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Abstract

This paper introduces a secure and privacy-preserving mechanism for biometric-based
user authentication in a distributed manner. The design combines three modalities
(face, iris and fingerprint) according to user’s performance strength parameters (False
Acceptance and False Rejection Rates). We use a user-specific weighted score level
fusion strategy to determine the final multimodal result. The stored unimodal tem-
plates are held by distinct database providers that can be malicious. Privacy regula-
tions recognize biometric data as sensitive, hence their handling and storage in an
untrusted environment with third parties are challenging. Therefore, we utilize Multi-
Party Computation to enhance security among authentication stages. In contrast to
the existing research, the novelty of this approach lies in performing multimodal au-
thentication without storing private information in a single database, nor transferring
the calculation results to any third party. The proposed protocol is analyzed to assess
its usability, security and efficiency (execution time is less than a second under the
studied scenario).

Keywords: Biometrics, Identity authentication, Secret sharing, Multi-Party Compu-
tation, Secure distributed systems, Cloud cryptography, Privacy-aware architecture

1 Introduction

Secure authentication is a primary goal when users access a multiplicity of services.
Biometric technologies have become a natural fit for several applications in the cloud
domain. Multibiometrics can improve identification efficiency by expanding the fea-
ture space to increase reliability [29]. However, multimodal incorporation (fusion) is
viewed as an open problem. The starting point, for different studies in the literature,
is to define the conditions, under which, a fusion model is most likely to be charac-
terized as optimal and accurate in terms of performance rates [17]. The suitability of
a biometric design is determined by two probabilistic measures: i) The False Accep-
tance Rates (FAR), and ii) The False Rejection Rates (FRR). Note that any biometric
information can be seen as sensitive personal data, and their transmission across cloud
parties poses serious security and privacy threats [20]. Although, it is possible to use
cryptographic techniques to communicate and store the templates, for instance using
Public Key Infrastructure (PKI); this is not enough for a completely secure process,
taking into account the privacy issues related to the biometric information leakage.



Motivated by cloud applications that require privacy-aware design, we propose
a secure protocol for multimodal biometric authentication mechanism in cloud do-
main. The studied scenario represents a general layout, used in practice, that involves
a user, an untrusted intermediary entity who wants to authenticate the user and three
malicious cloud-based providers that hold unimodal databases for unibiometric recog-
nition services. The aim is to biometrically authenticate the user by following a score
level multimodal fusion strategy. We combine three modalities on a user’s perfor-
mance rates basis, taking into account the severity of the privacy concerns that may
limit the design and implementation [23].

We address these concerns by using Secure Multi-Party Computation (MPC) to
build a protocol that securely combines the multiple unibiometric characteristics of the
model and provides the final fusion result securely. The term “securely” means that no
sensitive privately held data are exposed to any untrusted intermediary party involved
in the computation, or platform nor any other third party. Our protocol is designed for
authentication, in the context of systems that integrate unimodal biometrics coming
from different service providers, such as log in to biometric-based mobile applications.
Moreover, it can operate in cloud-based identification services for lawful surveillance
purposes. In this work we focus solely on the security of the biometric template(s) and
not on the user’s identity anonymization.

The contribution of this paper is as follows:
• We introduce a protocol for biometric authentication that exploits prior stored uni-

modal templates being collected by three service providers. In the context of fusion,
as this is determined in Section 3.4; we compute the multimodal result, avoiding the
auxiliary, temporary or permanent storage of information in a single database, either
at rest or at transit.
• In Section 4.3, we expand on the selection of fusion technique by following a user-

specific weighted score level fusion strategy. According to this method, weights as
factors are assigned to each modality based on the performance parameters for each
user, increasing or reducing its importance at the final score.
• By using MPC, we avoid the reliance on any centralized repository and utilize

the stored templates in a privacy-preserving decentralized manner. This could be
viewed as if the parties use a virtualized trusted “third party”, but that in reality is
centralized and is composed of untrusted parties with competing interests to avoid
collusion.

Regarding privacy, by using this virtualized computation environment, we achieve
the following properties:
• Service providers do not learn the raw acquired biometric data, nor any derived

information from them.
• The untrusted intermediary entity does not learn the stored templates, nor any in-

formation derived from them, except of the unique output out ∈ {0,1}.
The general assumptions and non-goals are as follows:

• We assume the parameters of reference, thresholds and rates are already held by the
unibiometric cloud-based service providers and secretly shared by them during the
execution of the protocol.
• We assume that the biometric sensors are tamper-proof devices and use available

Public Key Infrastructure (PKI) framework. In this way, the data are secretly trans-
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mitted, being encrypted with the key of user u, for preserving protection of the raw
biometric information from the untrusted intermediary entity.
• Regarding training, as this is determined in Section 3.2, we assume that service

providers hold and calculate FAR and FRR parameters. We assume that they train
their unimodal datasets by regulating the reference thresholds, while they also uti-
lize established training algorithms to handle user-specific error rates. Because of
its large scope, any privacy challenges on securely computing such rates are outside
the scope of this paper and should be the subject of further research.

