an XOR APUF, the more difficult the
PUF is to model using CML methods. In other words, increasing x in an x-XOR
APUF can mitigate CML attacks. In Appendix 9.3, we prove that if the interpose
position of rx is i then the (x, y)-IPUF is equivalent to a (y+ prx)-XOR APUF
where:

pr =
1− (1− 2p)y

2
and p =

i

n
.

If i = n and y is odd, then pr = 1 and (x, y)-IPUF is equivalent to (x + y)-
XOR APUF in terms of security because of (x+y) APUFs contributing to every
challenge-response pair. If i = 0, then pr = 0 and (x, y)-IPUF is equivalent to a
y-XOR PUF. In terms of difficulty of modeling with classical machine learning
methods (i.e. CRP based CMA-ES), the (x, y)-IPUF with parameter i is approx-
imately equivalent to a (y+prx)-XOR PUF. We experimentally verify this claim
in Section 6.1 (see Figs. 2 and 3). As a result, we can use the same strategy
employed in XOR APUF design [28] and increase x and y in an (x, y)-IPUF to
mitigate classical machine learning attacks. It is also worth noting this analysis
to determine the number of APUFs that contribute in an IPUF can be used to
derive further IPUF properties such as uniformity, uniqueness and reliability.

LA-RML. Reliability based CMA-ES applied to an (x, y)-IPUF after linearly
approximating it as a y-XOR APUF learns one single component APUF of the
y-XOR APUF. In the linear approximation we substitute rx from the upper
x-XOR APUF by 0 and feed 0 into the lower y-XOR APUF. If we denote the
single component APUF which we try to learn using CMA-ES by Alow, then, for
the challenge interposed with rx, the output of Alow is the output of an (x, 1)-
IPUF. I.e., we attempt to learn a model for Alow from a linear approximation of
an (x, 1)-IPUF. From Eq.(15) with interpose bit position in the middle we infer
that the model at best predicts Alow with papprox = 75% accuracy. Reliability
based CMA-ES learns models for each of the component APUFs of the lower
y-XOR APUF, each with at most 75% accuracy. This shows that the maximum
accuracy of the learned approximated y-XOR APUF is at most

pXORlearn =

y∑
j=0,j is even

(
y

j

)
(1− papprox)jpy−japprox

=
1− (2papprox − 1)y

2
=

1

2
+

1

2y+1
.

20 Authors Suppressed Due to Excessive Length

This shows that pXORlearn is close to 1/2 for y large enough and this implies that
the learned model for the linearly approximated y-XOR APUF does not contain
predictive value4.

If y ≥ 3, then pXORlearn ≤ 56.25%. We launched the LA-RML attack on a
64-bit (3,3)-IPUF. In this experiment the noise rate for each APUF was 20%.
The prediction accuracy of the final model was around 50% (confirming the
theoretical upper bound) when 200,000 challenge-reliability pairs were used in
the training phase (see Table 4).

LA-CML. In case of linearly approximating the (x, y)-IPUF as a y-XOR APUF
and applying classical ML, we know that learning a model for even a noise-free
64 bit y-XOR APUF is currently not practical for y ≥ 10 if LR is used and not
practical for even smaller y if CRP based CMA-ES is used. However, even if the
IPUF itself is 100% reliable, a reliable CRP of the IPUF may be a noisy CRP
of the linearly approximated y-XOR APUF. By combining Eq.(11) with the
derivation leading to Eq.(15), the accuracy pXORapprox of the linearly approximated
y-XOR APUF itself is given by

pXORapprox = 1× 1/2 + p′ × 1/2,

where

p′ =

y∑
j=0,j is even

(
y

j

)(
i

n

)j (
n− i
n

)y−j
=

1 + (1− 2i
n)y

2
.

After substituting p′ we obtain

pXORapprox =
3

4
+

1

4
(1− 2i

n
)y.

If the interposed bit is at the middle position (i.e. i = n
2), then pXORapprox is 75%.

This implies that the noise rate of the linearly approximated y-XOR APUF
given by the CRPs from the IPUF is 25%. For this reason CML should be even
more difficult: We performed the LA-CML attack using CRP based CMA-ES on
a reliable 64-bit (3,3)-IPUF. The prediction accuracy of the model is around
50% when 200,000 CRPs are used in the training phase (see Table 4).

Unavailability of Derivative Based Machine Learning Attacks on the
IPUF: In the analysis of the security of the IPUF against classical ML attacks,
we do not specifically consider the type of machine learning attack, i.e., black
box methods, derivative based white box methods or derivative free white box
methods. In Appendix 9.4, we prove that the derivative based white box attacks

4 We can compare the model’s output with the IPUF’s output and attempt to find
out whether this teaches something about rx. Due to the XOR in the lower y-XOR
APUF, the outputs of individual component APUFs are masked so that little can
be learned about rx. For small y = 1, we are able to learn some information about
rx from comparing the model’s output with the IPUF’s actual output; this can then
be used to learn about the upper x-XOR APUF.

Title Suppressed Due to Excessive Length 21

can at best learn a linear approximated model of the IPUF and therefore reduce
to LA-RML or LA-CML.

We already proved that the (x, y)-IPUF with the interposed bit position in
the middle is equivalent to a (y + x

2)-XOR APUF in terms of general security.
From Inequality 1, we can say that (y+ x

2) < 10 to defeat derivative free modeling
attacks on a (y + x

2)-XOR APUF. The number 10 is reported in [37], where
it is shown that if (y + x

2) = 10, then the state-of-the art derivative based
machine learning attacks are infeasible on a (y + x

2)-XOR APUF. This means
that IPUFs requires less APUF components than an XOR APUF to be secure. As
a result, IPUFs are better in terms of security, reliability and hardware overhead
compared to XOR APUFs.

Other (x, y)-IPUF Security Properties Reliability of the (x, y)-IPUF:
We comprehensively study the reliability of (x, y)-IPUF with the results based
on the simulation and FPGA implementation IPUF in Appendix 9.7. Over there,
we show that the reliability of (x, y)-IPUF is better than that of (x + y)-XOR
PUF.

Strict Avalanche Property of (x, y)-IPUF and Resistance Against PAC
Learning Attacks: The SAC property is an important security feature as dis-
cussed in [25,6,26]. In Appendix 9.5 we analyze the SAC property of (x, y)-IPUF
and then show in Appendix 9.6 that IPUFs are secure against PAC Learning
attacks [9] based on the result of the SAC analysis. We also explain why the
PAC learning attacks in [10,11] are not applicable.

6 Simulation Results

We provide simulation results in this section to support the major security and
reliability claims made regarding the IPUF.

6.1 IPUF Security

Simulated Machine Learning Attacks On IPUF and XOR APUF To
compare the vulnerabilities of the XOR APUF and various IPUF configurations
to machine learning attacks we used the following setup: We simulated a 64-bit
6-XOR APUF, a 64-bit (1, 1)-IPUF and a 64-bit (3, 3)-IPUF using Matlab. Note
that, all the IPUFs have the interposed bit in the middle position.

The APUF components that make up each PUF design use weights that
follows a normal distribution with µ = 0 and σ = 0.05. The noise for each
weight follows a normal distribution N (0, σ2

noise). The distribution of each weight
is therefore N (0, σ2 + σ2

noise). In our simulations, we used the following relation
between σ and σnoise to control the reliability levels: σnoise = γσ, where 0 ≤ γ ≤
1. For γ = 0, a PUF instance is 100% reliable.

On each respective PUF design we run three different machine learning at-
tacks (two in the case of the XOR APUF). We perform a classical machine

22 Authors Suppressed Due to Excessive Length

Table 4: Vulnerability of different PUF designs to machine learning attacks.
CML=Classical Machine Learning attack, RML=Reliability based Machine
Learning attack, LA-RML=Linear Approximation Reliability based Machine
Learning attack, LA-CML=Linear Approximation Classical Machine Learning
attack.

PUF Design
6-XOR
APUF

(1,1)-
IPUF

(3,3)-
IPUF

A
tt

a
ck CML 50.2% (7) † 82.4%

(X)‡
52.9% (7)

RML 84.0% (X) N/A(7) N/A (7)
LA-CML N/A(7) 74.0%

(X)
49.0% (7)

LA-RML N/A(7) 73.0%
(X)

48.0% (7)

† Attack fails
‡ Attack works

learning attack (denoted as CML in Table 4), the reliability based CMA-ES
attack (denoted as RML in Table 4) and the linear approximation to the clas-
sical and reliability based machine learning attack (denoted as LA-CML and
LA-RML in Table 4).

Each attack in Table 4 is performed using CMA-ES to optimize the mathe-
matical model for 1000 iterations. Each attack uses 200,000 CRPs for training
(or 200,000 challenge reliability pairs in the case of the reliability attacks). The
accuracy of the attack is computed based on a testing dataset of 2000 CRPs.
We compute the accuracies reported in Table 4 by running each attack 10 times
and taking the average.

The security of the 6-XOR APUF is shown in Table 4 in the first column. It
is clear that an XOR APUF using a large number of APUF components (in this
case 6) can mitigate CML attacks, given the amount of training data provided in
this setup. However, the 6-XOR APUF is still highly vulnerable to RML attacks.
This result is demonstrated in Table 4 as the reliability based CMA-ES attack
achieves an average accuracy of 84% on this PUF design. Note that we do not
run any attacks on the 6-XOR APUF that use the linear approximation because
these types of attacks are specific to the IPUF.

