
Perfectly Secure Oblivious Parallel RAM

T-H. Hubert Chan
The University of Hong Kong

hubert@cs.hku.hk

Kartik Nayak
University of Maryland
kartik@cs.umd.edu

Elaine Shi
Cornell University

elaine@cs.cornell.edu

Abstract

We show that PRAMs can be obliviously simulated with perfect security, incurring
only O(logN log logN) blowup in parallel runtime, O(log3N) blowup in total work, and
O(1) blowup in space relative to the original PRAM. Our results advance the theoretical
understanding of Oblivious (Parallel) RAM in several respects. First, prior to our work,
no perfectly secure Oblivious Parallel RAM (OPRAM) construction was known; and
we are the first in this respect. Second, even for the sequential special case of our
algorithm (i.e., perfectly secure ORAM), we not only achieve logarithmic improvement
in terms of space consumption relative to the state-of-the-art, but also significantly
simplify perfectly secure ORAM constructions. Third, our perfectly secure OPRAM
scheme matches the parallel runtime of earlier statistically secure schemes with negligible
failure probability. Since we remove the dependence (in performance) on the security
parameter, our perfectly secure OPRAM scheme in fact asymptotically outperforms
known statistically secure ones if (sub-)exponentially small failure probability is desired.
Our techniques for achieving small parallel runtime are novel and we employ expander
graphs to derandomize earlier statistically secure schemes — this is the first time such
techniques are used in the constructions of ORAMs/OPRAMs.



Contents

1 Introduction 1
1.1 Our Results and Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
1.2 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

2 Technical Roadmap 4
2.1 Simplified Perfectly Secure ORAM with Asymptotically Smaller Space . . . . . . . . 4
2.2 Making Our ORAM Scheme Parallel . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

2.2.1 When the OPRAM Consumes the Same Number of CPUs as the PRAM . . . 7
2.2.2 When the OPRAM May Consume Unbounded Number of CPUs . . . . . . . 7

3 Definitions 9
3.1 Parallel Random-Access Machines . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
3.2 Oblivious Parallel Random-Access Machines . . . . . . . . . . . . . . . . . . . . . . . 10
3.3 Building Blocks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

4 Parallel One-Time Oblivious Memory 13
4.1 Definition: One-Time Oblivious Memory . . . . . . . . . . . . . . . . . . . . . . . . . 14

4.1.1 Intuition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
4.1.2 Formal Definition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

4.2 Construction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
4.2.1 Intuition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
4.2.2 Detailed Construction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

5 Basic OPRAM with O(log3N) Simulation Overhead 19
5.1 Position-Based OPRAM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

5.1.1 Data Structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
5.1.2 Operations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

5.2 OPRAM Scheme from Position-Based OPRAM . . . . . . . . . . . . . . . . . . . . . 22
5.2.1 Operations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

6 Oblivious Loose Compaction from Expander Graphs 25
6.1 Preliminary: Bipartite Expander Graphs . . . . . . . . . . . . . . . . . . . . . . . . . 25
6.2 Preliminary: A Factory-Facility Problem . . . . . . . . . . . . . . . . . . . . . . . . . 26
6.3 Preliminary: Pippenger’s “Propose-Accept-Finalize” Protocol . . . . . . . . . . . . . 26
6.4 Oblivious Simulation of the Propose-Accept-Finalize Protocol on a PRAM . . . . . . 27

6.4.1 Making the Protocol Communication-Oblivious . . . . . . . . . . . . . . . . . 27
6.4.2 Oblivious Simulation on a PRAM: the Propose-Accept-Finalize Algorithm . . 28

6.5 Reduction from Loose Compaction to the Factory-Facility Problem . . . . . . . . . . 29

7 Improving the OPRAM’s Depth to Õ(logN) 30
7.1 Modifications to the OPRAM’s Data Structure . . . . . . . . . . . . . . . . . . . . . 30
7.2 Improving the Depth of the Fetch Phase . . . . . . . . . . . . . . . . . . . . . . . . . 30

7.2.1 Offline Preparation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
7.2.2 Online Fetch and Route . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

7.3 Improving the Depth of the Maintain Phase . . . . . . . . . . . . . . . . . . . . . . . 34
7.4 Obliviousness . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

1



8 Conclusion and Future Work 36

A Additional Algorithmic Details 40
A.1 Conflict Resolution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
A.2 The Convert Subroutine . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

B Basic OPRAM Scheme: Analysis and Extensions 41
B.1 Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
B.2 Correctness and Obliviousness . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
B.3 Asymptotical Complexity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
B.4 Extension: Results for Large Block Sizes . . . . . . . . . . . . . . . . . . . . . . . . . 43

2



1 Introduction

Oblivious RAM (ORAM), originally proposed in the ground-breaking work by Goldreich and Os-
trovsky [20,21], is an algorithmic technique that transforms any RAM program to a secure version,
such that an adversary learns nothing about the secret inputs from observing the program’s access
patterns to memory. The parallel extension of ORAM was first phrased by Boyle, Chung, and
Pass [5]. Similar to ORAM, an Oblivious Parallel RAM (OPRAM) compiler transforms a Parallel
RAM (PRAM) program into a secure form such that the resulting PRAM’s access patterns leak no
information about secret inputs. ORAMs and OPRAMs have been recognized as powerful building
blocks in both theoretical applications such as multi-party computation [4,24,31], as well as in prac-
tical applications such as cloud outsourcing [12,38,41], and secure processor design [15,16,30,32,36].

Henceforth in this paper, we consider ORAMs to be a special case of OPRAMs, i.e., when both
the original PRAM and the OPRAM have only one CPU. To characterize an OPRAM scheme’s
overhead, we will use the standard terminology total work blowup to mean the multiplicative increase
in total computation comparing the OPRAM and the original PRAM; and we use the term depth
blowup to mean the multiplicative increase in parallel runtime comparing the OPRAM and the
original PRAM — assuming that the OPRAM may employ more CPUs than the original PRAM
to help parallelize its computation [6]. Note that for the case of sequential ORAMs, total work
blowup is equivalent to the standard notion of simulation overhead [20, 21], i.e., the multiplicative
increase in runtime comparing the ORAM and the original RAM. Finally, we use the term space
blowup to mean the multiplicative blowup in space when comparing the OPRAM (or ORAM) and
that of the original PRAM (or RAM).

The original ORAM schemes, proposed by Goldreich and Ostrovsky [20, 21], achieved poly-
logarithmic overheads but required the usage of pseudo-random functions (PRFs); thus they defend
only against computationally bounded adversaries. Various subsequent works [2, 8, 10, 11, 37, 39,
40], starting from Ajtai [2] and Damg̊ard et al. [11] investigated information-theoretically secure
ORAM/OPRAM schemes, i.e., schemes that do not rely on computational assumptions and defend
against even unbounded adversaries. As earlier works point out [2, 11], the existence of efficient
ORAM schemes without computational assumptions is not only theoretically intriguing, but also
has various applications in cryptography. For example, information-theoretically secure ORAM
schemes can be applied to the construction of efficient RAM-model, information-theoretically se-
cure multi-party computation (MPC) protocols [3]. Among known information-theoretically secure
ORAM/OPRAM schemes [2, 5, 8–11, 37, 39, 40], almost all of them achieve only statistical secu-
rity [2, 5, 8–10, 37, 39, 40], i.e., there is still some non-zero failure probability — either correctness
or security failure — but the failure probability can be made negligibly small in N where N is
the RAM/PRAM’s memory size. To the best of our knowledge, the only known perfectly secure
ORAM construction is the elegant work by Damg̊ard et al. [11] — they achieve 0 failure probability
against computationally unbounded adversaries. Although recent works have constructed statisti-
cally secure OPRAMs [5, 8, 9], there is no known (non-trivial) perfectly secure OPRAM scheme to
date.

Motivation for perfect security. Perfectly secure ORAMs/OPRAMs are theoretically intrigu-
ing for various reasons:

1. First, to achieve 2−κ failure probability (either in security or in correctness), the best known sta-
tistically secure OPRAM scheme [6,8] incurs a O(κ logN) total work blowup and O(log κ logN)
depth blowup where N is the PRAM’s memory size. Although for negligibly small in N failure
probability the blowups are only poly-logarithmic in N , they can be as large as N c for some

1



constant c < 1 if one desires (sub-)exponentially small failure probability in N .

2. Second, perfectly secure ORAM schemes have been used as a buildling block in recent results on
oblivious algorithms [37] and searchable encryption schemes [13]. Typically these algorithmic
constructions rely on divide-and-conquer to break down a problem into smaller sizes and then
apply ORAM to a small instance — since the instance size N is small (e.g., logarithmic in the
security parameter), negligible in N failure probability is not sufficient and thus these works
demand perfectly secure ORAMs/OPRAMs and existing statistically secure schemes result in
asymptotically poorer performance.

3. Third, understanding the boundary of perfect and statistical security has been an important
theoretical question in cryptography. For example, a long-standing open problem in cryptogra-
phy is to separate the classes of languages that admit perfect ZK and statistical ZK proofs. For
ORAMs/OPRAMs too, it remains open whether there are any separations between statistical
and perfect security (and we believe that this is an exciting future direction). Perfect security
is also useful in other contexts such as multi-party computation (MPC). For example, Ishai et
al. [27] and Genkin et al. [18] show that perfectly secure MPC is required to achieve their re-
spective goals matching the “circuit complexity” of the underlying application. Perfectly secure
ORAMs/OPRAMs can enable perfectly secure RAM-model MPC, and thus we believe that they
can be an important building block in other areas of theoretical cryptography.

1.1 Our Results and Contributions

In this paper, we prove the following result which significantly advances our theoretical under-
standing of perfectly secure ORAMs and OPRAMs in multiple respects. We present the informal
theorem statement below and then discuss its theoretical significance.

Theorem 1.1 (Informal statement of main theorem). Any PRAM that consumes N memory blocks
each of which is at least logN -bits long 1 can be simulated by a perfectly oblivious PRAM, incurring
O(log3N) total work blowup, O(logN log logN) depth blowup, and O(1) space blowup.

The above theorem improves the theoretical state of the art on perfectly secure ORAMs/OPRAMs
in multiple dimensions:

1. First, our work gives rise to the first perfectly secure (non-trivial) OPRAM construction. No
such construction was known before and it is not clear how to directly parallelize the perfectly
secure ORAM scheme by Damg̊ard et al. [11].

2. Second, even for the sequential special case, we improve Damg̊ard et al. [11] asymptotically by
reducing a logN factor in the ORAM’s space consumption.

3. Third, our perfectly secure OPRAM’s parallel runtime matches the best known statistically
secure construction [6, 8] for negligibly small in N failure probabilities;

4. Finally, when (sub-)exponentially small (in N) failure probabilities are required, our perfectly
secure OPRAM scheme asymptotically outperforms all known statistically secure constructions
both in terms of total work blowup and depth blowup! For example, suppose that we require
2−κ failure probability and N = poly(κ) — then all known statistically secure OPRAM con-
structions [5, 8, 9] would incur at least N c total work blowup and Ω(log2N) depth blowup and
thus our new perfectly secure OPRAM construction is asymptotically better for this scenario.

1All existing ORAM and OPRAM works [20–22,29,37] make this assumption.

2



The above Theorem 1.1 applies to general block sizes. We additionally show that for sufficiently
large block sizes, there exists a perfectly secure OPRAM construction with O(log2N) total work
blowup and O(logm+log logN) depth blowup where m denotes the number of CPUs of the original
PRAM. Finally, we point out that this work focuses mostly on the theoretical understanding of
perfect security in ORAMs/OPRAMs, and we leave it as a future research direction to investigate
their practical performance (see also Section 8).

Technical highlights. Our most novel and non-trivial technical contribution is the use of ex-
pander graphs techniques, allowing our OPRAM to achieve as small as O(logN log logN) depth
blowup. To the best of our knowledge, this is the first time such techniques have been used in
the construction of ORAM/OPRAM schemes. Besides this novel technique, our scheme requires
carefully weaving together many algorithmic tricks that have been used in earlier works [6,8,20,21]

1.2 Related Work

Oblivious RAM (ORAM) was first proposed in a ground-breaking work by Goldreich and Ostro-
vsky [20,21]. Goldreich and Ostrovsky first showed a computationally secure ORAM scheme with
poly-logarithmic simulation overhead. Therefore, one interesting question is whether ORAMs can
be constructed without relying on computational assumptions. Ajtai [2] answered this question and
showed that statistically secure ORAMs with poly-logarithmic simulation overhead exist. Although
Ajtai removed computational assumptions from ORAMs, his construction has a (negligibly small)
statistical failure probability, i.e., with some negligibly small probability, the ORAM construction
can leak information. Subsequently, Shi et al. [37] proposed the tree-based paradigm for construct-
ing statistically secure ORAMs. Tree-based constructions were later improved further in several
works [8,10,19,39,40], and this line of works improve the practical performance of ORAM by several
orders of magnitude in comparison with earlier constructions. It was also later understood that the
tree-based paradigm can be used to construct computationally secure ORAMs saving yet another
log log factor in cost in comparison with statistical security [8, 14].

Perfectly secure ORAM [11] was first studied by Damg̊ard et al. Perfect security requires
that the (oblivious) program’s memory access patterns be identically distributed regardless of the
inputs to the program; and thus with probability 1, no information can be leaked about the secret
inputs to the program. To date, Damg̊ard et al.’s construction [11] remains the only known non-
trivial, perfectly secure ORAM scheme. Their scheme achieves O(log3N) simulation overhead
and O(logN) space blowup relative to the original RAM program. As mentioned, even for the
sequential special case, our paper asymptotically improves Damg̊ard et al.’s result [11] by avoiding
the O(logN) blowup in space; and moreover, our ORAM construction is conceptually simpler than
that of Damg̊ard et al.’s.

Oblivious Parallel ORAM (OPRAM) was first proposed in an elegant work by Boyle, Chung,
and Pass [5], and subsequently improved in several followup works [6–9, 34]. All known results on
OPRAM focus on the statistically secure or the computationally secure setting. To the best of
our knowledge, until this paper, we know of no efficient OPRAM scheme that is perfectly secure.
Chen, Lin and Tessaro [9] introduced a generic method to transform any ORAM into an OPRAM
at the cost of a logN blowup — their techniques achieve only statistical security too since security
(or correctness) is only guaranteed with high probability (specifically, when some queue does not
become overloaded in their scheme).

Defining a good performance metric for OPRAMs turned out to be more interesting and non-
trivial than for ORAMs. Boyle et al. [5] were the first to define a notion of simulation overhead for
OPRAM: if an OPRAM’s simulation overhead is X, it means that if the original PRAM consumes

3



m CPUs and completes in parallel runtime T , then the oblivious counterpart must complete within
X · T time also consuming m CPUs. The recent work of Chan, Chung, and Shi [6] observes that if
the OPRAM could consume more CPUs than the original PRAM, then the oblivious simulation can
benefit from the additional parallelism and be additionally sped up by asymptotical factors. Under
the assumption that the OPRAM can consume more CPUs than the original PRAM, Chan, Chung,
and Shi [6, 8] show that statistically secure OPRAM schemes can be constructed with O(log2N)
blowup in total work and only Õ(logN) blowup in depth (where depth characterizes the parallel
runtime of a program assuming ample number of CPUs). Our paper is the first to construct an
OPRAM scheme with perfect security, and our OPRAM’s depth matches existing schemes with
statistical security assuming negligible in N security failure; however, if (sub-)exponentially small
failure probability is required, our new OPRAM scheme can asymptotically outperform all known
statistically secure OPRAMs!

2 Technical Roadmap

In this section, we present an informal roadmap of our technical approach to aid understanding.

2.1 Simplified Perfectly Secure ORAM with Asymptotically Smaller Space

First, we propose a new perfectly secure ORAM scheme that is conceptually simpler than that of
Damg̊ard et al. [11] and asymptotically gains a logarithmic factor in space. Our construction is
inspired by the hierarchical ORAM paradigm originally proposed by Goldreich and Ostrovsky [20,
21] — however, most existing hierarchical ORAMs achieve only computational security since they
rely on a pseudorandom function (PRF) for looking up hash tables in the hierarchical data structure.
Thus our focus is how to get rid of this PRF and achieve perfect security.

Background: hierarchical ORAM. The recent work by Chan et al. [7] gave a clean and
modular exposition of the hierarchical paradigm. A hierarchical ORAM consists of O(logN) levels
that are geometrically increasing in size. Specifically, level i is capable of storing 2i memory blocks.
One could think of this hierarchical data structure as a hierarchy of stashes where smaller levels
act as stashes for larger levels. In existing schemes with computational security, each level is an
oblivious hash-table [7]. To access a block at logical address addr, the CPU sequentially looks up
every level of the hierarchy (from small to large) for the logical address addr. The physical location
of a logical address addr within the oblivious hash-table is determined using a PRF whose secret
key is known only to the CPU but not to the adversary. Once the block has already been found in
some level, for all subsequent levels the CPU would just look for a dummy element, denoted by ⊥.
When a requested block has been found, it is marked as deleted in the corresponding level where
it is found. Every 2i memory requests, we perform a rebuild operation and merge all levels smaller
than i (including the block just fetched and possibly updated if this is a write request) into level i
— at this moment, the oblivious hash-table in level i is rebuilt, where every block’s location in the
hash table is determined using a PRF.

