
GGH15 Beyond Permutation Branching Programs:
Proofs, Attacks, and Candidates

Yilei Chen
Boston University∗

Vinod Vaikuntanathan
MIT CSAIL†

Hoeteck Wee
CNRS and ENS‡

April 17, 2018

Abstract

We carry out a systematic study of the GGH15 graded encoding scheme used with general
branching programs. This is motivated by the fact that general branching programs are more
efficient than permutation branching programs and also substantially more expressive in the
read-once setting. Our main results are as follows:

• Proofs. We present new constructions of private constrained PRFs and lockable obfus-
cation, for constraints (resp. functions to be obfuscated) that are computable by general
branching programs. Our constructions are secure under LWE with subexponential ap-
proximation factors. Previous constructions of this kind crucially rely on the permuta-
tion structure of the underlying branching programs. Using general branching programs
allows us to obtain more efficient constructions for certain classes of constraints (resp.
functions), while posing new challenges in the proof, which we overcome using new
proof techniques.

• Attacks. We extend the previous attacks on indistinguishability obfuscation (iO) candi-
dates that use GGH15 encodings. The new attack simply uses the rank of a matrix as the
distinguisher, so we call it a “rank attack”. The rank attack breaks, among others, the
iO candidate for general read-once branching programs by Halevi, Halevi, Shoup and
Stephens-Davidowitz (CCS 2017).

• Candidate Witness Encryption and iO. Drawing upon insights from our proofs and at-
tacks, we present simple candidates for witness encryption and iO that resist the existing
attacks, using GGH15 encodings. Our candidate for witness encryption crucially exploits
the fact that formulas in conjunctive normal form (CNFs) can be represented by general,
read-once branching programs.

∗E-mail:chenyl@bu.edu. Supported by the NSF MACS project. Part of this work was done while visiting ENS.
†E-mail:vinodv@csail.mit.edu. Research supported in part by NSF Grants CNS-1350619 and CNS-1414119,

Alfred P. Sloan Research Fellowship, Microsoft Faculty Fellowship, the NEC Corporation and a Steven and Renee Finn
Career Development Chair from MIT. This work was also sponsored in part by the Defense Advanced Research Projects
Agency (DARPA) and the U.S. Army Research Office under contracts W911NF-15-C-0226 and W911NF-15-C-0236.
‡E-mail:wee@di.ens.fr. Research supported by ERC Project aSCEND (H2020 639554). Part of this work was

done while visiting CQT.

Contents

1 Introduction 1
1.1 Our Results I: New Cryptographic Constructions from LWE 2
1.2 Our Results II: New Attacks on iO Candidates . 4
1.3 Our Results III: New Candidates . 5
1.4 Discussion and Open problems . 6
1.5 Reader’s guide . 7

2 Technical Overview 7
2.1 Generalized GGH15 Encodings . 7
2.2 This work: semantic security for arbitrary matrices . 9

2.2.1 New proof technique . 10
2.3 New Cryptographic Constructions from LWE . 11

2.3.1 Private constrained PRFs . 12

3 Preliminaries 13
3.1 Lattices background . 14

4 New Lemmas on Preimage Sampling 16
4.1 The Statistical Lemma . 16
4.2 The Computational Lemma . 17

5 Generalized GGH15 Encodings 18
5.1 The construction framework . 18
5.2 Security notions . 21
5.3 Semantic security for γdiag-GGH15 and γ⊗diag-GGH15 encodings 22
5.4 Proof of the main theorem . 23

6 Matrix branching programs 26
6.1 Representing CNFs as matrix branching programs . 27

7 Application 1: Private constrained PRFs 28
7.1 Definitions . 28
7.2 Construction . 29
7.3 Security proof . 31

8 Application 2: Lockable obfuscation 33
8.1 Definition . 34
8.2 Construction . 34
8.3 Security proof . 36

9 New attacks to iO candidates for branching programs 37
9.1 The description of the iO candidates . 37
9.2 Summary of the applicability of the (old and new) attacks 39
9.3 A distinguishing attack for iO candidates using GGH15 40

9.3.1 Analysis of the rank attack on read-once branching programs 40

2

9.3.2 Analysis of the attack on general input-repeating branching programs 45

10 Witness Encryption Candidate 49
10.1 Definition . 49
10.2 Construction . 50
10.3 Relation to existing attacks . 51

11 Indistinguishability Obfuscation (iO) Candidate 51
11.1 Construction . 51
11.2 Discussion . 53
11.3 Sanity check . 53

A Attacking the iO candidates based on GGH13 58
A.1 A distinguishing attack for iO candidates using GGH13 58

A.1.1 Brief recap of GGH13 in the context of branching program obfuscation 58
A.1.2 The attack algorithm and analysis . 59

i

1 Introduction

Graph-induced graded encodings – henceforth called GGH15 encodings – were put forth by Gen-
try, Gorbunov and Halevi [GGH15] as a candidate instantiation of (approximate) cryptographic
multilinear maps [BS03, GGH13a], with the hope that these encodings could in turn be used to
build advanced cryptographic primitives whose security is related to the hardness of the learning
with errors (LWE) problem [Reg05]. In addition, following [GGH13a, GGH+13b], the same work
presented candidate constructions of multi-party key exchange and indistinguishability obfusca-
tion (iO) starting from these graded encoding schemes.

In the last few years, a very fruitful line of works has shed a great deal of insight into the use
of GGH15 encodings in two complementary settings: constructing security reductions from LWE
(partially validating the intuition in GGH15), and demonstrating efficient attacks. The former
include constructions of private constrained pseudorandom functions (PRFs) [CC17], lockable
obfuscation (aka obfuscating the “compute-then-compare” functionality) [GKW17a, WZ17] and
encryption schemes that constitute counter-examples for circular security [KW16, GKW17b]. The
latter include efficient attacks [CLLT16, CGH17] on the key exchange and iO candidates described
in [GGH15]. One of the key distinctions between the two settings is whether an adversary can
obtain encodings of zero from honest evaluations. For all the applications that can be based on
LWE, the adversary cannot trivially obtain encodings of zero; whereas the attacks apply only
to settings where the adversary can trivially obtain encodings of zero. There is much grey area
in between, where we neither know how to obtain encodings of zero nor are we able to prove
security based on LWE (e.g., in the setting of witness encryption).

This work. In this work, we explore the use of GGH15 encodings together with general (non-
permutation) matrix branching programs. In particular, we present (i) new constructions of pri-
vate constrained PRFs and lockable obfuscation from LWE, (ii) new attacks on iO candidates, and
(iii) new candidates for iO and witness encryption that resist our new attacks as well as prior at-
tacks. At the core of these results are new techniques and insights into the use of GGH15 encodings
for a larger class of branching programs.

Most of the prior constructions and candidates for the primitives we consider follow the tem-
plate laid out in [GGH+13b]: start with the class of NC1 circuits, represented using permutation
branching programs, which are specified by a collection of permutation matrices {Mi,b}i∈[h],b∈{0,1}.
Computation in such a program proceeds by taking a subset product of these matrices, where the
choice of the subset is dictated by the input but the order in which the matrices are multiplied is
oblivious to the input. To cryptographically “protect” this computation, we will first pre-process
and randomize {Mi,b} to obtain a new collection of matrices {Ŝi,b}, and then encode the latter
using graded encodings. Functionality (e.g. evaluation in lockable obfuscation and iO) relies on
the fact that we can check whether some subset product of the Ŝi,b’s is zero (or the identity matrix)
using the underlying graded encodings. Any security proof or attack would of course depend on
the class of matrices Mi,b’s we start out with, and how the Ŝi,b’s are derived.

Beyond permutation matrices. From a feasibility point of view, working with permutation ma-
trices is without loss of generality. We know that any NC1 circuit (or even a logspace computation)
can be represented as a permutation matrix branching program [Bar86]. Moreover, any general
branching program, where the underlying matrices are possibly low-rank, can be converted to a

1

permutation branching program with a polynomial blow-up in the number and dimensions of
these matrices. Nonetheless, there are advantages to working with more general, not necessarily
permutation or full-rank, branching programs:

• The first is concrete efficiency. For instance, representing equality or point functions on `-bit
string would use O(`2) constant-width matrices with permutation branching programs, but
just 2` width-one matrices (i.e. entries) with general branching programs.

• The second is that in the read-once setting, general branching programs are more expressive
than permutation branching programs. The restriction to read-once branching programs
is useful in applications such as iO and witness encryption, as they allow us to disregard
“multiplicative bundling” factors that protect against mixed-input attacks, which in turn
yields much more efficient constructions. This was shown in a recent work of Halevi, Halevi,
Shoup and Stephens-Davidowitz (HHSS) [HHSS17], which presented an iO candidate for
read-once branching programs based on GGH15 encodings. Their candidate is designed for
general read-once branching programs, as read-once permutation branching programs only
capture an extremely limited class of functions.

This raises the natural question of the security of GGH15-based constructions when applied to
general (non-permutation, possibly low-rank) matrix branching programs, as is exactly the focus
of this work. Indeed, the afore-mentioned proof techniques and attacks break down in this setting.
In particular, the HHSS iO candidate appears to resist the existing attacks in [CLLT16, CGH17],
thanks in part to the use of low-rank matrices (cf. [HHSS17, Section 1.2]).

We proceed to describe our results and techniques in more detail.

1.1 Our Results I: New Cryptographic Constructions from LWE

We present new constructions of private constrained PRFs and lockable obfuscation that work di-
rectly with general matrix branching programs. As with prior works, our constructions are secure
under the LWE assumption with subexponential approximation factors. Our result generalizes
the previous constructions in [CC17, GKW17a, WZ17] which only work for permutation branch-
ing programs, and yields improved concrete efficiency for several interesting classes of functions
that can be represented more efficiently using general branching programs, as described next.

• Lockable obfuscation [GKW17a, WZ17] refers to the average-case secure virtual black-box
(VBB) obfuscation for a class of functionalities C[f, y] which, on input x, output 1 if f(x) = y
and 0 otherwise. The average-case refers (only) to a uniformly random choice of y (more
generally, y with sufficient min-entropy). For lockable obfuscation, we obtain improved
constructions for a class of “compute” functions where each output bit is computed using a
general branching program applied to the input x (whereas [GKW17a, WZ17] require per-
mutation branching programs). To illustrate the efficiency gain, consider the case where
each output bit of the underlying function f computes a disjunction or conjunction of the
` input bits. In this case, we achieve up to a quadratic gain in efficiency due to our sup-
port for general branching programs. This class generalizes the distributional conjunction
obfuscator studied in [BR13, BVWW16, WZ17].

• Private puncturable PRFs are an important special case of constrained PRFs, with many ap-
plications such as 2-server private information retrieval (PIR) [BKM17]. We obtain a very

2

simple private puncturable PRF with a quadratic efficiency improvement over the recent
GGH15-based construction of Canetti and Chen [CC17]. Nonetheless, our construction is
admittedly less efficient –for most settings of parameters– than the more complex construc-
tions in [BKM17, BTVW17] that combines techniques from both fully-homomorphic and
attribute-based encryption.

Next, we provide a very brief overview of our techniques, and defer a more detailed technical
overview to Section 2.

New constructions and proof techniques. A GGH15 encoding of a low-norm matrix Ŝ w.r.t. two
matrices A0 and A1 is defined to be along the edge A0 7→ A1 and is computed as

D← A−1
0 (ŜA1 + E)

where for all A, Y with proper dimensions, the notation D← A−1(Y) means that D is a random
low-norm matrix such that AD = Y mod q.

The constructions in [CC17, GKW17b, GKW17a, WZ17] encode any permutation matrix M ∈
{0, 1}w×w as a GGH15 encoding of Ŝ = M⊗ S (see example in Remark 5.5), i.e.

A−1
0 ((M⊗ S)A1 + E)

for a random low-norm S. The crux of the analysis is to show that M is hidden under the LWE
assumption, namely: for any permutation matrix M ∈ {0, 1}w×w,

(A0,A
−1
0 ((M⊗ S)A1 + E)) ≈c (A0,V) (1)

where A0,A1 are uniformly random over Zq, S,V,E are random low-norm matrices, ≈c stands
for computational indistinguishable. The proof of (1) follows quite readily from the fact that given
any permutation matrix M ∈ {0, 1}w×w, we have:

(A, (M⊗ S)A + E) ≈c (A,U)

under the LWE assumption, where U is uniformly random.
However, this statement is false for arbitrary matrices M, take for instance M = 0w×w, the all-0

matrix. Indeed, the reader can easily come up with rank-(w−1) matrices M for which equation (1)
fails to hold.

In our construction, we encode an arbitrary matrix M as a GGH15 encoding of

Ŝ =

(
M⊗ S

S

)
That is, we append S along the diagonal. We then establish the following analogue of (1) under
the LWE assumption: for any arbitrary M ∈ {0, 1}w×w,(

JA0,A
−1
0

((
M⊗ S

S

)
A1 + E

))
≈c
(
JA0,V

)
(2)

where J is any matrix of the form [? | I], and A0,A1,S,V,E are distributed as in (1). This state-
ment is qualitatively incomparable with (1): it is stronger in that it works for arbitrary M, but
weaker in that the distinguisher only sees partial information about A0.

3

Proving the statement in (2) requires a new proof strategy where we will treat S (instead of
A0,A1) as a public matrix known to the distinguisher. In particular, we start with taking the
bottom part of A1 as the LWE secret, in conjunction with the public S in the bottom-right diagonal;
then use an extension of the trapdoor sampling lemma by Gentry et al. [GPV08] to produce an
“oblique” (while statistically indistinguishable) preimage sample using only the trapdoor of the
top part of A0; finally argue that the “oblique” sample is computationally indistinguishable from
random Gaussian using the top part of A0 as the LWE secret. Walking through these steps requires
new techniques on analyzing the trapdoor sampling detailed in Section 4. We refer the readers to
Sections 2.2.1 and 5.3 for further explanation of the proof techniques.

Next, we show that the weaker guarantee in (2) (in that the distinguisher gets JA0 instead of
A0) is sufficient for constructions of constrained PRFs and lockable obfuscation based on GGH15
encodings; this yields new constructions that are directly applicable to general, non-permutation
matrix branching programs.

1.2 Our Results II: New Attacks on iO Candidates

Next, we turn our attention to iO, where adversaries can obtain encodings of zero through honest
evaluations. Concretely, we focus on iO candidates that follow the [GGH+13b] template described
earlier in the introduction: start with a branching program {Mi,b}, pre-process and randomize
{Mi,b} to obtain a matrices {Ŝi,b}, and encode the latter using GGH15 encodings.

We present an attack that run in time sizeO(c) for general read-c branching programs of size
size. In particular, we have a polynomial-time attack when c is constant, as is the case for the iO
candidate in [HHSS17] which corresponds to c = 1. Our attack covers various “safeguards” in
the literature, such as Kilian-style randomization, multiplicative bundling, and diagonal padding.
We refer the readers to Section 9.2 for a precise description of the applicability of the attacks.

Attack overview. Our attack is remarkably simple, and proceeds in two steps:

1. Compute a matrix V whose (i, j)’th entry correspond to an iO evaluation on input x(i) | y(j)

that yields an encoding of zero. The dimensions of V and the number of evaluations is
polynomial in sizec.

2. Output the rank of V (over Z). More precisely, check if rank(V) is above some threshold.

Step 1 was used in the attack of Coron et al. [CLLT16] and Chen et al. [CGH17], both originated
from the zeroizing attack of Cheon et al. [CHL+15] on CLT13 [CLT13]. The novelty of our analysis
lies in showing that rank(V) leaks information about the Ŝi,b’s and thus the plaintext branching
program matrices Mi,b’s. So we call the attack a “rank attack”.

Our attack improves upon the previous attack of Chen et al. [CGH17] on GGH15-based iO
candidates in several ways: (i) we have a classical as opposed to a quantum attack, and (ii) it is
applicable to a larger class of branching programs, i.e. branching programs that are not necessarily
input-partitioned or using permutation matrices.

Why the rank-attack works? To get a taste of the rank-attack, let’s consider an oversimplified
description of the iO candidates based on GGH15 encodings. Let {Ŝi,b} be the randomization of

4

plaintext matrices {Mi,b}. Then the obfuscated code is the GGH15 encodings of the Ŝi,b matrices

A0, {Di,b}i∈[h],b∈{0,1} where Di,b ← A−1
i−1

(
Ŝi,bAi + Ei,b

)
Evaluation proceeds by first computing the product of A0 with the subset product of the Di,b

matrices. As an example, for the obfuscation of a 3-step branching program that computes all-0
functionality, the evaluation on input x = 000 gives

Eval(x) = A0 ·D1,0 ·D2,0 ·D3,0 = Ŝ1,0Ŝ2,0E3,0 + Ŝ1,0E2,0D3,0 + E1,0D2,0D3,0 (3)

To give a sense of why computing the rank is useful in an attack, we make a further simplifi-
cation, that suppose we manage to learn the monomial

Ŝ1,0E2,0D3,0 ∈ Zt×m.

W.h.p., the Gaussians E2,0,D3,0 and therefore its product E2,0D3,0 are full rank (over Z), so the
rank of this term is that of Ŝ1,0, which leaks some information about the rank of M1,0. Note that
learning the rank of M1,0 leaks no useful information for permutation branching programs, but is
sufficient to break iO for general branching programs.

In actuality, a single evaluation corresponding to an encoding of zero only provides a single
value in Z, which is a sum of products of the form above, multiplied by some left and right book-
end vectors. To extract the important information out of the summation of random-looking terms,
we will first form a matrix V of evaluations on appropriately chosen inputs. The matrix V has the
property that it factors into the product of two matrices V = X ·Y. We proceed analogously to
the toy example in two steps with X,Y playing the roles of Ŝ1,0 and E2,0 ·D3,0:

1. argue that Y is non-singular over Q so that rank(V) = rank(X), and

2. argue that rank(X) leaks information about the underlying branching program.

So far we have described what the analysis looks like for the read-once branching programs
(i.e. c = 1). For the case of c > 1, the analysis has the flavor of converting the obfuscated code of
a read-c branching program into the read-once setting, using the “tensor switching lemmas” from
previous attacks [ADGM17, CLLT17] on iO candidates that use GGH13 and CLT13.

1.3 Our Results III: New Candidates

Given the insights from our proofs and attacks, we present simple candidates for witness en-
cryption and iO based on GGH15 encodings. Our witness encryption candidate relies on the
observation from [GLW14] that to build witness encryption for general NP relations, it suffices to
build witness encryption for CNF formulas, and that we can represent CNF formulas using gen-
eral, read-once branching programs. The ciphertext corresponding to a formula Ψ and a message
µ ∈ {0, 1} is of the form described in (2), namely

JA0,

{
A−1
i−1

((
Mi,b ⊗ Si,b

µSi,b

)
Ai + Ei,b

)}
where J is a specific matrix of the form [? | I] and the Mi,b’s are the read-once branching program
representing Ψ.

5

Starting from the witness encryption candidate, we also present an iO candidate for NC1 cir-
cuits that appear to resist our rank attack as well as all prior attacks. In order to thwart the rank
attack, our iO candidate necessarily reads each input bit ω(1) times. To then prevent mixed-input
attacks, we rely on an extension of multiplicative bundling factors used in prior works that uses
matrices instead of scalars.

We stress that an important design goal in these candidates is simplicity so as to facilitate the
security analysis. We believe and anticipate that any attacks or partial security analysis for these
candidates (perhaps in some weak idealized model cf. [GMM+16]) would enhance our under-
standing of witness encryption and obfuscation.

1.4 Discussion and Open problems

Perspective. The proposal of candidate multilinear maps [GGH13a] from lattice-type assump-
tions in 2013 has triggered a major paradigm shift in cryptography and enabled numerous crypto-
graphic applications, most notably indistinguishability obfuscation [GGH+13b]. Among the three
multilinear maps candidates [GGH13a, CLT13, GGH15], GGH15 is the only one that has served
as a basis for new cryptographic applications based on established lattice problems, as demon-
strated in e.g. [CC17, GKW17b, GKW17a, WZ17]. We believe that extending the safe settings of
GGH15 (where security can be based on the LWE assumption), as explored in this work through
the generalized GGH15 framework as well as both proofs and attacks, will pave the way towards
new cryptographic constructions.

Open problems. We conclude with a number of open problems:

• Study the security of our candidate for witness encryption, either prove security under
instance-independent assumptions, or find a direct attack on the scheme. For the former
(i.e., prove security), the only proof strategy in the existing literature is to build and prove
a so-called positional witness encryption scheme [GLW14], for which the security definition
allows the adversary to obtain encodings of zeroes. Unfortunately, the natural extensions
of our candidate witness encryption scheme to a positional variant are susceptible to the
rank attack in the presence of encodings of zeroes. For the latter (i.e., directly attack the
scheme), all existing attack strategies on GGH15 encodings as used in our candidate require
encodings of zeroes, which are not readily available in the witness encryption setting.

• Find a polynomial-time attack for iO candidates for branching programs where every input
repeats c = O(λ) time where λ is the security parameter. The analysis of known attacks,
including our rank attack, yields running times that grow exponentially with c. There are
possibilities that the analysis is not tight and the rank attack or prior attacks could in fact
succeed with a smaller running time. However we have not detected such a phenomenon
with experiments for small c.

• Note that all our candidate constructions are of the form: AJ , {Di,b}i∈[h],b∈{0,1} and evalua-

tion/decryption proceeds by first computing AJDx′ := AJ
∏h
i=1 Di,x′i

for some x′ ∈ {0, 1}h.
Consider the following restricted class of adversaries that only gets oracle access to x′ 7→
AJDx′ instead of Aj , {Di,b}i∈[h],b∈{0,1}. Note that our rank attack as well as various mixed-
input and zeroizing attacks can all be implemented using this restricted adversaries. Can we

6

prove (or break) security of our witness encryption or iO candidates against this restricted
class of adversaries under some reasonable instance-independent assumptions?

Independent work. Variants of our new lemmas related to lattice preimage sampling in Section 4
were presented in an independent work of Goyal, Koppula and Waters [GKW18], for different
purposes from ours. In [GKW18], the lemmas were used as intermediate building blocks en route
a collusion resistant traitor tracing scheme based on the LWE assumption.

1.5 Reader’s guide

The rest of the article is organized as follows. Section 2 provides a more detailed overview of
our techniques. Section 5 gives a formal construction of the generalized-GGH15 encoding, the
security notions, and the main technical proof that suffices for the applications mentioned in Sec-
tions 7 and 8. The technical proof requires new lemmas developed in Section 4. The applications
require terminologies for matrix branching programs given in Section 6.

The attacks are described in Section 9. It is self-contained, so readers who are only interested
in attacks can jump directly to Section 9. Sections 10 and 11 give the witness encryption and iO
candidates. Their descriptions are self-contained. But to get the rationale behind the candidates
the readers probably have to refer to the previous sections.

2 Technical Overview

In this section, we present a more detailed overview of our techniques. We briefly describe the
notation used in this overview and the paper, and refer the reader to Section 3 for more details.
We use boldface upper-case and lower-case letters for matrices and vectors respectively. Given
a bit-string x ∈ {0, 1}h, we use Mx to denote matrix subset product

∏h
i=1 Mi,xi . Given matrices

A,B, we use A−1(B) to denote a random low-norm Gaussian D satisfying AD = B mod q. Two
probability distributions are connected by≈s or≈c if they are statistically close or computationally
indistinguishable.

2.1 Generalized GGH15 Encodings

In this work, we think of GGH15 as encoding two collections of matrices, one collection is arbitrary
and the other one is random, and computing some function γ of a subset product of these matrices;
we refer to this as (generalized) γ-GGH15 encodings.1 That is, the γ-GGH15 encoding takes as
input two collections of matrices {Mi,b}i∈[`],b∈{0,1} , {Si,b}i∈[`],b∈{0,1}, an additional matrix A`, and
the output is a collection of matrices

A0, {Di,b}i∈[`],b∈{0,1}

such that for all x ∈ {0, 1}`, we have

A0 ·Dx ≈ γ(Mx,Sx) ·A`

1See Remark 5.2 for a comparison with the original GGH15 encodings.

7

where Mx,Dx,Sx denotes subset-product of matrices as defined earlier. Here,

Mi,b ∈ {0, 1}w×w,Si,b ∈ Zn×n,A0,A` ∈ Zγ(w,n)×m
q ,Di,b ∈ Zm×m.

Intuitively, we also want to hide the Mi,b’s, which we will come back to after describing the choices
for γ and the construction.

Choices for γ. There are several instantiations for γ in the literature [GGH15, BVWW16, CC17,
GKW17a, WZ17, GGH+13b, HHSS17]:

γ×(M,S) = MS, γ⊗(M,S) := M⊗ S, γdiag(M,S) :=

(
M

S

)
where the first γ× requires working with rings so that multiplication commutes. More generally,
for the construction, we require that γ be multiplicatively homomorphic, so that

γ(M,S)γ(M′,S′) = γ(MM′,SS′)

as is clearly satisfied by the three instantiations above.