The resilience of the (1, 1)-IPUF to the CML, LA-CML and LA-RML is
shown in column two of Table 4. We note the following: As hypothesized, the
(1, 1)-IPUF is vulnerable to CML due to its low model complexity. However,
the linear approximation reliability based CMA-ES attack (LA-RML) works on
the (1, 1)-IPUF which may seem unexpected given our previous claims. Recall
that in general the reliability based CMA-ES attack cannot be performed on any
IPUF design (hence the X in entry for the RML attack for the (1, 1)-IPUF). This
is because the input to the y-XOR APUF is unknown and therefore ∆ cannot be
computed. However, in our LA-RML attack on the (1, 1)-IPUF and (3, 3)-IPUF
we do not use the original formulation of the reliability based CMA-ES attack.

Title Suppressed Due to Excessive Length 23

 0.5

 0.6

 0.7

 0.8

 0.9

 1

1-
XP

2-
XP

3-
XP

4-
XP

5-
XP

6-
XP

(1
,5)

-IP

(2
,4)

-IP

(3
,3)

-IP

(4
,2)

-IP

(5
,1)

-IP

Pr
ed

ic
tio

n
A

cc
ur

ac
y

Fig. 2: Prediction accuracy of reliability based CMA-ES attack on 64-bit APUF
(1-XP), 64-bit 2,3,4,5,6-XOR APUF (y-XP) and (1,5), (2,4), (3,3), (4,2), (5,1)-
IPUF ((x,y)-IP).

To make the attack work on IPUF configurations we assume the interposed bit
to be 0. By doing this we can now compute ∆ and treat the (1, 1)-IPUF as a
single APUF. In section 5.3 we showed that for the (x, 1)-IPUF using any ML
technique with the linear approximation would have an upper bounded model
accuracy of 75%. The model accuracy produced by the LA-RML and LA-CML
on the (1, 1)-IPUF in Table 4 closely matches our theoretical upper bound.

The security of the (3, 3)-IPUF against CML, LA-CML and LA-RML is
shown in the third column of Table 4. It can clearly be seen that all attacks
fail to produce an accurate model of the (3, 3)-IPUF. Due to the high model
complexity, the (3, 3)-IPUF is not vulnerable to the CML attack, just like the 6-
XOR APUF. Just like for the (1, 1)-IPUF, the reliability based CMA-ES attack
cannot be performed on the (3, 3)-IPUF. When we run the linear approxima-
tion reliability based CMA-ES attack, due to the higher y, the accuracy of the
model generated by any method that uses the linear approximation is theoret-
ically upper bounded at 75% (See Eq. (15)). This coincides with the low accu-
racy of the model generated by both the linear approximation reliability based
CMA-ES attack and the linear approximation CRP based CMA-ES. Overall our
experimental results for this section support our claim that the (x, y)-IPUF with
proper parameter choices is secure against all current state-of-the-art of machine
learning attacks.

(x, y)-IPUF and (x+y)-XOR APUF Model Complexity Comparisons
In Section 5.3, we compared the (x, y)-IPUF and the (x+ y)-XOR APUF. Since

24 Authors Suppressed Due to Excessive Length

we only focus on the design, we consider reliable PUFs to experimentally demon-
strate Eq. (20), i.e. If the interposed bit position is in the middle, then the (x, y)-
IPUF is equivalent to a (y + x

2)-XOR APUF (see Appendix 9.3). We run the
CMA-ES reliability attack on 64-bit APUF (a.k.a 1-XOR APUF or 1-XP), 64-bit
2,3,4,5,6-XOR APUF (y-XP) and (1,5), (2,4), (3,3), (4,2), (5,1)-IPUF ((x,y)-IP)
with 200,000 CRPs for training. In each attack the CMA-ES algorithm is run
for 1000 iterations. The results are shown in Fig 2. For each PUF, we attack it
10 times. The prediction accuracy of each attack is computed using 2000 CRPs.
Fig 2 shows that the experimental results closely matches the theory presented
in Eq. (20).

Requisite APUF components for a secure (x, y)-IPUF Under state-
of-the-art classical ML, the x-XOR APUF must resists both CFW and CDW
attacks, the latter requires x ≥ 8 for 128 bit challenges. Under state-of-the-art
classical ML, the IPUF only needs to resist the CFW attack (since known CDW
attacks can be prevented) and the equivalence proof shows that this means that
y+x/2 must be chosen large enough for an (y+x/2)-XOR APUF to resist CFW.
In this case, see Ineq. (1), y + x/2 can be chosen smaller than 10 (because we
do not need to resist CDW).

We ran CRP based CMA-ES attacks using CRPs (state-of-the art DW) on
different XOR APUF configurations. The attack was repeated 20 times, and
each instance of CMA-ES was run for 2000 iterations. We attacked a 128 bit
4-XOR APUF with 10 million CRPs for training data. We consider using 10
million CRPs which requires 4.5 weeks in our implementation. In 20 attack runs
we achieved an average model accuracy of 51.78%. If an adversary wants a high
accuracy, then a much larger training set is required taking significantly more
time. Essentially this shows a (1, 4)-IPUF (5 APUF components) is secure for
the 128 bit case.

For 128 bits an XOR APUF requires 8 APUF components, but an IPUF only
requires 5. This experiment clearly shows the benefit of the IPUF as it can be
secured against CML with fewer APUF components. This results in a smaller
hardware footprint and more reliable PUF design.

6.2 IPUF Reliability

Due to the limitation of pages, the study of IPUF reliability based on simulation
is provided in Appendix 9.7.

7 IPUF Implementation

In order to validate our IPUF security and reliability claims, we implemented
our proposed IPUF designs on an FPGA board. In this section, we describe the
FPGA implementation details and related experimental results. We also discuss
the limitations of FPGA based APUFs on composite PUF (XOR APUF and
IPUF) security.

Title Suppressed Due to Excessive Length 25

7.1 IPUF Implementation Details

In our IPUF design we implemented every stage (switch) of each APUF by a
Look-Up Table (LUT)5. The LUTs are chained together and the final output
is collected by a flip-flop serving as an arbiter. The main issue in implementing
any IPUF design is to make sure that the response rup of the upper layer XOR
APUF is ready when the interposed position of the lower layer XOR APUF is
evaluated. To solve this issue, we added one more signal from the upper layer
XOR APUF to inform the control circuitry when rup is ready. Once the signal
is received the lower layer XOR APUF evaluates its input.

Desirable statistical properties of a PUF FPGA implementation include unique-
ness, reliability and uniformity. It has been experimentally verified that unique-
ness is a serious issue when implementing FPGA based APUFs [22,14]. The
main reason implementing unique APUFs on FPGAs is problematic [20,22] is
because the designers are not allowed to precisely control the routing between
each LUT to maintain the balance of the length of the two competing paths,
the delay difference induced by routing is much larger than the delay difference
introduced by process variation. Thus, the behavior of one APUF on an FPGA
is largely determined by the place and route of the LUTs.

We used two different ways to place the switch chains: (1) Random placement:
we randomly select one LUT in each slice and then connect them together. (2)
Pattern placement: we place the switches according to a pre-defined pattern. For
example, we only use LUT A and LUT B in every slice. Each method has its own
strengths and weakness, see Appendices 9.10 and 9.10 for a detailed discussion.
Since the design strategy will largely influence the experimental results that we
will present later, we will clearly state how the APUFs are generated for each
experiment.

7.2 Experimental Results

Reliability Based Machine Learning Attack on XOR APUFs: First, we
repeated the enhanced reliability based CMA-ES attack in Section 9.9 on XOR
APUFs to validate the effectiveness of our attack. In this experiment, we selected
6 unique APUFs created by random placement to form a 6-XOR APUF on the
FPGA. We then measured 300,000 CRPs with each CRP measurement repeated
11 times to get 300,000 challenge-reliability pairs. The number of challenge-
reliability pairs used for one CMA-ES attack and the modeling results after 100
runs of CMA-ES are presented in Table 5.

5 In particular on our board, each stage is implemented by a 6-input 2-output LUT,
where the two outputs serve as the outputs of upper and lower paths and only
three inputs are used as the inputs of upper and lower paths and the challenge
bit. We notice that Programmable Delay Line (PDL) is a widely used technique to
implement APUFs [24], but we did not choose to use it due to the poor uniqueness
of PDL-based APUFs according to a recent study [30].

26 Authors Suppressed Due to Excessive Length

Table 5: Results of reliability based machine learning attack on XOR APUFs
with real measurements from the FPGA.

#CRPs used
in one attack

Overall Noise
Rate

Average Pre-
diction Accu-
racy

2-XOR 50,000 1.44% 98.22%

3-XOR 90,000 2.38% 96.38%

4-XOR 140,000 2.92% 96.15%

5-XOR 200,000 3.80% 96.62%

6-XOR 260,000 4.47% 91.58%*

*Note that, the attack on 6-XOR APUF only recovered
5 out of 6 models.
The attacks on 2,3,4,5 XOR APUFs successfully recov-
ered all the models.

Reliability Based Machine Learning Attack on IPUFs: To show the mod-
eling resistance of the IPUF to the enhanced reliability based CMA-ES attack,
we perform the attack on a (1,1)-IPUF. We do not test this attack on IPUF de-
signs with more APUF components because our security against reliability based
machine learning attacks does not depend on the number of APUF components.