As Chan et al. [7] point out, the hierarchical ORAM paradigm effectively reduces the problem of
constructing ORAM to constructing an oblivious hash-table supporting two operations: 1) rebuild
takes in a set of blocks each tagged with its logical address, and constructs a hash-table data
structure that facilitates lookups later; and 2) lookup takes a request that is either a logical address
addr or dummy (denoted ⊥), and returns the corresponding block requested. Obliviousness (defined
w.r.t. the joint access patterns of the rebuild and lookup phases) is guaranteed as long as during

4



the life-time of the oblivious hash-table, the sequence of lookup requests never ask for the same
real element twice — and this invariant is guaranteed by the specific way the hierarchical ORAM
framework uses the oblivious hash-table as a building block (more specifically, the fact that once a
block is found, it is moved to a smaller level and a dummy block is requested from all subsequent
levels).

Removing the PRF. As mentioned, an oblivious hash-table relies on a PRF to determine each
block’s location within a hash-table instance; and both the rebuilding phase and the lookup phase
use the same PRF for placing and fetching blocks respectively. Since we wish to achieve perfect
security, we would like to remove the PRF. One simple idea is to randomly permute all blocks
within a level — this way, each lookup of a real block would visit a random location and we could
hope to retain security as long as every real block is requested at most once for every level (in
between rebuilds)2. Using techniques from earlier works [6, 8], it is possible to obliviously perform
such a random permutation without disclosing the permutation; however, the difficulty arises when
one wishes to perform a look up — if blocks are randomly permuted within a level during rebuild,
lookup must know where each block resides to proceed successfully. Thus if the CPU could hold
a position map for free to remember where each block is in the hierarchical data structure, the
problem would have been resolved: during every lookup, the CPU could first look up the physical
location of the logical address requested, and then proceed accordingly.

Actually storing such a position map, however, would consume too much CPU space. To avoid
storing this position map, we are inspired by the recursion technique that is commonly adopted by
tree-based ORAM schemes [37] — however, as we point out soon, making the recursion idea work
for the hierarchical ORAM paradigm is more sophisticated. The high-level idea is to recursively
store the position map in a smaller ORAM rather than storing it on the CPU side; we could then
recurse and store the position map of the position map in an even smaller ORAM, and so on — until
the ORAM’s size becomes O(1) at which point we would have the CPU store the entire ORAM.
Henceforth, we use the notation ORAMD to denote the ORAM that stores the actual data blocks
where D = O(logN); and we use ORAMd to denote the ORAM at depth d of this recursion where
d ∈ [0..D − 1]. Thus, the larger d is, the larger the ORAM.

Although this recursion idea was very simple in the tree-based ORAM paradigm, it is not im-
mediately clear how to make the same recursion idea work in the hierarchical ORAM paradigm.
One trickiness arises since in a hierarchical ORAM, every 2i requests, the ORAM would reshuffle
and merge all levels smaller than i into level i — this is called a rebuild of level i. When a level-i re-
build happens, the position labels in the position-map ORAM must be updated as well to reflect the
blocks’ new locations. In a similar fashion, the position labels in all of ORAM0,ORAM1, . . . ,ORAMD−1
must be updated. We make the following crucial observation that will enable a coordinated rebuild
technique which we will shortly explain:

(Invariant necessary for coordinated rebuild:) If a data block resides at level i of ORAMD, then
its position labels in all recursion depths must reside in level i or smaller3.

This invariant enables a coordinated rebuild technique: when the data ORAM (i.e., ORAMD)
merges all levels smaller than i into level i, all smaller recursion depths would do the same (unless
the recursion depth is too small and does not have level i, in which case the entire ORAM would be
rebuilt). During this coordinated rebuild, ORAMD would first perform its rebuild, and propagate

2As we point out later, randomly permuting real blocks is in fact not sufficient; we also need to allow dummy
lookups by introducing an oblivious dummy linked list.

3A similar observation was adopted by Goodrich et al. [23] in their statistically secure ORAM construction.

5



the position labels of all blocks involved in the rebuild to recursion depth D − 1; then ORAMD−1
would perform its rebuild based on the position labels learned from ORAMD, and propagate the
new position labels involved to recursion depth D−2, and so on. As we shall discuss in the technical
sections, rebuilding a level (in any recursion depth) can be accomplished through the help of O(1)
oblivious sorts and an oblivious random permutation.

Handling dummy blocks with oblivious linked lists. The above idea almost works, but not
quite so. There is an additional technical subtlety regarding how to handle and use dummy blocks.
Recall that during a memory access, if a block requested actually resides in a hierarchical level,
we would read the memory location that contains the block (and this memory location could be
retrieved through a special recursive position map technique). If a block does not reside in a level
(or has been found in a smaller level), we still need to read a dummy location within the level to
hide the fact that the block does not reside within the current level.

Recall that the i-th level must support up to 2i lookups before the level is rebuilt. Thus, one
idea is to introduce 2i dummy blocks, and obliviously and randomly permute all blocks, real and
dummy alike, during the rebuild. All dummy blocks may be indexed by a dummy counter, and
every time one needs to look up a dummy block in a level, we will visit a new dummy block. In
this way, we can retain obliviousness by making sure that every real block and every dummy block
is visited at most once before the level is rebuilt again.

To make this idea fully work, there must be a mechanism for finding out where the next
dummy block is every time a dummy lookup must be performed. One näıve idea would be to use
the same recursion technique to store position maps for dummy blocks too — however, since each
memory request might involve reading O(logN) dummy blocks, one per level, doing so would incur
extra blowup in runtime and space. Instead, we use an oblivious dummy linked list to resolve this
problem — this oblivious dummy linked list is inspired by technical ideas in the Damg̊ard et al.
construction [11]. In essence, each dummy block stores the pointer to the next dummy block, and
the head pointer of the linked list is stored at a designated memory location and updated upon
each read of the linked list. In the subsequent technical sections, we will describe how to rely on
oblivious sorting to rebuild such an oblivious dummy linked list to support dummy lookups.

Putting it altogether. Putting all the above ideas together, the formal presentation of our
perfectly secure ORAM scheme adopts a modular approach4. First, we define and construct an
abstraction called an “oblivious one-time memory”. An oblivious one-time memory allows one to
obliviously create a data structure given a list of input blocks. Once created, one can look up real
or dummy blocks in the data structure, and to look up a real block one must provide a correct
position label indicating where the block resides (imagine for now that the position label comes
from an “oracle” but in the full ORAM scheme the position label comes from the recursion). An
oblivious one-time memory retains obliviousness as long as every real block is looked up at most
once and moreover, dummy blocks are looked up at most n times where n is a predetermined
parameter (that the scheme is parametrized with).

Once we have this “oblivious one-time memory” abstraction, we show how to use it to construct
an intermediate abstraction referred to as a “position-based ORAM”. A position-based ORAM
contains a hierarchy of oblivious one-time memory instances, of geometrically growing sizes. A
position-based ORAM is almost a fully functional ORAM except that we assume that upon every
memory request, an “oracle” will somehow provide a correct position label indicating where the
requested block resides in the hierarchy.

4In fact, later in our paper, we omit the sequential version and directly present the parallel version of all algorithms.

6



Finally, we go from such a “position-based ORAM” to a fully functional ORAM using the
special recursive position-map technique as explained.

At this point, we have constructed a perfectly secure ORAM scheme with O(log3N) simulation
overhead. Specifically, one logN factor arises from the logN depths of recursion, the remaining
log2N factor arises from the cost of the ORAM at each recursion depth. Intuitively, our perfectly
secure ORAM is a logarithmic factor more expensive than existing computationally-secure coun-
terparts in the hierarchical framework [7,22,29] since the computationally-secure schemes [7,22,29]
avoid the recursion by adopting a PRF to compute the pseudorandom position labels of blocks.

2.2 Making Our ORAM Scheme Parallel

Our next goal is to make our ORAM scheme parallel. Instead of compiling a sequential RAM
program to a sequential ORAM, we are now interested in compiling a PRAM program to an
OPRAM.

2.2.1 When the OPRAM Consumes the Same Number of CPUs as the PRAM

Suppose that the original program is a PRAM that completes in T parallel steps consuming m
CPUs. First, using standard techniques, it would not be too difficult to parallelize our earlier
ORAM scheme and construct an OPRAM that completes in T ·O(log3N) parallel steps consuming
also exactly m CPUs. We stress that the simplicity of our sequential ORAM construction makes
it easy to parallelize — in comparison, we are not aware how to parallelize Damg̊ard et al. [11]’s
construction. The main technique needed for this parallelization is oblivious routing: when the m
CPUs at recursion depth d have fetched the position labels for the next recursion depth, the m
CPUs at depth d must now obliviously route the position labels to the correct fetch CPU at the
next recursion depth. As shown in earlier works [5,6,8], such oblivious routing can be accomplished
with m CPUs in O(logm) parallel steps.

2.2.2 When the OPRAM May Consume Unbounded Number of CPUs

The more interesting question is the following: if the OPRAM is allowed to consume more CPUs
than the original PRAM, can we further reduce its parallel runtime? If so, it intuitively means
that the overheads arising due to obliviousness are parallelizable in nature. This model was first
considered by Chan et al. [6] and can be considered as a generalization of the case when the OPRAM
must consume the same number of CPUs as the original PRAM.

So far, in our OPRAM scheme, although within each recursion depth, up to m requests can be
served concurrently, the operations over all O(logN) recursion depths must be performed sequen-
tially. There are two reasons that necessitate this sequentiality:

1. Fetch phase: first, to fetch from recursion depth d, one must wait for the appropriate position
labels to be fetched from recursion depth d− 1 and routed to recursion depth d;

2. Maintain phase: recall that coordinated rebuilding (see Section 2.1) is performed across all
recursion depths in the reverse direction: recursion depth d must rebuild first and then propagate
the new positions labels back to recursion depth d−1 before d−1 can rebuild (recall that recursion
depth d− 1 must store the position labels for blocks in depth d).

Note that for the fetch phase, oblivious routing between any two adjacent recursion depths would
consume O(logm) depth; for the maintain phase, rebuilding a hierarchical level can consume up
to O(logN) depth (due to oblivious sorting of up to O(N) blocks). Thus, the current OPRAM

7



algorithm incurs a depth blowup of O(log2N) for moderate sizes of m, e.g., when logm = Θ(logN).
Our next goal is to reduce the depth blowup to Õ(logN), and this turns out to be highly non-trivial.

Reducing the depth of the fetch phase. Using the recursion technique, it seems inherent
that one must fetch from smaller recursion depths before embarking on larger ones. To reduce
the depth of the fetch phase, we ask whether the depth incurred by oblivious routing in between
adjacent recursion depths can be reduced. In the statistically and computationally secure settings,
the recent work by Chan, Chung, and Shi have tried to tackle a similar problem for tree-based
OPRAMs [6]. Their idea is to construct an offline/online routing algorithm. Although the offline
phase incurs O(logN) depth per recursion depth, the offline work of all recursion depths can be
performed concurrently rather than sequentially. On the other hand, the online phase of their
routing algorithm must be performed sequentially among the recursion depths, but happily the
online routing phase incurs only O(1) depth per recursion depth. Unfortunately, the offline/online
routing algorithm of Chan et al. [6] is a randomized algorithm that leverages some form of statistical
“load balancing”, and such load balancing can fail with negligibly small probability — this makes
their algorithm unsuitable for the perfect security setting.

We propose a novel offline/online routing algorithm that achieves perfect security using expander-
graph techniques. Just like Chan et al. [6], our offline/online routing algorithm achieves O(logN)
depth for each recursion depth in the offline stage but the work in all recursion depths can be
performed in parallel in the offline stage. By contrast, the online phase must traverse the recursion
depths sequentially, but the online stage of routing can be accomplished in O(1) depth per recur-
sion depth. To achieve this, we rely on a core building block called a “loose compactor”. A loose
compactor algorithm takes an input array containing 2Cm elements (where C > 1 is a constant)
among which m are real and the remaining are dummies, and outputs a compressed array of size
Cm, i.e., half the size of the input array, such that the output includes all the real elements of the
input (and is padded with dummies). We would like to construct an offline/online loose compactor
algorithm that has O(1) online depth and up to O(logN) offline depth. At this moment, we resort
to techniques from expander graphs — to the best of our knowledge, we are the first to adopt
such techniques in the construction of ORAM. More specifically, we adopt algorithmic techniques
described by Pippenger in constructing a self-routing super-concentrator [35]. We observe that
a building block in Pippenger’s elegant construction [35] can be modified to attain the desired
oblivious, offline/online loose compactor algorithm that we need. Section 6 will describe in detail
this loose compactor algorithm; and Section 7 will describe in detail how to leverage such a loose
compactor, combined with ideas from Chan et al. [6], to reduce the depth of the OPRAM’s fetch
phase to only Õ(logN) over all recursion depths.

Reducing the depth of the maintain phase. We also must reduce the depth of the maintain
phase. Although a näıve implementation of coordinated rebuild is to do it sequentially from recursion
depth D downto recursion depth 0, we devise a method for performing the coordinated rebuild in
parallel among all recursion depths. Recall that in the näıve solution, recursion depth d− 1 must
wait for recursion depth d to relocate its blocks and be informed of the new position labels chosen
before it starts reshuffling.

In our new algorithm, we introduce the notion of a rehearsal step called “mock shuffle” which
determines the new positions of each of the blocks. Note that during this step, the newly chosen
block contents (position labels) at the recursion depths are not available. Now, instead of sequen-
tially performing the shuffle, in a mock shuffle, every recursion depth performs eager reshuffling
without having updated the block’s contents (recall that each block in recursion depth d is supposed

8



to store position labels for the next recusion depth d+ 1). After this mock shuffle, all blocks’ new
positions are determined though their contents are not known. Each mock reshuffle incurs O(logN)
depth, but they are independent and can be performed in parallel. At this moment, recursion depth
d informs the newly chosen position labels to recursion depth d − 1 — now recursion depth d − 1
relies on oblivious routing to deliver each block’s contents to the block. Note that recursion depth
d − 1 has already chosen each block’s position at this point and thus in this content update step,
each block’s contents will be routed to the corresponding block and all blocks will maintain their
chosen positions.

Using this idea, although each recursion depth incurs O(logN) depth for the maintain phase,
all recursion depths can now perform the maintain-phase operations in parallel.

Additional techniques. Besides the above, additional tricks are needed to achieve Õ(logN)
depth. For example, within each recursion depth, all the hierarchical levels must be read in parallel
during the fetch phase rather than sequentially like in existing hierarchical ORAMs [20,21], and the
result of these fetches can be aggregated using an oblivious select operation incurring O(log logN)
depth (see Section 3.3). It is possible for us to read all the hierarchical levels in parallel since each
recursion depth must have received the position labels of all real blocks requested before its fetch
phase starts — and thus we know for each requested block which level to look for a real element
and which level to visit dummies. We defer additional algorithmic details and tricks to the later
technical sections.

3 Definitions

3.1 Parallel Random-Access Machines

We review the concepts of a parallel random-access machine (PRAM) and an oblivious parallel
random-access machine (OPRAM). Some of the definitions in this section are borrowed verbatim
from Boyle et al. [5] or Chan and Shi [8].

Although we give definitions only for the parallel case, we point out that this is without loss of
generality, since a sequential RAM can be thought of as a special case PRAM with one CPU.

Parallel Random-Access Machine (PRAM). A parallel random-access machine (PRAM)
consists of a set of CPUs and a shared memory denoted by mem indexed by the address space
{0, 1, . . . , N − 1}, where N is a power of 2. In this paper, we refer to each memory word also as a
block, which is at least Ω(logN) bits long.

In a PRAM, each step of the execution can employ multiple CPUs, and henceforth we use mt

to denote the number of CPUs involved in executing the t-th step for t ∈ N. In each step, each
CPU executes a next instruction circuit denoted Π, updates its CPU state; and further, CPUs

interact with memory through request instructions ~I(t) := (I
(t)
i : i ∈ [mt]). Specifically, at time

step t, CPU i’s instruction is of the form I
(t)
i := (read, addr), or I

(t)
i := (write, addr, data) where the

operation is performed on the memory block with address addr and the block content data.

If I
(t)
i = (read, addr) then the CPU i should receive the contents of mem[addr] at the beginning

of time step t. Else if I
(t)
i = (write, addr, data), CPU i should still receive the contents of mem[addr]

at the beginning of time step t; further, at the end of step t, the contents of mem[addr] should be
updated to data.

