
Directional Distance-Bounding Identification
Protocols

Ahmad Ahmadi Reihaneh Safavi-Naini

Abstract

Distance bounding (DB) protocols allow a prover to convince a verifier that
they are within a distance bound. A public key distance bounding relies on the
public key of the users to prove their identity and proximity claim. There has been
a number of approaches in the literature to formalize security of public key dis-
tance bounding protocols. In this paper we extend an earlier work that formalizes
security of public key DB protocols using an approach that is inspired by the secu-
rity definition of identification protocols, and is referred to it as distance-bounding
identification (DBID). We first show that if protocol participants have access to
a directional antenna, many existing protocols that have been proven secure, will
become insecure, and then show to revise the previous model to include this new
capability of the users. DBID approach provides a natural way of modeling man-
in-the-middle attack in line with identification protocols, as well as other attacks
that are commonly considered in distance bounding protocols. We propose a new
DBID scheme, called Poxy, with security proof. We compare the existing public
key DB models, and prove the security of the scheme known as ProProx, in our
model.

1 Introduction

Distance upper bounding (DB) protocols were first proposed in [12] to provide security
against Man-in-the-middle (MiM) attack in authentication protocols. They have found
wide diversity of applications in location and proximity based services [6, 25, 15, 20,
10]. Most DB protocols are symmetric key protocols where the prover and the verifier
share a secret key. More recently public key DB protocols have been proposed where
the prover is only known through their public keys, while their secret key remains
private to them [3, 28, 2]. In these models, the verifier only has access to system public
parameters as well as public keys of the participants.

In a DB setting there are three types of participants: provers who are registered in the
system and have secret keys, a verifier who is honest and has access to correct public
keys of provers, and actors who are not registered in the system, but want to be accepted
and may collude with a dishonest prover. The distance between the prover and the veri-
fier is measured by using a “fast challenge-response phase" during which a sequence of

1

one bit challenges are sent by the verifier to the prover, and the corresponding responses
by the prover is recorded and used for distance estimation. A challenge-response table
includes responses that are required for all possible challenges and is calculated by the
prover before the fast challenge-response rounds start. The challenge-response table
is constructed using the provers’ secret key, and some nonces that are communicated
during the slow phase of the protocol.

In symmetric key setting, the challenge-response table can also be constructed by the
verifier and used for the verification of responses In public key setting however, the
verifier only knows the prover’s public key, and cannot calculate the challenge-response
table. In this case, the verifier verifies the correctness of the prover’s responses using
their relation with the provers’ public key.

For a DB protocol with distance bound D, we refer to participants whose distance to
the verifier are less than D as close-by participants (set S) and those who are farther
away than D, as far-away participants (set F).

Important attacks against DB protocols are:

(A1) Distance-Fraud [7]; where a dishonest far-away prover tries to be accepted in the
protocol. Distance-Hijacking [10] is a special case of this attack, where a far-
away prover takes advantage of the communication of honest close-by provers to
succeed in the protocol.

(A2) Mafia-Fraud (MF) [12]; a close-by actor tries to use the communications of a
far-away honest prover, to succeed in the protocol.

(A3) Strong-Impersonation [2]; a close-by actor learns from past executions of the
protocol by a close-by honest prover and tries to impersonate the prover in a new
execution when the prover is either inactive or is not close-by anymore.

(A4) Terrorist-Fraud (TF) [12]; a dishonest far-away prover colludes with a close-by
actor to succeed in the protocol. In the original TF, it’s assumed that the prover
does not leak their secret key to the actor. In the recent TF [27] this restriction
is removed, but it is required that non-negligible success of TF attack results in
non-negligible improvement in future impersonation attacks by the actor.

To prove security of the existing public key DB protocols, such as [3, 7, 8, 28, 17,
2, 16], PoPoK [28] proposed a formal security model that uses a cryptographic PoK
system and considers distance bound as an additional property of the system. In DBID

[2] an alternative approach was proposed that follows the security formalization of
identification protocols (using Σ-protocols), and includes distance-bound as an
extra property. The ProProx scheme [28] was first proven secure in the former model
[28], and later in the latter model [2].

ProProx uses polynomial times more fast phase operations, compared to normal DB
protocols. The communications of the fast phase of DB protocols are generally more
expensive, less reliable and more noise sensitive compared to the slow phase, as the
data is sent in plain form. This fact makes the ProProx protocol to be an inefficient

2

scheme. DBPoK-log+ [3] is another public key DB protocol that uses a different cryp-
tosystem and uses the normal amount of fast phase communications, which makes it
more efficient compared to ProProx. However, the security proof of this protocol has
not been yet provided and it is not reliable in presence of noisy channel.

Our work: We consider provers that have access to directional antennas. Such an-
tennas allow point to point communication with minimum interception by eavesdrop-
pers who are outside the main transmission direction [1]. Advances in beamforming
techniques and smart antennas in recent years [1] has made these antennas readily
accessible to users. Distance bounding protocols, during the fast challenge-response
phase, rely on physical layer communication and so it is important to consider this ex-
tra attacking capability for protocol participants. We will show that indeed directional
antenna affects the security evaluation of DB protocols, and in particular effectively
allows a malicious prover to launch a successful TF attack against protocols that had
provable security against this attack. In Section 3 we show how this extra capability can
be used by a malicious prover who is aided by a helper to break security of VSSDB [16]
and DBPoK-log+ [3] schemes. Directional antennas had been previously considered
for actors during MF attack. In this paper we consider a dishonest prover with access
to this type of antenna. For distance fraud, a directional antenna does not appear to
affect security. In TF however, the dishonest prover is aided by a helper and directional
antenna and this affects the security definition.

We extend the DBID formal security model [2] to include this new attacker’s capability.
The directional TF attack is captured in the revised TF-resistance (Property 4.4). We
propose a new DBID scheme, called Poxy, and provide the security proof. We also
prove that the existing ProProx scheme is indeed secure in this new model.

This paper is the full version of conference paper [4].

Organization. Section 2 is preliminaries. Section 3 shows directional TF attack on
some public key DB protocols. Section 4 presents our model, Section 5 and Section 6
describe the construction of Poxy and ProProx, respectively, and give security theo-
rems and proofs. Section 7 gives a summary of related works, and Section 8 concludes
the paper.

2 Preliminaries

In this section we introduce a primitive that will later be used in our model.

A Σ-protocol is a 3-round cryptographic protocol between a prover P and a verifier
V, in which the two parties interact, and at the end of the protocol, V is convinced about
validity of P’s statement. P has a private input x that satisfies the relation R(x,y), where
y is a public value that is also known to V. A Σ-protocol is used in cryptographic
systems such as proof-of-knowledge schemes [11, 18, 23, 19, 26]. The Σ-protocol
[23] is defined as follows;

3

Definition 2.1. (Σ-protocol). A prover P and verifier V execute three’ algorithms
(Commit,Response,Check) using inputs (x,y) and (y), respectively in the following
order. x is private and y is public.

Let C, H and R denote three sets defined as follows. C is the set of possible input that
is chosen by the prover; H is the set of possible challenges chosen by the verifier;
and R is the set of possible responses of the prover. The steps of the protocol are as
follows:

1. P randomly chooses a ∈ C, computes the commitment A = Commit(a), and
sends A to V .

2. Challenge and Response messages that are defined as follows:

(a) V randomly chooses a challenge c ∈H and sends it to P,

(b) P computes r = Response(x,a,c) ∈ R and sends it to V ,

3. V calculates ret = Check(y,c,r,A), where ret ∈ {accept,re ject}.

At the end of the protocol, V outputs OutV = 1 if ret = accept, and OutV = 0 other-
wise.

In an identification scheme (ID), a prover P convinces a verifier V that they know a wit-
ness x related to a public value y. The scheme is given by the tuple ID=(KeyGen;Commit;
Response;Check). KeyGen is a PPT algorithm that generates (x,y). The PPT algo-
rithms Commit, Response and Check specifying an interactive protocol between the
prover P and the verifier V as a Σ-protocol (Definition 2.1).

An identification scheme is correct if the Check function outputs accept if R(x,y)
holds, and re ject otherwise. An identification scheme is secure if an adversary with
access to a set of valid transcripts T = {(A,c,r)}, cannot generate a valid transcript
(A′,c′,r′) for a c′ that has not appeared in T. Note that a transcript (A,c,r) is valid
according to public key y, if the function Check(y,c,r,A) returns accept.

Here we define a more general form of Σ-protocols, called Σ∗-protocols, in which
the verifier consecutively sends multiple challenges, each (except the first one) after
receiving the response to the previous challenges.

Definition 2.2. (Σ∗-protocol). A prover P and verifier V run the following

Let C, H and R denote three sets defined as follows. C is the set of possible input that
is chosen by the prover; H is the set of possible challenges chosen by the verifier;
and R is the set of possible responses of the prover. The steps of the protocol are as
follows:

1. P randomly chooses a ∈ C, computes the commitment A = Commit(a), and
sends A to V .

2. Challenge and Response messages that are defined as follows:

(a) V randomly chooses a challenge c ∈H and sends it to P,

4

(b) P computes r = Response(x,a,c,¬c) ∈ R, where ¬c is the list of previous
challenges before c, and sends it to V ,

Steps 2-(a) and 2-(b) may be repeated a number of times.

3. V calculates ret = Check(y, [c], [r],A), where ret ∈ {accept,re ject} and [c]
and [r] are lists of all challenges and responses, respectively.

At the end of the protocol, V outputs OutV = 1 if ret = accept, and OutV = 0 other-
wise.

3 Directional Attacks on Public-Key DB Protocols

Directional attacks assume that participants have access to directional antennas that
allow them to direct messages to specific participants, and prevent other participants
from receiving them. Figure 1 shows how such an antenna can be exploited by a
malicious prover in a TF attack. The helper does not receive slow phase messages that
are sent by the prover, as prover uses a directional antenna (orange ribbon in Figure 1)
for communication in this phase. Before the start of the fast-phase, the prover sends all
fast-phase responses (e.g., the fast challenge-response table) to the helper, making the
helper in-charge of responding to the fast-phase challenges.

This means that the adversary is able to separate the slow phase messages of the pro-
tocol from the fast-phase messages. In a vulnerable protocol, the prover may succeed
in TF attack without leaking their long term key to the helper, using this separation
technique. Therefore, the attacker’s success in TF will not imply success in future
impersonation.

H

VP∗
D

(2) fast resp. (3) fast phase
(1) slow phase

Figure 1: Directional TF

In the following we describe how this setting helps a malicious prover to succeed in
terrorist-fraud against VSSDB [16] and DBPoK-log+ [3] schemes.

3.1 Attack against VSSDB [16]

Using Definition 4.1 for a DB scheme, Figure 2 presents the Π protocol (Definition 4.1)
of VSSDB scheme. This is a protocol between the prover and the verifier where the

5

prover has access to the public key of the verifier and their own secret key, and the
verifier has access to their private key and the public key of the prover.

6

P V

(secret: skP,x,υ = {υ j}λ
j=1)(public: pkV) (secret: skV)(public:

pkP,{com j}λ
j=1)

Initialization (slow phase)
k, l ∈R {0,1}λ,u,v ∈R {Z∗N}λ NV,M ∈R {0,1}λ

for j = {1...λ}:
• e j = x j⊕ k j⊕ l j, w j = u−1

j v−1
j H j(x) (mod N)

• a j = Commit(k j,u j),b j = Commit(l j,v j),d j = Commit(e j,w j)

0,NV,Mreceive 0,N′V,M
′

• mP := {a j,b j,d j}λ
j=1||N′V

• cP = EncpkV(mP||σ = SignskP(mP))

• ω := {x,k, l,e,u,v,w,a,b,d,υ,skP}

• π := Prove{ω : cP well formed ∧ consistent with {com j}λ
j=1}

cP,π receive c′P,π
′

(m′||N′V,σ′) = DecskV(c
′
P) •

PVerify(π′,σ′) •
check N′V = NV •

for j = {1...λ}:
• f j(0)

4
= M′j.e j +M′j.k j;

• f j(1)
4
= M′j.k j⊕ l j +M′j.e j⊕ l j;

• γ j(0,0)
4
= w j; γ j(0,1)

4
= (k j,u j, l j,v j);

• γ j(1,0)
4
= u j; γ j(1,1)

4
= (e j,w j, l j,v j);

Challenge/Response (fast phase)
∀ j ∈ {1, ...,λ} c j ∈R {0,1}

start timer •c j
receive c′j
• r j = f j(c′j) r j stop timer •

store ∆ti and r′j •
Verification (slow phase)

• ς = SignskP(M
′||{c′j,r j}λ

j=1||N′V)
• ϕ = {γ j(M′j,c

′
j)}λ

j=1
ς,ϕ receive ς′,ϕ′

SVerifypkP(ς
′,M||{c j,r′j}λ

j=1||NV) •
check #{i : ∆ti correct}= λ •

COpen(a,b,d,r′,ϕ′) •
If all checks succeed OutV = 1, otherwise OutV = 0

OutV

Figure 2: Π protocol of VSSDB scheme. (Commit,COpen) is a commitment scheme.
(Enc,Dec) is a secure public key encryption scheme. (Sign,SVerify) is a signature
scheme. (Prove,PVerify) is a proof-of-knowledge scheme. H is a secure hash func-
tion with pseudo-random output. x is the private key of the prover, with random distri-
bution. υ = {υ j}λ

j=1 where υ j = H j(x). com j = Commit(x j,υ j). The fast challenge-
response table has λ columns with the jth column defined by the boolean function f j().