We used two APUFs created by pattern placement to form a (1,1)-IPUF
with an interposed position exactly in the middle in the lower APUF. We mea-
sured 200,000 CRPs with each CRP measurement repeated 11 times to get the
challenge-reliability measurements. We then sampled a subset of 90,000 challenge
reliability pairs out of the 200,000 challenge-reliability pairs to run the reliability
based CMA-ES attack. CMA-ES was not able to converge to the upper APUF
after 10 runs. This validated our security claim that IPUF structure can prevent
reliability based machine learning attacks. Unfortunately, due to the uniqueness
issue of pattern placed APUFs, we were not able to test the security of the
(3,3)-IPUF as we did in our experimental simulations. We also observed that
if the component APUFs are created by random placement, CMA-ES was able
to break it. We give a detailed analysis of this phenomenon in Appendices 9.10
and 9.11. We want to clarify the fact that the reliability based CMA-ES attack
can break the IPUF because of the improper implementation in case of
random placement (see explanation in Appendix 9.11), i.e., not because of
any design flaws of the IPUF.

Classical Machine Learning Attacks on XOR APUFs and IPUFs: In
this subsection we conduct experiments to verify the claim that the model com-
plexity of an (x, y)-IPUF is similar to that of a (y+x

2)-XOR APUF. In this
experiment we generate component APUFs using the random placement design
strategy to construct IPUFs and XOR APUFs.

We measured 200,000 CRPs for each XOR APUF and IPUF. We then used
CRP based CMA-ES to optimize each model given the 200,000 CRPs. To fur-
ther reduce the influence of noisy CRPs in this attack, for each CRP we did a

Title Suppressed Due to Excessive Length 27

 0.5

 0.6

 0.7

 0.8

 0.9

 1

1-
XP

2-
XP

3-
XP

4-
XP

5-
XP

6-
XP

(1
,5)

-IP

(2
,4)

-IP

(3
,3)

-IP

(4
,2)

-IP

(5
,1)

-IP

Pr
ed

ic
tio

n
A

cc
ur

ac
y

Fig. 3: Results of CRP based CMA-ES attacks on APUF (1-XP), x-XOR APUFs
(x-XP) and ((x, y))-IPUFs ((x, y)-IP).

majority voting from 11 repeated measurements. We ran CRP based CMA-ES
on this training dataset 10 times to avoid the possible failure introduced by the
probabilistic nature of the algorithm. The results are shown in Fig. 3

Due to the page limit, we provide results on the SAC property results and reli-
ability of the FPGA-implementation of the 64-bit (3, 3)-IPUF in Appendices 9.5
and 9.7, respectively.

8 Conclusion

In this paper, we develop three main contributions. First, we comprehensively
analyzed reliability based CMA-ES attack to understand how it works and how
to enhance it. Second we propose a new PUF design, the (x, y)-IPUF. We prove
through theory and experimentation that the IPUF is not vulnerable to the
strongest known reliability based machine learning attack (white box deriva-
tive free) and the strongest known classical machine learning attack (white box
derivative based). Our final contribution is publicly available source code for all
our IPUF, XOR APUF and APUF attack simulations written in Matlab and
C#. We also provide source code for the FPGA implementation of the XOR
APUF and IPUF. All codes for this paper can be found on Github: Defense
Attack (DA) PUF Library. Since the IPUF has more advantages in terms of
security, reliability and hardware overhead compared to the XOR APUF, it im-
plies that the IPUF can be considered a standard design or primitive
replacement for the XOR APUF. As a next step, we propose to implement

https://github.com/scluconn/DA_PUF_Library
https://github.com/scluconn/DA_PUF_Library

28 Authors Suppressed Due to Excessive Length

the IPUF in ASIC in order to overcome the uniqueness problem encountered in
FPGA implementations.

Acknowledgment

This project was supported in part by the AFOSR MURI under award number
FA9550-14-1-0351, and in part funded by an NSF grant CNS-1617774 Self Recov-
ering Certificate Authorities using Backward and Forward Secure Key Manage-
ment. Ulrich Ruhrmair gratefully acknowledges funding by the PI-COLA project
of the German Bundesministerium fur Bildung und Forschung (BMBF).

References

1. Becker, G.T.: On the Pitfalls of using Arbiter-PUFs as Building Blocks. IACR
Cryptology ePrint Archive 2014, 532 (2014)

2. Becker, G.T.: The Gap Between Promise and Reality: On the Insecurity of XOR
Arbiter PUFs. In: Proc. of 17th International Workshop on Cryptographic Hard-
ware and Embedded Systems (CHES) (2015)

3. Brzuska, C., Fischlin, M., Schrauder, H., Katzenbeisser, S.: Physically Unclone-
able Functions in the Universal Composition Framework. In: Rogaway, P. (ed.)
CRYPTO, pp. 51–70 (2011)

4. Chen, Q., Csaba, G., Lugli, P., Schlichtmann, U., ührmair, U.R.: The Bistable
Ring PUF: A new architecture for strong Physical Unclonable Functions. In:
Proc. of IEEE International Symposium on Hardware-Oriented Security and Trust
(HOST). pp. 134 –141 (june 2011)

5. Delvaux, J., Verbauwhede, I.: Side Channel Modeling Attacks on 65nm Arbiter
PUFs Exploiting CMOS Device Noise. In: IEEE 6th Int. Symposium on Hardware-
Oriented Security and Trust (2013)

6. Delvaux, J., Gu, D., Schellekens, D., Verbauwhede, I.: Secure Lightweight Entity
Authentication with Strong PUFs: Mission Impossible? In: Proc. of 16th Interna-
tional Workshop on Cryptographic Hardware and Embedded Systems (CHES).
pp. 451–475 (2014)

7. Digilent: Nexys 4 DDR Reference Manual (Apr 2016), https://goo.gl/g8A4e8,
[Accessed Feb., 2018]

8. Dodis, Y., Reyzin, L., Smith, A.: Fuzzy Extractors: How to Generate Strong Keys
from Biometrics and Other Noisy Data. In: Christian Cachin and Jan L. Camenisch
(ed.) EUROCRYPT, pp. 523–540 (2004)

9. Ganji, F., Tajik, S., Fäßler, F., Seifert, J.P.: Strong Machine Learning Attack
against PUFs with No Mathematical Model. In: CHES. pp. 391–411. Springer
Berlin Heidelberg (2016)

10. Ganji, F., Tajik, S., Seifert, J.P.: Why attackers win: on the learnability of XOR
arbiter PUFs. In: International Conference on Trust and Trustworthy Computing.
pp. 22–39. Springer International Publishing (2015)

11. Ganji, F., Tajik, S., Seifert, J.P.: PAC learning of arbiter PUFs. Journal of Cryp-
tographic Engineering 6(3), 249–258 (2016)

12. Gassend, B., Clarke, D., van Dijk, M., Devadas, S.: Silicon physical random func-
tions. In: ACM CCS (2002)

https://goo.gl/g8A4e8

Title Suppressed Due to Excessive Length 29

13. Helinski, R., Acharyya, D., Plusquellic, J.: A physical unclonable function defined
using power distribution system equivalent resistance variations. In: Proc. of 46th
Annual Design Automation Conference(DAC). pp. 676–681. ACM, New York,
NY, USA (2009)

14. Hori, Y., Yoshida, T., Katashita, T., Satoh, A.: Quantitative and Statistical Perfor-
mance Evaluation of Arbiter Physical Unclonable Functions on FPGAs. In: Pro-
ceedings of International Conference on Reconfigurable Computing and FPGAs
(ReConFig). pp. 298 –303 (dec 2010)

15. Jin, C., Herder, C., Ren, L., Nguyen, P.H., Fuller, B., Devadas, S., van Dijk, M.:
FPGA Implementation of a Cryptographically-Secure PUF Based on Learning
Parity with Noise. Cryptography 1(3), 23 (2017)

16. Kumar, S., Guajardo, J., Maes, R., Schrijen, G.J., Tuyls, P.: Extended abstract:
The butterfly PUF protecting IP on every FPGA. In: HOST. pp. 67–70 (June
2008)

17. Lao, Y., Parhi, K.K.: Statistical Analysis of MUX-Based Physical Unclonable Func-
tions. IEEE Trans. on CAD of Integrated Circuits and Systems 33(5), 649–662
(2014)

18. Lim, D.: Extracting Secret Keys from Integrated Circuits. Master’s thesis, MIT,
USA (2004)

19. Lim, D., Lee, J.W., Gassend, B., Suh, G.E., van Dijk, M., Devadas, S.: Extract-
ing secret keys from integrated circuits. IEEE Transactions on Very Large Scale
Integration (VLSI) Systems 13(10), 1200–1205 (October 2005)

20. Machida, T., Yamamoto, D., Iwamoto, M., Sakiyama, K.: A New Mode of Oper-
ation for Arbiter PUF to Improve Uniqueness on FPGA. In: Proc. of Federated
Conference on Computer Science and Information Systems (FedCSIS). pp. 871–878
(2014)

21. Maes, R., Verbauwhede, I.: Physically Unclonable Functions: A Study on the State
of the Art and Future Research Directions. In: Sadeghi, A.R., Naccache, D. (eds.)
Towards Hardware-Intrinsic Security, pp. 3–37. Information Security and Cryptog-
raphy, Springer, Berlin Heidelberg (2010)

22. Maiti, A., Gunreddy, V., Schaumont, P.: A Systematic Method to Evaluate and
Compare the Performance of Physical Unclonable Functions. IACR Cryptology
ePrint Archive 2011, 657 (2011)

