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ABSTRACT

During the last decade, constant-time cryptographic software has

quickly transitioned from an academic construct to a concrete se-

curity requirement for real-world libraries. Most of OpenSSL’s

constant-time code paths are driven by cryptosystem implementa-

tions enabling a dedicated flag at runtime. This process is perilous,

with several examples emerging in the past few years of the flag ei-

ther not being set or software defects directly mishandling the flag.

In this work, we propose a methodology to analyze security-critical

software for side-channel insecure code path traversal. Applying

our methodology to OpenSSL, we identify three new code paths

during RSA key generation that potentially leak critical algorithm

state. Exploiting one of these leaks, we design, implement, and

mount a single trace cache-timing attack on the GCD computation

step. We overcome several hurdles in the process, including but not

limited to: (1) granularity issues due to word-size operands to the

GCD function; (2) bulk processing of desynchronized trace data; (3)

non-trivial error rate during information extraction; and (4) limited

high-confidence information on the modulus factors. Formulating

lattice problem instances after obtaining and processing this limited

information, our attack achieves roughly a 28 % success rate for

key recovery using the empirical data from roughly 10K trials.
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1 INTRODUCTION

Side-channel analysis (SCA) continues to be a serious threat against

the security of systems and cryptography libraries. Specifically, mi-

croarchitecture attacks and cache-timing attacks are gaining more

traction due to the severe architecture flaws recently discovered in

many microprocessors [28, 33]. Cache-timing attacks are attractive

for attackers and researchers due to the ability to perform them

semi-remotely and without special privilege. So far, practical cache-

timing attacks have been developed against multiple cryptosystems,

including but not limited to DSA [39], ECDSA [38], DH [18] and

RSA [51]. As a countermeasure against this type of attack, cryptog-

raphy library developers such as OpenSSL and forks integrate in

their codebase algorithms that execute in constant-time indepen-

dently of the input values. During recent years, several researchers

discovered and exploited flaws in these mitigations.

SCA research focuses mainly on cryptographic operations such

as encryption, decryption, key exchange and signature generation.

All of them have in common the repeated use of the private key

as input during some step of the algorithm execution, thus being

able to observe and capture the leakage over several runs. In con-

trast, SCA research targeting key generation seems to be neglected,

presumably due to two dubious assumptions: (1) keys are only

generated once during the initial stage in a secure environment,

isolated from any possible threats; and (2) single trace attacks pose

too many challenges, e.g. noise, and are not feasible. But technology

trends shift and unfortunately this is no longer the case, a recent

report on SSL certificate issuers
1
suggest Let’s Encrypt is now the

largest certificate issuer, with an adoption rate of more than 50%

from web sites using SSL/TLS, thus highlighting the security needs

against SCA on key generation algorithms. For that reason, our mo-

tivation comes from the Let’s Encrypt
2
certificate authority, where

RSA key generation is a common, regular, and semi-predictable

operation for web server automated certificate renewal.

In this work, we present a methodology developed to identify the

use of known side-channel vulnerable functions in cryptography

libraries such as OpenSSL. Using our methodology, we disclose

several vulnerabilities affecting OpenSSL RSA key generation im-

plementation. Moreover, we present the first practical single trace

cache-timing attack against the binary GCD step used during RSA

key generation leading to complete RSA private key recovery. The

root cause of the vulnerability is the GCD callee function not sup-

porting the constant time flag, compounded by the parent function’s

failure to enable it. More precisely, our attack focuses on the exe-

cution of the non constant-time binary GCD algorithm to test the

coprimality between the integers p − 1 and q − 1, and the public

exponent e . Finally, this work serves as a reminder that cryptogra-

phy libraries should strive for a secure by default approach, thus

avoiding several side-channel attacks that still might be lurking in

the codebase.

Our contributions in this work include:

• We develop a methodology to identify insecure code paths

through known side-channel vulnerable functions still in

use by cryptography libraries.

• We identify and exploit a flaw discovered with our method-

ology in OpenSSL that allows a practical single trace cache-

timing attack against RSA key generation.
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• We combine several techniques from cache-timing attacks

and power analysis to obtain traces during binary GCD ex-

ecution and process them in order to obtain a sequence of

shifts and subtraction operations, i.e. algorithm state, related

with prime values p and q.
• Building on existing RSA key recovery work, we propose a

novel error correction algorithm for noisy RSA primes that

allows us to recover roughly 50 % of bits for each prime.

• We implement a lattice attack that factors RSA-2048 keys

knowing 522 bits of one prime.

• We implement an end-to-end attack and tested it for 10K

independent keys achieving roughly a 28 % success rate, with

room for improvement.

2 BACKGROUND

2.1 The RSA Cryptosystem

RSA is a public key cryptosystem invented in 1978 [43]. An RSA

public key is a tuple of integers (N , e) where p and q are primes

and N = pq holds, and furthermore ed = 1 mod (p − 1)(q− 1) holds,
implying both e and d are odd. For the remainder of this paper, we

restrict to standardized RSA-n that mandates for n-bit N both p and

q have bit-length n/2 and furthermore 2
16 < e < 2

256
holds [1]. For

efficiency reasons, e = 65537 is the most common choice.

The private key is the tuple sk = (p, q, d , dp, dq, iq) where the
latter three are CRT values not relevant to this work. For well-

chosen parameters, recovering the private key from the public key

is believed to be as hard as factoring N [23]. Regarding security,

the current minimum recommended RSA key size is 2048 bits, im-

plying that p and q are 1024-bit primes. Applications of RSA in

cryptography include public key encryption and digital signatures.

The secrecy of p and q is mandatory for RSA, moreover partial

knowledge can lead to polynomial-time factoring algorithms. In

his groundbreaking work, Coppersmith [15] proved that knowing

half the bits of one prime suffices to factor N in polynomial time, a

critical point in our attack (see Section 5).

Algorithm 1: OpenSSL RSA key generation

Input: Key size n and public exponent e .
Output: Public and private key pair.