7

Lemma 1. In the Π protocol of VSSDB scheme, the fast challenge-response table
does not leak information about the secret value skP of prover, assuming that skP
and x are independently chosen.

Proof. The elements of the fast challenge-response table are calculated as r j = f j(c′j)
∈ {0,1} for j = {1, ...,λ}. Therefore, by knowing the table, one can, at the most,
extract the values of e j,k j, l j for j = {1, ...,λ}. By finding these values, one can extract
the value of x using the equation x j = e j ⊕ k j ⊕ l j for j = {1, ...,λ}. Since k j and l j
are chosen randomly, therefore, this table only contains information about randomly
chosen values k and l, and the value of x, which are independent of the secret value
skP.

Attack: In this attack, the prover sends the messages of the slow phase to the verifier
using directional antenna. The prover then sends the fast challenge-response table (i.e.,
∀ j ∈ {1, ...,λ} : either (e j,k j) or (k j⊕ l j,e j⊕ l j)) to the helper before running the fast
phase. Note that the fast challenge-response table does not leak the prover long-term
secret skP according to Lemma 1.

This allows the helper to respond to the verifier’s challenges during the fast phase. The
collusion of the prover and the helper will make the verifier to accept (i.e., OutV = 1)
and this is without the prover sending to the helper any information that is dependent
on the secret key skP. The secret skP is required to generate a valid signature σ in
the message π. This means that the helper’s success chance in a future impersonation
attack will not improve. This completes a successful TF.

3.2 Attack against DBPoK-log+ [3]

The presented model of [3] follows the original definition of TF (Attack 4), and so
our attack can be seen as outside their model. However, we showed that the original
definition of TF is not suitable for anonymous distance-bounding protocols. In this
section we present a TF attack against DBPoK-log+, using the more recent definition
of TF (Attack 4).

The Π protocol in DBPoK-log+ scheme consists of the following four sub-protocols
between the verifier (V) and the prover (P). The prover takes secret-key (ski,r) as
input, and the verifier takes prover’s public-key pki = gski

1 .gr
2 as input. The following is

an improved version of the scheme presented in [3], in terms of being noise resistant.

Step (i) Bit Commitment is a commitment protocol, in which the prover uses the
secret key ski as input. In this protocol, the prover decides on the "fast
challenge-response table" and commits to each bit in the table. The verifier
learns the committed values of every single bit of the fast challenge-response
table. This table consists of two rows: {rb[l]}l={1,...,λ},b∈{0,1}, where rb[l] is
the response in the ith fast challenge-response round. The corresponding

8

committed values are {Cb[l]}l={1,...,λ},b={0,1}, and the corresponding ran-
domness of commitments are indicated by {vb[l]}l={1,...,λ},b={0,1}, where

vb[l] ∈ Z∗p. The commitment function is as follows: Cb[l] = grb[l]
1 .hvb[l] for

b ∈ {0,1}, l = {1...λ}, and g1,h ∈ Zp. The committed table and the ran-
domness is kept secret at the prover, while the commitments are sent to the
verifier. Figure 3 shows the details of this step. The parts that are shown in
a box, are sub-protocols whose details are omitted.

P V

(secret : ski)

• k ∈R Z∗p
• ∀l ∈ {1, . . . ,λ}:
− r0[l] = b k

2l−1 c mod 2, so we have r0[l] ∈ Z2

− v0[l] ∈R Z∗p,C0[l] = gr0[l]
1 .hv0[l]

C0

agree on u ∈R {1, . . . , p−2}

• e = u.ski− k mod (p−1), so we have e ∈ Z∗p
• ∀l ∈ {1, . . . ,λ}:
− r1[l] = b e

2l−1 c mod 2, so we have r1[l] ∈ Z2

− v1[l] ∈R Zp−1;C1[l] = gr1[l]
1 .hv1[l]

C1

∀l : check C1[l] 6=C0[l];C1[l] 6= g1.C0[l];C1[l].g1 6=C0[l] •

∀l ∈ {1, . . . ,λ}

Proo f -o f -Knowledge{(r0[l],v0[l]) : C0[l] = gr0[l]
1 .hv0[l]}

Proo f -o f -Knowledge{(r1[l],v1[l]) : C1[l] = gr1[l]
1 .hv1[l]}

r0,r1,v0,v1 C0,C1

Figure 3: DBPoK-log+ Step (i): Bit Commitment

Step (ii) Fast Challenge/Response is the protocol in which the prover uses the
calculated "fast challenge-response table" {rb[l] : l = {1...λ},b = {0,1}},
generated in Bit Commitment step, as input. They run the protocol in Fig-
ure 4.

9

P V

(secret : r0,r1)

for l = {1 . . .λ}
c[l] ∈R {0,1} •

Measure Time (t1) •c[l]Receive c′[l]

• r[l] = c′[l]r0[l]+ c′[l]r1[l] r[l] Receive r′[l]

Measure Time (t2) •

Verify Response Time (t2− t1) •

c,r′c′

Figure 4: DBPoK-log+ Step (ii): Fast Challenge/Response

Step (iii) Commitment Opening is used to open half of the commitments, that corre-
spond to the challenge bits sent by the verifier in Fast Challenge/Response
step. In this step, the prover uses the secret commitment randomness (i.e.,
{vb[l] : l = {1...λ},b= {0,1}}) and the challenge values of Fast Challenge/Response
step (i.e., c′), and the verifier uses the committed values (i.e., {Cb[l] : l =
{1...λ},b = {0,1}}) and the challenge and response values of step (iii)
(i.e., c and r′) as input. This protocol is shown in Figure 5, which im-
proves the original PDB protocol [3] by adding noise resistance to the proto-
col. This step succeeds, if the noise counter is less than the threshold (i.e.,
countnoise < τ).

10

P V

(secret : v0,v1,c′) (public : c,r′,C0,C1,τ)

∀l ∈ {1, . . . ,λ}

• o[l] = c′[l]v0[l]+ c′[l]v1[l] o

∀l ∈ {1, . . . ,λ} •

if (check(c[l]C0[l]+ c[l]C1[l]
?
= gr′[l]

1 .ho[l]))

OutV = 1; terminate

else

if (check(c[l]C0[l]+ c[l]C1[l]
?
= gr′[l]

1 .ho[l]) or

check(c[l]C0[l]+ c[l]C1[l]
?
= gr′[l]

1 .ho[l]) or

check(c[l]C0[l]+ c[l]C1[l]
?
= gr′[l]

1 .ho[l]))

countnoise = countnoise +1

else

OutV = 0; terminate

if (countnoise > τ)

OutV = 0

else

OutV = 1

OutV

Figure 5: DBPoK-log+ Step (iii): Commitment Opening

Step (iv) Proof-of-Knowledge is a protocol for zero-knowledge proof of equality
that shows the secret key and the bitwise committed secret key of Bit Commitment
step are the same. In this protocol, the prover uses the secret key (ski,r) and
the commitment randomness of Bit Commitment step, and the verifier uses
the public-key and bit committed values of Bit Commitment step, as input.
z is the accumulation of the committed values of Bit Commitment step as
z = ∏

λ

l=1(C0[l]C1[l])2l−1
mod p, and v is the accumulation of the commit-

ment randomness of step (ii) as v = ∑
λ

l=1 2l .(v0[l]+ v1[l]) mod (p−1).

This protocol runs t iterations of ZK proof where z and C satisfy the follow-
ing relation: PoK[(ski,v,r) : z = gu.ski .hv∧ pki = gski .gr

2].

11

If all steps terminate successfully, then the verifier outputs OutV = 1.

Lemma 2. In DBPoK-log+ scheme, the fast challenge-response table does not leak
information about the randomness of secret-key of the prover (r), unless negligible
probability.

Proof. We know that by having the fast challenge-response table, we can calculate part
of the secret-key of the prover, as ski =

k+e
u mod (p−1) where k is fresh randomness.

Note that the fast challenge-response table is the output of random function that takes
ski as input. So it cannot leak any information about other independent secrets of the
prover, including r.

If there is an adversary A that can calculate the randomness r from the secret-key ski
and pki = gski .gr

2 , then A can solve the discrete log problem for gr
2. Therefore, since we

assume discrete log is a hard problem, then the success chance of A is negligible.

Attack: In directional TF attack (Figure 1), a malicious far-away prover will use a
directional antenna for the slow phase of DBPoK-log+ protocol (all steps except step
(ii)) to communicate directly with the verifier, without the helper being able to inter-
cept the messages. The prover sends the fast challenge-response table to the helper
before running step (ii). Note that the fast challenge-response table does not leak any
information about r, according to Lemma 2. In this way, the helper can respond in
time and correctly to the challenges of the verifier during the fast challenge-response
rounds. This attack makes the verifier to accept the protocol.

Since the fast challenge-response table does not leak any information about the ran-
domness r, the helper will not be able to pass step (iv) in future and so it cannot imper-
sonate the prover. This completes a successful terrorist fraud on DBPoK-log+.

4 Model

First we define the settings of our system. This includes entities, their communication,
their views, and the adversarial capabilities. Then we define distance-bounding iden-
tification scheme (DBID) and describe DBID experiment, which simulates an instance
of DBID scheme. Finally we formalize four properties: (Completeness, Soundness,
DF-resistance, and TF-resistance of distance-bounding identification schemes, using a
game-based approach and described as a DBID experiment where adversary is active,
and the game is between a challenger that sets up the system, taking into account the
adversary’s input. Finally in fundamental lemma, we discuss the relation between the
location of participants, the timing of messages and their content.

Entities. We consider a set U of users. The user u ∈ U can have multiple provers that
are denoted by the set P. This captures the scenario that a single user has multiple
devices.

12

A trusted group manger generates the public parameters of the system, and registers
users and issues a key pair to each user. The user u is identifiable by its’ private key.
The private key, that must be kept secret, forms the secret input of the user in providing
authentication proof. The private key of a user u is shared by all their provers P. The
corresponding public key of the user is published by the group manager.

There is a single verifier in the system, that for uniformity of notations, we refer to it
as a set V that has a single member. The verifier only access to the public parameters
of the system.

There is a set of actors (T) that only have access to the public parameters of the system.
In this paper we refer to the members of the sets P, V and T as participants.

Each participant has a location loc = (x,y) ∈ R×R, that is an element of a metric
space equipped with Euclidean distance, and is fixed during the protocol. The distance
function d(loc1, loc2) returns the distance between two locations. Message travel time
between locations loc1 and loc2 is d(loc1,loc2)

L
, where L is the speed of light. A bit sent

over the channel may flip with probability pnoise (0≤ pnoise ≤ 1).

Participants that are located within a predefined distance bound D from the verifier,
excluding the verifier, are called close-by participants (set S), and those who are outside
the distance bound from the verifier are called far-away participants (set F).

Communication Structure. All participants have access to directional antennas: a
participant A in locA can send a message to participant B at locB, such that others
who are not on the straight line connecting locA and locB, cannot intercept it. Using
omni-directional antenna however allows a message to be seen and modified by other
participants. A participant may have multiple antennas that can be either directional or
omni-directional. We allow a participant to send multiple messages to multiple parties
at the same time, each from a separate antenna. Multiple messages that are received at
the same time on the same antenna are combined and received as a single message.

View. The view of an entity at a point of a protocol consists of: all the inputs of the
entity (including random coin tosses) and the set of messages that they have received
up to that point in the protocol.Receiving a message is called an event. ViewΓ

x (e) is
a random variable that denotes the view of an entity (or a set of entities) x right after
the event e in protocol Γ. The short notation ViewΓ

x is used to indicate the view of x at
the end of the protocol Γ, i.e., ViewΓ

x =ViewΓ
x (elast) where elast is the last event in the

protocol Γ.

Adversary. An adversary can corrupt a subset of participants X∗ ⊂ P∪V∪T. As we
will see later in this section, for each security property, X∗ will have certain restrictions;
in Completeness X∗ = /0, in Soundness X∗ ⊆ T, in DF-resistance X∗ ⊆ P, and in TF-
resistance X∗ ⊆ P∪T.

When a prover of a user u is compromised, the user u’s secret private key is compro-
mised and the adversary can choose devices with that key at locations of their choice.
In other words, all the provers in P become compromised. This is because all the
provers of a user share the same private key. We refer to them as corrupted provers,

13

who are controlled by the adversary and may be activated simultaneously. However,
we assume the non-corrupted provers follow the protocol, and a user only uses one of
its devices at a time (i.e., the execution time of the provers P do not overlap). This is
because an honest user does not use multiple devices simultaneously.