23. Majzoobi, M., Koushanfar, F., Potkonjak, M.: Testing Techniques for Hardware
Security. In: Proc. of IEEE International Test Conference(ITC). pp. 1–10 (Oct
2008)

24. Majzoobi, M., Koushanfar, F., Devadas, S.: Fpga puf using programmable delay
lines. In: Information Forensics and Security (WIFS), 2010 IEEE International
Workshop on. pp. 1–6. IEEE (2010)

25. Majzoobi, M., Koushanfar, F., Potkonjak, M.: Techniques for Design and Imple-
mentation of Secure Reconfigurable PUFs. ACM Trans. Reconfigurable Technol.
Syst. 2(1), 1–33 (2009)

26. Nguyen, P.H., Sahoo, D.P., Chakraborty, R.S., Mukhopadhyay, D.: Security Anal-
ysis of Arbiter PUF and Its Lightweight Compositions Under Predictability Test.
ACM TODAES 22(2), 20 (2016)

27. Rührmair, U., Jaeger, C., Bator, M., Stutzmann, M., Lugli, P., Csaba, G.: Appli-
cations of High-Capacity Crossbar Memories in Cryptography. IEEE Transactions
on Nanotechnology 10(3), 489 –498 (may 2011)

28. Rührmair, U., Sehnke, F., Sölter, J., Dror, G., Devadas, S., Schmidhuber, J.: Mod-
eling attacks on physical unclonable functions. In: Proc. of 17th ACM conference

30 Authors Suppressed Due to Excessive Length

on Computer and communications security(CCS). pp. 237–249. ACM, New York,
NY, USA (2010)

29. Rührmair, U., Xu, X., Sölter, J., Mahmoud, A., Majzoobi, M., Koushanfar, F.,
Burleson, W.P.: Efficient Power and Timing Side Channels for Physical Unclonable
Functions. In: Proc. of 16th International Workshop on Cryptographic Hardware
and Embedded Systems (CHES). pp. 476–492 (2014)

30. Sahoo, D.P., Chakraborty, R.S., Mukhopadhyay, D.: Towards ideal arbiter puf de-
sign on xilinx fpga: A practitioner’s perspective. In: Digital System Design (DSD),
2015 Euromicro Conference on. pp. 559–562. IEEE (2015)

31. Sahoo, D.P., Nguyen, P.H., Mukhopadhyay, D., Chakraborty, R.S.: A Case of
Lightweight PUF Constructions: Cryptanalysis and Machine Learning Attacks.
IEEE TCAD (2015)

32. Schuster, D., Hesselbarth, R.: Evaluation of Bistable Ring PUFs Using Single Layer
Neural Networks. In: Trust and Trustworthy Computing - 7th International Confer-
ence, TRUST 2014, Heraklion, Crete, Greece, June 30 - July 2, 2014. Proceedings.
pp. 101–109 (2014)

33. Sölter, J.: Cryptanalysis of Electrical PUFs via Machine Learning Algorithms.
Master’s thesis, Technische Universität München (2009)

34. Suh, G.E., Devadas, S.: Physical unclonable functions for device authentication
and secret key generation. In: DAC. pp. 9–14 (2007)

35. Tajik, S., Lohrke, H., Ganji, F., Seifert, J.P., Boit, C.: Laser Fault Attack on Phys-
ically Unclonable Functions. In: 12th Workshop on Fault Diagnosis and Tolerance
in Cryptography (FTDC) (2015)

36. Tajik, S., Dietz, E., Frohmann, S., Seifert, J., Nedospasov, D., Helfmeier, C., Boit,
C., Dittrich, H.: Physical Characterization of Arbiter PUFs. In: Cryptographic
Hardware and Embedded Systems - CHES 2014 - 16th International Workshop,
Busan, South Korea, September 23-26, 2014. Proceedings. pp. 493–509 (2014)

37. Tobisch, J., Becker, G.T.: On the Scaling of Machine Learning Attacks on PUFs
with Application to Noise Bifurcation. In: Proc. of 11th International Workshop on
Radio Frequency Identification: Security and Privacy Issues (RFIDsec). pp. 17–31
(2015)

38. Wisiol, N., Graebnitz, C., Margraf, M., Oswald, M., Soroceanu, T., Zengin, B.: Why
Attackers Lose: Design and Security Analysis of Arbitrarily Large XOR Arbiter
PUFs (2017)

39. Xu, X., Rührmair, U., Holcomb, D.E., Burleson, W.P.: Security Evaluation and
Enhancement of Bistable Ring PUFs. In: Proc. of 11th International Workshop on
Radio Frequency Identification: Security and Privacy Issues (RFIDsec). pp. 3–16
(2015), http://dx.doi.org/10.1007/978-3-319-24837-0_1

40. Yao, Y., Kim, M.B., Li, J., Markov, I.L., Koushanfar, F.: ClockPUF: Physical
Unclonable Functions based on Clock Networks. In: Design, Automation & Test
in Europe (DATE). Grenoble, France (2013)

41. Yu, M.D.M., M’Räıhi, D., Sowell, R., Devadas, S.: Lightweight and Secure PUF
Key Storage Using Limits of Machine Learning. In: CHES. pp. 358–373 (2011)

9 Appendix

9.1 Description of APUFs and XOR APUFs

We briefly introduce the design of Arbiter PUFs (APUFs) and the reader is
referred to [12] for further details. The design of an APUF is depicted in Fig. 4.

http://dx.doi.org/10.1007/978-3-319-24837-0_1

Title Suppressed Due to Excessive Length 31

c[0] c[1] c[n-1]

Clk

D Q r

Arbiter

Path-swapping switchTrigger signal Upper path Lower path

Fig. 4: Arbiter PUF.

It is a delay-based silicon PUF with n-bit challenge c = (c[0], c[1], . . . , c[n −
1]) that extracts random variation in silicon in terms of the delay difference
of two symmetrically laid out parallel delay lines. Ideally, the nominal delay
difference between these path pairs should be 0, but this does not happen due to
uncontrollable random variation in the manufacturing process that introduces
random offset between the two path delays. In general, an n-bit APUF comprises
of n switches connected serially to build two distinct, but symmetrical paths.
The arbiter which is located at the end of the two paths is used to decide which
path is faster. The challenge bits c[0], c[1], . . . , c[n − 1] are used as the control
input of path-swapping switches that eventually results in two paths and input
stimulus runs through these two paths. The arbiter declares which path wins
the race in the form of a 0 or 1 response. Typically, the response of an APUF is
defined by

r =

{
1, if the signal at the upper path runs faster

0, otherwise.

The most important feature of this design is its small hardware overhead, i.e.
the hardware overhead of an n-bit APUF is linearly proportional to the number
of challenge bits n.

c Ai ri

A0 r0

Ax−1 rx−1

r

Fig. 5: x-XOR APUF.

Due to the existence of a linear addative delay model of the APUF, see Eq(2),
a modeling attack is applicable [19,28]. In [34], the authors proposed the design
of an x-XOR APUF which enjoys better modeling resistance. Figure 5 describes
the design of an x-XOR APUF.

32 Authors Suppressed Due to Excessive Length

9.2 Proof of Influence of Challenge Bit c[j] on the Response r in
the APUF

In this section, we prove

Prc(rc[j]=0 = rc[j]=1) ≈ (n− j)
n

, j = 0, . . . , n− 1.

Let us examine under which conditions rc[j]=0 will equal rc[j]=1. Assume for a
specific challenge c we fix all bits (except for c[j]) and the output r is 0 regardless
of the value of c[j]. This means ∆c[j]=0 = ∆Flipping +∆Non−Flipping > 0 when
c[j] = 0 and ∆c[j]=1 = −∆Flipping + ∆Non−Flipping > 0 when c[j] = 1. From
this example, it is easy to derive that if and only if rc[j]=0 = rc[j]=1, then
|∆Flipping| ≤ |∆Non−Flipping| so that:

Prc(rc[j]=0 = rc[j]=1) = Pr(|∆Flipping| ≤ |∆Non−Flipping|). (16)

We follow existing PUF literature [18,17] and assume that when generating
an instance of an APUF all wi are sampled from the same normal distribu-
tion N (0, σ2) and hence, ∆Flipping ∼ N (0, (j + 1) × σ2) and ∆Non−Flipping ∼
N (0, (n− j)× σ2). Thus Prc(rc[j]=0 = rc[j]=1) is equal to:

= Pr(|∆Flipping| ≤ |∆Non−Flipping|) (17)

= 4×
∫ ∞
0

φ0,(n−j)σ2(u)Φ0,(j+1)σ2(−u) du,

where φµ,σ2(·) and Φµ,σ2 are the probability distribution function and cumulative
distribution function of a normal distribution N (µ, σ2), respectively. Experimen-
tally it has been shown [25,6,26] that Eq. (17) can be approximated as:

Prc(rc[j]=0 = rc[j]=1) ≈ (n− j)
n

, j = 0, . . . , n− 1.

9.3 The Relationship between (x, y)-IPUF and (x + y)-XOR APUF

We prove that if the interposed bit position is i, then the (x, y)-IPUF is equivalent
to the (y + prx)-XOR APUF where

pr =
1− (1− 2p)y

2
and p =

i

n
.