9



Write conflict resolution. By definition, multiple read operations can be executed concurrently
with other operations even if they visit the same address. However, if multiple concurrent write
operations visit the same address, a conflict resolution rule will be necessary for our PRAM to be
well-defined. In this paper, we assume the following:

• The original PRAM supports concurrent reads and concurrent writes (CRCW) with an arbitary,
parametrizable rule for write conflict resolution. In other words, there exists some priority rule
to determine which write operation takes effect if there are multiple concurrent writes in some
time step t.

• Our compiled, oblivious PRAM (defined below) is a “concurrent read, exclusive write” PRAM
(CREW). In other words, our OPRAM algorithm must ensure that there are no concurrent
writes at any time.

We note that a CRCW-PRAM with a parametrizable conflict resolution rule is among the most
powerful CRCW-PRAM model, whereas CREW is a much weaker model. Our results are stronger
if we allow the underlying PRAM to be more powerful but our compiled OPRAM uses a weaker
PRAM model. For a detailed explanation on how stronger PRAM models can emulate weaker ones,
we refer the reader to the work by Hagerup [25].

CPU-to-CPU communication. In the remainder of the paper, we sometimes describe our
algorithms using CPU-to-CPU communication. For our OPRAM algorithm to be oblivious, the
inter-CPU communication pattern must be oblivious too. We stress that such inter-CPU commu-
nication can be emulated using shared memory reads and writes. Therefore, when we express our
performance metrics, we assume that all inter-CPU communication is implemented with shared
memory reads and writes. In this sense, our performance metrics already account for any inter-
CPU communication, and there is no need to have separate metrics that characterize inter-CPU
communication. In contrast, some earlier works [9] adopt separate metrics for inter-CPU commu-
nication.

Additional assumptions and notations. Henceforth, we assume that each CPU can only
store O(1) memory blocks. Further, we assume for simplicity that the runtime T of the PRAM is
fixed a priori and publicly known. Therefore, we can consider a PRAM to be parametrized by the
following tuple

PRAM := (Π, N, T,m1,m2, . . . ,mT ),

where Π denotes the next instruction circuit, N denotes the total memory size (in terms of number
of blocks), T denotes the PRAM’s total runtime, and mt denotes the number of CPUs in the t-th
step for t ∈ [T ].

Finally, in this paper, we consider PRAMs that are stateful and can evaluate a sequence of
inputs, carrying state across in between. Without loss of generality, we assume each input can be
stored in a single memory block.

3.2 Oblivious Parallel Random-Access Machines

An OPRAM is a (randomized) PRAM with certain security properties, i.e., its access patterns leak
no information about the inputs to the PRAM.

10



Randomized PRAM. A randomized PRAM is a special PRAM where the CPUs are allowed to
generate private random numbers. For simplicity, we assume that a randomized PRAM has a priori
known, deterministic runtime, and that the CPU activation pattern in each time step is also fixed
a priori and publicly known.

Memory access patterns. Given a PRAM program denoted PRAM and a sequence inp of inputs,
we define the notation Addresses[PRAM](inp) as follows:

• Let T be the total number of parallel steps that PRAM takes to evaluate inputs inp.

• Let At := (addrt1, addrt2, . . . , addrtmt
) be the list of addresses such that the ith CPU accesses

memory address addrti in time step t.

• We define Addresses[PRAM](inp) to be the random object [At]t∈[T ].

Oblivious PRAM (OPRAM). We say that a PRAM is perfectly oblivious, iff for any two input
sequences inp0 and inp1 of equal length, it holds that the following distributions are identically
distributed (where ≡ denotes identically distributed):

Addresses[PRAM](inp0) ≡ Addresses[PRAM](inp1)

We remark that for statistical and computational security, some earlier works [7, 8] presented
an adaptive, composable security notion. The perfectly oblivious counterpart of their adaptive,
composable notion is equivalent to our notion defined above. In particular, our notion implies
security against an adaptive adversary who might choose the input sequence inp adaptively over
time after having observed partial access patterns of PRAM.

We say that OPRAM is a perfectly oblivious simulation of PRAM iff OPRAM is perfectly obliv-
ious, and moreover OPRAM(inp) is identically distributed as PRAM(inp) for any input inp. In the
remainder of the paper, we always assume that the original PRAM has a fixed number of CPUs
(denoted m) in all steps of execution. For the compiled OPRAM, we consider two models 1) when
the OPRAM always consumes exactly m CPUs in every step (i.e., the same number of CPUs as
the original PRAM); and 2) when the OPRAM can consume an unbounded number of CPUs in
every step; in this case, the actual number of CPUs consumed in each step may vary. We leave it
as an open problem how to obliviously simulate a PRAM with a varying number of CPUs (without
näıvely padding the number of CPUs to the maximum which can incur large overhead).

Oblivious simulation metrics. We adopt the following metrics to characterize the overhead of
(parallel) oblivious simulation of a PRAM. In the following, when we say that an OPRAM scheme
consumes T parallel steps (orW total work), we mean that the OPRAM scheme consumes T parallel
steps (or W total work) except with negligible in N probability. In other words, the definition of
our metrics allows the OPRAM to sometimes, but with negligibly small (in N) probability, exceed
the desired runtime or total work bound; however, note that the security or correctness failure
probability must be 0 5

• Simulation overhead (when the OPRAM consumes the same number of CPUs as the PRAM). If
a PRAM that consumes m CPUs and completes in T parallel steps can be obliviously simulated
by an OPRAM that completes in γ · T steps also with m CPUs (i.e., the same number of CPUs
as the original PRAM), then we say that the simulation overhead is γ. Note that this means
that every PRAM step is simulated by on average γ OPRAM steps.

5Similarly, the perfectly secure ORAM by Damg̊ard et al. [11] also allowed a negligible small probabilty for the
algorithm to exceed the desired complexity bound but the security or correctness failure probability must be 0.

11



• Total work blowup (when the OPRAM may consume unbounded number of CPUs). A PRAM’s
total work is the number of steps necessary to simulate the PRAM under a single CPU, and is
equal to the sum

∑
t∈[T ]mt. If a PRAM of total work W can be obliviously simulated by an

OPRAM of total work γ ·W we say that the total work blowup of the oblivious simulation is γ.

• Depth blowup (when the OPRAM may consume unbounded number of CPUs). A PRAM’s depth
is defined to be its parallel runtime when there are an unbounded number of CPUs. If a PRAM
of depth D can be obliviously simulated by an OPRAM of depth γ · D we say that the depth
blowup of the oblivious simulation is γ.

Note that the simulation overhead is a good standalone metric if we assume that the OPRAM
must consume the same number of CPUs as the PRAM. If the OPRAM is allowed to consume
more CPUs than the PRAM, we typically use the metrics total work blowup and depth blowup in
conjunction with each other: total work blowup alone does not characterize how much the OPRAM
preserves parallelism; and depth blowup alone does not capture the extent to which the OPRAM
preserves total work.

Finally, the following simple fact is useful for understanding the complexity of (oblivious) parallel
algorithms.

Fact 3.1. Let C > 1. If an (oblivious) parallel algorithm Alg can complete in T steps consuming
m CPUs, then it can complete in CT steps consuming dmC e CPUs.

3.3 Building Blocks

We now introduce several useful oblivious algorithms building blocks. With the exception of obliv-
ious random permutation, we assume that all remaining building blocks are deterministic: for a
deterministic algorithm, obliviousness means that the algorithm’s memory access pattern is inde-
pendent of its input.

Oblivious sort. Ajtai, Komlós, and Szemerédi [1] show how to construct a circuit with n log n
comparators that can correctly sort any input sequence containing n comparable elements. This
immediately gives rise to a parallel oblivious sorting algorithm with O(n log n) total work and
O(log n) depth.

Oblivious routing. Oblivious routing solves the following problem. Suppose n source CPUs
each holds a data block with a distinct key (or a dummy block). Further, n destination CPUs
each holds a key and requests a data block identified by its key — multiple destination CPUs can
possibly request the same key. An oblivious routing algorithm routes the requested data block
to the destination CPU in an oblivious manner. We may assume that the destination CPUs are
represented by an ordered array X. Initially the payload of each entry of X is left empty. After
the routing, each entry of X receives a data block (the received data block is dummy if no source
CPUs hold the same key as requested). The ordering of elements in X is preserved between the
input and output.

Boyle et al. [5] showed that through a combination of oblivious sorts and oblivious aggregation,
oblivious routing can be achieved in O(log n) parallel runtime with O(n) CPUs.

Obliviously computing the routing permutation. Suppose that we are given a source array
src of length n where each entry holds a distinct key, and a destination array dst also of length n
where each entry holds a distinct key. Further, it is guaranteed that the set of keys in src is the same

12



as the set of keys in dst. We would like to write down a permutation π (henceforth referred to as
the routing permutation) such that applying π to src would result in the same order of keys as dst.
The recent work by Chan and Shi [8] showed how to implement the above task obliviously using
O(1) number of oblivious sorts. Thus, with O(n) CPUs the routing permutation can be computed
in O(log n) parallel runtime.

Oblivious select. Consider the following problem: given a set of n elements among which at most
one element is distinguishing, output the distinguishing element (and if no element is distinguishing,
output ⊥). It is not difficult to see that by building an aggregation tree over the n elements, one
can accomplish oblivious select with n CPUs in log n parallel steps.

Oblivious prefix sum. Given an array X of length n, every i ∈ [n] wants to compute the sum
of the prefix X[1..i]. There exists a parallel oblivious algorithm to achieve this in O(log n) steps
consuming n CPUs [26].

Oblivious random permutation. Let ORP be an algorithm that upon receiving an input array
X, outputs a permutation of X. Let Fperm denote an ideal functionality that upon receiving the
input array X, outputs a perfectly random permutation of X.

We say that ORP is a perfectly oblivious random permutation, iff there exists a simulator Sim
such that the joint distribution (Fperm(X), Sim(|X|)) is identically distributed as the joint distri-
bution of the output and the addresses incurred by running ORP on X. Note that the simulator
Sim is given only the input length |X| but not the contents of X.

Chan, Chung, and Shi [6] recently describe a perfectly oblivious random permutation algorithm,
which, except with negligible in λ probability, completes in O(log n+α(λ)) parallel steps consuming
n CPUs assuming that the each block is large enough to store log λ bits (where α is a suitable super-
constant function). We summarize their construction in the following theorem where we choose
α(λ) := log log λ that will suffice for the purpose of this paper.

Theorem 3.2 (Perfectly oblivious random permutation [6]). Assume that each memory block is
large enough to store at least log λ bits and that n ≤ λ ≤ 2O(n2). Then, there exists a perfectly
oblivious random permutation algorithm that consumes n CPUs.

Except with λ probability, the algorithm completes in O(log n + log log λ) parallel steps and
O(n log n) work.

We note that the failure is in terms of the algorithm’s runtime — there is a negligibly small
probability that the algorithm will run for longer, but the algorithm guarantees perfect security
regardless.

4 Parallel One-Time Oblivious Memory

We define and construct an abstract datatype to process non-recurrent memory lookup requests.
Although the abstraction is similar to the oblivious hashing scheme in Chan et al. [7], our one-time
memory scheme needs to be perfectly secure and does not use a hashing scheme. Furthermore,
we assume that every real lookup request is tagged with a correct position label that indicates
where the requested block is — in this section, we simply assume that the correct position labels
are simply provided during lookup; but later in our full OPRAM scheme, we will use a recur-
sive ORAM/OPRAM technique reminiscent of those used in binary-tree-based ORAM/OPRAM

13



schemes [8, 10, 37, 39, 40] such that we can obtain the position label of a block first before fetching
the block.

4.1 Definition: One-Time Oblivious Memory

4.1.1 Intuition

We describe the intuition using the sequential special case but our formal presentation later will
directly describe the parallel version. An oblivious one-time memory supports three operations:
1) Build, 2) Lookup, and 3) Getall. Build is called once upfront to create the data structure: it
takes in a set of real blocks (each tagged with its logical address) and creates a data structure
that facilitates lookup. After this data structure is created, a sequence of lookup operations can
be performed: each lookup can request a real block identified by its logical address or a dummy
block denoted ⊥ — if the requested block is a real block, we assume that the correct position label
is supplied to indicate where in the data structure the requested block is. Finally, when the data
structure is no longer needed, one may call a Getall operation to obtain a list of blocks (tagged with
their logical addresses) that have not been looked up yet — in our OPRAM scheme later, this is
the set of blocks that need to be preserved during rebuilding.

We require that our oblivious one-time memory data structure retain obliviousness as long as
1) the sequence of real blocks looked up all exist in the data structure (i.e., it appeared as part of
the input to Build), and moreover, each logical address is looked up at most once; and 2) at most ñ
number of dummy lookups may be made where ñ is a predetermined parameter (that the scheme
is parametrized with).

4.1.2 Formal Definition

Our formal presentation will directly describe the parallel case. In the parallel version, lookup
requests come in batches of size m > 1.

A (parallel) one-time memory scheme denoted OTM[n,m,t] is parametrized by three parameters:
n denotes the upper bound on the number of real elements; m is the batch size for lookups; t is
the upper bound on the number of batch lookups supported. We use three parameters because we
use different versions of OTM. For the basic version in Section 5, we have t = n

m number of batch
lookups, whereas in Section 7, the number of batch lookups is larger (which means that some of
the lookup addresses must be dummy).

The (parallel) one-time memory scheme OTM[n,m,t] is comprised of the following possibly ran-
domized, stateful algorithms to be executed on a Concurrent-Read, Exclusive-Write PRAM — note
that since the algorithms are stateful, every invocation will update an implicit data structure in
memory. Henceforth we use the terminology key and value in the formal description but in our
OPRAM scheme later, a real key will be a logical memory address and its value is the block’s
content.

• U ← Build({(ki, vi) : i ∈ [n]}): given a set of n key-value pairs (ki, vi), where each pair is either
real or of the form (⊥,⊥), the Build algorithm creates an implicit data structure to facilitate
subsequent lookup requests, and moreover outputs a list U of exactly n key-position pairs where
each pair is of the form (k, pos). Further, every real key input to Build will appear exactly once
in the list U ; and the list U is padded with ⊥ to a length n. Note that U does not include the
values vi’s. Later in our scheme, this key-position list U will be propagated back to the parent
recursion depth during a coordinated rebuild6.

6Note that we do not explicitly denote the implicit data structure in the output of Build, since the implicit data

14



• (vi : i ∈ [m]) ← Lookup({(ki, posi) : i ∈ [m]}): there are m concurrent Lookup operations in a
single batch, where we allow each key ki requested to be either real or ⊥. Moreover, in each
batch, at most n/t of the keys are real.

• R← Getall: the Getall algorithm returns an array R of length n where each entry is either ⊥ or
real and of the form (k, pos). The array R should contain all real entries that have been inserted
during Build but have not been looked up yet, padded with ⊥ to a length of n.

Valid request sequence. Our oblivious one-time memory ensures obliviousness only if lookups
are non-recurrent (i.e., never look for the same real key twice); and moreover the number of lookups
requests must be upper bounded by a predetermined parameter. More formally, a sequence of
operations is valid, iff the following holds:

• The sequence begins with a single call to Build upfront; followed by a sequence of at most t batch
Lookup calls, each of which supplies a batch of m keys and the corresponding position labels;
and finally the sequence ends with a single call to Getall.

• The Build call is supplied with an input array S := {(ki, vi)}i∈[n], such that any two real entries
in S must have distinct keys.

• For every Lookup({(ki, posi) : i ∈ [m]}) query in the sequence, if each ki is a real key, then ki
must be contained in S that was input to Build earlier. In other words, Lookup requests are not
supposed to ask for real keys that do not exist in the data structure7; moreover, each (ki, posi)
pair supplied to Lookup must exist in the U array returned by the earlier invocation of Build,
i.e., posi must be a correct position label for ki; and

• Finally, in all Lookup requests in the sequence, no two keys requested (either in the same or
different batches) are the same.

Correctness. Correctness requires that

1. for any valid request sequence, with probability 1, for every Lookup({(ki, posi) : i ∈ [m]}) request,
the i-th answer returned must be ⊥ if ki = ⊥; else if ki 6= ⊥, Lookup must return the correct
value vi associated with ki that was input to the earlier invocation of Build.

2. for any valid request sequence, with probability 1, Getall must return an array R containing
every (k, v) pair that was supplied to Build but has not been looked up; moreover the remaining
entries in R must all be ⊥.

Perfect obliviousness. We say that two valid request sequences are length-equivalent, if the
input sets to Build have equal size, and the number of Lookup requests (where each request asks
for a batch of m keys) in the two sequences are the same.

We say that a (parallel) one-time memory scheme is perfectly oblivious, iff for any two length-
equivalent request sequences that are valid, the distribution of access patterns resulting from the
algorithms are identically distributed.

structure is needed only internally by the current oblivious one-time memory instance. In comparison, U is explicitly
output since U will later on be (externally) needed by the parent recursion depth in our OPRAM construction.