The γ-GGH15 construction. We briefly describe the construction of γ-GGH15 encodings im-
plicit in [GGH15], from the view-point of “cascaded cancellations” [KW16, GKW17b]. The start-
ing point of the construction is to expand γ(Mx,Sx) ·A` using multiplicative homomorphism as
a matrix product

γ(Mx,Sx) ·A` =
∏̀
i=1

γ(Mi,xi ,Si,xi) ·A`

Next, it randomizes the product by sampling random (wide, rectangular) matrices A0, . . . ,A`−1

over Zq along with their trapdoors, and rewrites the product as a series of “cascaded cancella-
tions”:

γ(Mx,Sx) ·A` = A0 ·
∏̀
i=1

A−1
i−1(γ(Mi,xi ,Si,xi)Ai)

where A−1
i−1(·) denotes random low-norm Gaussian pre-images as defined earlier. 2

For functionality, it suffices to define Di,b to be A−1
i−1(γ(Mi,b,Si,b)Ai), but that would not be

sufficient to hide the underlying Mi,b’s. Instead, the construction introduces additional error terms
{Ei,b}i∈[`],b∈{0,1}, and defines3

Di,b ← A−1
i−1(γ(Mi,b,Si,b)Ai + Ei,b)

2A reader who is familiar with Kilian’s randomization for branching programs should notice the similarity. In
Kilian’s randomization, we randomize the product

Mx =
∏̀
i=1

R−1
i−1Mi,xiRi

by picking random invertible matrices R1, . . . ,R`−1 along with R0 = R` = I. Here, we replace the square matrices
Ri’s with wide rectangular matrices Ai’s, and change from left-multiplying R−1

i−1 to sampling a random Gaussian
preimage of Ai−1.

3In the GGH15 terminology, Di,b would be an encoding of γ(Mi,b,Si,b) relative to the path i− 1 7→ i.

8

Observe that for all x ∈ {0, 1}`, we have

A0 ·Dx ≈ γ(Mx,Sx) ·A`

where ≈ refers to an additive error term that depends on | Di,b |, | Ei,b |, | γ(Mi,b,Si,b) |, which we
require to be small.

Semantic security. Following [CC17, GKW17b, GKW17a, WZ17], we consider the following no-
tion of semantic security for γ-GGH15 encodings, namely that

(semantic security.) The output (A0, {Di,b}i∈[`],b∈{0,1}) computationally hides {Mi,b}i∈[`],b∈{0,1}.
We only require that security holds “on average” over random {Si,b}i∈[`],b∈{0,1} ,A`.

Prior works [CC17, GKW17a, WZ17] showed that the γ⊗-GGH15 encodings achieve semantic
security if we restrict the Mi,b’s to be permutation matrices. That is,

Informal Lemma. Under the LWE assumption, we have that for all permutation matri-
ces {Mi,b}i∈[`],b∈{0,1},

(A0, {Di,0,Di,1}i∈[`]) ≈c (A0, {Vi,0,Vi,1}i∈[`]) (4)

where Di,b ← A−1
i−1((Mi,b ⊗ Si,b)Ai +Ei,b), and Vi,0,Vi,1 are random low-norm Gaus-

sians.

As mentioned earlier in the introduction, the proof of security crucially relies on the fact that any
permutation matrix M, LWE tells us that (A, (M ⊗ S)A + E) ≈c (A,U), where U is uniformly
random. We sketch the proof of the semantic security of γ⊗-GGH15 for ` = 1, which extends
readily to larger ` (here the major changes in the hybrid arguments are highlighted with boxes):(

A0, {A−1
0 ((M1,b ⊗ S1,b)A1 + E1,b)}b∈{0,1}

)
≈c

(
A0, {A−1

0 (U1,b) }b∈{0,1}
)

// LWE

≈s
(
A0, { V1,b }b∈{0,1}

)
// GPV

2.2 This work: semantic security for arbitrary matrices

Without further modifications, γ-GGH15 encoding does not achieve semantic security for arbi-
trary matrices. Concretely, given A0,D1,0, we can compute

A0 ·D1,0 = γ(M1,0,S1,0)A1 + E1,0

which might leak information about the structure of M1,0. In particular, we can distinguish be-
tween M1,0 being Iw×w versus 0w×w for all of γ×, γ⊗, γdiag.

The key to our new cryptographic constructions for general branching programs is a new tech-
nical lemma asserting semantic security for γdiag-GGH15 encodings with arbitrary matrices where
we replace A0 with JA0 for some wide bookend matrix J that statistically “loses” information
about A0:

9

New Lemma, Informal. Under the LWE assumption, we have that for all matrices
{Mi,b}i∈[`],b∈{0,1} over Z,

(JA0, (Di,0,Di,1)i∈`) ≈c (JA0, (Vi,0,Vi,1)i∈`) (5)

where J is any matrix of the form [? | I], Di,b ← A−1
i−1(

(
Mi,b

Si,b

)
Ai + Ei,b), and

Vi,0,Vi,1 are random low-norm Gaussians.

2.2.1 New proof technique

We prove a stronger statement for the semantic security of γdiag-GGH15, namely the semantic
security holds even given S1,0,S1,1, . . . ,S`,0,S`,1 (but not A1, . . . ,A`). Our proof departs signifi-
cantly from the prior analysis – in particular, we will treat A1, . . . ,A` as LWE secrets. Let Ai,Ai

denote the top and bottom parts of A, and define Ei,b,Ei,b analogously. This means that

A−1
i−1(γdiag(Mi,b,Si,b)Ai + Ei,b) = A−1

i−1

(
Mi,bAi + Ei,b
Si,bAi + Ei,b

)
We will use A1, . . . ,A` as LWE secrets in the following order: A`, . . . ,A1,A0, . . . ,A`−1. We

sketch the proof for ` = 1 (and it extends readily to larger `):(
JA0, {A−10

(
M1,bA1 + E1,b

S1,bA1 + E1,b

)
}b∈{0,1}

)
≈c

(
JA0, { A

−1
0

(
M1,bA1 + E1,b

)
}b∈{0,1}

)
≈s

(
U0 , {A

−1
0

(
M1,bA1 + E1,b

)
}b∈{0,1}

)
≈c

(
U0, { V1,b }b∈{0,1}

)
where the notations and analysis of hybrid arguments are as follows

• The first ≈c follow from a more general statement, namely for all i and for any Zi,b, we have{
A−1
i−1

(
Zi,b

Si,bAi + Ei,b

)}
b∈{0,1}

≈c
{
A
−1
i−1

(
Zi,b
)}

b∈{0,1}

even if the distinguisher gets Ai−1,Si,b,Zi,b. The proof of this statement follows by first
applying LWE with Ai as the secret4 to deduce that

{Si,b,Si,bAi + Ei,b}b∈{0,1} ≈c {Si,b,Ui,b}b∈{0,1}

where the Ui,b matrices are uniformly random over Zq, followed by a new statistical lemma
about trapdoor sampling which tells us that for all but negligibly many Ai−1, we have that
for all Zi,b,

A−1
i−1

(
Zi,b
Ui,b

)
≈s A

−1
i−1

(
Zi,b
)

4 Here, we could have used Si,0,Si,1 as the LWE secrets and Ai as the public matrix; however, this strategy would
break down when Mi,b depends on Si,b, which is needed in the applications.

10

• The ≈s follows from the structure of J, which implies (A0,JA0) ≈s (A0,U0), where U0 is a
uniformly random matrix.

• The final≈c follows from a more general statement, which says that under the LWE assump-
tion, we have that for any Z,

A−1(Z + E) ≈c A−1(U)

where the distributions are over random choices of A,E,U, provided A is hidden from the
distinguisher. The proof uses the Bonsai technique [CHKP12]. Suppose A is of the form
[A1 | A2] where A1 is uniformly random, A2 sampled with a trapdoor. Then, we have via
the Bonsai technique [CHKP12]:

A−1(Z + E) ≈s
(

−V
A−1

2 (A1V + E + Z))

)
where V is a random low-norm Gaussian. We then apply the LWE assumption to (V,A1V+
E) with A1 as the LWE secret. Once we replace A1V + E with a uniformly random matrix,
the rest of the proof follows readily from the standard GPV lemma.

Extension: combining γ⊗, γdiag. For the applications to private constrained PRFs and lockable
obfuscation, we will rely on γ⊗diag-GGH15 encodings, where

γ⊗diag(M,S) :=

(
M⊗ S

S

)
We observe that our proof of semantic security for γdiag also implies semantic security for γ⊗diag,
where we give out JA0 instead of A0. This follows from the fact that our proof for γdiag goes
through even if the Mi,b’s depend on the Si,b’s, since we treat the latter as public matrices when
we invoke the LWE assumption.

2.3 New Cryptographic Constructions from LWE

Using γ⊗diag-GGH15 encodings and the proof that semantic security of γ⊗diag holds for arbitrary
M matrices, we are ready to construct private constrained PRFs and lockable obfuscation where
the constraint/function can be recognized by arbitrary matrix branching programs. Here we
briefly explain the private constrained PRF construction as an example.

Before that we recall some terminologies for matrix branching programs. In the overview,
we focus on read-once matrix branching programs for notational simplicity, although our scheme
works for general matrix branching programs with any input pattern and matrix pattern (possibly
low-rank matrices). A (read-once) matrix branching program for a function fΓ : {0, 1}` → {0, 1} is
specified by Γ :=

{
{Mi,b}i∈[`],b∈{0,1} ,P0,P1

}
such that for all x ∈ {0, 1}`,

Mx =
∏̀
i=1

Mi,xi = PfΓ(x)

We will work with families of branching programs {Γ}, which share the same P0,P1.

11

2.3.1 Private constrained PRFs

We proceed to provide an overview of our construction of private constrained PRFs using γ⊗diag-
GGH15 encodings. As a quick overview of a private constrained PRF, a private constrained PRF
allows the PRF master secret key holder to derive a constrained key given a constraint predicateC.
The constrained key is required to randomize the output on every input x s.t. C(x) = 0, preserve
the output on every input x s.t. C(x) = 1. In addition, the constraint C is required to be hidden
given the description of the constrained key.

Let ei ∈ {0, 1}1×w denotes the unit vector with the ith coordinate being 1, the rest being 0.
Consider a class of constraints recognizable by branching programs

ΓC :=
{{

Mi,b ∈ {0, 1}w×w
}
i∈[`],b∈{0,1} ,P0,P1

}
,

where the target matrices P0,P1 satisfy e1P0 = e1, e1P1 = 01×w.
We use γ⊗diag to encode {Mi,b}i∈[`],b∈{0,1}, which means for i = 0, ..., `, Ai ∈ Z(nw+n)×m

q . Denote

A0 as the bottom n rows of Ai, Ai as the top nw rows of Ai. Inside Ai let A(j)
i denote the (j−1)nth

to jnth rows of Ai, for j ∈ [w].
Define the output of the normal PRF evaluation as

x 7→ bSxA`ep
where b · ep denotes the rounding-to-Zp operation used in previous LWE-based PRFs, which we
suppress in the rest of this overview for notational simplicity.

We set J := (e1 ⊗ I | I) so that J ·A0 = A
(1)
0 + A0, then

J · γ⊗diag(Mx,Sx) ·A` = ((e1 ·Mx)⊗ Sx) ·A` + SxA` =

{
SxA` if fΓ(x) = 1

SxA
(1)
` + SxA` if fΓ(x) = 0

Given Γ, the constrained key is constructed as

A
(1)
0 + A0, (Di,0,Di,0)i∈[`]

where (A0, {Di,b}i∈[`],b∈{0,1})← GGHEnc⊗diag({Mi,b}i∈[`],b∈{0,1} , {Si,b}i∈[`],b∈{0,1} ,A`).
The constrained evaluation on an input x gives

(A
(1)
0 + A0) ·Dx ≈ J · γ⊗diag(Mx,Sx) ·A`

which equals to SxA` if fΓ(x) = 1, SxA
(1)
` + SxA` if fΓ(x) = 0.

A special case: private puncturable PRFs. A private puncturable PRF can be obtained by simply
using branching program with 1× 1 matrices (i.e. let w = 1). The punctured key at x∗ is given by

A0 + A0, {Di,b}i∈[`],b∈{0,1}

where

Di,x∗i
← A−1

i−1

((
Si,x∗i

Si,x∗i

)
Ai + Ei,x∗i

)
,Di,1−x∗i ← A−1

i−1

((
0

Si,1−x∗

)
Ai + Ei,1−x∗i

)
.

The construction extends naturally to allow us to puncture at sets of points specified by a wildcard
pattern {0, 1, ?}`.

12

Security. In the security proof, we will use the fact that whenever fΓ(x) = 0, constrained evalu-

ation outputs SxA
(1)
` +SxA`, so that the normal PRF output is masked by the boxed term. More

formally, in the security game, the adversary gets a constrained key for ΓC , and oracle access to a
PRF evaluation oracle Eval. We consider the following sequence of games:

• Replace the output of the Eval oracle by

(A
(1)
0 + A0) ·Dx − Sx ·A

(1)
`

This is statistically indistinguishable from the real game, since (A
(1)
0 +A0) ·Dx ≈ Sx ·A

(1)
` +

Sx ·A`, and the approximation disappears w.h.p. after rounding.

• Apply semantic security to replace (Di,0,Di,0)i∈[`] with random. Here, we require that se-
mantic security holds even if the distinguisher gets {Si,b}i∈[`],b∈{0,1} ,A`, where the latter are

needed in order to compute Sx ·A
(1)
` . This implies constraint-hiding.

• Now, we can apply the BLMR analysis to deduce pseudorandomness of Sx ·A
(1)
` , where we

treat A(1)
` as the seed of the BLMR PRF [BLMR13]. This implies pseudorandomness of the

output of the Eval oracle.

3 Preliminaries

Notations and terminology. In cryptography, the security parameter (denoted as λ) is a variable
that is used to parameterize the computational complexity of the cryptographic algorithm or pro-
tocol, and the adversary’s probability of breaking security. An algorithm is “efficient” if it runs in
(probabilistic) polynomial time over λ.

When a variable v is drawn randomly from the set S we denote as v $← S or v ← U(S),
sometimes abbreviated as v when the context is clear. We use ≈s and ≈c as the abbreviation for
statistically close and computationally indistinguishable.

Let R,Z,N be the set of real numbers, integers and positive integers. Denote Z/(qZ) by Zq. The
rounding operation baep : Zq → Zp is defined as multiplying a by p/q and rounding the result to
the nearest integer.

For n ∈ N, [n] := {1, ..., n}. A vector in Rn (represented in column form by default) is written
as a bold lower-case letter, e.g. v. For a vector v, the ith component of v will be denoted by vi.
A matrix is written as a bold capital letter, e.g. A. The ith column vector of A is denoted ai. In
this article we frequently meet the situation where a matrix A is partitioned into two pieces, one
stacking over the other. We denote it as A =

(
A
A

)
. The partition is not necessarily even. We will

explicitly mention the dimension when needed.
The length of a vector is the `p-norm ‖v‖p = (

∑
vpi)

1/p. The length of a matrix is the norm of
its longest column: ‖A‖p = maxi ‖ai‖p. By default we use `2-norm unless explicitly mentioned.
When a vector or matrix is called “small”, we refer to its norm.

Subset products (of matrices) appear frequently in this article. For a given h ∈ N, a bit-string
v ∈ {0, 1}h, we use Xv to denote

∏
i∈[h] Xi,vi (it is implicit that {Xi,b}i∈[h],b∈{0,1} are well-defined).

13

The tensor product (Kronecker product) for matrices A ∈ R`×m, B ∈ Rn×p is defined as

A⊗B =

a1,1B, . . . , a1,mB
. . . , . . . , . . .
a`,1B, . . . , a`,mB

 ∈ R`n×mp. (6)

The rank of the resultant matrix satisfies rank(A⊗B) = rank(A) · rank(B).
For matrices A ∈ R`×m, B ∈ Rn×p, C ∈ Rm×u, D ∈ Rp×v,

(AC)⊗ (BD) = (A⊗B) · (C⊗D). (7)

Lemma 3.1 (Leftover hash lemma). LetH = {h : X → Y} be a 2-universal hash function family. Then
for any random variable X ∈ X , for ε > 0 s.t. log(|Y|) ≤ H∞(X)− 2 log(1/ε), the distributions

(h, h(X)) and (h, U(Y))

are ε-statistically close.

3.1 Lattices background

An n-dimensional lattice Λ is a discrete additive subgroup of Rn. Given n linearly independent

basis vectors B = {b1, ...,bn ∈ Rn}, the lattice generated by B is Λ(B) = Λ(b1, ...,bn) = {
n∑
i=1

xi ·

bi, xi ∈ Z}. Let B̃ denote the Gram-Schmidt orthogonalization of B.

Gaussian on lattices. For any σ > 0 define the Gaussian function on Rn centered at c with
parameter σ:

∀x ∈ Rn, ρσ,c(x) = e−π‖x−c‖
2/σ2

The subscripts σ and c are taken to be 1 and 0 (respectively) when omitted.
For any c ∈ Rn, real σ > 0, and n-dimensional lattice Λ, define the discrete Gaussian distribu-

tion over Λ as:

∀x ∈ Λ, DΛ,σ,c(x) =
ρσ,c(x)

ρσ,c(Λ)

Lemma 3.2 (Noise smudging [DGK+10]). Let y, σ ∈ R+. The statistical distance between the distribu-
tions DZ,σ and DZ,σ+y is at most y/σ.

Smoothing parameter. We recall the definition of smoothing parameter and some useful facts.

Definition 1 (Smoothing parameter [MR07]). For any n-dimensional lattice Λ and positive real
ε > 0, the smoothing parameter ηε(Λ) is the smallest real σ > 0 such that ρ1/σ(Λ∗ \ {0}) ≤ ε.

Lemma 3.3 (Smoothing parameter bound from [GPV08]). For any n-dimensional lattice Λ(B) and for
any ω(

√
log n) function, there is a negligible ε(n) for which

ηε(Λ) ≤ ‖B̃‖ · ω(
√

log n)

14

Lemma 3.4 (Smooth over the cosets [GPV08]). Let Λ, Λ′ be n-dimensional lattices s.t. Λ′ ⊆ Λ. Then
for any ε > 0, σ > ηε(Λ

′), and c ∈ Rn, we have

∆(DΛ,σ,c mod Λ′, U(Λ mod Λ′)) < 2ε

Lemma 3.5 ([PR06, MR07]). Let B be a basis of an n-dimensional lattice Λ, and let σ ≥ ‖B̃‖ · ω(log n),
then Prx←DΛ,σ

[‖x‖ ≥ σ ·
√
n ∨ x = 0] ≤ negl(n).

Gentry, Peikert and Vaikuntanathan [GPV08] show how to sample statistically close to discrete
Gaussian distribution in polynomial time for sufficiently large σ (the algorithm is first proposed
by Klein [Kle00]). The sampler is upgraded in [BLP+13] so that the output is distributed exactly
as a discrete Gaussian.

Lemma 3.6 ([GPV08, BLP+13]). There is a p.p.t. algorithm that, given a basis B of an n-dimensional
lattice Λ(B), c ∈ Rn, σ ≥ ‖B̃‖ ·

√
ln(2n+ 4)/π, outputs a sample from DΛ,σ,c.

Learning with errors. We recall the learning with errors problem.

Definition 2 (Decisional learning with errors (LWE) [Reg09]). For n,m ∈ N and modulus q ≥ 2,
distributions for secret vectors, public matrices, and error vectors θ, π, χ ⊆ Zq. An LWE sample is
obtained from sampling s← θn, A← πn×m, e← χm, and outputting (A, sTA + eT mod q).

We say that an algorithm solves LWEn,m,q,θ,π,χ if it distinguishes the LWE sample from a ran-
dom sample distributed as πn×m×U(Z1×m

q) with probability bigger than 1/2 plus non-negligible.

Lemma 3.7 (Regularity of Ajtai function [Reg09]). Fix a constant c > 1, let m ≥ cn log q. Then for all
but q

−(c−1)n
4 fraction of A ∈ Zn×mq , the statistical distance between a random subset-sum of the columns of

A and uniform over Znq is less than q
−(c−1)n

4 .

Lemma 3.8 (Standard form [Reg09, Pei09, BLP+13, PRS17]). Given n ∈ N, for any m = poly(n),
q ≤ 2poly(n). Let θ = π = U(Zq), χ = DZ,σ where σ ≥ 2

√
n. If there exists an efficient (possibly

quantum) algorithm that breaks LWEn,m,q,θ,π,χ, then there exists an efficient (possibly quantum) algorithm
for approximating SIVP and GapSVP in the `2 norm, in the worst case, to within Õ(nq/σ) factors.

We drop the subscripts of LWE when referring to standard form of LWE with the parameters
specified in Lemma 3.8. In this article we frequently use the following variant of LWE that is
implied by the standard form.

Lemma 3.9 (LWE with small public matrices [BLMR13]). For n,m, q, σ chosen as was in Lemma 3.8,
LWEn′,m,q,U(Zq),DZ,σ ,DZ,σ is as hard as LWEn,m,q,U(Zq),U(Zq),DZ,σ for n′ ≥ 2 · n log q.

Trapdoor and preimage sampling. Given A ∈ Zn×mq , denote the kernel lattice of A as

Λ⊥(A) := {c ∈ Zm : A · c = 0n (mod q)} .

Given any y ∈ Znq , σ > 0, we use A−1(y, σ) to denote the distribution of a vector d sampled from
DZm,σ conditioned on Ad = y (mod q). We sometimes suppress σ when the context is clear.

Lemma 3.10 ([Ajt99, AP11, MP12]). There is a p.p.t. algorithm TrapSam(1n, 1m, q) that, given the
modulus q ≥ 2, dimensions n, m such that m ≥ 2n log q, outputs A ≈s U(Zn×mq) with a trapdoor τ .

15

Following Lemmas 3.6 and 3.10,

Lemma 3.11. There is a p.p.t. algorithm that for σ ≥ 2
√
n log q, given (A, τ) ← TrapSam(1n, 1m, q),

y ∈ Znq , outputs a sample from A−1(y, σ).

Lemma 3.12 ([GPV08]). For all but negligible probability over (A, τ) ← TrapSam(1n, 1m, q), for suffi-
ciently large σ ≥ 2

√
n log q, the following distributions are efficiently samplable and statistically close:{

A,x,y : y← U(Znq),x← A−1(y, σ)
}
≈s {A,x,y : x← DZm,σ,y = Ax} .

Lemma 3.13 (Bonsai technique [CHKP12]). Let n,m,m1,m2, q ∈ N, σ ∈ R satisfy m = m1 + m2,
m2 ≥ 2n log q, σ > 2

√
n log q. For any y ∈ Znq , the following two distributions are efficiently samplable

and statistically close.

1. Let (A, τ)← TrapSam(1n, 1m, q), d← A−1(y, σ). Output (A,d).

2. Let A1 ← U(Zn×m1
q), (A2, τ2)← TrapSam(1n, 1m2 , q); d1 ← DZm1 ,σ, d2 ← A−1

2 (y−A1 ·d1, σ).
Let A = [A1,A2], d = [dT1 ,d

T
2]T . Output (A,d).

4 New Lemmas on Preimage Sampling

In this section, we present new lemmas related to lattice preimage sampling. These lemmas are
essential to the proof of semantic security for non-permutation branching programs, as outlined
in Section 2.2.

The first is a statistical lemma which states that for all but negligibly many matrix A (with
proper dimensions), for any matrix Z, the following two distributions are statistically indistin-
guishable: (

A,A−1

(
Z

U

))
≈s
(
A,A

−1
(Z)
)

where the distributions are over random choices of a matrix U and probability distributions
A−1(·) and A

−1
(·). This is in essence an extension of the trapdoor sampling lemma from Gen-

try, Peikert and Vaikuntanathan [GPV08].
The second is a computational lemma which states that for any matrix Z, the following two

distributions are computationally indistinguishable:

A−1(Z + E) ≈c A−1(U)

where the distributions are over random private choices of A,E and U and the coins of A−1(·).
The computational indistinguishability relies on the hardness of the decisional learning with er-
rors (LWE) problem.

4.1 The Statistical Lemma

We prove the above statistical lemma for vectors; the setting for matrices follow readily via a
hybrid argument.

16

Lemma 4.1. Let ε > 0. Given σ ∈ R+, n′, n,m, q ∈ N. For all but a q−2n′ fraction of A ∈ Zn′×mq , all

but a q−2n fraction of A ∈ Zn×mq , let A :=
(
A
A

)
. For σ > ηε(Λ

⊥(A)), m ≥ 9(n′ + n) log q. For a fixed
z ∈ Zn′q , for u← U(Znq), we have

A−1(

(
z

u

)
, σ) and A

−1
(z, σ)

are 2ε-statistically close.

Proof. We need two lemmas to assist the proof of Lemma 4.1.

Lemma 4.2. Let c > 9. For n′, n,m, q ∈ N such that m ≥ c(n′ + n) log q. For all but q−2n′ fraction of
A ∈ Zn′×mq , all but q−2n fraction of A ∈ Zn×mq , we have

{
A · x | x ∈ {0, 1}m ∩ Λ⊥(A)

}
= Znq .