1 begin

2 while gcd(p − 1, e) , 1 do

3 p ← random n/2-bit prime /* Generate p */

4 while gcd(q − 1, e) , 1 do

5 q ← random n/2-bit prime /* Generate q */

6 d ← e−1 mod (p − 1)(q − 1) /* Private exponent */

7 dp ← d mod (p − 1)

8 dq ← d mod (q − 1) /* CRT parameters */

9 iq ← q−1 mod p

10 return (N , e), (d , p, q, dp, dq, iq)

OpenSSL’s RSA key generation closely resembles Algorithm 1.

The first steps aim at generating random secret primes p and q,
during which two loops ensure that (p − 1) and (q − 1) are coprime

with e . Steps 7-9 are not relevant to this work.

Algorithm 1 involves the computing of (at least) two GCDs and

two modular inversions. Binary GCD algorithms are a common

implementation choice for both of these operations—a description

follows.

2.2 Binary GCD Algorithms

Stein [45] proposed the binary greatest common divisor algorithm

(binary GCD) in 1967. This algorithm computes the GCD of two inte-

gers a and b employing only right-shift operations and subtractions

(Algorithm 2). This approach is very attractive in cryptography as

it performs very well specially with large inputs.

In OpenSSL, GCD computations use the function BN_gcd, a high
level wrapper to the function euclid that is one implementation

of the binary GCD. Note however it does not follow the classic
algorithm structure (c.f. Algorithm 2). Regardless, its flow can be

analyzed using the classic variant since all side-channel models

for this algorithm have the same threat model. An adversary can

distinguish a right-shift from a subtraction operation to recover

algorithm state [2, 3, 38]. We expand on this concept later in this

section.

Algorithm 2: Binary GCD

Input: Integers a and b such that 0 < a < b.
Output: Greatest common divisor of a and b.

1 begin

2 u ← a, v ← b, i ← 0

3 while even(u) and even(v) do /* Powers of two */
4 u ← u/2, v ← v/2, i ← i + 1

5 while u , 0 do /* Greatest odd divisor */
6 while even(u) do
7 u ← u/2 /* u loop */

8 while even(v) do
9 v ← v/2 /* v loop */

10 if u ≥ v then

11 u ← u −v /* sub-step */

12 else

13 v ← v − u

14 return v · 2i

Finally, it is worth noting that with respect to RSA key generation,

Step 4 never executes since (at least) one of the inputs is always

odd.

2.3 Binary GCD: Side-Channel Analysis

The execution flow of Algorithm 2 is highly dependent of its inputs.

In Algorithm 2 some execution flow relevant steps are highlighted.

The u-loop and v-loop are the loops that remove all power-of-two

divisors in variablesu andv at each iteration. The sub-step executes
when both variables are odd, consisting of a single subtraction.

Consistent with the existing literature [3, 38], we encode the

execution flow sequence of this algorithm with two symbols ‘L’



and ‘S’ representing right-shift and subtraction, respectively. An-

other representation uses two variables Zi and Xi defined in [3] as

follows:
3

• Zi stores the number of right-shifts at iteration i .
• Xi stores a binary value to represent the result of the condi-

tion (Step 10 in Algorithm 2) at iteration i . Xi=‘u’ means the

condition was true while Xi=‘v’ the opposite.
Figure 1 shows an LS-sequence example of an execution flow.

The sequence reads from left to right: the first four Zi are 3, 2, 1,
and 5.

LLLSLLSLSLLLLLSL. . .LS

Figure 1: LS-encoded binary GCD execution flow example.

Regarding side-channel analysis, there are three different models

for analyzing Algorithm 2 leakages. Each model originally targets

the Binary Extended Euclidean Algorithm (BEEA) for computing

modular inverses. However they also apply to Algorithm 2 because

the models exploit the execution flow leakage w.r.t. variables u and

v , and said flow is the same for both algorithms when executed

with the same input pair.

All-or-nothing. Acıiçmez et al. [2] andAravamuthan and Thumparthy

[6] independently proposed this model in 2007. It requires that the

adversary knows all Zi and Xi to recover algorithm inputs.

Partial. Aldaya et al. [3] recently proposed this model, an alge-

braic approach that relates the number of known Zi , Xi with the

number of input bits that can be recovered. In comparison with

the previous model, this approach is more flexible as it can extract

information from partial knowledge of the execution flow. In this

model, the number of recovered bits grows with the number of Zi
and Xi that an adversary knows. Our work employs this model (see

Section 3.2 for this selection rationale).

Look-up. Pereida García and Brumley [38] proposed a model

that also allows partial recovery, but instead of an algebraic ap-

proach it employs a table look-up. The adversary generates a table

that relates every LS-sequence of a given length with the corre-

sponding partial input bits. This model performs better than the

previous when the number of bits to recover is small as it captures

some algebraic equivalences not previously modeled. However,

it becomes impractical for recovering a large number of bits (i.e.

longer LS-sequences). The magnitude increases linearly whereas

the computational complexity (time and storage) for creating a

table containing all possible LS-sequences increases exponentially.

2.4 The Flush+Reload Attack

The Flush+Reload technique is a cache-based side-channel attack

technique targeting the Last-Level Cache (LLC) and used during our

attack. Flush+Reload is a high resolution, high accuracy and high

signal-to-noise ratio technique that positively identifies accesses to

specific memory lines. It relies on cache sharing between processes,

typically achieved through the use of shared libraries or page de-

duplication.

3
Equivalent to SHIFTS[i] and SUBS[i] definition by Acıiçmez et al. [2]

Algorithm 3: Flush+Reload Attack

Input:Memory Address addr.
Result: True if the victim accessed the address.

1 begin

2 flush(addr)
3 Wait for the victim.
4 time← current_time()

5 tmp← read(addr)
6 readTime← current_time() - time
7 return readTime < threshold

A round of attack, depicted in Algorithm 3, consists of three

phases: (1) The attacker evicts the target memory line from the

cache. (2) The attacker waits some time so the victim has an op-

portunity to access the memory line. (3) The attacker measures the

time it takes to reload the memory line. The latency measured in

the last step tells whether or not the memory line was accessed

by the victim during the second step of the attack, i.e. identifies

cache-hits and cache-misses.

The Flush+Reload attack technique tries to achieve the best

resolution possible while keeping the error rate low. Typically, an

attacker encounters multiple challenges due to several processor

optimizations and different architectures. See [5, 39, 50] for discus-

sions of these challenges.