7We emphasize this is a major difference between this one-time memory scheme and the oblivious hashing ab-
straction of Chan et al. [7]); Chan et al.’s abstraction [7] allows lookup queries to ask for keys that do not exist in
the data structure.

15



4.2 Construction

4.2.1 Intuition

We first explain the intuition for the sequential case, i.e., m = 1. The intuition is simply to
permute all elements received as input during Build. However, since subsequent lookup requests
may be dummy (also denoted ⊥), we also need to pad the array with sufficiently many dummies to
support these lookup requests. The important invariant is that each real element as well as each
dummy will be accessed at most once during lookup requests. For reals, this is guaranteed since
the definition of a valid request sequence requires that each real key be requested no more than
once, and that each real key requested must exist in the data structure. For dummies, every time a
⊥-request is received, we always look for an unvisited dummy. To implement this idea, one tricky
detail is that unlike real lookup requests, dummy requests do not carry the position label of the
next dummy to be read — thus our data structure itself must maintain an oblivious linked list of
dummies such that we can easily find out where the next dummy is. Since all real and dummies
are randomly permuted during Build, and due to the aforementioned invariant, every lookup visits
a completely random location of the data structure thus maintaining perfect obliviousness.

It is not too difficult to make the above algorithm parallel (i.e., for the case m > 1). To achieve
this, one necessary modification is that instead of maintaining a single dummy linked list, we now
must maintain m dummy linked lists. These m dummy linked lists are created during Build and
consumed during Lookup.

4.2.2 Detailed Construction

At the end of Build, our algorithm creates an in-memory data structure consisting of the following:

1. An array A of length n + ñ, where ñ := tm denotes the number of dummies and n denotes
the number of real elements. Each entry of the array A (real or dummy alike) has four fields
(key, val, next, pos) where

• key is a key that is either real or dummy; and val is a value that is either real or dummy.

• the field next ∈ [0..n+ñ) matters only for dummy entries, and at the end of the Build algorithm,
the next field stores the position of the next entry in the dummy linked list (recall that all
dummy entries form m linked lists); and

• the field pos ∈ [0..n+ ñ) denotes where in the array an entry finally wants to be — at the end
of the Build algorithm it must be that A[i].pos = i. However, during the algorithm, entries of
A will be permuted transiently; but as soon as each element i has decided where it wants to
be (i.e., A[i].pos), it will always carry its desired position around during the remainder of the
algorithm.

2. An array that stores the head pointers of all m dummy linked lists. Specifically, we denote the
m head pointers as {dposi : i ∈ [m]} where each dposi ∈ [0..n + ñ) is the head pointer of one
dummy linked list.

These in-memory data structures, including A and the dummy pointers will then be updated
during Lookup.

Build. Our oblivious Build({(ki, vi)}i∈[n]) algorithm proceeds as follows.

16



1. Initialize. Construct an array A of length n+ ñ whose entries are of the form described above.
Specifically, the keys and values for the first n entries of A are copied from the input. Recall
that the input may contain dummies too, and we use ⊥ to denote a dummy key from the input.

The last ñ entries of A contain special dummy keys that are numbered. Specifically, for each
i ∈ [1..ñ], we denote An[i] := A[n− 1 + i], and the entry stored at An[i] has key ⊥i and value ⊥.

2. Every element decides at random its desired final position. Specifically, perform a perfectly
oblivious random permutation on the entries of A — this random permutation decides where
each element finally wants to be.

Now, for each i ∈ [0..n + ñ), let A[i].pos := i. At this moment, A[i].pos denotes where the
element A[i] finally wants to be. Henceforth in the algorithm, the entries of A will be moved
around but each element always carries around its desired final position.

3. Construct the key-position map U . Perform oblivious sorting on A using the field key. We
assume that real keys have the highest priority followed by ⊥ < ⊥1 < · · · < ⊥ñ (where smaller
keys come earlier).

At this moment, we can construct the key-position map U from the first n entries of A — recall
that each entry of U is of the form (k, pos).

4. Construct m dummy linked lists. Observe that the last ñ entries of A contain special dummy
keys, on which we perform the following to build m disjoint singly-linked lists (each of which
has length t). For each i ∈ [1..ñ], if i mod t 6= 0 we update the entry An[i].next := An[i+1].pos,
i.e., each dummy entry (except the last entry of each linked list) records its next pointer.

We next record the positions of the heads of the m lists. For each i ∈ [m], we set dposi :=
An[t(i− 1)].pos.

5. Move entries to their desired positions. Perform an oblivious sort on A, using the fourth field
pos. (This restores the ordering according to the previous random permutation.)

At this moment, the data structure (A, {dposi : i ∈ [m]}) is stored in memory. The key-position
map U is explicitly output and later in our OPRAM scheme it will be passed to the parent recurion
depth during coordinated rebuild.

Fact 4.1. Consuming O(ñ + n) CPUs and setting (ñ + n)2 ≤ λ ≤ 2ñ+n, the Build algorithm
completes in O(log(ñ+ n) + log log λ) parallel steps, except with probability negligible in λ.

Proof. Observe that the algorithm’s cost is dominated by O(1) number of oblivious sorts which can
be realized with the AKS sorting network [1].

Moreover, the algorithm incurs one application of oblivious random permutation, whose per-
formance is stated in Theorem 3.2.

Lookup. We implement a batch of m concurrent lookup operations {Lookup({(ki, posi) : i ∈ [m]})
as follows. For each i ∈ [m], we perform the following in parallel.

1. Decide position to fetch from. If ki 6= ⊥ is real, set pos := posi, i.e., we want to use the position
label supplied from the input. Else if ki = ⊥, set pos := dposi, i.e., the position to fetch from
is the next dummy in the i-th dummy linked lists. (To ensure obliviousness, the algorithm can
always pretend to execute both branches of the if-statement.)

At this moment, pos is the position to fetch from (for the i-th request out of m concurrent
requests).

17



2. Read and remove. Read the value from A[pos] and mark A[pos] := ⊥.

3. Update dummy head pointer if necessary. If pos = dposi, update the dummy head pointer
dposi := next. (To ensure obliviousness, the algorithm can pretend to modify dposi in any case.)

4. Return. Return the value read in the above Step 2.

The following fact is straightforward from the description of the algorithm.

Fact 4.2. The Lookup algorithm completes in O(1) parallel steps with O(m) CPUs.

Getall. Getall is implemented by the following simple procedure: obliviously sort A by the key
such that all real entries are packed in front. Return the first n entries of the resulting array (and
removing the metadata entries next and pos in the result).

Fact 4.3. The Getall algorithm completes in log(ñ+ n) parallel steps consuming O(ñ+ n) CPUs.

Proof. Straighforward by observing that the algorithm’s cost is dominated by O(1) number of
oblivious sorts which can be realized with the AKS sorting network [1].

Lemma 4.4 (Perfect obliviousness of the one-time memory scheme). The above (parallel) one-time
memory scheme satisfies perfect obliviousness.

Proof. It suffices to prove that for any valid request sequence, the memory access patterns are
identically distributed as those output by the following simulator that knows only n,m and the
number of Lookup requests in the sequence.

First, almost all parts of Build are deterministic and data oblivious and thus the algorithm’s
access patterns can be simulated in the most straightforward fashion. The only randomized part
of access patterns for Build is due to the oblivious random permutation. To simulate this part, the
simulator calls the oblivious random permutation’s simulator algorithm.

Second, to simulate the access patterns of Lookup, the simulator would read the memory location
storing dposi for every i ∈ [m]. Then, it reads a random unread index of the array A and writes to
it once too. Finally, it writes to dposi for every i ∈ [m].

Third, simulating the access patterns of Getall is done in the most natural manner since Getall
is deterministic.

It is not difficult to see that the real-world access patterns are identically distributed as the
simulated ones due to the definition of oblivious random permutation (see Section 3.3) Particularly,
observe that the above way of simulating the access patterns of Build is the same in nature as if
we randomly permuted the data structure A upfront by a random permutation, (that is chosen
independently from the simulated access patterns), then every real element and ⊥i will be in a
random location. Note also that as long as no two real keys requested collide and every real key
requested exists in the data structure A, then the real-world algorithm accesses each real or ⊥i
element at most once, and thus every real-world access visits a random position of the array A
(besides reading and writing {dposi : i ∈ [m]}).

Summarizing the above, we conclude with the following theorem.

Theorem 4.5 (One-time oblivious memory). Let λ ∈ N be a parameter related to the probability
that the algorithm’s runtime exceeds a desired bound. Assume that each memory block can store
at least log n + log λ bits. There exists a perfectly oblivious one-time scheme such that Build takes
O(log n+log log λ) parallel steps (except with negligible in λ probability) consuming n CPUs, Lookup
for a batch of m requests takes O(1) parallel steps consuming m CPUs, and Getall takes O(log n)
parallel steps consuming n CPUs.

18



5 Basic OPRAM with O(log3 N) Simulation Overhead

Recall that N denotes the number of logical memory blocks consumed by the original PRAM, and
each memory block can store at least Ω(logN) bits. For clarity, in this section, we will first describe
an OPRAM construction such that each batch of m memory requests takes O(log3N) parallel steps
to satisfy with m CPUs. Later in Section 7, we will describe how to further parallelize the OPRAM
when the OPRAM can consume more CPUs than the original PRAM.

Roadmap. We briefly explain the technical roadmap of this section:

• In Section 5.1, we will first describe a position-based OPRAM that supports two operations:
Lookup and Shuffle. A position-based OPRAM is an almost fully functional OPRAM scheme
except that every real lookup request must supply a correct position label. In our OPRAM con-
struction, these position labels will have been fetched from small recursion depths and therefore
will be ready when looking up the position-based OPRAM.

Our position-based OPRAM relies on the hierarcial structure proposed by Goldreich and Os-
trovsky [20, 21], as well as techniques by Chan et al. [7] that showed how to parallelize such a
hierarchical framework.

• In Section 5.2, we explain how to leverage “coordinated rebuild” and recursion techniques to
build a recursive OPRAM scheme that composes logarithmically many instances of our position-
based OPRAM, of geometrically decreasing sizes.

5.1 Position-Based OPRAM

Our basic OPRAM scheme (Section 5.2) will consist of logarithmically many position-based OPRAMs
of geometrically increasing sizes, henceforth denoted OPRAM0, OPRAM1, OPRAM2, . . ., OPRAMD

where D := log2N − log2m. Specifically, OPRAMd stores Θ(2d ·m) blocks where d ∈ {0, 1, . . . , D}.
The last one OPRAMD stores the actual data blocks whereas every other OPRAMd where d < D
recursively stores the position labels for the next depth d+ 1.

5.1.1 Data Structure

As we shall see, the case OPRAM0 is trivial and is treated specially at the end of this section
(Section 5.1.1). Below we focus on describing OPRAMd for some 1 ≤ d ≤ D = logN − logm. For
d 6= 0, each OPRAMd consists of d + 1 levels geometrically growing in size, where each level is a
one-time oblivious memory scheme as defined and described in Section 4. We specify this data
structure more formally below.

Hierarchical levels. The position-based OPRAMd consists of d+ 1 levels henceforth denoted as
(OTMj : j = 0, . . . , d) where level j is a one-time oblivious memory scheme,

OTMj := OTM[2j ·m,m,2j ]

with at most n = 2j ·m real blocks and m concurrent lookups in each batch (which can all be real).
This means that for every OPRAMd, the smallest level is capable of storing up to m real blocks.
Every subsequent level can store twice as many real blocks as the previous level. For the largest
OPRAMD, its largest level is capable of storing N real blocks given that D = logN − logm — this
means that the total space consumed is O(N).

19



Every level j is marked as either empty (when the corresponding OTMj has not been rebuilt)
or full (when OTMj is ready and in operation). Initially, all levels are marked as empty, i.e., the
OPRAM initially is empty.

Position label. Henceforth we assume that a position label of a block specifies 1) which level
the block resides in; and 2) the position within the level the block resides at.

Additional assumption. We assume that each block is of the form (logical address, payload),
i.e., each block carries its own logical address.

5.1.2 Operations

Each position-based OPRAM supports two operations, Lookup and Shuffle. For every OPRAMd

consisting of d+ 1 levels, we rely on the following algorithms for Lookup and Shuffle.

Lookup. Every batch lookup operation, denoted Lookup({(addri, posi) : i ∈ [m]}) receives as
input the logical addresses of m blocks as well as a correct position label for each requested block.
To complete the batch lookup request, we perform the following.

1. For each level j = 0, . . . , d in parallel, perform the following:

• For each i ∈ [m] in parallel, first check the supplied position label posi to see if the requested
block resides in the current level j: if so, let addr′i := addri and let pos′i := posi (and specifically
the part of the position label denoting the offset within level j); else, set addr′i := ⊥ and
pos′i := ⊥ to indicate that this should be a dummy request.

• (vij : i ∈ [m])← OTMj .Lookup({addr′i, pos′i : i ∈ [m]}).

2. At this point, each of the m CPUs has d answers from the d levels respectively, and only one of
them is the valid answer. Now each of the m CPUs chooses the correct answer as follows.

For each i ∈ [m] in parallel: set vali to be the only non-dummy element in (vij : j = 0, . . . , d),
if it exists; otherwise set vali := ⊥. This step can be accomplished using an oblivious select
operation (see Section 3.3) in log d parallel steps consuming d CPUs.

3. Return (vali : i ∈ [m]).

We remark that in Goldreich and Ostrovsky’s original hierarchical ORAM [20, 21], the hierar-
chical levels must be visited sequentially — for obliviousness, if the block is found in some smaller
level, all subsequent levels must perform a dummy lookup. Here we can visit all levels in parallel
since the position label already tells us which level it is in. Now the following fact is straightforward
to observe:

Fact 5.1. For OPRAMd, Lookup consumes O(log d) parallel steps consuming m · d CPUs where m
is the batch size.

Shuffle. Similar to earlier hierarchical ORAMs [20, 21] and OPRAMs [7], a shuffle operation
merges consecutively full levels into the next empty level (or the largest level). However, in our
Shuffle abstraction, there is an input U that contains some logical addresses together with new
values to be updated. Moreover, the shuffle operation is associated with an update function that
determines how the new values in U should be incorporated into the OTM during the rebuild.

20



In our full OPRAM scheme later, the update array U will be passed from the immediate next
depth OPRAMd+1, and contains the new position labels that OPRAMd+1 has chosen for recently
accessed logical addresses. These position labels must then be recorded by OPRAMd appropriately.

More formally, each position-based OPRAMd supports a shuffle operation, denoted Shuffle(U, `; update),
where the parameters are explained as follows:

1. An update array U in which each (non-dummy) entry contains a logical address that needs to
be updated, and a new value for this block. (Strictly speaking, we allow a block to be partially
updated.)

We will define additional constraints on U subsequently.

2. The level ` to be rebuilt during this shuffle.

3. An update function that specifies how the information in U is used to compute the new value of
a block in the OTM.

The reason we make this rule explicit in the notation is that a block whose address that appears in
U may only be partially modified; hence, we later need to specify this update function carefully.
However, to avoid cumbersome notation, we may omit the parameter update, and just write
Shuffle(U, `), when the context is clear.

For each OPRAMd, when Shuffle(U, `; update) is called, it must be guaranteed that ` ≤ d; and
moreover, either level ` must either be empty or ` = d (i.e., this is the largest level in OPRAMd).
The Shuffle algorithm then combines levels 0, 1, . . . , ` (of OPRAMd) into level `, updating some
blocks’ contents as instructed by the update array U and the update function update. At the end
of the shuffle operation, all levels 0, 1, . . . , `−1 are now marked as empty and level ` is now marked
as full.

We now explain the assumptions we make on the update array U and how we want the update
procedure to happen:

• We require that each logical address appears at most once in U .

• Let A be all logical addresses remaining in levels 0 to ` in OPRAMd: it must hold that the set of
logical addresses in U is a subset of those in A. In other words, a subset of the logical addresses
in A will be updated before rebuilding level `.

• If some logical address addr exists only in A but not in U , after rebuilding level `, the block’s
value from the current OPRAMd should be preserved. If some logical address addr exists in
both A and in U , we use the update function to modify its value: update takes a pair of blocks
(addr, data) and (addr, data′) with the same address but possibly different contents (the first of
which coming from the current OPRAMd and the second coming from U), and computes the
new block content data∗ appropriately.

We remark that the new value data∗ might depend on both data and data′. Later, we will
describe how the update rule is implemented.

Upon receiving Shuffle(U, `; update), proceed with the following steps:

1. Let A := ∪`i=0OTMi.Getall, where the operator ∪ denotes concatenation. Moreover, for an entry
in A that comes from OTMi, then it also carries a label i.

At this moment, the old OTM0, . . . ,OTM` instances may be destroyed.

21



2. Now, obliviously sort A ∪ U in increasing order of logical addresses, and moreover, placing all
dummy entries at the end. If two blocks have the same logical address, place the entry coming
from A in front of the one coming from U .