2 Related Work and Motivation

The use of online recognition schemes, have resulted in an increase of security and
privacy risks. this mainly occurs due to the way that information is recollected and
stored, Pan et al. [27]. These concerns have reduced public acceptance of biomet-
ric technologies, pointing out the problem of trust in cloud environment. Along these
lines, several privacy-by-design approaches have been presented from biometric secret
sharing and fuzzy extractors methods to privacy-preserving protocols. Indicatively, we
may mention the work by Wang et al. [33] who introduces a privacy-friendly finger-
print matching protocol. Approaches that use secure computation in different settings
can be found in [5, 6, 34]. Yuan and Yu [35] design a biometric identification scheme
for cloud computing. However, these studies do not address the question of fusion or
approach the field from a multimodal perspective. For our privacy-aware protocol, we
take into consideration the findings provided by Bringer et al. [9] regarding the impact
of secure MPC techniques on identification schemes in terms of accuracy and privacy.

Finally, the paper introduced by Toli et al. in [32] describes a succinct fusion model
for cloud-based access control. This introductory work mainly discusses the advan-
tages and conditions of using MPC in such settings without introducing any protocol,
formal solution or implementation besides general discussion. Our work is based on
their basic conditions and present concrete results that complete such assertions. Our
privacy-aware protocol addresses all the model inputs, providing an efficient and vi-
able solution for enhancing privacy during the calculation phases.

3 Background and Preliminaries

3.1 Unimodal Biometric Recognition

Face Recognition: Face recognition based on Euclidean Distance and facial texture
features is a technique that is familiar to its overall recognition accuracy at face bio-
metric systems. In literature, there are several approaches that take the advantage of
using statistical facial characteristics that could present strong resistibility to noise.
These methods by training their datasets have managed to present notable face recog-
nition schemes that outperform the classical Euclidean Distance approaches.

Fingerprint Recognition: During the last decade, the matching of unequal number
of minutia features and ridges of the fingerprints are the most important and challeng-
ing field in fingerprint based biometrics recognition systems. Recently, the technique
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and algorithms suggested by [26] showed that can offer promising recognition accu-
racy. Findings compared with classical Euclidean Distances presenting better match-
ing scores. The performance of the proposed image alignment and the minutia match-
ing algorithms are evaluated to constitute the basis for the next generation fingerprint-
based schemes.

Iris Recognition: A new method for iris recognition collarates the zigzag area of iris
for the extraction of the feature [28]. In this way captures the most important informa-
tion of the pattern. HAAR wavelet and 1D Log Gabor filter used for feature extraction
and managed to improve performance. Support vector machine techniques and Ham-
ming Distance approach is used to eyelid and eyelash detection. The recognition ac-
curacy of the proposed system was compared with the previous reported approaches,
offering significant results. For that reason, this method could be characterized as nov-
elty at the field of iris recognition.

Biometrics are based on pattern recognition techniques, used on statistically unique
parts of modalities in order to allow recognition. The process includes the feature ex-
traction stage, where the user presents raw biometrics (new template) at the sensor(s),
and the matching phase where an extracted feature is compared with a stored tem-
plate. In this work, we assume that the matching process is performed by Hamming
Distances algorithms. The technique is widely used in current biometric commercial
deployments on face, iris and fingerprint, presenting highly reliable results in terms
of performance [9, 21], and it can be easily adapted for privacy-preserving scenarios.
Other methods that can be calculated over an arithmetic or boolean circuit could be
also used [5, 6].

3.2 Thresholds and Performance Rates

The confidence in the functionality of a biometric scheme is determined by specific
measures that are used to evaluate the accuracy and effectiveness. Thresholds are de-
fined to decide if a user does or does not correspond to a claimed identity. In biometric
deployments, after the recognition process for each user u, the generated match score s
between the new and stored templates is analyzed on the basis of a predefined decision
threshold ⊥. The process is represented as:

su ≥⊥ Accept
su ≤⊥ Re ject

(1)

The statistical calculation of a threshold is related to the extraction and validation
of performance rates [24]. Following the analysis of Ross et al. [29], given a threshold
⊥, for a match score s, the p(s | genuine) represents the probability of dissimilarity
values for a given s, between the raw data and the template, under the genuine con-
ditions; and similarly p(s | impostor) indicates the probability for the impostor condi-
tions. Consider an impostor who is not enrolled in the system, FAR for a threshold ⊥
can be computed as follows:

FAR(⊥) =
⊥∫
−∞

p(s | impostor)ds (2)
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The FRR is given by:

FRR(⊥) =
∞∫
⊥

p(s | genuine)ds (3)

A system’s accuracy is associated with the ability of the involved parties (manu-
facturers) to test on their datasets for the purposes of the scheme. Tuning the system’s
threshold ⊥, also known as reference threshold for the performance rates, is a com-
mon technique referred as the training of datasets to perform under a given procedure;
a process that always effects on the corresponding rates of the system [24, 29].

3.3 Score Normalization Technique

The match scores obtained from the biometric matchers are non-homogenous, simi-
larity measures, in different scales, where {−1,+1} is typically used for faces, a unit
interval {0,1} for irides, and {0,100} is the range for fingerprints. Hence, it is nec-
essary to normalize the scores using an adaptive technique prior to their combination.
Compared to other approaches, Min-Max Normalization technique has not presented
disadvantages regarding viability and computational complexity from a biometric per-
spective [18]. Due to its simple applicability, it is perfectly adequate to work for our
protocol. The normalized scores, where minimum is 0 and maximum is 1, are com-
puted as:

nst
j =

st
j−minN

i=1si
j

maxN
i=1si

j−minN
i=1si

j
(4)

Here st
i denotes the ith score obtained by the jth matcher, N is the number of match

scores i = 1, ...,N available in the set, and R the number of matchers j = 1, ...,R for
each modality.