2.5 Related Work

Attacks on RSA keys. Over the years, cryptanalysis of RSA keys

have been studied and targeted due to its widespread usage, its

mathematical structure (i.e. CRT-based methods) and the ease of

generating low entropy keys. One classification of attacks on RSA

keys is dividing them between: (1) only public key knowledge; (2)

partial private key knowledge.

The first category assumes an attacker only has knowledge of

the public key (N , e), attempting to use factoring methods such

as Pollard p − 1 [40], Pollard Rho [41] and sieving methods to

recover the private factors p and q. This type of attack is bound

by the often sub-exponential, yet intractable, time complexity of

the factoring methods, requiring massive computation time and

resources. Current research achieves factorization of 768-bit RSA

keys [27], therefore it has limited practical applicability and interest

for an attacker.

The second category exploits partial knowledge about the pri-

vate and public keys to perform attacks such as low exponent

attacks [10, 48], side-channel attacks [7, 51] and Coppersmith re-

lated attacks [15, 16], considered a universal tool to attack RSA

keys with poorly chosen parameters or keys generated with poor

entropy, i.e. using a faulty implementation.

In 2012, two independent teams [21, 31] exploited poor entropy

of RSA keys in SSL certificates, SSH host keys and PGP keys, thus

allowing them to trivially factorize keys by carrying out pairwise

GCD computations to recover shared prime factors among other

RSA keys. Similarly in 2013, Bernstein et al. [9] analyzed the public

record of RSA keys in the “Citizen Digital Certificate” database

of Taiwanese citizens. The authors recovered 265 private keys by



running a batch GCD computation followed by Coppersmith’s

method.

In 2017, Nemec et al. [34] discovered a critical vulnerability in

the library used to generate RSA keys for identity cards, passports

and Trusted Platform Modules; allowing factorization of 1024 and

2048-bit keys. Once again, this exploit was possible due to poor

entropy introduced by a special mathematical structure of the prime

factors that not only allowed key recovery using Coppersmith’s

method but also detection of keys with this special structure. The

impact was so vast that multiple countries were forced to recall and

issue new identity cards for their citizens.

Microarchitecture Attacks on RSA. In his seminal work, Percival

[37] demonstrated a cache-timing attack against RSA by identifying

access to precomputed multipliers stored in memory when using

the Sliding Window Exponentiation (SWE) algorithm implemented

in OpenSSL version 0.9.7c. To mitigate this issue, the OpenSSL team

added a “constant-time” implementation of the modular exponen-

tiation algorithm. This implementation combines a fixed-window

exponentiation algorithm with a scatter-gather method [11], al-

lowing to mask table access to the multipliers. The scatter-gather

method ensures the same cache lines are always accessed, irrespec-

tive of the multiplier used.

In 2016, Yarom et al. [51] showed the scatter-gather method

implemented in OpenSSL derived from Percival’s work, still leaks

timing information and thus, is not “constant-time” as it was be-

lieved. In their work, the authors demonstrated that even if the

same cache lines are always accessed, the offset accessed within the

cache line depends on the multiplier used, which is decided based

on the private key. To that end, the authors exploited cache-bank

conflicts. A cache is often divided in cache banks that allow concur-

rent access to the cache, but only one request at a time. If multiple

requests are made to the same cache bank, a conflict occurs and the

conflicting requests are delayed, creating a timing variation. The

timing variations allowed to perform an attack against OpenSSL

1.0.2f, leading to 4096-bit RSA key recovery after observing 16000

decryptions on a HyperThreading architecture.

More recently, Bernstein et al. [8] performed 1024 and 2048-bit

key recovery in the Libgcrypt library when computing modular ex-

ponentiations using the left-to-right sliding window method. More

precisely, the authors demonstrated the direction of the sliding

window matters since it leaks more or less information depending

on the encoding direction. Applying the Flush+Reload technique,

paired with the algorithm by Heninger and Shacham [22], the au-

thors are able to efficiently reconstruct the keys using a side-channel

leak after recovering roughly 50 % of the secret bits.

Acıiçmez et al. [2] showed that exponentiation is not the only

operation potentially leaking RSA secret information. The modular

inversion operation is also vulnerable and they developed Simple

Branch Prediction Analysis (SBPA) to this end. The authors showed

information leakage in OpenSSL 0.9.8a during the modular inver-

sion operation due to the use of the Binary Extended Euclidean

Algorithm (BEEA). The BEEA is used during key generation, de-

cryption, and blinding when employing the RSA-CRT variant, and

these algorithms compute on secret values. The authors conjecture

it is theoretically possible to deduce the outcome of branch state-

ments using timings, recovering critical BEEA algorithm state and

therefore leading to secret key recovery.

Side-channel attacks on RSA key generation. The research avail-

able on SCA against RSA key generation is limited and focuses on

leakages in physical devices. Finke et al. [17] performed an attack

on a custom implementation of a prime generation algorithm used

for RSA key generation, analyzed using Simple Power Analysis

(SPA). In 2012, Vuillaume et al. [46] presented a Differential Power

Analysis (DPA), template attack and fault attack on the Fermat and

Miller-Rabin tests on a secure microcontroller but give no addi-

tional information regarding their setup. Later on, [7] analyzed the

security of prime generation algorithms and the sieving process.

Targeting the divisibility phase, the authors obtained more than

half the bits of the prime number generated in their own imple-

mentation and then using Coppersmith’s technique they recovered

a 1024-bit RSA key. More recently, Aldaya et al. [4] analyze the

modular inversion operation used during RSA private key genera-

tion. The BEEA is commonly used to perform modular inversions,

but due to its highly input-dependent flow, the authors demon-

strate full key recovery using SPA. The attack differs from previous

work because it focuses on alternative routines invoked during key

generation, instead of primality tests or prime number generation.

Recently, independent work examines one of the three code paths

considered in our work (BN_gcd). Weiser et al. [47] target RSA key

generation within an Intel SGX enclave by a noiseless controlled-

channel page-fault attack. Controlled-channel attacks [49] are priv-

ileged attacks originating from a malicious OS targeting SGX en-

claves, aligned with the SGX threat model. The most important

differences with our work are (1) cache-timing attacks are unprivi-

leged and do not require escalation to kernel space (i.e. a malicious

OS); and (2) controlled-channels are error-free, while cache-timing

channels are far from that.