At this moment, in one linear scan, we can operate on every adjacent pair of entries using the
aforementioned update operation, such that if they share the same logical address, the first entry
is preserved and updated to a new value, and the second entry is set to dummy.

At this moment, we obliviously sort the resulting array moving all dummies to the end. We
truncate the resulting array preserving only the first 2` · m elements and let A′ denote the
outcome (note that only dummies and no real blocks will truncated in the above step).

3. Let (OTM′, U ′)← Build(A′).

4. OTM′ is now the new level ` and henceforth it will be denoted OTM`. Mark level ` as full and
levels 0, 1, . . . , `−1 as empty. Finally, output U ′ (in our full OPRAM construction later, U ′ will
be passed to the next (i.e., immediately smaller) position-based OPRAM as the update array
for performing its shuffle).

If we realize the oblivious sort with the AKS network [1] that sorts n items in O(log n) parallel
steps consuming n CPUs, we easily obtain the following fact — note that there is a negligible in
N probability that the algorithm runs longer than the stated asymptotic time due to the oblivious
random permutation building block (see Section 3.3).

Fact 5.2. Suppose that the update function can be evaluated by a single CPU in O(1) steps. For
OPRAMd, let ` ≤ d, then except with negligible in N probability, Shuffle(U, `) takes O(log(m · 2`) +
log logN) parallel steps consuming m · 2` CPUs.

Observe that in the above fact, the randomness comes from the oblivious random permutation
subroutine used in building the one-time oblivious memory data structure.

Trivial case: OPRAM0. In this case, OPRAM0 simply stores its entries in an array A[0..m) of
size m and we assume that the entries are indexed by a (log2m)-bit string. Moreover, each address
is also a (log2m)-bit string, whose block is stored at the corresponding entry in A.

• Lookup. Upon receiving a batch of m depth-m truncated addresses where all the real addresses
are distinct, use oblivious routing to route A[0..m) to the requested addresses. This can be
accomplished in O(m logm) total work and O(logm) depth. Note that OPRAM0’s lookup does
not receive any position labels.

• Shuffle. Since there is only one array A (at level 0), Shuffle(U, 0) can be implemented by oblivious
sorting.

5.2 OPRAM Scheme from Position-Based OPRAM

Recursive OPRAMs. The OPRAM scheme consists of D + 1 position-based OPRAMs hence-
forth denoted as OPRAM0,OPRAM1,OPRAM2, . . . ,OPRAMD. OPRAMD stores the actual data
blocks, whereas every other OPRAMd where d 6= D recursively stores the position labels for the
next data structure OPRAMd+1. Our construction is in essence recursive although in presentation
we shall spell out the recursion for clarity. Henceforth we often say that OPRAMd is at recursion
depth d or simply depth d.

22



Although we are inspired by the recursion technique for tree-based ORAMs [37], using this
recursion technique in the context of hierarchical ORAMs/OPRAMs raises new challenges. In
particular, we cannot use the recursion in a blackbox fashion like in tree-based constructions since
all of our (position-based, hierarchical) OPRAMs must reshuffle in sync with each other in a non-
blackbox fashion as will become clear later.

Format of depth-d block and address. Suppose that a block’s logical address is a log2N -bit
string denoted addr〈D〉 := addr[1..(log2N)] (expressed in binary format), where addr[1] is the most
significant bit. In general, at depth d, an address addr〈d〉 is the length-(log2m+d) prefix of the full
address addr〈D〉. Henceforth, we refer to addr〈d〉 as a depth-d address (or the depth-d truncation of
addr).

When we look up a data block, we would look up the full address addr〈D〉 in recursion depth
D; we look up addr〈D−1〉 at depth D − 1, addr〈D−2〉 at depth D − 2, and so on. Finally at depth
0, the log2m-bit address uniquely determines one of the m blocks stored at OPRAM0. Since each
batch consists of m concurrent lookups, one of them will be responsible for this block in OPRAM0.

A block with the address addr〈d〉 in OPRAMd stores the position labels for two blocks in OPRAMd+1,
at addresses addr〈d〉||0 and addr〈d〉||1 respectively. Henceforth, we say that the two addresses
addr〈d〉||0 and addr〈d〉||1 are siblings to each other; addr〈d〉||0 is called the left sibling and addr〈d〉||1
is called the right sibling. We say that addr〈d〉||0 is the left child of addr〈d〉 and addr〈d〉||1 is the right
child of addr〈d〉.

5.2.1 Operations

Each batch contains m requests denoted as ((opi, addri, datai) : i ∈ [m]), where for opi = read, there
is no datai. We perform the following steps.

1. Conflict resolution. For every depth d ∈ {0, 1, . . . , D} in parallel, perform oblivious conflict
resolution on the depth-d truncation of all m addresses requested.

For d = D, we suppress duplicate addresses. If multiple requests collide on addresses, we would
prefer a write request over a read request (since write requests also fetch the old memory value
back before overwriting it with a new value). In the case of concurrent write operations to the
same address, we use the properties of the underlying PRAM to determine which write operation
prevails.

For 0 ≤ d < D, after conflict resolution, the m requests for OPRAMd become

((addr
〈d〉
i , flagsi) : i ∈ [m]),

where each non-dummy depth-d truncated address addr
〈d〉
i is distinct and has a two-bit flagsi that

indicates whether each of two addresses (addr
〈d〉
i ||0) and (addr

〈d〉
i ||1) is requested in OPRAMd+1.

As noted by earlier works on OPRAM [5, 8, 9], conflict resolution can be completed through
O(1) number of oblivious sorting operations. We thus defer the details of the conflict resolution
procedure to Appendix A.1.

2. Fetch. For d = 0 to D sequentially, perform the following:

• For each i ∈ [m] in parallel: let addr
〈d〉
i be the depth-d truncation of addr

〈D〉
i .

23



• Call OPRAMd.Lookup to look up the depth-d addresses addr
〈d〉
i for all i ∈ [m]; observe that

position labels for the lookups of non-dummy addresses will be available from the lookup
of the previous OPRAMd−1 for d ≥ 1, which is described in the next step. Recall that for
OPRAM0, no position labels are needed.

• If d < D, each lookup from a non-dummy (addr
〈d〉
i , flagsi) will return two positions for the

addresses addr
〈d〉
i ||0 and addr

〈d〉
i ||1 in OPRAMd+1. The two bits in flagsi will determine whether

each of these two position labels are needed in the lookup of OPRAMd+1.

We can imagine that there are m CPUs at recursion depth d + 1 waiting for the position

labels corresponding to {addr
〈d+1〉
i : i ∈ [m]}. Now, using oblivious routing (see Section 3.3),

the position labels can be delivered to the CPUs at recursion depth d+ 1.

• If d = D, the outcome of Lookup will contain the data blocks fetched.

Recall that conflict resolution was used to suppress duplicate addresses. Hence, oblivious
routing can be used to deliver each data block to the corresponding CPUs that request it.

3. Maintain. We first consider depth D. For every i ∈ [m] in parallel: set ui := (addr
〈D〉
i , datai),

where datai is the updated data block for the address addr
〈D〉
i (or just the original data block if

it is not modified).

Set depth-D’s update array U 〈D〉 := {ui : i ∈ [m]}. Suppose that `〈D〉 is the smallest empty
level in OPRAMD.

We have the invariant that for all 0 ≤ d < D, if `〈D〉 < d, then `〈D〉 is also the smallest empty
level in OPRAMd.

For d := D downto 0, do the following:

• If d < `〈D〉, set ` := d; otherwise, set ` := `〈D〉.

• Call U ← OPRAMd.Shuffle(U 〈d〉, `; update) where update is the following natural function:
recall that in U 〈d〉 and OPRAMd−1, each depth-(d − 1) logical address stores the position
labels for both children addresses. For each of the child addresses, if U 〈d〉 contains a new
position label, choose the new one; otherwise, choose the old label previously in OPRAMd−1.

• If d ≥ 1, we need to send the updated positions involved in U to depth d− 1.

We use the Convert subroutine (to be defined below) to convert U into an update array for
depth-(d− 1) addresses, where each entry may pack the position labels for up to two sibling
depth-d addresses. Convert can be realized with O(1) oblivious sorting operations and we
defer its detailed presentation to Appendix A.2.

Now, set U 〈d−1〉 ← Convert(U, d), which will be used in the next iteration for recursion depth
d− 1 to perform its shuffle.

With the above basic OPRAM construction, we can achieve the following theorem whose proof
is deferred to Appendix B.

Theorem 5.3. The above construction is a perfectly secure OPRAM scheme satisfying the following
performance overhead:

• When consuming the same number of CPUs as the original PRAM, the scheme incurs O(log3N)
simulation overhead;

• When the OPRAM is allowed to consume an unbounded number of CPUs, the scheme incurs
O(log3N) total work blowup and O((logm+ log logN) logN) depth blowup.

24



In either case, the space blowup is O(1).

Proof. We defer the obliviousness proof and performanc analysis to Appendix B.

Note that at this moment, even for the sequential special case, we already achieve asymptotic
savings over Damg̊ard et al. [11] in terms of space consumption. Furthermore, Damg̊ard et al. [11]’s
construction is sequential in nature and does not immediately give rise to an OPRAM scheme.

6 Oblivious Loose Compaction from Expander Graphs

The basic OPRAM construction of Section 5 has a depth blowup O(log2N) assuming that the
OPRAM may consume an unbounded number of CPUs — assuming that the original PRAM
has sufficient parallelism m, e.g., when logm = Ω(logN). Our next objective is to improve the
depth blowup to Õ(logN), but doing so is highly non-trivial. One barrier arises from the on-
line fetch phase: the basic OPRAM scheme of Section 5 requires that position labels be fetched
from OPRAMd−1 before before fetching OPRAMd, and consequently fetches are sequential in nature
across all logarithmically many recursion depths. Now, Chan et al. [6] proposed an interesting of-
fline/online algorithmic paradigm to overcome this problem but achieving only statistical security.
We will also rely on an offline/online paradigm, but our instantiation of this paradigm is different
from that of Chan et al. [6], not only in that we achieve perfect security (as opposed to statisti-
cal), but also that we do so through a new algorithmic abstraction called an “offline/online loose
compactor”.

Definition: offline/online loose compactor. Let C be an appropriate universal constant.
Loose compaction is the following abstraction. Given an input array of 2Cm elements out of which
at most m are real and the remaining are dummies, construct an output array of length Cm that
contains all real elements of the input array padded with dummies. The compaction is “loose” in the
sense that although we reduce the number of dummies in the output, we do not completely remove
the dummies. In our paper, we define a new abstraction of loose compaction that consists of an
offline and an online phase, where the offline phase computes the necessary instructions regarding
how to route inputs to outputs, and the online phase performs the actual work of moving elements
around.

We will leverage expander graphs and techniques from the self-routing superconcentrator work
by Pippenger [35] to construct such an offline-online oblivious loose compaction algorithm.

6.1 Preliminary: Bipartite Expander Graphs

We use G = (A,B,E) to denote a bipartite multi-graph, where A and B are the vertex sets and
E is the multi-set of edges between A and B. For u ∈ A∪B and multi-set F ⊆ E, we denote F [u]
as the subset of edges in F that are incident to u. The degree deg(u) is the number of edges in E
incident to u; for F ⊆ E, degF (u) := |F [u]|. For S ⊂ A ∪B, we use degS(u) to denote the number
of edges between u and S.

Explicit construction of expander graphs. Many prior works (e.g., Margulis [33], Gabber
and Galil [17], and Jimbo and Maruoka [28]) have shown how to construct bipartite expander
graphs with varying parameters.

In particular, based on the explicit construction by Jimbo and Maruoka [28], Pippenger [35,
Proposition 4] gave a construction for a family of bipartite graphs with the following properties.

25



Proposition 6.1 (Bipartite Expander Graphs). There exists a universal constant d (that is even)
such that the following holds. For any square number n, a bipartite multi-graph Gn = (A,B,E)
with |A| = 2n and |B| = n can be explicitly constructed such that the following holds.

1. For any a ∈ A, deg(a) = d; for any b ∈ B, deg(b) = 2d.

2. For any R ⊂ A such that |R| ≤ n
64 , define S := {b ∈ B : degR(b) > d

2} and T := {a ∈ R :

degS(a) > d
2}. Then, |T | ≤ |R|4 .

6.2 Preliminary: A Factory-Facility Problem

Now, let us consider the following factory-facility problem. Suppose Gn = (A,B,E) is the bipartite
multi-graph where |A| = 2n and |B| = n as given in Proposition 6.1. Specifically, we will think of
each vertex in A as a factory, and each vertex in B as a storage facility (or facility for short).

Now, some factories in A will manufacture products, and each manufactured product needs be
routed to some facility to be stored. Every edge between a ∈ A and b ∈ B allows at most one
product produced by the factory a to be routed to the facility b. From Proposition 6.1 we know
that each factory a ∈ A has a total of d edges to facilities in B, and each facility b ∈ B has exactly
2d edges from factories in A.

Now, imagine that at most n/64 factories in A actually end up manufacturing any product at
all — if so, we say that such a factory is productive. Moreover, suppose that every productive
factory in A produces at most d/2 products; and each facility in B has a storage capacity of d/2
as well, i.e., it can receive no more than d/2 products.

Our goal is to design a (non-uniform) algorithm that is provided with a non-uniform advice
string that describes such an expander graph G satisfying Proposition 6.1:

• Input. The algorithm receives as input the number of products produced by each factory in A
satisfying the aforementioned requirements;

• Output. For each factory, the algorithm will output a set of incident edges for routing each of
its products — henceforth the output (for all factories) is referred to as an assignment.

An assignment is satisfactory iff 1) all productive factories in A can route all of their products
to some facility in B (recall that each productive factory produces no more than d/2 products);
and 2) every facility in B receives no more than d/2 products.

6.3 Preliminary: Pippenger’s “Propose-Accept-Finalize” Protocol

Pippenger [35] presented an elegant protocol that solves the factory-facility problem by finding a
satisfying assignment, henceforth called the “propose-accept-finalize” protocol. Pippenger’s result
is described in the form of a protocol (as opposed to a PRAM algorithm) where factories and
facilities behave like automatons that interact with each other. Therefore below we will describe
Pippenger’s result in a protocol format. Although there is a straightforward PRAM algorithm that
efficiently emulates Pippenger’s protocol, the most näıve PRAM emulation of the protocol is not
oblivious. In the subsequent Section 6.4, we will instead explain how to efficiently emulate this
protocol as an oblivious parallel algorithm.

The propose-accept-finalize protocol consists of O(log n) phases: in each phase, factories first
make “proposals” to facilities; the facilities then respond accordingly based on some decision pro-
cedure; upon hearing the responses, factories finalize their decisions of this phase. At the end of
each phase, some more factories may become satisfied. When the next phase begins, these satisfied

26



factories stop participating. More formally, “propose-accept-finalize” protocol works as follows. We
will the notation req(a) to denote the number of products manufactured by some factory a ∈ A.

ProposeAcceptFinalize: (A protocol for solving the factory-facility problem)

Initially, each factory a ∈ A with zero requirement req(a) = 0 is satisfied ; else, it is unsatisfied.

Repeat the following for
⌈
1
2 log2

n
64

⌉
times:

1. Propose: Each unsatisfied factory sends a proposal along each of its incident edges.

2. Accept: If a facility b ∈ B received no more than d/2 proposals, it sends an acceptance message
along each of its 2d incident edges.

3. Finalize: Each currently unsatisfied factory a ∈ A checks if it received at least d
2 acceptance

messages. If so, it picks an arbitray subset of the edges over which acceptance messages were
received, such that the subset is of size req(a). The factory records these edges and these edges
will be used to route all its products. At this moment, this factory becomes satisfied.

Pippenger [35] proved that if the graph G satisfies Proposition 6.1, then in every phase of
the propose-accept-finalize protocol, at least 3/4 fraction of the unsatisfied factories will become
satisfied. Thus in O(log n) number of phases, all factories in A will become satisfied. Further, it is
not difficult to see that the total number of messages exchanged in the protocol is upper bounded
by O(n).

6.4 Oblivious Simulation of the Propose-Accept-Finalize Protocol on a PRAM

We would like to have a (deterministic) parallel algorithm that obliviously emulates the aforemen-
tioend propose-accept-finalize protocol. In other words, the algorithm’s memory access patterns
should not depend on the inputs to the factory-facility problem, i.e., how many products each
factory produces (see Section 6.2). Recall that the graph G is a non-uniform advice string provided
to the algorithm and it is assumed to be public information.

We will accomplish oblivious simulation of the propose-accept-finalize protocol in two steps.
First, we make the protocol communication-oblivious (which we will define shortly below); next, we
describe how to obliviously efficiently emulate this communication-oblivious protocol on a PRAM.