3.4 User-Specific Weighted Score Fusion

In the context of multibiometrics, data fusion represents an active area with numerous
approaches and can be accomplished at various levels and by several strategies in a
biometric deployment (more information can be found in Ross et al. “Handbook of
Multibiometrics” [29]). However, multimodal designs are governed by the informa-
tion type and sources, the acquisition; the processing stages; and the final application.
In this paper, we use the term of “fusion” to describe the consolidation of matched
unimodal templates in a single score that we call “multimodal result”.

Match score level fusion, also known as fusion at measurement or confidence level,
is a widely used fusion approach. It provides improved performance in comparison to
decision-level fusion, while it allows an easy integration for different modalities [18].
In a fusion model, performance rates can be applied in such a way that they assign
different degrees of importance to the various modalities on a user-by-user basis [30].
In our protocol, fusion is computed following a weighted match score level strategy.
For determining the set of weights, we follow the user-specific weighted sum rule
presented in [29]. In a system with M modalities, where modality i has weight wi for
the user u, and the match score is equal to si, then the score of fusion is computed as
follows:

s fu =
M

∑
i=1

wisi (5)
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The factors wi are in the range of {0,1} and being applied such as the constraint
wi + ...+wM = 1 is satisfied.

3.5 Achievable Security under MPC

Security under MPC addresses the confidentiality of the private inputs with respect
to the parties involved in any computational stage of the protocol. MPC is used for
security reasons against typical privacy adversarial models, such as honest but curi-
ous and malicious adversaries, offering various security levels, from computation to
perfect security [3, 15]. We define security under MPC as follows:

Definition 1. (Security): Consider I = P1, ...,Pn being the parties who want to com-
pute a function y = f (x1, ...,xn), where xi is the secret input of Pi. Then, any protocol
π that computes y is secure if the parties do not learn anything but the output y and
what can be inferred from y.

This definition implies that no party Pi should learn any information from the private
inputs of Pj ∀ j ∈ I, where i 6= j, except what can be inferred from the output. Notice
that in our case, we assume all parties involved in the computation have knowledge
of who the user is, or the index being analyzed. Finally, access patterns towards the
protocol could also be statistically hidden, as explained in the following sections. To
ease security analysis and the protocol description, we use the following arithmetic
black-box.

Arithmetic Black-Box.
We use and extend the arithmetic black-box of Damgård and Nielsen [14] based on

a composable efficient MPC from threshold homomorphic encryption, assuming its
functionality can be accessed by our secure protocol. The original arithmetic black
box was built under Canetti’s composability hybrid model [10] and proved secure
against passive and active adversaries. This makes simulation proofs straightforward,
where the simulated view of any Pi is the same as the adversary view, reducing the
complexity of our security analysis. The black box in [14] could be seen as a virtu-
alized entity capable to store field elements over Zp, where p is any sufficiently large
prime number or RSA modulus. It also provides secure addition and multiplication
with a scalar and between secretly stored values. The basic functionality of our arith-
metic black-box FABB can be achieved by well-known protocols for homomorphic
encryption (see Paillier’s cryptosystem [25]), or linear secret sharing schemes, such
as Shamir’s scheme [31]. The addition and multiplication provided by the FABB can
exploit the advantages of well-known MPC protocols, based on the properties of the
cryptographic sharing primitive selected. This category includes the BGW protocol
by Ben-Or et al. [3], BDOZ by Bendlin et al. [4] or SPDZ by Damgård et al. [15],
and recent works, such as MASCOT by Keller et al. [19] and other highly specialized
3-party protocols [2, 7].

Arithmetic Black-Box Extension.
Following the work introduced by Lipmaa and Toft in [22], we proceed to extend

our black box, in order to have inequality tests, being needed by our protocol. Arith-
metic circuits and protocols for secure comparison have been introduced by [12, 13],
among others. We could cite for instance the inequality tests that can be found in [22],
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where the authors use the same FABB conceptualization. In the context of our FABB
extension, the following operations are provided:

[z]← [x] ?
= [y] | [z] ∈ {0,1} (6)

[z]← [x]
?
< [y] | [z] ∈ {0,1} (7)

3.6 Security Notation and Assumptions

We assume that all inputs and intermediary values are elements of a finite field bounded
by p (Zp), such that x� p, for any value x in Zp, so that no overflows occur. For
simplicity reasons, we assume that the underlying cryptographic primitive is secret
sharing. Additionally, we use the notation introduced by Damgård and Nielsen [14],
where [x] represents the secretly shared value of [x]. To express operations provided
by the FABB, we use the infix representation [z] ← [x] + [y]. In reality, the opera-
tions (addition, multiplication gates) are provided by the underlying protocols, such
as [2, 3, 4, 15, 19] and executed by the involved parties. Practically, our protocol is
as secure as the underlying MPC functionality that is implemented. Negative numbers
are represented in the typical way, where the lower half of the Zp field represents the
positives and the other half the negatives.