3 RSA KEY GENERATION: NEW

VULNERABILITIES

3.1 Insecure Code Paths: A Methodology

After its introduction in 2005, twoworks exploit the insecure default

behavior of OpenSSL’s constant time flag. Pereida García et al. [39]

exploit the fact that, by design, the flag does not propagate from the

source to the destination during BIGNUM copy operations. As a

result, modular exponentiations during DSA sign operations took a

side-channel insecure modular exponentiation path. Pereida García

and Brumley [38] exploit the failure to set the flag during ECDSA

sign operations. In that case, the resulting scalar multiplication

function is oblivious to the flag and always followed a side-channel

secure path; the modular inversion function, however, requires this

flag to follow its side-channel secure path.

While not explicitly stated, it seems both of these vulnerabili-

ties were found by manual code review—locating critical locations

where the flag should be set for individual cryptosystems, and te-

diously tracking the flow. This is not a particularly efficient and

accurate way to assess and ensure the flag’s proper usage.

In contrast, we approach this problem from the opposite perspec-

tive: collecting a set of known side-channel vulnerable functions



within OpenSSL, and using stock tooling to determine if these

functions reach vulnerable code during security-critical operations.

Roughly, our methodology consists of the following steps.

(1) From the existing literature, create a list of side-channel

vulnerable functions within a library. (Here, OpenSSL.)

(2) In a debugger, set break points at lines of code which should

not be reached during security-critical operations such as

key generation, public key decryption, and digital signature

generation.

(3) Run the security-critical command and analyze the call stack

upon hitting said break points.

Applying this methodology, w.r.t. RSA key generation we identi-

fied the following subset of known side-channel vulnerable func-

tions of interest.

(1) The function BN_gcd contains highly input-dependent branches
that can potentially be used as a side-channel attack vector.

Since the code has no early exit to a side-channel secure

code path, i.e. does not check the constant time flag at all,

we set a break point at the function’s entry point.

(2) The function BN_mod_inverse executes a check for the con-

stant time flag at the beginning of the function, and early

exits to a side-channel secure path if it is set. If the code fails

the check, it continues to a side-channel insecure path. We

set a break point immediately following the early exit.

(3) The function BN_mod_exp_mont is analogous to the above,

yet for modular exponentiation. Similarly, we set a break

point immediately following the early exit.

Following a debug session in Figure 2, these three break points

are seen in bn_gcd.c (Lines 120 and 238) and bn_exp.c (Line 418).

Upon executing the genpkey command to generate an RSA key,

each of the three break points are hit multiple times, and the output

gives their corresponding call stacks. Naturally, hitting the break

points does not guarantee a vulnerability—a deeper analysis follows.

Insecure exponentiation code path. The Miller-Rabin primality

test [42] is the most common implementation of Algorithm 1, Lines

3 and 5. It involves choosing a random “witness” baseb then comput-

ing bx mod p where p is the candidate prime and the relation 2
kx =

p − 1 holds. Indeed, OpenSSL’s is a straightforward implementation

of these steps. Looking at the call stack for the BN_mod_exp_mont
break point, the function BN_is_prime_fasttest_ex implements

iterating this test for different b values to obtain prime confidence

after sufficient successful trials. It carries out each trial by call-

ing the function witness that performs the modular exponen-

tiation, unfortunately calling BN_mod_exp_mont without setting

BN_FLG_CONSTTIME. The algorithm continues with a classical slid-

ing window exponentiation, potentially leaking partial information

on x hence p.

Insecure inversion code path. Related to the previous code path, as
the function name BN_mod_exp_mont suggests, the implementation

uses Montgomery arithmetic for efficiency. The Montgomery setup

phase occurs in BN_MONT_CTX_set, computing the inverse of 2
w

modulo p forw-bit architectures. Examining the call stack, the func-

tion calls BN_mod_inversewithout setting BN_FLG_CONSTTIME, po-
tentially leaking critical binary GCD algorithm state. However, in

this case our terse analysis reveals the operands are not {2w ,p}

+--------rsa_gen.c---------------------------------------------------------------------+
|103 |
|104 static int rsa_builtin_keygen(RSA *rsa, int bits, BIGNUM *e_value, |
|105 BN_GENCB *cb) |
|106 { |
|... |
|148 /* generate p and q */ |
|149 for (;;) { |
|150 if (!BN_generate_prime_ex(rsa->p, bitsp, 0, NULL, NULL, cb)) |
|151 goto err; |
|152 if (!BN_sub(r2, rsa->p, BN_value_one())) |
|153 goto err; |
|154 if (!BN_gcd(r1, r2, rsa->e, ctx)) |
|155 goto err; |
|156 if (BN_is_one(r1)) |
|157 break; |
+--------------------------------------------------------------------------------------+

+--------bn_gcd.c----------------------------------------------------------------------+
|116 |
|117 int BN_gcd(BIGNUM *r, const BIGNUM *in_a, const BIGNUM *in_b, BN_CTX *ctx) |
|118 { |
|119 BIGNUM *a, *b, *t; |

B+>|120 int ret = 0; |
|... |
|143 t = euclid(a, b); |
|... |
|156 static BIGNUM *euclid(BIGNUM *a, BIGNUM *b) |
|157 { |
|158 BIGNUM *t; |
|159 int shifts = 0; |
|160 |
|161 bn_check_top(a); |
|162 bn_check_top(b); |
|163 |
|164 /* 0 <= b <= a */ |
|165 while (!BN_is_zero(b)) { |
|... |
|226 BIGNUM *BN_mod_inverse(BIGNUM *in, |
|227 const BIGNUM *a, const BIGNUM *n, BN_CTX *ctx) |
|228 { |
|229 BIGNUM *A, *B, *X, *Y, *M, *D, *T, *R = NULL; |
|230 BIGNUM *ret = NULL; |
|231 int sign; |
|232 |
|233 if ((BN_get_flags(a, BN_FLG_CONSTTIME) != 0) |
|234 || (BN_get_flags(n, BN_FLG_CONSTTIME) != 0)) { |
|235 return BN_mod_inverse_no_branch(in, a, n, ctx); |
|236 } |
|237 |