For a fixed challenge we study the contribution of each APUF component of
an x-XOR APUF to the output of the XOR APUF. Here we define contributes
in the following manner. If we flip the output of APUF Ai (while the rest of the
APUF outputs are held constant) and this causes the final response of the PUF
r to flip, then we say that Ai contributes to the output for a challenge c. In
an x-XOR APUF it can clearly be seen that each of the x APUFs contribute
to the output. This is because in an XOR gate flipping any one of the inputs

Title Suppressed Due to Excessive Length 33

always causes the output to flip. We know the more APUFs that contribute to
the output, the harder the XOR APUF design is to attack with classical machine
learning.

Now we will analyze the (x, y)-IPUF to see how many APUFs con-
tribute to the output (essentially how difficult it is to attack with classical
machine learning). We denote r0y as the output of the IPUF when rx = 0 with
cy = (c[0], . . . , c[i], rx = 0, c[i+1], . . . , c[n−1]) and r1y as the output of the IPUF
when rx = 1 with cy = (c[0], . . . , c[i], rx = 1, c[i + 1], . . . , c[n − 1]). Based on
our definition of contribution above, if r0y = r1y it means that the x-XOR APUF
output rx does not contribute to the final output ry of the IPUF. In this case
only y APUFs contribute to the output of the IPUF. Note we can also write
r0y = r1y as r1y ⊕ r0y = 0. Alternatively if r1y ⊕ r0y = 1 then the output of (x, y)-
IPUF depends on the output rx of x-XOR PUF, as well as the output ry of the
y-XOR PUF. This implies that there are (x+y) APUFs which contribute to the
final output ry for a given challenge. Therefore, the challenge-response space of
an (x, y)-IPUF can be partitioned into two groups. The first group represents
challenge-response pairs where the response only depends on the y APUFs of
the y-XOR PUF. The second group of challenge-response pairs has responses
which depend on both the x-XOR APUF and the y-XOR APUF (the response
depends on a total of (x + y) APUFs). Now we calculate the expected number
of challenge-response pairs in each group. First, we will compute the probability
the challenge-response pair is in the second group:

pr = Prc(r0y 6= r1y) = Prc(r0y ⊕ r1y = 1) (18)

Let rlow,0, rlow,1, . . . , rlow,y−1 be the outputs of the y APUFs in the lower
layer y-XOR PUF when rx is 0. We will assume ideal classical machine learning
conditions where no measurement noise is present. Because there is no measure-
ment noise Section 5.1 is applicable: For a given challenge c, rlow,i depends on
the upper layer output rx (in that output rlow,i would flip if rx would be substi-
tuted by 1) with probability p = (i + 1)/(n + 1) ≈ i/n if the feedback position
of rx is i. For a given challenge c, pr is the probability that the response of
(x, y)-IPUF is equal to r = 1⊕ rlow,0 ⊕ . . .⊕ rlow,y−1 if rx would be substituted
by 1. Then pr depends on i:

pr =

y∑
k=1,k odd

(
y

k

)
pk(1− p)y−k =

1− (1− 2p)y

2
. (19)

Thus, a fraction 1 − pr of challenge-response pairs is in the first group and
a fraction pr of challenge-response pairs is in the second group. For a given
(x, y)-IPUF with parameter i, the expected number of APUFs contributing to
the response of a given challenge is

= (1− pr)y + pr(x+ y) (20)

= y + prx

34 Authors Suppressed Due to Excessive Length

9.4 Proof of Unavailability of Derivative Based ML Attacks on the
IPUF

As discussed in Section 1, the white-box machine learning techniques can be
partitioned into two different categories: derivative based modeling attacks and
derivative free modeling attacks. Basically, the former works more efficiently than
the latter one when the searching space is large. For example, in [37], using
Logistic Regression we can successfully model 4-XOR APUF with 15,000 CRPs
only while using CMA-ES we cannot have a good model for 4-XOR APUF with
200,000 CRPs (see Figure 2). Hence, it is important to know if there exists any
possible derivative based modeling attacks (CDW) on the IPUF or not. We show
that the answer to this question is NO by analyzing Logistic Regression (LR),
i.e., the state-of-the-art CDW.

In the upper x-XOR APUF of the IPUF, since there are x n-bit APUF
instances, we denote wx = (wx

1 , . . . ,w
x
x) as the model of the x-XOR APUF.

Futher we denote wx
i = (wx

i [0], . . . ,wx
i [n]) as the (n + 1) dimensional vectors

and the models of the APUFs in the x-XOR APUF, i = 1, . . . , x. Similarly,
wy = (wy

1 , . . . ,w
y
y) is the model of the y-XOR APUF of the IPUF and wy

i are
(n+ 2) dimensional vectors and the models of APUFs in the y-XOR APUF. In
order to enable derivative based ML attacks, we follow the approach proposed
in [28,33] (this is the Logistic Regression ML attack on an x-XOR APUF), i.e.
we approximate the discrete output rx and ry by a continuous function sigmoid
σ(·) where σ(x) = 1

1+exp(−x) . More precisely, we define the following functions

(here Φ(c, r̂x) denotes Φ(.) applied to challenge c interposed with r̂x):

∆x = gx(wx, c) =

x∏
i=1

〈wx
i ,Φ(c)〉,

rx = δ(∆x) = δ(gx(wx, c)),

r̂x = δ(∆x) + e(∆x) = δ(gx(wx, c)) + e(gx(wx, c)),

∆y = gy(wy, c, r̂x) =

y∏
i=1

〈wy
i ,Φ(c, r̂x)〉,

r̂y = σ(∆y) = σ(gy(wx, c, r̂y)),

where δ(x) is the step function, i.e., δ(x) = 0 if x > 0, and δ(x) = 0 other-
wise, and e is a certain error function chosen by adversary. The function δ has
derivative of 0 everywhere except x = 0 (where the derivative is ∞) and e(x)
has derivative everywhere. Since in practice ∆x is never exactly equal to 0, we
may assume that the derivative of δ in ∆x is always equal to 0.

In order to find the optimal solution of w = (wx,wy) (i.e. the model for
the (x, y)-IPUF) from a randomly generated model w, we define the following
function as described in [28,33]:

l = − 1

N

∑
(ci,ri),i=1,...,N

ln(σ(∆y)ri(1− σ(∆y))1−ri)

Title Suppressed Due to Excessive Length 35

where {(c1, r1), . . . , (cN , rN)} are the challenge-response pairs of the IPUF in
the training set. After that, we need to compute the gradient of l in order to
find the optimal solution, i.e., we need to compute

∇l =(
∂l

∂wx
1 [0]

, . . . ,
∂l

∂wx
1 [n]

, . . . ,
∂l

∂wx
x[0]

, . . . ,
∂l

∂wx
x[n]

,

∂l

∂wy
1 [0]

, . . . ,
∂l

∂wy
1 [n]

, . . . ,
∂l

∂wy
y [0]

, . . . ,
∂l

∂wy
y [n]

)

After that we will update w = w− η∇l where η is the learning stepsize. By
updating like this many times, we hope that the algorithm will converge to an
optimal solution w∗. Now, we focus on the calculation ∂l

∂wx
i [j]

which is equal to:

= ∂(− 1

N

∑
(ci,ri),i=1,...,N

ln(σ(∆y)ri(1− σ(∆y))1−ri))/∂wx
i [j]

= − 1

N

∑
(ci,ri),i=1,...,N

[ri(1− σ(∆y))− (1− ri)σ(∆y)]
∂∆y

∂wx
i [j]

We have

∂∆y

∂wx
i [j]

=
∂gy

∂wx
i [j]

=
∂gy

∂[δ(∆x) + e(∆x)]

∂[δ(∆x) + e(∆x)]

∂wx
i [j]

=
∂gy

∂[δ(∆x) + e(∆x)]

∂e(∆x)

∂∆x

∂∆x

∂wx
i [j]

(since δ′(∆x) = 0 as explained above).
But if we consider using the linear approximation with this attack where we

fix r̂x = 0 + e(∆x), then we also have the same result, i.e.,

∂∆y

∂wx
i [j]

=
∂gy

∂[δ(∆x) + e(∆x)]

∂e(∆x)

∂∆x

∂∆x

∂wx
i [j]

,

since ∆x is exactly equal to 0 with probability 0 and outside ∆x = 0, δ(∆x) has
derivative 0.

This fact implies that we cannot distinguish the partial derivative of the IPUF
from that of the linear approximated model of the IPUF. From this analysis, we
conclude that derivative based ML attacks are equivalent to derivative based
ML attacks that use the linear approximation. Due to this fact, the IPUF can
mitigate derivative based ML attacks just like it can mitigate attacks that use
the linear approximation by choosing y ≥ 2 (as explained in Section 5.3).