6.4.1 Making the Protocol Communication-Oblivious

Recall that in the propose-accept-finalize protocol, in each phase not all factories may send messages
to facilities and not all facilities may send messages to factories. Therefore, the communication
patterns of the protocol (i.e., who talks to whom in each phase) can leak information about the
inputs, i.e., how many products are manufactured by each factory in A. Our first step is to transform
the protocol into a communication-oblivious form, i.e., the protocol’s communication patterns must
not depend on the inputs.

To this end, our idea is very simple: in each phase, we can have every factory always send a
message over each of its incident edges: if the factory is unsatisfied and wants to make proposals,
then all messages would be 1; else all messages would be 0. Similarly, every facility should always
send a response over each of its incident edges: if the facility wants to accept, all messages would
be 1; else all messages would be 0.

27



Protocol complexity. In this communication-oblivious variant, a factory (or facility) must send
(possibly dummy) messages over all incident edges whether or not it actually wants to send mes-
sages. It is not hard to see that this modification blows up the original protocol’s communication
complexity (i.e., total number of messages exchanged) by a logarithmic factor since now in each of
the logarithmically many phases, O(n) messages need to be sent.

We thus have that the communication-oblivious propose-accept-finalize protocol completes in
O(log n) rounds and consumes O(n log n) total messages.

6.4.2 Oblivious Simulation on a PRAM: the Propose-Accept-Finalize Algorithm

Once the protocol has been made communication-oblivious, we simulate it on a PRAM as follows.
Abstractly, each phase of the protocol consists of 1) message passing between the factories and the
facilities; and 2) after receiving messages, local computation performed by the factories or facilities.
We thus need to discuss how to emulate both message passing and local computation:

• Obliviously emulate message passing. We focus on describing how to emulate (on a PRAM)
factories in A sending messages to facilities in B, since the reverse direction is symmetric.
Henceforth, imagine that each factory in A and each facility in B is a CPU. To emulate a
factory in A sending a message over each of its incident edges, we can imagine that every edge
in the graph Gn corresponds to a designated location in memory. Thus a factory a ∈ A simply
writes the message to the memory location corresponding to each edge that a is incident to (in
a fixed, predetermined order).

For every facility b ∈ B to receive messages collected over all edges it is incident to, we can
imagine that a facility b ∈ B reads the memory locations corresponding to all edges it is incident
to (in a fixed, predetermined order), and writes each message fetched (along with its sender)
into a local array that is 2d in length. Henceforth, all computation performed by b ∈ B will
touch only local memory.

• Obliviously emulate each factory/facility’s local computation. First, assume that in some phase
of the communication-oblivious protocol, a facility in B has successfully received messages and
stored the received messages in a local array of length O(1). At this point it is not difficult to
see that there is a (possibly non-oblivious) algorithm consuming only O(1) time and space for
each facility in B to perform its subsequent computation. Such computation can be obliviously
simulated in a trivial manner: every memory access can be performed with a linear scan of its
local memory, incurring only O(1) blowup.

Henceforth, we refer to the resulting PRAM algorithm as the “propose-accept-finalize algo-
rithm”.

Obliviousness. Suppose that the protocol being simulated satisfies communication-obliviousness.
In the above oblivious simulation of the protocol, the memory access patterns for simulating message
passing between vertices in A and B depend only on the communication patterns of the underlying
protocol; and all other memory accesses of the algorithm are deterministic and depend only on the
length of the input array but not its contents. Thus the following fact is not difficult to see.

Fact 6.2. The resulting propose-accept-finalize algorithm has deterministic memory access patterns
that do not depend on the inputs (i.e., how many products are produced by each factory).

28



PRAM Complexity. It is not difficult to see that the resulting propose-accept-finalize algorithm
can be completed in O(log n) depth and O(n log n) total work since d = O(1).

6.5 Reduction from Loose Compaction to the Factory-Facility Problem

Loose compaction problem. The input is an array Input of length 2Cm, where C = 32d (recall
that d is the universal constant from Proposition 6.1) and m is a square number8, such that at
most m entries are real, where the real elements are distinct. The output is an array Output of
length Cm that contains all the real entries in the input (while the rest of the entries are dummy).
We would like a deterministic algorithm that is oblivious, i.e., its access patterns are deterministic
and depend only on the length of the input array but not on the input array’s contents.

Offline preparation stage vs. online routing stage. We assume that the input is released in
two stages. In the offline preparation stage, the algorithm is given the indices of the entries of the
input array that contain real elements, but the elements are not available yet. The algorithm might
perform some pre-computation in this stage, and we aim for O(m logm) total work and O(logm)
depth in this stage. At the end of the preparation stage, the algorithm has (obliviously) computed
some intermediate data structure Route that will be used in the online routing stage.

In the online routing stage, the real elements in the input array are ready, and using the pre-
computed Route, they are routed obliviously to the output array (of size Cm). We aim to have
O(m) total work and O(1) depth for this stage.

Reduction to the factory-facility problem. Our idea is to reduce the loose compaction prob-
lem to the factory-facility assignment problem mentioned earlier. Let n := 64m and suppose
Gn = (A,B,E) is the bipartite multi-graph (which can be constructed explicitly) as in Proposi-
tion 6.1 where |A| = 2n and |B| = n.

In the offline stage, the algorithm receives an input S[1..2Cm] where S[i] = 1 denotes that the
i-th element is real — but at this moment, the algorithm has not yet received this element that
needs to be routed to the output. The indices of the input array S[1..2Cm] are partitioned into 2n
parts, where each part consists of d

2 consecutive indices. We assign each such part to a vertex in A,
and hence, each vertex in A is associated with d

2 contiguous entries of S. We define the requirement
function req : A → {0, 1, . . . , d2} such that req(a) is the number of real entries in the input array
associated with a. Observe that at most m = n

64 vertices in A have non-zero requirements.
Recall that the factory-facility problem allows each vertex a ∈ A to choose a multi-set of exactly

req(a) incident edges for routing all real entries assigned to the vertex a. After the routing actually
happens, every vertex b ∈ B receives at most d/2 real entries of the input array — now if each
vertex in B writes down an array of length d/2 containing all real entries it has received (and
padded with dummies to a length of d/2), then the concatenation of all arrays written down by
vertices in B will become the output array containing all real entries of the input array, but whose
size is only half that of the input array.

In this way, the offline stage simply calls the oblivious propose-accept-finalize algorithm of
Section 6.4.2 such that each factory in A computes a set of incident edges to route its products.
The actual routing of the elements happen in the online stage when the algorithm receives the
actual elements to be routed. Since in the offline stage, each vertex in A has learned a set of edges
over which to route elements, the online stage can simply execute this plan that the offline stage

8If m is not a square number, we can always round it up to the next square incurring only O(1) blowup.

29



has decided. To make sure that the algorithm is oblivious, even when a factory in a ∈ A does not
want to route anything over an incident edge, it will send a dummy message over that edge anyway.

Thus we obtain the following theorem:

Theorem 6.3 (Offline-online oblivious loose compaction). There exists a (non-uniform) offline-
online loose compaction algorithm that is deterministic and oblivious, such that its offline stage
completes in O(m logm) total work and O(logm) depth; and its online stage completes with O(m)
total work and O(1) depth.

7 Improving the OPRAM’s Depth to Õ(logN)

In the scheme described in Section 5, each batch of m requests can be served with O(m log3N)
amortized total work and (worst-case) depth O(log2N).

We now ask the question, can we improve the OPRAM’s depth, i.e., if the OPRAM is allowed
to have unbounded number of CPUs, then what parallel runtime can be achieved?

The bottleneck for depth in the previous scheme in Section 5 comes from both the fetch and
maintain phases. Both phases process the recursion depths in a sequential manner, the fetch
phase from small to large depths d and the maintain phase in the reverse order. Specifically, the
fetch phase obtains m blocks (storing position labels) from OPRAMd for some d < D, and then
obliviously route the position labels to the next recursion depth OPRAMd+1. Thus, the total depth
of the fetch phase is Ω(logm logN) where Ω(logm) comes from the depth of obliviously routing m
objects to their destinations, and Ω(logN) comes from the number of recursion depths d. On the
other hand, during the maintain phase, the position-based OPRAMs at various recursion depths
perform shuffling in sequential order: each d ≥ 0, OPRAMd+1 would perform reshuffling through
Ω(1) number of oblivious sorts incurring possibly Ω(logm) depth (on average), then it emits an
update array U to pass to the immediately smaller recursion depth which then embarks on its own
shuffling. Thus, in total, the average depth of the maintain phase is Ω(logm logN).

Our goal is to reduce the depth of our OPRAM to Õ(logN) without increasing total work
asymptotically, i.e., we would like to shave an additional logarithmic factor off the depth, for the
case when m is large (i.e., logm = Θ(logN)). As described in the remainder of the section, different
techniques are required to improve the depths of the fetch and maintain phases respectively.

7.1 Modifications to the OPRAM’s Data Structure

In the improved scheme, the data structure is almost identical to our previous scheme (Section 5)
except that now the one-time oblivious memory scheme in each hierarchical level would over-
provision by some constant factor C. We note that C is a universal constant that is independent
of m or N and its concrete choice is discussed in Section 6.5.

Henceforth in this section, we assume that in each OPRAMd, each hierarchical level j ∈ [d] is a
(parallel) one-time oblivious memory scheme with at most 2j ·m real elements and supporting 2j

batch requests (each having size Cm) as follows:

OTMj := OTM[2j ·m, Cm, 2j ].

7.2 Improving the Depth of the Fetch Phase

To asymptotically improve the depth of the fetch phase, we would like to improve the depth required
to route fetched position labels to the next recursion depth. Earlier, we adopted a näıve oblivious
routing algorithm which incurs Θ(logm) depth.

30



Our idea is to employ an offline-online oblivious routing algorithm. Although the offline phase
still has depth Θ(logm), the offline phases among all recursion depths can be performed in parallel.

On the other hand, the online phase still must be performed sequentially among the recursion
depths — however, the online routing now consumes only O(1) depth per recursion depth! In
the recent work by Chan, Chung, and Shi [6], they also employed a similar offline-online routing
paradigm, but their approach incurs (negligibly small) statistical failures and cannot work in our
context where perfect security is required. Instead, we devise a new technique that achieves offline-
online routing with no failures. Our algorithm employs a loose compaction algorithm as described
in Section 6.5 whose construction fundamentally relies on expander graphs [35].

7.2.1 Offline Preparation

Recall that a batch access consists of m requests ((opi, addri, datai) : i ∈ [m]). Conflict resolution
can be performed in parallel over each recursion depth. At the highest level D, duplicate addresses
are suppressed, while for 0 ≤ d < D, the m requests at OPRAMd are:

((addr
〈d〉
i , flagsi) : i ∈ [m]),

where each non-dummy depth-d truncated address addr
〈d〉
i is distinct and has a two-bit flagsi that

indicates whether each of two addresses (addr
〈d〉
i ||0) and (addr

〈d〉
i ||1) is requested in OPRAMd+1. In

the offline preparation stage, the depth-d truncated address and the two-bit flag are available while
the data (position labels) is not. The goal of the offline phase is to compute a “route” from depth
d to depth d+ 1 for all 0 ≤ d < D. Moreover, this needs to be done in parallel in O(logm) steps,
so that actual routing in the online phase can be performed in O(1) steps per depth. We use the
notation that Data denotes the mock copy of Data used in offline preparation.

At depth d, there is a randomly permuted Receiver〈d〉 array which stores the requests for this
depth, and the offline phase computes a route to next depth, i.e., Receiver〈d+1〉. Note that Receiver〈d〉

and Receiver〈d+1〉 do not store the same set of keys; each block at depth-d stores position labels for
two blocks at depth d+1. Thus, we need to first convert the keys to the ones at depth d+1. This is

performed using the depth-d address and the flags at Receiver〈d〉 to obtain an array Fetched
〈d〉

of size
2Cm but still containing up to m real keys. We now need to reduce the number of keys from 2Cm to
Cm. We use the offline phase of the offline-online oblivious loose compaction problem (Section 6.5)

to do this and (1) obtain the array Result
〈d〉

of size Cm and (2) the route that will be used by the

loose compactor algorithm in the online phase. The routing permutation from Result
〈d〉

to the next
recursion depth Receiver〈d+1〉 can now be computed using the oblivious routing permutation from
Section 3.3.

We now describe the offline phase in detail. During an offline preparation stage, every recursion
depth d outputs the following:

1. Receiver array Receiver〈d〉, for 1 ≤ d ≤ D. This is an array of length Cm such that m
of its random locations hold the m requests of OPRAMd (in random relative order), while the
remaining entries hold dummies. We assume that a total ordering is defined on the Cm entries
(for instance, even the dummies are uniquely tagged) such that sorting can be carried out with
a unique resulting order.

2. Pre-computed compaction routing information Route〈d〉, for 0 ≤ d < D.

3. Routing permutation π〈d〉 : [1..Cm] → [1..Cm], for 0 ≤ d < D: This pre-computed routing
permutation π〈d〉 (stored as an array) will be applied in the online phase to route fetched and
processed position labels to the next recursion depth d+ 1.

31



Algorithm. We devise the following offline preparation algorithm. In this algorithm, Data is
used to denote mock copy of Data that is used in the offline preparation algorithm.

• Create randomly permuted receiver array. For each 1 ≤ d ≤ D, the following can be performed
in parallel. Take the batch of m requests (after conflict resolution) in OPRAMd and extend them
to an array of size Cm by inserting entries with dummy addresses at the end.

We emphasize that later oblivious sort will be performed using the depth-d address as preference.
Each dummy address is labeled uniquely according to the relative rank among dummies in the
current array. For instance, the first dummy in the array has label ⊥1, the second dummy has
label ⊥2, and so on. This can be achieved by either oblivious prefix sum or oblivious sorting,
both of which take O(m logm) total work and O(logm) depth.

Oblivious permutation is applied to the length-Cm array and the resulting array is Receiver〈d〉.
For d = 0, Receiver〈0〉 can be constructed similarly, except that the oblivious permutation step
is unnecessary.

• Emulate online fetch phase. For each 0 ≤ d < D in parallel, we emulate the fetching phase of
OPRAMd to construct a routing permutation π〈d〉 : [1..Cm]→ [1..Cm] that will be used to pass
the fetched positions to the requests in OPRAMd+1.

Observe that at this moment, Receiver〈d+1〉 is already created.

1. We construct a mock copy of the “result array” denoted Fetched
〈d〉

, which has length 2Cm.

Each entry of Receiver〈d〉[1..Cm] produces two entries in Fetched
〈d〉

as follows.

If Receiver〈d〉[j] contains a dummy address, then both Fetched
〈d〉

[2j − 1] and Fetched
〈d〉

[2j]
are dummies.

Otherwise, if Receiver〈d〉[j] contains a real depth-d address addrj and flags b0, b1. Then,

if b0 = 1, then Fetched
〈d〉

[2j − 1] contains the address addrj ||0; else, Fetched
〈d〉

[2j − 1] is

dummy. Similarly, if b1 = 1, then Fetched
〈d〉

[2j] contains addrj ||1; else, Fetched
〈d〉

[2j] is
dummy.

2. Apply the offline preparation stage of the loose compaction algorithm using Fetched
〈d〉

[1..2Cm]
as input to produce routing information at depth d.

3. Apply the online routing stage of the loose compaction algorithm on Fetched
〈d〉

[1..2Cm] us-

ing the routing information at depth d computed in the offline stage to produce Result
〈d〉

[1..Cm].

Observe that Result
〈d〉

[1..Cm] contains all the real entries of Fetched
〈d〉

[1..2Cm]. Moreover,

each dummy in Result
〈d〉

[1..Cm] is uniquely tagged according to the relative rank among
dummies in the current array. For instance, the first dummy in the array is labeled ⊥1, the
second dummy is labeled ⊥2, and so on. This can be achieved by either oblivious prefix
sum or oblivious sorting, both of which take O(m logm) total work and O(logm) depth.

• Compute routing permutation to next recursion depth. We next (obliviously) compute a routing

permutation π〈d〉 : [1..Cm] → [1..Cm] that is supposed to match each entry in Result
〈d〉

[1..Cm]
to the corresponding one in Receiver〈d+1〉[1..Cm].

Observe that Result
〈d〉

and Receiver〈d+1〉 have the same set of real elements, and the dummies
also have the same set of labels. Hence, we can use the oblivious algorithm for computing the
routing permutation described in Section 3.3.

32



The routing permutation π〈d〉 : [1..Cm] → [1..Cm] can be obliviously computed such that for

each i ∈ [1..Cm], Result
〈d〉

[i] and Receiver〈d+1〉[π〈d〉[i]] have the same real or dummy label.

Lemma 7.1. The offline preparation step takes O(logm) depth and O(Dm logm) total work.

7.2.2 Online Fetch and Route

In the online phase, each recursion depth fetches the position labels needed for the next recursion
depth, and routes them in a single parallel step to the next recursion depth. We describe the
detailed algorithm below.