B+>|238 bn_check_top(a); |
+--------------------------------------------------------------------------------------+

+--------bn_exp.c----------------------------------------------------------------------+
|402 |
|403 int BN_mod_exp_mont(BIGNUM *rr, const BIGNUM *a, const BIGNUM *p, |
|404 const BIGNUM *m, BN_CTX *ctx, BN_MONT_CTX *in_mont) |
|405 { |
|406 int i, j, bits, ret = 0, wstart, wend, window, wvalue; |
|407 int start = 1; |
|408 BIGNUM *d, *r; |
|409 const BIGNUM *aa; |
|410 /* Table of variables obtained from 'ctx' */ |
|411 BIGNUM *val[TABLE_SIZE]; |
|412 BN_MONT_CTX *mont = NULL; |
|413 |
|414 if (BN_get_flags(p, BN_FLG_CONSTTIME) != 0) { |
|415 return BN_mod_exp_mont_consttime(rr, a, p, m, ctx, in_mont); |
|416 } |
|417 |

B+>|418 bn_check_top(a); |
+--------------------------------------------------------------------------------------+

Breakpoint 1 at 0x5fd4aa: file bn_gcd.c, line 120.
Breakpoint 2 at 0x5fda66: file bn_gcd.c, line 238.
Breakpoint 3 at 0x4e97a9: file bn_exp.c, line 418.
Starting program: openssl genpkey -algorithm RSA -out key.pem -pkeyopt rsa_keygen_bits:2048
Breakpoint 2, BN_mod_inverse (...) at bn_gcd.c:238
#0 BN_mod_inverse (...) at bn_gcd.c:238
#1 ... in BN_MONT_CTX_set (...) at bn_mont.c:450
#2 ... in BN_is_prime_fasttest_ex (...) at bn_prime.c:319
#3 ... in BN_generate_prime_ex (...) at bn_prime.c:199
#4 ... in rsa_builtin_keygen (...) at rsa_gen.c:150
Continuing.
Breakpoint 3, BN_mod_exp_mont (...) at bn_exp.c:418
#0 BN_mod_exp_mont (...) at bn_exp.c:418
#1 ... in witness (...) at bn_prime.c:356
#2 ... in BN_is_prime_fasttest_ex (...) at bn_prime.c:329
#3 ... in BN_generate_prime_ex (...) at bn_prime.c:199
#4 ... in rsa_builtin_keygen (...) at rsa_gen.c:150
Continuing.
Breakpoint 1, BN_gcd (...) at bn_gcd.c:120
#0 BN_gcd (...) at bn_gcd.c:120
#1 ... in rsa_builtin_keygen (...) at rsa_gen.c:154

Figure 2: Testing the proposed methodology.



but {2w ,p mod 2
w }, implemented by copying the least significant

word of p to a temporary BIGNUM. While all leaks are bad, some

are worse than others—this is a nominal leak on the least significant

word of p.

Insecure GCD code path. The shallowest call stack is for BN_gcd,
called directly by rsa_builtin_keygen (Line 154). The function

computes the GCD of e and p − 1 to ensure that e is invertible

mod (p − 1)(q − 1). The value p − 1 should remain secret, hence

hitting this break point represents a potential side-channel attack

vector. This is the code path we target in the remainder of this

paper.

Root cause analysis. From these results, we deduce modular in-

versions in OpenSSL’s RSA key generation at Steps 6 and 9 of

Algorithm 1 have side-channel mitigations in place, yet GCD com-

putations in Steps 2 and 4 lack such protection, and likewise for

primality testing. The work of Acıiçmez et al. [2] induced the secure

path code change, yet the impact of the academic result did not

fully propagate throughout the entirety of the RSA key generation

implementation. We speculate this is a result of a simplification

in [2, Sec. 2.1]: the pseudocode for key generation abstracts away

the prime generation loop, and assumes a priori coprimality of e
with p − 1 and q − 1 to compute d at Step 6. This allowed Acıiçmez

et al. to focus theoretical analysis on the impact of modular inver-

sion leaks across various cryptosystems, while undoubtedly being

aware of GCD and modular inversion execution flows having essen-

tially the same branching characteristics. Alas, typical engineers

are less inclined to such cryptographic subtleties—evidenced by this

code path remaining vulnerable to microarchitecture side-channel

attacks.

3.2 Theoretical Leakage Analysis

To this end, Pereida García and Brumley [38] demonstrate it is possi-

ble to recover some Zi from OpenSSL modular inversion operations

(BEEA) with cache timings during ECDSA signature generations.

We are left with the following open question: Is it possible to simi-
larly recover binary GCD algorithm state?

Aldaya et al. [4] analyzed RSA key generation with respect to

SCA of GCD-based algorithms. The analysis focuses on the modular

inversion at Step 6 of Algorithm 1, exploiting the fact that BEEA

inputs have very different bit-lengths. The product (p − 1)(q − 1)
has 2048 bits for modern RSA key sizes, while the other input e has
only 17 bits commonly.

Our vulnerability similarly exploits a large bit-length difference

between inputs: the same e , but instead p − 1 and q − 1 having

1024 bits. As processing p and q are very similar regarding GCD

computation, we use the prime p to present our analysis. Further-

more, we select the partial bit-recovery model (see Section 2.3)

because (1) we will be working with noisy LS-sequences later in

our full attack, thus partial recovery reduces noise influence; (2)

covered later in this section, we will utilize a factoring method that

inputs incomplete p; and (3) we need to recover hundreds of bits so
Look-up model is intractable.

The large bit-length difference between p − 1 and e implies that

during several binary GCD iterations the condition u ≥ v will

be true, giving the adversary partial execution flow information a

priori (i.e. Xi=‘u’ for some iterations i). This situation holds until u
(initialized top−1) stores a value of roughly the same bit-length asv
(initialized to e). Therefore it dividesu by two roughly lg (N )/2−lg e
times.

According to the Zi definition, at each iteration u loses Zi bits.
Therefore the number of iterations t that should execute before u
has roughly the same bit-length as v is the minimum t that satis-
fies (1).

n =
t∑
i=1

Zi ≥ lg (N )/2 − lg e (1)

Hence, the following question arises: how many bits can be re-
covered in this setting?