Under the FABB model, complexity is measured by the number of non-concurrent
black-box operations that are executed. MPC protocols based on linear secret shar-
ing schemes can offer addition of shares and scalar multiplication, approximately at
the same cost of similar “plain-text” operations. Nonetheless, multiplications require
some level of information exchange between the computational parties.

Concurrent operations that require information exchange between parties is re-
ferred to as a communication round. Comparisons are by themselves arithmetic cir-
cuits, composed of addition and multiplication gates. Their computational and com-
munication cost is much higher than a multiplication, and thus is on the interest of the
algorithm designer to minimize their use.

4 Multimodal Mechanism Layout

In this section, we present the general layout of our multimodal authentication mecha-
nism, the roles and parties involved in the process. The studied scenario describes the
authentication procedure being performed biometrically, where the fusion strategy is
based on the optimum low FAR. Figure 1 illustrates the interaction of the parties.

4.1 Parties and Roles

Intermediary Entity: Party who is interested on authenticate the user. It holds the new
templates of the raw acquired biometric data, obtained directly by the recognition sen-
sors. It also holds the threshold of decision ⊥. The entity does not actively participate
in the computation. We assume that the sensors use a PKI framework for the secure
transmission of the templates to the parties in charge of the computation. Any fur-
ther analysis on protection against data tampering on the entity’s behalf is outside the
scope of this paper.

Service Providers: These parties are considered to be malicious. They hold their
respective unimodal templates stored in unimodal databases and they are in charge of
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Fig. 1: Mechanism for Multimodal Authentication in Cloud.

storing and regulating the FAR and FRR parameters. We consider the maintenance of
the templates to be an orthogonal problem. In case the stored templates have to be
updated, this can to be directly managed by the service providers who can adjust the
biometric data of their users and recalculate the performance metrics of their schemes.

Input Data: All the input data of the parties are considered to be private. In our
privacy-preserving protocol, biometric information are represented in binary form;
and they are sent to the computational parties using private channels. We assume that
input data are integers and they are included in Zp. In case fixed point precision is
needed, data can be multiplied by a sufficiently large decimal constant. This procedure
takes place to prevent the computation of what can be considered complex decimal
arithmetic with arithmetic circuits.

Dealers: They have to provide inputs to the protocol for the computation in shared
form. In our case, the intermediary entity extracts the biometric information and trans-
mits the secret shares of the new templates. The cloud-based service providers have to
deal with the shares of the stored templates and communicate the parametrization.

Computational Parties: They are the set of servers in charge of computing the
protocol. Note that there is no upper bound on the number of the involved computa-
tional parties. They receive the shares from the dealers and execute the computation.
Due to their role, computational parties are considered to be distrustful with conflict-
ing interests, creating incentives for collusion. Without loss of generality, the role of
the computational parties can be executed by the service providers. Our protocol is
generic, thus the selection of the computational parties is rather tied to the scenario
and orthogonal to our analysis.

Output Parties: The parties that learn the final output. In our case, the intermediary
entity plays this role, while no other party, including computational parties, learns any
other information besides their original input.

4.2 Identity Authentication Stages

The authentication process is executed as follows:

8



1. A user claims access and presents to the sensors (hosted by the untrusted entity)
his/her biometric inputs and an identification document or a personal credential.

2. After the feature extraction phase the new templates of the raw acquired biometrics
are generated. The intermediary entity sends secret shares of user’s private informa-
tion to the computational parties.

3. Matching algorithms are used by the computational parties in order to compare the
new template with stored templates. The service providers choose and transmit the
corresponding reference thresholds. According to this, the match score is computed
in order to represent the closest similarity between raw data and stored modalities.

4. Match scores are normalized following (4).
5. The service providers, according to the reference threshold for the specific user,

choose and transmit their private inputs of FAR following (2).
6. For the given performance rates, the normalized match scores are fused, applying

the user-specific weighted sum rule (5) that determines the final fusion result. Sec-
tion 4.3 presents the fusion strategy.

7. The output party determines and secretly shares the threshold of decision to the
computational parties. A binary decision result returns to the intermediary entity
according to the conditions of (1).
For the studied scenario of authentication specifically, the fact of rejection occurs

when the mechanism fails to correspond the raw data to the stored templates at one
or any of the databases, or the match scores were poor, resulting a final fusion score
that failed to surpass the threshold of decision. For authentication and identification
applications, the case where a user is not registered; and his/her biometric data are not
stored in unimodal cloud-based service providers, is considered indistinguishable.

4.3 Fusion Strategy

Following the literature on the fusion field [29], we use user-specific performance-
dependent weights to signal the performance of each biometric modality after match-
ing, increasing or reducing its importance at the final score. Algorithm 1 presents
the selection of weights according to FAR that each user exhibits for a given refer-
ence threshold in the unimodal deployments of the service providers in cloud. For
setting the weights, the algorithm sorts in ascending order the FAR rates for the given
three modalities, such as wi is the weight for the ith modality, where wi ∈ {0,1} and
wi + wi+1 + wi+2 = 1 is satisfied. For every given higher value of FAR, a smaller
weight is selected for the reduction of the influence of the less reliable modality. On
the contrary, for the user-specific FRR-dependent fusion of Algorithm 2, FRR rates
and weights are directly proportional parameters that are used to expand the identi-
fication range of the mechanism. Note that for three variables, each one with three
states: >,≈ or <, there are 33 = 27 permutations, where only 13 are possible.