Definition 4.1. (Distance-Bounding Identification Scheme). For a security pa-
rameter λ, a distance-bounding identification scheme (DBID) is defined by a tuple
(X,Y,S,P,D, pnoise,Init,KeyGen,Π,Revoke), where

(I) X and Y are the sets of possible master keys and public keys of the system,
respectively, chosen based on the security parameter λ. The system master key
msk ∈ X, and group public key gpk ∈ Y are generated using
(msk,gpk)← Init(1λ) algorithm;

(II) S and P are sets of possible private keys and public keys of the users re-
spectively, chosen according to the security parameter λ. The user private
key sk ∈ S, and public key pk ∈ Y are generated using either (sk, pk) ←
KeyGen(1λ,msk,gpk) algorithm or KeyGen{U(1λ,gpk)↔GM(1λ,msk)} pro-
tocol;
The KeyGen algorithm is run by the group manager and the output is a user
key pair and updated group public key. The user key pair is securely sent to
the user, and the public key is published by the group manager, i.e., gpk′ :=
gpk∪{pk}. However, the KeyGen protocol is run between the group manager
GM(1λ,msk) and a user U(1λ,gpk). The user outputs a key pair (sk, pk), and
the group manager outputs the updates group public key gpk′ := gpk∪{pk}.

(III) Π is a Σ∗-protocol between a prover P(sk, pk,gpk) and the verifier V (pk,gpk),
in which V verifies if the prover is authentic and is located within the distance
bound D ∈ R to the verifier.

(IV) The transmitted bits of a fast challenge-response round in Π protocol are af-
fected by noise where pnoise ∈ [0,1] is the probability of a bit flip on each fast
challenge-response message.

(V) (gpk′)← Revoke(msk,gpk, i) is an algorithm that takes the master secret key,
the group public key and the index of a user. The algorithm removes the cor-
responding user ui from the system and updates the group public key accord-
ingly, i.e., gpk→ gpk′. The Revoke operation is optional in DBID scheme.

Below we describe execution of an instance of the DBID scheme, which we call DBID
experiment.

Definition 4.2. (DBID Experiment). A DBID experiment is defined by a tuple
(DBID;U;P;V;T), where

(i) DBID is a distance-bounding identification scheme as defined in Definition 4.1.

(ii) U is the set of users that are members of the group; each user u j ∈ U has three
attributes:

• u j.Key that is a secret key generated by the group manager,

14

• u j.RT that is the registration time of the user that can be any time, and

• u j.Rev that is a flag that shows if the user is revoked.

(iii) P is the set of provers; each prover has access to the secret key of a single user.

(iv) V is the set of verifiers; that have access to the public parameters of the DBID
system. We consider the case where V has a single member.

(v) T is the set of actors; each actor has access to the public parameters of the
DBID system.

Members of the set X= P∪V∪T are called participants of the system. Each of the
participants x ∈ X, has the following attributes:

a1. x.Loc is the location of the participant,

a2. x.Code is the code to run by the participant,

a3. x.St that is the start time of the x.Code execution, and

a4. x.Corr is a flag indicating if the participant is corrupted or not.

In addition to these attributes, each prover p ∈ P has one extra attribute:

a5. p.Key that is the secret key of the corresponding user, i.e., p.Key = u j.Key for
user u j ∈ U.

The start time of all provers is after registration time of the user, i.e., ∀u ∈ U,∀p ∈
P : p.St > u.RT .

The provers of a user are either all honest or all dishonest. Because of users’ keys are
independently chosen, we can only consider a single user and so for simplicity we
omit other users. i.e., ∀p ∈ P : p.Corr = f lag, where f lag ∈ {true, f alse}. Honest
provers p ∈ P follow the Π protocol (i.e., p.Code = DBID.Π.P(.)) and there is no
overlap in the execution time of the honest provers. If the verifier is honest, then it
follows the Π protocol (i.e., v.Code = DBID.Π.V (.) for v ∈ V).

The experiment is run by a simulator that sets the attributes of the participants, and
interacts with the group manager to assign keys to the provers of a user. If there is an
adversary in the system, the simulator interacts with the adversary and follow their
requested operations, that will influence the experiment.

The experiment, without an adversary, proceeds as follows:

1. Setup.

(a) Initiate: The group manager runs (msk/gpk)← DBID.Init(1λ) algo-
rithm to generate the master secret key and group public key.

(b) Generate Players: The simulator forms the sets (U,V,P,T) and sets
their attributes. The simulator interacts with the group manager obtain
and assign keys of the provers.

15

2. Run: The simulator starts the execution of x.Code for all participants x∈X=
P∪V∪T at time x.St.

The simulation uses a clock. Time(e) indicates the time of event e. The start and finish
time of a protocol Γ is indicated as stTime(Γ) and f shTime(Γ) respectively, which
form the execution time exTime(Γ) = (stTime(Γ), f shTime(Γ)) as the range of time
and the execution time period exLen(Γ) = f shTime(Γ)− stTime(Γ). Different provers
have different execution time period (i.e., they participate in a protocol from time t1 to
t2), and possibly different locations.

In the following, we define security properties of DBID scheme, using a game between
a challenger and an adversary. This game is a DBID experiment that is run by the
challenger who interacts with an adversary. In this game we only consider one user,
i.e., |U| = 1. The challenger plays both roles of the simulator and the group manager
in the DBID experiment (Definition 4.2). The adversary’s capabilities is modelled as
access to a query that it presents to the challenger.

Definition 4.3. (DBID Game). A DBID game between a challenger and adversary
is a DBID experiment that is defined by a tuple (DBID;U;P;V;T;CorruptParties)
where

• DBID is a distance-bounding identification scheme as defined in Definition 4.1.

• U,P,V,T are the sets of users, provers, verifiers and actors as defined in Def-
inition 4.2, that are determined through interaction of the challenger and the
adversary.

• CorruptParties(Q) is a query that allows the adversary to plan (program)
their attack. Q is a set of participants, that may exist in the system or be
introduced by the adversary.

The game setup phase is by the challenger while playing the roles of the simulator
and the group manager, and interacting with the adversary.

In more details:

1. Setup.

(a) Initiate: Challenger runs (msk/gpk)← DBID.Init(1λ) and publishes
gpk. Note that the execution codes of an honest prover and verifier are
known by the challenger and the adversary at this point, and are referred
to as DBID.Π.P and DBID.Π.V , respectively.

(b) Generate Players: The sets (U,V,P,T) are formed through the interac-
tion of the challenger and the adversary as follows:

i. The challenger creates the sets (U,V,P,T) as follows:

• Chooses a verifier V= {v}, with the following attributes:

a1. v.Loc = loc0,

a2. v.Code = DBID.Π.V ,

16

a3. v.St = 0, and

a4. v.Corr = f alse.

• Runs (sk, pk) ← DBID.KeyGen(1λ,msk,gpk) once and forms
the set U = {u}. The user key is set as u.Key = sk, the reg-
istration time of the user is set as u.RT = 0 and the revocation
flag is set as u.Rev = f alse. The group public key is updated as
gpk′ := gpk∪{pk}.

• Creates a prover set P and for each member p of P, assigns
their attributes as:

a1. p.Loc is set arbitrarily,

a2. p.Code = DBID.Π.P,

a3. p.St is set arbitrarily such that there is no overlap in the
execution time of the provers (i.e., @p1, p2 ∈ P : p1.St <
p2.St ∧ p1.St + exLen(DBID.Π)> p2.St),

a4. p.Corr = f alse, and

a5. secret key p.Key = u.Key.

• T = /0

ii. The challenger sends the attributes (x.Loc,x.Code,x.St) for all x ∈
P∪V∪T to the adversary. The size of the set X is n.

iii. The adversary uses the published values to form their corruption
query CorruptParties(Q) that is sent to the challenger. The se-
cret information of the corrupted participants in Q is given to the
adversary and the behaviour (Code) of the corresponding partici-
pants, is assigned according to the adversary instruction.

More specifically, the parameter of this query is Q = {q1, ...,qn′}.
Each qi consists of the location, the execution start time and the ex-
ecution code of a participant. i.e., qi = (type, location,code, time),
where type ∈ {veri f ier, prover,actor,user} indicates the type of the
participant, location ∈R×R, code ∈ {0,1}∗ indicates the location
of the participant and time ∈N indicates the execution start time of
the participant.

If qi ∈ X = P∪V∪T∪U, it determines the settings of an existing
participant, and if qi /∈X, it determines the settings of a new partic-
ipant.

iv. Upon receiving the CorruptParties(Q) where Q = {q1, ...,qn′},
the challenger runs:

• For a qi that qi.type = veri f ier, then v.Code = qi.code and
v.Corr = true for v ∈ V.

17

• For each qi that qi.type = user , sets the users’ revocation flag
as u.Rev= true where u∈U, runs (gpk′)← Revoke(msk,gpk,1),
and then updates the group public key gpk← gpk′. This applies
only if the DBID scheme provides user revocation.

• If there is a qi that qi.type = prover, then for each member
p of the set P, sets their corruption flag p.Corr = true. If qi
is not corresponding to an existing prover, then create a new
prover p and add it to the prover set P. Set the attributes of the
participant p as follows:

a1. location p.Loc = qi.location,

a2. execution code p.Code = qi.code,

a3. start time p.St = qi.time,

a4. corruption flag p.Corr = true, and

a5. secret key p.Key = u.Key.

• For each qi that qi.type = actor, add a new actor x to the set T,
and assign its attributes as follows:

a1. location x.Loc = qi.location,

a2. execution code x.Code = qi.code,

a3. start time x.St = qi.time, and

a4. corruption flag x.Corr = true.

v. The challenger sends the key of the corrupted provers and the key
of revoked user to the adversary, i.e., p.Key for all p ∈ P such that
p.Corr = true and u.Key for all u ∈ U such that u.Rev = true.

2. Run: Challenger activates all participants x ∈ X= P∪V∪T at time x.St for
execution of x.Code.

The game ends when the last participant’s code completes its execution.

Using the above game, we define four distinct properties for distance-bounding identi-
fication schemes. The winning condition of the above game, varies for each property.

Property 4.1. (DBID Completeness). Consider a DBID scheme and a DBID game
when Q = /0 in the CorruptParties(Q) query and the set P is not empty.

The DBID scheme is (τ,δ)-complete for 0≤ τ,δ≤ 1, if the verifier returns OutV = 1
with probability at least 1−δ, under the following assumptions:

• the fast challenge-response rounds are independently affected by noise and at
least τ portion of them are noiseless, and

• τ > 1− pnoise− ε for some constant ε > 0.

18

A complete scheme must have negligible δ to be able to function in the presence of
communication noises.

Property 4.2. (DBID Soundness). Consider a DBID scheme and a DBID game with
the following restrictions:

• P is nonempty and ∀p ∈ P,v ∈ V : d(p.Loc,v.Loc)> DBID.D, and

• in the CorruptParties(Q) query, qi.type ∈ {actor,user} for all qi ∈ Q.

In this game the verifier and provers are honest, while the adversary A corrupts a
set of actors and sets their locations (and, if applicable) revokes some users. The
corrupted actors are controlled by the adversary, and can simultaneously commu-
nicate with multiple provers and the verifier. They can receive a message m from a
prover and send m′ to the verifier, and vice versa. The certificate of the revoked users
are sent to the adversary.

The DBID scheme is γ-sound if the probability of the verifier outputting OutV = 1 is
at most γ.

This general definition captures the following attacks by considering special values for
the parameters of the game;

• relay attack [7] where the MiM attacker only relays the messages between the
honest verifier and a far-away honest prover. The MiM attacker tries to convince
the verifier that the prover is located close to the verifier. This attack is achieved
by adding extra restrictions on the adversary of Property 4.2 as follows:
• ∀qi ∈ Q we have qi.code = ”relay messages”.

• mafia-fraud [12] is when there is an honest verifier, an honest far-away prover,
and a close-by MiM attacker who tries to convince the verifier that the prover
is located close to the verifier. The attacker listens to the legitimate communi-
cations for a while, before running the attack as the learning phase. This attack
corresponds to adding extra restrictions on the adversary in Property 4.2 as fol-
lows:
• P is nonempty, and
• ∀qi ∈ Q we have d(qi.location,v.Loc)≤ DBID.D for v ∈ V.

• impersonation attack [5] happens when there is an honest verifier and a single
close-by attacker who tries to convince the verifier that the prover is located
close to the verifier. The attacker can have a learning phase before running the
attack. We can achieve this attack by adding extra restrictions on the adversary
of Property 4.2 as follows:
• P is nonempty, and
• ∀qi ∈ Q we have d(qi.location,v.Loc)≤ DBID.D for v ∈ V, and
• among all the successful DBID.Π protocols (Πsucc set) during the game, ∃π ∈
Πsucc,∀p ∈ P : t = f shTime(π), t /∈ [p.St, p.St + exLen(p.Code)].