Partial recovery. Applying the partial model, we obtain a bit-

recovery equation as follows. Assume the adversary obtains all Zi ,
and t is the first iteration for which u < v (i.e. Xi=‘u’ ; 0 < i < t ).
The values of u and v just before the sub-step for iterations i < t
are as follows.

u1 = p − 1, v1 = vi = e, ui+1 =
ui −vi

2
Zi+1

The invariant ui − vi ≡ 0 mod 2 holds for all iterations, since

both variables are odd just before the sub-step. Expanding for i < t :

ut −vt =

p − 1

2
Z1

− e

2
Z2

− e

2
Z3

. . .

− e

2
Zt

− e ≡ 0 mod 2

thus solving for p yields (2) for bit recovery, where n from (1) is the

number of recovered bits of p.

p ≡ e(2Z1 + 2Z1+Z2 + · · · + 2n ) + 1 mod 2
n+1

(2)

In summary, for RSA-2048 n is roughly 1024 − 17 = 1007 bits.

However, due to Coppersmith [15] an adversary only needs lg(N )/4 =
512 bits of one prime to factor an RSA-2048 N , depicted in Figure 3.

For either NIST compliant value of e , the number of bits recovered

is far beyond the Coppersmith bound.

Coppersmith bound
512

e = 2     - 1 e = 2   +1 

1023
NIST

256

768 1007

16

0

Figure 3: RSA-2048 bit-recovery bounds of n for different e.

We now have our requirements for a successful attack—the ad-

versary must obtain (at least) the first tc noise-free Zi to factor N :

n =

tc∑
i=1

Zi ≥ lg(N )/4

where tc is the minimum iteration for which n reaches the Copper-

smith bound.



3.3 A Single Trace Attack: Roadmap

Previously in this section, we uncovered three side-channel inse-

cure code paths traversed during RSA key generation. Subsequently

focusing on the BN_gcd code path, we then gave a theoretical anal-

ysis on the GCD algorithm as implemented in OpenSSL to describe

what kind of side-channel information we can extract, and rough

bounds for how much (noise-free) information we need to leverage

that to recover the private key by factoring N . The remainder of

this paper is dedicated to describing the methods, techniques and

problems faced when trying to recover the necessary information

from the side-channel leakage in order to achieve full private RSA

key recovery from a single trace. The roadmap for our end-to-end

attack is as follows.

(1) We capture cache-timing traces during BN_gcd execution

during RSA key generation, then—leveraging signal process-

ing techniques—extract the portions corresponding to p − 1
and q−1, apply digital filters and extract their corresponding
(noisy) LS-sequences (Section 3.4);

(2) Building upon previous work, we design and implement an

error correction algorithm for these sequences—leveraging

number theoretic constraints imposed by RSA—to extract

partial bits of one factor of N (Section 4);

(3) Said algorithm yields an ordered list of candidates for partial

factors; we then derive lattice parameters for factoring with

Coppersmith’s method, and create lattice instances with said

candidates, iteratively executing them until the result yields

complete factorization of N (Section 5).

3.4 From Timings to Sequence of Operations

The environment for our attack consists of an Intel Core i5-2400

Sandy Bridge 3.10 GHz (32 nm) with 8 GB of memory running

64-bit Ubuntu 16.04 LTS “Xenial” with hardware prefetching and

Turbo Boost disabled. All the cores share a 12-way 6 MB unified

LLC. The system does not feature HyperThreading.

We tested our attack against OpenSSL 1.0.2k with debugging

symbols on the executable. We use the debugging symbols to map

source code to memory addresses, this allow us to find the “hot”

memory addresses for the degrading attack and probing accurately

the sequence of operations mentioned previously. We passed the

shared configuration option to compile OpenSSL as a shared object.

As discussed previously, the GCD algorithm execution as imple-

mented in OpenSSL is highly dependent on its inputs. To that end,

we use the well-known Flush+Reload technique to probe cache

lines in code routines BN_rshift1 and BN_sub. By probing these

two routines, we are able to distinguish two branches executed by

the GCD algorithm, namely right shifts and subtractions. Unfortu-

nately this is not enough to recover meaningful data, since we need

to know the exact Zi values (i.e. number of right shifts executed

between subtractions) in order to identify bits, but due to the speed

of the operations our probe misses some of the accesses. To get

better resolution, we pair the Flush+Reload technique with the

performance degradation attack [5] which targets different cache

lines in the same previous routines to slow down the execution.

Moreover, we apply the profiling approach [38] to easily identify

the best memory addresses to probe and degrade. Adapted to our

strategy, this provides a good starting point (see a trace excerpt

in Figure 4) to recover a sequence of operations.

The contents of a typical trace (see Figure 5, top), from high

to low abundance, is roughly: (1) noise and/or BN_mod_exp_mont
executions during primality testing, not targeted by our probes

but nonetheless consuming CPU cycles; (2) short BN_mod_inverse
executions setting up Montgomery arithmetic, with the same un-

derlying shifts and subtracts as BN_gcd that our probes target; (3)
longer BN_gcd executions for testing coprimality. We are only in-

terested in the latter, yet manually isolating the part of the trace

that corresponds to the real BN_gcd executions for p − 1 and q − 1
is time consuming and not feasible at a large scale.

For other cache-timing attacks that instead target digital signa-

ture generation or public key decryption, this is mostly a non-issue

solved by simple heuristics. The reason is that in those scenarios,

attackers have oracle access to trigger the cryptographic operation.

They then start side-channel signal acquisition (e.g. launch the spy)

roughly at the same time as they start their query (e.g. initiate a

protocol run or call an API), and can use rough estimates, e.g. based

on profiled timing to extract and trim the trace, isolating the portion

of interest.

In our case, this problem is very different since we have no con-

trol over when key generation takes place. Our traces are extremely

long, leaving us with the challenging task of extracting a minuscule

partial trace from abundant data—looking for a needle in a haystack.

We turn to signal processing-based power analysis techniques to

tackle this issue. Inspired by SPA and template attacks [13] and

related (yet less statistical) cache-based techniques [12, 19], we

create and use templates—exemplary partial traces—to trim full

traces. Departing from these works and motivated by statistical

methods such as Horizontal Correlation Analysis [14], we leverage

the Pearson correlation coefficient to find the best match for these

templates within full traces, automating the process.

