
Start your ENGINEs: dynamically loadable
contemporary crypto

Nicola Tuveri and Billy Bob Brumley

Tampere University of Technology, Finland
{nicola.tuveri,billy.brumley}@tut.fi

Abstract. Software ever-increasingly relies on building blocks implemented by security
libraries, which provide access to evolving standards, protocols, and cryptographic
primitives. These libraries are often subject to complex development models and long
decision-making processes, which limit the ability of contributors to participate in the
development process, hinder the deployment of scientific results and pose challenges
for OS maintainers.
In this paper, focusing on OpenSSL as a de-facto standard, we analyze these limits,
their impact on the security of modern systems, and their significance for researchers.
We propose the OpenSSL ENGINE API as a tool in a framework to overcome these
limits, describing how it fits in the OpenSSL architecture, its features, and a technical
review of its internals.
We evaluate our methodology by instantiating libsuola, a new ENGINE providing
support for emerging cryptographic standards such as X25519 and Ed25519 for
currently deployed versions of OpenSSL, performing benchmarks to demonstrate the
viability and benefits.
The results confirm that the ENGINE API offers (1) an ideal architecture to address
wide-ranging security concerns; (2) a valuable tool to enhance future research by
easing testing and facilitating the dissemination of novel results in real-world systems;
and (3) a means to bridge the gaps between research results and currently deployed
systems.
Keywords: applied cryptography, public key cryptography, elliptic curve cryptography,
software engineering, software implementation, OpenSSL

1 Introduction
Following current common best practices for the development of secure systems, most
applications rely on cryptographic primitives for which widely accepted standards have been
published after extensive studies to ensure that breaking them is believed computationally
infeasible. As the available computation power increases and new attacks and algorithms to
improve the performance of theoretic attacks are developed, these standards are periodically
revised to raise the security level of the recommended primitives.

Considering the complexity of protocols and algorithms and the number of potential
pitfalls concerning details at every level of abstraction, the software implementation of
such evolving standards is a daunting and complex task and application developers are
strongly advised not to implement their own crypto but to rely on existing well-established
cryptographic libraries, among which OpenSSL1 is the most widely adopted. Still, in
addition to the complexity of their programming interfaces, bugs and defects in these
libraries are often the cause of cryptographic failures in the security layer of modern
information systems.

1https://www.openssl.org

mailto:nicola.tuveri@tut.fi,billy.brumley@tut.fi
https://www.openssl.org


2 Start your ENGINEs: dynamically loadable contemporary crypto

Previous research focused on the development of new cryptographic software libraries
as a solution to these problems and, among the published results, the NaCl [BLS12] project
is especially relevant for this paper, aiming at providing practical and efficient strong
confidentiality and integrity with a special emphasis on the simplicity of the provided
programming interface. Although the project gathered some momentum, especially due
to the libsodium2 fork, unfortunately, after five years, we see that this approach fails in
meeting the needs of mainstream projects, resulting in a comparatively low adoption rate.
Another interesting development sprouting off this research is HACL*3 [ZBPB17], a verified
portable C cryptographic library that implements the NaCl API, producing code that is
as fast as state-of-the-art C implementations, while providing mathematical guarantees on
the absence of whole classes of potential bugs, memory safety, timing side-channel safety
and functional correctness with respect to the published primitive specification.

Alongside the development of NaCl, research efforts were also spent on the related
SUPERCOP benchmarking suite as part of the eBACS project [BL] for the benchmarking
of cryptographic systems: many researchers from industry and academia submitted new
cryptographic primitives or alternative implementations for benchmarking. Included
submissions are benchmarked across different architectures and toolchains and undergo
several automated tests. But still, most of these programming and scientific efforts fail to
reach widespread adoption through mainstream libraries.

While our intent is not to belittle the efforts of the OpenSSL project, to motivate our
contributions, here we briefly highlight some limits of the project from the point of view of
researchers that might explain this gap:

• lack of unified quality reference documentation on the overall software architecture
of the library, on API design choices, and frequently on the details of public and
internal functions and data structures;

• complex ad-hoc build system;

• strong constraints on the choice of programming languages (C and custom “aug-
mented” ASM syntax) and coding style;

• being a complex and huge project ongoing very active development, it implicates
higher maintenance costs for external developers to keep their submissions up-to-date
during the contribution process, which in turn can become quite long due to the
double review constraint (see e.g. [KS09] which, while contributed in early 2009, did
not get mainlined until late 2011, finally reaching a release version in early 2012);

• contributing a new feature usually requires splitting the contributed code in smaller
units to facilitate and speed up the review process and collect feedback and consensus
on development choices for the subsequent units. In turn, generally, this might
slow down the overall development process and increase the maintenance costs for
contributing developers;

• inclusion of new implementations or features usually undergoes a long decision-making
process rarely compatible with research timelines;

• trust, quality assurance, and IPR issues force the core development team to be very
conservative in the decision-making process, thus even in cases where time is a minor
issue, the final result can still be a rejection. In these cases, it is up to the researchers
to maintain a custom set of patches and documentation to make their contribution
available to users and other researchers for further research (see e.g. [BCD+16] where
the proposed cipher suite is no longer compatible with the newer OpenSSL API).

2https://libsodium.org/
3https://github.com/mitls/hacl-star

https://libsodium.org/
https://github.com/mitls/hacl-star


Nicola Tuveri and Billy Bob Brumley 3

We expand on some of these limits in Section 2. Consequences of these limits can be
seen, for example, in the implementation of emerging cryptography standards based on
Curve25519 [Ber06, BDL+12]. X25519, the Diffie-Hellman cryptosystem, was originally
released in 2005 and the properties of this curve and of its design promised simpler and
faster implementations with properties enhancing its resistance to side-channel attacks.
Later, in 2011, Ed25519 a digital signature system based on the twisted Edwards equivalent
of Curve25519, was formally introduced, delivering fast short digital signature generation
(and fast verification) with interesting properties concerning the resistance to side-channel
attacks. These cryptosystems have since gathered momentum, gaining official support
in OpenSSH in 2014, in BoringSSL in 2015, in the Google Chrome Internet browser
TLS/QUIC protocol support in April 2016, and finally becoming part of IETF RFC
7748 [LHT16] (X25519) in January 2016 and RFC 8032 [JL17] (Ed25519) in January 2017.

OpenSSL officially added support for X25519 in August 2016, with release 1.1.0, but
to this date it still lacks support for Ed25519. It is planned for the next 1.1.1 release and
is included in the current pre-release version.

While implementation details are examined in Section 3.5, here we highlight that
the original implementation chosen by the development team favored portability over
optimization, and as a result using these cryptosystems in applications built on top of the
current stable release of OpenSSL, does not yield the expected performance in comparison
with other elliptic curve implementations (e.g. NIST P-256).

This does not seem to be a consequence of a lack of trusted optimized implementa-
tions for the most widespread architectures supported by OpenSSL, as the mentioned
SUPERCOP project includes several implementations tested on different architectures and
alternative libraries like libsodium and BoringSSL ship optimized implementations for
popular architectures.

Our contribution. To address these limits, in this work:

• we present an analysis of the OpenSSL ENGINE API and its benefits for bridging
gaps between cryptographic research and practical real-world implementations of
cryptosystems;

• we develop an ENGINE to demonstrate how to use the ENGINE API as a framework to
transparently integrate alternative implementations or new functionality in OpenSSL,
making them available to existing applications;

• we evaluate experimental results, by benchmarking our libsuola ENGINE, demon-
strating the viability and the benefits of the proposed solution across different versions
of OpenSSL.

Even though performance gains are a nice side-effect, the main values of using the
proposed framework come from

• the integration of missing functionality in end-of-life, yet still widely deployed,
versions of OpenSSL;

• transparent access to the integrated functionality to existing applications, requiring
exclusively changes to system configuration;

• freedom of choosing alternative implementations for new or existing functionality
(e.g. choosing a formally verified implementation like HACL*4);

• ease of testing and benchmarking in real-world scenarios and dissemination to a
larger user audience of novel implementations and primitives for researchers.

4https://github.com/mitls/hacl-star

https://tools.ietf.org/html/rfc7748
https://tools.ietf.org/html/rfc7748
https://tools.ietf.org/html/rfc8032
https://github.com/mitls/hacl-star


4 Start your ENGINEs: dynamically loadable contemporary crypto

Outline. Section 2 presents further claims motivating our contribution. Section 3 contains
an analysis of the OpenSSL architecture and the ENGINE API. Section 4 presents libsuola,
an ENGINE we developed to demonstrate how to use the ENGINE API as a framework to
offer alternative or missing implementations in OpenSSL. In Section 5 we present and
evaluate experimental results comparing the default implementation of X25519 and Ed-
25519 (or the lack thereof) against the implementations provided through our custom
ENGINE and analyze the limits of our proposed methodology and how it addresses the
concerns exposed in Section 2. Section 6 presents a brief analysis of related work, focusing
on the mechanisms deployed by other security libraries, frameworks and operating systems
to allow the transparent adoption of alternative cryptographic implementations. We
conclude in Section 7.

2 Motivation
As mentioned in Section 1, this work is partially motivated by the rigidity of currently
deployed, ubiquitous cryptography software libraries. This rigidity impacts real-world
security at least via two avenues, which this section summarizes: it amplifies software
assurance issues due to the small circle of contributors, and furthermore restricts the
practical ability of OS vendors to provide predictable and steady support throughout the
product life cycle.

2.1 Software assurance
The OpenSSL codebase is maintained by a small set of core developers on a voluntary basis.
This practically restricts the ability of contributors and end users to, e.g., control what
alternative cryptographic primitive implementations are featured in the library. Upkeep of
end user custom builds is costly and does not scale well, hence the logical choice is to stick
to the version and feature set provided by the OS vendor, overwhelmingly driven by the
choices of OpenSSL core developers themselves. This is a poor model for security-critical
software: it leads to e.g. limited accountability in the decision-making process, and lack of
assurance that the included code is functionally correct. In what follows, we give some
examples of extremely security-critical code paths in OpenSSL that lack software assurance
(see e.g. [MS13] for a broader survey). We strongly reiterate here that our work should
not be construed as diminishing the contributions of the OpenSSL project, but rather we
use these observations to motivate our research and later demonstrate how our framework
can alleviate this security burden, shifting it back towards developers and cryptographers.