• strong-impersonation [2] happens when either mafia-fraud or impersonation hap-

19

pens. We can achieve this attack by adding extra restrictions on the adversary of
Property 4.2 as follows:
• P is nonempty, and
• ∀qi ∈ Q we have d(qi.location,v.Loc)≤ DBID.D for v ∈ V, and
• among all the successful DBID.Π protocols (Πsucc set) during the game, at least
one of the following conditions hold:

(i) ∃π ∈Πsucc,∀p ∈ P : t = f shTime(π), t /∈ [p.St, p.St + exLen(p.Code)]

(ii) ∃p∈P,∃π∈Πsucc,v∈V : t = f shTime(π), t ∈ [p.St, p.St+exLen(p.Code)]
∧d(p.Loc,v.Loc)> DBID.D.

We consider two types of attacks by a dishonest prover: far-away dishonest provers
(Property 4.3), and far-away dishonest provers with a close-by helper (Property 4.4).

Property 4.3. (DBID Distance-Fraud). Consider a DBID scheme and a DBID game
with the following restrictions:

• P is nonempty and ∀p ∈ P,v ∈ V : d(p.Loc,v.Loc)> DBID.D, and

• in the CorruptParties(Q) query, qi.type= prover and d(qi.location,v.Loc)>
DBID.D for all qi ∈ Q and v ∈ V.

The DBID scheme is α-DF-resistant if, for any DBID.Π protocol in such game, we
have Pr[OutV = 1]≤ α.

In the following we define the TF-resistance of DBID protocols.

Property 4.4. (DBID Terrorist-Fraud). Consider a DBID scheme and a DBID

game with the following restrictions:

• P is nonempty and ∀p ∈ P,v ∈ V : d(p.Loc,v.Loc)> DBID.D, and

• in the CorruptParties(Q) query, qi.type∈{prover,actor} and d(qi.location,
v.Loc)> DBID.D for all qi ∈ Q that qi.type = prover and v ∈ V.

The DBID scheme is µ-TF-resistant, if the following holds about the above game:

• If the verifier returns OutV = 1 in the Π protocol of game Γ with non-negligible
probability κ, then there is an impersonation attack as a DBID game Γ′ with honest
verifier, no prover and one close-by actor that takes the view of close-by partici-
pants (ViewΓ

S) as input, and makes the verifier return OutV = 1 with probability at
least κ−µ in the Π protocol of Γ′ game.

Note that this is a formal definition of the terrorist-fraud resistance (A4) that is based
on the recent definitions (such as [27]) and is different from the definition of TF in
[12], which is the original version of this work. This change in the definition of TF is
necessary because here we consider directional antennas. With this new capability, a
malicious prover can use directional communication with the verifier and the helper,
such that although the TF succeeds, the leaked information does not allow a response
generator to be constructed. Using the original approach, and removing contribution of
the verifier’s view, allow us to define TF security.

20

In Lemma 3 we show that if a DBID scheme is TF-resistant (Property 4.4), using a direc-
tional antenna (as in Figure 1) will not affect its security. We only provide an informal
proof because a formal proof needs formalizing properties of directional antennas.

Lemma 3. If a DBID scheme is TF-resistant (Property 4.4), it is directional TF-
resistant.

Proof. The main observation is that in a TF attack (Property 4.4), all close-by par-
ticipants, except the verifier, are controlled by the adversary. So, using a directional
antenna to communicate with close-by participants such that the verifier is excluded,
adds the transmitted message to the view of adversary, and replacing the directional
antenna with an omni directional one, does not change this view.

The messages that are sent to the verifier using directional antenna, will not be included
in the impersonation adversary view, i.e., ViewΓ

S.

Using property 4.4, if there is a successful TF attack against a DBID scheme, the TF-
resistant property guarantees existence of an impersonation attacker with non-negligible
probability that takes the ViewΓ

S as input. Since the view of actors in a directional TF
attack will include this view, therefore, in a TF-resistant DBID scheme, having a suc-
cessful directional TF attack implies future impersonation attack.

In fundamental lemma, we relate (i) the local timing of a received message at the
verifier, (ii) physical distances traveled by the message, and (iii) the message content.
It shows that any response r for the challenge c, that is received by the verifier V, can be
split into two parts rS and rF based on the distance of the sender, and each part can be
computed from two separate inputs; (a) rS from the challenge c and the views of close-
by participants before seeing c, and (b) rF from the views of far-away participants
before seeing c.

The difference between our fundamental lemma compared to the proposed fundamental
lemma of [28] is twofolds: we allow a received message to be combination of multi-
ple sent messages which is more realistic in wireless communications, and we do not
require a global clock.

Lemma 4. (Fundamental Lemma). Consider a multi-party protocol execution Γ

with a distinguished participant v ∈ V that measures the local time of events, the set
of far-away participants F and the set of close-by participants S. At local time t, v
broadcasts a random message c and waits for a response r. Acc denotes the event
that r was received by v at local time t ′ ≤ t + 2D

L
. The message from a participant

x is independent from c, if it is the result of running the participant algorithm with
ViewΓ

x (
¬c) as input.

If Acc occurs, then r consists of two components (rF,rS) (i.e., r = sum(rF,rS) for
a deterministic function summation : M∗ →M, where M is the set of all possible
messages that v may receive), where rF is sent from members of F and rS is sent from
members of S that: rF = MsgF→v(t ′)(

¬c) and ∃J′ : rS = J′(ViewΓ

S(
¬c),c,MsgF→S(

¬c)).
MsgF→S(

¬c) is all messages from any member of F to any member of S that are
independent of c, and MsgF→v(t ′)(

¬c) is the summation of all messages from members

21

of F that get received by the verifier at time t ′, which are independent of c. Note that
MsgF→v(t ′)(

¬c) ∈M.

Proof. We consider three cases for possible sources of the response r, received by v;
(i) r is solely sent by a subset F ⊆ F, (ii) r is solely sent by a subset C ⊆ S, or (iii)
otherwise. In this proof, we show that the response can be generated according to the
lemma in all the cases.

Case (i) In the first case, let’s consider the received message r = rF by the verifier,
as the summation1 of multiple messages (r1, ...,rl) that are sent by participants F =
{F1, ...,Fl} at time {t ′1, ..., t ′l}, respectively. All these messages arrive at the verifier
at the same time, so the sending times are according the mutual distance between the
sender and the verifier. Without lose of generality, we assume that for i = {1...l−1},
the participant Fi is closer to v than participant Fi+1, and so t ′i ≥ t ′i+1.

If Acc occurs, we have t ′1 ≤ t + 2D− d(v,F1)
L

, and since d(v,F1) > D, then we have
t ′1 < t + d(v,F1)

L
which is before the time F1 could see the challenge c. We have the

same inequality for other participants, so r = rF = MsgF→v(t ′)(
¬c) = sum(r1, ...,rl) is

independent of c.

Case (ii) In the second case, let’s consider the received message r = rS by the verifier,
as the summation of multiple messages (r1, ...,rl) that are sent by participants C =
{C1, ...,Cl} at time {t ′1, ..., t ′l}, respectively. All these messages arrive at the verifier
at the same time, so the sending times are according the mutual distance between the
sender and the verifier. Without lose of generality, we assume that for i = {1...l−1},
the participant Fi is closer to v than participant Fi+1, and so t ′i ≥ t ′i+1.

We make the algorithm J′ simulate all close-by participants x ∈ S in the time range
[t + d(v,x)

L
, t + 2D−d(v,x)

L
] (i.e., from the event of seeing c, until before it’s too late to

send a message to the verifier and make Acc occur). The simulation is in parallel and
in chronological order. The output of J′ is the message r = rS delivered to v as the
summation of messages sent from C ⊆ S at time t ′ ≤ t + 2D−d(v,C1)

L
, where C1 is the

closest responder.

Here we claim that the input (m) of each responder x ∈C is either part of the input of
J′ in the lemma. In order to prove it, we consider four cases about the source of m;

• m comes from the internal view of x before seeing c, i.e., ViewΓ
x (
¬c); since x ∈ S,

then ViewΓ
x (
¬c) ∈ViewΓ

S(
¬c) that is included in the input of the simulator.

• m comes from far-away participants; in this case it must be independent from
c due to the distance constraints, and so m ∈ MsgF→S(

¬c), that is included in
simulator’s input.

1The summation of multiple messages that are received at the same time, depends on the physical prop-
erties of the communication channel. In this model, we just assume that it is a deterministic function.

22

• m comes from v; since v only sends c before r, then the message m can be either
c, or already is in the view of the close-by participants before c, i.e., ViewΓ

S(
¬c).

• m comes from a close-by participant y ∈ S; then the above three cases about
x, applies to y too. This part is a recursive argument till these is no close-by
participant left to send the message.

Case (iii) In the third case, let’s consider the received message r by the verifier, as the
summation of messages sent from close-by participants (rS) and messages sent from
far-away participants (rF). Note that all messages are delivered at the same time t ′ to
v. We have thus showed that there are algorithms that can generate rS and rF sepa-
rately. Therefore by applying the summation function r = sum(rS,rF), the algorithm
can compute the response message r with correct timing.

5 Poxy Scheme

In this section we present a new DBID construction as an extension of DBPK-log+

[3] and DBPK-log [8]. This protocol uses Pedersen [24] cryptosystem. As a DBID

(X;Y;S;Init;KeyGen;Π;D; pnoise) protocol, Poxy consists of all of the operations in
the scheme as follows;

(msk,gpk)← Init(1λ) The group manager initializes a Pedersen commitment
with λ bit security: chooses a large λ-bit strong prime p, such that p = 2q+ 1 for a
prime q. It also chooses the generator g = p−1 and a random element h ∈R Z∗p. Note
that for the selected generator we have g = g−1 in the multiplicative group Zp.

The group manager initiates a certificate mechanism for validating the public key of
the user, i.e., creates a certificate key pair (skCert , pkCert). We omit this mechanism
from the rest of this section for simplicity. So we have msk = (skCert) and gpk =
(p,q,g,h, pkCert ,Ξ) where Ξ = /0.

(sk, pk)← KeyGen(msk,gpk) Assume l− 1 users have joined the group and
their public keys are in the set Ξ = {pk1, ..., pkl−1} that is published by the group
manager. For the lth user, the group manager generates a key pair (sk, pk), such that
sk ∈R Zp−1 and pk = Commit(sk;0) = gsk (mod p), where Commit(u;v) is Pedersen
commitment (= guhv (mod p)). The group manager securely sends the key pair to the
new user and adds the public key pk to the set Ξ.

23

P V

(secret: sk) (public: pk,gpk)

Session key exchange
ξ,xV ∈R Zp−1 •

yV = gxV (mod p);x = pkxV (mod p) •
µ = Encx(ξ) •

repeat above until x 6= p−1c©yV,µ

• x = ysk
V (mod p);ξ = Decx(µ)

commitment phase (for i = 1...λ and j = 1...t)
• ki j ∈R {0,1};vk,i j,ve,i j ∈R Zp−1;ei j = ski⊕ ki j

• Ak,i j = Commit(ki j;vk,i j);Ae,i j = Commit(ei j;ve,i j) = gei j .hve,i j

A©Ak,i j, r©Ae,i j

• v j = ∑
λ
i=1(2

i−1.(vk,i j + ve,i j)) z j = ∏
λ
i=1(Ak,i jAe,i j)

2i−1
= gsk.hv j (mod p) •

check Ae,i j 6= Ak,i j;Ak,i j 6= g.Ae,i j;Ae,i j 6= g.Ak,i j •

ZKP{(ki j,vk,i j) : Ak,i j = gki j .hvk,i j};ZKP{(ei j,ve,i j) : Ae,i j = gei j .hve,i j}

fast challenge-response (for i = 1...λ and j = 1...t)
ci0,ci1 ∈R {0,1}

reset timer •c©ci j = ci j0||ci j1receive c′i j0,c
′
i j1

• ri j = (¯c′i j0ki j + c′i j0ei j)⊕ c′i j1 r©ri j receive r′i j
check timer ≤ 2B •

commitment opening (for i = 1...λ and j = 1...t)
• δi j = Encx({c′i j0,c

′
i j1,ri j}||ξ) r©δi j

check ξ′ = ξ ; ({c′i j0,c
′
i j1,ri j},ξ′)← Decx(δi j) •

for all i = 1 . . .λ, find set of noiseless rounds Ii ⊆ {1, ..., t}•
terminate if for any i ∈ {1 . . .λ}, we have |Ii|< τ.t •

• γi j = ¯c′i j0vk,i j + c′i j0ve,i j r©γi j

check ¯c′i j0Ak,i j + c′i j0Ae,i j = gri j⊕c′i j1 .hγi j •

proof of knowledge (for j = 1...t)

ZKP[(sk,v j) : z j = gsk.hv j ∧ pk = gsk]

OutV

Figure 6: Π protocol of Poxy scheme. Commit is Pedersen commitment scheme.
(Enc,Dec) is a secure symmetric encryption scheme. ZKP is a zero-knowledge proof-
of-knowledge protocol. The notation A© by a message, indicates that the message is
considered as commitment of Σ∗-protocol. The notations c© and r© indicate the chal-
lenge and response messages of Σ∗-protocol, respectively.

24

accept/re ject←Π{P(sk, pk)↔V (pk)} When a prover of a registered user
wants to run the DBID.Π protocol with the verifier, they will follow the protocol de-
scribed in Figure6.