Templates. We first create a template by manually inspecting

and trimming a trace that looks visually correct, i.e. no clear pre-

emptions of the probes or the victim process. It is worth mentioning

the templates depend on the waiting period and additional param-

eters defined for the Flush+Reload technique, thus every time

the parameters change during the probing stage, a new template

needs to be created, otherwise the next step will fail to find the

GCD iterations we are interested in. This fine tuning task can be

tedious but it is a crucial step in a cache-timing attack and it is the

difference between a failed and a successful attack. The middle plot

in Figure 5 depicts one template we used in our experiments.

Correlation. Denote the length-m trace by t and length-n tem-

plate by s . The measurement at time i is t[i] and t[i : i + n] the
length-n partial trace starting from point t[i]. The Pearson correla-

tion coefficient of t with s at time j is

r [j] =

∑n
i=1 s[i]t[i + j] − nµs µt [j :j+n]

nσsσt [j :j+n]
(3)

where µx are means and σx standard deviations. The output lies in

the interval [−1 . . 1] from perfect negative correlation, to no linear

correlation, to perfect correlation.
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Figure 4: A raw cache-timing trace obtained by only applying Flush+Reload and performance degradation techniques against

the binary GCD.

Withm large, care must be taken in computing the moving cor-

relation r [1 :m − n + 1]. In (3), the summations are cross correla-

tions, and the moving average µt [j :j+n] for all j is a convolution.
With a random variable X and denoting E expectation, the equality

σ =
√
E[X 2] − E([X ])2 holds, so the moving standard deviation

σt [j :j+n] for all j computes directly from the moving averages. To

summarize, all of these are FFT-based methods to compute (3) effi-

ciently for all j—even for our long traces.

Matching. Once we create our template and acquire our trace, we

compute the moving Pearson correlation between the template and

full trace, then extract the peaks, i.e. discrete indices that exhibit

highest correlation between the template and the side-channel data.

This automates the GCD identification step, proving to be accurate

at finding the GCD executions of interest in our traces, allowing us

to extract the sequences for p and q.
Figure 5 illustrates our method in action using a real trace and

template. The top plot is the filtered partial trace, containing two

GCD runs for p and q—note the narrower peaks corresponding

to executions of BN_mod_inverse during the primality test, also

leaking secret information on the prime values due to yet another

flag not set (see Section 3.1).

The bottom plot is the moving Pearson correlation coefficient

between the template (middle plot) and the trace, with two ex-

tremely distinguishable peaks that identify the locations of the two

GCD operations. The middle plot aligns the template at maximum

correlation for visualization purposes. As seen, our technique is

remarkably effective.

Horizontal analysis. We need to extract the sequence of shift and

subtraction operations from the p and q traces (i.e. Zi ). Due to the

nature of the GCD algorithm, as the input values to the function are

processed, their bit length decreases and this behavior is reflected

in the trace. Typically, when a GCD operation starts execution, a

single shift operation spans over several cache-hits in the trace,

while at the end of the execution the same shift operation registers

fewer points, sometimes even only one point. For this reason, we

use a dynamic horizontal analysis approach to recover the sequence

of operations executed during a GCD execution.

Our dynamic horizontal analysis works as follows: first we take

as input the processed trace which has been aligned to the first

subtraction operation and trimmed to a specific length, avoiding

noise as much as possible. Then, take small chunks of the trace

containing n windows of subtraction plus shift operations, recall

that each subtraction is followed by at least one shift operation.

After that, we compute the Euclidean distance between the subtrac-

tion operations in those n windows. We sort the resulting distances

from shortest to longest and then we consider the shortest distance

as a single shift operation (i.e. Zi = 1), thus using it as basis to

determine the number of shift operations in the rest of windows.

After calculating all the shift counts in those n windows, we pro-

ceed to the next chunk and repeat the process. We continue until

all the operations in the trace have been calculated, resulting in a

tentative LS sequence of operations (i.e. Zi candidates).
As mentioned previously, the accuracy of the operations in the

trace decreases dramatically by the end of the GCD execution, there-

fore the trace is not perfect, in fact it contains errors introduced

by several factors such as victim preemptions, spy preemptions

as well as noise created by other processes and microarchitecture

components. To defeat this, Section 4 details an error correction al-

gorithm developed to find potential correct LS sequence candidates

that later are converted to bits and used as input values to perform

the lattice attack explained in Section 5.
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Figure 5: Visualization of themoving Pearson correlation in

action. From top to bottom: raw trace, aligned template trace,

and Pearson correlation.



4 ERROR CORRECTION IN RSA KEYS

Following Section 2.1, an RSA private key is composed by a six

element tuple sk = (p, q, d , dp, dq, iq). The knowledge of any of

these elements directly allows breaking the system. In addition,

these elements contain redundancy and are related through public

information. For example, as N = pq, the relation N ≡ pq mod 2
n

holds for every positive integer n. Therefore the knowledge of the
first n bits of p directly reveals the same amount on q.

4.1 Noisy Keys: Previous Work

Motivated by some implementation attacks such as side-channel

and cold-boot attacks, factoring N from a noisy version of sk is an

active research line since the pioneering works of Percival [37] and

Heninger and Shacham [22].

The number of elements in a noisy version of sk depends on

the data leak. For example, Percival [37] assumes a noisy version

of (dp, dq) whereas Heninger and Shacham [22] consider different

versions of noisy sk, such as (p, q, d , dp, dq) and (p, q). The number

of elements in the noisy sk is often denoted in literature asm.

Regarding this work, the case ofm = 2 is particularly interesting

because from the Flush+Reload attack described in Section 2.4 we

obtain a pair of noisy LS sequences related with p and q. Therefore
we focus further related work analysis on them = 2 case.

Another implementation attack property is the nature of errors

that produces the noisy sk—termed noise model by Henecka et al.

[20]. They defined the noise model of Percival [37] and Heninger

and Shacham [22] works as the erasure model. In these works, the

adversary knows which bit positions contain valid data, and like-

wise exactly at which bit position data is missing.

