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Abstract

In ideal-lattice cryptography, lattices are generated by defining a bi-

jective map between an ideal of a ring of integers and a subset of Cn.

This map can be taken to be the coefficient embedding and, along with

the Ring-LWE problem, the canonical embedding. However, some lattices

cannot be generated using the canonical embedding in a straightforward

manner. In this paper, we introduce a new class of problems called α-Ring-

LWE, which combines Ring-LWE with the twisted canonical embedding.

In this context, α stands to be a number field element that distorts the

canonical embedding coordinates. We prove the hardness of α-Ring-LWE

by providing a reduction between the Ring-LWE problem to α-Ring-LWE

for both search and decision variants. As a result, we obtain a hardness

result based on a hard problem over ideal lattices. The addition of a

torsion factor enables the construction of a broader class of lattices as ro-

tated lattices. An example is the construction of the integer lattice Zn by

embedding the ring of integers of the totally real subfield of a cyclotomic

number field Q(ζp) with p being a prime number [BFOV04].

1 Introduction

Shor’s algorithm and its variation quantumly solve the integer factorization

and discrete logarithm problems in polynomial time [Sho97]. Therefore, the

RSA and ECDSA1 public-key cryptosystems became vulnerable to quantum

1Acronym to Elliptic Curve Digital Signature Algorithm.
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attacks. Subsequently, cryptographic primitives based on problems that are

hard to solve by conventional and quantum computers have been proposed in the

literature. The classes of problems that support these primitives are commonly

referred as post-quantum cryptography. There are constructions whose security

relies on problems over supersingular isogenies, lattices, error-correcting codes,

multivariate quadratic equations, hash functions, and others.

The urge for viable post-quantum schemes that may ensure future privacy is

reflected by NIST’s call for proposals of quantum-resistant public-key algorithms

to be standardized in the near future [NIS17]. An example of post-quantum

public-key scheme is the lattice-based NewHope [ADPS16], which was deployed

by Google in a post-quantum TLS experiment simultaneously with current al-

gorithms [Goo16]. Similarly to most cryptosystems based on the Ring-LWE

problem2, NewHope builds upon the power-of-two cyclotomic ring of integers.

Campbell, Groves, and Shepherd have introduced a lattice-based cryptosys-

tem named Soliloquy that, as the homomorphic encryption scheme of Smart and

Vercauteren [SV10] and others similar systems, is vulnerable to a key-recovery

quantum attack that runs in polynomial time [CGS13]. Soliloquy uses cyclo-

tomic number fields generated by the p-th root of unity, with p being a prime

number.

In light of the quantum attack for certain systems based on cyclotomic num-

ber fields, the study of lattice-based cryptosystems using number fields besides

cyclotomics has been motivated also by a sequence of works that character-

izes weak instances of Ring-LWE and Poly-LWE3 problems [EHL14, ELOS15,

CLS15, CIV16b, CIV16a, CLS16]. As a consequence, these works end up ex-

ploring vulnerabilities exposed by some field properties, as done by Bernstein

et al. in [BCLvV16].

In the Ring-LWE context, the search for alternative instantiations has been

put forward by hardness results for all number fields [LPR10, PRSD17a] and a

toolkit containing techniques for secure implementation of Ring-LWE primitives

over any cyclotomic number field [LPR13]. For example, an alternative instan-

tiation is the adoption of the ring of integers Z[x]/〈xp−x−1〉 for p prime, which

was proposed in [BCLvV16] for an NTRU-based scheme, and also suggested for

the Ring-LWE setting in [PRSD17b].

In ideal-lattice cryptography, an ideal of a ring of integers relates to a lattice

by an injective ring homomorphism. Ring-LWE adopts the canonical embed-

ding, also known as Minkowski embedding, but, for some lattices constructions,

2Abbreviation for the Learning With Errors problem over rings. It is not a problem
based on lattices but is related by a computational reduction from problems over ideal lat-
tices [LPR10].

3Polynomial Learning With Errors, a simplification of the Ring-LWE problem explicitly
introduced by Brakerski and Vaikuntanathan in [BV11].
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the canonical embedding does not suffice then requiring a torsion in each of its

coordinates. The embedding resulting from this torsion is denoted as twisted

canonical embedding, which is now referred to as twisted embedding. In this

paper, we introduce α-Ring-LWE, the class of problems Ring-LWE adopting

the twisted embedding, and we transitively prove its hardness based on a hard

problem over ideal lattices.