The current form of the protocol is for better readability. However, the actual order
of the messages is in the order of Σ∗-protocol, that consists of three type of messages:
commitment, challenge and response. In Figure6, the messages are mark by three
signs; A© as commitment, c© as challenge, and r© as response of a Σ∗-protocol. If we
rearrange the messages (including the messages of ZKP sub-protocols) based on the
type, according to Definition2.2, then Poxy.Π becomes a Σ∗-protocol.

(msk′,gpk′)← Revoke(msk,gpk, i) The group manager removes the ith public
key from the set Ξ. i.e., Ξ := Ξ\{pki}.

5.1 Security Analysis

In this section we provide the security analysis of Poxy protocol.

Theorem 1. Assuming ZKP is a κ-sound (Definition.1) and ζ-zero-knowledge au-
thentication protocol (Definition.4) for negligible values of κ and ζ, and (Enc,Dec)
is an IND-CCA symmetric encryption scheme;

Poxy is (τ,δ)-complete, µ-TF-resistant, γ-sound, α-DF-resistant and zero-knowledge
(Definition.4) DBID scheme for negligible values of δ, µ, γ and α, when t is linear
in security parameter λ, and λ.(1− pnoise− ε) > λ.τ ≥ λ− (1

2 − 2ε)dλ

2 e for some
constant ε > 0.

Lemma 5. (Completeness). Poxy is a (τ,δ)-complete DBID protocol for negligi-
ble value of δ, assuming 1− pnoise−ε > τ for some constant ε > 0 and (Enc,Dec) is
an IND-CCA symmetric encryption scheme.

Proof. Consider a DBID game with Poxy scheme, in which there is no actor, and the
provers and the verifier are honest, i.e., ∀x∈P : x.Code= Poxy.Π.P(.)∧d(x.Loc,v.Loc)≤
D for v ∈ V : v.Code = Poxy.Π.V (.). The verifier has access to the correct public key
of provers. In this proof, we calculate the success chance of an honest prover in a Π

protocol.

let’s assume the verifier sends the challenge sequence [c] = ([a], [b]), where [a] =
[a1...aλ], and [b] = [b1...bm] for m ≥ 0. The prover receives [c′] = ([a′], [b′]) such that
∀i ∈ {1, ...,λ}, j ∈ {1, ..., t} : Pr[ai j = a′i j] = 1− pnoise. Correspondingly, the prover
sends the response sequence [r] = ([d], [e]) and the verifier receives [r′] = ([d′], [e′]),
where ∀ j ∈ {1, ...,λ},∀ j ∈ {1, ..., t} : Pr[di j = d′i j] = 1− pnoise.

After the commitment opening phase, the verifier is able to find the noisy rounds
(except with probability AdvEncCorr that is negligible). The probability of having at least τ

noiseless fast challenge-response rounds for each j∈{1, ..., t} is Tail(λ,τ.λ,1− pnoise).
As a result, the failure chance of the protocol is t times 1−Tail(λ,τ.λ,1− pnoise), which

25

is less than e−2ε2λ based on Chernoff bound (Lemma14). And we have t.e−2ε2λ <
negl(λ) if t is linear to λ.

Lemma 6. (Distance-Bounding). Poxy is an α-DF-resistant DBID protocol for
negligible value of δ, assuming τ.λ≥ λ−(1

2−ε)bλ

2 c for some constant ε > 0, Diffie-
Hellman key exchange is computationally unforgeable, ZKP is a κ-sound (Defini-
tion.1), and ζ-zero-knowledge authentication (Definition.4) for negligible κ and ζ.

Proof. Consider a DBID game of Poxy scheme with no actors (i.e., T = /0), honest
verifier (i.e., v ∈ V : v.Code = Poxy.Π.V (.)) and far-away corrupted provers (i.e., ∀x ∈
P : d(x.Loc,v.Loc)>D∧x.Code 6= Poxy.Π.P(.)) that might overlap in their execution
time (i.e., x,y ∈ P : y.St < x.St + exLen(x.Code)≤ y.St + exLen(y.Code)).

In a successful Π protocol, the verifier gets ξ′ = ξ at the end of commitment opening
phase, which implies that the prover has the correct value of x, unless negligible
probability AdvDHf orge, as the forgery chance of the semi-fresh Diffie-Hellman key ex-
change protocol [13], which is used in session key exchange phase. If the adver-
sary succeeds in commitment and proof-of-knowledge phases, then they know a
certain {(e′j,k′j)} j=1...t that satisfies “e′j ⊕ k′j = sk” for all j ∈ {1, ..., t}. Therefore,
they can efficiently find sk, unless negligible probability (2λ+ t)AdvZKP

sound +AdvDH
f orge =

(2λ+ t)κ+AdvDH
f orge.

Since the value of sk is chosen randomly, then we have Pr[ei j = ki j] =
1
2 for i = 1...λ

and j = 1...t. In a DF attack, any collaboration of far-away provers in sending the re-
sponse ri is independent from the challenge bit ci, according to the fundamental lemma
(Lemma 4). Therefore, for the cases that ei j 6= ki j (i.e., half of the rounds), the success
chance of adversary in sending the correct ri j is 1

2 . As a result, the success chance
of adversary in guessing the correct responses is limited by Tail(bλ

2 c,τ.λ−d
λ

2 e,
1
2)

λ,
which is negligible based on Chernoff bound (Lemma14).

We prove TF-resistance of Poxy in Lemma 8 that uses the following lemma.

Lemma 7. (Extractor). Consider a DBID game Γ with TF attack (Property 4.4),
for Poxy scheme. If there is a Π protocol in the game Γ in which, the verifier returns
OutV = 1 with non-negligible probability p, then there is a PPT extractor E, that
takes the view of all close-by participants, except the verifier (ViewΓ

S) as input, and
outputs sk′ = sk with probability p−µ for negligible value of µ. This holds assuming
that ZKP is κ-sound (Definition .1).

Proof. (Extractor). Let’s assume there is a TF adversary A that succeeds in Π protocol
with non-negligible probability p, i.e., generates a transcript ξ = (A, [c], [r]) that is
accepted by the verifier with probability p. We construct a PPT extractor algorithm E

for the secret key.

In a Π protocol from game Γ, the sequence of all challenges [c] (slow and fast) is chosen
randomly and broadcasted by the honest verifier. We define [r] = [r] f ast ||[r]slow and
[c] = [c] f ast ||[c]slow where the superscripts show the type of the phase of the challenges.

26

Let S be the event that for all i = {1...λ}, and j ∈ Ii, the verifier’s check ri j⊕ ci j1 =
¯ci j0ki j + ci j0(ski⊕ ki j) hold true, where ci = ci0||ci1. This can be verified by check-

ing success of all ZKP’s in commitment phase, all the ZKP’s in PoK phase and all the
checks in commitment opening phase. In other words, when in commitment opening
phase all checks succeed, we have ri j⊕ ci j1 = ¯ci j0ki j + ci j0(ei j). And when all ZKP’s
of commitment phase succeed, we have the commitment to every bit of ki j and ei j for
i = {1...λ} and j = {1...t}, that builds z j as the commitment to e j⊕ k j. And when all
ZKP’s of commitment phase succeed, we have sk = e j⊕ k j for all j = {1...t}. This
implies the occurrence of S.

Since ZKP is κ-sound, we conclude that at least for one ZKP we have Pr[succ ZKP|¬S]
≤ κ and then Pr[succ ZKP,¬S] ≤ κ, where ¬S indicates negation of S. So we have
Pr[valid ξ,¬S]≤ κ.

Based on the fundamental lemma (Lemma 4), any valid response ri j that is received
by the verifier consists of two parts rF and rS that rF = MsgF→v(t ′)(

¬ci j) and ∃J′ :
rS = J′(ViewΓ

S(
¬ci j),ci j,MsgF→S(

¬ci j)). We have ri j = sum(rF,rS), for a deterministic
function sum() that is determined by the physical communication channel. We assume
there exist a deterministic subtraction function sub() such that for any x = sum(z,y),
we have z = sub(x;y) and y = sub(x;z).

We consider the view of close-by participants before sending the response ri j, i.e.,
ViewΓ

S(¬ri j), relative to the view of the close-by participants before seeing the chal-
lenge ci j, i.e., ViewΓ

S(¬ci j). In the time period between receiving the challenge ci j
and sending ri j, the close-by participants can receive messages from two different
sources: the verifier, and the far-away participants. The only message from the ver-
ifier in this period is ci j and we indicate the messages from the far-away partici-
pants as MsgF→S(¬ci j) which is independent from ci j. So we have ViewΓ

S(¬ri j) =
ViewΓ

S(¬ci j)||ci j||MsgF→S(¬ci j).

We conclude that there is an algorithm J′ that takes ViewΓ

S(¬ri j) and generates rS, such
that the correct response ri j is calculated as ri j = sum(MsgF→v(t ′)(

¬ci j),rS). Note that
ViewΓ

S(¬ri) includes the challenge ci j.

Since there is an algorithm J′ that generates respi j = J′(ViewΓ

S(¬ci j)||ci j||MsgF→S(¬ci j)),
then we construct the algorithm J that calls J′ four times for different values of ci j with
the following inputs: respd

i j = J′(ViewΓ

S(¬ci j)||d||MsgF→S(¬ci j)) for d = {00,01,10,11}.
As a result, J returns {respd

i j}d={00,01,10,11} such that the output of the function sum(respd
i j,

rF) is the correct answer when the challenge is ci j = d, which makes correct respd
i j.

Note that the value of rF is not known to the extractor.

From the final view of the close-by participants, we can find their partial view at the
time of sending response ri j for all j = 1 . . .λ and i = 1 . . . t, and then call the algorithm
J. So we can calculate (resp00

i j ,resp01
i j ,resp10

i j ,resp11
i j) for all i = 1 . . .λ and j = 1 . . . t,

from the final view of the close-by participants.

Since we have sub(sum(resp11
i j ,rF);sum(resp01

i j ,rF)) = sub(resp11
i j ;resp01

i j), and
sub(sum(resp10

i j ,rF);sum(resp00
i j ,rF))= sub(resp10

i j ;resp00
i j), then for all values of resp00

i j ,

27

resp01
i j , resp10

i j , resp11
i j and rF, calculating the difference between the two correct re-

sponses for both values of the challenge bit ci j0 given ci j1, is equal to the difference

between resp
1||ci j1
i j and resp

0||ci j1
i j , which are computable from the final view of close-

by participants (ViewΓ

S). In the following, we use function sub⊕(.; .) that is defined as:
sub⊕(a;b) := 0 if sub(a;b) = 0, and sub⊕(a;b) := 1 otherwise.

We build the extractor E as follows: E runs (resp00
i j ,resp10

i j) ← J(ViewΓ

S) for all
i = 1 . . .λ and j = 1 . . . t, and finds ξi j = sub⊕(resp10

i j ;resp00
i j), and then calculates the

key bits sk′i = ma jority(ξi j) over j = {1...t}.

Note that in a simple case that the received message at receiver is sent from a single
source, we have sub⊕(resp10

i j ;resp00
i j) = resp10

i j ⊕ resp00
i j and also for all d = {0,1} we

have respd||1
i j = respd||0

i j ⊕ 1. In the following we calculate the success chance of this
extractor.

A received response rd||b
i j for d,b ∈ {0,1} is correct if rd||b

i j = (d̄.ki j + d.ei j)⊕ b. For
succeeding in the Π protocol (event S), for at least τ.t values of j ∈ {1...t} the received
response should be correct for all values of i ∈ {1, ...,λ}. Since the challenge ci, j
is chosen randomly and we assume the secret sk is chosen randomly too, then the
distribution of a correct response is uniform. So the messages of far-away provers, i.e.,
rF, have at most 1

2 chance of being the correct response. Therefore, for at least τ.t
values of j = {1...t}, the close-by actors help the prover.

An extracted response respd||0
i j for d ∈ {0,1} is correct if sum(respd||0

i j ,rF) = d̄.ki j +
d.ei j. We define Ri j ∈ {0,1,2} as the number of challenge bits d ∈ {0,1} for which the
extracted response respd||0

i j is correct. If we have Ri j = 2 then ξi j = ski, but if Ri j = 1
then we might have ξi j 6= ski.

Consider R=(R1, ...,Rλ) for vector Ri =(Ri1, ...,Rit), where Ri j is defined as above and
calculated by comparing the (resp00

i j ,resp10
i j) with correct responses for all i = 1 . . .λ

and j = 1 . . . t. We define the set R as all vectors in {0,1,2}t such that at least b t
2c+1

values are 2. For a vector Ri ∈ R we have ξi j = ski.

Since the verifier selects the challenges randomly, then knowing Ri j allows us to find
the probability that the response ri j = sum(respi j,rF) is correct: if Ri j = 2 then this
probability is 1, otherwise this probability is at most 1

2 (a response can always be
guessed randomly). For any Ri /∈R, at least d t

2e values of Ri, j 6= 2, and at least τ.t−b t
2c

of them have to be guesses randomly for success. Therefore, the probability of success
in the ith round by having Ri /∈ R is limited by pB = Tail(d t

2e,τ.t −b
t
2c,

1
2), where

Tail(n,k,ρ) :=
n
∑

i=k

(n
i

)
ρi(1−ρ)n−i.