For d from 0 to D sequentially, perform the following:

1. Recall that Receiver〈d〉 is an array of length Cm and m of its entries store the m (conflict
resolved) requests in OPRAMd.

For each j ∈ [1..Cm], the j-th entry of Receiver〈d〉 contains an address addrj , where a non-
dummy addrj is a depth-d address in OPRAMd. Moreover, for 0 ≤ d < D, the entry also
contains two bits flagsj indicating whether the two depth-(d+1) addresses addrj ||0 and addrj ||1
are needed in OPRAMd+1.

For d = 0, no position label is needed in OPRAM0, which is simply an array of length m. For
1 ≤ d ≤ D, we shall see that the step below ensures that the previous iteration has delivered
the correct position posj to each non-dummy address addrj in Receiver〈d〉.

Therefore, we call OPRAMd.Lookup({(addrj , posj) : j ∈ [Cm]}). Since OPRAMd consists of
d+ 1 one-time oblivious memory data structures, this step takes O(log d) depth and O(md)
total work.

2. If d = D, then the result of the Lookup returns the values of the requested addresses. Then,
oblivious routing can be used to deliver the blocks to the corresponding requesting CPUs; the
whole fetch phase is completed.

For 0 ≤ d < D, for each j ∈ [1..Cm], if addrj is a non-dummy address, then the position
labels (pos0j , pos1j ) of the depth-(d+ 1) addresses addrj ||0 and addrj ||1 are returned.

We next construct an array Fetched〈d〉[1..2Cm]. For each j ∈ [1..Cm], the information
(addrj , flagsj , (pos0j , pos1j )) is used to create the two entries in Fetched〈d〉 with indices 2j−1+b,
where b ∈ {0, 1}, in the following way.

If flagsj indicates that addrj ||b is not requested in OPRAMd+1, then the entry Fetched〈d〉[2j−
1 + b] is dummy; otherwise, Fetched〈d〉[2j−1 + b] contains the pair (addrj ||b, posbj), where posbj
is the correct position label of the depth-(d+ 1) address addrj ||b in OPRAMd+1.

3. Using the pre-computed routing information at depth d, apply the routing online stage of the
loose compaction algorithm to Fetched〈d〉[1..2Cm] to (obliviously) produce Result〈d〉[1..Cm].

4. Using the pre-computed permutation π〈d〉 : [1..Cm] → [1..Cm], for each j ∈ [1..Cm] in
parallel, send the contents of Result〈d〉[j] to Receiver〈d+1〉[π〈d〉[j]].

Observe that this step delivers the correct position labels for OPRAMd+1; moreover, the
permutation π〈d〉 is revealed. As mentioned above, since the elements in Receiver〈d+1〉 have
been permuted uniformly at random independently, π〈d〉 looks uniformly at random and
independent to the adversary.

33



Lemma 7.2. The online fetch and route step takes O(D logD) depth and O(mD2) total work.

Proof. For each d, OPRAMd has d levels. Hence, a batch of m concurrent lookups in OPRAMd

takes O(log d) depth and O(md) total work. Observe that using the pre-computed information in
the offline step, routing between successive recursive OPRAM’s takes O(1) depth and O(m) total
work. Summing up from d = 0 to D gives the result.

7.3 Improving the Depth of the Maintain Phase

Our earlier maintain phase algorithm (see Section 5) performs shuffling for each recursion depth
OPRAMd sequentially, starting from d = D to 0. Specifically, the OPRAMd must wait for the
updated position labels of addresses in OPRAMd+1 before it begins reshuffling. Since the shuffling
for each recursion depth takes Ω(logN) depth, the sequential nature of the execution over all
Θ(logN) recursion depths lead to a total depth of Ω(log2N).

Intuition. To improve the depth of the maintain phase to O(logN), we would like to perform
shuffling for different recursion depths in parallel. Our idea is to separate the algorithm into a
“mock shuffling” stage and an “index update” stage.

1. Mock shuffle. The mock shuffling stage achieves the following:

• For 1 ≤ d ≤ D, at the end of the mock shuffling stage, OPRAMd will have finished building
a one-time oblivious memory OTM` at some level `, even though the contents of the stored
blocks might be incorrect.

However, the positions of the depth-d addresses stored in this OTM` will later be passed to
OPRAMd−1 at the beginning of the index update stage.

• As mentioned, after the mock shuffling stage, the contents of the blocks stored in the freshly
built OTM` in OPRAMd might be incorrect. Recall that the content of each block in OPRAMd

is supposed to store the positions of two depth-(d+ 1) addresses in OPRAMd+1.

This information on the updated positions of the depth-(d+ 1) addresses will be available at
the end of the mock shuffling stage.

2. Index update. For 0 ≤ d < D, OPRAMd receives the updated positions of the depth-(d + 1)
addresses from OPRAMd+1, which are available at the end of the mock shuffling stage. These
updated positions are the correct contents of the blocks stored in the OTM` that is freshly built
in OPRAMd (where OPRAM0 is the special case with just one array of length m).

Observe that the contents of the blocks in this OTM` in OPRAMd can be updated correctly
using oblivious sorting.

Algorithm. We now describe the improved maintain-phase algorithm.

1. Initialize. For depth D, for every i ∈ [m], let ui := (addr
〈D〉
i , datai), where addr

〈D〉
i ’s are the

depth-D addresses after conflict resolution, and datai is the updated content for the correspond-

ing address addr
〈D〉
i . Denote U 〈D〉 := (ui : i ∈ [m]).

For depth 1 ≤ d < D, set U 〈d〉 := ∅.
Suppose that `〈D〉 is the smallest available level in OPRAMD; if every level is full, then set
`〈D〉 ← D.

34



2. Mock shuffle. For 1 ≤ d ≤ D in parallel:

• Set `d := min{`〈D〉, d}.
• Call U ← OPRAMd.Shuffle(U 〈d〉, `d)

• Compute Ûd−1 ← Convert(U, d).

3. Index update. For 0 ≤ d < D in parallel:

• In OPRAMd, let A denote the data structure corresponding to OTM`d , i.e., the array at level
`d of the hierarchy. At this moment, the positions of the blocks with real addresses in A have
already been determined, but the contents of these blocks might need to be updated with Ûd
generated from OPRAMd+1 in the mock shuffling stage.

• Relying on oblivious routing where Ûd acts as the source and A acts as the destination,
depth-d addresses are used to send the contents of each entry in Ûd to the corresponding
entry in A.

After the entries in A receives the correct updated contents (which are position labels for
addresses in OPRAMd+1), it becomes the new data structure for OTM`d .

Lemma 7.3. The maintain phase has O(logN) depth.

Proof. Since the D recursive OPRAM’s are operated in parallel, it suffices to analyze the depth
incurred by the largest OPRAMD, which stores O(N) blocks. Therefore, the oblivious shuffling and
routing subroutines involved (which make use of oblivious sorting) have O(logN) depth.

7.4 Obliviousness

We next argue why our scheme satisfies obliviousness. Our argument follows the same approach
used in Chan et al. [6]. The difference is that the loose compaction algorithm used here is perfectly
secure.

The security of the improved OPRAM scheme is based on that of the basic OPRAM scheme in
Section 5. From the description of the scheme, most parts of the scheme have deterministic access
pattern that does not depend on the requested addresses. The only part of the access pattern
that has randomness involves the subroutine oblivious random permutation (which by construction
satisfies obliviousness) and the online routing of information between successive depths of recursive
OPRAM’s in the fetch phase. Hence, it suffices to show that the online fetch and route procedure
is also secure.

Lemma 7.4 (Security of Position Identifiers Routing). In the online fetch and route procedure
described in Section 7.2.2, the resulting distribution of physical access pattern is independent of the
requested addresses.

Proof. It suffices to check that in the description of the scheme, the physical memory are accessed
using the building blocks described in Section 3.3, which ensure that the access pattern is indepen-
dent of the requested addresses. We next inspect each step more carefully.

Fix some 0 ≤ d < D. In the offline phase, the elements in the array Receiver〈d+1〉 have been
randomly permuted in an oblivious manner using fresh randomness.

Therefore, the routing permutation π〈d〉 (that can be observed by the adversary later in the
online phase) is a uniformly random permutation, even when conditioned on having observed the
access patterns of the oblivious random permutation in the offline phase — note that this is implied
by our formal definition of oblivious random permutation (in Section 3.3).

35



Other steps in the procedure invokes subroutines described in Section 3.3, which produces
deterministic access pattern independent of the requested addresses.

In the online phase, the only part of the procedure that involves randomness concerns the
routing of information from OPRAMd to OPRAMd+1, for 0 ≤ d < D.

As mentioned earlier, the routing permutation π〈d〉 is revealed, but it has an independent
uniform distribution, because the destination array Receiver〈d+1〉 was permuted using a (secret)
fresh random permutation.

With Lemma 7.4 and combining the security argument of basic OPRAM scheme in Section 5,
it follows that our improved small-depth OPRAM construction is indeed perfectly secure, i.e., the
following Theorem 7.5 holds.

Theorem 7.5 (Perfectly secure, small-depth OPRAM). There exists a perfectly secure OPRAM
scheme (for general block sizes) with O(log3N) total work blowup, O(logN log logN) depth blowup,
and O(1) space blowup; moreover, each CPU in the OPRAM consumes only O(1) blocks of private
cache.

8 Conclusion and Future Work

In this paper, we constructed a perfectly secure OPRAM scheme with O(log3N) total work blowup,
O(logN log logN) depth blowup, and O(1) space blowup. To the best of our knowledge our scheme
is the first perfectly secure (non-trivial) OPRAM scheme, and even for the sequential special case
we asymptotically improve the space overhead relative to Damg̊ard et al. [11]. Prior to our work,
the only known perfectly secure ORAM scheme is that by Damg̊ard et al. [11], where they achieve
O(log3N) simulation overhead and O(logN) space blowup. No (non-trivial) OPRAM scheme
was known prior to our work, and in particular the scheme by Damg̊ard et al. [11] does not appear
amenable to parallelization. Finally, in comparison with known statistically secure OPRAMs [8,40],
our work removes the dependence (in performance) on the security parameter; thus we in fact
asymptotically outperform known statistically secure ORAMs [40] and OPRAMs [8] when (sub-
)exponentially small failure probabilities are required.

Exciting questions remain open for future research:

• Are there any separations between the performance of perfectly secure and statistically secure
ORAMs/OPRAMs?

• Can we construct perfectly secure ORAMs/OPRAMs whose total work blowup matches the best
known statistically secure ORAMs/OPRAMs assuming negligible security failures?

• Can we construct perfectly secure ORAM/OPRAM schemes whose concrete performance lends
to deployment in real-world systems?

Acknowledgments

This work is supported in part by NSF grants CNS-1314857, CNS-1514261, CNS-1544613, CNS-
1561209, CNS-1601879, CNS-1617676, an Office of Naval Research Young Investigator Program
Award, a Packard Fellowship, a DARPA Safeware grant (subcontractor under IBM), a Sloan Fel-
lowship, Google Faculty Research Awards, a Google Ph.D. Fellowship Award, a Baidu Research
Award, and a VMware Research Award.

36



We gratefully acknowledge Shai Halevi and Craig Gentry for helpful discussions and for sug-
gesting the use of expander graphs to achieve low-online-depth routing of position labels. We are
extremely grateful to Bruce Maggs for most patiently explaining Pippenger’s result [35] to us and
answering many of our technical questions. We acknowledge Kai-Min Chung for many helpful tech-
nical discussions regarding perfectly secure ORAM and OPRAM. We thank Muthuramakrishnan
Venkitasubramaniam, Antigoni Polychroniadou, and Kai-Min Chung for helpful discussions on the
significance of achieving perfect security in cryptographic primitives, and for helpful editorial com-
ments. Elaine Shi is grateful to Bruce Maggs, Bobby Bhattacharjee, Kai-Min Chung, and Feng-Hao
Liu for their unwavering moral support during the period this research was conducted.

References

[1] M. Ajtai, J. Komlós, and E. Szemerédi. An O(N Log N) sorting network. In Proceedings of
the Fifteenth Annual ACM Symposium on Theory of Computing, STOC ’83, pages 1–9, New
York, NY, USA, 1983. ACM.

[2] Miklós Ajtai. Oblivious rams without cryptogrpahic assumptions. In Proceedings of the Forty-
second ACM Symposium on Theory of Computing, STOC ’10, pages 181–190, New York, NY,
USA, 2010. ACM.

[3] Michael Ben-Or, Shafi Goldwasser, and Avi Wigderson. Completeness theorems for non-
cryptographic fault-tolerant distributed computation. In Proceedings of the Twentieth Annual
ACM Symposium on Theory of Computing, STOC ’88, pages 1–10, 1988.

[4] Elette Boyle, Kai-Min Chung, and Rafael Pass. Large-scale secure computation: Multi-party
computation for (parallel) RAM programs. In Advances in Cryptology - CRYPTO 2015 - 35th
Annual Cryptology Conference, Santa Barbara, CA, USA, August 16-20, 2015, Proceedings,
Part II, pages 742–762, 2015.

[5] Elette Boyle, Kai-Min Chung, and Rafael Pass. Oblivious parallel RAM and applications.
In Theory of Cryptography - 13th International Conference, TCC 2016-A, Tel Aviv, Israel,
January 10-13, 2016, Proceedings, Part II, pages 175–204, 2016.

[6] T-H. Hubert Chan, Kai-Min Chung, and Elaine Shi. On the depth of oblivious parallel RAM.
In Asiacrypt, 2017.

[7] T-H. Hubert Chan, Yue Guo, Wei-Kai Lin, and Elaine Shi. Oblivious hashing revisited, and
applications to asymptotically efficient ORAM and OPRAM. In Asiacrypt, 2017.

[8] T-H. Hubert Chan and Elaine Shi. Circuit OPRAM: A unifying framework for computationally
and statistically secure ORAMs and OPRAMs. In TCC, 2017.

[9] Binyi Chen, Huijia Lin, and Stefano Tessaro. Oblivious parallel RAM: improved efficiency
and generic constructions. In Theory of Cryptography - 13th International Conference, TCC
2016-A, Tel Aviv, Israel, January 10-13, 2016, Proceedings, Part II, pages 205–234, 2016.

[10] Kai-Min Chung, Zhenming Liu, and Rafael Pass. Statistically-secure ORAM with Õ(log2 n)
overhead. In Asiacrypt, 2014.

[11] Ivan Damg̊ard, Sigurd Meldgaard, and Jesper Buus Nielsen. Perfectly secure oblivious RAM
without random oracles. In Theory of Cryptography Conference (TCC), pages 144–163, 2011.

37



[12] Jonathan Dautrich, Emil Stefanov, and Elaine Shi. Burst oram: Minimizing oram response
times for bursty access patterns. In 23rd USENIX Security Symposium (USENIX Security
14), pages 749–764, San Diego, CA, August 2014. USENIX Association.

[13] Ioannis Demertzis, Dimitrios Papadopoulos, and Charalampos Papamanthou. Searchable en-
cryption with optimal locality: Achieving sublogarithmic read efficiency. Cryptology ePrint
Archive, Report 2017/749, 2017. https://eprint.iacr.org/2017/749.

[14] Christopher W. Fletcher, Ling Ren, Albert Kwon, Marten van Dijk, and Srinivas Devadas.
Freecursive ORAM: [nearly] free recursion and integrity verification for position-based oblivious
RAM. In ASPLOS, 2015.

[15] Christopher W. Fletcher, Ling Ren, Albert Kwon, Marten van Dijk, Emil Stefanov, and Srini-
vas Devadas. RAW Path ORAM: A low-latency, low-area hardware ORAM controller with
integrity verification. IACR Cryptology ePrint Archive, 2014:431, 2014.

[16] Christopher W. Fletcher, Ling Ren, Xiangyao Yu, Marten van Dijk, Omer Khan, and Srinivas
Devadas. Suppressing the oblivious RAM timing channel while making information leakage
and program efficiency trade-offs. In HPCA, pages 213–224, 2014.

[17] Ofer Gabber and Zvi Galil. Explicit constructions of linear-sized superconcentrators. Journal
of Computer and System Sciences, 22(3):407–420, June 1981.

[18] Daniel Genkin, Yuval Ishai, and Mor Weiss. Binary amd circuits from secure multiparty
computation. In Theory of Cryptography Conference, pages 336–366. Springer, 2016.

[19] Craig Gentry, Kenny A. Goldman, Shai Halevi, Charanjit S. Jutla, Mariana Raykova, and
Daniel Wichs. Optimizing ORAM and using it efficiently for secure computation. In Privacy
Enhancing Technologies Symposium (PETS), 2013.

[20] O. Goldreich. Towards a theory of software protection and simulation by oblivious RAMs. In
ACM Symposium on Theory of Computing (STOC), 1987.

[21] Oded Goldreich and Rafail Ostrovsky. Software protection and simulation on oblivious RAMs.
J. ACM, 1996.