Accuracy.
Our protocol is considered to be as accurate as its non-secure counterpart; and it

depends on the values of the selected match scores, FAR, FRR and weights parame-
ters, hence per instantiation. We refer the reader to the experimental results presented
in [29], and their conclusions on the topic. Namely that user-specific weighted fu-
sion methods are a beneficial approach when biometric information are provided by
different sub-schemes and the performance varies across users. Such a multimodal
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Algorithm 1: User-Specific FAR-Dependent Weights.
1 Compare and sort FAR performance rates.
2 if FARi < FARi+1 | FARi < FARi+2 | FARi+1 < FARi+2 then wi > wi+1 > wi+2 ;
3 if FARi ≈ FARi+1 | FARi < FARi+2 | FARi+1 < FARi+2 then wi = wi+1 AND

wi > wi+2 ;
4 if FARi > FARi+1 | FARi < FARi+2 | FARi+1 < FARi+2 then wi+1 > wi > wi+2 ;
5 if FARi > FARi+1 | FARi ≈ FARi+2 | FARi+1 < FARi+2 then wi = wi+2 AND

wi < wi+1 ;
6 if FARi > FARi+1 | FARi > FARi+2 | FARi+1 < FARi+2 then wi+1 > wi+2 > wi ;
7 if FARi < FARi+1 | FARi < FARi+2 | FARi+1 ≈ FARi+2 then wi+1 = wi+2 AND

wi+1 < wi ;
8 if FARi ≈ FARi+1 | FARi ≈ FARi+2 | FARi+1 ≈ FARi+2 then wi = wi+1 = wi+2 ;
. equal-weighted fusion

9 if FARi > FARi+1 | FARi > FARi+2 | FARi+1 ≈ FARi+2 then wi+1 = wi+2 AND
wi+1 > wi ;

10 if FARi < FARi+1 | FARi < FARi+2 | FARi+1 > FARi+2 then wi > wi+2 > wi+1 ;
11 if FARi < FARi+1 | FARi ≈ FARi+2 | FARi+1 > FARi+2 then wi = wi+2 AND

wi > wi+1 ;
12 if FARi < FARi+1 | FARi > FARi+2 | FARi+1 > FARi+2 then wi+2 > wi > wi+1 ;
13 if FARi ≈ FARi+1 | FARi > FARi+2 | FARi+1 > FARi+2 then wi = wi+1 AND

wi < wi+2 ;
14 if FARi > FARi+1 | FARi > FARi+2 | FARi+1 > FARi+2 then wi+2 > wi+1 > wi ;
15 else return false

Algorithm 2: User-Specific FRR-Dependent Weights.
1 Compare and sort the FRR performance rates.
2 if FRRi < FRRi+1 | FRRi < FRRi+2 | FRRi+1 < FRRi+2 then wi+2 > wi+1 > wi

;
3 if FRRi ≈ FRRi+1 | FRRi < FRRi+2 | FRRi+1 < FRRi+2 then wi = wi+1 AND

wi < wi+2 ;
4 if FRRi > FRRi+1 | FRRi < FRRi+2 | FRRi+1 < FRRi+2 then wi+2 > wi > wi+1

;
5 if FRRi > FRRi+1 | FRRi ≈ FRRi+2 | FRRi+1 < FRRi+2 then wi = wi+2 AND

wi > wi+1 ;
6 if FRRi > FRRi+1 | FRRi > FRRi+2 | FRRi+1 < FRRi+2 then wi > wi+2 > wi+1

;
7 if FRRi < FRRi+1 | FRRi < FRRi+2 | FRRi+1 ≈ FRRi+2 then wi+1 = wi+2 AND

wi+1 > wi ;
8 if FRRi ≈ FRRi+1 | FRRi ≈ FRRi+2 | FRRi+1 ≈ FRRi+2 then wi = wi+1 = wi+2

; . equal-weighted fusion
9 if FRRi > FRRi+1 | FRRi > FRRi+2 | FRRi+1 ≈ FRRi+2 then wi+1 = wi+2 AND

wi+1 < wi ;
10 if FRRi < FRRi+1 | FRRi < FRRi+2 | FRRi+1 > FRRi+2 then wi+1 > wi+2 > wi

;
11 if FRRi < FRRi+1 | FRRi ≈ FRRi+2 | FRRi+1 > FRRi+2 then wi = wi+2 AND

wi < wi+1 ;
12 if FRRi < FRRi+1 | FRRi > FRRi+2 | FRRi+1 > FRRi+2 then wi+1 > wi > wi+2

;
13 if FRRi ≈ FRRi+1 | FRRi > FRRi+2 | FRRi+1 > FRRi+2 then wi = wi+1 AND

wi > wi+2 ;
14 if FRRi > FRRi+1 | FRRi > FRRi+2 | FRRi+1 > FRRi+2 then wi > wi+1 > wi+2

;
15 else return false
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design can improve its robustness and performance even when its unibiometric sys-
tems perform inadequately. Thus, we can conclude that biometric consolidation under
the studied scenario offers a higher level of reliability, without compromising overall
accuracy.