We define W as the random variable showing the number of i’s that vector Ri /∈ R. So
we have Pr[S|W = w]≤ pw

B . So Pr[S,W = w]≤ pw
B Pr[W = w] and then Pr[S,W ≥ w]≤

pw
B . As a result, we have:

Pr[W ≥ w,valid ξ]≤ Pr[¬S,valid ξ]+Pr[S,W ≥ w]≤ κ+ pw
B

28

Each index j where sk j 6= sk′j, corresponds to R j /∈ R. Therefore, having the verifier
outputting OutV = 1 (i.e., ξ is valid) and the extractor giving at least w errors occurs
with probability bounded by µ = κ+ pw

B . This implies that we can build a key extractor
from ViewΓ

S that follows the success chance of the TF attack (i.e., p), except with
probability µ, which is negligible due to Chernoff bound (Lemma14).

Lemma 8. (TF-resistance). Poxy is a µ-(TF-resistance) DBID scheme for negli-
gible value of µ.

Proof. Consider a DBID game with single limitation of having honest verifier (i.e.,
V.Code = ID.V (.)). Based on the TF definition (Property4.4), here we show that if
there is a non-negligible TF attacker, then these existence impersonator that take the
view of close-by actors and succeeds with same chance, except negligible probability
µ.

If there is a TF attacker that succeeds with probability p, then based on Lemma 7, there
is an extractor that takes the view of close-by actors and returns the secret key of prover
sk′ = sk with success chance p−µ for negligible µ.

Therefore, the impersonator first runs the extractor and gets prover’s secret key sk′,
and then runs the prover protocol P(sk′) with the verifier. The success chance of the
impersonator is at least p−µ.

Lemma 9. (Zero-Knowledge). By assuming ZKP and Enc operations are compu-
tationally negl-zero-knowledge, then Π protocol of Poxy scheme with honest prover
is a computationally ζ-zero-knowledge protocol according to Definition.4, where
ζ = negl.

Proof. Here we show that in Π operation, given two participants P(sk) and V ∗(pk,gpk),
there exists a simulator S(pk,gpk) such that the view of V ∗(pk,gpk) in the inter-
action V ∗(pk,gpk)↔ P(sk) is computationally indistinguishable from the output of
S(pk,gpk). We basically show that there is a simulator that consist of some smaller
simulators for each part of the protocol.

The view of adversary at the end is as follows: ∀ j∈{1, ..., t}, i∈{1, ...,λ},b∈{”k”,”e”} :
(ViewV(ZKP)

t.λ+t ,xV,yV,µ,ξ,Ab,i j,ri j,ci j,δi j,γi j) for ∀ j∈{1, ..., t}, i∈{1, ...,λ}, where
the adversary chooses values xV,yV,ξ,µ,{ci j}.

Since ZKP and Enc operations are assumed to be computationally negl-zero-knowledge,
then by definition there is a simulator for the view of V ∗ after these operations, that only
takes the view of V ∗ as input and returns an indistinguishable output from the normal
case. Now we can remove the prover side of ZKP operations. The same thing applies to
the Diffie-Helman key exchange session. Therefore, the view of adversary is reduced
to: ∀ j ∈ {1, ..., t}, i ∈ {1, ...,λ} : (Ak,i j,Ae,i j,ri j,γi j,ci j), where the adversary chooses
the values {ci j}.

Since the relation between e and k is no longer checked by the above removals, then
we can make their mutual relation to be random on the prover side. i.e., choose e ran-
domly. Therefore both values of e and k will be random and the view of verifier in

29

this case is indistinguishable from the case when e is computed as ei j = ski⊕ ki j for
j ∈ {1, ..., t}, i ∈ {1, ...,λ}. In this modified case, the value of sk is no longer used.
Therefore, we can replace sk at the prover with randomness and still be indistinguish-
able at the verifier. As a result, we built a simulator that doesn’t use the secret of
prover (sk) and produces indistinguishable output from the output of verifier while it’s
interacting with real prover.

Lemma 10. (Soundness). Poxy is a γ-sound DBID (Prop4.2) protocol for γ= negl,
under the following assumptions; t is polynomial, τ > 1

2 + ε for some constant ε,
ZKP is a κ-sound (Definition.1) and ζ-zero-knowledge authentication (Definition.4)
for negligible κ and ζ, and Enc is ζ-zero-knowledge.

Proof. According to the DBID game settings, we have some lists of provers P j ∈ P that
there is no overlap in the execution time of any list P j, however the provers of two
different lists P j 6= Pi can run simultaneously. The corrupted actors T are controlled
by the adversary. In this game, the adversary succeeds if any of the following is true;

(i) ∃t ∈ N,∀p ∈ P : t = Time(OutV = 1), t /∈ [p.St, p.St + exLen(p.Code)], or

(ii) ∃(p, t)∈ (P,N) : t = Time(OutV = 1), t ∈ [p.St, p.St+exLen(p.Code)],d(p,V)>
D

In this proof, we calculate the success chance of the adversary in both conditions.

Here we introduce two time periods: the learning phase is from the beginning of the
game till the beginning of the first session that makes the adversary to win, and the
attack session, that is right after the learning phase till end of the ID operation that
makes the adversary to win.

Let’s assume the adversary uses {Ae,i j} and {Ak,i j} in the commitment phase of the
attack session, which are the bit commitments of e and k. Let’s assume the response
table used in fast phase is e′ and k′, which is known by the close-by participant.

In the first condition (i.e., no active prover during attack session), since there is ZKP for
all 2λt of the committed values ({Ae,i j} and {Ak,i j}), the adversary should know the
committed values e and k, unless with negligible probability 2λ.t.AdvZKP

sound = 2λ.t.κ. If
e and k are correct (i.e., ei j = ski⊕ ki j for all j ∈ {1, ..., t}, i ∈ {1, ...,λ}), then the ad-
versary can efficiently calculate the value of sk, which is in contradiction with Lemma9
unless with probability ζ = AdvZKP. If e and k are incorrect, then the adversary would
not be able to pass the ZKP of proof-of-knowledge phase, unless with negligible
probability t.AdvZKP

sound = t.κ.

In the second condition (all active provers are far-away from verifier during attack
session), based on Lemma9, we know that the close-by participants (actors) have neg-
ligible information about sk. In this case, for each row of the response table (i.e., the
two bits e′i j and k′i j) there is one bit uncertainty (Pr[ei j = e′i j,ki j = k′i j] =

1
2). Otherwise,

the adversary would gain some information about ski. Therefore, by assuming that the
challenge bits of fast phase are chosen randomly, then for half of the fast rounds, the
verifier sends the challenge value that the actor needs to make a guess for the correct
answer. As a result, for each value of i ∈ {1, ...,λ} the success chance of related round

30

in fast phase is 1
2

t
2−(1−τ)t

= 1
2
(τ− 1

2)t . Therefore, the success chance of the adversary is

limited by 2λ.t.κ+ t.κ+ 1
2
(τ− 1

2)t.λ +ζ, which is negligible.

6 ProProx Scheme [28]

ProProx scheme is a public key DB protocol [28] that fits our DBID model. We also
prove security of the protocol in this model. The details of the operations of ProProx
is given below. Let λ and n be the security parameters that are linearly related.

(msk,gpk)← Init(1λ) The group manager initializes a Goldwasser-Micali cryp-
tosystem with λ bit security: chooses N = p.q and chooses θ that is a quadratic residue
modulo N. It also chooses chooses b ∈ {0,1}n with Hamming weight of b n

2c. The
group master key is msk = (p,q); the group public key is gpk = (N,b,θ,Ξ) where
Ξ = /0.

(sk, pk)← KeyGen(msk,gpk) Assume l− 1 users have joined the group and
their public keys are in the set Ξ = {pk1, ..., pkl−1} that is published by the group man-
ager. For the lth user, the group manager generates a key pair (sk, pk), such that sk ∈R
{0,1}λ and pk is the output of a homomorphic and deterministic commitment scheme
ComH() on sk=(sk1...skλ); that is pk=ComH(sk)= (Com(sk1;H(sk,1)), ...,Com(skλ;
H(sk,λ))), where Com(u;v) is Goldwasser-Micali encryption (= θuv2 (mod N)) and
H is a one-way hash function. The group manager securely sends the key pair to the
new user and adds the public key pk to the set Ξ.

accept/re ject←Π{P(sk, pk)↔V (pk)} When a prover (Pl) of a registered
user wants to run the DBID.Π protocol with the verifier, they will follow the protocol
described in Figure7.

In the verification phase, the prover and the verifier agree on a list I = (I1, ..., Iλ), where
each I j consists of dτ.ne indices from 1 to n. Both parties believe ∀ j = {1...λ}, i ∈
I j : ci, j = c′i, j and ri, j = r′i, j. The verifier then checks whether responses are within
the required time interval. The prover and the verifier then run an interactive zero-
knowledge proof (ZKP) to show that the responses ri, j, j = {1...λ}, i∈ I j are consistent
with the corresponding Ai, j’s and y j’s. If the verification fails, the verifier aborts and
outputs Outv = 0, otherwise, outputs OutV = 1.

(msk′,gpk′)← Revoke(msk,gpk, i) The group manager removes the ith public
key from the set Ξ. i.e., Ξ := Ξ\{pki}.

31

P V

(secret: sk)(public: gpk) (public: pk,gpk)

Commitment (slow phase)
for j ∈ 1 . . .λ in parallel:

pick ai, j ∈R Z2,ρi, j ∈R Z∗N , i = 1, . . . ,n
• Ai, j =Com(ai, j;ρi, j) A1, j, . . . ,An, j

Challenge/Response (fast phase)
j = 1 · · ·λ and i = 1 · · ·n ci, j ∈R Z2

start timeri, j •ci, j
receive c′i, j
• ri, j = ai, j + c′i, jbi + c′i, jsk j ri, j

receive r′i, j
stop timeri, j •Verification (slow phase)

agree on I = (I1, . . . , Iλ), where ∀ j ∈ {1...λ} : I j ⊂ {1, ...,n}
∧
|I j|= dτ.ne

check |I j|= dτ.ne and timeri, j ≤ 2B for j = 1, . . . ,λ
∀ j ∈ {1, . . . ,λ}, i ∈ I j:

• v j = H(sk, j)

• αi, j = ρi, jv
c′i, j
j

zi, j = Ai, j(θ
biy j)

ci, j θ
−r′i, j •

ZKP(αi, j : zi, j = α2
i, j)

OutV

Figure 7: Π protocol of ProProx scheme. Com is Goldwasser-Micali encryption. τ

is the minimum threshold ratio of noiseless fast rounds. ZKP is an interactive zero-
knowledge proof. The number of fast rounds is n.λ. In each fast round, the verifier
sends one-bit challenge, and receives the corresponding response.

6.1 Security Analysis

To prove that the above protocol satisfies our security definition, we first note that the
Π protocol of ProProx scheme (i.e., Figure 7) can be seen as a Σ∗-protocol (Defini-
tion 2.2). This is true because, assuming the agreement step (on the value of I) and
the ZKP step can be written as Σ∗-protocols, their concatenation is also a Σ∗-protocol
because one can consider all first message commitment of the protocols as a single
commitment phase, and all verification functions stay at the end. The remaining chal-
lenge and response messages are concatenated and form the challenge and responses
of the combined protocol.

Theorem 2. Assuming Com(u;v) is a perfect binding and computationally hiding

32

homomorphic bit commitment scheme (Definition .2), ComH() is one-way function
(Definition .3), and ZKP is a κ-sound (Definition.1) and ζ-zero-knowledge authen-
tication protocol (Definition.4) for negligible values of κ and ζ;

ProProx is (τ,δ)-complete, µ-TF-resistant, γ-sound and α-DF-resistant DBID scheme
for negligible values of δ, µ, γ and α, when n is linear in security parameter λ, and
n.(1− pnoise− ε)> n.τ≥ n− (1

2 −2ε)d n
2e for some constant ε > 0.

ProProx is proven to be complete, DF-resistant and zero-knowledge (Definition.4) in
[28]. Our definitions of these properties remain unchanged. So we only need to prove
TF-resistance and soundness properties of ProProx scheme.

We prove TF-resistance of ProProx in Lemma 12 that uses the following lemma.

Lemma 11. (Extractor). Consider a DBID game Γ with TF attack (Property 4.4),
for ProProx scheme. If there is a Π protocol in the game Γ in which, the verifier
returns OutV = 1 with non-negligible probability p, then there is a PPT extractor E,
that takes the view of all close-by participants, except the verifier (ViewΓ

S) as input,
and outputs sk′ = sk with probability p− µ, for negligible value of µ. This holds
assuming, Com(u;v) is a perfect binding computational hiding homomorphic bit
commitment scheme (Definition .2), and ZKP is a κ-sound authentication protocol
(Definition .1).