2 Preliminaries

In this context, for a vector x = (x1, . . . , xn) ∈ Rn, when p is a finite number,

let the lp norm be ‖x‖p =
( ∑
i∈[n]

|xi|p
) 1

p . For p =∞, ‖x‖∞ = max
i∈[n]

(|xi|). When

not stated otherwise, assume ‖ · ‖ denotes the l2 norm.

2.1 Algebraic Number Theory

Let K be a number field, which is a n-degree extension over Q, R = OK its

ring of algebraic integers, and R∨ the corresponding dual of R. For simplicity,

we do not adopt the H space as defined in [LPR10] but we point out that H

is isomorphic to Rn as an inner product space. Moreover, let σ1, . . . , σn be the

n embeddings of K ordered so that σ1, . . . , σs1 are the real embeddings and

the remaining 2s2 = n− s1 complex embeddings are paired in such a way that

σs1+k = σs1+s2+k for k ∈ [s2].

Definition 1 (Ideal lattice). An ideal lattice is a pair (I, qα) where I is an

ideal of OK and

qα : I × I → Z, qα(x, y) = Tr(αxy),∀x, y ∈ I,

where the trace can be shown to be the sum of the embeddings as Tr(x) =∑
i∈[n]

σi(x), and α ∈ K is totally positive, i.e. σi(α) > 0 for i ∈ [n].

Let the canonical embedding σ be the map σ : K → Rn given by

σ(x) = (σ1(x), . . . , σs1(x),

Re(σs1+1(x)), Im(σs1+1(x)), . . . ,

Re(σs1+s2(x)), Im(σs1+s2(x))).

The canonical embedding endows the number field K with a geometrical rep-

resentation where we can define geometric norms and error distributions over the
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tensor product KR = K⊗QR. Also, these embeddings are ring monomorphisms4

from K to Rn where addition and multiplication are both component-wise.

Following the definition from [Wü02], which slightly differs from [OV04], the

twisted canonical embedding σα : K → Rn can be defined as

σα(x) = (
√
σ1(α)σ1(x), . . . ,

√
σs1(α)σs1(x)),√

2σs1+1(α)Re(σs1+1(x)),
√

2σs1+1(α)Im(σs1+1(x)), . . . ,√
2σs1+s2(α)Re(σs1+s2(x)),

√
2σs1+s2(α)Im(σs1+s2(x))),

for a totally positive α ∈ K.

The generator matrix of ideal lattices are of the type M = (σi(ωj))i,j∈[n] ·D,

where D is a diagonal matrix and (ωj)j∈[n] is a Z-basis of I. When D = In, the

n-by-n identity matrix, the ideal lattice is simply generated by the canonical

embedding. Moreover, when D contains in its diagonal the factors
√
σi(α) for

i ∈ [s1] and
√

2σs1+j(α) for j ∈ [s2], then the ideal lattice is equivalent to

σα(I), with I being an ideal of the number field.

Also, for the twisted embedding, it is possible to express the diagonal matrix

D as a linear transformation tα : Rn → Rn that can be defined as

tα(bi) = bi ·
(√

σ1(α), . . . ,
√
σs1(α),√

2σs1+1(α),
√

2σs1+1(α), . . . ,√
2σs1+s2(α),

√
2σs1+s2(α)

)
,

for each i ∈ [n], such that {b1, . . . , bn} ∈ Rn×n is the canonical basis of Rn.

Notice that tα admits inverse as D is a diagonal matrix with non-zero elements

in its diagonal. Similarly, the twisted canonical embedding parameterized by

α ∈ K can be defined as the composition

σα , (tα ◦ σ) : K → Rn.

It can be shown that, if α is such that Tr(αR) ⊂ Z, then σα(I) is a lattice

over Rn for any ideal I of OK of rank equal to the extension degree of K.

2.2 The Ring-LWE problem

The Ring-LWE distribution is parameterized by a number field K with ring of

integers R = OK , and an integer modulus q ≥ 2. Let Iq denotes the quotient

I/qI with I a fractional ideal. The dual of an ideal I is denoted by I∨, and T
is defined as KR/R

∨.

4The monomorphisms, or injective ring homomorphisms, preserves both addition and mul-
tiplication in Rn.

4



Definition 2 ([LPR10] Ring-LWE distribution). For s ∈ R∨q , often called

the secret, and an error distribution ψ over KR, a sample from the Ring-LWE

distribution As,ψ over Rq × T is generated by choosing a ← Rq uniformly at

random, choosing e← ψ, and outputting (a, b = (a · s)/q + e mod R∨).