9.5 Strict Avalanche Property of (x, y)-IPUF

The SAC property is an important security feature as discussed in [25,6,26].
Here we analyze the SAC property of the (x, y)-IPUF. Assume that the output
rx of the x-XOR APUF is interposed at position j in the challenge to the y-XOR

36 Authors Suppressed Due to Excessive Length

APUF, j = 0, 1, . . . , n. We would like to compute the probability that flipping a
bit in the input results in the flipping of the output bit of the (x, y)-IPUF. This
analysis for the (x, y)-IPUF is similar to the analysis we did for the APUF in
Section 5.1:

pi = Prc(rc[i]=0 6= rc[i]=1), i = 0, 1, . . . , n− 1 (21)

where rc[i]=0 and rc[i]=1 are the output of (x, y)-IPUF when bit c[i] = 0 and
c[i] = 1, respectively. To compute pi, we consider the following two cases:

Case I. c[i] flips, rx does not flip, r flips. In this case, we flip challenge
bit c[i] but the output rx of x-XOR APUF does not flip and the (x, y)-IPUF’s
output r flips (i.e., rc[i]=0 6= rc[i]=1). From the analysis in Section 5.1, we know
that if the challenge bit c[i] flips, then the output of an APUF in an x-XOR
APUF will flip with expected probability p = i

n and thus, the output of x-XOR

APUF will flip with an expected probability px = 1−(1−2p)x
2 . In other words, rx

will not flip with a probability p̄x = 1− px = 1+(1−2p)x
2 . When rx is not flipped

due to c[i] flipping, the output of an APUF in the y-XOR APUF will be flipped
by flipping c[i] with a probability p′ = i

n+1 . Thus the probability that rx does
not flip (and r flips) when flipping c[i] is equal to:

pI =
1 + (1− 2p)x

2
· 1− (1− 2p′)y

2
.

Case II. c[i] flips, rx flips and r flips. If rx flips because c[i] flips, then there
are two flipping challenge bits at position i and j in the input challenge to the
y-XOR APUF. In this case, the output of an APUF in the y-XOR APUF will

be flipped with a probability p′′ = |i−j|
n+1 . The computation for p′′ is beyond the

scope of this paper but a detailed derivation of it can be found in [26]. Thus
the output r will flip with a probability

pII =
1− (1− 2p)x

2
· 1− (1− 2p′′)y

2

Therefore, we have

pi =pI + pII (22)

=
1 + (1− 2p)x

2
· 1− (1− 2p′)y

2

+
1− (1− 2p)x

2
· 1− (1− 2p′′)y

2

=
1 + (1− 2 in)x

2
·

1− (1− 2 i
n+1)y

2

+
1− (1− 2 in)x

2
· 1− (1− 2 |i−j|n)y

2

We experimentally verify our calculations for the SAC property of the (3, 3)-
IPUF and the result is described in Fig 6. The simulation of the SAC property
is computed by using 20,000 pairs of CRP for computing each pi.

Title Suppressed Due to Excessive Length 37

 0

 0.25

 0.5

 0.75

 1

 0 16 32 48 64

p i

Challenge Bit Index (i)

theoretical simulation

Fig. 6: SAC property of 64-bit (3,3)-IPUF with real and simulation data.

 0

 0.25

 0.5

 0.75

 1

 0 16 32 48 64

p i

Challenge Bit Index (i)

FPGA implemented PUF

Fig. 7: SAC property of 64-bit (3,3)-IPUF with real data.

We also tested SAC property of an implemented (3,3)-IPUF, where each
component APUF is generated by random placement (see Section 7.1). The
shape is shown in Figure 7, which is similar to Figure 6.

38 Authors Suppressed Due to Excessive Length

9.6 PAC Learning Resistance of IPUF

In [10,11,9], the authors proposed a novel modeling attack based on the PAC
learning problem. PAC learning attacks can be divided into two categories: black
box attack [9] and derivative based white box attacks [10,11].

The attack described in [9] does not work for the IPUF because of the follow-
ing reason. As described in [9], assume that if the PUF has k number of influential
bits (see [9] for the detailed definition), then this PUF can be ε-approximated
by another Boolean function h depending on only a constant number of Boolean
variables K, where

K = e
k
ε×(2+

√
2ε log2(4k/ε)

k) > e
2k
ε .

As shown in [9], for a n-bit (x, y)-IPUF with interposed position j, k can be
computed as follows:

k =
n∑

i=0,i6=j
pi

Eq.(22)
=

n∑
i=0,i6=j

{1 + (1− 2 in)x

2

1− (1− 2 i
n+1)y

2

+
1− (1− 2 in)x

2

1− (1− 2 |i−j|n)y

2
}.

For 64-bit (3, 3)-IPUF with interpose position j = 31, k = 25.2. Hence,
even if we consider a very weak approximated function h with ε = 0.5, then
K = e25.2×2/0.5 > e100 > 2100. It implies that it is impossible to launch the
attack proposed in [9] on a 64-bit IPUF.

The attacks in [10,11] do not apply to IPUF because of the following two
reasons.

First reason. The attacks in [10,11] use the perceptron algorithm to learn the
model w of the APUF and XOR APUF. For a given CRP, the weight vector w
will be updated based on the error between the given response and predicted
response (see the description of the perceptron algorithm in [10]). The calculated
error can be considered as the gradient and based on the computed gradient,
the weight vector w is updated. In Appendix 9.4, we already prove that the
derivative based white box attacks are not applicable to IPUF. This implies
that the attacks in [10,11] do not work for the IPUF when x and y are properly
chosen.

Second reason. As pointed out in [10,11], the number of CRPs needed in this
type of attack is very sensitive to the length n of a challenge and x, the number of
APUFs in the x-XOR APUF. For x ≥ 5 and n ≥ 64, the exponential dependency
on x and n makes it infeasible to apply this attack to the n-bit x-XOR APUF.
As shown in Appendix 9.3, the (x, y)-IPUF is equivalent to the (y + x/2)-XOR
APUF under classical ML. Therefore, the attacks in[10,11] do not work for the
IPUF when x and y are properly chosen.

Title Suppressed Due to Excessive Length 39

9.7 Reliability Analysis: Simulation and FPGA Implementation
Results

Reliability Analysis of the (x, y)-IPUF with Interposed Bit Position
i We develop the formula for computing the noise of the x-XOR APUF where
the noise rate of all APUFs are the same, i.e., all APUFs have a noise rate of
β, 0 ≤ β ≤ 1. Let βx be the noise rate of the x-XOR APUF. For a given challenge
c, if there is an odd number of noisy APUF responses, then XOR APUF’s output
is noisy. Hence,

βx =

x∑
j=0,j is odd

(
x

j

)
βj(1− β)x−j

=
1− (1− 2β)x

2
. (23)

The equation above is obtained by the following fact: for any given a and b,
we have:

(a+ b)x − (a− b)x = 2

x∑
j=0,j is odd

(
x

j

)
ajbx−j .

Hence, replacing a = β and b = 1− β yields Eq.(23).

Now, we compute the unreliability (i.e. the noise) of the (x, y)-IPUF. We
consider the two following cases.

Case I: The output of the x-XOR APUF is reliable. This event occurs
with probability 1 − βx in which case the noise rate of the output of the IPUF
denoted as βI is equal to the noise rate of the y-XOR APUF denoted as βy, i.e.,

βI = βy =
1− (1− 2β)y

2
. (24)

Case II: The output of the x-XOR APUF is unreliable. This event occurs
with probability βx. In this case (see , each APUF in the y-XOR APUF will have
noise β′ = β(1 − i

n) + (1 − β) in = β + (1 − 2β) in . Hence in this case, the noise
rate of IPUF (denoted as βII) is equal to the noise rate of the y-XOR APUF
where all APUFs enjoy the noise rate of β′, i.e.,

βII =
1− (1− 2β′)y

2
=

1− (1− 2(β + (1− 2β) in))y

2

=
1− (1− 2β)y(1− 2 in)y

2

Eq.(24)
=

1− (1− 2βy)(1− 2 in)y

2
. (25)

40 Authors Suppressed Due to Excessive Length

Therefore, the noise rate βII of the (x, y)-IPUF (denoted as βIPUF) is equal
to

βIPUF = (1− βx)βI + βxβII = βy + βx(βII − βy)

= βy + βx(
1− (1− 2βy)(1− 2 in)y

2
− βy)

= βy +
βx
2

(1− 2βy)(1− (1− 2i

n
)y). (26)

The following examples confirm the correctness of Eq.(26). If i = 0, then we
have βIPUF = βy. When i = 0, (x, y)-IPUF is basically equivalent to y-XOR
APUF. Therefore, the calculated result βIPUF = βy makes sense.

If i = n and y is odd, then from Eq.(26), βIPUF = βx + βy − 2βxβy =
βx(1− βy) + βy(1− βx) = β(x+y)−XOR APUF. We do know that when i = n and
y is odd, (x, y)-IPUF is exactly the (x + y)-XOR APUF. Hence, the calculated
result βIPUF = β(x+y)−XOR APUF makes sense.

Reliability Simulation of the IPUF and XOR APUF To compare the
reliability of the (x, y)-IPUF to the (x+ y)-XOR APUF we simulated a (x+ y)-
XOR APUF, (x, y)-IPUF, x-XOR APUF and a y-XOR APUF for x = 20, and
y = 2 and y = 3. In the simulation, we have 64-bit APUFs, each with a noise
rate defined by setting σnoise = 0.05σ. To estimate the reliability, we evaluated
each PUF design with 10,000 randomly generated challenges. Each challenge is
measured 11 times to determine whether it is noisy or not. If the repeatability
of a challenge is 100%, we say it is reliable; otherwise, it is a noisy challenge.
The reliability of a PUF is estimated as the fraction of reliable challenges.

We varied the interpose position i of the IPUF from 0 to 64. For each interpose
position we measured the reliability of the (x, y)-IPUF. In the same figure we
also plot the reliability of the (x + y)-XOR APUF, x-XOR APUF and y-XOR
APUF. The simulated results are presented in Fig. 8.