Proof. From Lemma 3.7, we have for all but q−2n′ fraction of A ∈ Zn′×mq∣∣∣∣ Pr
x∈{0,1}m

[A · x = 0n
′
]− q−n′

∣∣∣∣ < 2q−2n′ ⇒ Pr
x∈{0,1}m

[A · x = 0n
′
] > 0.99 · q−n′ (8)

Let x← U({0, 1}m ∩ Λ⊥(A)), we have H∞(x) > m− 2n′ log q. For δ > 0, by setting m ≥ n log q +
2n′ log q + 2 log(1/δ), we have that for A← U(Zn×mq),

(A,A · x) and (A, U(Znq))

are δ-statistically close following leftover hash lemma (cf. Lemma 3.1).
Then Lemma 4.2 follows by setting δ = q−4n and take a union bound for A.

Lemma 4.3. For n′, n,m, q ∈ N, σ > 0. A ∈ Zn′×mq , A ∈ Zn×mq . Assuming the columns of A :=
(
A
A

)
generate Zn′+nq . For any vectors u ∈ Znq , z ∈ Zn′q , and c ∈ Zm where A ·c =

(
z
u

)
mod q. The conditional

distribution D of x← c +DΛ⊥(A),σ,−c given Ax = u mod q is exactly c +DΛ⊥(A),σ,−c.

Proof. Observe that the support of D is c + Λ⊥(A). We compute the distribution D: for all x ∈
c + Λ⊥(A),

D(x) =
ρσ(x)

ρσ(c + Λ⊥(A))
=

ρσ,−c(x− c)

ρσ,−c(Λ⊥(A))
= DΛ⊥(A),σ,−c(x− c). (9)

Finally from Lemma 3.4, let Λ = Λ⊥(A), Λ′ = Λ⊥(A), we have Λ′ ⊆ Λ. Since σ > ηε(Λ
′),

DΛ⊥(A),σ,−c is 2ε-statistically close to uniform over the cosets of the quotient group (Λ⊥(A)/Λ⊥(A)).
The rest of the proof of Lemma 4.1 follows Lemma 4.3 and Lemma 4.2.

4.2 The Computational Lemma

Lemma 4.4. Given n,m, k, q ∈ N, σ ∈ R such that n,m, k ∈ poly(λ), m ≥ 4n log q, σ ≥ 2
√
n log q.

For arbitrary matrix Z ∈ Zn×kq , the following two distributions are computationally indistinguishable
assuming LWEm,k,q,U(Zq),DZ,σ ,DZ,σ .

Dist. 1 Let A, τ ← TrapSam(1n, 1m, q), E← Dn×k
Z,σ . Sample D← A−1(Z + E, σ) using τ . Output D.

17

Dist. 2 Sample D = Dm×k
Z,σ . Output D.

Proof. We prove a stronger statement where the computational indistinguishability holds even
when Z is given to the adversary. The proof uses the Bonsai technique [CHKP12]. Letm = m1+m2

such that m1,m2 ≥ 2n log q. We introduce 2 intermediate distributions,

Dist. 1.1 Let A1 ← U(Zn×m1
q), (A2, τ2) ← TrapSam(1n, 1m2 , q). Sample D1 ← Dm1×k

Z,σ . Let E ←

Dn×k
Z,σ , sample D2 ← A−1

2 ((−A1 ·D1 + E + Z), σ) using τ2. Let D :=

(
D1

D2

)
. Output D.

Dist. 1.2 Let A1 ← U(Zn×m1
q), (A2, τ2) ← TrapSam(1n, 1m2 , q). Sample D1 ← Dm1×k

Z,σ . Let U ←

U(Zn×kq), sample D2 ← A−1
2 ((U + Z), σ) using τ2. Let D :=

(
D1

D2

)
. Output D.

Then Distributions 1 and 1.1 are statistically close following Lemma 3.13. Distributions 2 and 1.2
are statistically close following Lemma 3.12.

It remains to prove that Dist. 1.1 ≈c Dist. 1.2 assuming LWEm1,k,q,U(Zq),DZ,σ ,DZ,σ . This follows
by taking (D1,−A1 ·D1 +E) as the LWE sample, where A1 is the concatenation of n independent
uniform secret vectors, D1 is the low-norm public matrix and E is the error matrix.

Formally, suppose there exists a p.p.t. distinguisher A for Dist. 1.1 and Dist. 1.2, we build
a distinguisher A′ for LWEm1,k,q,U(Zq),DZ,σ ,DZ,σ . Given the challenge sample (D1,Y1), A′ runs

(A2, τ2) ← TrapSam(1n, 1m2 , q), samples D2 ← A−1
2 ((Y1 + Z), σ) using τ2, send D :=

(
D1

D2

)
to the adversary A. If A says it is from Dist. 1.1, then A′ chooses “LWE”; if A says Dist. 1.2, then
A′ chooses “random”. The success probability of A′ is same to the success probability of A.

5 Generalized GGH15 Encodings

We present the abstraction of generalized GGH15 encodings. The abstraction includes a construction
framework and definitions of security notions.

5.1 The construction framework

We begin with a description of the construction:

Construction 5.1 (γ-GGH15 Encodings). The randomized algorithm ggh.encode takes the follow-
ing inputs

• Parameters5 1λ, h, n,m, q, t, w ∈ N, σ ∈ R∗ and the description of a distribution χ over Z.

• A function γ : Zw×w × Zn×n → Zt×t.

• Matrices
{
Mi,b ∈ Zw×wi,b

}
i∈[h],b∈{0,1}

,
{
Si,b ∈ Zn×ni,b

}
i∈[h],b∈{0,1}

.

• A matrix Ah ∈ Zt×mq .

5In the rest of the presentation, these parameters are omitted in the input of ggh.encode.

18

It generates the output as follows

• Samples
{
Ai, τi ← TrapSam(1t, 1m, q)

}
i∈{0,1,...,h−1}.

• Samples
{
Ei,b ← χt×m

}
i∈[h],b∈{0,1}.

• For i ∈ [h], b ∈ {0, 1}, let Ŝi,b := γ(Mi,b,Si,b), then samples

Di,b ← A−1
i−1(Ŝi,b ·Ai + Ei,b, σ)

using τi−1.

• Outputs A0, {Di,b}i∈[h],b∈{0,1}.

We require γ to be multiplicatively homomorphic:

γ(M,S) · γ(M′,S′) = γ(M ·M′,S · S′)

Remark 5.2 (Comparison with GGH15). The goal of the original GGH15 graded encodings in
[GGH15] was to emulate the functionality provided by multi-linear maps with respect to some
underlying directed acyclic graph. The basic unit of the construction is an encoding of a low-
norm matrix Ŝ along A0 7→ A1 given by A−1

0 (ŜA1 + E), where Ŝ must be drawn from some
high-entropy distribution to achieve any meaningful notion of security.

Following [CC17, GKW17b, GKW17a, WZ17], we think of Ŝ as being deterministically derived
from an arbitrary low-norm matrix M and a random low-norm matrix S via some fixed function
γ given by γ : (M,S) 7→M⊗S in the afore-mentioned constructions. Here, we make γ an explicit
parameter to the construction, so that we obtain a family of constructions parameterized by γ,
which we refer to as the “γ-GGH15 encodings”.

Looking ahead to Section 5.2, another advantage of decoupling Ŝ into M and S is that we can
now require semantic security for arbitrary inputs M and random choices of S (more precisely,
arbitrary {Mi,b}i∈[h],b∈{0,1} and random {Si,b}i∈[h],b∈{0,1}), as considered in [WZ17]. Moreover, this
notion of semantic security can be achieved under the LWE assumption for some specific γ and
classes of matrices M. Here, we make explicit the idea that semantic security should be defined
with respect to some fixed auxiliary function aux of the matrices {Si,b}i∈[h],b∈{0,1} ,A0, . . . ,Ah.

Functionality. The next lemma captures the functionality provided by the construction, namely
that for all x ∈ {0, 1}h,

A0 ·Dx ≈ γ(Mx,Sx) ·Ah

Lemma 5.3 (Functionality of γ-GGH15 encodings). Suppose γ is multiplicatively homomorphic. For all
inputs to the Construction 5.1 s.t. σ > Ω(

√
t log q), m > Ω(t log q), ‖χ‖ ≤ σ; we have for all x ∈ {0, 1}h,

with all but negligible probability over the randomness in Construction 5.1,

‖A0 ·Dx − γ(Mx,Sx) ·Ah‖∞ ≤ h ·
(
mσ ·max

i,b
‖γ(Mi,b,Si,b)‖

)h
.

19

Proof. Recall Ŝi,b = γ(Mi,b,Si,b). It is straight-forward to prove by induction that for all h′ =
0, 1, . . . , h:

A0 ·
h′∏
k=1

Dk,xk =

 h′∏
i=1

Ŝi,xi

Ah′ +

h′∑
j=1

(j−1∏
i=1

Ŝi,xi

)
·Ej,xj ·

h∏
k=j+1

Dk,xk

 (10)

The base case h′ = 0 holds trivially. The inductive step uses the fact that for all h′ = 1, . . . , h:

Ah′−1 ·Dh′,xh′
= Ŝh′,xh′ ·Ah′ + Eh′,xh′

From the homomorphic property of γ we can deduce that

h∏
i=1

Ŝi,xi =

h∏
i=1

γ(Mi,xi ,Si,xi) = γ(Mx,Sx)

Finally, we bound the error term as follows:

‖A0 ·Dx − γ(Mx,Sx) ·Ah‖∞ =

∥∥∥∥∥∥
h∑
j=1

j−1∏
i=1

(Ŝi,xi) ·Ej,xj ·
h∏

k=j+1

Dk,xk

∥∥∥∥∥∥
∞

≤ h ·
√
t · σ ·

(√
t ·max

i,b
‖γ(Mi,b,Si,b)‖ · σ ·

√
m

)h−1
≤ h ·

(
max
i,b
‖γ(Mi,b,Si,b)‖ · σ ·m

)h

Looking ahead, in the applications we will set the parameters to ensure that the threshold
B := h · (mσ ·maxi,b ‖γ(Mi,b,Si,b)‖)h is relatively small compared to the modulus q.

Remark 5.4 (Dimensions of Ah). The construction and many analyses in this article can be obvi-
ously generalized to the cases where the dimensions of matrices are more flexible. As an example,
the matrix Ah can be chosen from Ztq instead of Zt×mq (as a result, Dh,0, Dh,1 are from Zm instead of
Zm×m). This change maintains necessary functionalities, reduce the size of the construction, and
is (more importantly) necessary for one of the proofs in the paper. For the ease of presentation
we keep all the A matrices with the same dimension, all the D matrices with the same dimension,
and mention the exceptions as they arise.

Interesting γ functions. We are interested in the following 3 γ functions:

• γ⊗ : {0, 1}w×w × Zn×n → Z(wn)×(wn), M,S 7→M⊗ S.

γ⊗ with permutation matrices M was introduced and studied in [CC17, GKW17b, GKW17a,
WZ17].

• γdiag : Zw×w × Zn×n → Z(w+n)×(w+n), M,S 7→
(
M

S

)
.

γdiag is implicit in the constructions in [GGH+13b, HHSS17] and is central to the security
analysis in this work.

20

• γ⊗diag : {0, 1}w×w × Zn×n → Z(wn+n)×(wn+n), M,S 7→
(
M⊗ S

S

)
.

We introduce γ⊗diag in this work, which would be central to the applications in this paper.

Note that all of the three γ functions are multiplicatively homomorphic and norm-preserving.

Remark 5.5 (Example for γ⊗ and relations with [GKW17b, GKW17a, WZ17]). As an example for
γ⊗, take

M =

0 1 0
0 0 1
1 0 0

which is a permutation matrix corresponding to the cyclic shift π that sends 1 7→ 2 7→ 3 7→ 1. Then,
for any S ∈ Zn×n and any A(1),A(2),A(3) ∈ Zn×mq , we have:

(M⊗ S)

A(1)

A(2)

A(3)

 =

0 S 0
0 0 S
S 0 0

A(1)

A(2)

A(3)

 =

SA(2)

SA(3)

SA(1)

More generally, let π : [w] → [w] denote a permutation on [w], and let M ∈ {0, 1}w×w denote the
standard representation of π as a matrix. Then, for any S ∈ Zn×n and any A ∈ Znw×mq , we have

(M⊗ S)A =

SA(π(1))

...
SA(π(w))

 , where A =

A(1)

...
A(w)

 ,A(1), . . . ,A(w) ∈ Zn×mq

The latter is essentially how the γ⊗-GGH15 encoding is described using the notation in [GKW17b,
GKW17a, WZ17].

5.2 Security notions

Intuitively, semantic security says that for all M, the output of the γ-GGH15 encodings

A0, {Di,b}i∈[h],b∈{0,1}

hides {Mi,b}i∈[h],b∈{0,1}, for random choices of {Si,b}i∈[h],b∈{0,1} and A0, . . . ,Ah. We consider a
more general notion parameterized by some fixed function aux of {Si,b}i∈[h],b∈{0,1} ,A0, . . . ,Ah,
and we require that aux, {Di,b}i∈[h],b∈{0,1} hides {Mi,b}i∈[h],b∈{0,1}.

Definition 3 (Semantic security with auxiliary input). We say that the γ-GGH15 encodings sat-
isfies semantic security with auxiliary input aux for a family of matrices M ⊆ Zw×w if for all
{Mi,b ∈M}i∈[h],b∈{0,1}, we have

aux, {Di,b}i∈[h],b∈{0,1} ≈c aux,
{

(Dm×m
Z,σ)

i,b

}
i∈[h],b∈{0,1}

where

Si,b ← Dn×n
Z,σ ,Ah ← U(Zt×mq), {Di,b} ← ggh.encode(γ, {Mi,b}i∈[h],b∈{0,1} , {Si,b}i∈[h],b∈{0,1} ,Ah)

and aux is a fixed function of {Si,b}i∈[h],b∈{0,1} ,A0, . . . ,Ah.

21

Remark 5.6 (γ⊗-GGH encodings with permutation matrices). Canetti and Chen [CC17] (also,
[GKW17a, WZ17]) showed that the γ⊗-GGH15 encoding satisfies semantic security with auxil-
iary input (A0,A1, . . . ,Ah) for the family of permutation matrices in {0, 1}w×w.

We can prove that the γ⊗-GGH15 encoding satisfies semantic security with auxiliary input
(A0, {Si,b}i∈[`],b∈{0,1}) for the family of permutation matrices in {0, 1}w×w, by using the LWE as-
sumption with the Si,b as the public matrices. Such a proof requires a multiplicative blow-up (of
roughly O(log q)) in the dimensions of the Si,b matrices. One of the advantages of using the S
matrices as the public matrices is that we can use the same S0,S1 across all the h levels, similar to
the PRF construction in [BLMR13].

5.3 Semantic security for γdiag-GGH15 and γ⊗diag-GGH15 encodings

In this section, we prove semantic security of the γdiag-GGH15 and γ⊗diag-GGH15 encodings in
Construction 5.1 under the LWE assumption, where

γdiag(M,S) =

(
M

S

)
, γ⊗diag(M,S) =

(
M⊗ S

S

)
.

In fact, we show that this holds given auxiliary input about A0 and {Si,b}i∈[h],b∈{0,1}.

S-dependent security. Concretely, we will derive semantic security of γ⊗diag from that of γdiag
by showing that the construction γdiag satisfies a stronger notion of S-dependent security where
the matrices {Mi,b}i∈[h],b∈{0,1} may depend on {Si,b}i∈[h],b∈{0,1}:

Definition 4 (S-dependent semantic security with auxiliary input). We say that the γ-GGH15 en-
codings satisfies S-dependent semantic security with auxiliary input aux for a family of matrices
M⊆ Zw×w if for every polynomial-size circuit f : (Zn×n)2h →M2h, we have

aux, {Di,b}i∈[h],b∈{0,1} ≈c aux,
{

(Dm×m
Z,σ)

i,b

}
i∈[h],b∈{0,1}

where

Si,b ← Dn×n
Z,σ ,Ah ← U(Zt×mq), {Mi,b}i∈[h],b∈{0,1} = f({Si,b}i∈[h],b∈{0,1}),

{Di,b} ← ggh.encode(γ, {Si,b}i∈[h],b∈{0,1} , {Mi,b}i∈[h],b∈{0,1} ,Ah)

and aux is a fixed function of {Si,b}i∈[h],b∈{0,1} ,A0, . . . ,Ah.

Theorem 5.7 (S-dependent semantic security of γdiag). Assuming LWEn,2m,q,U(Zq),DZ,σ ,DZ,σ , the γdiag-
GGH15 encodings in Construction 5.1 satisfies S-dependent semantic security forM = Zw×w with auxil-
iary input

aux = {Si,b}i∈[h],b∈{0,1} ,J ·A0,Ah

where Ah ∈ Zw×mq is the top w rows of Ah and J ∈ {0, 1}n×(t−n) | In×n.

Remark 5.8 (Necessity of JA0). Ideally, we would liked to have shown that semantic security
holds with auxiliary input A0 (as opposed to JA0). However, such a statement is false for general
M ∈ Zw×w. Concretely, given A0,D1,0, we can compute A0 ·D1,0 which leaks information about

the structure of M1,0. In particular, we can distinguish between
(

1 0
0 1

)
and

(
0 1
0 1

)
.

22

As an immediate corollary, we then have:

Corollary 5.9 (semantic security of γ⊗diag). Assuming LWEn,2m,q,U(Zq),DZ,σ ,DZ,σ , the γ⊗diag-GGH15
encodings in Construction 5.1 satisfies semantic security forM = Zw×w with auxiliary input

aux = {Si,b}i∈[h],b∈{0,1} ,J ·A0,Ah

where Ah ∈ Zwn×mq is the top wn rows of Ah and J ∈ {0, 1}n×(t−n) | In×n.

5.4 Proof of the main theorem

Proof of Theorem 5.7. For t, n, w ∈ N such that t = w + n. For any matrix X ∈ Zt×∗, let X =

(
X
X

)
,

where X ∈ Zw×∗, X ∈ Zn×∗. For the sake of completeness we spell out the details of the real and
simulated distributions which will be proven indistinguishable.

The real and simulated distributions. In the real distribution the adversary is given

J ·A0,
{
Di,b ,Si,b,Mi,b

}
i∈[h],b∈{0,1}

,Ah

where

•
{
Ai, τi ← TrapSam(1t, 1m, q)

}
i∈{0,1,...,h−1} ,Ah ← U(Zt×mq)

• Si,b ← Dn×n
Z,σ , {Mi,b}i∈[h],b∈{0,1} ← f({Si,b}i∈[h],b∈{0,1})

• Di,b ← A−1
i−1

(
Mi,bAi + Ei,b
Si,bAi + Ei,b

)
,Ei,b ← χt×m

The simulated distribution is generated in the same way except that the adversary is given

J ·A0,
{
Vi,b ,Si,b,Mi,b

}
i∈[h],b∈{0,1}

,Ah

where Vi,b ← Dm×m
Z,σ .

To show that the real distribution is computationally indistinguishable from the simulated one,
we introduce the following intermediate distributions.

Distributions 1.i, for i ∈ {h+ 1, h, ..., 1}. Let Distribution 1.(h+ 1) be identical to the real distri-
bution. For i = h down to 1, let Distributions 1.i be the same to Distributions 1.(i+ 1), except that
Ai−1, Di,0, Di,1 are sampled differently. Let (Ai−1, τi−1)← TrapSam(1w, 1m, q), Ai−1 ← U(Zn×mq).

Sample Di,b ← A
−1
i−1((Mi,bAi + Ei,b), σ) using τi−1, b ∈ {0, 1}.

Distributions 2.0. Distribution 2.0 is sampled identically to Distribution 1.1, except that J ·A0 is

replaced with a uniformly random matrix U
$← Zn×m. Since J ∈ {0, 1}n×(t−n) | In×n, U ≈s J ·A0

for A0, τ0 ← TrapSam(1t, 1m, q) due to Lemma 3.10.

23

Distributions 2.j, for j ∈ {1, ..., h}. For j = 1, 2, ..., h, let Distributions 2.j be the same to Dis-
tributions 2.(j − 1), except that Dj,0, Dj,1 are sampled simply from Dm×m

Z,σ . Note that Dist. 2.h is

identical to the simulated distribution, except that in Dist. 2.h, U $← Zn×m is in the place where
J ·A0 is in the simulated distribution, so they are statistically close again due to Lemma 3.10.

The sequence. We will show that:

Real = 1.(h+ 1) ≈c 1.h ≈c · · · ≈c 1.1 ≈s 2.0 ≈c 2.1 ≈c · · · ≈c 2.h ≈s Simulated

In particular, the ≈c’s will rely on the LWE assumption, using A1, . . . ,A` as LWE secrets in the
following order: A`, . . . ,A1,A0, . . . ,A`−1.

Lemma 5.10. For i ∈ [h], Distribution 1.(i+ 1) ≈c Distribution 1.i assuming LWEn,2n,q,U(Zq),DZ,σ ,DZ,σ .

Roughly speaking, we will show that for all i ∈ [h],{
A−1
i−1

(
Mi,bAi + Ei,b
Si,bAi + Ei,b

)}
b∈{0,1}

≈c
{
A
−1
i−1(Mi,bAi + Ei,b)

}
b∈{0,1}

where the distinguisher is also given Ai−1, τi−1,Si,0,Si,1,Mi,0,Mi,1,Ai, but not Ai, so that we can
treat Ai as a LWE secret, cf. Lemma 4.4.

Proof. We introduce an intermediate distribution 1.i∗, which is generated in the same way as Dis-
tributions 1.(i+ 1), except that Di,0, Di,1 are sampled as:

Di,b ← A−1
i−1

((
Mi,bAi + Ei,b

Ui,b

)
, σ

)
, b ∈ {0, 1}.

where (Ui,0,Ui,1)← U(Zn×mq × Zn×mq).
The intermediate distribution 1.i∗ is statistically close to Distribution 1.i due to Lemma 4.1. It

remains to prove that 1.i∗ is computationally indistinguishable from Distribution 1.(i + 1). This
follows Lemma 3.9, by treating Ai as the LWE secret, and Si,0,Si,1 as the public matrices.

Formally, if there’s an adversary A that distinguishes Distributions 1.(i+ 1) and 1.i∗, we build
a distinguisher A′ for LWEn,2n,q,U(Zq),DZ,σ ,DZ,σ as follows. Once given the LWE challenge

Si,0,Si,1,Yi,0,Yi,1

where Si,0,Si,1 are the low-norm public matrices, Yi,0,Yi,1 are either the LWEn,2n,q,U(Zq),DZ,σ ,DZ,σ
samples with the common secret Ai ← U(Zn×mq), or independent uniform samples from Zn×mq ×
Zn×mq . The LWE distinguisher A′ proceeds as follows:

1. Sample
{
Sk,b ← Dn×n

Z,σ

}
k∈[h],k 6=i,b∈{0,1}

.

2. For k ∈ [h], b ∈ {0, 1}, compute Mk,b ∈ Zw×w using f({Sk,b}k∈[h],b∈{0,1}).

3. For k ∈ {0, 1, ..., i− 1}, sample Ak, τk ← TrapSam(1t, 1m, q). For k ∈ {i, i+ 1, ..., h− 1},
sample Ak, τ̄k ← TrapSam(1w, 1m, q). Sample Ah ← U(Zt×mq).

24

4. For k ∈ [h], b ∈ {0, 1}, samples

Dk,b ←

A−1
k−1

(Mk,bAk+Ek,b
Sk,bAk+Ek,b

)
using τk−1 if k ≤ i− 1

A−1
i−1

(Mi,bAi+Ei,b
Yi,b

)
using τi−1 if k = i

A
−1
k−1(Mk,bAk + Ek,b)) using τ̄k−1 if k ≥ i+ 1

with standard deviation σ.

The LWE distinguisher A′ then sends

J ·A0,
{
Dk,b ,Sk,b,Mk,b

}
k∈[h],b∈{0,1}

,Ah.

to the adversary A. If A says it is Dist. 1.(i+ 1), it corresponds to the LWE samples with low-norm
public matrices; if A says Dist. 1.i∗, it corresponds to the uniform distribution.

Lemma 5.11. For j ∈ [h], Distribution 2.(j−1) ≈c Distributions 2.j assuming LWEm,2m,q,U(Zq),DZ,σ ,DZ,σ .

Roughly speaking, we will show that for all j ∈ [h],{
A
−1
j−1(Mj,bAj + Ej,b)

}
b∈{0,1}

≈c
{
Dm×m

Z,σ

}
b∈{0,1}

where the distinguisher is also given Mj,0,Mj,1,Aj , but not Aj−1, so as to trigger Lemma 4.4.