Definition 3 ([LPR10] Search-Ring-LWE). Let Ψ be a family of distribu-

tions over KR. The search version of the Ring-LWE problem, denoted search-

Ring-LWEq,Ψ, is defined as follows: given access to arbitrary many independent

samples from As,ψ, the Ring-LWE distribution, for some arbitrary s ∈ R∨q and

ψ ∈ Ψ, find s.

Definition 4 ([LPR10] Decision-Ring-LWE). Let Ψ be a family of error

distributions, each over KR. The average-case decision version of the Ring-LWE

problem, denoted decision-Ring-LWEq,Ψ, is to distinguish with non-negligible

advantage between arbitrary many independent samples from As,π, for a random

choice of (s, π)← U(R∨q )×Ψ, and the same number of uniformly random and

independent samples from Rq × T.

3 The class of problems α-Ring-LWE

In this section, we introduce a variation of the Ring-LWE class of problems

denoted by α-Ring-LWE. It uses the twisted canonical embedding in order to

obtain a geometrical view of K. In the first moment, it leads to the addition

of α as a new Ring-LWE parameter, which is an appropriately chosen totally

positive element of K. It may allow the construction of integer lattices, re-

placing the discrete version of Ring-LWE, and providing a more powerful tool

for generating other classes of lattices. Moreover, we can provide a hardness

proof transitively based on a hard problem over lattices. Considering there is

a quantum reduction from the SIVP5 problem to Ring-LWE for both decision

and search versions [LPR10, PRSD17a], it suffices to prove that Ring-LWE is

reducible to α-Ring-LWE.

In the following, we redefine some notions that are affected by adding a

factor to the canonical embedding, which are basically the geometrical view of

the number field and the error distribution. As in [LPR10], we take the error

distribution as a spherical Gaussian distribution with parameter r.

5Shortest Integer Vectors Problem.
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3.1 Gaussian distribution

Let the field trace and norm be defined in terms of the sum and product of the

embeddings, respectively, as follows:

Tr(x) =
∑
i∈[n]

σi(x) and N(x) =
∏
i∈[n]

σi(x).

Additionally, for all x, y ∈ K,

Tr(xy) =
∑
i∈[n]

σi(x) · σi(y) = 〈σ(x), σ(y)〉.

As originally stated in [LPR10], the Gaussian function ρr : Rn → (0, 1], for

r > 0, is

ρr(x) = exp(−π · ‖x‖2/r2).

Considering that ‖x‖ = ‖σ(x)‖, for x ∈ K, we can redefine the Gaus-

sian function ρr : Rn → (0, 1] in terms of the trace of K with respect to

the embedding. Combining the facts that ‖x‖ = ‖σ(x)‖ =
√
〈x, x〉, and

Tr(xx) = 〈σ(x), σ(x)〉, we obtain

ρr(σ(x)) = exp(−π · Tr(xx)/r2),

for the canonical embedding. For the twisted embedding, the Gaussian function

is defined as ρr̃(σα(x)) = exp(−π · Tr(xx)/r̃2), with parameter r̃ = r/
√
σ(αi),

where the square root and the division are taken coefficient-wise.

Then, for a lattice Λ and a point u both in Rn, the discrete Gaussian dis-

tribution over the coset Λ + u parameterized by r̃ > 0 is defined by

DΛ+u,r̃(x) =
ρr̃(x)

ρr̃(Λ + u)
,∀x ∈ (Λ + u).

3.2 Hardness of α-Ring-LWE

Considering the new definition of Gaussian distribution, we are able to infor-

mally define both variants of the Ring-LWE class of problems using the twisted

embedding along with their security proofs.

Definition 5 (α-Ring-LWE distribution). For s ∈ R∨q , often called the

secret, and an error distribution ψα over KR, a sample from the α-Ring-LWE

distribution Aα,s,ψ over Rq × T is generated by choosing a ← Rq uniformly at

random, choosing e← ψα, and outputting (a, b = (a · s)/q + e mod R∨).

Theorem 1. For any totally positive α ∈ K, the search-Ring-LWEq,Ψ is re-
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ducible to the search version of α-Ring-LWE, i.e. search-Ring-LWE ≤ search-

α-Ring-LWE.

Proof. We will show that, given an algorithm that solves the search version of

α-Ring-LWE, then the search-Ring-LWE is solvable in polynomial time. Given

a set of independent Ring-LWE samples of the form

(ai, bi = ai · s+ ei mod qR∨),

such that ei = σ−1(ẽi) and ẽi ← ψ, solving the search-Ring-LWE problem is

to find the secret s. Taking the smallest integer positive representative of each

coordinate of ai and bi in Z/qZ, it is possible to write the above samples as

(
ai, bi = ai · s+ σ−1(ẽi)

)
.