Figures 8a and 8b show that the noise rate of the (x+y)-XOR APUF and the
x-XOR APUF are close to each other as the value of y is very small compared
to the value of x (i.e. y = 2 or y = 3). The noise rate of the y-XOR APUF is
very small compared to the (x + y)-XOR APUF and the x-XOR APUF. The
noise rate of the (x, 3)-IPUF increases when the interpose bit position increases
from 0 to 64. However, the noise rate of the (x, 2)-IPUF reaches the maximum
value at interpose position 32. This is due to the parity of y (see Eq. (19)). The
noise rate of the (x, 3)-IPUF is equal to half of the noise rate of the (x+3)-XOR
APUF when i is in the middle position. The experiments confirm our findings
related to reliability (see Section 5).

FPGA Implementation Reliability of the IPUF with respect to Inter-
posed Position We selected 22 and 23 unique component APUFs to construct
a (20,2)-IPUF and a (20,3)-IPUF respectively on the FPGA. We evaluated how
the noise rate was affected by changing the interposed positions in the lower XOR

Title Suppressed Due to Excessive Length 41

(a) x = 20 and y = 2 (b) x = 20 and y = 3

Fig. 8: Noise rate of (x+y)-XOR APUF, (x,y)-IPUF, x-XOR APUF and y-XOR
APUF when the noise rate of each APUF is around 0.05.

 0

 0.1

 0.2

 0 16 32 48 64

N
oi

se
 R

at
e

Feedback Position

(20,2)-IPUF
(20,3)-IPUF

2-XOR PUF
3-XOR PUF

20-XOR PUF
23-XOR PUF

Fig. 9: Reliability with respect to different interpose position.

APUFs. We tested 5 different interposed bit positions (0, 16, 32, 48, 64). The
noise rate of the (20,2)-IPUF and the (20,3)-IPUF with respect to interposed
position are shown in Fig. 9. This follows the same trend as the simulation result
in Fig. 8. Note that the reliability is equal to (1-noise rate) or (100%−noise rate)
in percentage.

Reliability of IPUF under Temperature Variation We used a (3, 3)-IPUF
for reliability testing under temperature variation, where each APUF is created
by random placement, and has good uniformity and uniqueness. We measured
1,000 CRPs from this IPUF under 25 degree Celsius as the reference CRPs.
We then measured the same 1,000 CRPs again under 70 degrees and 0 degrees
Celsius. The error rate introduced by 70 degrees and 0 degrees Celsius is 2.1%
and 1.4%, respectively.

9.8 Enhanced Reliability Based CMA-ES Attack On APUF

In this subsection, we describe enhancements to the original reliability based
CMA-ES attack [2]. In the reliability based CMA-ES attack, each model w is

42 Authors Suppressed Due to Excessive Length

evaluated according to a fitness function. The fitness function correlates the ob-
served reliability R of the PUF to the reliability of the estimated model R′. Let
us denote the observed reliability R in Eq. (7) by Roriginal and the model relia-
bility R′ in Eq. (8) as R′original. The correlation between Roriginal and R′original
is limited by the fact that the observed reliability Roriginal only ranges from
[0,M/2], while the range of R′original is {0, 1}. This is significant because the
comparison of R′original and Roriginal is not as accurate, since the two terms do
not have the same range of values.

We propose two alternative definitions for (Roriginal, R
′
original). We define

(Rabsolute, R
′
absolute) and (Rcdf , R

′
cdf), as follows:

Roriginal = |M/2−
M∑
i=1

ri| and R′original =

{
1, if |∆| ≥ ε
0, if |∆| < ε,

(27)

Rabsolute = |M/2−
M∑
i=1

ri| and R′absolute = |∆| (28)

Rcdf =
1

M

M∑
i=1

ri and R′cdf = Φ(−∆/σN) (29)

We hypothesize that (Rcdf , R
′
cdf) can create a more accurate model than

(Roriginal, R
′
original) when attacking an individual APUF for two reasons. First

(Rcdf , R
′
cdf) uses the proper reliability ranges. Second (Rcdf , R

′
cdf) takes into

account information from two sources: reliability information and the response
information of the APUF (by not using any absolute value operation when com-
puting R′cdf). However, when attacking an XOR APUF, the response of each
individual APUF is not known so (Rcdf , R

′
cdf) does not improve the reliability

based CMA-ES attack in this case.

When attacking an XOR APUF (Rabsolute, R
′
absolute) outperforms (Roriginal, R

′
original)

because it has the proper reliability ranges. It also outperforms (Rcdf , R
′
cdf) be-

cause it does not attempt to use any response information (which is not available
from individual APUFs in an XOR APUF).

When modeling both APUF and XOR APUF designs, the original reliability
based CMA-ES attack can be improved by using more precise fitness functions.
This is significant because due to the improved modeling offered by (Rcdf , R

′
cdf)

and (Rabsolute, R
′
absolute), the reliability based CMA-ES attack can now work

with less training data, where before the original attack would fail. When suf-
ficient training data is available, the proposed fitness functions give more ac-
curate models than the original fitness function. Table 6 depicts the modeling
accuracy of the reliability based CMA-ES attack on a 64-bit APUF. In this set
of simulations σnoise = σ/10, giving the APUF a reliability of around 96− 97%.
From Table 6, it is evident that the reliability based CMA-ES attack using our
proposed model (Rabsolute, R

′
absolute) and (Rcdf , R

′
cdf) outperforms the reliability

based CMA-ES attack using the original model (Roriginal, R
′
original) as proposed

in [2]. This is due to both proposed models using the proper reliability ranges.

Title Suppressed Due to Excessive Length 43

Table 6: A comparison of 64-bit APUF’s modeling accuracy using CMA-ES

N† Modeling Accuracy(%)
(Roriginal, R

′
original) (Rabsolute, R

′
absolute) (Rcdf , R

′
cdf)

600 60.33 78.27 96.02
1500 69.60 96.64 97.80
3000 97.49 97.65 98.38
6000 97.85 97.98 98.40
† No. of CRPs is used to train a model.

Table 7: Modeling results of 4-XOR APUF using CMA-ES and different relia-
bility models

Model
setup

N† Modeling Acc.(%) Frequency?

A0 A1 A2 A3 A0 A1 A2 A3

(R
o
.,
R

′ o
.) 10× 103 65.10 66.17 67.40 68.96 0 0 0 0

20× 103 98.08 97.91 98.23 98.33 1 4 3 1
30× 103 98.27 98.06 98.27 98.39 19 10 6 3
50× 103 98.31 98.16 98.37 98.44 39 20 17 10

(R
a
.,
R

′ a
.) 10× 103 97.53 97.09 97.10 95.24 22 24 31 8

20× 103 97.86 97.75 97.74 97.78 24 29 29 17
30× 103 98.08 97.89 98.02 98.12 47 27 20 6
50× 103 98.17 98.06 98.23 98.27 50 29 16 5

† No. of CRPs is used to train an APUF as well as 4-
XOR APUF models.

? No. of correct models (prediction accuracy > 90%) for
Ai out of 100 runs of CMA-ES.

In addition, (Rcdf , R
′
cdf) outperforms (Rabsolute, R

′
absolute) as both the response

polarity and reliability information are considered in (Rcdf , R
′
cdf).

9.9 Enhanced Reliability Based CMA-ES Attack On XOR APUF

To demonstrate the improvement (Rabsolute, R
′
absolute) offers, we simulated a 4-

XOR APUF and ran the reliability based CMA-ES attack 100 times using both
(Rabsolute, R

′
absolute) and (Roriginal, R

′
original). In this simulation each APUF

has a σnoise = σ/10, giving it a reliability of around 96 − 97%. The results
of this simulation are shown in Table 7. We report two aspects in Table 7:
i) modeling accuracy and ii) frequency of the correct APUF models (a correct
model has a prediction accuracy greater than 90%). From the results of Table 7 it
is clear that (Rabsolute, R

′
absolute) is able to generate more correct APUF models

than (Roriginal, R
′
original). Note that in the case where N = 10× 103, CMA-ES

44 Authors Suppressed Due to Excessive Length

using (Rabsolute, R
′
absolute) can successfully model all the APUF components but

(Roriginal, R
′
original) fails to build any correct APUF models. Our enhancement

to the CMA-ES attack results in a more efficient modeling of an XOR APUF.

9.10 Implementation Details

In order to keep the balance between the delays of two competing paths, usually
one switch chain is kept in one column of slices on an FPGA. However, in our
APUF implementation on a Digilent Nexys 4 DDR with Xilinx Artix-7 embed-
ded [7] there are four LUTs in each slice of the FPGA. Due to the configuration
on this hardware, a choice must be made on how to connect the LUTs to form
the switch chain. Since the behavior of each APUF is dominated by the routing
difference between the two paths, each switch chain must be placed differently
for each APUF, in order to create unique APUFs. Note this design strategy only
alleviates the uniqueness issue on a single FPGA. If the same bitstream is used
to program different FPGAs, the difference of the same APUFs on different FP-
GAs will be very small. Thus, this is not a general design strategy to improve
the uniqueness of APUFs on FPGA, but it is sufficient for us to conduct our
experiments.