Software defects. Biham et al. introduced the concept of bug attacks in 2008 [BCS08],
highlighting the importance of cryptography implementation correctness to protect private
keys. In 2011, Brumley et al. presented the first (and only, as far as we are aware)
real-world bug attack [BBPV12], remotely recovering P-256 private keys from a TLS
server by exploiting a carry propagation software defect in OpenSSL 0.9.8g finite field
arithmetic (CVE-2011-4354). The defect (and vulnerability) resurfaced later in the Nettle
cryptography library [Dub17, Sec. 3.1]. CVE-2014-3570 discloses a defect in multi-precision
integer squaring, potentially affecting RSA, DSA, and ECDH cryptosystems in OpenSSL
0.9.8+. CVE-2016-7055 discloses a carry propagation bug leading to incorrect Montgomery
multiplication results for 256-bit inputs, affecting ECDH cryptosystems for Brainpool
P-512 elliptic curve in OpenSSL 1.0.2+. CVE-2017-3736 discloses a carry propagation
bug leading to incorrect Montgomery squaring results, affecting RSA, DSA, and DH
cryptosystems in OpenSSL 1.0.2+; CVE-2017-3732 and CVE-2015-3193 are similar but
distinct defects. CVE-2017-3738 discloses an overflow bug in Montgomery arithmetic for
1024-bit moduli leading to incorrect multiplication results, affecting RSA, DSA, and DH
cryptosystems in OpenSSL 1.0.2+. To summarize, these security vulnerability disclosures



Nicola Tuveri and Billy Bob Brumley 5

unfortunately document a track record of functional correctness failures in OpenSSL,
putting the security of private keys at risk. Our proposed methodology allows any
developer to provide alternative implementations of cryptosystems decoupled from the
OpenSSL codebase with higher functional correctness assurance—e.g., formally verified
libraries [ZBPB17, ABB+17]. We demonstrate this by providing an option to select
HACL* [ZBPB17] as the backend provider of the X25519 and Ed25519 implementations.

Side-channel security. In 2004, Percival discovered [Per05] the first cache-timing attack
on public key cryptography in OpenSSL, recovering RSA keys by exploiting key-dependent
table lookups in sliding window exponentiation (CVE-2005-0109). OpenSSL responded by
(1) implementing (against expert advice to avoid cache line-level lookups [Ber05, Sec. 15])
the scatter-gather technique [Gue12] during exponentiation to reduce the amount of
leakage; (2) adding a runtime flag that controls whether or not to follow this secure code
path. Scatter-gather is not a full mitigation but a hedge [BS13], and in 2016 Yarom et
al. implemented an attack utilizing cache-bank conflicts [YGH16]. OpenSSL responded
(CVE-2016-0702) by tweaking scatter-gather parameters to further reduce the amount
of leakage, hence the root cause of the vulnerability is still present in OpenSSL as of
this writing. Also in 2016, Pereida García et al. discovered a defect in the way OpenSSL
handles the runtime flag added in 2005 and used it to recover DSA private keys from TLS
and SSH servers [PGBY16], i.e. the fix to the 2005 vulnerability was in fact not being
activated; a bug present for over a decade (CVE-2016-2178).

In 2009, Brumley and Hakala discovered the first cache-timing attack on ECC in
OpenSSL, recovering private keys from scalar multiplication [BH09]. OpenSSL responded
by implementing constant-time paths on certain architectures for elliptic curves P-224,
P-256, and P-521 based initially on Käsper’s work [Käs11] and later a P-256 contribution
from Intel [GK15]. The OpenSSL team declined contributed patches to blanketly mitigate
the vulnerability [Bru15]. Leaving the vulnerability present for all other curves, in 2014
Benger et al. improved the 2009 result and targeted the 256-bit BitCoin curve [BvdPSY14].
In 2015, van de Pol et al. further reduced the number of required signatures to recover
private keys [vdPSY15], and Allan et al. even further in 2016 [ABF+16]—all from the
initial code path shown vulnerable in 2009 but never fully fixed.

To summarize, unfortunately OpenSSL has a dubious track record regarding side-
channel security: from stopgap countermeasures that do not stand the test of time, to
implemented mitigations that are never activated due to defects, to no response at all when
code paths are shown to be vulnerable. Our proposed methodology allows any developer
to trump these OpenSSL design decisions and provide side-channel secure implementations
largely independent from the OpenSSL codebase.

2.2 Release strategies
Reconciling software package EOL with OS distribution EOL is a challenging task w.r.t.
both feature set and security. For example, consider RedHat Enterprise Linux (RHEL)
version 7 with a 10 June 2014 release date. At that time, the stable version of OpenSSL
was 1.0.1 and RHEL7 shipped with that package. Once a distribution chooses a software
package version, this is essentially written in stone—the stock version of OpenSSL on
RHEL7 started at 1.0.1 and will stay at 1.0.1 until RHEL7 EOL through 2024. Security
issues will be patched with backported fixes and applied to this distribution’s OpenSSL
flavor by the OS vendor. The reason the version is fixed is that other applications will link
against e.g. shared libraries and, since there is no guarantee newer versions will maintain
backwards compatibility, the simplest solution is not to change the version number.

Considering bugs, it is an extremely challenging task for the OS vendor to determine
which fixes to backport. On the security side, they essentially rely on the risk analysis that
takes place during the responsible disclosure process. This process is perilous—e.g. the



6 Start your ENGINEs: dynamically loadable contemporary crypto

Table 1: Selective OpenSSL features across versions. X25519 only appears since 1.1.0, not
currently shipping with the majority of OS vendors due in part to the drastic OpenSSL
API change between 1.0.2 and 1.1.0. As of this writing, Ed25519 does not feature in any
OpenSSL release version.

1.0.1 1.0.2 1.1.0 master
nistz256 — X X X
X25519 — — X X
Ed25519 — — — X

2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024

OpenSSL 1.0.1

OpenSSL 1.0.2 LTS

OpenSSL 1.1.0

Debian 7 (1.0.1t)

Debian 8 (1.0.1t)

Debian 9 (1.1.0f)

Ubuntu 14 LTS (1.0.1f)

Ubuntu 16 LTS (1.0.2g)

RHEL 7 (1.0.1e)

Figure 1: OpenSSL release strategy vs. OS vendor release strategy. For the OS distributions
in question, it demonstrates that in every case the OS version EOL exceeds the OpenSSL
version EOL. The data motivates this work’s proposed framework to provided alternative,
extended, and/or new functionality largely decoupled from the OpenSSL core codebase,
yet fully compatible due to dynamic loading.

previously discussed P-256 defect exploited by [BBPV12] was not flagged by either the
OpenSSL security team or the OS vendors as a security issue, and hence went unpatched
over four years in the wild before backported fixes rolled out to address CVE-2011-4354.

This task is slightly easier when the software in question is still maintained and has not
reached EOL—the burden falls upon the software package project in question. But what
happens when the software package reaches EOL before the OS does? This implies that
official fixes are not available from the software package project, and the vendors must
rely on contributed and third-party fixes and security analysis.

Before OpenSSL 1.0.2, OpenSSL had no official release strategy and roadmap. Under-
standably, this made the OS vendor’s job difficult, as there was no guarantee on how long
official security fixes would be available. With the new release strategy at the end of 2014,
OS vendors can make more informed choices regarding OpenSSL version inclusion, yet
there will still be a coverage gap. For example, consulting Table 1 and Figure 1, stock
OpenSSL on RHEL7 will not feature X25519 or Ed25519, and since OpenSSL 1.0.1 reached
EOL at the end of 2016, RedHat is on the hook for backporting third-party security fixes
until the end of 2024 as the OpenSSL team will no longer provide official security fixes.

To summarize, as Figure 1 shows the expected lifetime of OpenSSL versions is in fact
much longer than the official EOL stated by OpenSSL. Compounded with the feature
sets in Table 1, OS vendors for currently deployed distributions are essentially stuck with
little to no OpenSSL support for emerging cryptography standards such as X25519 and
Ed25519.

3 OpenSSL and the ENGINE API

OpenSSL is an open source project consisting of a general-purpose cryptographic library,
an SSL/TLS library and toolkit and a collection of command line tools to generate and



Nicola Tuveri and Billy Bob Brumley 7

HW

OS / System libraries

3rd party binaries

3rd party
libraries

3r
d 

pa
rt

y
EN

G
IN

Es

OpenSSL binaries

OpenSSL libsslOpenSSL libcrypto

OBJECTS table

ENGINE API
&

built-in
ENGINEs

ASN1 BIO
(I/O abstraction: 
network sockets,
memory buffers,
files, filters, etc.)

RSA DH DSA EC ECX ...

low-level crypto ERR

RAND
(random

number gen.)

low-level generic modules

BN
(arbitrary
prec. int)

CRYPTO
(memory,

threads, ...)

BUFFER
(in-mem byte

buffers)

ASYNC
(async. jobs)

COMP
(zlib,

compression)

EVP
CIPHER

EVP
MD

EVP
PKEY

EVP

KDF CONF

UI

STORE

X509CTTS OCSP

PKCS#7 CMSPKCS#12 PEM

containers,
encodings

Figure 2: Architecture diagram of the OpenSSL project.

handle keys, certificates, PKIs and other cryptographic objects and execute cryptographic
operations.

The project officially started in December 1998, with release 0.9.1c forking the SSLeay
project by Eric Andrew Young and Tim Hudson. Since then the project has seen a total of
twelve major releases, of which two are currently actively supported (1.0.2 is the current
Long Term Support version, initially released in January 2015 and supported until the
end of December 2019; 1.1.0 is the current stable version, released in August 2016 and
officially supported until the end of April 2018), while the next 1.1.1 version is being
actively developed.

Being ubiquitous on the server side (e.g. powering the HTTPS support for the Apache
and nginx web servers which combined cover almost two-thirds of Internet active sites
according to NETCRAFT’s July 2017 Web Server Survey5) and in many client tools, the
OpenSSL project has become a de facto standard for Internet security.

The project is written mainly in the C programming language and assembly for
optimized implementations and supports a plethora of platforms, including a wide range
of hardware architectures running most Unix and Unix-like operating systems, OpenVMS
and Microsoft Windows.

3.1 Architecture of the OpenSSL project
The diagram in Figure 2 depicts the current architecture of the OpenSSL project. It is
based on the 1.1.1 development version, but can be applied with minor changes also to the
1.0.2 and 1.1.0 release branches.

The three main blocks in the diagram are the OpenSSL binaries, consisting of the
command-line tools included in the project, which are linked against the other two
main blocks of the OpenSSL project diagram, representing the two software libraries
implementing the core project functionality.