Proof. For j ∈ [h], suppose there exists an adversary A that distinguishes Distributions 2.(j − 1)
and 2.j, we build a distinguisher A′ for Distributions 1 and 2 in Lemma 4.4 as follows. Given
challenging samples

Dj,0 | Dj,1 ∈ Zm×2m

either obtained from A
−1
j−1(

[
Mj,0Aj + Ej,0 |Mj,1Aj + Ej,1

]
) which corresponds to Dist. 1 in Lemma 4.4

(by treating
[
Mj,0Aj |Mj,1Aj

]
as the arbitrary matrix Z); or from Dm×2m

Z,σ which corresponds to
Dist. 2 in Lemma 4.4. The distinguisher A′ proceeds as follows:

1. For k ∈ [h], b ∈ {0, 1}, sample Sk,b ← Dn×n
Z,σ .

2. For k ∈ [h], b ∈ {0, 1}, compute Mk,b ∈ Zw×w using f({Sk,b}k∈[h],b∈{0,1}).

3. For k ∈ {j, j + 1, ..., h− 1}, sample Ak, τ̄k ← TrapSam(1w, 1m, q). Sample Ah ← U(Zt×mq).

4. For k ∈ {1, 2, ..., j − 1, j + 1, ..., h} , b ∈ {0, 1}, samples

Dk,b ←

{
Dm×m

Z,σ if k ≤ j − 1

A
−1
k−1(Mk,bAk + Ek,b, σ) using τ̄k−1 if k ≥ j + 1

.

5. Sample U← U(Zn×mq).

A′ then sends
U,
{
Dk,b ,Sk,b,Mk,b

}
k∈[h],b∈{0,1}

,Ah.

to the adversary A. Note that A′ correctly produce the output without Aj−1. So if A determines
that the samples are from Distribution 2.(j − 1), A′ chooses Dist. 1 in Lemma 4.4; if A determines
that the samples are from Distribution 2.j, A′ chooses Dist. 2 in Lemma 4.4.

Theorem 5.7 follows from Lemmas 5.10 and 5.11.

25

6 Matrix branching programs

To formally describe the applications it is helpful to introduce the terminologies for matrix branch-
ing programs.

Definition 5 (Matrix branching program). Let `, h ∈ N be the bit-length of the input and the
index of a branching program. An index-to-input map ι : [h] → [`] and an input-to-index map
$: {0, 1}` → {0, 1}h come in pairs, i.e. $(x)i = xι(i), ∀i ∈ [h],x ∈ {0, 1}`.

A dimension-w, length-hmatrix branching program over `-bit inputs consists of a pair of maps
($, ι), a sequence of pairs of 0-1 matrices, and two disjoint sets of target matrices

Γ =
{
$, ι,

{
Mi,b ∈ {0, 1}w×w

}
i∈[h],b∈{0,1} ,P0,P1 ⊂ {0, 1}w×w

}
.

This branching program is computing the function fΓ : {0, 1}` → {0, 1}, defined as

fΓ(x) =

{
0 if M$(x) =

∏
i∈[h] Mi,xι(i) ∈ P0

1 if M$(x) =
∏
i∈[h] Mi,xι(i) ∈ P1

Remark 6.1. Since one of ι, $ uniquely defines the other, in the branching programs defined in
this paper we typically specify only one of them.

Looking ahead, the applications in this paper may require additional feature on the target sets
P0,P1 to perform the correct functionality. The following 2 types suffice for most of the applica-
tions in this paper (the exceptions are otherwise defined locally).

Definition 6 (Type I branching programs). For a vector v ∈ {0, 1}1×w, an input-to-index map $,
an integer w. The set of Type I branching programs Gv,$,w satisfies

1. All Γ ∈ Gv,$,w are associated with the same input-to-index map $; all the matrices in Γ have
the same dimension w.

2. For all Γ ∈ Gv,$,w, the target sets P0, P1 satisfies v ·P1 =
{
01×w}; v ·P0 ⊆ {0, 1}1×w \

{
01×w}.

Definition 7 (Type II branching programs). For a vector v ∈ {0, 1}1×w, an input-to-index map $,
an integer w ≥ 2. The set of Type II matrix branching programs Gv,$,w satisfies

1. All Γ ∈ Gv,$,w are associated with the same input-to-index map $; all the matrices in Γ have
the same dimension w.

2. For all Γ ∈ Gv,$,w, the target sets P0, P1 satisfies v · P1 = {e1}; v · P0 = {e2}, where
ei ∈ {0, 1}1×w denotes the unit vector with the ith coordinate being 1, the rest being 0.

Note that we can always transform Type II branching program into a Type I branching pro-
gram by doubling the width while preserving the length:

Claim 6.2 (Type II ⊆ Type I). GII
v,$,w ⊆ GI

v|−v,$,2w

The idea is to simply add a dummy branch that always computes some fixed matrix in P1; this
doubles the width of the branching program. This transformation is used implicitly in several iO
candidates, e.g. [GGH+13b, GGH15, HHSS17].

The branching programs obtained by Barrington’s theorem directly satisfy Definition 7.

26

read-once Type I BPs
candidate WE §10

∩
NC1 ⊆ permutation BPs ⊆ Type II BPs ⊆ Type I BPs

lockable obf §8 private CPRFs §7
candidate IO §11

Figure 1: Relationships between different types of BPs and how they relate to our constructions.

Theorem 6.3 (Barrington’s theorem [Bar86]). For d,w ∈ N, w ≥ 5, and for any set of depth-d fan-
in-2 Boolean circuits, there is a set of width-w length-4d Type II branching programs, where each Γ is
associated with the same index-to-input map ι, the same target matrices P0, P1, and permutation matrices
{Mi,b ∈ {0, 1}w×w}i∈[4d],b∈{0,1}.

The relationships between the different kinds of BPs and how they relate to our constructions
is summarized in Fig. 1.

6.1 Representing CNFs as matrix branching programs

We describe two specific branching program representations of CNFs which will be used in our
constructions. In both constructions, we obtain read-once branching programs of length ` for `-bit
inputs, whereas if we are restricted to permutations, then the known constructions require length
at least `2 or width 2`.

The first one is from [GLW14]. The resulting branching programs are read-once Type I, and
the matrices are diagonal.

Construction 6.4 (Type I BP representation of CNF). Given a conjunction normal form (CNF)
formula Ψ with ` variables and w clauses, namely Ψ = ψ1 ∧ . . . ∧ ψw, where each clause ψi is a
disjunction of the literals x1, ..., x` and their negations x̄1, ..., x̄`.

Construct ΓΨ =
{
ι, {Mi,b ∈ {0, 1}w×w}i∈[`],b∈{0,1} ,P0,P1

}
such that ι(v) = v, v ∈ [`]; P1 =

{0w×w}, P0 is the set of w-dimensional 0-1 diagonal matrices excluding 0w×w. In other words,{
Mx = 0 if Ψ(x) = 1

Mx 6= 0 if Ψ(x) = 0
.

The matrices in ΓΨ are constructed as follows.

1. Initialization: for all i ∈ [`], b ∈ {0, 1}, Let Mi,b := Iw×w.

2. If xi appears in ψj : set the jth entry on the diagonal of Mi,1 to be 0.

3. If x̄i appears in ψj : set the jth entry on the diagonal of Mi,0 to be 0.

This branching program has length ` and width w.

27

The second representation handles a single clause formed by a disjunction of the literals (we
assume an empty clause always outputs 0; a clause that always outputs 1 can be simply repre-
sented by x1 ∨ x̄1). It belongs to Type II.

Construction 6.5 (Type II BP representation of a disjunction). Given a clause ψ which is a disjunc-
tion of the literals x1, ..., x` and their negations x̄1, ..., x̄`.

Let N =

(
1 0
1 0

)
. Construct Γψ =

{
ι,
{
Mi,b ∈ {0, 1}2×2

}
i∈[`],b∈{0,1} ,P0,P1

}
such that ι(v) =

v, v ∈ [`]; P0 =
{
I2×2

}
, P1 = {N}. The matrices in Γψ are constructed as follows.

1. Initialization: for all i ∈ [`], b ∈ {0, 1}, Let Mi,b := I2×2.

2. If xi appears in ψ, let Mi,1 = N.

3. If x̄i appears in ψ, let Mi,0 = N.

This branching program has length ` and width 2.

We can get a similar representation that handles a single conjunction of the literals (using de
Morgan’s law and the fact that Type II is closed under complement).

7 Application 1: Private constrained PRFs

In this section, we construct private constrained PRF for Type I branching programs (cf. Def. 6).
The constructions are straight-forward adaptations of prior constructions in [CC17]; however, we
require a different proof strategy which is reminiscent of that in [PS18].

7.1 Definitions

We recall the simulation-based definition for private constrained PRFs with one-key security from
[CC17]. According to [CC17, Section 4.3], in the one-key setting the simulation-based definition is
equivalent to the indistinguishability-based definition from [BLW17].

Definition 8 (Private constrained PRF (PCPRF)). Consider a family of functions F = {Fλ}λ∈N
whereFλ = {Fk : Dλ → Rλ}, along with a tuple of efficient functions (Gen, Constrain, Eval, Constrain.Eval).
For a constraint family C = {Cλ : Dλ → {0, 1}}λ∈N,

• The key generation algorithm Gen(1λ, 1`,Fλ) takes the security parameter λ, the input length
` and the description of the constraint class Fλ, generates the master secret key MSK.

• The evaluation algorithm Eval(MSK, x) takes MSK, an input x, outputs FMSK(x).

• The constraining algorithm Constrain(1λ,MSK, C) takes MSK, a constraint C, outputs the
constrained key CKC .

• The constrained evaluation algorithm Constrain.Eval(CKC , x) takes a constrained key CKC ,
an input x, outputs FCKC (x).

F is a family of private constrained PRF for C if it satisfies the following properties:

28

Functionality preservation for C(x) = 1. For an input x ∈ Dλ s.t. C(x) = 1,

Pr[Eval(MSK, x) = Constrain.Eval(CKC , x)] ≥ 1− negl(λ),

where the probability is taken over the randomness in algorithms Gen and Constrain.

Pseudorandomness and constraint-hiding. For any polytime stateful algorithm Adv, there is a
polytime stateful algorithm Sim such that:{

Experiment REALAdv(1
λ)
}
λ∈N
≈c
{

Experiment IDEALAdv,Sim(1λ)
}
λ∈N

.

where the ideal and real experiments are defined as follows. In the experiments the adversary
can ask a single constraint query followed by polynomially many input queries. Once Adv makes
the constraint query C ∈ Cλ, in the real experiment Adv obtains the constrained key generated by
the constraining algorithm; in the ideal experiment Adv obtains a key generated by Sim, whereas
Sim is given only the size of C. Once Adv makes an input query x, Adv is expected to provide a
bit dx indicating the value of C(x). In the real experiment Adv obtains the unconstrained function
value at x. In the ideal experiment Sim learns the indicator bit dx; if dx = 1 then Adv gets a value
generated by Sim, and if dx = 0 then Adv obtains a random value from the range R of the function.
The output of the experiment is the final output bit of Adv.

Experiment REALAdv(1
λ) Experiment IDEALAdv,Sim(1λ)

MSK← Gen(1λ), Sim← 1λ

Adv→ C; Adv→ C;

Adv ← Constrain(MSK, C) Adv← Sim(1|C|)

Repeat : Repeat :

Adv→ x; y = Eval(MSK, x) Adv→ x; y = Sim(x, dx)

Adv← y if dx = 0 then y = U(R);Adv← y

Adv→ b; Output b Adv→ b; Output b

7.2 Construction

We construct private constrained PRFs for constraints recognizable by Type I branching programs.
For the ease of presentation we make notation conventions that are only applicable in Section 7.

For n, t, w ∈ N s.t. t = wn+ n, for a matrix X ∈ Zt×∗, let X =

(
X
X

)
s.t. X ∈ Z(wn)×∗, X ∈ Zn×∗.

Construction 7.1 (PCPRF). For a class of matrix branching programs Gv,$,w that satisfies Defini-
tion 6, construct a family of private constraint PRFs for Gv,$,w as follows.

Key Gen. Gen(1λ, 1`,Gv,$,w) parses parameters h,w ∈ N, v ∈ {0, 1}1×w from Gv,$,w.

Sample parameters n,m, p, q, B ∈ N, σ ∈ R+ according to Remark 7.2.

Sample {Si,b ← χn×n}i∈[h],b∈{0,1}, Ah
$← Zt×mq . Let MSK := {Si,b}i∈[h],b∈{0,1} ,Ah.

29

Eval. Eval(MSK,x) parses MSK as {Si,b}i∈[h],b∈{0,1} ,Ah, on input x ∈ {0, 1}`, outputs⌊
S$(x) ·Ah

⌉
p
.

Constrain. Constrain(1λ,MSK,Γ) parses MSK as {Si,b}i∈[h],b∈{0,1} ,Ah, the matrices in Γ as {Mi,b}i∈[h],b∈{0,1},
computes

(A0, {Di,b}i∈[h],b∈{0,1})← ggh.encode(γ⊗diag, {Mi,b}i∈[h],b∈{0,1} , {Si,b}i∈[h],b∈{0,1} ,Ah, σ)

and outputs
CKΓ = J ·A0, {Di,b}i∈[h],b∈{0,1} .

where J = (v ⊗ In×n | In×n) ∈ {0, 1}n×t.

Constrain Eval. Constrain.Eval(CKΓ,x) parses CKΓ = J·A0, {Di,b}i∈[h],b∈{0,1}, on input x ∈ {0, 1}`,
outputs ⌊

J ·A0 ·D$(x)

⌉
p
.

Remark 7.2 (Parameters). The parameters n,m, p, q, B ∈ N, σ ∈ R+ are sampled under the fol-
lowing constraints for correctness and security. m = Ω(t log q), σ = Ω(

√
t log q) for trapdoor

functionality due to Lemma 3.10 and Lemma 3.11. n = Ω(λ log q), χ = DZ,2
√
λ for security due to

Lemma 3.9 and Lemma 3.8. The noise threshold B is set according to Lemma 5.3

B ≥ (w + 1) · h ·
(
mσ2 ·

√
n(w + 1)

)h
≥ (w + 1) · h ·

(
(w + 1)λ log2 q

)2.5h
.

Let ε ∈ (0, 1). q and p are chosen s.t. q ≥ p · B · ω(poly(λ)) for correctness, q ≤ (σ/λ) · 2λ1−ε
for

security due to Lemma 3.8.

Theorem 7.3 (Functionality and correctness). For all x ∈ {0, 1}`, with all but negligible probability

‖J ·A0 ·D$(x) −
(
S$(x) ·Ah + (v ⊗ I) · (M$(x) ⊗ S$(x)) ·Ah

)
‖∞ ≤ B (11)

For x ∈ {0, 1}` such that C(x) = 1, with all but negligible probability⌊
J ·A0 ·D$(x)

⌉
p

=
⌊
S$(x) ·Ah

⌉
p
.

Proof. The first statement follows Lemma 5.3. The second statement follows the setting of param-
eter q = p ·B · ω(poly(λ)), and Def. 6 which says when C(x) = 1, we have vM$(x) = 01×w.

Example 7.1. For CNFs with ` variables, w clauses, encode them using Construction 6.4. Let
v = 11×w, the resulting branching program satisfies the criteria for constructing PCPRFs.

Example 7.2. The “puncturing” functionality fx∗(x) = (x 6= x∗) can be instantiated with CNF
with a single clause of disjunctions. To puncture on a point x∗ ∈ {0, 1}`, let Ψ = (x̄1 ∨ x̄2 ∨ ...∨ x̄`).
Concretely, we can take w = 1 and let v = 1,Mi,x∗i

= 1,Mi,1−x∗i = 0,P1 = 0,P0 = 1, so that

Mx =

{
0 if x 6= x∗

1 if x = x∗
.

30

7.3 Security proof

Next we prove Construction 7.1 satisfies constraint-hiding and pseudorandomness properties (cf.
Definition 8).

To assist the proof we adapt theorems from the PRF construction of Boneh et al. [BLMR13,
Theorems 4.3, 5.1]. For our purpose we need an unrounded version of their result. The proof is
implicit in that of [BPR12, Theorem 5.2].

Lemma 7.4 (Implicit from [BPR12, BLMR13]). Let h, n, q, B ∈ N, σ, σ∗ ∈ R s.t. n = Ω(λ · log q),
σ = Ω(

√
λ · log q), χ = DZ,σ. B ≥ h · (

√
nσ)

h, σ∗ > ω(poly(λ)) ·B, q ≥ σ∗ · ω(poly(λ)).
Define a function family F =

{
fk(λ) : {0, 1}h(λ) → Zn(λ)

q(λ)

}
λ∈N

, for which the key generation algo-

rithm samples a ← U(Znq) as the private key,
{
Si,b ← Dn×n

Z,σ

}
b∈{0,1},i∈[h]

as the public parameters. The

evaluation algorithm takes input x ∈ {0, 1}h, computes

fa(x) =

(
h∏
i=1

Si,xi

)
· a + Ex = Sx · a + Ex (mod q),

where Ex ← Dn
Z,σ∗ is sampled freshly for every x.

Then assuming the hardness of LWEn,poly,q,U(Zq),DZ,σ ,DZ,σ . For d = poly(λ) different input queries
x[1], ..., x[d], the outputs fa(x[1]), ..., fa(x[d]) are computationally indistinguishable from d independent
uniformly random vectors from Znq .

Proof sketch. We first consider an expression analogous to the one in the proof of [BPR12, Lemma 5.5]

f̃a(x) :=
(
S1,x1 · . . .

(
Sh−1,xh−1

· (Sh,xh · a + Eh,xh) + Eh−1,xh−1

)
. . .+ E1,x1

)
+ Ex

= fa(x) +

h∑
i=1

i−1∏
j=1

Sj,xj

 ·Ei,xi

︸ ︷︷ ︸
=:E∗x

(mod q). (12)

where E1,x1 , ...,Eh,xh are sampled independently from χn. Therefore we have ‖E∗x‖∞ ≤ B, hence
f̃a(x) ≈s fa(x) due to Lemma 3.2 and the setting of parameters σ∗ > ω(poly(λ)) · B, Ex ← Dn

Z,σ∗
(in the proof of [BPR12, Theorem 5.2] the additional terms are added due to rounding.)

Once we have Eqn. (12) the rest of the proof follows the proof of [BPR12, Theorem 5.2], except
that we use LWEn,poly,q,U(Zq),DZ,σ ,DZ,σ instead of LWEn,poly,q,DZ,σ ,U(Zq),DZ,σ .

Theorem 7.5. Construction 7.1 is a private-constrained PRF assuming LWEn,poly,q,U(Zq),DZ,σ ,DZ,σ .

Proof. The simulator Sim(1λ) proceeds as follows:

1. Preprocessing: Sample U
$← Zn×mq ,

{
Di,b ← Dm×m

Z,σ

}
i∈[h],b∈{0,1}

.

2. Given the constrained key query, Sim outputs U, {Di,b}i∈[h],b∈{0,1} as the simulated con-
strained key.

31

3. Given an input query x with indicator dx, Sim outputs

FSim(x) =

{⌊
U ·D$(x)

⌉
p

if dx = 1

Y
$← Zn×mp if dx = 0

.

To prove the real experiment is indistinguishable from the simulated one, we introduce an
intermediate simulator Sim∗, which differs from Sim in the response to the evaluation queries.
Sim∗(1λ) proceeds as follows:

1. Preprocessing: Sample U
$← Zn×mq ,

{
Di,b ← Dm×m

Z,σ

}
i∈[h],b∈{0,1}

.

2. Given the constrained key query, Sim∗ outputs U, {Di,b}i∈[h],b∈{0,1} as the simulated con-
strained key.

3. Given an input query x with indicator dx, Sim∗ outputs

FSim∗(x) =

{⌊
U ·D$(x)

⌉
p

if dx = 1⌊
U ·D$(x) − (v ⊗ I) · (M$(x) ⊗ S$(x)) ·Ah

⌉
p

if dx = 0
.

Lemma 7.6. The real distribution is indistinguishable from the output of Sim∗ assuming LWEn,2m,q,U(Zq),DZ,σ ,DZ,σ .

Proof. We prove indistinguishability assuming semantic security of the γ⊗diag-GGH encodings
with auxiliary input {Si,b}i∈[h],b∈{0,1} ,J · A0,Ah as shown in Lemma 5.9. That is, we show if
there exists a distinguisher A for the output distributions of the real world versus Sim∗, we build
a distinguisher A′ for the experiments in Lemma 5.9.

1. Once A makes a constraint key query with branching program Γv,$,w, A′ calls for a sample
from the experiments in Lemma 5.9 with the matrices {Mi,b}i∈[h],b∈{0,1} and vector v from
Γv,$,w, get back auxiliary inputs {Si,b}i∈[h],b∈{0,1} ,J ·A0,Ah, where J = (v | 1) ⊗ In×n and
{Di,b}i∈[h],b∈{0,1} sampled either from the real (GGH15 encoding) or the Gaussian distribu-
tion. A′ then send J ·A0, {Di,b}i∈[h],b∈{0,1} as the response for the constrained key.

2. Once A makes an evaluation query x with indicator dx, A′ responses with{⌊
J ·A0 ·D$(x)

⌉
p

if dx = 1⌊
J ·A0 ·D$(x) − (v ⊗ I) · (M$(x) ⊗ S$(x)) ·Ah

⌉
p

if dx = 0
.

This is where we use the auxiliary input {Si,b}i∈[h],b∈{0,1} ,J ·A0,Ah.

First we observe that J ·A0 distributes identically to U from the output of Sim∗. ThenA′ responses
of evaluation queries is exactly the same to the responses of Sim∗, and same to the responses in
the real world up to negligible statistical error due to Theorem 7.3. In addition, if {Di,b}i∈[h],b∈{0,1}
are sampled the real distribution (GGH15 encoding), it corresponds to the distribution in the real
constrained key; if {Di,b}i∈[h],b∈{0,1} are sampled the Gaussian distribution, it corresponds to the
output of Sim∗. We conclude that the advantage of A′ is the same of the advantage of A.

32

Lemma 7.7. The output of Sim∗ is indistinguishable from the output of Sim assuming LWEn,poly,q,U(Zq),DZ,σ ,DZ,σ .

Proof. The constrained keys simulated by Sim∗ and Sim are the same. It remains to prove the PRF
evaluations produced by Sim∗ on input x such that C(x) = 0 are indistinguishable from uniformly
random. To assist the proof we pick σ∗ ∈ R+ s.t. h · (

√
nσ)

h · ω(poly(λ)) < σ∗ < q
p·ω(poly(λ)) .

For x ∈ {0, 1}` such that C(x) = 0, rearrange the output produced by Sim∗:

FSim∗(x) =
⌊
U ·D$(x) − (v ⊗ I) · (M$(x) ⊗ S$(x)) ·Ah

⌉
p

=
⌊
U ·D$(x) −

(
(v ·M$(x))⊗ S$(x))

)
·Ah

⌉
p

=

U ·D$(x) −
w∑
j=1

(
(v ·M$(x))j · S$(x) ·A

(j)

h

)
p

≈s

U ·D$(x) −
w∑
j=1

(
(v ·M$(x))j · S$(x) ·A

(j)

h

)
+ Ex

p

(13)

where (v ·M$(x))j denotes the jth coordinate of v ·M$(x); A
(j)
h denotes the ((j − 1)n + 1)th to

(jn)th rows of Ah; Ex ← Dn×m
Z,σ∗ . The setting of σ∗ guarantees the statistical closeness of the last

two distributions.
The functionality of the Type I branching program Γ guarantees that v ·M$(x) ∈ {0, 1}1×w \{

01×w}, which means at least 1 term in the summation is non-zero. Suppose the non-zero term is

j∗, we will use A
(j∗)
h as the secret to trigger Lemma 7.4.

Formally, let X0 :=
{
x[1], ..., x[d]

}
be the set of d = poly(λ) input queries such that C(x[i]) = 0,

∀i ∈ [d]. We run through w hybrid distributions. In the jth hybrid, j ∈ [w], we take out the inputs
X ∗j :=

{
x∗ | (v ·M$(x∗))j = 1, x∗ ∈ Xj−1

}
, set Xj := Xj−1 \ X ∗j . For all x∗ ∈ X ∗j , we have

FSim∗(x
∗) ≈s

⌊
Zx∗ − (S$(x∗) ·A

(j)
h −Ex∗)

⌉
p
≈c bZx∗ −Ux∗ep (14)

where Zx∗ denotes the rest of the terms from the last expression of Eqn. (13), Ux∗ ← U(Zn×mq),

independently for each x∗. The last ≈c follows Lemma 7.4 by treating A
(j)
h as the secret.

At the end of hybrid w we finish with an empty set Xw. The proof of Lemma 7.7 concludes.

The proof completes by combining the Lemmas 7.6 and 7.7.

8 Application 2: Lockable obfuscation

In this section, we construct lockable obfuscation for general Type II branching programs (cf. Def 7)
Lockable (a.k.a. compute-and-compare) obfuscation [GKW17a, WZ17] takes as inputs a pro-

gram f , a target bit-string y, a message µ, produce an obfuscated program Obf[f,y, µ] that per-
forms the following “compute-and-compare” functionality: on input x, if f(x) = y, outputs µ;
otherwise outputs ⊥. The security requirement is that of distributional virtual-black-box (VBB)
security, which guarantees that the obfuscated program does not reveal any partial information
about f,y, µ as long as they are chosen from some distribution where y has sufficient pseudo-
entropy given f .