Applying the ring homomorphism σ in the set of samples, we take its repre-

sentatives in Rn, that are

(σ(ai), σ(ai) · σ(s) + ẽi) .

Using the linear transformation tα, we expand the samples in Rn by the

factor α, obtaining

((tα ◦ σ)(ai), (tα ◦ σ)(ai) · σ(s) + tα(ẽi)) ,

which can be seen as

(σα(ai), σα(ai) · σ(s) + tα(ẽi)) .

Finally, by applying the inverse transformation σ−1
α , we obtain the α-Ring-LWE

instance to be solved:

(
ai, ai · (σ−1

α ◦ σ)(s) + σ−1
α (tα(ẽi))

)
.

Now, using the algorithm that solves α-Ring-LWE we get as an answer the

element s̃ = (σ−1
α ◦ σ)(s) corresponding to the set of samples given as input

to Ring-LWE. From the value of s̃, we recover the solution to the Ring-LWE

instance by computing σα and σ−1 over s̃ in this sequence, i.e.

s = (σ−1 ◦ σα)(s̃).
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Similarly to the reduction for the search version of α-Ring-LWE problem, for

the decision variant, we make use of the same steps to convert samples from the

As,ψ distribution to Aα,s,ψ. We assume there exists an algorithm that, given a

set of m samples, decides which samples were obtained from Aα,s,ψ or uniformly

taken from Rq × T.

Theorem 2. For any totally positive α ∈ K, the decision-Ring-LWEq,Ψ is

reducible to the decision version of α-Ring-LWE, i.e. decision-Ring-LWE ≤
decision-α-Ring-LWE.

Proof. Given a set of m elements of Rq × T as input to the decision-Ring-

LWE problem, we apply the sequence of transformations σ, tα, and σ−1
α

in each element. If the sample was obtained from As,ψ, it has the form(
ai, ai · (σ−1

α ◦ σ)(s) + σ−1
α (tα(ẽi))

)
. Otherwise, it is simply (ai, bi). Then, the

algorithm that solves the decision version of α-Ring-LWE problem outputs a

set of m/2 elements distinct from the uniform distribution. By applying σα

and σ−1, in this sequence, we find the samples originally obtained from the

Ring-LWE distribution, which are the output of the algorithm that solves the

decision-Ring-LWE problem.

4 A construction of Integer Lattice

Using the twisted embedding, an ideal lattice is Λ = σα(I) for an ideal I.

Once the canonical embedding is a specialization of its twisted form, adding

a distortion enables the construction of rotated lattices. An example in the

construction of the Zn-lattice described in [BFOV04]. This construction is on

the maximal real subfield of a cyclotomic field.

Let p ≥ 5 be a prime number such that n = (p − 1)/2 and ζ = ζp =

exp (−2πi/p), the p-th root of unity. The rotated Zn-lattices are built via the

ring of integers of the maximal real subfield K = Q(ζ+ζ−1) with α ∈ K defined

as α = (1− ζ)(1− ζ−1).

By taking p = 27, we compute the irreducible polynomial corresponding to

K using the SageMath system with the source code depict in the following.

p = 27

CC = CyclotomicField(p)

CC.maximal_totally_real_subfield()

The resulting minimal polynomial is

f(x) = x14 + x13 − 13x12 − 12x11 + 66x10 + 55x9 − 165x8 − 120x7+

210x6 + 126x5 − 126x4 − 56x3 + 28x2 + 7x− 1.
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In experimental results, when using q = 224,737 and σ = 2.0, an implemen-

tation of the Ring-LWE encryption scheme, which is based on the description

of Clercq et al. in [dCRVV15], was able to successfully encrypt and decrypt a

large number of arbitrary 256-bit messages.

5 Future Work

Although the process of building lattices using the twisted embedding is already

clear, some questions remain uncertain in the cryptographic context and when

characterizing the generated lattice. For example, finding a suitable number

field element α may be a challenging task since it influences in the embedding

coordinates and then in the norm of the lattice vectors. Moreover, rethinking

the lattice generation process opens to the opportunity of embedding Z-modules

instead of ideals in order to construct lattices. Then, our hardness results require

a careful analysis since not every module is an ideal as well. Finally, we still need

to define which lattice and number field properties are desirable for ideal-lattice

cryptography, i.e. being a Galois field, lattice density, others. In this sense, our

future work consists in trying out for number field instantiations in order to find

secure system parameters or even lattices constructions that may overcome the

well studied cyclotomic number field in terms of lattice capabilities, security,

and suitability to efficient implementations.
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