5https://news.netcraft.com/archives/2017/07/20/july-2017-web-server-survey.html

https://news.netcraft.com/archives/2017/07/20/july-2017-web-server-survey.html


8 Start your ENGINEs: dynamically loadable contemporary crypto

OpenSSL libssl implements the SSL/TLS library, dealing with the implementation
details of the standardized network protocols and extensions, linking against OpenSSL
libcrypto for the implementation of the underlying cryptographic functionality required
by the network protocols.

OpenSSL libcrypto contains the actual cryptographic implementations and also acts
as portability layer across the different platforms supported by the OpenSSL project, and
is further organized into several independent modules.

Focusing on the OpenSSL libcrypto block, the diagram is organized so that, in general,
the vertical position is correlated with the level of abstraction of each depicted module
(going from the top application-oriented modules to the bottom modules providing lower-
level implementations or low-level functionality mostly dealing with operating systems and
system libraries abstractions), while the horizontal position, with exceptions, is coupled
with the “topic” of each module or group of modules (the left part of the libcrypto block
is more closely related to cryptographic implementations, while the right part comprises
increasingly general purpose modules).

From a point of view of an application wishing to use OpenSSL to perform cryptographic
operations including encryption and decryption, digital signature schemes, key derivation
algorithms, and message digests, the high-level EVP API is the recommended interface:
the EVP block provides an abstraction level to handle these operations using abstract
methods and data types to decouple application programmers from the details of the actual
low-level implementations of each cryptosystem. In particular, among the sub-modules
included in the EVP API,6 EVP_PKEY abstracts asymmetric cryptosystems, EVP_MD abstracts
message digest cryptosystems, and EVP_CIPHER abstracts symmetric encryption/decryption
cryptosystems.

These abstractions are made possible by the use of abstract context and method struc-
tures which describe every EVP cryptosystem in terms of pointers to metadata structures
describing the parameters of the specific cryptosystem, and functions to manipulate such
metadata structures or derived data structures describing the internal status of an in-
stance of a specific cryptosystem, implementing the actual functionality provided by a
cryptosystem.

Therefore, most EVP API functions ultimately act as wrappers around the library
internal OBJECTS table, which can be queried by a numeric identifier (NID) to retrieve the
actual method structures associated with a particular indexed cryptosystem.

This indirection mechanism can also be used as a way to provide multiple alternative
implementations for a given cryptosystem, by manipulating the querying algorithm to
select among the method structures registered for the same NID: this approach is what
ultimately powers the ENGINE API described in the following paragraphs.

3.2 What is an OpenSSL ENGINE?

OpenSSL 0.9.6 introduced a new component to support alternative cryptography imple-
mentations, most commonly for interfacing with external crypto devices (e.g. accelerator
cards), in the form of ENGINE objects.7

These objects act as “containers for implementations of cryptographic algorithms” and
can be statically linked in the OpenSSL library at compile-time or dynamically loaded at
run-time in and out of the running application with low-overhead from external binary
objects implementing the ENGINE API8 through a special built-in ENGINE called “dynamic”.

Such dynamic ENGINEs are particularly interesting due to the flexibility they provide:

6https://www.openssl.org/docs/man1.1.0/crypto/evp.html
7https://github.com/openssl/openssl/blob/master/README.ENGINE
8https://www.openssl.org/docs/man1.1.0/crypto/ENGINE_init.html

https://www.openssl.org/docs/man1.1.0/crypto/evp.html
https://github.com/openssl/openssl/blob/master/README.ENGINE
https://www.openssl.org/docs/man1.1.0/crypto/ENGINE_init.html


Nicola Tuveri and Billy Bob Brumley 9

• they allow to replace compiled-in implementations affected by known problems with
newer ones, maintaining compatibility with existing applications;

• they allow hardware vendors to release self-contained shared-libraries to add support
for arbitrary hardware to work with applications based on OpenSSL, keeping their
software outside of the main OpenSSL codebase;

• they allow to reduce the memory impact of OpenSSL, by avoiding to statically link
support for unneeded hardware at compile-time in favor of system configuration or
automatically probing for supported devices at run-time and dynamically loading
only the required cryptographic modules.

Dynamic ENGINEs are also interesting for software implementations:

• they allow to replace compiled-in software implementations in case of bugs, vulnera-
bilities or sub-optimal performances with newer alternative implementations;

• they provide an alternative in case of issues with the OpenSSL core development
team decision-making process, decoupling the decision to adopt the OpenSSL library
from the choice of individual cryptosystem implementations, without incurring the
costs of maintaining a fork of the OpenSSL project or patch sets, while also providing
transparent binary compatibility with existing applications;

• they allow to backport newer cryptosystems in previous versions of the OpenSSL
library and existing applications based on it;

• they allow to easily add new cryptosystems or new implementations for already
compiled-in cryptosystems to the OpenSSL library, providing a convenient way to
test and benchmark new software implementations in a real-world context;

• they offer a greater degree of freedom from the OpenSSL project toolchain, allow-
ing developers to use different programming languages and build systems, further
lowering the development and maintenance costs for developing plugin alternative
implementations or new functionality;

• they offer flexibility to solve licensing issues: currently the OpenSSL project is
released under a "dual license" scheme, under the OpenSSL License, (a derivate of
the Apache License 1.0) and the SSLeay License (similar to a 4-clause BSD License),
and is in the process of transitioning to the Apache License 2.0. Contributors
are thus forced to release their work under these licenses, which may be an issue
especially when reusing code from projects released under a proprietary license or an
incompatible copyleft license. Being objects dynamically loaded at runtime, engines
can benefit from usually more flexible licensing requirements, providing a bridge
towards software released under different licenses.

What functionality do ENGINEs provide? The cryptographic functionality that can
be provided by an ENGINE implementation includes the following abstractions:

• RSA_METHOD, DSA_METHOD, DH_METHOD, ECDH_METHOD, ECDSA_METHOD: providing al-
ternative RSA/DSA/etc. implementations;

• RAND_METHOD: providing alternative (pseudo-)random number generation implemen-
tations;

• EVP_CIPHER: providing alternative (symmetric) cipher algorithms;

• EVP_MD: providing alternative message digest algorithms;

• EVP_PKEY: providing alternative public-key algorithms.



10 Start your ENGINEs: dynamically loadable contemporary crypto

3.3 Structural and functional references to dynamic ENGINEs
Due to the modular nature of the ENGINE API, references to ENGINE objects require special
handling, organized over two levels of reference-counting matching the ways such objects
are used in the OpenSSL library.

Any ENGINE pointer is inherently a structural reference, providing a guarantee that
the ENGINE structure cannot be deallocated until the reference is released. Structural
references are sufficient to query or manipulate the data of an ENGINE object and are
generally used to instantiate a new ENGINE, to iterate across the OpenSSL internal list of
loaded ENGINEs, or to read information about an ENGINE. All structural references obtained
through the ENGINE API should be released by a call to the ENGINE_free() function, and
the ENGINE object itself will be automatically cleaned up and deallocated upon release of
the last structural reference.

However, a structural reference does not guarantee that the ENGINE object has been
initialized and is ready to execute any of the implemented cryptosystems: most ENGINEs
are typically used to support specialized hardware, so they might be loaded but unable to
be initialized unless the required hardware is actually present in the system.

As such, to use the actual functionality of an ENGINE, a functional reference is required:
a functional reference is a specialized form of a structural reference (derived from it by
calling the ENGINE_init() function) which guarantees that the ENGINE has been correctly
initialized and is ready to perform the implemented cryptographic operations, until the
functional reference is explicitly released by calling the ENGINE_finish() function (which
in turn would also automatically release the implicit structural reference).

3.4 Anatomy of a dynamic ENGINE

At the highest level of abstraction, a dynamic ENGINE can be split into two functional
blocks.

One block contains all the alternative implementations for the cryptosystems provided
by the ENGINE: this part mainly consists of a collection of structs for each cryptosystem,
each linking to the actual functions implementing its operations. For example, an EVP_MD
message digest struct would reference the actual init(), update(), and final() functions
implementing the OpenSSL message digest streaming API, in addition to some utility
functions allowing the OpenSSL library to cleanly handle, clone and destroy instances of
the provided message digest implementation.

Every such struct would be individually registered against the OpenSSL library during
the bind() process, and structs of the same kind (e.g. all the EVP_MD structs, all the
EVP_PKEY_meth structs, etc.) are glued together by functions registered in the ENGINE
object that allow the OpenSSL library to query the engine for lists of provided algorithms
or a specific algorithm indexed by nid.

The other block contains the bind() method and the initialization and deinitialization
functions:

• the bind() method is called by the OpenSSL built-in dynamic ENGINE upon load and
is used to set the internal state of the ENGINE object and allocate needed resources,
and to set its id and name, pointers to the init(), finish(), and destroy()
functions;

• the init() function is called to derive a fully initialized functional reference to the
ENGINE from a structural reference;

• the finish() function is called when releasing an ENGINE functional reference, to
free up any resource allocated to it;



Nicola Tuveri and Billy Bob Brumley 11

• the destroy() function is called upon unloading the ENGINE, when the last structural
reference to it is released, to cleanly free any resource allocated upon loading it into
memory.

3.5 Curve25519, X25519 and Ed25519 in OpenSSL
OpenSSL 1.1.0 introduced support for X25519: as a consequence of the way Curve25519
and X25519 are defined, instead of adding the curve inside the EC module containing
every other elliptic-curve cryptosystem implementation based on prime or binary fields,
the OpenSSL developers decided to add a separate ECX sub-module defining dedicated
EVP_PKEY_meth structures directly linking to a self-contained portable C implementation
of Curve25519 and the underlying finite field arithmetic.

The current OpenSSL development version (1.1.1) expanded the ECX sub-module to
add a new EVP_PKEY_meth supporting the Ed25519 digital signature scheme, reusing in
large part the same portable C low-level implementation, and recently added an optimized
implementation for X25519 for 64-bit architectures.

The actual low-level portable C implementation is closely based on the ref10 version of
Ed25519 in SUPERCOP 201411249 which, although portable, suffers huge speed penalties
compared to implementations optimized for specific architectures or even portable 64-bit
C code.

As a result, comparing the benchmarks of X25519 (in OpenSSL 1.1.0) and Ed25519
(in OpenSSL 1.1.1) cryptosystems with operations of analogous EC cryptosystem (e.g.
over the NIST P-256 elliptic curve) does not yield the performance benefits expected
from [Ber06, BDL+12], as shown later in Section 5.