33

We describe a basic construction of lockable obfuscation, where “basic” means we work with
a fixed message µ = 1, and VBB security holds when y is sampled uniformly random. The point
however is that we can handle a family of functions F = {f} represented by more general branch-
ing programs, as opposed to the basic constructions in [GKW17a, WZ17] where F must be recog-
nized by permutation matrix branching programs. The extensions to multi-bit message µ, target
y with reasonable pseudo-entropy, program f represented by general circuits or Turing machines
follow the analysis and transformations in [GKW17a, WZ17].

Both the construction and the proof are straight-forward adaptations of the prior constructions
in [GKW17a, WZ17], once we have established semantic security of the underlying generalized
GGH15 encodings as in Lemma 5.9.

8.1 Definition

Recall the definition from [GKW17a, WZ17].

Definition 9 (Lockable (or compute-and-compare) obfuscation). Consider a family of functions
F = {Fλ}λ∈N where Fλ =

{
f : {0, 1}`(λ) → {0, 1}ν(λ)

}
, ν(λ) = ω(log λ). A lockable obfuscator

takes a function f ∈ F and a target y ∈ {0, 1}ν , outputs an obfuscated program Obf[f,y] which
satisfies the following properties:

Functionality. Obf[f,y] takes an input x ∈ {0, 1}`, output 1 if f(x) = y; ⊥ elsewhere.

Virtual black-box security. A lockable obfuscator is said to satisfy virtual black-box security if
there is a p.p.t. simulator S such that for all f ∈ F ,

Obf[f,y] ≈c S(1λ, 1|f |)

over y $← {0, 1}ν and the randomness of the obfuscator and S.

8.2 Construction

We construct lockable obfuscation for function families Fλ =
{
fλ : {0, 1}`(λ) → {0, 1}ν(λ)

}
, where

ν(λ) ≥ 2n log q, the functionality of each output bit can be recognized by a Type II branching
program (cf. Def. 7).

For the ease of presentation we make notation conventions that are only applicable in Section 8.

For n, t, w, ν ∈ N such that t = νwn + n. For a matrix X ∈ Zt×∗, let X =

(
X
X

)
s.t. X ∈ Z(νwn)×∗,

X ∈ Zn×∗. For i ∈ [ν], j ∈ [w], let X(i) denote the ((i − 1)wn + 1)th to (iwn)th rows of X; X(i,j)

denote the ((j − 1)n+ 1)th to (jn)th rows of X(i). For arbitrary variable (say Z) not representing a
matrix (or a column vector) with νwn rows, we use the superscript Z(i) to denote objects related
to the ith output bit of the function f ∈ F . For example, the functionality of the ith output bit of f
is denoted as f (i).

Construction 8.1 (Lockable obfuscation). For a function family F =
{
f : {0, 1}` → {0, 1}ν

}
s.t. for

all f ∈ F , f (i) can be recognized by a branching program Γ from the class Gv,$,w that satisfies
Definition 7. Construct the lockable obfuscation for F as follows.

34

Parameter Gen. Gen(1λ, 1`, 1ν ,Gv,$,w) parses parameters h,w ∈ N, v ∈ {0, 1}1×w from Gv,$,w.
Sample parameters n,m, q,B ∈ N, σ ∈ R+ according to Remark 8.2.

Sample {Si,b ← χn×n}i∈[h],b∈{0,1}. Sample a column vector Ah
$← Zνwnq .

Obfuscate. Given y← {0, 1}ν , sample Ah :=
∑

i∈[ν] A
(i,(2−yi))
h .

Given f ∈ F where for i ∈ [ν], each f (i) is recognized by Γ(i) =

{
$,
{
M

(i)
k,b

}
k∈[h],b∈{0,1}

,P(i)
0 ,P(i)

1

}
.

For k ∈ [h], b ∈ {0, 1}. Define Mk,b ∈ {0, 1}(νw)×(νw) by assigning M
(i)
k,b in the ith diagonal

w-block, i.e.
Mk,b = diag(M

(1)
k,b, ...,M

(ν)
k,b).

Now compute (following Construction 5.1 under Remark 5.4)

(A0, {Di,b}i∈[h],b∈{0,1})← ggh.encode(γ⊗diag, {Mi,b}i∈[h],b∈{0,1} , {Si,b}i∈[h],b∈{0,1} ,Ah, σ)

and output Obf[f,y] := JA0, {Di,b}i∈[h],b∈{0,1} where J := (v | ... | v | −1)⊗In×n ∈ {0, 1}n×t.

Eval. Eval(Obf[f,y], x) parses the obfuscated code as JA0, {Di,b}i∈[h],b∈{0,1}, outputs

Eval(Obf[f,y], x) =

{
1 if ‖J ·A0 ·D$(x)‖∞ ≤ B
⊥ else

.

Remark 8.2 (Parameters). The parameters n,m, q,B ∈ N, σ ∈ R+ are sampled under the following
constraints for correctness and security. m = Ω(t log q), σ = Ω(

√
t log q) for trapdoor functionality

due to Lemma 3.10 and Lemma 3.11. n = Ω(λ log q), χ = DZ,2
√
λ for security due to Lemma 3.9

and Lemma 3.8. The noise threshold B is set according to Lemma 5.3

B ≥ (νw + 1) · h ·
(
mσ2 ·

√
n(νw + 1)

)h
≥ (νw + 1) · h ·

(
(νw + 1)λ log2 q

)2.5h
.

Let ε ∈ (0, 1). q is chosen s.t. q ≥ B · ω(poly(λ)) for correctness, q ≤ (σ/λ) · 2λ1−ε
for security due

to Lemma 3.8.

Remark 8.3. The construction can be generalized to handle different dimensions w, different vec-
tors v for the branching program of each output bit.

Example 8.1 (A special compute-and-compare functionality). Consider lockable obfuscation for
the following family of functions F = {f : {0, 1}` → {0, 1}ν} where each output bit f (i) of f
is either a conjunction or a disjunction of an arbitrary subset of the literals x1, . . . , x` and their
negations x̄1, . . . , x̄`. Then, each f (i) is computable by a Type II matrix branching program Γ(i) of
length ` using Construction 6.5 with w = 2,v = (0 | 1). On the other hand, if we are restricted to
permutation branching programs, then we would require length `2. Therefore, for this family of
functions, we achieve more efficient lockable obfuscation than the prior construction [WZ17].

Remark 8.4 (Relation to obfuscating conjunctions in [BR13, BVWW16, WZ17]). Brakerski, et al. [BR13,
BVWW16, WZ17] considered the problem of obfuscating conjunctions in the distributional virtual
black-box setting. This problem can be reduced to lockable obfuscation for a sub-class of the func-
tion family described in Example 8.1 where each f (i) is either 1 or xi. Observe that such f (i) can be
computed by a permutation branching program of length `, so using non-permutation matrices
does not improve over that in [WZ17].

35

Theorem 8.5 (Correctness). Construction 8.1 satisfies statistical correctness. Namely, for all f , y ∈
{0, 1}ν , x ∈ `, with all but negligible probability over the randomness of the obfuscator,

Eval(Obf[f,y], x) =

{
1 if f(x) = y

⊥ if f(x) 6= y
.

Proof. For x ∈ {0, 1}`, y ∈ {0, 1}ν ,

J ·A0 ·D$(x) =

ν∑
i=1

(
(v ⊗ In×n) · (M(i)

$(x) ⊗ S$(x)) ·A
(i)

h

)
− S$(x) ·Ah + E∗

=

ν∑
i=1

(
S$(x) ·A

(i,j(i))

h

)
− S$(x) ·Ah + E∗

= S$(x) ·
ν∑
i=1

(
A

(i,j(i))

h −A
(i,(2−yi))
h

)
+ E∗

(15)

where E∗ ∈ Zn s.t. ‖E∗‖∞ ≤ B; j(i) :=

{
1 if vM(i)

$(x) = e1

2 if vM(i)
$(x) = e2

. In Eqn. (15), the first equality follows

Lemma 5.3; the second one follows the structural criteria of Type II branching programs (cf. Def 7);
the third one is due to the construction of Ah.

If f(x) = y, then for all i ∈ [ν], we have j(i) = 2− yi. Hence

J ·A0 ·D$(x) = S$(x) · 0n + E∗ = E∗

On the other hand, if f(x) 6= y, then the set I =
{
i | i ∈ [ν] s.t. j(i) 6= 2− yi

}
is not empty.

Continue with Eqn. (15)

J ·A0 ·D$(x) = S$(x) ·
∑
i∈I

(
A

(i,j(i))
h −A

(i,(2−yi))
h

)
︸ ︷︷ ︸

=:A
(I)
h

+E∗ (16)

Since I is not empty, A(I)
h is the sum of independent uniformly random vectors over Znq , so A

(I)
h

distributes uniformly random over Znq . At the same time we have S$(x) is invertible (over Zq)
with probability 1− negl(λ) due to [WZ17, Claims 2.7, 4.11]. So S$(x) ·A

(I)
h distributes uniformly

random over Znq . Hence Pr
[
‖J ·A0 ·D$(x)‖∞ ≤ B

]
≤ B/q = negl(λ) where the probability is

taken over the randomness of the obfuscator.

8.3 Security proof

Theorem 8.6. Construction 8.1 satisfies VBB security assuming LWEn,2m,q,U(Zq),DZ,σ ,DZ,σ .

Proof. The simulator Sim simply samples U $← Zn×mq ,
{
Di,b ← Dm×m

Z,σ

}
i∈[h−1],b∈{0,1}

, Dh,0,Dh,1 ←
Dm

Z,σ, and output them as the simulated obfuscation.
To prove that the simulated distribution is indistinguishable from the real, we introduce an

intermediate simulator Sim∗ who gets f but not y. Sim∗ runs the same obfuscation procedure as

36

the real world, except that Sim∗ samples Ah
$← Znq , instead of Ah :=

∑
i∈[ν] A

(i,(2−yi))
h in the real

world. Since y distributes uniformly random over {0, 1}ν , ν ≥ 2n log q. The output of Sim∗ is
statistically close to the real distribution due to leftover hash lemma, cf. Lemma 3.1.

Finally, the output of Sim∗ and Sim are indistinguishable assuming LWEn,2m,q,U(Zq),DZ,σ ,DZ,σ due
to the semantic security of the γ⊗diag-GGH encodings with auxiliary input J ·A0, cf. Lemma 5.9.

9 New attacks to iO candidates for branching programs

We extend the applicability of cryptanalytic attacks on iO candidates. The new attack algorithm
simply computes the rank of a matrix formed by honest evaluations of the obfuscated code, then
uses the rank as the distinguishing factor. So we name the new attack as a “rank attack”.

To classify the attacks we introduce additional terminologies for matrix branching programs.

Definition 10 (Single/multi-input). A branching program is called single-input if each step of the
program is controlled by 1 bit from the input. A branching program is called dual-input or even
multi-input if each step of the branching program is controlled by 2 or more bits from the input.

The branching programs following Def. 5 are implicitly single-input due to the definition of
input mappings ι, $. By default we work with single-input BPs.

Definition 11 (Input partition). A branching program Γ is (s, L)-input-partitioned if the BP steps
can be partitioned into s consecutive intervals [h] = H1 | H2 | . . . | Hs. In each interval, there are
L input bits that control only steps in that interval and nowhere else. When (s, L) are dropped, it
indicates that s ≥ 2, L ≥ 1.

Definition 12 (Input repetition). A branching program Γ is c-input-repeating if all of its input bits
appear at least in c non-consecutive intervals of steps.

For example, a 2-input-repeating branching program is not input-partitioned. A read-once
branching program is 1-input-repeating and (s, L)-input-partitioned as long as s · L ≤ h. An
oblivious permutation branching program obtained from Barrington’s theorem over a depth-d
circuit with ` input bits is O(4d)-input-repeating.

9.1 The description of the iO candidates

We describe the obfuscation framework of Garg et al. [GGH+13b] in a way that is easy to gener-
alize to other variants in the literature. On a high level, the existing candidates first fix a plaintext
matrix branching program; then add several randomization layers, also known as “safeguards”;
finally encode the randomized matrices using the graded encoding schemes. Different candidates
make different choices in these steps. As examples, here are some of the iO candidates for branch-
ing programs interpreted in this framework.

Construction Matrix type Diagonal padding Scalar & Kilian Mmaps
[GGH+13b] Permutation Yes Yes Not specified
[BGK+14] Dual-input permutation No Yes Not specified
[GMM+16] Dual-input permutation Yes Yes GGH13
[HHSS17] Read-once, non-permutation Yes No GGH15

37

From now we only discuss single-input BPs. LetR denote the base ring (the typical choices are
R = Z and R = Z[X]/(φ(x)) for an irreducible polynomial φ). The obfuscator works as follows:

0. Convert the function into a matrix branching program. The obfuscator first converts f into a
branching program Γ =

{
$, {Mi,b ∈ {0, 1}w×w}i∈[h],b∈{0,1} ,P0,P1

}
. A typical choice of the

target sets is
P0 =

{
Iw×w

}
, P1 = {0, 1}w×w \ P0. (17)

1. Add safeguards (randomizations). The randomization step embeds every matrix Mi,b inside a
higher-dimension randomized matrix Ŝi,b, in an attempt to prevent leaking information from
illegal evaluations, at the same time randomize the plaintext matrices as much as possible.
The functionality requirement is, for x ∈ {0, 1}` we have whp{

J · Ŝ$(x) · L = 0 if f(x) = 0

J · Ŝ$(x) · L 6= 0 if f(x) = 1

where J is a row vector and L is a column vector. We will also refer to J,L as the left and
right bookends.

Here we describe a typical approach of producing Ŝi,b that is used in [GGH+13b, GGH15].

Add a dummy program. Add a “dummy branch” Γ′, which is a branching program with
the same input mapping function $ consisting of only identity matrices of the same
dimension as the ones in the functional branch. Namely M′i,b = Iw×w.

Diagonal paddings and bookends. Let t = 2w + 2n. For each i ∈ [h], b ∈ {0, 1}, choose
random matrices Ri,b,R

′
i,b ∈ Rn×n. Pick vectors rJ , r

′
J , rL, r

′
L randomly from R1×w

subject to the following condition:

for all x ∈ {0, 1}` s.t. f(x) = 0, rJM$(x)r
T
L − r′JM

′
$(x)r

′T
L = 0.

Then create “bookends” J ∈ R1×t,L ∈ Rt×1 such that

J = (rJ | 01×n | r′J | 01×n), and L = (rL | 11×n | −r′L | 11×n)T .

Kilian-style randomization and bundling scalars. Sample bundling scalars
{
αi,b, α

′
i,b

}
i∈[h],b∈{0,1}

and invertible matrices
{
Ki,K

′
i ∈ R(w+n)×(w+n)

}
i∈[h−1]

, identity matrices K0,Kh,K
′
0,K

′
h.

The scalars are chosen under the constraint that for any input bit j ∈ [`],∏
ι(i)=j

αi,0 =
∏
ι(i)=j

α′i,0 and
∏
ι(i)=j

αi,1 =
∏
ι(i)=j

α′i,1. (18)

We sometime use the notations

βj,b :=
∏
ι(i)=j

αi,b
(

=
∏
ι(i)=j

α′i,b
)
. (19)

38

Conclude the randomization step. Form the randomized matrices by

Ŝi,b := diag

(
αi,bK

−1
i−1

(
Mi,b

Ri,b

)
Ki , α

′
i,bK

′−1
i−1

(
M′i,b

R′i,b

)
K′i

)
∈ Rt×t (20)

2. Graded encoding. Apply graded encodings on the matrices Ŝi,b and the bookends J,L.

For candidates that use GGH15 encoding (e.g. [GGH15, Section 5.2], [HHSS17]), following
the notations defined in Construction 5.1, we compute

AJ := JA0 ∈ Z1×m

Di,b ← A−1
i−1(Ŝi,b ·Ai + Ei,b) ∈ Zm×m, i = 1, . . . , h− 1

Dh,b ← A−1
h−1(Ŝh,b · L ·Ah + Eh,b) ∈ Zm×1 where Ah ← U(Zq)

(21)

The obfuscated code consists of AJ , {Di,b}i∈[h],b∈{0,1}.

Remark 9.1 (merging the dummy program). In the iO candidates like [GGH+13b, GGH15, HHSS17]
that rely on a dummy program, the constructions typically use GGH15 encoding twice (with cor-
related matrices and appropriate bookends), once to encode the original program and a second to
encode the dummy program. These constructions can be captured by our framework above by
tweaking the distributions of A1, . . . ,Ah−1 (to be block diagonal matrices) and {Di,b}i∈[h],b∈{0,1}.
Our rank attack also applies there, with the analogous heuristic assumptions.

9.2 Summary of the applicability of the (old and new) attacks

We describe new attacks against candidates using GGH15 and GGH13 graded encodings, even
when all the “safeguards” (bundling scalars, Kilian, random diagonal padding) are included. The
running time of the attack is polynomial for input-partitioned BPs (in particular read-once BPs).
But for c-input-repeating BPs, the running time grows exponentially in c. This feature matches the
best known attack [CLLT17] on iO candidates that use CLT13 graded encoding [CLT13].

Attacks Type of MBP Diagonal padding S & K Graded encodings
[CGH+15] Input-partitioned Yes Yes CLT13
[CLLT17] Single-input, exp.(rep.) Yes Yes CLT13
[MSZ16] Special No Yes GGH13
[ADGM17] Single-input, exp.(rep.) No Yes GGH13
[CGH17] Permutation, input-partitioned Yes Yes GGH13 & GGH15
This work Single-input, exp.(rep.) Yes Yes GGH13 & GGH15

Summary of the applicability of the attacks to candidate BP obfuscators.

Here “exp.(rep.)” means the cost of the attack grows exponentially over the repetition times of an
input in the branching program. “S & K” stands for “Scalar & Kilian randomization”.

To clarify the status, we mention a few existing iO candidates for branching programs that we
do not know how to break. Current, even if all the safeguards (randomization mechanisms) are
included in the candidates, the only chance to prevent the attack seems to “hack” the input-step
pattern in the plaintext branching program. The existing solutions include (non exclusively):

39

1. Let the input bits repeat O(λ) many times. In this case the current analysis indicates that our
attack runs in time exponential in λ.

2. Converting the plaintext branching programs into dual-input BPs, as was used in [GMM+16].

3. Adding a “stamp function” to disturb the BP step pattern, as was used in [FRS17].

The status holds not only for the candidates using GGH15, but also for those using GGH13 and
CLT13 (at least against classical polynomial algorithms).

9.3 A distinguishing attack for iO candidates using GGH15

To break a candidate indistinguishability obfuscator for branching programs, it suffices to show
a pair of branching programs Γ(0),Γ(1) that are functionally equivalent, yet distinguishable when
they are obfuscated. We present such a distinguishing algorithm. Readers who prefer to under-
stand the attack with concrete examples can turn to the later pages and find Examples 9.1 and 9.2,
load them in the cache, then read the algorithm and the analysis with the examples in mind.

Algorithm 9.2 (rank attack). The algorithm takes as input two plaintext branching programs
Γ(0),Γ(1), the obfuscated code

(
AJ , {Di,b}i∈[h],b∈{0,1}

)
of either Γ(0) or Γ(1), proceeds as follows.

1. Pick two integers ρ ≥ T ≥ 1 according to Γ(0),Γ(1) and the security parameter.

2. Divide the ` input bits into 2 intervals [`] = X | Y such that |X |, |Y| ≥ dlog ρe.

3. For 1 ≤ i, j ≤ ρ, evaluate the obfuscated code on ρ2 different inputs of the form u(i,j) = x(i) |
y(j) ∈ {0, 1}` s.t. f(u(i,j)) = 0. The choice of the inputs depends on Γ(0),Γ(1) and we will
explain later. Let v(i,j) ∈ Z be the evaluation result on u(i,j):

v(i,j) := AJ ·D$(u(i,j)).

4. Compute the rank of matrix V = (v(i,j)) ∈ Zρ×ρ, then compare the rank with the threshold
T to decide whether the obfuscated program is Γ(0) or Γ(1).

The values of T and ρ, and also the ρ2 inputs depend on the details of Γ(0),Γ(1). We will
determine these values and inputs in the analyses. The total cost of the attack is poly(ρ).

9.3.1 Analysis of the rank attack on read-once branching programs

We analyze Algorithm 9.2 on the obfuscated read-once branching programs (which means h = `,
$ is an identity function.)

Remark on the candidate obfuscator of Halevi et al. The candidate obfuscator of Halevi et al.
[HHSS17] is the only one in the literature that explicitly works with read-once branching pro-
grams. To “keep within the realm of feasibility”, [HHSS17] removes some of the safeguards. In
particular the bundling scalars are not added in [HHSS17] since they only consider read-once
branching programs. Also Kilian-style randomization are not included since the A matrices in
GGH15 encoding already provide this kind of protection. They set P0 = {0w×w}. The dummy
branch and the bookends are set correspondingly to detect whether Mx = 0w×w. Concretely
Ŝi,b = diag (Mi,b,Ri,b, I

w×w,Ri,b), J = (11×w | 11×n | 01×w | −11×n), L = 1w+n+w+n. Since all the
entries of M are non-negative, then 11×w ·P1 · 1w = 0 over Zq means P1 = 0.

40

The subtraction attack. We note that without the bundling factors, the obfuscated code of Γ(0)

and Γ(1) might be distinguished simply from illegal evaluations even if they are read-once and
functionally equivalent. The idea is to compute Di,0 −Di,1 which gives the encoding of

Ŝi,0 − Ŝi,1 = diag
(
Mi,0 −Mi,1,Ri,0 −Ri,1,0

w×w,Ri,0 −Ri,1

)
.

This may leak extra information beyond the honest evaluations. As a concrete example, consider
the following pairs of 1-step branching programs.

Γ(0) =

{
M1,0 =

(
1 0
0 1

)
,M1,1 =

(
1 0
0 1

)}
,Γ(1) =

{
M1,0 =

(
1 0
0 0

)
,M1,1 =

(
1 0
0 1

)}
Both programs compute the 1-bit functionality f(x) = 1 so they are functionally equivalent. But
the distinguisher can simply compute D1,0 −D1,1 and check if it encodes an all-0 matrix or not.

GGH15 obfuscator for read-once branching programs with all the safeguards. Instead of [HHSS17]
we analyze a variant of the candidate from [GGH15, Section 5.2] where we apply all the known
safeguard mechanisms. For the ease of presentation we make the following specification on the
type of read-once branching programs we are working with.

Definition 13. Let e1 ∈ {0, 1}1×w denotes the unit vector with the 1st coordinate being 1, the rest
being 0. We require a read-once branching program Γ =

{
{Mi,b ∈ {0, 1}w×w}i∈[h],b∈{0,1} ,P0,P1

}
to satisfy e1 · P0 · eT1 = {1}, e1 · P1 · eT1 = {0}.

Construction 9.3 (iO candidate for read-once BPs with all the safeguards). Given a BP Γ that satis-
fies Def. 13. Let t = 2(wn+n). Sample

{
Si,b,Ri,b,R

′
i,b ∈ Zn×n

}
i∈[h],b∈{0,1}

,
{
Ki,K

−1
i ,K′i,K

′−1
i ∈ Zt×t

}
i∈[h−1]

,

K0 = Kh = K′0 = K′h = It/2×t/2, rJ , rL ∈ Z1×w, all randomly with small norm. Set J = (e1 ⊗ rJ |
01×n | −e1 ⊗ rJ | 01×n), L = (e1 ⊗ rL | 11×n | e1 ⊗ rL | 11×n)T .

Compute
{
Ŝi,b ∈ Zt×t

}
i∈[h],b∈{0,1}

as

Ŝi,b := diag

(
K−1
i−1

(
Mi,b ⊗ Si,b

Ri,b

)
Ki , K′

−1
i−1

(
Iw×w ⊗ Si,b

R′i,b

)
K′i

)
. (22)

The obfuscated code is the encoding of
(
J,
{
Ŝi,b

}
i∈[h],b∈{0,1}

,L

)
produced same as Eqn. (21).

The difference of Eqn. (22) from Eqn. (20) is that the bundling factors are non-commutative. It
does not break correctness since we are working with read-once branching programs.

Analysis of the rank attack. We show Algorithm 9.2 breaks Construction 9.3 (as well as the con-
struction in [HHSS17]). Most of the analysis will be explained based on elementary observations
that are sufficient for the attack. In the end we will extract the essential ingredients that are necessary
in Remark 9.6.

In the analysis we make a few heuristic assumptions. All the heuristics are about the linear
independence of vectors from products of Gaussians. The assumptions have been experimentally
verified. Also, similar assumptions were used in [CLLT16, CGH17].

41

Claim 9.4 (structure of V). The matrix V ∈ Zρ×ρ obtained in Algorithm 9.2 can be factorized into

V := (v(i,j)) =
(
X1 | X2

)︸ ︷︷ ︸
=:X∈Zρ×(m+t)

·
(
Y1

Y2

)
︸ ︷︷ ︸

=:Y∈Z(m+t)×ρ

(23)

where X1 ∈ Zρ×t, X2 ∈ Zρ×m, Y1 ∈ Zt×ρ, Y2 ∈ Zm×ρ. With overwhelming probability, X2,
Y are full-rank over Q (i.e. their ranks are independent of the underlying branching program
Γ); the intersection of the column spans of X1 and X2 is {0}. In particular, when ρ = t + m,
with overwhelming probability, rank(X1) = rank(V) −m. Both statements are based on heuristic
assumptions.