We have two different ways to place the switch chains: (1) Random placement:
we randomly select one LUT in each slice and then connect them together. (2)
Pattern placement: we place the switches according to a pre-defined pattern. For
example, we only use LUT A and LUT B in every slice. According to our exper-
iments, each design strategy has advantages and disadvantages. For the random
placement design strategy, the advantage of this method is that it gives us many
options to build unique APUFs. Here we define two APUFs as being non-unique
when their responses are the same for more than 60% of the challenges. Ini-
tially, we generated 100 different switch chains using random placement. After
extensive evaluation, we selected 23 placements of the APUFs, which can pro-
vide APUFs with good uniformity (50.2% - 61.6%) and good uniqueness/inter-
hamming distance (39.5% - 59.0%). The noise rate of these APUFs under room
temperature is between 0.66% and 1.25%. However, with good statistic proper-
ties, comes a security weakness in the APUFs. Since the routing between each ad-
jacent switches is randomly selected, there are a few delays that are significantly
larger than the other delays. This effectively introduces a few significant weights
in the feature vector of this APUF. As a result the difficulty of all machine learn-
ing modeling attacks is reduced since only these significant weights need to be
precisely modeled (instead of having to precisely learn all the weights). We built
the model of individual APUFs to understand the distribution of weights. The
standard deviation of the weights of the APUFs created by random placement
ranges from 4.23 to 7.48. As we will explain shortly, the standard deviation is
much smaller for the pattern placement design strategy, but this method has its
own drawbacks.

For the pattern placement design strategy, there are a very limited number
of patterns we can generate and some APUFs formed by different placement

Title Suppressed Due to Excessive Length 45

patterns are not unique. After exhaustively trying 11 patterns6, we found only
4 placement patterns that can generate 4 unique APUFs. The uniqueness limi-
tation of this design strategy gives us very few options to form an IPUF design
with more than 4 APUFs in total. However, the pattern placement design strat-
egy does not have the same security weakness as the random placement design
strategy. We also built the model of individual APUFs to understand the dis-
tribution of weights in this design. The standard deviation of the weights of the
APUFs created by pattern placement ranges from 1.11 to 3.77. Using this de-
sign strategy we do not observe the same effect of only a few influential weights
(unlike in the random placement design strategy).

9.11 Security Issue Introduced by Careless Implementation

We also used two APUFs created by random placement to form a (1,1)-IPUF
with an interposed position exactly in the middle in the lower APUF. Again,
we measured 200,000 CRPs with each CRP measurement repeated 11 times to
get the challenge reliability measurements. We then sampled a subset of 90,000
challenge reliability pairs out of 200,000 challenge reliability pairs to run the
reliability based CMA-ES attack. CMA-ES was able to converge to the model of
the upper APUF with 96.6% accuracy. According to our previous analysis and
simulation results, only the model of the lower APUF should be built with up
to 75% accuracy (i.e., the reliability based machine learning attack on a (1,1)-
IPUF is equivalent to the linear approximation reliability based CMA-ES). When
CMA-ES converged to the model of the lower APUF, the accuracy was upper
bounded by 75%, which confirms our theoretical analysis.

When we discovered the phenomenon of biased weights in the APUFs gen-
erated by random placement, we further investigated why this implementation
affects the security of IPUFs. We created APUF models with biased weights,
such that the distribution that generates the large weights is N (0, 6), while the
standard weights are drawn from N (0, 1). We also precisely controlled the num-
ber of large weights in the second half (the half which is closer to the output) of
the lower APUF. We simulated (1,1)-IPUFs with 4, 8, 12, 16, and 20 dominat-
ing weights. On each type of IPUF we performed the enhanced reliability based
CMA-ES attack 10 times. The results are shown in Table 8.

From Table 8, we can see that the SAC value of the middle bit of the lower
APUF will affect its security. The SAC value is computed by the probability
that a bit flip in the middle challenge bit of the lower APUF will flip the final
output bit. The larger the SAC value is, the higher the chance that the reliability
information of the upper APUF will be exposed to adversaries. This leads to a
successful attack on the upper APUF with higher probability. Ideally, the SAC
value of the middle bit should be 50%, but due to the biased distribution in the
weights on FPGAs, the SAC value can be possibly higher than normal. From
the computed SAC values, the reliability based CMA-ES attack is supposed to

6 1 pattern that uses all four LUTs in each slices, 6 patterns that uses a combination
of two LUTs in each slices, 4 patterns that uses one LUTs in each slices.

46 Authors Suppressed Due to Excessive Length

Table 8: Results of the enhanced reliability based CMA-ES attack on (1,1)-IPUF
with biased weights.

SAC Upper Lower Failed

4 0.39 0 10 0

8 0.58 9 1 0

12 0.54 2 8 0

16 0.32 0 9 1

20 0.41 0 10 0

Fig. 10: Weights distribution of a lower APUF in one (1,1)-IPUF where the
number of large weights (> 3) is constrained to 4.

not converge to the upper APUF because they are good enough to prevent the
attack according to our analysis in Section 5.2. However, the attack still works
very well when the number of dominating weights is 8 or 12. We can explain
this fact as follows. The interposed bit at the middle splits the lower APUF into
two parts: the flipping part which is closer to the 0-th challenge bit and the non-
flipping part which is closer to the output of IPUF. For the sake of explanation,
we assume that all small weights are equal to 0. The motivation of assuming
this is that if the biased weights are significant larger than the small weights, we
can ignore all the small weights. We assume that there are k biased weights in
the flipping part and m biased weights in the non-flipping part. Moreover, the
biased weights follow a normal distribution N (0, σ2

b). From Equation (9), we can
write

∆ = (1− 2c[n/2])×∆Flipping +∆Non−Flipping

where∆Flipping =
∑n/2
i=0 w[i] Φ[i]

(1−2c[n/2]) and∆Non−Flipping =
∑n
i=n/2+1 w[i]Φ[i].

Since we have k +m biased weights, ∆Flipping and ∆Non−Flipping only depend
on k and m weights, respectively. This implies ∆Flipping and ∆Non−Flipping fol-

Title Suppressed Due to Excessive Length 47

low normal distributions N (0, kσ2
b) and N (0,mσ2

b), respectively. We know that,
for a given challenge c, the output of the lower APUF would flip by flipping
challenge bit c[n/2] when |∆Non−Flipping| < |∆Flipping|. It is obvious that the
smaller |∆Non−Flipping| (let’s say < e), the higher the chance the output will be
flipped. Since ∆Non−Flipping ∼ N (0,mσ2

b),

Pr(|∆Non−Flipping| < e) = Φ(
e√
mσb

)− Φ(
−e√
mσb

)

= 2Φ(
e√
mσb

)− 1.

If m increases, then Pr(|∆Non−Flipping| < e) decreases for any given small
positive number e. This implies that the leakage of information is reduced when
increasing m. This explains why the number of convergences to the upper APUF
for case m = 8 is smaller than for when m = 12. Of course, when m is large
enough, the attack does not work. In our simulation, we just need m to be larger
than 16 to prevent the attack. In our simulation, we noticed that when m = 4,
the attack does not work. The weights of lower APUF when m = 4 is described in
Fig. 10. We give the following possible reasoning. In the non-flipping part, there
are two significant large weights and the second largest weight among the two
is much smaller (< 13) than the largest one (≈ 23). Moreover, both of them are
much bigger than the remaining weights. The smallest value of |∆Non−Flipping|
is 10 and largest value is 36. This implies that |∆Non−Flipping| is always larger
than |∆Flipping|. It means that the leakage of the output of the upper APUF is
very small and thus, the attack does not work. Actually in this case, the SAC
property for m = 4 is 0.39 which is smaller than ideal SAC of 0.5.

	The Interpose PUF: Secure PUF Design against State-of-the-art Machine Learning Attacks
	Introduction
	The APUF and Interpose PUF
	The APUF Linear Additive Delay Model
	The APUF Reliability Model
	The IPUF Design

	Reliability Based ML Attacks
	Reliability Based CMA-ES
	Linear Approximation of the (x,y)-IPUF

	Analysis of the Reliability based CMA-ES Attack
	Experiment-I: Understanding CMA-ES Convergence
	Experiment-II: CMA-ES Reliability Conditions
	Inferences from the Experiments

	Security and Reliability Analysis of IPUF
	Influence of Challenge Bit c[j] on the Response r in the APUF
	Security and Reliability Analysis of the (1,1)-IPUF
	Reliability of the (1,1)-IPUF
	Security of (1,1)-IPUF

	Security and Reliability Analysis of the (x,y)-IPUF
	Security Analysis
	Other (x,y)-IPUF Security Properties

	Simulation Results
	IPUF Security
	Simulated Machine Learning Attacks On IPUF and XOR APUF
	(x,y)-IPUF and (x+y)-XOR APUF Model Complexity Comparisons
	Requisite APUF components for a secure (x,y)-IPUF

	IPUF Reliability

	IPUF Implementation
	IPUF Implementation Details
	Experimental Results

	Conclusion
	Appendix
	Description of APUFs and XOR APUFs
	Proof of Influence of Challenge Bit c[j] on the Response r in the APUF
	The Relationship between (x,y)-IPUF and (x+y)-XOR APUF
	Proof of Unavailability of Derivative Based ML Attacks on the IPUF
	Strict Avalanche Property of (x,y)-IPUF
	PAC Learning Resistance of IPUF
	Reliability Analysis: Simulation and FPGA Implementation Results
	Reliability Analysis of the (x,y)-IPUF with Interposed Bit Position i
	Reliability Simulation of the IPUF and XOR APUF
	FPGA Implementation

	Enhanced Reliability Based CMA-ES Attack On APUF
	Enhanced Reliability Based CMA-ES Attack On XOR APUF
	Implementation Details
	Security Issue Introduced by Careless Implementation