4 The libsuola ENGINE

libsuola10 takes advantage of the ENGINE API described in Section 3 to provide alternative
software implementations for X25519 and Ed25519, working as a bridge between OpenSSL
and an external library.

libsuola itself is a shallow loadable module, i.e. it does not contain cryptographic
implementations: the core part of libsuola is the code facing the OpenSSL APIs, that
takes care of initializing data structures and registering abstract methods; these abstractions
are routed to a ‘provider’ module in libsuola, which finally links against the selected
external library to provide the actual cryptographic functionality. To demonstrate the
potential of the proposed methodology, we provide three different providers, among which
the user can select at build time, each linking against a different implementation, and
further described in Section 4.4.

Figure 3 shows the architecture of libsuola (compiled selecting the libsodium
provider) and its interactions with libsodium and OpenSSL. Selecting a different provider
results in linking against another library or embedding, through static linking, an im-
plementation inside the provider object, but the changes affect only the provider object,
which is the only element providing cryptographic functionality.

For the installed applications that will benefit from the added functionality or alternative
implementations, libsuola is completely transparent: while applications can include
code to explicitly force their instance of OpenSSL to load the libsuola ENGINE, most
applications will be completely unaltered and simply loading OpenSSL when they are
executed; in this case the OpenSSL library is instructed to load at run-time the libsuola
ENGINE through its system configuration files.

9http://bench.cr.yp.to/supercop.html
10https://github.com/romen/libsuola

http://bench.cr.yp.to/supercop.html
https://github.com/romen/libsuola


12 Start your ENGINEs: dynamically loadable contemporary crypto

Figure 3: libsuola architecture and its interactions with libsodium and OpenSSL.

Independently of the way it is instructed to load the libsuola ENGINE, internally the
OpenSSL library creates an instance of the built-in dynamic ENGINE, which in turn uses
the OS dynamic loader to load libsuola.

As soon as it is loaded into memory, the dynamic ENGINE calls the libsuola suola_-
bind() function which in turn:

• sets the id and name fields in the ENGINE structure;

• sets pointers to the destroy(), init() and finish() functions in the ENGINE
structure;

• registers NIDs for X25519, Ed25519 and the identity message digest: NID_X25519 is
defined in OpenSSL since version 1.1.0, while NID_ED25519 is only defined in the
current development version. This step ensures that even in previous versions of
OpenSSL the internal OBJECTS table includes definitions for both cryptosystems;

• creates the structures to handle each implemented cryptosystem: the EVP_MD md_-
identity describing the identity message digest and two (EVP_PKEY_meth, EVP_-
PKEY_ASN1_meth) pairs of structures for X25519 and Ed25519. Each of these struc-
tures is also registered in the internal OpenSSL OBJECTS table under the corresponding
NID;

• sets pointers to the digests(), pkey_meths() and pkey_asn1_meths() callbacks
in the ENGINE structure: these callbacks allow the OpenSSL library to manipulate
the ENGINE handle querying for lists of implemented methods indexed by NID;

• calls the provider suola_implementation_init() function to initialize the internals
of the provider implementation.



Nicola Tuveri and Billy Bob Brumley 13

The rest of libsuola consists of the collection of functions used to implement the
functionality described by each of the structures registered in the suola_bind() function,
which map OpenSSL structures to the provider functionality. These are briefly described
in the following paragraphs.

4.1 libsuola X25519
X25519 is implemented through an EVP_PKEY_meth and a corresponding EVP_PKEY_ASN1_-
meth. The first one mainly includes the definition of a keygen() and a derive() method,
while the second includes methods for encoding and decoding X25519 private and public
values.

The keygen() method delegates its core functionality to the suola_scalarmult_-
curve25519_base() function, which is then routed to the actual implementation through
the selected provider.

The derive() method, called once the peer key has been set, performs a generic
point scalar multiplication over Curve25519 through the provider suola_scalarmult_-
curve25519() function.

4.2 libsuola Ed25519
Similarly, Ed25519 is also implemented through an EVP_PKEY_meth and a corresponding
EVP_PKEY_ASN1_meth. The first one mainly includes the definition of a keygen(), a sign()
and a derive() method; the second includes methods for encoding and decoding Ed25519
private and public values, as well as a control method that the OpenSSL library uses
to query for the default message digest algorithm associated with the digital signature
cryptosystem, which in libsuola is set to return the NID for md_identity.

The keygen() method for Ed25519 is mostly a wrapper around the provider suola_-
sign_ed25519_seed_keypair() function.

The sign() and verify() methods are wrappers around suola_sign_ed25519_de-
tached() and suola_sign_ed25519_verify_detached() functions in the provider. These
functions implement a PureEdDSA signature scheme, i.e. where the message to be signed
is directly used as an input to the signature generation algorithm, without a pre-hashing
step as opposed to traditional digital signature schemes based on RSA, DSA or ECDSA or
to the PreHashEdDSA signature scheme.

OpenSSL 1.1.1 introduced new API functions to support one-shot signature generation
and verification cryptosystems like Ed25519, but using this approach in libsuola would
make it incompatible with previous versions of OpenSSL. Instead, we chose to work around
the limitations of the traditional API by adding a custom md_identity message digest
method to be used in the default pre-hash step performed by OpenSSL before the actual
signature generation or verification.

4.3 libsuola md_identity

The EVP_MD md_identity is a custom message digest algorithm behaving as an identity
function to be used as the pre-hash algorithm in the libsuola implementation of PureEd-
25519: the output of this message digest is a copy of the input message.

The EVP_MD API in OpenSSL can be reduced to a streaming approach based on calling
an init() function before starting the hash computation, repeated calls to an update()
function until the whole input message is consumed, and a final call to a final() function to
finalize the hash and retrieve its output. For md_identity these functions are implemented
as described below:

init() Securely allocates an empty small buffer as the internal status of the message
digest algorithm, tracks its length and sets to 0 the counter of used buffer bytes;



14 Start your ENGINEs: dynamically loadable contemporary crypto

update() Depending on the size of the input block and the availability of unused space,
the internal buffer is securely reallocated to sufficiently increase its size. A copy of
the new input block is then concatenated to the existing data in the buffer while
tracking the length of the whole buffer and of the data contained in it;

final() OpenSSL EVP_MD API limits the maximum size of a message digest algorithm
output thus, considering that no actual finalization is required and that the md_-
identity algorithm is used only by code inside libsuola, we decided to work around
this limit by gaining access to the internal md_identity buffer directly from the
Ed25519 EVP_PKEY_meth implementation, without ever using the final() function.
As a result, the implementation of this function simply returns an error.

4.4 Providers
The actual cryptographic functionality provided by libsuola is entirely contained in the
provider module. It determines which library libsuola is linked against, and routes the
function calls from the OpenSSL structures described above to the relevant functions in
the selected implementation.

To demonstrate the potential of the proposed methodology, we provide three different
alternative providers:

• the first provider, to which Figure 3 refers, links against libsodium;

• a second provider links against another fork of NaCl: the HACL* library, providing
a formally verified implementation;

• as a proof of concept, we develop a third provider which does not depend on an
external library and internally embeds the provided functionality through static
linking.

libsuola-sodium. For our first provider, libsodium was selected as a modern crypto-
graphic library, designed emphasizing high security and ease-of-use, and addressing from
its inception as a fork of NaCl many of the shortcomings we described in OpenSSL.

On the platforms we tested, libsodium also happens to generally provide faster
implementations than the equivalent OpenSSL ones. Thus while the aim of our project
is to provide support for emerging cryptography standards such as X25519 and Ed25519
for currently deployed versions of OpenSSL, we also notice that the provided alternative
implementations perform better than the built-in implementations included in the OpenSSL
stable 1.1.0 version (supporting X25519 only). Even in the current development 1.1.1
version of OpenSSL (supporting both X25519 and Ed25519), the libsodium Ed25519
implementation provided through libsuola appears to have faster performance than the
OpenSSL default implementation.

When this provider is selected, as depicted in Figure 3, libsuola is dynamically linked
against libsodium, hence when OpenSSL loads the ENGINE the dynamic loader would
automatically load both libsuola and libsodium.

The suola_implementation_init() function in this case calls sodium_init() during
the binding process to initialize libsodium internals.

libsuola-hacl. HACL*11, presented in [ZBPB17], is a very interesting target for our
framework, as it presents a practical implementation of a cryptographic library, which is
formally verified for memory safety and functional correctness with respect to its published
standard specification, and aims to be “as fast as state-of-the-art C implementations, while
implementing standard countermeasures to timing side-channel attacks”.

11https://github.com/mitls/hacl-star

https://github.com/mitls/hacl-star


Nicola Tuveri and Billy Bob Brumley 15

Through our proposed methodology it then becomes possible to integrate the guarantees
of projects like this, that mathematically prove the absence of the defects we listed in
Section 2.1, without needing to alter existing application to use a different cryptographic
library.

HACL* uses the same C API as libsodium for the NaCl constructions, so exclud-
ing some obvious prefix renaming, the mappings described in Figure 3 with respect to
libsodium are analogous to the ones provided by this provider for the HACL* library.

libsuola-donna. As a proof of concept, we implemented an alternative version of lib-
suola that statically links at compile-time against an implementation of Curve25519 and
X25519 based on the work of Adam Langley and Andrew Moon.12

Through this provider, the contents of the EVP_PKEY_meth structures for Ed25519 and
X25519 are routed as follows:

• the keygen() functions ultimately link to, respectively, ed25519_publickey() and
curved25519_scalarmult_basepoint() from floodyberry/ed25519-donna/ed255-
19.c;

• the Ed25519 sign() and verify() functions are implemented via, respectively,
ed25519_sign() and ed25519_sign_open() from floodyberry/ed25519-donna/-
ed25519.c;

• the X25519 derive() function is not supported by the code in the floodyberry/-
ed25519-donna repository, so we opted to use the portable 64-bit C donna imple-
mentation included in SUPERCOP13 in crypto_scalarmult/curve25519/donna_-
c64/smult.c. This implementation is not compatible with our 32-bit ARM testing
environment, so on this platform at build time we replace it with another implementa-
tion from SUPERCOP, in crypto_scalarmult/curve25519/neon2/scalarmult.s,
contributed by Bernstein and Schwabe [BS12], optimized for the NEON Advanced
SIMD extension.

5 Experimental results
Our last contribution consists in an experimental evaluation of the libsuola ENGINE,
carried out by benchmarking the provided operations across different versions of OpenSSL
on different target architectures, by analyzing how the proposed methodology effectively
addresses the concerns listed in Section 2 and its limits.

5.1 Benchmarks
For the benchmarks, we targeted two platforms to address both the desktop/server scenario
and a mobile/embedded system scenario: a 4-core/4-threads 3.2GHz Intel Core i5-6550
Skylake CPU (Table 2) and a quad-core 1.2GHz Broadcom BCM2837 CPU on a Raspberry
Pi 3 on a 32-bit and a 64-bit environment (Table 3, Table 4).