Justification of Claim 9.4. The analysis of Claim 9.4 follows the similar observations from [Hal15,
CLLT16, CGH17]. Note that even though the matrix X2 depends on the underlying

{
Ŝi,b

}
i∈[h],b∈{0,1}

and the underlying branching program, we will argue heuristically that the rank of X2 does not;
in fact, the rank of X2 is m. The same applies also to Y1 and Y2.

For concreteness we recap some of the details. Let the input partition be [`] = [1, ν] | [ν + 1, `]
for a fixed integer ν. The honest evaluation of the obfuscated code on input u(i,j) = x(i) | y(j) ∈
{0, 1}ν | {0, 1}`−ν gives via (10)6:

AJ ·Du(i,j) =
(
J · Ŝx(i) | J ·Hx(i)

)
·
(
Ŝy(j) · LA` + Hy(j)

Dy(j)

)
(mod q), (24)

where the subscripts do not strictly follow the convention of subset product. Instead, we define
Ŝx(i) :=

∏ν
k=1

(
Ŝ
k,x

(i)
k

)
, Ŝy(j) :=

∏`−ν
k=1

(
Ŝ
k+ν,y

(j)
k

)
, (the subscripts are not directly interpreted as

bit-strings, e.g. even when y(j) = x(i) = 000, Ŝx(i) and Ŝy(j) denote different objects; same for

below,) Dy(j) :=
∏`−ν
k=1

(
D
k+ν,y

(j)
k

)
, the terms Hx(i) ∈ Zt×m, Hy(j) ∈ Zt×1 are defined as7

Hx(i) :=

ν∑
k2=1

(
k2−1∏
k1=1

Ŝ
k1,x

(i)
k1

·E
k2,x

(i)
k2

·
ν∏

k3=k2+1

D
k3,x

(i)
k3

)
, (25)

Hy(j) :=

`−ν∑
k2=1

(
k2−1∏
k1=1

Ŝ
k1+ν,y

(j)
k1

·E
k2+ν,y

(j)
k2

·
`−ν∏

k3=k2+1

D
k3+ν,y

(j)
k3

)
. (26)

6For example, when ` = 4, u = x | y = 00 | 00, we have

AJ ·Du = J(Ŝ1,0Ŝ2,0Ŝ3,0Ŝ4,0LA4 + Ŝ1,0Ŝ2,0Ŝ3,0E4,0

+ Ŝ1,0Ŝ2,0E3,0D4,0 + Ŝ1,0E2,0D3,0D4,0 + E1,0D2,0D3,0D4,0)

= (JŜ1,0Ŝ2,0 | J(Ŝ1,0E2,0 + E1,0D2,0)) ·

(
Ŝ3,0Ŝ4,0LA4 + Ŝ3,0E4,0 + E3,0D4,0

D3,0D4,0

)
(mod q).

7 For example, when ` = 6, u = x | y = 000 | 000, we have

Hx = Ŝ1,0Ŝ2,0E3,0 + Ŝ1,0E2,0D3,0 + E1,0D2,0D3,0,Hy = Ŝ4,0Ŝ5,0E6,0 + Ŝ4,0E5,0D6,0 + E4,0D5,0D6,0.

42

Recall that we assume for all i, j ∈ [ρ], f(u(i,j)) = 0, so J · Ŝu(i,j) ·L = 0 holds by the correctness
of the construction. Hence we have

v(i,j) =
(
J · Ŝx(i) | J ·Hx(i)

)
·
(
Hy(j)

Dy(j)

)
∈ Z. (27)

Arrange v(i,j) into a matrix gives

V :=

v(1,1) ... v(1,ρ)

...

v(ρ,1) ... v(ρ,ρ)

 =

J · Ŝx(1) | J ·Hx(1)

...

J · Ŝx(ρ) | J ·Hx(ρ)

︸ ︷︷ ︸

:=
(
X1 | X2

)
:=X∈Zρ×(m+t)

·
(
Hy(1)

Dy(1)

...
Hy(ρ)

Dy(ρ)

)
︸ ︷︷ ︸
:=

Y1

Y2

:=Y∈Z(m+t)×ρ

(28)

We first verify that X2 and Y are likely to be full-rank over Q.

• For Y2, each column in Y2 is a subset product of D matrices (sampled from discrete-Gaussian)
selected by a different input, each product contains at least a random column factor, which
splits across the rows. This justifies the linear independence across the rows within Y2.

• For Y1, we look at the Fy(j) := E
ν+1,y

(j)
1

·
∏`−ν
k=2 Dν+k,y

(j)
k

term in Hy(j) in Eqn. (26).If we write

Y1 = G + F where each column of F is Fy(j) , then the rows in F are likely to be linearly
independent using the similar observation for Y2. The G component (which depends on the
Ŝi,b’s), though not completely independent from F, is not likely to “cancel F out”.

• For Y as a whole, the rows in Y1, Y2 are likely to be linearly independent over Q, since
the D matrices in Y2 are sampled from Gaussian with a fixed center from the terms in Y1.
For this reason Y1 and Y2 are inherently linearly dependent over Zq, as was mentioned in
[Hal15] to emphasize that the attack must use equations hold over Z.

• For the columns of X2, we look at the E
1,x

(i)
1

·
∏ν
k=2 Dk,x

(i)
k

term in Hx(i) in Eqn. (25), then use

the similar observations from Y1 to argue that X2 is full-rank.

So when ρ = t+m, with overwhelming probability, Y is full-rank, i.e. rank(Y) = m+t; rank(X2) =
m. In particular the ranks of X2 and Y are system parameters and independent of the underlying
matrix branching program Γ.

In addition, we claim that the intersection of the column spans of X1 and X2 is {0}. The easiest
way to justify is again to use the E

1,x
(i)
1

·
∏ν
k=2 Dk,x

(i)
k

term in Eqn. (25) — the intersection of the

column span of X1 and the column span of this term is likely to be {0}.
To conclude, under all the heuristics about linear independence, rank(X1) = rank(X) − m =

rank(V)−m. Note that rank(X1) does depend on Γ and we will analyze it next.

Claim 9.5. There exists a pair of read-once branching programs that are functionally equivalent,
yet Construction 9.3 produces X1 with different ranks, where X1 is defined in Claim 9.4.

43

Justification of Claim 9.5. First we examine the structure of X1:

X1 =

J · Ŝx(1)

...

J · Ŝx(ρ)

 =

J · diag
(
Mx(1) ⊗ Sx(1) ,Rx(1) , Iw×w ⊗ Sx(1) ,R′x(1)

)
...

J · diag
(
Mx(ρ) ⊗ Sx(ρ) ,Rx(ρ) , Iw×w ⊗ Sx(ρ) ,R′x(ρ)

)
 · diag (Kν ,K

′
ν)

=

(e1Mx(1))⊗ (rJSx(1)) | 01×n | −e1 ⊗ (rJSx(1)) | 01×n

...
(e1Mx(ρ))⊗ (rJSx(ρ)) | 01×n | −e1 ⊗ (rJSx(ρ)) | 01×n

 · diag (Kν ,K
′
ν)

(29)

Since diag (Kν ,K
′
ν) is always non-singular, rearranging the terms in Eqn. (29) gives

rank(X1) = rank

(e1Mx(1) | −e1)⊗ (rJSx(1))
...

(e1Mx(ρ) | −e1)⊗ (rJSx(ρ))

︸ ︷︷ ︸

=:C∈Z(2wn)×ρ

(30)

Take a closer look at the C matrix in Eqn. (30). First we observe that the rows rJSx(1) through
rJSx(ρ) are likely to be linearly independent (for the similar reasons as X2, Y1, Y2). So we can
think of C as being partitioned into (2w) × ρ blocks, each block contains an n-dimensional row
vector, which is either 0 or random (across rows), depending on the entries ine1Mx(1) | −e1

...
e1Mx(ρ) | −e1

 =: B ∈ {0, 1}(2w)×ρ (31)

For example, if C =

(
rJSx(1) 0 −rJSx(1) 0

0 0 −rJSx(2) 0

)
, then B =

(
1 0 −1 0
0 0 −1 0

)
.

Now we choose two branching programs Γ(0), Γ(1) so that the resulting B matrices, denoted
as B(0) and B(1), have different ranks; therefore the corresponding C(0), C(1) (hence X

(0)
1 , X(1)

1)
matrices have different ranks.

Example 9.1. Define the target sets asP0 = {Z ∈ {0, 1}w×w s.t. Z1,1 = 1},P1 = {Z ∈ {0, 1}w×w s.t. Z1,1 = 0}.
Γ(0) simply sets all the matrices to be identity, i.e.

Γ(0) =

{{
M

(0)
i,b = Iw×w

}
i∈[`],b∈{0,1}

,P0,P1

}
;

Γ(1) is almost the same with Γ(0) except that M(1)
1,1 =

(
1 11×(w−1)

0(w−1)×1 I(w−1)×(w−1)

)
, i.e.

Γ(1) =

{
M

(1)
1,0 = Iw×w,M

(1)
1,1,
{
M

(1)
i,b = Iw×w

}
i∈[2,`],b∈{0,1}

,P0,P1

}
.

Following the specification from Def. 13, both Γ(0), Γ(1) represent all-0 functionality.

The ρ2 inputs are chosen as follows. For the prefixes
{
x(i)
}
i∈[ρ]

, let x(1) = 1 | 0ν−1. Let the rest

be arbitrary from 0 | {0, 1}ν−1. The suffixes
{
y(j)
}
j∈[ρ]

are arbitrary from {0, 1}`−ν .

44

Here is a comparison of the resulting B matrices

B(0) =

e1M

(0)

x(1) | −e1
e1M

(0)

x(2) | −e1
...

e1M
(0)

x(ρ) | −e1

 =

e1 | −e1
e1 | −e1

...
e1 | −e1

 , B(1) =

e1M

(1)

x(1) | −e1
e1M

(1)

x(2) | −e1
...

e1M
(1)

x(ρ) | −e1

 =

11×w | −e1
e1 | −e1
... ...
e1 | −e1

 (32)

So rank(B(0)) = 1, rank(B(1)) = 2. Therefore w.h.p. (over the randomness of r and the S matrices)
rank(C(0)) = n, rank(C(1)) = n+ 1. Hence rank(X

(0)
1) = n, rank(X

(1)
1) = n+ 1.

Combining Claim 9.4 and Claim 9.5, we conclude that there exists two functionally equivalent
BPs Γ(0), Γ(1) whose obfuscated forms (based on Construction 9.3) are distinguishable by Algo-
rithm 9.2 by setting ρ = m + t = m + 2(nw + n), T = m + n. Concretely, if rank(V) ≤ T , the
distinguisher chooses Γ(0); if rank(V) > T , the distinguisher chooses Γ(1). The success proba-
bility is close to 1 under the heuristics about linear independence. The cost of Algorithm 9.2 is
polynomial in ρ, hence polynomial in the input length ` and the security parameter.

Remark 9.6 (Weakened conditions for the success of the attack). The threshold rank T may be
different, depending on the plaintext branching programs.

The conditions of the matrices in of Eqn. (28) can be weakened by requiring

• The columns of X1 do not fall into the column span of X2;

• There are sufficiently many rows in Y1 that do not fall into the row span of Y2;

instead of requiring the entire X2 and Y to be full-rank. Under the weakened requirements, the
rank of X1 can still be extracted, since it is multiplied with an (at least partially) random matrix
Y1, plus the fact that neither X1 nor Y1 fall into the span of X2 and Y2. Indeed there might be
ways to modify the distributions of the random matrices so that X2 and Y are not full-rank, but
we do not see how to bypass the weakened conditions without trivially breaking the candidate.

Remark 9.7 (Applicability of the analysis). The analysis directly applies to break general (2, log(ρ))-
input-partitioned branching programs, not only read-once BPs. We need at least log(ρ) free bits in
each interval to produce ρ differing prefixes and suffixes.

9.3.2 Analysis of the attack on general input-repeating branching programs

For general branching programs that are c-input-repeating, Algorithm 9.2 works as-it-is, except
that the dimension ρ of the matrix V grows exponentially in c. We refer to this attack as “advanced
zeroizing attack”, meaning that the algorithm still works on evaluations of zeros, exploits the rank
of some matrix V, but uses more complicated analyses.

Additional background on tensor product. We recall some equations from [CLLT17, ADGM17]
that are useful for switching the order of matrix productions.

For a matrix A =
(
a1 | ... | am

)
∈ Rn×m, let vec(A) =

(
aT1 | ... | aTm

)T ∈ R(nm)×1 denote the
vectorization of A by stacking the columns one over another. For matrices B,C,D,E,F with
proper dimensions, we have

vec(B ·C ·D) =
(
DT ⊗B

)
· vec(C) (33)

45

Let G be a column vector, the dimension of E be d1 × d2, the following equation holds:

vec(B ·C ·D ·E · F ·G) =
(
vec(E)T ⊗B

)
·
(
F⊗ Id1×d1 ⊗C

)
· vec

(
GT ⊗D

)
(34)

The analysis for 2-input-repeating branching programs. We start by analyzing Algorithm 9.2
on 2-input-repeating branching programs. For simplicity we assume h = 2`, the input bit se-
quence is “1, 2, ..., `, 1, 2, ..., `”, i.e. $(x) = x | x. The obfuscation scheme from Section 9.1 uses
commutative bundling scalars, but we will not take advantage of the commutativity. The original
scheme from [GGH15, Section 5.2] uses R = Z[X]/(φ(X)) as the base ring. Here we assume the
base ring is Z and again we will not take advantage of the discrepancy.

The structure of V. Recall from Algorithm 9.2 that the ` input bits are partitioned into two
intervals [`] = X | Y = [1, ν] | [ν + 1, `], let the corresponding BP steps be partitioned into 4
intervals [h] = X1 | Y1 | X2 | Y2 = [1, ν] | [ν + 1, `] | [` + 1, ` + ν] | [` + ν + 1, 2`], where the steps
in X1,X2 are controlled by input bits in X , the steps in Y1,Y2 are controlled by input bits in Y .
Denote $(u(i,j)) = $(x(i) | y(j)) =: x

(i)
1 | y

(j)
1 | x(i)

2 | y
(j)
2 .

Express v(i,j) ∈ Z as the evaluation result on input u(i,j) = x(i) | y(j) s.t. f(u(i,j)) = 0:

AJ ·D$(u(i,j))

= AJ ·Dx
(i)
1
·D

y
(j)
1
·D

x
(i)
2
·D

y
(j)
2

= JŜ
x
(i)
1
Ŝ
y
(j)
1
Ŝ
x
(i)
2
H
y
(j)
2

+ JŜ
x
(i)
1
Ŝ
y
(j)
1
H
x
(i)
2
D
y
(j)
2

+ JŜ
x
(i)
1
H
y
(j)
1
D
x
(i)
2
D
y
(j)
2

+ JH
x
(i)
1
D
y
(j)
1
D
x
(i)
2
D
y
(j)
2

=
(
vec(Ŝ

x
(i)
2

)T ⊗
(
JŜ

x
(i)
1

))
· vec

(
H
y
(j)
2

T ⊗ Ŝ
y
(j)
1

)
+
(
vec(H

x
(i)
2

)T ⊗
(
JŜ

x
(i)
1

))
· vec

(
D
y
(j)
2

T ⊗ Ŝ
y
(j)
1

)
+
(
vec(D

x
(i)
2

)T ⊗
(
JŜ

x
(i)
1

))
· vec

(
D
y
(j)
2

T ⊗H
y
(j)
1

)
+
(
vec(D

x
(i)
2

)T ⊗
(
JH

x
(i)
1

))
· vec

(
D
y
(j)
2

T ⊗D
y
(j)
1

)
(35)

where the meanings of subscripts of Ŝ,D,H are defined analogously as was in Eqn. (24) in the
read-once setting. The third equality follows Formula (34) by setting the C, F components in
Formula (34) to be identity matrices with the correct dimensions.

Expressing Eqn. (35) as the inner product of two vectors (like what was done in Eqn. (27)) gives(
vec(Ŝ

x
(i)
2

)T ⊗
(
JŜ

x
(i)
1

)
| vec(H

x
(i)
2

)T ⊗
(
JŜ

x
(i)
1

)
| vec(D

x
(i)
2

)T ⊗
(
JŜ

x
(i)
1

)
| vec(D

x
(i)
2

)T ⊗
(
JH

x
(i)
1

))
︸ ︷︷ ︸

:=x(i)

·

vec
(
H
y
(j)
2

T ⊗ Ŝ
y
(j)
1

)
vec
(
D
y
(j)
2

T ⊗ Ŝ
y
(j)
1

)
vec
(
D
y
(j)
2

T ⊗H
y
(j)
1

)
vec
(
D
y
(j)
2

T ⊗D
y
(j)
1

)

︸ ︷︷ ︸

:=y(j)

(36)

The dimensions of the 4 sectors in the x(i) vector are, from left to right, t3, t2 ·m, t ·m2, m3. So as
for y(j) from top to bottom. Let ρ ≥ t3 + t2 ·m+ t ·m2 +m3.

46

The matrix V = (v(i,j)) can be expressed as

V :=

v(1,1) ... v(1,ρ)

...
v(ρ,1) ... v(ρ,ρ)

 =

 ...
x(i)

...

 ·
...

∣∣∣∣∣∣ y(j)

∣∣∣∣∣∣ ...
 =:

X1

∣∣∣∣∣∣X2

∣∣∣∣∣∣X3

∣∣∣∣∣∣X4

 ·

Y1

Y2

Y3

Y4

 (37)

where X1 =

 ...

vec(Ŝ
x

(i)
2

)T ⊗
(
JŜ

x
(i)
1

)
...

 ∈ Zρ×(t3), Y1 =
(
...
∣∣∣ vec(H

y
(j)
2

T ⊗ Ŝ
y

(j)
1

) ∣∣∣ ...) ∈ Z(t3)×ρ;

analogously for X2,X3,X4,Y2,Y3,Y4.

Intermezzo. We can of course continue analyzing the ranks of every piece of X1, ...,X4, Y1, ...,Y4,
and their dependency on the underlying branching program Γ, like what we did in the read-once
setting; but it will constitute a significant blowup in the length of this article.

Instead, we follow the analysis strategy mentioned in Remark 9.6. First observe that (w.h.p.
under the linear independence heuristics)

• The ranks of Y3, X4, Y4 are independent of the branching program Γ;

• The ranks of X3, X1, Y1, X2, Y2 depend on the branching program Γ.

So we claim it suffices to dig into the X3 ·Y3 component. Informally, the goal is to show (1) the
“rank-gap” can be produced at X3; (2) the rank-gap will not be vanished in the other components
so that it is detectable from V.

Claim 9.8. There exists a pair of functionally equivalent 2-input-repeating BPs Γ(0), Γ(1) such that
the following conditions hold with high probability,

1. Let ∆ := rank(X
(1)
3)− rank(X

(0)
3), then ∆ > 0;

2. rank(V(1))− rank(V(0)) ≥ ∆.

where X
(b)
3 , V(b)

3 are defined in Eqn. (37) obtained from the obfuscation of Γ(b) using the construc-
tion in Section 9.1.

Similar to the read-once setting, all the heuristics are about linear independence.

Justification of Claim 9.8.1. We start from analyzing X3, Y3. Recall that

X3 =

 ...

vec(D
x

(i)
2

)T ⊗
(
JŜ

x
(i)
1

)
...

 ∈ Zρ×(t·m2), Y3 =
(
...
∣∣∣ vec(D

y
(j)
2

T ⊗H
y

(j)
1

) ∣∣∣ ...) ∈ Z(t·m2)×ρ;

(38)
We first claim Y3 is full-rank w.h.p., since the jth column of Y3 is the vectorization of DT

y
(j)
2

⊗
H
y

(j)
1

, which by itself is a tensor product of two random’ish matrices. The columns are likely to be
linearly independent due to the different D

y
(j)
2

and H
y

(j)
1

across different js.

47

The rank of X3 though is Γ-dependent.

X3 =

vec(D
x
(1)
2

)T ⊗
(
J · diag

(
αx(1)Mx(1) , αx(1)Rx(1) , α′x(1)I

w×w, α′
x(1)R

′
x(1)

)
· diag (Kν ,K

′
ν)
)

...
vec(D

x
(ρ)
2

)T ⊗
(
J · diag

(
αx(ρ)Mx(ρ) , αx(ρ)Rx(ρ) , α′x(ρ)I

w×w, α′
x(ρ)R

′
x(ρ)

)
· diag (Kν ,K

′
ν)
)

=

vec(D
x
(1)
2

)T ⊗
(
αx(1)rJMx(1) | 01×n | α′

x(1)r
′
J | 01×n)

...
vec(D

x
(ρ)
2

)T ⊗
(
αx(ρ)rJMx(ρ) | 01×n | α′

x(ρ)r
′
J | 01×n)

 · (Im2×m2

⊗ diag (Kν ,K
′
ν)
) (39)

Since
(
Im

2×m2 ⊗ diag (Kν ,K
′
ν)
)

is non-singular, we get

rank(X3) = rank

vec(D

x
(1)
2

)T ⊗
(
αx(1)rJMx(1) | α′x(1)r

′
J

)
...

vec(D
x

(ρ)
2

)T ⊗
(
αx(ρ)rJMx(ρ) | α′x(ρ)r

′
J

)

︸ ︷︷ ︸
=:C∈Zρ×(m2·2w)

(40)

The analysis of the C matrix in Eqn. (40) bears similarity to the analysis of Eqn. (30). First we

observe that the rows vec
(
D
x

(1)
2

)T
through vec

(
D
x

(ρ)
2

)T
are random’ish and likely to be linearly

independent. We therefore focus on the Γ-sensitive component which is

B :=

αx(1)rJMx(1) | α′x(1)r
′
J

...
αx(ρ)rJMx(ρ) | α′x(ρ)r

′
J

 ∈ Z(2w)×ρ (41)

Now we choose two branching programs Γ(0), Γ(1) so that the resulting B matrices, denoted
as B(0) and B(1), have different ranks.

Example 9.2. Let h = 2`. Given the target sets P0,P1 specified in Eqn. (17), Γ(0) simply sets all the
matrices to be identity, i.e.

Γ(0) =

{{
M

(0)
i,b = Iw×w

}
i∈[h],b∈{0,1}

,P0,P1

}
;

Let N ∈ {0, 1}w×w be an non-identity permutation matrix. Γ(1) differs in two matrices from Γ(0):

Γ(1) =

{
M

(1)
1,1 = N,M

(1)
`+1,1 = N−1,

{
M

(1)
i,b = Iw×w

}
i∈[1,h],b∈{0,1},(i,b)/∈{(1,1),(`+1,1)}

,P0,P1

}
.

Both Γ(0), Γ(1) represent all-0 functionality.

The ρ2 inputs are chosen as follows. For the prefixes
{
x(i)
}
i∈[ρ]

, let x(1) = 1 | 0ν−1. Let the rest

be arbitrary from 0 | {0, 1}ν−1. The suffixes
{
y(j)
}
j∈[ρ]

are arbitrary from {0, 1}`−ν . So that for Γ(0)

the resulting M
(0)

x(1) = ... = M
(0)

x(ρ) = I; whereas for Γ(1), M(1)

x(1) = N, M(1)

x(2) = ... = M
(1)

x(ρ) = I.

48

Here is a comparison of the resulting B matrices

B(0) =

αx(1)rJ | α′x(1)r

′
J

αx(2)rJ | α′x(2)r
′
J

...
αx(ρ)rJ | α′x(ρ)r

′
J

 , B(1) =

αx(1)rJN | α′

x(1)r
′
J

αx(2)rJ | α′
x(2)r

′
J

... ...
αx(ρ)rJ | α′

x(ρ)r
′
J

 (42)

So rank(B(0)) = 2, rank(B(1)) = 3. Therefore w.h.p. (over the randomness in D
x

(1)
2

... D
x

(ρ)
2

)

rank(X
(0)
1) = rank(C(0)) = 2 ·m2, rank(X

(1)
1) = rank(C(1)) = 2 ·m2 + 1. Hence ∆ = 1.

Justification of Claim 9.8.2. For the branching programs Γ(0) and Γ(1) we choose, the matrices
controlled by input bits in Y are the same, so the properties of the resulting

{
Y

(0)
k

}
k∈[4]

are same

to
{
Y

(1)
k

}
k∈[4]

(in other words the Y components do not cause the rank difference.) For the X1

and X2 components, following the similar analysis from X3, the ranks of X(1)
1 and X

(1)
2 are larger

or equal to the ranks of X(0)
1 and X

(0)
2 .

Our experiment shows that when ρ ≥ t3 + t2 ·m+ t ·m2 +m3, rank(V(1))− rank(V(0)) = 1.

Extension to c-input-repeating BPs. For single input oblivious branching programs with c-
input-repetitions (i.e. h = c · `), the rank method still applies when c > 2. However, ρ (the dimen-
sion of V) grows exponentially with c when converting the evaluation formula into 2-partition by
recursively applying Formula (34). So the running time of the attack is poly(m, t)c = poly(λ, `)c

where λ is the security parameter, ` is the input length.