5 Distributed Multimodal Authentication with MPC

In this section, we give a detailed treatment of our secure distributed protocol for the
biometric authentication mechanism and analyze its complexity, security and privacy.
To facilitate readability, we divide the different phases of the process into what we call
“modules”, such as Figure 2 presents. From MPC perspective, this is no more than a
conceptual division rather than a tangible task separation. It is important to stress that
they together form a unique and uninterrupted arithmetic circuit, with a single output
point. The protocol does not suffer from the typical composability related security
weaknesses presented by Canetti [11]. Instead, our protocol is designed following the
composable hybrid model for MPC introduced in [10] by Canetti as well. To maintain
privacy and adhere to the security definition, the modules are adapted such that any
leakage of information is avoided, commonly referred as data-obliviousness.

Fig. 2: Flow chart of the mechanism.

5.1 MPC Protocols

Feature Collection Module

1. New Template Transmission: The intermediary entity extracts the new template,
representing the raw acquired biometrics, fixed size NM for each modality M. The
transmission of the new template occurs in shared form, using the underlying shar-
ing mechanism, for instance the Shamir’s secret sharing [31], towards the compu-
tational parties. Each bit is represented by a different share as follows: Ti = t1, ..., tN
where t j ∈ {0,1} for all j ∈ {1, ...,N}.

2. Stored Template Transmission: The service providers send the binary templates
in shared form and the FAR and FRR for the given template to the computational
parties. We call the set of stored templates of a given modality OM, and Oi is the ith

binary template where i ∈ OM.

Matching Module

3. Calculate Match Scores: The computational parties proceed to compute the match
scores between the new template, composed by the raw biometric data, and stored
templates of modality M. The scores can be obtained obliviously, by utilizing the
Hamming Distance algorithm to calculate distances between the new and stored
template without any information leakage. As shown by Protocol 3, this can be
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achieved by performing NM multiplications, where NM is the size of the template.
The result of this phase is the vector of Hamming Distance scores HM, where [h]Mi
is new template score T versus the stored O j, for all j delivered by the service
provider.

Protocol 3: Hamming Distance Protocol.
Input: Vector [T ] of, Vector [O] where [T ] and [O] are of size N.
Output: Hamming Distance [h]

1 for i← 1 to NM do
2 [ν ]hi ← [T ]i +[O]i−2 · ([T ]i · [O]i);
3 end
4 [h]← ∑

NM

i=1[ν ]
h
i ;

4. Select Match Scores: The protocol selects the best suitable score from vector HM

for every modality M. This unique value per modality is the one that corresponds
to the higher/lower score in each vector HM. We call the vector, composed of the
higher/lower scores of each modality SM, where [s]Mi represents the score of a bio-
metric in the set of all modalities M in the ith position of the vector SM. To identify
such values and to construct the vector SM in an oblivious fashion, it suffices to
follow Protocol 4.

Protocol 4: Match Score Selection Protocol.
Input:
Output: Vector SM

1 for i← 1 to M do
2 [δ ]←⊥; for j← 1 to |HM

i | do

3 [c]← [δ ]
?
< [hM

i j ];
4 [δ ]← ([hM

i j ]− [δ ]) · [c]+ [δ ];
5 end
6 [s]Mi = [δ ];
7 end

Normalization Module

5. Min-Max Normalization: Since the set of scores SM contains inputs in different
domains, our protocol includes the Min-Max Normalization technique in the nor-
malization module. To reduce the complexity of the protocol, the normalized score
is expressed in fractional form and provided as a tuple ([n], [d])SM

, where [n] stands
for the numerator of the fraction and [d] for its denominator. This value can be
obliviously calculated following equations (8) and (9) respectively.

[n]Mi ← [s]Mi − [min]M (8)

[d]Mi ← [max]Mi − [min]Mi (9)

Fusion Module

6. Oblivious Ranking of Scores: The selected scores for normalization SM
1 have to be

sorted in ascending order based on their FAR/FRR ([F ]) with no information leak-
age. Oblivious sorting between these secretly shared scores can be achieved with
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a simplified sorting network. In this case, the comparison gates use the privacy-
preserving comparison functionality provided by the FABB. Given that the mecha-
nism considers three modalities, the sorting network described by Figure 3 suffice.
Note that the sorting network should be adapted if more modalities or scores are
considered.

[F ]sM
1

[F ]sM
2

[F ]sM
3

Fig. 3: A [x]
?
< [y] three-gate network for oblivious sorting

7. Fusion Proportions: To perform fusion, a set of weights is provided to the mech-
anism by the untrusted intermediary entity and applied to the normalized match
scores. In our user-specific weighted score level fusion strategy, weights represent
the performance rates for each user of the unimodal cloud-based schemes (see Sec-
tion 4.3). From Algorithms 1 and 2, we discern only four possible configurations;
summarized in general forms as: i) wi > wi+1 > wi+2 ii) wi = wi+1 AND wi > wi+2
iii) wi = wi+1 = wi+2 iv) wi = wi+1 AND wi < wi+2. For equal weights, the pro-
tocol has to react correctly in case two or more normalized scores have the same
FAR/FRR ([F ]) rates. In this case, the intermediary entity provides the computa-
tional parties with the matrix of weights Wi j in shared form, such that: each row wi
represents a different weight configuration and element [w]i j corresponds to the rel-
evant weight for the normalized score [s]Mj , under configuration j. Protocol 5 shows
how to obliviously apply proportions for each configuration. Weights have to be
given in a fractional form and in a predefined order.