We collected the measurements using a benchmarking application derived from the
OpenSSL speed app, modified to use the EVP API for every operation and to measure
CPU cycles for a fixed number of repeated runs of the specified operations (in contrast
with measuring the number of repeated runs over a fixed amount of time). We linked the
benchmarking application, and libsuola in its three different versions (i.e. one for each
provider selected at compile time) , against OpenSSL versions 1.0.2o (old stable), 1.1.0h
(current stable) and 1.1.1-pre3 (latest beta snapshot for the development version).

12https://github.com/floodyberry/ed25519-donna
13http://bench.cr.yp.to/supercop.html

https://github.com/floodyberry/ed25519-donna
http://bench.cr.yp.to/supercop.html


16 Start your ENGINEs: dynamically loadable contemporary crypto

The tables report the execution cost in CPU cycles for the following cryptosystem op-
erations: key generation, ECDH shared secret derivation, digital signature generation, and
digital signature verification. As a baseline reference, the tables also present the execution
cost of these operations for cryptosystems based on the fast nistz256 implementation for
the popular NIST P-256 elliptic curve.

The benchmarks demonstrate that our methodology achieves the goal of adding missing
functionality to OpenSSL transparently for existing applications, and to replace the default
implementations with alternative ones.

Excluding X25519 primitives in OpenSSL 1.1.1-pre3, we also discovered that using
libsuola-sodium, on top of adding missing functionality, generally also improves the
performance of the listed primitives, as libsodium selects implementations that are more
optimized for the test platforms.

We also note that, as claimed in [ZBPB17], HACL* does generally achieve relatively
good performance, comparable with the default implementations in OpenSSL, and, notably,
in the case of X25519 derive() in OpenSSL 1.1.0h, the HACL* implementation is even
twice as fast as the default implementation.

5.2 Analysis and security evaluation
In Section 1 and Section 2 we listed a series of concerns regarding software assurance,
release strategies and limits of OpenSSL as a platform for researchers to motivate our
work. In this section we analyze how our proposed methodology addresses those concerns
and its limits.

Software assurance. We claim that the ENGINE approach is useful in preventing various
vulnerabilities that plague OpenSSL, including e.g. traditional software defects, arithmetic
defects in e.g. hand-coded assembly, and various side-channel attack vectors. To support
this claim, we use the following metric. We first enumerate all the CVEs issued by OpenSSL
and then fetch the related security metadata for each CVE. To semi-automate this, we
utilize the vFeed14 tool: “The Correlated Vulnerability and Threat Intelligence Database
Wrapper”. We then count the number of security advisories issued across selected vendors.
We partially validated the results by examining the Debian and Ubuntu patches applied
to package builds.

As a case study, we did the same analysis for libsodium, for which we found no CVEs
issued—consistent with no patches found in said package builds. We carried out our
analysis separately for both OpenSSL 1.0.2 and 1.1.0, the only two versions which are
currently not EOL. Summarizing the below results, we conclude that our approach of
dedicated backend crypto providers for an ENGINE do not suffer from the same classes of
security issues as the analogous functionality in libcrypto, supporting our claim.

Security statistics: OpenSSL 1.0.2. OpenSSL issued 58 CVEs; 38 for libcrypto
and 20 for libssl. Restricting to the libcrypto CVEs: Debian issued 8 Debian LTS
Advisories; Debian issued 12 Debian Security Advisories; Gentoo issued 8 Gentoo Linux
Security Advisories; RedHat issued 22 Redhat Security Advisories; SUSE issued 71 Security
Updates; Ubuntu issued 12 Ubuntu Security Notices.

Security statistics: OpenSSL 1.1.0. OpenSSL issued 17 CVEs; 9 for libcrypto and 8
for libssl. Restricting to the libcrypto CVEs: Debian issued 3 Debian LTS Advisories;
Debian issued 6 Debian Security Advisories; Gentoo issued 2 Gentoo Linux Security
Advisories; RedHat issued 1 Redhat Security Advisory; SUSE issued 16 Security Updates;
Ubuntu issued 4 Ubuntu Security Notices.

It can also be argued that libsuola itself is adding even more surface for bugs and
defects, that might result in additional risks. While this is definitely true for any additional

14https://github.com/toolswatch/vFeed

https://github.com/toolswatch/vFeed


Nicola Tuveri and Billy Bob Brumley 17

Table 2: Benchmark results on a 4-cores/4-threads Intel Core i5-6500 CPU (Skylake)
running at 3.2GHz, with Enhanced Intel SpeedStep Technology and Intel Turbo Boost
Technology disabled. The workstation is equipped with 16GB 2133MHz DRAM, and runs
Ubuntu 16.04 64-bit with Linux x86_64 kernel 4.13.0-36-generic. For each operation we
collected 12800 samples and computed the median value.

Operation
CPU cycles per operation

OpenSSL-1.0.2o
default libsuola-sodium libsuola-donna libsuola-hacl

nistz256 keygen 39678 — — —
X25519 keygen — 127412 90492 (1.4x) 174766 (0.7x)
Ed25519 keygen — 81320 92266 (0.9x) 323035 (0.3x)

nistz256 derive 172484 — — —
X25519 derive — 134856 146711 (0.9x) 168189 (0.8x)

nistz256 sign 121073 — — —
Ed25519 sign — 83052 88536 (0.9x) 636766 (0.1x)

nistz256 verify 254550 — — —
Ed25519 verify — 209156 289142 (0.7x) 657614 (0.3x)

Operation
CPU cycles per operation

OpenSSL-1.1.0h
default libsuola-sodium libsuola-donna libsuola-hacl

nistz256 keygen 45904 — — —
X25519 keygen 115911 127444 (0.9x) 92465 (1.3x) 176216 (0.7x)
Ed25519 keygen — 81342 94087 (0.9x) 324392 (0.3x)

nistz256 derive 172617 — — —
X25519 derive 345496 134586 (2.6x) 146869 (2.4x) 168196 (2.1x)

nistz256 sign 127888 — — —
Ed25519 sign — 83080 89080 (0.9x) 635725 (0.1x)

nistz256 verify 256706 — — —
Ed25519 verify — 207800 288114 (0.7x) 657542 (0.3x)

Operation
CPU cycles per operation

OpenSSL-1.1.1-pre3
default libsuola-sodium libsuola-donna libsuola-hacl

nistz256 keygen 52172 — — —
X25519 keygen 121700 127455 (1.0x) 96466 (1.3x) 180808 (0.7x)
Ed25519 keygen 123092 81256 (1.5x) 98521 (1.2x) 329266 (0.4x)

nistz256 derive 172413 — — —
X25519 derive 112386 134636 (0.8x) 146623 (0.8x) 168172 (0.7x)

nistz256 sign 91084 — — —
Ed25519 sign 113419 83236 (1.4x) 88583 (1.3x) 635862 (0.2x)

nistz256 verify 229935 — — —
Ed25519 verify 379416 208592 (1.8x) 290926 (1.3x) 657564 (0.6x)



18 Start your ENGINEs: dynamically loadable contemporary crypto

Table 3: Benchmark results on a Raspberry Pi 3, equipped with a quad-core 1.2GHz
Broadcom BCM2837 64bit CPU and 1GB RAM, running Raspbian GNU/Linux 8 and
32-bit armv7l Linux kernel version 4.9.73-v7+. For each operation we collected 12800
samples and computed the median value.

Operation
CPU cycles per operation

OpenSSL-1.0.2o
default libsuola-sodium libsuola-donna

nistz256 keygen 3056253 — —
X25519 keygen — 646129 450518 (1.4x)
Ed25519 keygen — 662476 456970 (1.4x)

nistz256 derive 3159502 — —
X25519 derive — 1740942 484376 (3.6x)

nistz256 sign 3488822 — —
Ed25519 sign — 706955 446142 (1.6x)

nistz256 verify 3964863 — —
Ed25519 verify — 1998464 1334290 (1.5x)

Operation
CPU cycles per operation

OpenSSL-1.1.0h
default libsuola-sodium libsuola-donna

nistz256 keygen 222028 — —
X25519 keygen 637946 646422 (1.0x) 452888 (1.4x)
Ed25519 keygen — 662766 458888 (1.4x)

nistz256 derive 1148862 — —
X25519 derive 1810028 1741014 (1.0x) 484337 (3.7x)

nistz256 sign 588156 — —
Ed25519 sign — 707272 445408 (1.6x)

nistz256 verify 1501720 — —
Ed25519 verify — 1971220 1338216 (1.5x)

Operation
CPU cycles per operation

OpenSSL-1.1.1-pre3
default libsuola-sodium libsuola-donna

nistz256 keygen 224246 — —
X25519 keygen 641314 646264 (1.0x) 451060 (1.4x)
Ed25519 keygen 645840 662971 (1.0x) 457103 (1.4x)

nistz256 derive 1150334 — —
X25519 derive 1810896 1743616 (1.0x) 484084 (3.7x)

nistz256 sign 580100 — —
Ed25519 sign 652678 707880 (0.9x) 446438 (1.5x)

nistz256 verify 1505464 — —
Ed25519 verify 2046863 1991973 (1.0x) 1329866 (1.5x)



Nicola Tuveri and Billy Bob Brumley 19

Table 4: Benchmark results on a Raspberry Pi 3, equipped with a quad-core 1.2GHz
Broadcom BCM2837 64bit CPU and 1GB RAM, running Gentoo GNU/Linux and 64-bit
aarch64 Linux kernel version 4.11.12-pi64+. For each operation we collected 12800 samples
and computed the median value.