10 Witness Encryption Candidate

In this section, we present a witness encryption candidate for all of NP [GGSW13]. As mentioned
in the introduction, our candidate relies on the observation from [GLW14] that to build witness
encryption for general NP relations, it suffices to build witness encryption for CNF formulas, and
that we can represent CNF formulas using read-once Type I branching programs.

10.1 Definition

We recall the definition of witness encryption from [GGSW13].

Definition 14 (Witness encryption [GGSW13]). A witness encryption scheme for an NP language
L (with corresponding witness relation R) consists of the following two p.p.t. algorithms:

Encryption. Enc(1λ,Ψ, µ) takes as input a security parameter 1λ, an instance Ψ ∈ {0, 1}poly(λ), and
a message µ ∈ {0, 1}, outputs a ciphertext ct.

Decryption. Dec(ct, x) takes as input a ciphertext ct and string x ∈ {0, 1}poly(λ), outputs a message
µ or the symbol ⊥.

These algorithms satisfy

49

Correctness. For any security parameter λ, for any µ ∈ {0, 1}, and for any Ψ ∈ L such thatR(Ψ, x)
holds, we have that

Pr[Dec(Enc(1λ,Ψ, µ), x) = µ] ≥ 1− negl(λ).

Soundness. For any p.p.t. adversary A, there exists a negligible function negl(·) such that for any
Ψ /∈ L, we have∣∣∣Pr[A(Enc(1λ,Ψ, 0)) = 1]− Pr[A(Enc(1λ,Ψ, 1)) = 1]

∣∣∣ ≤ negl(λ).

10.2 Construction

To build a witness encryption scheme for all of NP, it suffices to build one for the class of CNF
formulas. We present a candidate for witness encryption based on the read-once Type I branching
program for CNFs.

Construction 10.1 (Candidate witness encryption). We construct a candidate witness encryption
scheme for the class of CNF formula as follows:

Encryption. Enc(1λ,Ψ, µ) proceeds as follows:

• Apply Construction 6.4 on the CNF Ψ (of w clauses with h literals) to obtain a read-once
matrix branching program {Mi,b ∈ {0, 1}w×w}i∈[h],b∈{0,1} for the CNF.

• Append µ to the bottom-right of {Mi,b}i∈[h],b∈{0,1} to obtain{
M′i,b =

(
Mi,b

µ

)
∈ {0, 1}(w+1)×(w+1)

}
i∈[h],b∈{0,1}

such that for all x ∈ {0, 1}h,

M′x =

(
0w×w

µ

)
if Ψ(x) = 1(

6= 0w×w

µ

)
if Ψ(x) = 0

.

• Set the parameters n,m, q,B ∈ N, σ ∈ R+ s.t. t = (w + 1)n, and the rest according to
Remark 10.2. Sample

{
Si,b ← Dn×n

Z,σ

}
i∈[h],b∈{0,1}

, Ah ← U(Zt×nq) and compute

(A0, {Di,b}i∈[h],b∈{0,1})← ggh.encode(γ⊗,
{
M′i,b

}
i∈[h],b∈{0,1} , {Si,b}i∈[h],b∈{0,1} ,Ah, σ)

and output
ct =

(
JA0, {Di,b}i∈[h],b∈{0,1}

)
where J = 11×(w+1) ⊗ In×n.

50

Decryption. Dec(ct,x) takes as input a ciphertext ct and string x ∈ {0, 1}h.

• If ct cannot be parsed as
(
JA0, {Di,b}i∈[h],b∈{0,1}

)
or Ψ(x) = 0, outputs ⊥.

• Else, outputs 0 if ‖JA0 ·Dx‖∞ ≤ B, and 1 otherwise.

Remark 10.2 (Parameters). The parameters n,m, q,B ∈ N, σ ∈ R+ are sampled under the follow-
ing constraints for correctness and a hope of security (i.e. not for security reductions but matching
the existing safety mechanisms). m = Ω(t log q), σ = Ω(

√
t log q) for trapdoor functionality due to

Lemma 3.10 and Lemma 3.11. n = Ω(λ log q), χ = DZ,2
√
λ due to Lemma 3.9 and Lemma 3.8. The

noise threshold B is set according to Lemma 5.3

B ≥ (w + 1) · h ·
(
mσ2 ·

√
n(w + 1)

)h
≥ (w + 1) · h ·

(
(w + 1)λ log2 q

)2.5h
.

Let ε ∈ (0, 1). q is chosen s.t. q ≥ B ·ω(poly(λ)) for correctness, q ≤ (σ/λ) ·2λ1−ε
due to Lemma 3.8.

10.3 Relation to existing attacks

First, we note that using γ⊗-GGH15 encodings is necessary to prevent the subtraction attack in
Section 9.3.1. All existing attack strategies on γ⊗-GGH15 encodings as used in our candidate
require encodings of zeroes, which are not readily available in the witness encryption setting.

Remark 10.3 (candidate with γdiag). A natural question is whether there is a candidate witness
encryption scheme based on the γdiag-GGH15 encodings. Namely, each Ŝi,b possibly looks like(
M′i,b

Si,b

)
where the CNF and message are potentially represented by

{
M′i,b

}
i∈[h],b∈{0,1}

. We

do not know of such a candidate; naively substituting γdiag-GGH encodings into the above candi-
date yields a witness encryption scheme that is susceptible to the subtraction attack.

11 Indistinguishability Obfuscation (iO) Candidate

In this section, we present an iO candidate for general Type I branching programs (cf. Def 6).
The basic idea is to start with our witness encryption candidate, that is, we apply the γ⊗diag-

GGH encodings to the matrix branching program representing our input circuit f . To prevent
the advanced zeroizing + rank attack (cf. Section 9.3), we will pad the branching program with
identity matrices so that it is (λ + 1)-input-repeating. To prevent mixed-input attacks, we add
“bundling matrices” whose subset product is 0 iff the inputs are well-formed.

11.1 Construction

We start with a Type I branching program Γ = {Mi,b}i∈[h],b∈{0,1}. We assume that it reads the bits
in order 1, 2, . . . , `, 1, 2, . . . , ` and so on. WLOG, we may assume that Γ is (λ + 1)-input-repeating
by padding with identity matrices on the right.

Construction 11.1 (candidate iO). We construct a candidate iO scheme for the class of (λ + 1)-
repeating Type I branching programs as follows:

51

Obfuscation On input {Mi,b ∈ {0, 1}w×w}i∈[h],b∈{0,1} where h = (λ+ 1)`,

• Sample bundling matrices {Ri,b}i∈[h],b∈{0,1} as follows. Each Ri,b ∈ Z2n`×2n` will be of

the form diag(R
(1)
i,b , . . . ,R

(`)
i,b) where

R
(k)
i,b =

I2n×2n if ι(i) 6= k(
R̃

(k)
i,b

In×n

)
, R̃

(k)
i,b ← Dn×n

Z,σ if ι(i) = k and i ≤ λ`(
−In×n

R̃
(k)
k,b · R̃

(k)
k+`,b · · · · R̃

(k)
k+(λ−1)`,b

)
if ι(i) = k and i > λ`

In particular, for all x′ ∈ {0, 1}h,

(11×2` ⊗ In×n) ·Rx′ · (12`×1 ⊗ In×n) = 0n×n ⇐⇒ x′ ∈ $({0, 1}`)

• Set the parameters n,m, q,B ∈ N, σ ∈ R+ s.t. t = (w + 2n`) · n, and the rest according
to Remark 11.2. Sample

{
Si,b ← Dn×n

Z,σ

}
i∈[h],b∈{0,1}

and compute

J := 11×(w+2n`) ⊗ In×n

Ŝi,b :=

(
Mi,b ⊗ Si,b

Ri,b ⊗ Si,b

)
L := (1(w+2n`)×1 ⊗ In×n)

In particular, for all x′ ∈ {0, 1}h,

J · Ŝx′ · L =

0 if f(x) = 1,x′ = $(x)

6= 0 if f(x) = 0,x′ = $(x) since Mx′ 6= 0

6= 0 if x′ /∈ $({0, 1}`) due to bundling matrices

• Sample Ah ← U(Zn×nq), all the error terms Ei,b from DZ,σ with the corresponding di-
mensions. Compute and output

AJ := JA0 ∈ Zn×m

Di,b ← A−1
i−1(Ŝi,b ·Ai + Ei,b) ∈ Zm×m, i = 1, . . . , h− 1

Dh,b ← A−1
h−1(Ŝh,b · L ·Ah + Eh,b) ∈ Zm×n

Evaluation Output 1 if ‖AJ ·D$(x)‖∞ ≤ B, and 0 otherwise.

Remark 11.2 (Parameters). The parameters n,m, q,B ∈ N, σ ∈ R+ are sampled under the follow-
ing constraints for correctness and a hope of security (i.e. not for security reductions but matching
the existing safety mechanisms). m = Ω(t log q), σ = Ω(

√
t log q) for trapdoor functionality due to

Lemma 3.10 and Lemma 3.11. n = Ω(λ log q), χ = DZ,2
√
λ due to Lemma 3.9 and Lemma 3.8. The

noise threshold B is set according to Lemma 5.3

B ≥ (w + 2n`) · h ·
(
mσ2 ·

√
n(w + 2n`)σ

)h
.

Let ε ∈ (0, 1). q is chosen s.t. q ≥ B ·ω(poly(λ)) for correctness, q ≤ (σ/λ) ·2λ1−ε
due to Lemma 3.8.

52

11.2 Discussion

As with the witness encryption candidate, using γ⊗ is necessary to prevent the subtraction attack;
in particular, the bundling matrices {Ri,b} themselves do not prevent the subtraction attack.

Next, we need input-repetition to prevent the rank attacks in Section 9.3.2.
Finally, we need the bundling matrices to prevent mixed-input attacks:

• A difference from previous candidates is that we embed the bundling matrices into the di-
agonal (as opposed to a product or a tensor with the Mi,b’s); another is that the product of
the bundling matrices is 0 instead of the identity.

• Note that the bundling matrices {Ri,b} also interacts with {Si,b} to prevent subtraction at-
tacks on the bundling matrices.

Remark 11.3 (variants with additional randomization). For both the witness and iO candidate,
we can append a random small S′i,b ∈ Zn×n to the bottom right of Ŝi,b. For functionality, in the
iO candidate we will need to modify the right-bookend L to be (1(w+2n`)×1 | 0)T ⊗ In×n; in the

witness encryption candidate let Ah ←
(
U(Zt×nq)

0n×n

)
.

11.3 Sanity check

We make a sanity check to ensure that the candidate is not trivially broken by making illegal
evaluations (i.e. by the subtraction attack or the mixed-input attack).

Observe that for all x′ ∈ {0, 1}h, with high probability over the randomness of the encoding,

J · Ŝx′ · L =

0 · Sx′ if f(x) = 1,x′ = $(x)

(6= 0) · Sx′ if f(x) = 0,x′ = $(x) since Mx′ 6= 0

(6= 0) · Sx′ if x′ /∈ $({0, 1}`) due to bundling matrices

Here, the 6= 0 constants above have low-norm and depend only on x′ and either Γ or the bundling
matrices (and not the Si,b’s).

Now, consider an extremely restricted adversary that instead of seeing AJ , {Di,b}i∈[h],b∈{0,1},
only gets oracle access to

x′ 7→ bAJDx′ep .

Note that such an adversary can already implement the subtraction attack and certain mixed-input
attacks but not the rank attack and other zeroizing attacks. Observe that

bAJDx′ep =

0n×n if f(x) = 1,x′ = $(x)

b(6= 0) · Sx′Ahep if f(x) = 0,x′ = $(x) since Mx′ 6= 0

b(6= 0) · Sx′Ahep if x′ /∈ $({0, 1}`) due to bundling matrices

By the security of the BLMR PRF with Ah as the seed, we can computationally simulate the output
of the oracle on input x′ (given oracle access to f) as follows:

• 0n×n if f(x) = 1,x′ = $(x)

53

• U(Zn×np) otherwise

Of course, assuming the adversary only gets the rounded output is unrealistic. Indeed, security
against such adversaries provides no indication whatsoever about the security of the iO candidate.
Nonetheless, proving security against these extremely restricted adversaries constitutes a useful
sanity check against the subtraction attacks and variants there-of. As mentioned in Section 1.4, we
believe that an important open problem is to understand security against adversaries that get the
output without rounding.

References

[ADGM17] Daniel Apon, Nico Döttling, Sanjam Garg, and Pratyay Mukherjee. Cryptanalysis
of indistinguishability obfuscations of circuits over GGH13. In ICALP, volume 80 of
LIPIcs, pages 38:1–38:16. Schloss Dagstuhl - Leibniz-Zentrum fuer Informatik, 2017.

[Ajt99] Miklós Ajtai. Generating hard instances of the short basis problem. In Jirı́ Wieder-
mann, Peter van Emde Boas, and Mogens Nielsen, editors, Automata, Languages and
Programming, 26th International Colloquium, ICALP’99, Prague, Czech Republic, July 11-
15, 1999, Proceedings, volume 1644 of LNCS, pages 1–9. Springer, 1999.

[AP11] Joël Alwen and Chris Peikert. Generating shorter bases for hard random lattices.
Theory of Computing Systems, 48(3):535–553, 2011.

[Bar86] David A. Mix Barrington. Bounded-width polynomial-size branching programs rec-
ognize exactly those languages in nc1. In Juris Hartmanis, editor, STOC, pages 1–5.
ACM, 1986.

[BF14] Jean-François Biasse and Claus Fieker. Subexponential class group and unit group
computation in large degree number fields. LMS Journal of Computation and Mathe-
matics, 17(A):385–403, 2014.

[BGK+14] Boaz Barak, Sanjam Garg, Yael Tauman Kalai, Omer Paneth, and Amit Sahai. Pro-
tecting obfuscation against algebraic attacks. In EUROCRYPT, volume 8441 of LNCS,
pages 221–238. Springer, 2014.

[BKM17] Dan Boneh, Sam Kim, and Hart William Montgomery. Private puncturable prfs from
standard lattice assumptions. In EUROCRYPT (1), volume 10210 of Lecture Notes in
Computer Science, pages 415–445, 2017.

[BLMR13] Dan Boneh, Kevin Lewi, Hart William Montgomery, and Ananth Raghunathan. Key
homomorphic prfs and their applications. In Advances in Cryptology - CRYPTO 2013
- 33rd Annual Cryptology Conference, Santa Barbara, CA, USA, August 18-22, 2013. Pro-
ceedings, Part I, pages 410–428, 2013.

[BLP+13] Zvika Brakerski, Adeline Langlois, Chris Peikert, Oded Regev, and Damien Stehlé.
Classical hardness of learning with errors. In Proceedings of the forty-fifth annual ACM
symposium on Theory of computing, pages 575–584. ACM, 2013.

54

[BLW17] Dan Boneh, Kevin Lewi, and David J. Wu. Constraining pseudorandom functions
privately. In Public-Key Cryptography - PKC 2017 - 20th IACR International Conference
on Practice and Theory in Public-Key Cryptography, Amsterdam, The Netherlands, March
28-31, 2017, Proceedings, Part II, pages 494–524, 2017.

[BPR12] Abhishek Banerjee, Chris Peikert, and Alon Rosen. Pseudorandom functions and
lattices. In EUROCRYPT, pages 719–737, 2012.

[BR13] Zvika Brakerski and Guy N. Rothblum. Obfuscating conjunctions. In CRYPTO, Part
II, pages 416–434, 2013.

[BS03] Dan Boneh and Alice Silverberg. Applications of multilinear forms to cryptography.
Contemporary Mathematics, 324(1):71–90, 2003.

[BS16] Jean-François Biasse and Fang Song. Efficient quantum algorithms for computing
class groups and solving the principal ideal problem in arbitrary degree number
fields. In SODA, pages 893–902. SIAM, 2016.

[BTVW17] Zvika Brakerski, Rotem Tsabary, Vinod Vaikuntanathan, and Hoeteck Wee. Private
constrained prfs (and more) from LWE. In Theory of Cryptography - 15th International
Conference, TCC 2017, Baltimore, MD, USA, November 12-15, 2017, Proceedings, Part I,
pages 264–302, 2017.

[BVWW16] Zvika Brakerski, Vinod Vaikuntanathan, Hoeteck Wee, and Daniel Wichs. Obfuscat-
ing conjunctions under entropic ring LWE. In ITCS, pages 147–156. ACM, 2016.

[CC17] Ran Canetti and Yilei Chen. Constraint-hiding constrained PRFs for NC1 from LWE.
In EUROCRYPT 2017, Part I, pages 446–476, 2017.

[CDPR16] Ronald Cramer, Léo Ducas, Chris Peikert, and Oded Regev. Recovering short gen-
erators of principal ideals in cyclotomic rings. In EUROCRYPT (2), volume 9666 of
LNCS, pages 559–585. Springer, 2016.

[CGH+15] Jean-Sébastien Coron, Craig Gentry, Shai Halevi, Tancrede Lepoint, Hemanta K Maji,
Eric Miles, Mariana Raykova, Amit Sahai, and Mehdi Tibouchi. Zeroizing without
low-level zeroes: New mmap attacks and their limitations. In Advances in Cryptology–
CRYPTO 2015, pages 247–266. Springer, 2015.

[CGH17] Yilei Chen, Craig Gentry, and Shai Halevi. Cryptanalyses of candidate branching
program obfuscators. In EUROCRYPT (3), volume 10212 of Lecture Notes in Computer
Science, pages 278–307, 2017.

[CHKP12] David Cash, Dennis Hofheinz, Eike Kiltz, and Chris Peikert. Bonsai trees, or how to
delegate a lattice basis. Journal of cryptology, 25(4):601–639, 2012.

[CHL+15] Jung Hee Cheon, Kyoohyung Han, Changmin Lee, Hansol Ryu, and Damien Stehlé.
Cryptanalysis of the multilinear map over the integers. In EUROCRYPT (1), volume
9056 of LNCS, pages 3–12. Springer, 2015.

55

[CLLT16] Jean-Sébastien Coron, Moon Sung Lee, Tancrède Lepoint, and Mehdi Tibouchi.
Cryptanalysis of GGH15 multilinear maps. In CRYPTO (2), volume 9815 of LNCS,
pages 607–628. Springer, 2016.

[CLLT17] Jean-Sébastien Coron, Moon Sung Lee, Tancrède Lepoint, and Mehdi Tibouchi. Ze-
roizing attacks on indistinguishability obfuscation over CLT13. In Public Key Cryp-
tography (1), volume 10174 of Lecture Notes in Computer Science, pages 41–58. Springer,
2017.

[CLT13] Jean-Sébastien Coron, Tancrède Lepoint, and Mehdi Tibouchi. Practical multilinear
maps over the integers. In CRYPTO (1), pages 476–493, 2013.

[DGK+10] Yevgeniy Dodis, Shafi Goldwasser, Yael Tauman Kalai, Chris Peikert, and Vinod
Vaikuntanathan. Public-key encryption schemes with auxiliary inputs. In Theory
of Cryptography, 7th Theory of Cryptography Conference, TCC 2010, Zurich, Switzerland,
February 9-11, 2010. Proceedings, pages 361–381, 2010.

[FRS17] Rex Fernando, Peter M. R. Rasmussen, and Amit Sahai. Preventing CLT attacks on
obfuscation with linear overhead. In ASIACRYPT (3), volume 10626 of Lecture Notes
in Computer Science, pages 242–271. Springer, 2017.

[GGH13a] Sanjam Garg, Craig Gentry, and Shai Halevi. Candidate multilinear maps from ideal
lattices. In EUROCRYPT, pages 1–17, 2013.

[GGH+13b] Sanjam Garg, Craig Gentry, Shai Halevi, Mariana Raykova, Amit Sahai, and Brent
Waters. Candidate indistinguishability obfuscation and functional encryption for all
circuits. In FOCS, pages 40–49, 2013.

[GGH15] Craig Gentry, Sergey Gorbunov, and Shai Halevi. Graph-induced multilinear maps
from lattices. In TCC 2015, Part II, pages 498–527, 2015.

[GGSW13] Sanjam Garg, Craig Gentry, Amit Sahai, and Brent Waters. Witness encryption and
its applications. In STOC, pages 467–476, 2013.

[GKW17a] Rishab Goyal, Venkata Koppula, and Brent Waters. Lockable obfuscation. In FOCS,
pages 612–621, 2017.

[GKW17b] Rishab Goyal, Venkata Koppula, and Brent Waters. Separating semantic and circular
security for symmetric-key bit encryption from the learning with errors assumption.
In EUROCRYPT (2), pages 528–557, 2017.

[GKW18] Rishab Goyal, Venkata Koppula, and Brent Waters. Collusion resistant traitor tracing
from learning with errors. In STOC, 2018.

[GLW14] Craig Gentry, Allison B. Lewko, and Brent Waters. Witness encryption from instance
independent assumptions. In CRYPTO (1), volume 8616 of Lecture Notes in Computer
Science, pages 426–443. Springer, 2014.

[GMM+16] Sanjam Garg, Eric Miles, Pratyay Mukherjee, Amit Sahai, Akshayaram Srinivasan,
and Mark Zhandry. Secure obfuscation in a weak multilinear map model. In TCC
(B2), volume 9986 of Lecture Notes in Computer Science, pages 241–268, 2016.

56

[GPV08] Craig Gentry, Chris Peikert, and Vinod Vaikuntanathan. Trapdoors for hard lattices
and new cryptographic constructions. In STOC, pages 197–206, 2008.

[Hal15] Shai Halevi. Graded encoding, variations on a scheme. Cryptology ePrint Archive,
Report 2015/866, 2015.

[HHSS17] Shai Halevi, Tzipora Halevi, Victor Shoup, and Noah Stephens-Davidowitz. Imple-
menting BP-obfuscation using graph-induced encoding. In ACM CCS, pages 783–
798, 2017.

[Kle00] Philip N. Klein. Finding the closest lattice vector when it’s unusually close. In SODA,
pages 937–941. ACM/SIAM, 2000.

[KW16] Venkata Koppula and Brent Waters. Circular security separations for arbitrary length
cycles from LWE. In CRYPTO (2), pages 681–700, 2016.

[MP12] Daniele Micciancio and Chris Peikert. Trapdoors for lattices: Simpler, tighter, faster,
smaller. In Advances in Cryptology–EUROCRYPT 2012, pages 700–718. Springer, 2012.

[MR07] Daniele Micciancio and Oded Regev. Worst-case to average-case reductions based on
Gaussian measure. SIAM Journal on Computing, 37(1):267–302, 2007.

[MSZ16] Eric Miles, Amit Sahai, and Mark Zhandry. Annihilation attacks for multilinear
maps: Cryptanalysis of indistinguishability obfuscation over GGH13. In CRYPTO
(2), volume 9815 of LNCS, pages 629–658. Springer, 2016.

[Pei09] Chris Peikert. Public-key cryptosystems from the worst-case shortest vector problem:
extended abstract. In STOC, pages 333–342, 2009.

[PR06] Chris Peikert and Alon Rosen. Efficient collision-resistant hashing from worst-case
assumptions on cyclic lattices. In Theory of Cryptography, pages 145–166. Springer,
2006.

[PRS17] Chris Peikert, Oded Regev, and Noah Stephens-Davidowitz. Pseudorandomness of
ring-lwe for any ring and modulus. In STOC, pages 461–473. ACM, 2017.

[PS18] Chris Peikert and Sina Shiehian. Privately constraining and programming PRFs, the
LWE way. In PKC, 2018.

[Reg05] Oded Regev. On lattices, learning with errors, random linear codes, and cryptogra-
phy. In Harold N. Gabow and Ronald Fagin, editors, Proceedings of the 37th Annual
ACM Symposium on Theory of Computing, Baltimore, MD, USA, May 22-24, 2005, pages
84–93. ACM, 2005.

[Reg09] Oded Regev. On lattices, learning with errors, random linear codes, and cryptogra-
phy. J. ACM, 56(6), 2009.

[WZ17] Daniel Wichs and Giorgos Zirdelis. Obfuscating compute-and-compare programs
under LWE. In FOCS, pages 600–611, 2017.

57

A Attacking the iO candidates based on GGH13

The similar analysis techniques mentioned in Section 9 can also be used to extend the previous
attacks on candidate branching program obfuscators based on GGH13.

A.1 A distinguishing attack for iO candidates using GGH13

We demonstrate a distinguishing attack for the iO candidates built from the construction in Sec-
tion 9.1 using GGH13 graded encoding scheme [GGH13a]. As mentioned in the summary in Sec-
tion 9.2, our attack improves upon [CGH17] in terms of the type of BPs (remove the input-partition
requirement), upon [ADGM17] in terms of the ability to handle the diagonal paddings.

Conceptually, the attack also use the some identities of the matrices collected from evalua-
tions of zeros, but this time (i.e. for GGH13) we use the eigenvalues instead of the rank as the
distinguishing factor.