Protocol 5: Fusion Proportion.
Input:
Output: Vector SM

1 [c]1← [F ]sM
1

?
= [F ]sM

2
;

2 [c]2← [F ]sM
2

?
= [F ]sM

3
;

3 [w]M← [w]1;
4 for j← 1 to M do
5 [w]Mj ← ([w]2, j− [w]Mj ) · ([c]1 · ([c]1 +[c]2−2 · ([c]1 · [c]2)))+ [w]Mj ;
6 [w]Mj ← ([w]3, j− [w]Mj ) · ([c]2 · ([c]1 +[c]2−2 · ([c]1 · [c]2)))+ [w]Mj ;
7 [w]Mj ← ([w]4, j− [w]Mj ) · ([c]1 · [c]2)+ [w]Mj ;
8 [s]Mj ← [s]Mj · [w]Mj ;
9 end

8. Fusion aggregation: Once the proportions are applied to the score vector SM, they
are aggregated. The result is also represented by a ([n], [d])out tuple. Given that
each normalized SM score is represented by a similar fractional, in order to be able
to aggregate them, it suffices to calculate the following equations:

[nout]← [d]sM
2
· [d]sM

3
· [n]sM

1
+[d]sM

1
·

[d]sM
3
· [n]sM

2
+[d]sM

1
· [d]sM

2
· [n]sM

3
(10)

[dout]← [d]SM
2
· [d]SM

3
· [d]SM

1
(11)
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9. Result Deliverance: The secret shares of the fusion result are transmitted by the
computational parties towards the intermediary entity. The combination of the shares
is performed by the entity; this process is not computational demanding (a polyno-
mial interpolation). The entity is the only one who access the Protocol out. The
entity could perform the fractional division to obtain a value ∈ {0,1}.

10. Concealing Fusion Score: If the application requires the score of fusion to be
concealed; this can be achieved as follows: the intermediary entity transmits, in
shared form, the threshold of decision [⊥] in fractional representation to the com-
putational parties. The parties will be in charge of performing the comparison by
cross-multiplying numerators, denominators and calling to the comparison func-
tionality of our FABB. The resulting shares are transmitted towards the entity, for
their interpolation, yielding only {0,1} values.

5.2 Complexity

The complexity of MPC protocols is measured in communication rounds, that is de-
fined as a message exchange step between the computational parties. A multiplication
protocol can be implemented such that it requires one computational round [16]. The
same holds for sharing or reconstructing a value. On the other hand, additions have
no communication cost associated and in the context of this work can be executed for
“free”. Although comparisons can be implemented in constant time, similar to Catrina
and Hoogh [12], they are typically more expensive than multiplications, for instance
they depend on parallelization, the actual number of multiplications, typically grows
on the size of the input.

The Feature Collection Module takes place during the first two stages, there is
a constant round complexity O(1). The Matching Module uses the Protocols 3 and
4; both present linear asymptotic complexities on the sides of their respective inputs:
O(NM) for the former, and O(|H|M). Protocol 3 has to be executed at least |OM| times,
yielding an overall complexity of O(|OM| ·NM). In addition to that, the Normalization
Module fifth stage and Fusion Module 6-10 stages have constant time complexity
O(1). This is a result of the number of biometric modalities that is fixed. In our proto-
col, inequality tests are only used when is strictly necessary; and they can be executed
in constant rounds [12], but they are more expensive in practice.

5.3 Security and Privacy Analysis

Our protocol offers perfect security against active and passive adversaries under the
information-theoretic model. We proceed to show how our protocol provides the achiev-
able security under MPC described in Section 3.5, Definition 1. The matching, nor-
malization and fusion modules are designed in a data-oblivious fashion, from the per-
spective of the computational parties and dealers. In other words, there is no informa-
tion leakage at any stage of the protocol. If a computational party would be corrupt,
it would not receive the protocol output, nor the available intermediate values for any
operation performed by our FABB, making, in this case, the simulation trivial. This
also holds for the case of a corrupted dealer. Given that our protocol can be assembled
as a unitary arithmetic circuit, made of addition and multiplication gates, the simu-
lation is achieved by invoking the simulators of the gates in the predefined order by
the arithmetic circuit. To such a degree, the view of the adversary over our protocol
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π would not compromise any input from the honest parties, as long as the security
properties of the underlying MPC primitives hold. Composability is achieved by the
properties of the hybrid model described in [10]. Given that no other information is
made available to any involved party, (besides their corresponding private inputs) and
the binary output to the entity, we fulfill Definition 1. Practically, the security depends
exclusively on the MPC primitives, used for being implemented upon (schemes that
implement the FABB functionality). We mention the perfect security against passive
and active adversaries of completeness theorems [3], adhering to the corresponding
set of assumptions, such as private channels. This is also true for our MPC Protocols
or any related protocol that is secure under composition.

6 Efficiency

The asymptotic complexity of our protocol is relatively low, as a result of the lin-
ear complexity on the templates’ size. However, in realistic cases, factors, such as
the cryptological primitives and the execution environment play a roll. As previously
stated, a multiplication requires a communication round, whereas a comparison re-
quires several (constant), even when its computation is parallelized [12]). We have
compatibilized the number of multiplications that are needed in total for a fixed stan-
dard template size. Additionally, we measured the average execution time for the
amount of multiplications and the necessary comparisons. We use a custom implemen-
tation of the BGW protocol, taking into consideration the improvements on network
flow problems [1].