Operation
CPU cycles per operation

OpenSSL-1.0.2o
default libsuola-sodium libsuola-donna libsuola-hacl

nistz256 keygen 3836890 — — —
X25519 keygen — 228510 183823 (1.2x) 526758 (0.4x)
Ed25519 keygen — 232244 187966 (1.2x) 1008468 (0.2x)

nistz256 derive 3946922 — — —
X25519 derive — 585070 486426 (1.2x) 515296 (1.1x)

nistz256 sign 4335668 — — —
Ed25519 sign — 236454 177357 (1.3x) 1987575 (0.1x)

nistz256 verify 4832773 — — —
Ed25519 verify — 678238 553648 (1.2x) 2059746 (0.3x)

Operation
CPU cycles per operation

OpenSSL-1.1.0h
default libsuola-sodium libsuola-donna libsuola-hacl

nistz256 keygen 147018 — — —
X25519 keygen 257314 228961 (1.1x) 184167 (1.4x) 526014 (0.5x)
Ed25519 keygen — 232954 188592 (1.2x) 1009943 (0.2x)

nistz256 derive 547095 — — —
X25519 derive 542066 584903 (0.9x) 486298 (1.1x) 516660 (1.0x)

nistz256 sign 346759 — — —
Ed25519 sign — 236566 176528 (1.3x) 1988958 (0.1x)

nistz256 verify 798062 — — —
Ed25519 verify — 682893 554762 (1.2x) 2058150 (0.3x)

Operation
CPU cycles per operation

OpenSSL-1.1.1-pre3
default libsuola-sodium libsuola-donna libsuola-hacl

nistz256 keygen 151400 — — —
X25519 keygen 265149 228932 (1.2x) 189238 (1.4x) 531400 (0.5x)
Ed25519 keygen 268433 232831 (1.2x) 193442 (1.4x) 1013592 (0.3x)

nistz256 derive 546529 — — —
X25519 derive 545707 585558 (0.9x) 486117 (1.1x) 515283 (1.1x)

nistz256 sign 255810 — — —
Ed25519 sign 251354 236868 (1.1x) 176992 (1.4x) 1988540 (0.1x)

nistz256 verify 728448 — — —
Ed25519 verify 643690 684204 (0.9x) 558118 (1.2x) 2058942 (0.3x)



20 Start your ENGINEs: dynamically loadable contemporary crypto

line of code in a software system, we designed libsuola as a “shallow” ENGINE to minimize
the risk of introducing such defects: libsuola itself is not providing any cryptographic
functionality, and we designed it to maximize readability and maintainability making it
modular.

Also, compared with the process of patching OpenSSL directly to add missing or
alternative primitives, modifying our proposed ENGINE template is generally an easier
process: the actual cryptographic functionality can be implemented using any language
and build system as long as it produces C bindings that can be mapped in a dedicated
“provider” module, while the ENGINE functionality remains separate and mostly reusable,
which further minimizes the risks of introducing software defects.

Release strategies. One of our original goals was to facilitate the integration of missing
functionality in end-of-life, yet still widely deployed, versions of OpenSSL, motivated by
different release strategies applied by software providers in real-world systems as described
in Section 2.2.

We demonstrated how the proposed approach allows to easily add or backport func-
tionality in OpenSSL 1.0.2, and how this is done transparently for existing applications.

Alternatives to our approach usually require to manually recompile and install more
recent versions of OpenSSL and then repeat the same process for each component of the
software stack of the target system that depends on OpenSSL. Sometime this is not even
possible if existing applications do not support the newer release of OpenSSL, in which case
the system administrator would need to design a patch (or retrieve a trusted one) for the
target software. This approach is impractical in most medium- or large-scale deployments,
as it is costly to maintain and definitely adds even more surface for the rise of critical
software defects and security vulnerabilities.

The same can be told about planning to replace the cryptographic provider for existing
applications based on OpenSSL. Excluding some exceptions where software is designed
with a “cryptographic module abstraction layer” to easily swap the default cryptographic
module with alternative supported ones, most applications do not usually allow this level of
flexibility, and extensive patches would be required to modify, for example, an application
using OpenSSL to serve TLS connections to use a different library for the TLS stack
supporting libsodium as the cryptographic primitive provider.

Accessibility for researchers. Another goal of our research listed in Section 1 aimed at
delivering a framework to enable researchers to do testing and benchmarks in real-world
scenarios, and to easily disseminate novel implementations and primitives to a larger user
audience.

Our proposed methodology achieve this by lowering the development and maintenance
costs of adding functionality to the widely used OpenSSL library.

Freedom of choice in programming languages and building tools for the actual crypto-
graphic implementation makes it easier to plug functionality into OpenSSL. It also lowers
the long term maintenance costs, especially considering the usually long and possibly
unfruitful process of proposing the addition of novel or alternative functionality into the
main OpenSSL codebase. Moreover, the higher degree of freedom about licensing allows to
further reduce the entry barrier for adding functionality to applications based on OpenSSL.

Finally, it provides an interesting framework to collect real data about researchers’
novel contributions, which are readily comparable with existing functionality by reusing
existing benchmarking facilities. Moreover, being an optional component and easy to plug
in at run-time, it makes it easier for researchers to reach a wider user audience for more
extensive testing or for releasing their projects.

5.3 Limits
Everything has its limits, and our project does not escape this truth.



Nicola Tuveri and Billy Bob Brumley 21

The scope is limited to OpenSSL. First and foremost, our proposed methodology
applies to OpenSSL only. While it can be argued that this is sufficient considering the
portion of the whole Internet that currently depends on OpenSSL as part of its security
stack, we recognize that this is a strong limit of our proposed methodology. In Section 6
we discuss potential research directions to overcome this limit in the future.

Overhead of linking to other libraries. Another limit of our approach is the memory
consumption: when using libsuola to integrate missing functionality in OpenSSL, in
addition to the memory required by OpenSSL itself, libsuola and the library it depends
on (libsodium or HACL*) are also loaded into memory.

One can argue that this cost should be justified, e.g. in comparison with loading into
memory only the library actually providing the cryptographic implementation (in our
case either libsodium or HACL*). It is true that if the application was rewritten to only
use the primitives in libsodium– i.e. directly linking against libsodium– the memory
cost would be more than halved compared to our approach. However: (1) this would
require redesigning every single application that currently depends on OpenSSL, defying
our goal of providing the additional functionality transparently to existing applications;
(2) part of the design of libsodium (and NaCl) is based on providing only an opinionated
set of primitives, therefore applications patched to rely exclusively on libsodium for
their cryptographic needs would lose generality and compatibility with other applications,
which is often not an option; (3) libsodium only provides cryptographic primitives, so
redesigning the applications as has been proposed would also incur the additional cost (and
security risks) of selecting and adapting to yet another library to implement the protocol
functionality (e.g. TLS) on top of libsodium.

For these reasons we do not believe that such comparison is fair, because what forks of
NaCl gain in elegance, conciseness, ease-of-use, performance and security comes at the cost
of not being interoperable with projects that do not implement the same set of primitives,
and with both the benefits and the drawbacks of being only a cryptographic library and
not a full stack library.

libsuola memory overhead. Regarding the overhead of libsuola itself, with respect
to memory consumption, its footprint is negligible compared with the memory requirements
of OpenSSL across all the tested architectures and OpenSSL versions.

To give some figures, in the case of our x86-64 target platform and OpenSSL 1.1.1-pre3,
the resident set size in memory of libsuola.so alone totals 60 KB, compared with over
2 MB of memory occupied by OpenSSL alone (excluding the additional 1.2 MB occupied
by libc, libpthread, and libdl which are required by OpenSSL).

libsuola computational overhead. With respect to computation, excluding from
our analysis md_identity which is not of particular relevance, libsuola itself adds
some computational overhead once when it is dynamically loaded by OpenSSL during
initialization, and a small computational cost every time the functions wrapping the actual
cryptographic primitives in the provider module are called.

OpenSSL uses exactly the same level of indirection whether the function implementing
a primitive resides in OpenSSL itself or in an external ENGINE. The additional cost comes
from the fact that the implementing function is resolved with the memory address of the
function in the provider object inside libsuola, which then calls the actual function in
libsodium, HACL* or the internal object with the donna implementation.

With the libsuola-donna case the wrapper is actually required as the donna imple-
mentation does not implement the NaCl C API, but in the case of libsuola-sodium and
libsuola-hacl, where the wrapper only calls the relevant function in the target library,
this overhead could be erased by annotating the source code of the providers with compiler
attributes to instead resolve the final function pointer at load time, so that OpenSSL
would call directly the relevant function in the target library.



22 Start your ENGINEs: dynamically loadable contemporary crypto

This further optimization would come at the cost of higher complexity, inferior code
readability and limited portability, which we deemed to be not in line with the stated goals
of our project. We also believe that researchers who strongly need to squeeze out every
single superfluous assembly instruction, while testing their code against OpenSSL through
our proposed methodology, will have no problem implementing the described expedient.

6 Related work
We focused our analysis on the OpenSSL project and on ENGINEs as the native mechanism
to handle alternative cryptographic implementations for the supported primitives. In this
section, we present an overview of how other security standards, libraries, and frameworks
address extensibility.

Describing programming interfaces and application protocols to provide interoperability
and transparency between applications and cryptographic providers in the form of hardware
and software cryptographic modules is a decades-old problem. Standardization bodies,
operating systems, security software and hardware vendors, manufacturers and various
organizations over the years approach the issue aiming for akin goals but with different
approaches (e.g. regarding the cryptographic awareness required to adopt the proposed
solution), trust models and features.

Standards. One of the more relevant and widespread cryptographic standards is
PKCS #11 [TC16]: it specifies the “Cryptoki” API for devices that hold cryptographic
information and perform cryptographic functions, presenting applications an abstract
“cryptographic token” view, thus providing a separation layer between applications and
specific algorithms and implementations. The PKCS #11 API defines abstract object
types to represent symmetric and asymmetric crypto keys, digital signature keys, X.509
certificates, hash functions, MACs, and other common cryptographic objects, and all the
functions needed to generate, modify, use and delete such objects. Just like OpenSSL
ENGINEs, PKCS #11 was originally designed for hardware devices, but the level of abstrac-
tion provided allows it to be used also for software cryptographic modules. By design,
PKCS #11 defines use cases with many applications and many tokens, allowing interaction
and the possibility to choose among alternative implementations.

Other related standards that aim to separate applications from cryptographic implemen-
tation details include GSS-API [Lin97, Lin00] and IDUP-GSS-API [Ada98], CDSA [Gro00],
SSAPI [Tea96], and the Simple Cryptographic Program Interface [Smy99].

Operating System assisted crypto. Operating Systems are by design natural can-
didates to provide security services and abstraction of hardware capabilities to users
and applications of a system. Modern OS designs provide a hardware abstraction layer
(HAL), separation of security contexts and levels, access control, authentication of loadable
modules and binaries, have privileged access to cryptographic units and coprocessors, and
usually already require a set of cryptographic primitives for their internal functions.

The OpenBSD/FreeBSD Cryptographic Framework (OCF) provides convenient access
to the kernel cryptographic functionalities (including symmetric and public-key crypto,
hashes, MACs, access to crypto hardware accelerators and RNGs) to userspace through
a /dev/crypto pseudo-device [KWdR03, KWdRB06] and a standard ioctl interface,
simplifying the development of applications and reducing the required cryptographic
awareness of application developers.