[22] Michael T. Goodrich and Michael Mitzenmacher. Privacy-preserving access of outsourced
data via oblivious RAM simulation. In International Colloquium on Automata, Languages
and Programming (ICALP), pages 576–587, 2011.

[23] Michael T. Goodrich, Michael Mitzenmacher, Olga Ohrimenko, and Roberto Tamassia.
Privacy-preserving group data access via stateless oblivious ram simulation. In Proceedings of
the Twenty-third Annual ACM-SIAM Symposium on Discrete Algorithms, SODA ’12, pages
157–167, Philadelphia, PA, USA, 2012. Society for Industrial and Applied Mathematics.

[24] S. Dov Gordon, Jonathan Katz, Vladimir Kolesnikov, Fernando Krell, Tal Malkin, Mariana
Raykova, and Yevgeniy Vahlis. Secure two-party computation in sublinear (amortized) time.
In ACM Conference on Computer and Communications Security (CCS), 2012.

[25] Torben Hagerup. Fast and optimal simulations between CRCW PRAMs. In STACS 92, 9th
Annual Symposium on Theoretical Aspects of Computer Science, Cachan, France, February
13-15, 1992, Proceedings, pages 45–56, 1992.

38

https://eprint.iacr.org/2017/749


[26] Torben Hagerup. The log-star revolution. In Proceedings of the 9th Annual Symposium on
Theoretical Aspects of Computer Science, STACS ’92, pages 259–278, London, UK, UK, 1992.
Springer-Verlag.

[27] Yuval Ishai, Eyal Kushilevitz, Rafail Ostrovsky, Manoj Prabhakaran, and Amit Sahai. Efficient
non-interactive secure computation. In Annual International Conference on the Theory and
Applications of Cryptographic Techniques, pages 406–425. Springer, 2011.

[28] Shuji Jimbo and Akira Maruoka. Expanders obtained from affine transformations. In Proceed-
ings of the Seventeenth Annual ACM Symposium on Theory of Computing, STOC ’85, pages
88–97, New York, NY, USA, 1985. ACM.

[29] Eyal Kushilevitz, Steve Lu, and Rafail Ostrovsky. On the (in)security of hash-based oblivi-
ous RAM and a new balancing scheme. In ACM-SIAM Symposium on Discrete Algorithms
(SODA), 2012.

[30] Chang Liu, Austin Harris, Martin Maas, Michael Hicks, Mohit Tiwari, and Elaine Shi.
Ghostrider: A hardware-software system for memory trace oblivious computation. SIGPLAN
Not., 50(4):87–101, March 2015.

[31] Chang Liu, Xiao Shaun Wang, Kartik Nayak, Yan Huang, and Elaine Shi. Oblivm: A program-
ming framework for secure computation. In 2015 IEEE Symposium on Security and Privacy,
SP 2015, San Jose, CA, USA, May 17-21, 2015, pages 359–376, 2015.

[32] Martin Maas, Eric Love, Emil Stefanov, Mohit Tiwari, Elaine Shi, Kriste Asanovic, John
Kubiatowicz, and Dawn Song. Phantom: Practical oblivious computation in a secure processor.
In ACM Conference on Computer and Communications Security (CCS), 2013.

[33] G. A. Margulis. Explicit construction of concentrators. Problems of Information Transmission,
9(4):325–332, 1973.

[34] Kartik Nayak and Jonathan Katz. An oblivious parallel ram with o (log2 n) parallel runtime
blowup. IACR Cryptology ePrint Archive, 2016:1141, 2016.

[35] Nicholas Pippenger. Self-routing superconcentrators. In Proceedings of the Twenty-fifth Annual
ACM Symposium on Theory of Computing, STOC ’93, pages 355–361, New York, NY, USA,
1993. ACM.

[36] Ling Ren, Xiangyao Yu, Christopher W. Fletcher, Marten van Dijk, and Srinivas Devadas.
Design space exploration and optimization of path oblivious RAM in secure processors. In
ISCA, pages 571–582, 2013.

[37] Elaine Shi, T.-H. Hubert Chan, Emil Stefanov, and Mingfei Li. Oblivious RAM with
O((logN)3) worst-case cost. In ASIACRYPT, pages 197–214, 2011.

[38] Emil Stefanov and Elaine Shi. Oblivistore: High performance oblivious cloud storage. In IEEE
Symposium on Security and Privacy (S & P), 2013.

[39] Emil Stefanov, Marten van Dijk, Elaine Shi, Christopher Fletcher, Ling Ren, Xiangyao Yu,
and Srinivas Devadas. Path ORAM – an extremely simple oblivious ram protocol. In ACM
Conference on Computer and Communications Security (CCS), 2013.

39



[40] Xiao Shaun Wang, T-H. Hubert Chan, and Elaine Shi. Circuit ORAM: On Tightness of the
Goldreich-Ostrovsky Lower Bound. In ACM CCS, 2015.

[41] Peter Williams, Radu Sion, and Alin Tomescu. Privatefs: A parallel oblivious file system. In
ACM Conference on Computer and Communications Security (CCS), 2012.

A Additional Algorithmic Details

For ease of understanding, we graphically illustrate our OPRAM’s data structure in Figure 1. In
the remainder of this section, we supply some missing algorithmic details.

OTM at level l = 1 
(storing ≤ m real blocks)

. . .. . .…. . .

OPRAMd
(OPRAM at depth d)

OPRAM0 OPRAMD
(D = log N – log m)

OTM at level l = d – 1
(storing ≤ 2lm real blocks)

OTM at level l = D

Figure 1: OPRAM data structures at a glance. Each OTM is a one-time memory instance
defined and constructed in Section 4; each OPRAM0,OPRAM1, . . . ,OPRAMD is a position-based
OPRAM defined and constructed in Section 5.1.

A.1 Conflict Resolution

For completeness, we briefly describe the conflict resolution procedure for 1 ≤ d < D as follows:

1. Consider the depth-(d + 1) truncated address: A〈d+1〉 := (addr
〈d+1〉
1 , . . . , addr

〈d+1〉
m ), and use

oblivious sorting to suppress duplicates of depth-(d+ 1) addresses, i.e., each repeated depth-
(d+ 1) address is replaced by a dummy. Let Â〈d+1〉 be the resulting array (of size m) sorted
by the (unique) depth-(d+ 1) addresses.

2. For each i ∈ [1..m], we produce an entry (addri, flagsi) according to the following rules:

(a) If addr
〈d+1〉
i is a dummy, then addri := ⊥ is also dummy.

40



(b) If addr
〈d+1〉
i does not share its length-d prefix with addr

〈d+1〉
i−1 or addr

〈d+1〉
i+1 , then addri

is set to be the length-d prefix of addr
〈d+1〉
i . Moreover, if addr

〈d+1〉
i ends with 0, then

flagsi := 10; otherwise, flagsi := 01.

(c) If addr
〈d+1〉
i and addr

〈d+1〉
i−1 share the same length-d prefix, then addri := ⊥; otherwise, if

addr
〈d+1〉
i and addr

〈d+1〉
i+1 share the same length-d prefix, then addri is set to the shared

length-d prefix of the address, and flagsi := 11.

3. Then, the batch access for OPRAMd is ((addri, flagsi) : i ∈ [m]).

A.2 The Convert Subroutine

The Convert subroutine takes an array that stores the position labels within OPRAMd for depth-d
addresses, and converts the array to one that contains depth-(d − 1) addresses where each entry
may pack up to two position labels for its child addresses at depth-d.

The subroutine Convert(U, d) proceeds as follows. First, perform oblivious sort on the depth-d

addresses to produce an array denoted as {(addr
〈d〉
i , posi) : i ∈ [|U |]}.

Next, for i ∈ [|U |] in parallel, look to the left and look to the right and do the following:

• If addr
〈d〉
i = addr||0 and addr

〈d〉
i+1 = addr||1 for some addr, i.e., if my right neighbor is my sibling,

then write down u′i = (addr, (posi, posi+1)), i.e., both siblings’ positions need to be updated.

• If addr
〈d〉
i−1 = addr||0 and addr

〈d〉
i = addr||1 for some addr, i.e., if my left neighbor is my sibling,

then write down u′i = ⊥.

• Else if i does not have a neighboring sibling, parse addr
〈d〉
i = addr||b for some b ∈ {0, 1}, then

write down u′i = (addr, (posi, ∗)) if b = 0 or write down u′i = (addr, (∗, posi)) if b = 1. In these
cases, only the position of one of the siblings needs to be updated in OPRAMd−1.

• Let U 〈d−1〉 := {u′i : i ∈ [|U |]}. Note here that each entry of U 〈d−1〉 contains a depth-(d − 1)
address of the form addr, as well as the update instructions for two position labels of the depth-d
addresses addr||0 and addr||1 respectively.

We emphasize that when ∗ appears, this means that the position of the corresponding depth-d
address does not need to be updated in OPRAMd−1.

• Output U 〈d−1〉.

B Basic OPRAM Scheme: Analysis and Extensions

B.1 Analysis

We now give detailed analysis and proofs for our basic OPRAM scheme in Section 5.

B.2 Correctness and Obliviousness

Fact B.1. The above construction maintains correctness. More specifically, at every recursion
depth d, the correct position labels will be input to the Lookup operations of OPRAMd; and every
batch of requests will return the correct answers.

Proof. Straightforward by construction.

41



In our OPRAM construction, for every OPRAMd at recursion depth d, the following invariants
are respected by construction as stated in the following facts.

Fact B.2. For every OPRAMd, every OTMi instance at level i ≤ d that is created needs to answer
at most 2i batches of m requests before OTMi instance is destroyed.

Proof. For every OPRAMd, the following is true: imagine that there is a (d+ 1)-bit binary counter
initialized to 0 that increments whenever a batch of m requests come in. Now, for 0 ≤ ` < d,
whenever the `-th bit flips from 1 to 0, the `-th level of OPRAMd is destroyed; whenever the `-th
bit flips from 0 to 1, the `-th level of OPRAMd is reconstructed. For the largest level d of OPRAMd,
whenever the d-th (most significant) bit of this binary counter flips from 0 to 1 or from 1 to 0, the
(d + 1)-th level is destroyed and reconstructed. The fact follows in a straightforward manner by
observing this binary-counter argument.

Fact B.3. For every OPRAMd and every OTM` instance at level ` ≤ d, during the lifetime of the
OTM` instance: (a) no two real requests will ask for the same depth-d address; and (b) for every
request that asks for a real depth-d address, the address must exist in OTMi.

Proof. We first prove claim (a). Observe that for any OPRAMd, if some depth-d address addr〈d〉 is
fetched from some level ` ≤ d, at this moment, addr〈d〉 will either enter a smaller level `′ < `; or
some level `′′ ≥ ` will be rebuilt and addr〈d〉 will go into level `′′ — in the latter case, level ` will be
destroyed prior to the rebuilding of level `′′. In either of the above cases, due to correctness of the
construction, if addr〈d〉 is needed again from OPRAMd, a correct position label will be provided for
addr〈d〉 such that the request will not go to level ` (until the level is reconstructed). Moreover, two
real requests will not appear in the same request due to the conflict resolution procedure. Finally,
claim (b) follows from correctness of the position labels.

Given the above facts, our construction maintains perfect obliviousness.

Lemma B.4 (Obliviousness). The above OPRAM construction satisfies perfect obliviousness.

Proof. For every parallel one-time memory instance constructed during the lifetime of the OPRAM,
Facts B.2 and B.3 are satisfied, and thus every one-time memory instance receives a valid request
sequence. The lemma then follows in a straightforward fashion by the perfect obliviousness of the
parallel one-time memory scheme, and by observing that all other access patterns of the OPRAM
construction are deterministic and independent of the input requests.

B.3 Asymptotical Complexity

We now analyze the asymptotical efficiency of our OPRAM construction. First, observe that the
asymptotical performance of the fetch phase as stated in the following fact.

Fact B.5. The fetch phase can be completed in O(m log2N) total work, and in O((logm+log logN)·
logN) depth (assuming an unbounded number of CPUs).

Proof. For total work, it is not difficult to see that one logN factor arises from the recursion depths,
and within each recursion depth it takes O(m logN + m logm) work to perform the fetch. where
m logm is the total work incurred by the oblivious routing in between recursion depths and m logN
is the work incurred within a single position-based OPRAM.

For depth, one logN factor comes from the logN recursion depths, the other (logm+log logN)
factor is due to the depth incurred by each recursion depth as well as due to the routing in between

42



depths: 1) Within each recursion depth, it takes O(1) depth to look up each of the up to O(logN)
hierarchical levels, and then select the correct result in another O(log logN) depth; and 2) the
routing between adjacent depths can be implemented with the AKS sorting network [1] that takes
O(logm) depth.

We now proceed to analyze the efficiency of the maintain phase.

Fact B.6. Averaging over a sequence of batch accesses, the maintain phase costs O(m log3N)
amortized total work (except with negligible in N probability). Further, for each batch of accesses,
the maintain phase can always be completed in O(log2N) depth assuming an unbounded number of
CPUs.

Proof. For each OPRAMd, every level ` ≤ d+ 1 must be rebuilt after every 2` batch of m requests.
Due to Fact 5.2, each rebuilding operation will take O(2` ·m log(2` ·m)) total work, and has depth
O(log(2` · m)), which is at most O(logN). After the rebuilding, the Convert algorithm also has
the same asymptotic performance. Thus, for each recursion depth, the amortized total work is
O(m log2N). Counting all O(logN) recursion depths, we have the desired result for total work.

For depth, observe that for each recursion depth, the depth incurred by the rebuilding is domi-
nated by the depth of the AKS sorting network which is O(logN). We then have the depth result
by observing that the maintain phase is performed sequentially over O(logN) recursion depths.

Lemma B.7. In the above OPRAM construction, the total work blowup is O(log3N), and the
depth blowup is O((logm+ log logN) logN).

Proof. Straightforward from Facts B.5 and B.6.

Corollary B.8. The above OPRAM construction incurs O(log3N) simulation overhead when con-
suming the same number of CPUs as the original PRAM.

Proof. This corrolary is implied directly by Lemma B.7. The difference is that Lemma B.7 would
require more than m CPUs such that the depth of the algorithm may be smaller than the total
work blowup, but if we are constrained to exactly m CPUs, the amortized parallel runtime per
batch of accesses would be exactly O(log3N).

B.4 Extension: Results for Large Block Sizes

Observe that if the block size is large, then each block in OPRAMd can store more position identifiers
for blocks in OPRAMd+1. Hence, the number D of recursive OPRAMs can be reduced. This can
lead to the following improvement.

Corollary B.9 (Large Block Size). Suppose the block size is Θ(N ε) bits. Then, the above OPRAM
construction can be modified to have O(1ε log2N) total work blowup and simulation overhead, and
O(1ε (logm+ log logN)) depth blowup.

Proof. When the block size is B := Θ(N ε) bits, the number of depths of recursive OPRAM’s
becomes D := logN

log B
logN

= O(1ε ).

Hence, in every performance metric stated in Lemma B.7 and Corollary B.8, one factor of logN
is replaced with O(1ε ).

43


	Introduction
	Our Results and Contributions
	Related Work

	Technical Roadmap
	Simplified Perfectly Secure ORAM with Asymptotically Smaller Space
	Making Our ORAM Scheme Parallel
	When the OPRAM Consumes the Same Number of CPUs as the PRAM
	When the OPRAM May Consume Unbounded Number of CPUs


	Definitions
	Parallel Random-Access Machines
	Oblivious Parallel Random-Access Machines
	Building Blocks

	Parallel One-Time Oblivious Memory
	Definition: One-Time Oblivious Memory
	Intuition
	Formal Definition

	Construction
	Intuition
	Detailed Construction


	Basic OPRAM with O(log3 N) Simulation Overhead
	Position-Based OPRAM
	Data Structure
	Operations

	OPRAM Scheme from Position-Based OPRAM
	Operations


	Oblivious Loose Compaction from Expander Graphs
	Preliminary: Bipartite Expander Graphs
	Preliminary: A Factory-Facility Problem
	Preliminary: Pippenger's ``Propose-Accept-Finalize'' Protocol
	Oblivious Simulation of the Propose-Accept-Finalize Protocol on a PRAM
	Making the Protocol Communication-Oblivious
	Oblivious Simulation on a PRAM: the Propose-Accept-Finalize Algorithm

	Reduction from Loose Compaction to the Factory-Facility Problem

	Improving the OPRAM's Depth to O"0365O(logN)
	Modifications to the OPRAM's Data Structure
	Improving the Depth of the Fetch Phase
	Offline Preparation
	Online Fetch and Route

	Improving the Depth of the Maintain Phase
	Obliviousness

	Conclusion and Future Work
	Additional Algorithmic Details
	Conflict Resolution
	The Convert Subroutine

	Basic OPRAM Scheme: Analysis and Extensions
	Analysis
	Correctness and Obliviousness
	Asymptotical Complexity
	Extension: Results for Large Block Sizes