Environment Setting.
We utilize the limited RAM memory ≈ 500 KB per instance, where each party

instance takes two separate computational threads in order to manage communica-
tion and cryptological tasks separately. On the cryptographic (MPC) background and
adversarial model, we consider an honest but curious setting, using Shamir’s secret
sharing [31], linear addition, and BGW for multiplication [3, 16]. Comparisons were
implemented according to the results introduced in [12]. We consider input sizes of
32 bits.

Execution environment: We have run our computational evaluations using a 64-bit
server equipped with 2*2*10-cores Intel Xeon E5-2687 at 3.1GHz.

Parties: We assume the same scenario for the mechanism put forward by this pa-
per, considering three computational parties, under the theoretic information model
(private channels). All our tests were executed on the same server; hence network
latency was not considered.

Template sizes: We used for our experiments: i) Face: 1024 bits, ii) Iris: 2048
bits and iii) Fingerprint: 4096 bits (see “Encyclopedia of Biometrics” [21]). We have
chosen relatively high template sizes to be able to easily adjust the protocol to realistic
biometric deployments. Finally, we consider the case where the protocol is provided
with five stored templates per modality for analysis.

Computational Results.
Following the results presented in Section 5, we accounted for the total number of

operations that require communication rounds, specifically, multiplications and com-
parisons used by our protocol, (addition, is a linear operation and it is well established
that the cost is negligible [1, 3, 8, 15]). Table 1 shows the number of operations per
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module, where σM is equal to the templates’ size in bits, and γM is the number of the
available templates for the analysis.

Given that our protocol uses an arithmetic circuit approach, our tests had to ac-
count for the cost of each atomic operation. Table 2 shows the CPU times for the
atomic MPC operations. The results reflect the average CPU time of +2×107 multipli-
cations and 1.6×106 inequality tests. Given the limited number of equality tests i.e.,
2, the impact of the difference in performance between a comparison and an equality
test is negligible. Table 3 presents the details of the amortized computational time for
our circuit size.

The overall execution time of the protocol for multimodal user authentication is
less than a second. Bear in mind that for some applications, the number of templates
and the size are smaller than the ones considered by our experimentation.

Table 1: Total atomic Operations

Stage Multiplications Inequality Tests
Feature Collection ∑

M
i=1 σi · γi = 35840 σ · γ = 15

Normalization − −
Fusion 17 6
Total: 35857 21

Table 2: CPU time for atomic operations

Operation CPU Time in Secs
Multiplications 2.08×10−5

Inequality test 2.5×10−3

Table 3: Overall CPU time

Operation CPU Time in Secs
Multiplications 0.746
Inequality tests 0.054
Total: 0.8

7 Usability and Advantages

The proposed secure user-specific FAR-dependent fusion can be used for mobile ap-
plications, for instance, in biometric-based log in to ePayment accounts. Similarly,
it can be used for identification processes in surveillance oriented architectures. The
mechanism of Section 4 can be adapted to perform without requesting the user’s iden-
tity references, following (3) and setting up the FRR-dependent fusion strategy of
Algorithm 2. In the context of privacy, stored templates, matching, normalized and fu-
sion scores are inaccessible to all parties. There is no information leakage towards the
service provides who can only learn the fact that a query for a given user was made,
and they do not gain access to the computational result. Thus, our privacy-aware de-
sign can be the first step for biometric solutions in cloud-based architectures with high
security and privacy standards.

8 Limitations

Our paper tackles the challenges of a design that links the pattern recognition area with
applied cloud cryptography. However, like any other study, our work has some limita-
tions. Regarding the fusion strategy, one clear deficiency is the assumptions about the
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overall accuracy that are only based on the experimental studies on user-specific fu-
sion and equal-weighted methods being found in the literature. This is mainly happens
due to the limited availability of biometric datasets and the time-consuming process
of training. The privacy-preserving protocol has been built upon the requirements put
in place by the use of secure Multi-Party Computation. As it stands, the protocol is
designed for the authentication procedure. However, it can operate in identification
mode (at a relatively high cost for database extraction); it is not practically viable for
time-consuming processes on large-scale biometric databases. Finally, we have lim-
ited it in order to work with Hamming Distance algorithms. The use of more complex
biometric matching processes remains an open question and can affect the complexity
and efficiency.

9 Conclusion and Future Work

In this paper, we presented a simple and secure protocol for biometric-based iden-
tity authentication in an untrusted distributed environment. The operation is dynamic
and it may be easily extended to adjust different classifiers, metrics, rules and update
the parameters. The limitation is that by building a more sophisticated protocol; the
computation and communication complexity may effect on the overall accuracy. Fur-
thermore, it is a part of authors’ future work to explore how the combination of a
variety of thresholds over the range of FAR and FRR effects on the performance. This
can be achieved by training the datasets and validate the user-specific performance-
dependent fusion strategy, in order to technically present its usability. Further work
considers the extension of the protocol to provide efficient identification (taking into
account the size of the unimodal repositories), as well as statistical anonymization of
queries and advanced techniques to hide the verified identities from service providers.
Trade-offs between security and efficiency should be assessed as well.
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