Recent versions of the Linux kernel include the AF_ALG interface (providing access to
the kernel symmetric crypto functions through the socket interface), while independent
developers maintain a set of patches15 to provide a /dev/crypto ioctl interface com-
patible with the OCF one. See [DS13] for a performance analysis of this framework in

15http://cryptodev-linux.org

http://cryptodev-linux.org


Nicola Tuveri and Billy Bob Brumley 23

different usage scenarios and [MTP12] for a proposal to enhance this framework to provide
decoupling of cryptographic keys from applications for increased forward secrecy properties.
A different project provides a complete port of OCF to the Linux kernel16, including the
ioctl interface but using the ported implementations instead of the native Linux crypto
capabilities.

Microsoft Windows OSs expose a Cryptographic Application Programming Inter-
face (CAPI, a.k.a. CryptoAPI), providing an abstraction layer and a set of dynamically
linked libraries decoupling applications from the functionality provided by Cryptographic
Service Providers (CSP). The supported functionality includes RNGs, symmetric and
public-key crypto, hashes and MACs, authentication, PKI and key storage. The “Cryp-
tographic API: Next Generation” (CNG)17 is the latest long-term replacement of the
original API, providing a compatibility layer and featuring better support for configuration,
cryptographic agility, and a wider selection of supported primitives, covering the whole
NSA Suite B [U.S09] (including ECC).

Other security libraries and frameworks. Mozilla NSS18 is another widespread set
of libraries supporting cross-platform development of security-enabled client and server
applications. It has native PKCS #11 support for hardware and software security modules,
and indeed the internal cryptosystem implementations are encapsulated in a software
PKCS #11 token, allowing selection among alternative implementations of crypto primitives
during configuration.

GnuTLS19 is a high-level library providing TLS support, and relies on other libraries for
crypto primitives. It features a multilayered architecture, based on a Cryptography Provider
Layer, which provides abstraction from the actual providers for individual primitives and
allows transparent access to implementations provided by the underlying cryptographic
software library (i.e. libgcrypt or nettle), to OS assisted crypto (e.g. /dev/crypto or
CAPI), non-privileged CPU crypto instructions (e.g. Intel AES-NI), and TPM or hardware
and software cryptographic modules through a rich native support for PKCS #11. The
architecture also provides functions to override symmetric crypto implementations and
“abstract private keys” as a way to handle abstractions over keys stored in hardware
modules (PKCS #11 or TPM) or over operations implemented directly using an external
API.

ARM mbed TLS20 (formerly known as PolarSSL) has optional support for Hardware
Security Modules (HSM) with PKCS #11, and supports the replacement of specific
functions or full cryptosystem modules with alternative implementations, but limited to
compile time.21

cryptlib [Gut17, Gut04] has built-in native support for selected hardware crypto
accelerators and for PKCS #11 devices, ensuring that the API for any crypto device
is identical to the API of cryptlib native crypto implementations, allowing easy and
transparent migration of applications from the native software implementations to the use
of crypto devices.

The Java SDK includes the Java Secure Socket Extension (JSSE),22 and the Java
Cryptography Architecture (JCA).23 These modular frameworks provide an abstraction
layer respectively for secure network protocols like TLS and for cryptographic primitive
implementations. Through the factory method design pattern and the Service Provider
Interface (SPI) programming interface, JCA supports the registration of Cryptographic

16http://ocf-linux.sourceforge.net/
17https://msdn.microsoft.com/en-us/library/windows/desktop/aa375276.aspx
18https://developer.mozilla.org/en-US/docs/Mozilla/Projects/NSS
19https://www.gnutls.org/
20https://tls.mbed.org/
21https://tls.mbed.org/kb/development/hw_acc_guidelines
22https://docs.oracle.com/javase/8/docs/technotes/guides/security/jsse/JSSERefGuide.html
23https://docs.oracle.com/javase/8/docs/technotes/guides/security/crypto/CryptoSpec.html

http://ocf-linux.sourceforge.net/
https://msdn.microsoft.com/en-us/library/windows/desktop/aa375276.aspx
https://developer.mozilla.org/en-US/docs/Mozilla/Projects/NSS
https://www.gnutls.org/
https://tls.mbed.org/
https://tls.mbed.org/kb/development/hw_acc_guidelines
https://docs.oracle.com/javase/8/docs/technotes/guides/security/jsse/JSSERefGuide.html
https://docs.oracle.com/javase/8/docs/technotes/guides/security/crypto/CryptoSpec.html


24 Start your ENGINEs: dynamically loadable contemporary crypto

Service Provider (CSP) instances. Applications using the framework can either select
a specific CSP for a primitive or let the system configuration select the most suitable
implementation at runtime, attaining complete decoupling between applications and crypto
implementations.

Other libraries have a completely opposite design philosophy: NaCl and libsodium,
for example, are intentionally designed as simplified and opinionated libraries to avoid
“cryptographic disasters” due to insufficient cryptographic awareness of application de-
velopers. As such, cryptographic agility and configurability are considered “antifeatures”
due to the inherent complexity costs and the risk of enabling adopters to select insecure
combinations of primitives.

From this brief survey, PKCS #11, due to its widespread support, appears to be a
suitable candidate to provide alternative crypto primitive implementations portable across
different libraries. Unfortunately, OpenSSL does not natively support PKCS #11, only
through a third party ENGINE implementation. Nonetheless, this application of PKCS #11
seems to be an interesting direction for further research on this topic.

7 Conclusion
In this work, we analyzed issues affecting real-world security across currently deployed,
ubiquitous cryptography software libraries. The consequences derived from these issues
include: (1) limited assurance that software implementations are functionally correct; (2)
low or non-existent accountability in the software engineering decision-making process;
(3) costly and nonscalable upkeep of custom builds augmented with new features; (4)
and additional security risks due to conflicting release strategies between cryptographic
libraries and OS vendors.

In addition, we also examined some factors that hinder researchers and practitioners
from achieving timely and widespread dissemination of their scientific results in real-world
applications, thus impeding the potential impact of current cryptography research.

As a possible solution, we presented the adoption of OpenSSL ENGINEs as a framework
to overcome these limits and as a convenient tool for researchers to disseminate, test and
benchmark their contributions in real-world applications. We demonstrated the usage,
viability, limits and benefits of this framework through libsuola, a project that aims at
providing support for emerging cryptography standards such as X25519 and Ed25519 for
currently deployed versions of OpenSSL, while being completely transparent for existing
applications.

Due to the nature of this research, we expect it to be the foundation for future work
aiming at bridging the gaps between research results and real-world applications. For
instance, we intend to explore automated ENGINE construction, potentially leading to
tooling that rigs together popular research-driven APIs (e.g. SUPERCOP) with practice-
driven APIs. We hope to apply said tooling in NIST’s ongoing post-quantum cryptosystem
standardization competition [CJL+16], comparing candidates w.r.t. real-world performance
in TLS cipher suites. Moreover, we also expect it to serve as a means to enhance future
research efforts, by providing a framework to ease the testing and benchmarking of novel
scientific results in real-world systems and settings.

Acknowledgments

Supported in part by Academy of Finland grant 303814.
This article is based in part upon work from COST Action IC1403 CRYPTACUS,

supported by COST (European Cooperation in Science and Technology).



Nicola Tuveri and Billy Bob Brumley 25

References
[ABB+17] José Bacelar Almeida, Manuel Barbosa, Gilles Barthe, Arthur Blot, Benjamin

Grégoire, Vincent Laporte, Tiago Oliveira, Hugo Pacheco, Benedikt Schmidt,
and Pierre-Yves Strub. Jasmin: High-assurance and high-speed cryptography.
In Bhavani M. Thuraisingham, David Evans, Tal Malkin, and Dongyan Xu,
editors, Proceedings of the 2017 ACM SIGSAC Conference on Computer
and Communications Security, CCS 2017, Dallas, TX, USA, October 30 -
November 03, 2017, pages 1807–1823. ACM, 2017.

[ABF+16] Thomas Allan, Billy Bob Brumley, Katrina E. Falkner, Joop van de Pol, and
Yuval Yarom. Amplifying side channels through performance degradation. In
Stephen Schwab, William K. Robertson, and Davide Balzarotti, editors, Pro-
ceedings of the 32nd Annual Conference on Computer Security Applications,
ACSAC 2016, Los Angeles, CA, USA, December 5-9, 2016, pages 422–435.
ACM, 2016.

[Ada98] C. Adams. Independent Data Unit Protection Generic Security Service
Application Program Interface (IDUP-GSS-API). RFC 2479, RFC Editor,
December 1998.

[BBPV12] Billy Bob Brumley, Manuel Barbosa, Dan Page, and Frederik Vercauteren.
Practical realisation and elimination of an ECC-related software bug attack.
In Orr Dunkelman, editor, Topics in Cryptology - CT-RSA 2012 - The
Cryptographers’ Track at the RSA Conference 2012, San Francisco, CA,
USA, February 27 - March 2, 2012. Proceedings, volume 7178 of Lecture
Notes in Computer Science, pages 171–186. Springer, 2012.

[BCD+16] Joppe W. Bos, Craig Costello, Léo Ducas, Ilya Mironov, Michael Naehrig,
Valeria Nikolaenko, Ananth Raghunathan, and Douglas Stebila. Frodo: Take
off the ring! Practical, quantum-secure key exchange from LWE. In Edgar R.
Weippl, Stefan Katzenbeisser, Christopher Kruegel, Andrew C. Myers, and
Shai Halevi, editors, Proceedings of the 2016 ACM SIGSAC Conference on
Computer and Communications Security, Vienna, Austria, October 24-28,
2016, pages 1006–1018. ACM, 2016.

[BCS08] Eli Biham, Yaniv Carmeli, and Adi Shamir. Bug attacks. In David A.
Wagner, editor, Advances in Cryptology - CRYPTO 2008, 28th Annual
International Cryptology Conference, Santa Barbara, CA, USA, August 17-
21, 2008. Proceedings, volume 5157 of Lecture Notes in Computer Science,
pages 221–240. Springer, 2008.

[BDL+12] Daniel J. Bernstein, Niels Duif, Tanja Lange, Peter Schwabe, and Bo-Yin
Yang. High-speed high-security signatures. J. Cryptographic Engineering,
2(2):77–89, 2012.

[Ber05] Daniel J. Bernstein. Cache-timing attacks on AES, 2005.

[Ber06] Daniel J. Bernstein. Curve25519: New Diffie-Hellman speed records. In
Moti Yung, Yevgeniy Dodis, Aggelos Kiayias, and Tal Malkin, editors, Public
Key Cryptography - PKC 2006, 9th International Conference on Theory and
Practice of Public-Key Cryptography, New York, NY, USA, April 24-26,
2006, Proceedings, volume 3958 of Lecture Notes in Computer Science, pages
207–228. Springer, 2006.