Note that the extractor of this lemma, has a critical difference from the extractor that
is considered in security analysis of ProProx scheme in the original paper [28]; the
input of the extractor of the original paper takes the view of the verifier is the view of
all close-by participants, including the verifier, but the input of the above extractor is
the view of all close-by participants (excluding the verifier). By excluding the view of
the verifier of a TF attack from the view of the extractor, the close-by participants can
extract the secret-key of the prover, even when the prover is using directional antenna
to communicate directly to the verifier.

In the security analysis of the extractor of the original paper, it is assumed that a correct
response is solely sent from a single close-by participant. However, there might be a
case that the received message ri, j is the combination of a message that is sent from a
far-away source and a message that is sent from a close-by source. In our extractor, we
include this case.

Proof. (Extractor). Let’s assume there is a TF adversary A that succeeds in Π protocol
with non-negligible probability p, i.e., generates a transcript ξ = (A, [c], [r]) that is
accepted by the verifier with probability p. We construct a PPT extractor algorithm E

for the secret key.

In a protocol Π from game Γ, the sequence of all challenges [c] (slow and fast) is chosen
randomly and broadcasted by the honest verifier. We define [r] = [r] f ast ||[r]slow and
[c] = [c] f ast ||[c]slow where the superscripts show the type of the phase of the challenges.

Because of the perfect binding commitment (Definition .2), the value of the public key
pk uniquely determines sk = Com−1(pk), and the value of Ai, j uniquely determines

33

ai, j =Com−1(Ai, j). We emphasis that these values are not being calculate, but we just
mathematically define them based on the view of the verifier.

Let S be the event that for all j, and i∈ I j, the verifier’s checks ri, j = ai, j+ci, jbi+ci, jsk j
hold true. This can be verified by checking success of ZKP, for all the corresponding
j and i ∈ I j. In other words, when ZKP succeeds for all j, and i ∈ I j, we have zi, j as
commitment to ai, j + ci, jbi + ci, jsk j− ri, j, which implies the occurrence of S.

Since ZKP is κ-sound, we conclude that Pr[succ ZKP|¬S]≤ κ and then Pr[succ ZKP,¬S]
≤ κ, where ¬S indicates negation of S. So we have Pr[valid ξ,¬S]≤ κ.

Based on the fundamental lemma (Lemma 4), any valid response ri, j that is received
by the verifier consists of two parts rF and rS that rF = MsgF→v(t ′)(

¬ci, j) and ∃J′ : rS =

J′(ViewΓ

S(
¬ci, j),ci, j,MsgF→S(

¬ci, j)). We have ri, j = sum(rF,rS), for a deterministic
function sum() that is determined by the physical communication channel. We assume
there exist a deterministic subtraction function sub() such that for any x = sum(z,y),
we have z = sub(x;y) and y = sub(x;z).

We consider the view of close-by participants before sending the response ri, j, i.e.,
ViewΓ

S(¬ri, j), relative to the view of the close-by participants before seeing the chal-
lenge ci, j, i.e., ViewΓ

S(¬ci, j). In the time period between receiving the challenge ci, j
and sending ri, j, the close-by participants can receive messages from two different
sources: the verifier, and the far-away participants. The only message from the ver-
ifier in this period is ci, j and we indicate the messages from the far-away partici-
pants as MsgF→S(¬ci, j) which is independent from ci, j. So we have ViewΓ

S(¬ri, j) =
ViewΓ

S(¬ci, j)||ci, j||MsgF→S(¬ci, j).

We conclude that there is an algorithm J′ that takes ViewΓ

S(¬ri, j) and generates rS, such
that the correct response ri, j is calculable as ri, j = sum(MsgF→v(t ′)(

¬ci, j),rS). Note that
ViewΓ

S(¬ri, j) includes the challenge ci, j.

Since there is an algorithm J′ that respi, j = J′(ViewΓ

S(¬ci, j)||ci, j||MsgF→S(¬ci, j)),
then we construct the algorithm J that calls J′ two times with the following inputs:
resp0

i, j = J′(ViewΓ

S(¬ci, j)||0||MsgF→S(¬ci, j)) and then resp1
i, j = J′(ViewΓ

S(¬ci, j)||1||
MsgF→S(¬ci, j)). As a result, J returns a pair (resp0

i, j,resp1
i, j) such that the output

of the functions sum(resp0
i, j,rF) and sum(resp1

i, j,rF) are the correct answer for the
two possible cases of the challenge bit ci, j. We say resp0

i, j (or resp1
i, j) is correct if

sum(resp0
i, j,rF) (or sum(resp1

i, j,rF)) is the correct response to the challenge ci, j = 0
(or ci, j = 1). Note that the value of rF is not known to the extractor.

From the final view of the close-by participants, we can find their partial view at the
time of sending response ri, j for all j = 1 . . .λ and i= 1 . . .n, and then call the algorithm
J. So we can calculate (resp0

i, j,resp1
i, j) for all j = 1 . . .λ and i = 1 . . .n, from the final

view of the close-by participants. Since we have

sub(sum(resp1
i, j,rF);sum(resp0

i, j,rF)) = sub(resp1
i, j;resp0

i, j),

therefore, calculating the difference between the two correct responses for both values
of the challenge bit ci, j is equal to the difference between resp1

i, j and resp0
i, j, which are

34

computable from the final view of close-by participants (ViewΓ

S).

We build the extractor E as follows: E runs (resp0
i, j,resp1

i, j) ← J(ViewΓ

S) for all
j = 1 . . .λ and i = 1 . . .n. Then it guesses the bits of secret sk′j = ma jority(δ1, j...δn, j)

for j = {1...λ}, where δi, j = sub(resp1
i, j;resp0

i, j)−bi for i = {1...n}.

Note that in a simple case that the received message at receiver is sent from a single
source, we have sub(resp1

i, j;resp0
i, j) = resp1

i, j− resp0
i, j. In the following we calculate

the success chance of this extractor;

A response respd
i, j for d ∈ {0,1} is correct if sum(respd

i, j,rF) = ai, j +d.bi +d.sk j. We
define R j = [R1, j...Rn, j] where R1, j is the number of challenge bits d ∈ {0,1} for which
the response respd

i, j is correct. If we have Ri, j = 2 then δi, j = sk j, but if Ri, j = 1 then
we might have δi, j 6= sk j.

Consider R = (R1, ...,Rλ) for vector Ri = (Ri1, ...,Rin), where Ri, j is defined as above
and calculated by comparing the (resp0

i, j,resp1
i, j) with correct responses for all j =

1 . . .λ and i = 1 . . .n. We define the set R as all vectors in {0,1,2}n that have at least
b n

2c+1 values of 2. For a vector R j ∈R, we have a majority of i’s that δi, j = sk j, which
implies sk′j = sk j.

Since the verifier selects the challenges randomly, then knowing Ri, j allows us to find
the probability that the response ri, j = sum(respi, j,rF) is correct: if Ri, j = 2 then this
probability is 1, otherwise this probability is at most 1

2 (this is true that a response
can always be guessed randomly). If W is the random variable giving the number R js
that R j /∈ R, we have Pr[S|W = w] = pw

B where pB = Tail(d n
2e,τ−b

n
2c,

1
2), defined in

Lemma 14. So Pr[S,W = w]≤ pw
B Pr[W = w] and then Pr[S,W ≥ w]≤ pw

B . As a result,
we have:

Pr[W ≥ w,validξ]≤ Pr[¬S,valid ξ]+Pr[S,W ≥ w]≤ κ+ pw
B

Each index j where sk j 6= sk′j, corresponds to R j /∈ R. Therefore, having the verifier
outputting OutV = 1 (i.e., ξ is valid) and the extractor giving at least 1 error occurs with
probability bounded by µ = κ+ pB. This implies that we can build a key extractor from
ViewΓ

S that follows the success chance of the TF attack, except with probability µ that
is negligible because of Chernoff bound (Lemma14).

Lemma 12. (TF-resistance). ProProx is a µ-TF-resistant DBID (Prop4.4) scheme
for negligible value of µ, assuming Com is a perfectly binding computational hiding
homomorphic bit commitment (Definition .2), and ZKP is a κ-sound authentication
protocol (Definition .1).

Proof. According to the TF-resistance definition (Property 4.4), we need to show that
if there is a game Γ for a Π protocol in which that the verifier returns OutV = 1 with
non-negligible probability κ, then there exists a close-by actor R that for any challenge
sequence [c] can create a valid transcript with probability at least κ−µ for a negligible
µ, using the view of all close-by participants, excluding the verifier (ViewΓ

S).

35

Based on Lemma 11, the existence of TF attacker with non-negligible success prob-
ability κ, implies the existence of a key extractor sk′ ← E(ViewΓ

S) with the success
chance of at least κ−µ′ for a negligible µ′.

So we make R as follows: After a successful TF attack, R calls the above extractor E
to find sk′. Then R runs the ProProx.Π.P(sk′,gpk) interactive algorithm in order to
generate valid transcript with correct timing for any challenge that is generated by the
verifier. Since ProProx is (τ,δ)-complete, the verifier outputs OutV = 1, unless negli-
gible probability δ. Therefore, the success chance of R is at least κ− µ for negligible
µ = µ′−δ.

Lemma 13. (Soundness). ProProx is a γ-sound DBID (Prop4.2) scheme for γ =
negl(λ), if the followings hold: τ.n≥ n− (1

2 −2ε)d n
2e for some constant ε; ComH is

one-way; Com is homomorphic bit commitment with all properties of Definition.2;
ZKP is a κ-sound (Definition.1) and ζ-zero-knowledge authentication (Definition.4)
for negligible κ and ζ.

Proof. In a Π protocol, the verifier receives a transcript ξ = (A, [c], [r]). There are two
possible participant arrangements for the winning conditions of a soundness adversary
that result in the verifier returning OutV = 1: (i) all active provers are far-away from
the verifier, (ii) there is no active prover during the Π protocol (i.e., there might be
close-by provers but they are not active). In the following we show that the success
probability of the adversary in both cases is negligible. In other words, the success
probability of generating a valid transcript ξ = (A, [c], [r]) when the challenge sequence
[c] is generated by the verifier, is negligible.

In the first case, the adversary cannot simply relay the messages because of the extra
delay and the fact that the responses are from out of bound locations. In this case the
verifier will reject the instance. If there is a PPT adversary A that can guess at least
τ.n out of n responses for each key bit with non-negligible probability (i.e., guessing all
bits of ∀ j ∈ {1, ...,λ}I j ⊂ {1, ...,n} such that |I j| ≥ τ.n), then they can find the response
table for at least τ.n elements for each j ∈ {1, ...,λ} with the same probability. So for
τ.n out of n values of i they can find correct sk j =

ri, j− ¯ri, j−(ci, j− ¯ci, j)bi
ci, j− ¯ci, j

with probability
≥ poly(λ). Therefore by taking the majority, they can find the correct key bit with
probability ≥ 1− (1− poly(λ))τ.n.

Thus if the adversary succeeds in the first case with non-negligible probability, then
they can find the secret key with considerably higher probability than random guessing
and this contradicts the zero-knowledge property of ProProx. Therefore, the adver-
sary’s success chance will be negligible in this case.

In the second case, the adversary succeeds in the protocol by providing the correct
response to V for at least τ.n correct queries out of n fast rounds for all key bits.

We noted that the learning phase of the adversary cannot provide information about the
secret key ({sk j}λ

j=1) or the committed values ({ai, j} j={1...λ},i={1...n}) as otherwise the
zero-knowledge property of the protocol, or the commitment scheme will be violated,
respectively.

36

In order to succeed in the protocol with non-negligible probability, the adversary must
succeed in ZKP, for at least τ.n values of i, so they need to find at least τ.n valid tuples
πi = (X ,Y,Z) for random challenge bits such that Z2 = X(θbiy j)

ci, j θ−Y without having
information about sk j. For π = [πi] with size at least τ.n and [c], Pr[π is valid|[c] is
random] = ∏

γ

i=1 Pr[πi is valid|[c] is random]. So if Pr[π is valid |[c] is random]≥ negl,
then there is a value of i that Pr[πi is valid |[c] is random]≥ 1

2 + poly(λ).

Since X is sent to the verifier before seeing ci, j, therefore we have Pr[valid (X ,Y,Z)|ci, j =
0] ≥ 1

2 + poly(λ) and also Pr[valid (X ,Y ′,Z′)|ci, j = 1] ≥ 1
2 + poly(λ). Since both tu-

ples are valid, then we have Z2 = Xθ−Y and Z′2 = X(θbiy j)θ
−Y ′ . Therefore we have

the following for pk j = θsk j(v j);

(
Z′

Z
)2 = pk jθ

bi−Y ′+Y = θ
sk j+bi−Y ′+Y (v j)

2

Therefore, the adversary can conclude sk j + bi−Y ′+Y /∈ {1,3} for the known bits
bi, Y ′ and Y . So they gain some information about sk j, which is in contradiction with
zero-knowledge property of ProProx.

7 Related Works

The main models and constructions of public key DB protocols are in [21], [3], [16],
and [28]. In the following, we discuss and contrast the security model of these works
to be able to put our new work in context.