A.1.1 Brief recap of GGH13 in the context of branching program obfuscation

Let L = Z[X]/(φm(X)) where φm is the mth cyclotomic polynomial. K = Q[X]/(φm(X)) be the
fractional field of L. The core secret parameter in the GGH13 encoding scheme is a small g ∈ L
(sampled from small Gaussian distribution), such that the inverse g−1 ∈ K is also small. Let
I = 〈g〉 = g · L be the ideal generated by g in L. The plaintext space of the GGH13 is the quotient
ring R = L/I, and we typically choose g so that this plaintext space is isomorphic to some prime
field Fp. Other parameters of the scheme are an integer modulus q � p and the multi-linearity
degree κ (which are public), and a random secret denominator z ∈ L/qL (which is kept secret).
Plaintext elements are encoded relative to levels between 0 and κ.

The encoding of s ∈ R at level 0 is a short representative of the coset of the ideal shifted by s,
i.e. c ∈ s+ I, ‖c‖ ≤ q1/(2κ+1). To encode at level i, compute c/zi (mod q). The zero-test parameter
is pzt = η·zκ/g, with ‖η‖ ≤ q1/2. Additions and multiplications are simply adding and multiplying
the encodings in L/qL, with the restrictions that correctness only holds when adding on the same
level, or multiplying below the maximum level κ. To zero-test, multiply the (potential) top-level
encoding c/zκ by pzt (modulo q). If c encodes zero then c ∈ I, hence c = c′ · g, and therefore
c · pzt = ηc′, which is small since both η and c′ are much smaller than q.

When GGH13 is used in branching program obfuscation (cf. Section 9.1), we set κ = h. Each
matrix Ŝi,b ∈ Rt×t from Eqn. (20) is encoded (entry-wise) on level 1. The bookends J,L are merged
into the first and last matrices. pzt is merged in the first matrices. Denote the resulting matrices as{

C1,b := pzt ·
(
J× Ŝ1,b + g ·E1,b

)
/z ∈ L1×t

q

}
b∈{0,1}{

Ci,b :=
(
Ŝi,b + g ·Ei,b

)
/z ∈ Lt×tq

}
i∈[2,h−1],b∈{0,1}{

Ch,b :=
(
Ŝh,bL + g ·Eh,b

)
/z ∈ Lt×1

q

}
b∈{0,1}

.

(43)

The obfuscated code consists of {Ci,b}i∈[1,h],b∈{0,1}. To evaluate on x ∈ {0, 1}`, compute v(x) =

C$(x) ∈ Lq, output 0 if ‖v(x)‖ ≤ q1−1/(4h+3), 1 otherwise.

58

A.1.2 The attack algorithm and analysis

The attack algorithm follows the steps from [CGH17] in the 3-input-partition setting, and use the
formulas from [ADGM17, CLLT17] to convert the input-repeating programs into input-partitioned.

The attack from [CGH17] runs the following 3 steps:

1. Compute the determinant of some matrix to recover a basis of the ideal I.

2. Extract the ratio of bundling scalars from the eigenvalue of some matrix mod I.

3. Use the bundling scalars to conduct a simplified annihilation attack [MSZ16].

If you are willing to spend classical subexponential time or use a quantum computer, then
from a basis of I obtained from Step 1, you can find a short generator of I [BF14, BS16, CDPR16]
and break GGH13 completely, instead of continuing with Steps 2 and 3.

In the input-repeating setting, we can finish a classical polynomial time distinguishing attack
in 2 steps. The simplification comes from the fact that there exists functionally equivalent input-
repeating permutation BPs with features that are detectable in 2 steps; whereas for input-partition
permutation BPs, such a distinguishing feature does not exist due to [CGH17, Lemma 2.2].

Similar to the situation in GGH15, our analysis uses heuristic assumptions on the the linear
independence of matrices resulting from the products of Gaussians.

Attack for 2-input-repeating branching programs. We start from 2-input-repeating branching
programs. Assume h = 2`, the input bit sequence is “1, 2, ..., `, 1, 2, ..., `”, i.e. $(u) = u | u. Let
ρ = t3 (recall from Eqn. (20) that t = 2(w + n)).

In the attack we need to partition the ` input bits into 3 intervals for several times (note that
the boundaries of the partitions are not necessarily fixed across different steps in the attack; we
will clarify the restrictions on the boundaries every time.) Denote the partition as [`] = X | Y | Z ;
let the corresponding BP steps be partitioned into 6 intervals [h] = X1 | Y1 | Z1 | X2 | Y2 | Z2

where for W ∈ {X ,Y,Z}, the steps in W1,W2 are controlled by the input bits in W . Denote
$(u(i,j,k)) = $(x(i) | y(j) | z(k)) =: x

(i)
1 | y

(j)
1 | z(k)

1 | x(i)
2 | y

(j)
2 | z(k)

2 .

A subroutine in the attack. The real attack uses following subroutine. The similar subroutine
appeared in [CHL+15, CGH+15, CGH17, CLLT17] in the context of attacking GGH13 or CLT13.

Algorithm A.1 (A subroutine). Given as inputs the obfuscated code {Ci,b}i∈[1,h],b∈{0,1}, ρ prefixes{
x(i)
}
i∈[ρ]

, a single string y(∗), and ρ suffixes
{
z(k)
}
k∈[ρ]

. The subroutine evaluates the obfuscated

code on ρ2 inputs of the form
{
u(i,∗,k)

}
i∈[ρ],k∈[ρ]

. Output a matrix V(∗) ∈ Lρ×ρq whose (i×k)th entry

is v(i,∗,k) := C$(u(i,∗,k)).

Analysis of the subroutine. We open up each v(i,∗,k) obtained from Alg. A.1.

v(i,∗,k) = C
x

(i)
1

·C
y

(∗)
1

·C
z

(k)
1

·C
x

(i)
2

·C
y

(∗)
2

·C
z

(k)
2

=
(
vec(C

x
(i)
2

)T ⊗C
x

(i)
1

)
·
(
C
y

(∗)
2

⊗ It×t ⊗C
y

(∗)
1

)
· vec

(
C
z

(k)
2

T ⊗C
z

(k)
1

) (44)

59

where the subscripts slightly abuse the subset product notation, similar to the notation convention
used in Eqn. (24) (i.e. C

y
(∗)
1

=
∏|Y1|
i=1 Cν+i,y

(∗)
i

, etc.) The second equality follows Formula (34).

If ∀i ∈ [ρ], k ∈ [ρ], u(i,∗,k) is the zero of the function, then Eqn. (44) holds over L (not only over
Lq). Therefore we have

V(∗) :=

v(1,∗,1) ... v(1,∗,ρ)

...
v(ρ,∗,1) ... v(ρ,∗,ρ)

=

 ...
vec(C

x
(i)
2

)T ⊗C
x
(i)
1

...

︸ ︷︷ ︸

:=X∈Lρ×ρ

·
(
C
y
(∗)
2
⊗ It×t ⊗C

y
(∗)
1

)
︸ ︷︷ ︸

:=Y(∗)∈Lρ×ρ

·

...
∣∣∣∣∣∣ vec(Cz

(k)
2

)T ⊗C
z
(k)
1

∣∣∣∣∣∣ ...

︸ ︷︷ ︸
:=Z∈Lρ×ρ

∈ Lρ×ρ
(45)

Claim A.2. X, Y(∗) and Z in Eqn. (45) are non-singular over L heuristically.

First we check the singularity of Y(∗) = C
y

(∗)
2

⊗ It×t ⊗ C
y

(∗)
1

, which is a tensor product of 3

square matrices. If both C
y

(∗)
2

and C
y

(∗)
1

are non-singular, Y(∗) is non-singular. So we take a closer
look at C

y
(∗)
1

:

C
y

(∗)
1

=

|Y1|∏
i=1

C
ν+i,y

(∗)
i

=

|Y1|∏
i=1

(
Ŝ
ν+i,y

(∗)
i

+ g ·E
ν+i,y

(∗)
i

)
(46)

We claim that each E
ν+i,y

(∗)
i

∈ Lt×t matrix is non-singular whp, since each entry of the matrix is
sampled independently from the Gaussian coset of a fixed value with sufficiently large width; the
independence holds across these E matrices. So the product is still non-singular whp.

The observation from Eqn. (46) in fact holds for all C
y

(∗)
2

, C
x

(i)
1

, C
z

(k)
1

, C
x

(i)
2

, C
z

(k)
2

, due to the
g · E components. In other words in analyzing the rank of these matrices over L, we do not need
to worry about the Ŝ components. This immediately justify the non-singularity of Y(∗).

For X, each row is a tensor product of 2 random’ish row vectors where the randomness come
from the g ·E components; then we use the heuristics about linear independence across rows and
columns similar to the analysis for GGH15. The same methodology applies to Z.

The running example. To assist the description of the rest of the analysis, we give the running
example of Γ(0) and Γ(1) first.

Example A.1. For r ∈ [`] such that log(ρ) < r < ` − log(ρ). Let N be a non-identity permutation
matrix. Here are two BPs that compute the 0-function:

Γ(0) 0 : I . . . I I I . . . I I . . . I I I . . . I
1 : I . . . I I I . . . I I . . . I I I . . . I

Γ(1) 0 : I . . . I I I . . . I I . . . I I I . . . I
1 : I . . . I N I . . . I I . . . I N−1 I . . . I

BP Steps : 1 . . . r − 1 r r + 1 . . . ` `+ 1 . . . `+ r − 1 `+ r `+ r + 1 . . . 2`
input bits : 1 . . . r − 1 r r + 1 . . . ` 1 . . . r − 1 r r + 1 . . . `

(47)

Looking ahead, when the input bits are partition as [`] = X | Y | Z in the attack steps, the
boundaries of the partitions are different across steps. In the first step, the rth bit does not live in
the Y interval; in the second step, the rth bit does live in the Y interval.

60

Attack Step I: recover the ideal 〈g〉. Step I borrows the idea from [CGH17, Section 3.1]. We select
a 3-partition [`] = X | Y | Z such that |Y| = 2, |X |, |Z| ≥ log(ρ). The rth input bit does not live in
Y and is fixed at 0. We set y(1) = 00, y(2) = 10, y(3) = 01, y(4) = 11. Then form a matrix so that
computing its determinant reveals an element in 〈g〉. Note that this step does not concern whether
the underlying program is Γ(0) or Γ(1) since we fix the rth bit of input u as 0.

Algorithm A.3 (Step I). Given the matrices {Ci,b}i∈[1,h],b∈{0,1}, the algorithm proceeds as follows

1. Select a 3-partition [`] = X | Y | Z such that |Y| = 2, X = [1, ν], Z = [µ, `], |X |, |Z| ≥ log(ρ).
We assume the rth bit lives in Z and is fixed as 0.

2. Randomly pick ρ prefixes
{
x(i) ∈ X

}
i∈[ρ]

, ρ suffixes
{
z(k) ∈ Z

}
k∈[ρ]

.

3. Set y(1) = 00, y(2) = 10, y(3) = 01, y(4) = 11.

4. For j ∈ [4]: run Alg. A.1 on {Ci,b}i∈[1,h],b∈{0,1},
{
x(i)
}
i∈[ρ]

, y(j),
{
z(k)
}
k∈[ρ]

, denote the output

as V(j).

5. Compute WN :=

(
V(1) V(2)

V(3) V(4)

)
; WD :=

(
V(1) 0

0 V(4)

)
∈ L2ρ×2ρ;

6. Compute W := WN ·W−1
D ∈ K2ρ×2ρ.

7. Compute d = det(W) ∈ K, output its numerator as dN ∈ L.

Claim A.4. Let n′ be the dimension of the basis of I. Let {dτ}τ∈[O(n′)] be the outputs by running
Alg. A.3 for O(n′) times. We claim that each of dτ is in the ideal I, therefore taking the gcd of
{dτ}τ∈[O(n′)] it is likely to recover a basis of I.

Justification of Claim A.4. We analyze the matrices WN , WD

WN =

(
XY(1)Z XY(2)Z

XY(3)Z XY(4)Z

)
=

(
X 0
0 X

)
·
(
Y(1) Y(2)

Y(3) Y(4)

)
·
(
Z 0
0 Z

)
(48)

WD =

(
XY(1)Z 0

0 XY(4)Z

)
=

(
X 0
0 X

)
·
(
Y(1) 0

0 Y(4)

)
·
(
Z 0
0 Z

)
(49)

Following Claim A.2, whp
(
X 0
0 X

)
,
(
Z 0
0 Z

)
are non-singular over L, therefore WD is non-

singular. Hence we can continue with W := WN ·W−1
D .

W =

(
X 0
0 X

)
·
(
Y(1) Y(2)

Y(3) Y(4)

)
·
(
Z 0
0 Z

)
·
((

X 0
0 X

)
·
(
Y(1) 0

0 Y(4)

)
·
(
Z 0
0 Z

))−1

=

(
X 0
0 X

)
·
(
Y(1) Y(2)

Y(3) Y(4)

)
·
(
Y(1) 0

0 Y(4)

)−1

·
(
X 0
0 X

)−1
(50)

Therefore

det(W) = det

((
Y(1) Y(2)

Y(3) Y(4)

)
·
(
Y(1) 0

0 Y(4)

)−1
)

(51)

61

So far we have been analyzing the properties of matrices over L and reach the conclusion that
to compute det(W), it is enough to understand the Y components. Now we start analyzing the
properties of

{
Y(j)

}
j∈[4]

mod I:

Y(j) = C
y

(j)
2

⊗ It×t ⊗C
y

(j)
1

= Ŝ
y

(j)
2

⊗ It×t ⊗ Ŝ
y

(j)
1

(mod I) (52)

Here Ŝ
y

(j)
2

and Ŝ
y

(j)
1

are products of the Ŝ terms defined in Eqn (20), which means the resulting

Ŝ
y

(j)
2

and Ŝ
y

(j)
1

contain two blocks on the diagonal, one for the “functional branch” and the other
for the “dummy branch”.

If we analyze the property of Y(j) in Eqn. (52) faithfully, it will constitute a significant blowup
in size of the equations. Instead we will ignore the “dummy branch” and the It×t term for now,
and focus on the term

Ỹ(j) :=

(
α
y
(j)
2
·K−1`+ν ·

(
R
y
(j)
2

M
y
(j)
2

)
·K`+µ−1

)
⊗

(
α
y
(j)
1
·K−1ν ·

(
R
y
(j)
1

M
y
(j)
1

)
·Kµ−1

)
(53)

The readers can verify that Ỹ(j) can be set as a diagonal block of Y(j) after a few elementary linear
operations, i.e.

Y(j) = UL ·
(
Ỹ(j)

∗(j)

)
·UR (mod I). (54)

where UL,UR are elementary matrices that do not depend on j.
We claim that the analyses of Ỹ(j) below suffice to justify Claim A.4. Now we dig into Ỹ(j):

Ỹ(j) = α
y
(j)
2
· α

y
(j)
1
·
(
K−1`+ν ⊗K−1ν

)︸ ︷︷ ︸
:=K̃−1

ν

·
((

R
y
(j)
2

Iw×w

)
⊗
(
R
y
(j)
1

Iw×w

))
︸ ︷︷ ︸

:=

R̃y(j)

Iw×w

∈
R(t2−w)×(t2−w)

Iw×w

· (K`+µ−1 ⊗Kµ−1)︸ ︷︷ ︸

:=K̃µ−1

(55)

Putting together all the 4 pieces
{
Ỹ(j)

}
j∈[4]

gives

Ỹ :=

(
Ỹ(1) Ỹ(2)

Ỹ(3) Ỹ(4)

)

=

αy(1)2

· α
y
(1)
1

· K̃−1
ν ·

(
R̃y(1)

Iw×w

)
· K̃µ−1 α

y
(2)
2

· α
y
(2)
1

· K̃−1
ν ·

(
R̃y(2)

Iw×w

)
· K̃µ−1

α
y
(3)
2

· α
y
(3)
1

· K̃−1
ν ·

(
R̃y(3)

Iw×w

)
· K̃µ−1 α

y
(4)
2

· α
y
(4)
1

· K̃−1
ν ·

(
R̃y(4)

Iw×w

)
· K̃µ−1

=

(
K̃−1
ν

K̃−1
ν

)
·

βν+1,0βν+2,0 ·
(
R̃y(1)

Iw×w

)
βν+1,1βν+2,0 ·

(
R̃y(2)

Iw×w

)
βν+1,0βν+2,1 ·

(
R̃y(3)

Iw×w

)
βν+1,1βν+2,1 ·

(
R̃y(4)

Iw×w

)

︸ ︷︷ ︸
:=Q

·
(
K̃µ−1

K̃µ−1

)
(56)

where the third equality follows Eqn. (19).

Claim A.5. det(Q) = 0 (mod I), therefore det(Ỹ) = 0 (mod I), therefore det(W) = 0 (mod I).

62

Justification of Claim A.5. Taking the following 2w × 2w blocks out of Q:

Qβ :=

(
βν+1,0βν+2,0I

w×w βν+1,1βν+2,0I
w×w

βν+1,0βν+2,1I
w×w βν+1,1βν+2,1I

w×w

)
(57)

Given that Qβ is singular, so det(Q) = 0 (mod I). Therefore det(Ỹ) = 0 (mod I).

Then
(
Y(1) Y(2)

Y(3) Y(4)

)
is singular mod I since Ỹ can be set to its diagonal block after elementary

linear operations, following Eqn. (54).

Finally we observe that
(
Y(1) 0

0 Y(4)

)
is non-singular both mod I and inL, while det

(
Y(1) Y(2)

Y(3) Y(4)

)
is singular mod I but non-singular in L. Therefore det(W) is an non-zero element in I. This con-
cludes the verification of Claim A.5.

Now Claim A.4 follows by repeating Alg. A.3 several times with different partition boundaries,
then we can take the GCD of the resulting det(W) values and whp get a basis for I.

Note that if we follow strictly from Alg. A.3, what we get in the reality is Id for some poly-
nomial d (which means the value of d can be guessed in polynomial time). This can be fixed by 2
methods (1) Computing det(W̃) instead of det(W), where W̃ is a (2ρ−d+1)-by-(2ρ−d+1) block
of W. Our experiment indicates that det(W̃) lives exactly in I. (2) When I is a prime ideal, it is
easy to find I from Id: The norm of Id is norm(I)d

′
, and p = norm(I) is a prime integer, and we

can find p from pd. The Kummer-Dedekind theorem let us compute all the ideals of norm p in K,
and one of these ideals is I.

Attack Step II: distinguishing Γ(0) and Γ(1). Step II still follows the idea from [CGH17, Sec-
tion 3.2], but this time we use a feature from the characteristic polynomial of some matrix to
distinguish Γ(0) and Γ(1) directly, instead of getting the bundling scalars from the roots of the
characteristic polynomial and use them in another painful step.

Algorithm A.6 (Step II). Given the obfuscated code {Ci,b}i∈[1,h],b∈{0,1} of one of Γ(0), Γ(1), a basis
of I obtained in Step I, the algorithm proceeds as follows

1. Select a 3-partition [`] = X | Y | Z such that Y contains only the rth input bit (therefore X
and Z are determined).

2. Randomly pick ρ prefixes
{
x(i) ∈ X

}
i∈[ρ]

, ρ suffixes
{
z(k) ∈ Z

}
k∈[ρ]

.

3. Set y(5) = 0, y(6) = 1.

4. For j ∈ {5, 6}: run Alg. A.1 on {Ci,b}i∈[1,h],b∈{0,1}, ρ,
{
x(i)
}
i∈[ρ]

, y(j),
{
z(k)
}
k∈[ρ]

, denote the

output as V(j).

5. Compute the characteristic polynomial of V(6) ·
(
V(5)

)−1
(mod I), factorize the polynomial.

If there exists a factor of multiplicity ≥ 2w2 · t, then it is Γ(0); otherwise it is Γ(1).

63

Analysis. Let χ(M) denote the characteristic polynomial of a square matrix M. We have

χ

(
V(6) ·

(
V(5)

)−1
)

= χ

(
X ·Y(6) · Z ·

(
X ·Y(5) · Z

)−1
)

= χ

(
X ·Y(6) ·

(
Y(5)

)−1

·X−1

)
= χ

(
Y(6) ·

(
Y(5)

)−1
)

= χ

((
C
y
(6)
2

⊗ It×t ⊗C
y
(6)
1

)
·
(
C
y
(5)
2

⊗ It×t ⊗C
y
(5)
1

)−1
)

= χ

((
Ŝ
y
(6)
2

⊗ It×t ⊗ Ŝ
y
(6)
1

)
·
(
Ŝ
y
(5)
2

⊗ It×t ⊗ Ŝ
y
(5)
1

)−1
)

(mod I)

= χ

((
Ŝ
y
(6)
2

·
(
Ŝ
y
(5)
2

)−1
)
⊗ It×t ⊗

(
Ŝ
y
(6)
1

·
(
Ŝ
y
(5)
1

)−1
))

(58)

where the 1st and the 4th equalities follow Eqn. (45).
For square matrices A, B, the set of eigenvalues of A ⊗ B is the set of products (with multi-

plicities) of eigenvalues of A with those of B. We first analyze the eigenvalues of Ŝ
y

(6)
1

·
(
Ŝ
y

(5)
1

)−1
:

χ

(
Ŝ
y
(6)
1

·
(
Ŝ
y
(5)
1

)−1
)

= χ

(
Ŝr,1 ·

(
Ŝr,0

)−1
)

= χ

(
diag

(
αr,1/αr,0 ·K−1

r−1

(
Mr,1 ·M−1

r,0

Rr,1 ·R−1
r,0

)
Kr−1 , α

′
r,1/α

′
r,0 ·K′

−1
r−1

(
I

R′r,1 ·R′
−1
r,0

)
K′r−1

))
= χ

(
αr,1/αr,0 ·

(
Mr,1 ·M−1

r,0

Rr,1 ·R−1
r,0

))
· χ
(
α′r,1/α

′
r,0 ·

(
I

R′r,1 ·R′
−1
r,0

)) (59)

Now we observe that α′r,1/α
′
r,0 is always an eigenvalue of Ŝ

y
(6)
1

·
(
Ŝ
y

(5)
1

)−1
with multiplicity w.

The multiplicity of αr,1/αr,0 depends on the underlying program Γ.

• If the underlying program is Γ(0), then Mr,1 ·M−1
r,0 = Iw×w, then αr,1/αr,0 is an eigenvalue of

Ŝ
y

(6)
1

·
(
Ŝ
y

(5)
1

)−1
with multiplicity w.

• If the underlying program is Γ(1), then Mr,1 ·M−1
r,0 = N 6= I, then αr,1/αr,0 is an eigenvalue

of Ŝ
y

(6)
1

·
(
Ŝ
y

(5)
1

)−1
with multiplicity < w.

The similar argument can be made on Ŝ
y

(6)
2

·
(
Ŝ
y

(5)
2

)−1
.

When we put everything together, in the calculation of final threshold multiplicity, one has
to take into account the correlations among the scalars. Following Eqn. (19), βr,b = αr,bα`+r,b =
α′r,bα

′
`+r,b, b ∈ {0, 1}. So if the underlying program is Γ(0), then βr,1/βr,0 is an eigenvalue of V(6) ·(

V(5)
)−1

with multiplicity 2w2 · t. If the underlying program is Γ(1), then there is no eigenvalue of

V(6) ·
(
V(5)

)−1
with multiplicity ≥ 2w2 · t.

Extension to c-input-repeating BPs. For single input oblivious branching programs with c-
input-repetitions (i.e. h = c · `), the attack still applies when c > 2. However, ρ (the dimension of a
matrix in the subroutine) grows exponentially with cwhen converting the evaluation formula into
3-partition by recursively applying Formula (34). So the running time of the attack is poly(t)c =
poly(λ, `)c where λ is the security parameter, ` is the input length.

64

	Introduction
	Our Results I: New Cryptographic Constructions from LWE
	Our Results II: New Attacks on iO Candidates
	Our Results III: New Candidates
	Discussion and Open problems
	Reader's guide

	Technical Overview
	Generalized GGH15 Encodings
	This work: semantic security for arbitrary matrices
	New proof technique

	New Cryptographic Constructions from LWE
	Private constrained PRFs

	Preliminaries
	Lattices background

	New Lemmas on Preimage Sampling
	The Statistical Lemma
	The Computational Lemma

	Generalized GGH15 Encodings
	The construction framework
	Security notions
	Semantic security for diag-GGH15 and diag-GGH15 encodings
	Proof of the main theorem

	Matrix branching programs
	Representing CNFs as matrix branching programs

	Application 1: Private constrained PRFs
	Definitions
	Construction
	Security proof

	Application 2: Lockable obfuscation
	Definition
	Construction
	Security proof

	New attacks to iO candidates for branching programs
	The description of the iO candidates
	Summary of the applicability of the (old and new) attacks
	A distinguishing attack for iO candidates using GGH15
	Analysis of the rank attack on read-once branching programs
	Analysis of the attack on general input-repeating branching programs

	Witness Encryption Candidate
	Definition
	Construction
	Relation to existing attacks

	Indistinguishability Obfuscation (iO) Candidate
	Construction
	Discussion
	Sanity check

	Attacking the iO candidates based on GGH13
	A distinguishing attack for iO candidates using GGH13
	Brief recap of GGH13 in the context of branching program obfuscation
	The attack algorithm and analysis