26 Start your ENGINEs: dynamically loadable contemporary crypto

[BH09] Billy Bob Brumley and Risto M. Hakala. Cache-timing template attacks.
In Mitsuru Matsui, editor, Advances in Cryptology - ASIACRYPT 2009,
15th International Conference on the Theory and Application of Cryptology
and Information Security, Tokyo, Japan, December 6-10, 2009. Proceedings,
volume 5912 of Lecture Notes in Computer Science, pages 667–684. Springer,
2009.

[BL] Daniel J. Bernstein and Tanja Lange. eBACS: ECRYPT Benchmarking of
Cryptographic Systems. [Online; accessed 30-August-2017].

[BLS12] Daniel J. Bernstein, Tanja Lange, and Peter Schwabe. The security impact of
a new cryptographic library. In Alejandro Hevia and Gregory Neven, editors,
Progress in Cryptology - LATINCRYPT 2012 - 2nd International Conference
on Cryptology and Information Security in Latin America, Santiago, Chile,
October 7-10, 2012. Proceedings, volume 7533 of Lecture Notes in Computer
Science, pages 159–176. Springer, 2012.

[Bru15] Billy Bob Brumley. Faster software for fast endomorphisms. In Stefan Man-
gard and Axel Y. Poschmann, editors, Constructive Side-Channel Analysis
and Secure Design - 6th International Workshop, COSADE 2015, Berlin,
Germany, April 13-14, 2015. Revised Selected Papers, volume 9064 of Lecture
Notes in Computer Science, pages 127–140. Springer, 2015.

[BS12] Daniel J. Bernstein and Peter Schwabe. NEON crypto. In Emmanuel Prouff
and Patrick Schaumont, editors, Cryptographic Hardware and Embedded
Systems - CHES 2012 - 14th International Workshop, Leuven, Belgium,
September 9-12, 2012. Proceedings, volume 7428 of Lecture Notes in Computer
Science, pages 320–339. Springer, 2012.

[BS13] Daniel J. Bernstein and Peter Schwabe. A word of warning. CHES 2013
Rump Session, August 2013.

[BvdPSY14] Naomi Benger, Joop van de Pol, Nigel P. Smart, and Yuval Yarom. “ooh
aah... just a little bit” : A small amount of side channel can go a long way.
In Lejla Batina and Matthew Robshaw, editors, Cryptographic Hardware
and Embedded Systems - CHES 2014 - 16th International Workshop, Busan,
South Korea, September 23-26, 2014. Proceedings, volume 8731 of Lecture
Notes in Computer Science, pages 75–92. Springer, 2014.

[CJL+16] Lily Chen, Stephen Jordan, Yi-Kai Liu, Dustin Moody, Rene Peralta, Ray
Perlner, and Daniel Smith-Tone. Report on post-quantum cryptography.
NISTIR 8105, National Institute of Standards and Technology, April 2016.

[DS13] Yashpal Dutta and Varun Sethi. Performance analysis of cryptographic
acceleration in multicore environment. In Karan Singh and Amit K. Awasthi,
editors, Quality, Reliability, Security and Robustness in Heterogeneous Net-
works - 9th International Conference, QShine 2013, Greader Noida, India,
January 11-12, 2013, Revised Selected Papers, volume 115 of Lecture Notes
of the Institute for Computer Sciences, Social Informatics and Telecommuni-
cations Engineering, pages 658–667. Springer, 2013.

[Dub17] Renaud Dubois. Trapping ECC with invalid curve bug attacks. IACR
Cryptology ePrint Archive, 2017(554), 2017.

[GK15] Shay Gueron and Vlad Krasnov. Fast prime field elliptic-curve cryptography
with 256-bit primes. J. Cryptographic Engineering, 5(2):141–151, 2015.



Nicola Tuveri and Billy Bob Brumley 27

[Gro00] The Open Group. Common Data Security Architecture (CDSA), Version 2,
May 2000.

[Gue12] Shay Gueron. Efficient software implementations of modular exponentiation.
J. Cryptographic Engineering, 2(1):31–43, 2012.

[Gut04] Peter Gutmann. Cryptographic Security Architecture. Design and Verification.
Springer-Verlag New York, 1 edition, 2004.

[Gut17] Peter Gutmann. cryptlib security toolkit, 3.4.3.1, January 2017.

[JL17] S. Josefsson and I. Liusvaara. Edwards-Curve Digital Signature Algorithm
(EdDSA). RFC 8032, RFC Editor, January 2017.

[Käs11] Emilia Käsper. Fast elliptic curve cryptography in OpenSSL. In George
Danezis, Sven Dietrich, and Kazue Sako, editors, Financial Cryptography and
Data Security - FC 2011 Workshops, RLCPS and WECSR 2011, Rodney Bay,
St. Lucia, February 28 - March 4, 2011, Revised Selected Papers, volume
7126 of Lecture Notes in Computer Science, pages 27–39. Springer, 2011.

[KS09] Emilia Käsper and Peter Schwabe. Faster and timing-attack resistant AES-
GCM. In Christophe Clavier and Kris Gaj, editors, Cryptographic Hardware
and Embedded Systems - CHES 2009, 11th International Workshop, Lausanne,
Switzerland, September 6-9, 2009, Proceedings, volume 5747 of Lecture Notes
in Computer Science, pages 1–17. Springer, 2009.

[KWdR03] Angelos D. Keromytis, Jason L. Wright, and Theo de Raadt. The design
of the OpenBSD cryptographic framework. In Proceedings of the General
Track: 2003 USENIX Annual Technical Conference, June 9-14, 2003, San
Antonio, Texas, USA, pages 181–196. USENIX, 2003.

[KWdRB06] Angelos D. Keromytis, Jason L. Wright, Theo de Raadt, and Matthew
Burnside. Cryptography as an operating system service: A case study. ACM
Trans. Comput. Syst., 24(1):1–38, 2006.

[LHT16] A. Langley, M. Hamburg, and S. Turner. Elliptic Curves for Security. RFC
7748, RFC Editor, January 2016.

[Lin97] J. Linn. Generic Security Service Application Program Interface, Version 2.
RFC 2078, RFC Editor, January 1997.

[Lin00] J. Linn. Generic Security Service Application Program Interface Version 2,
Update 1. RFC 2743, RFC Editor, January 2000.

[MS13] Christopher Meyer and Jörg Schwenk. SoK: Lessons learned from SSL/TLS
attacks. In Yongdae Kim, Heejo Lee, and Adrian Perrig, editors, Information
Security Applications - 14th International Workshop, WISA 2013, Jeju Island,
Korea, August 19-21, 2013, Revised Selected Papers, volume 8267 of Lecture
Notes in Computer Science, pages 189–209. Springer, 2013.

[MTP12] Nikos Mavrogiannopoulos, Miloslav Trmac, and Bart Preneel. A linux kernel
cryptographic framework: decoupling cryptographic keys from applications. In
Sascha Ossowski and Paola Lecca, editors, Proceedings of the ACM Symposium
on Applied Computing, SAC 2012, Riva, Trento, Italy, March 26-30, 2012,
pages 1435–1442. ACM, 2012.

[Per05] Colin Percival. Cache missing for fun and profit. In BSDCan 2005, Ottawa,
Canada, May 13-14, 2005, Proceedings, 2005.



28 Start your ENGINEs: dynamically loadable contemporary crypto

[PGBY16] Cesar Pereida García, Billy Bob Brumley, and Yuval Yarom. “Make sure DSA
signing exponentiations really are constant-time”. In Edgar R. Weippl, Stefan
Katzenbeisser, Christopher Kruegel, Andrew C. Myers, and Shai Halevi,
editors, Proceedings of the 2016 ACM SIGSAC Conference on Computer
and Communications Security, Vienna, Austria, October 24-28, 2016, pages
1639–1650. ACM, 2016.

[Smy99] V. Smyslov. Simple Cryptographic Program Interface (Crypto API). RFC
2628, RFC Editor, June 1999.

[TC16] OASIS PKCS 11 TC. PKCS #11 Cryptographic Token Interface Base
Specification Version 2.40 Plus Errata 01. Standard incorporating approved
errata, OASIS, Organization for the Advancement of Structured Information
Standards, May 2016.

[Tea96] NSA Cross-Organizational CAPI Team. Security service api: Cryptographic
api recommendation, 1996.

[U.S09] U.S. National Security Agency. NSA Suite B Cryptography, January 2009.

[vdPSY15] Joop van de Pol, Nigel P. Smart, and Yuval Yarom. Just a little bit more. In
Kaisa Nyberg, editor, Topics in Cryptology - CT-RSA 2015, The Cryptogra-
pher’s Track at the RSA Conference 2015, San Francisco, CA, USA, April
20-24, 2015. Proceedings, volume 9048 of Lecture Notes in Computer Science,
pages 3–21. Springer, 2015.

[YGH16] Yuval Yarom, Daniel Genkin, and Nadia Heninger. CacheBleed: A timing
attack on openssl constant time RSA. In Benedikt Gierlichs and Axel Y.
Poschmann, editors, Cryptographic Hardware and Embedded Systems - CHES
2016 - 18th International Conference, Santa Barbara, CA, USA, August
17-19, 2016, Proceedings, volume 9813 of Lecture Notes in Computer Science,
pages 346–367. Springer, 2016.

[ZBPB17] Jean Karim Zinzindohoué, Karthikeyan Bhargavan, Jonathan Protzenko, and
Benjamin Beurdouche. HACL*: A verified modern cryptographic library.
In Bhavani M. Thuraisingham, David Evans, Tal Malkin, and Dongyan Xu,
editors, Proceedings of the 2017 ACM SIGSAC Conference on Computer
and Communications Security, CCS 2017, Dallas, TX, USA, October 30 -
November 03, 2017, pages 1789–1806. ACM, 2017.


	Introduction
	Motivation
	Software assurance
	Release strategies

	OpenSSL and the ENGINE API
	Architecture of the OpenSSL project
	What is an OpenSSL ENGINE?
	Structural and functional references to dynamic ENGINEs
	Anatomy of a dynamic ENGINE
	Curve25519, X25519 and Ed25519 in OpenSSL

	The libsuola ENGINE
	libsuola X25519
	libsuola Ed25519
	libsuola md_identity
	Providers

	Experimental results
	Benchmarks
	Analysis and security evaluation
	Limits

	Related work
	Conclusion