[21] presented an informal model for Distance-Fraud, Mafia-Fraud and Impersonation
attack and provided a secure protocol according to the model. [3] formally defined
Distance-Fraud, Mafia-Fraud, Impersonation, Terrorist-Fraud and Distance-Hijacking
attack. The Distance-Fraud adversary has a learning phase before the attack session
and is therefore stronger than the definition in A2. During the learning phase, the
adversary has access to the communications of the honest provers that are close-by.
The security proofs of the proposed protocol have been deferred to the full version,
which is not available yet.

[16] uses an informal model that captures Distance-Fraud, Mafia-Fraud, Imperson-
ation, Terrorist-Fraud, Distance-Hijacking and a special type of attack, called Slow-
Impersonation [14]. In their model, the definition of Terrorist-Fraud is slightly differ-
ent from A4: a TF attack is successful if it allows the adversary to succeed in future
Mafia-Fraud attacks.

For the first time in distance-bounding literature, [14] considered normal MiM attack-
ing scenario where both the honest prover and the adversary are close to the verifier.
The adversary interacts with the prover in order to succeed in a separate protocol ses-
sion with the verifier. The adversary has to change some of the received messages in the
slow phases of protocol in order to be considered successful. The attack is called Slow-
Impersonation and is inspired by the basic MiM attack in authentication protocols. In

37

Slow-Impersonation, a close-by MiM actor that communicates with both verifier and
close-by prover, tries to succeed in the protocol. During the slow-phase, the actor mod-
ifies the received messages from a party, and then sends it to the other party. Although
the basic MiM attack is proper for DB models, it may not be strictly possible in one
phase of the protocol as their action could influence or be influenced by other phases
of the protocol.

A MiM adversary may, during the learning phase, only relay the slow-phase messages
but, by manipulating the messages of the fast phase, learn the key information and
later succeed in impersonation. According to the definitions in [16] and [14], the pro-
tocol is secure against Slow-Impersonation, however it is not secure against Strong-
Impersonation (A3). This scenario shows that Slow-Impersonation does not neces-
sarily capture Impersonation attacks in general. Moreover, it’s hard to distinguish the
success in slow phases of a protocol without considering the fast phase, as those phases
have mutual influences on each other.

As an alternative definition, [2] proposed Strong-Impersonation (A3), in which the
MiM adversary has an active learning phase that allows them to change the messages.
Strong-Impersonation captures the MiM attack without the need to define success in
the slow rounds. One of the incentives of Strong-Impersonation is capturing the case
when the prover is close to the verifier, but is not participating in any instance of the
protocol. In this case, any acceptance by the verifier means that the adversary has
succeeded in impersonating an inactive prover.

In [28] an elegant formal model for public key distance-bounding protocols in terms
of proof of proximity of knowledge has been proposed. The model captures Distance-
Fraud, Distance-Hijacking, Mafia-Fraud, Impersonation and Terrorist-Fraud. In this
approach, a public key DB protocol is a special type of proof of knowledge (proximity
of knowledge): a protocol is considered sound if the acceptance of the verifier implies
existence of an extractor algorithm that takes the view of all close-by participants and
returns the prover’s private key. This captures security against Terrorist-Fraud where
a dishonest far-away prover must succeed without sharing their key with the close-by
helper.

According to the soundness definition in [28] however, if the adversary succeeds while
there is an inactive close-by prover, the protocol is sound because the verifier accepts,
and there is an extractor for the key simply because there is an inactive close-by prover
and their secret key is part of the extractor’s view. Existence of an extractor is a de-
manding requirement for the success of attacks against authentication: obviously an
adversary who can extract the key will succeed in the protocol, however it is possi-
ble to have an adversary who succeeds without extracting the key, but providing the
required responses to the verifier. Our goal in introducing identification based model
is to capture this weaker requirement of success in authentication, while providing a
model that includes realistic attacks against DB protocols.

38

8 Concluding remarks

This paper is a revised and extended version of [2] which proposed a new formal
model (DBID) for distance-bounding protocols, inline with the cryptographic identifi-
cation protocols, that captures and strengthens the main attacks on public key distance-
bounding protocols. This approach effectively included physical distance as an addi-
tional attribute of the prover in identification protocol.

In this paper we assume a stronger adversary that has access to a directional antenna.
We showed this additional capability can break security of protocols that had been
proven secure. To include this capability of the adversary, we needed to revise the
definition of TF in [2] which resulted in proving a new security proof for the ProProx
protocol. Other parts of model and security definition remained unchanged.

We also proposed Poxy, as a new DBID scheme, and provided the security proof. Poxy
and ProProx use two different cryptosystems, and the fast phase of the Π protocol in
Poxy and ProProx schemes have more computations compared to typical DB schemes.
This is the price we pay for achieving TF-resistance. Our future work includes design-
ing more efficient DBID protocols, and extending the model to include the anonymity
of the prover against the verifier.

References

[1] Mamta Agiwal, Abhishek Roy, and Navrati Saxena. Next generation 5g wireless
networks: A comprehensive survey. IEEE Communications Surveys & Tutorials,
2016.

[2] Ahmad Ahmadi and Reihaneh Safavi-Naini. Distance-bounding identification. In
Proceedings of the 3rd International Conference on Information Systems Security
and Privacy - Volume 1: ICISSP,, pages 202–212. INSTICC, SciTePress, 2017.

[3] Ahmad Ahmadi and Reyhaneh Safavi-Naini. Privacy-preserving distance-
bounding proof-of-knowledge. In 16th ICICS, 2014.

[4] Ahmad Ahmadi and Reyhaneh Safavi-Naini. Directional distance-bounding iden-
tification. In Proc. of the 3rd Int. Conference on International Conference in
Information Systems Security and Privacy (ICISSP). Springer, 2017.

[5] Gildas Avoine, Muhammed Ali Bingöl, Süleyman Kardaş, Cédric Lauradoux, and
Benjamin Martin. A framework for analyzing RFID distance bounding protocols.
Journal of Computer Security, 2011.

[6] Ioana Boureanu, Aikaterini Mitrokotsa, and Serge Vaudenay. Secure &
lightweight distance-bounding. In International Workshop on Lightweight Cryp-
tography for Security and Privacy, 2013.

[7] Stefan Brands and David Chaum. Distance-bounding protocols. In Advances in
Cryptology–EUROCRYPT’93, pages 344–359. Springer, 1994.

39

[8] Laurent Bussard and Walid Bagga. Distance-bounding proof of knowledge pro-
tocols to avoid terrorist fraud attacks. Technical report, Technical report, Institut
Eurecom, France, 2004.

[9] Herman Chernoff. A measure of asymptotic efficiency for tests of a hypothe-
sis based on the sum of observations. The Annals of Mathematical Statistics,
23(4):493–507, 1952.

[10] Cas Cremers, Kasper Bonne Rasmussen, Benedikt Schmidt, and Srdjan Capkun.
Distance hijacking attacks on distance bounding protocols. In Security and Pri-
vacy, 2012.

[11] Ivan Damgård. On Σ-protocols. Lecture Notes, University of Aarhus, Department
for Computer Science, 2002.

[12] Yvo Desmedt. Major security problems with the ünforgeable(̈feige-)fiat-shamir
proofs of identity and how to overcome them. In Securicom’88, 1988.

[13] Whitfield Diffie and Martin Hellman. New directions in cryptography. IEEE
transactions on Information Theory, 1976.

[14] Ulrich Dürholz, Marc Fischlin, Michael Kasper, and Cristina Onete. A formal
approach to distance-bounding rfid protocols. In International Conference on
Information Security, pages 47–62. Springer, 2011.

[15] Aurélien Francillon, Boris Danev, and Srdjan Capkun. Relay attacks on passive
keyless entry and start systems in modern cars. In NDSS, 2011.

[16] Sébastien Gambs, Marc-Olivier Killijian, Cédric Lauradoux, Cristina Onete,
Matthieu Roy, and Moussa Traoré. Vssdb: A verifiable secret-sharing and
distance-bounding protocol. In International Conference on Cryptography and
Information security, 2014.

[17] Sébastien Gambs, Cristina Onete, and Jean-Marc Robert. Prover anonymous and
deniable distance-bounding authentication. In ASIA CCS ’14, 2014.

[18] Rosario Gennaro. Multi-trapdoor commitments and their applications to proofs
of knowledge secure under concurrent man-in-the-middle attacks. In Annual In-
ternational Cryptology Conference, 2004.

[19] Louis C Guillou and Jean-Jacques Quisquater. A practical zero-knowledge proto-
col fitted to security microprocessor minimizing both transmission and memory.
In EUROCRYPT ’88, 1988.

[20] Jens Hermans, Andreas Pashalidis, Frederik Vercauteren, and Bart Preneel. A
new RFID privacy model. In Computer Security–ESORICS 2011, pages 568–
587. Springer, 2011.

[21] Jens Hermans, Roel Peeters, and Cristina Onete. Efficient, secure, private distance
bounding without key updates. In Proceedings of the sixth ACM conference on
Security and privacy in wireless and mobile networks, pages 207–218. ACM,
2013.

40

[22] Wassily Hoeffding. Probability inequalities for sums of bounded random vari-
ables. Journal of the American statistical association, 58(301):13–30, 1963.

[23] Kaoru Kurosawa and Swee-Huay Heng. The power of identification schemes. In
Public Key Cryptography-PKC 2006, pages 364–377. Springer, 2006.

[24] Torben Pryds Pedersen. Non-interactive and information-theoretic secure verifi-
able secret sharing. In Advances in Cryptology – CRYPTO’91, pages 129–140.
Springer, 1992.

[25] Kasper Bonne Rasmussen and Srdjan Capkun. Realization of rf distance bound-
ing. In USENIX Security Symposium, pages 389–402, 2010.

[26] C P Schnorr. Efficient signature generation by smart cards. Journal of Cryptology,
1991.

[27] Serge Vaudenay. On modeling terrorist frauds. In Provable Security. Springer,
2013.

[28] Serge Vaudenay. Proof of proximity of knowledge. IACR Eprint, 695, 2014.

Appendix

Definition .1. (Authentication). An authentication protocol is an interactive pair of proto-
cols (P(ζ),V (z)) of PPT algorithms operating on a language L and relation R = {(z,ζ) : z ∈
L,ζ ∈W (z)}, where W (z) is the set of all witnesses for z that should be accepted in authenti-
cation. This protocol has the following properties:

• complete: ∀(z,ζ) ∈ R, we have Pr[OutV = 1 : P(ζ)↔V (z)] = 1.

• κ-sound: Pr[OutV = 1 : P∗ ↔ V (z)] ≤ κ in any of the following two cases; (i) z /∈
L, (ii) z ∈ L while algorithm P∗ is independent from any ζ ∈W (z). Pr[OutV = 1 :
A2(ViewA1)↔V (z)]≤ negl.

Definition .2. (Homomorphic Bit Commitment). A homomorphic bit commitment func-
tion is a PPT algorithm Com operating on a multiplicative group G with parameter λ, that
takes b ∈ Z2 and ρ ∈ G as input, and returns Com(b;ρ) ∈ G. This function has the following
properties:

• homomorphic: ∀b,b′ ∈ Z2 and ∀ρ,ρ′ ∈ G, we have Com(b;ρ)Com(b′;ρ′) =Com(b+
b′;ρρ′).

• perfect binding: ∀b,b′ ∈ Z2 and ∀ρ,ρ′ ∈ G, the equality Com(b;ρ) =Com(b′;ρ′) im-
plies b = b′.

• computational hiding: for a random ρ∈R G, the distributions Com(0,ρ) and Com(1,ρ)
are computationally indistinguishable.

Definition .3. (One-way Function). By considering λ as the security parameter, an effi-
ciently computable function OUT ← FUNC(IN), is one-way if there is no PPT algorithm that
takes OUT as input and returns IN with non-negligible probability in terms of λ.

41

Definition .4. (Zero-Knowledge Protocol). A pair of protocols (P(α),V (z)) is ζ-zero-
knowledge for P(α), if for any PPT interactive machine V ∗(z,aux) there is a PPT simulator
S(z,aux) such that for any PPT distinguisher, any (α : z) ∈ L, and any aux ∈ {0,1}∗, the dis-
tinguishing advantage between the final view of V ∗, in the interaction P(α)↔V ∗(z,aux), and
output of the simulator S(z,aux) is bounded by ζ.

Lemma 14. (Chernoff-Hoeffding Bound [9], [22]). For any (ε,n,τ,q), we have the fol-

lowing inequalities about the function Tail(n,τ,ρ) =
n
∑

i=τ

(n
i
)
ρi(1−ρ)n−i;

• if τ

n < q− ε, then Tail(n,τ,q)> 1− e−2ε2n

• if τ

n > q+ ε, then Tail(n,τ,q)< e−2ε2n

42

	Introduction
	Preliminaries
	Directional Attacks on Public-Key DB Protocols
	Attack against VSSDB gambs14vssdb
	Attack against DBPoK-log+ ahmadi2014privacy

	Model
	Poxy Scheme
	Security Analysis

	ProProx Scheme vaudenay2014proof
	Security Analysis

	Related Works
	Concluding remarks