On the other hand, Henecka et al. [20] proposed an algorithm for

correcting errors in RSA keys from noisy sk where some bits are

flipped. Correcting errors in this bit-flip model is more challenging

than in the erasure model [20], however the authors showed that

for m = 2 it is possible to achieve a success rate of 24 % if the

probability of a single bit-flip is less than 0.084. Paterson et al. [36]

also studied this error model but considering that a flip 0→ 1 has

a different probability than 1→ 0.

Kunihiro [29] analyzed erasure and bit-flipmodels in a combined

approach proposing an algorithm and a theoretical analysis of the

bounds on erasure and bit-flip rates to succeed, improving the

allowed bit-flip rate up to 0.11 in an scenario without erasures. See

the survey by Kunihiro [30] for more details.

In addition to these error correction algorithms, some authors

employs multiple traces to remove noise from sk. For example,

in very different attack scenarios and completely independent re-

search, Irazoqui et al. [26] and Schwarz et al. [44] obtained an error

rate no more than 0.04 from a single trace attack. Later combining

the same leakage data from five traces, they corrected all the er-

rors in their respective setting. In contrast to previous approaches

that exploit RSA private key element redundancy, correcting errors

by using multiple traces is a general approach that applies to any

cryptosystem.

While this approach is very attractive, our adversary model

forces a single execution trace, so we should follow an error model

based approach that exploits the relation N = pq as our side-

channel traces leak data about p and q.

4.2 Noisy LS Sequences

In order to design an algorithm for correcting the errors in an LS

sequence, we characterize the nature of them. As discussed in Sec-

tion 3.3, cache-timing attacks like Flush+Reload provide noisy

data due to variances in the execution environment, interruptions,

preemptions, task scheduling, etc. Therefore LS sequence extrac-

tion from the raw traces is not error free and contains errors with

overwhelming probability.

After analyzing many of the traces with known inputs, we iden-

tified the following classes of errors.

• Wrong number of ‘L’ symbols between two ‘S’ symbols (due

to Zi estimation error).

• Missing ‘S’ symbols (less frequent).

• Extra ‘S’ symbols (much less frequent).

• Victim preemption: observed as a small gap (i.e. window of

cache misses) in the middle of an operations but fixable by

removing this window during trace processing.

• Spy preemptions: observed as high latency peaks in the trace.

Unfortunately they are detectable but operations during the

preemption window are completely lost.

4.3 Leakage Data: Error Modeling

From the Flush+Reload attack, we obtain pairs (Z
p
i , Z

q
i ) for p

and q respectively. With this information, we obtain two recovery

equations according to (2). Where, without losing generality n1 and
n2 are greater than some n. We therefore have sufficient (noisy) Zi
for both primes to recover their first n bits.

p ≡ ex1 + 1 mod 2
n1+1 , x1 = (2

Zp
1 + 2Z

p
1
+Zp

2 + · · · + 2n1 )

q ≡ ex2 + 1 mod 2
n2+1 , x2 = (2

Zq
1 + 2Z

q
1
+Zq

2 + · · · + 2n2 )

(4)

Therefore, the Zi for a prime p (resp. q) defines the ones in the

binary representation of x1 (resp. x2). Hence for every value of n
we can check if (5) holds.

N = (ex1 + 1)(ex2 + 1) mod 2
n

(5)

This relation is very similar to that employed by Heninger and

Shacham [22] for them = 2 case. In their work, errors are in the

bit positions of p and q directly while in our case they are instead

in the bit positions of a multiple of p − 1 and q − 1. Irrespective

of this difference, it leads to a similar error correction algorithm

constructed for correcting some errors.

Regarding existing noise models, our data might have some form

of erasures due to spy preemption. However, while erasure model
considers missing data, at the same time it requires knowing where

the missing bits are and they should be distributed at random. Spy

preemption fulfills the first condition but it implies a consecutive

missing bits/symbols instead of random ones. On the other hand

this model does not consider insertions and deletions.

At the same time, the bit-flip model by Henecka et al. [20] does

not apply to our case as the largest error source is due to insertions

and deletions of zeros between consecutive ones in the binary

representation of x1 and x2. It is worth noting that these insertions

and deletions generate some bit-flips on p and q. However, we
verified that even a small insertion/deletion rate of 0.08 implies

a bit-flip rate on p and q of about 0.5 due to an avalanche effect.

Hence, obtained p and q from their noisy Zi look like random data.



In this regard, the solution to bit-flipping noisemodel byHenecka

et al. [20] is tightly coupled to the Hamming distance as a metric for

filtering out wrong solutions. The algorithm proposed in [20] could

be an option to address our noise model, but requires selecting a

proper distance metric. We identified the weighted Levenshtein

distance as a possible good distance candidate, as it allows assigning

different weights for each operations per symbol. Then, it is possible

to assign operation per symbol weights to fit a specific noise model.

While this is a plausible approach, changing the distance metric

inhibits us from using the theoretical and experimental results from

[20] to get an estimate on expected success rates. For this reason,

we defer this approach to future work and implement an error

correction algorithm that does not depend on an specific distance

metric.

Inci et al. [25] use another interesting approach to correct errors

in RSA keys. They developed an algorithm that recover some errors

from a noisy version of dp and dq (i.e. m = 2 case). Their noise

model has some similarities with ours, however they considered

that dp is almost error-free, while in our case we cannot make

this assumption. In addition, not much is said about the error rate

supported by this algorithm nor its success probability under any

error rate.

However, despite that erasure and bit-flip noise models do not ap-

ply directly to our scenario, we borrow the core ideas fromHeninger

and Shacham [22] and Henecka et al. [20] to build an error correc-

tion algorithm that handles the most common errors in our noise

model: insertions and deletions of zeros in the binary representation
of x1 and x2.

This relaxed noise model selection is not arbitrary. Our intuition

is to use this starting approach as a building block for fixing other

error sources. Also, it allows getting a first lower bound on the

success rate of the attack and then scaling it (if needed) to support

other errors (for example errors in ‘S’). In addition, avoiding some

specific error handling like spy preemption allows using this cor-

rection algorithm in other scenarios for correcting these types of

errors in other elements of sk.

4.4 Error Correction Algorithm

Our algorithm follows the Expand-and-Prune approach [20] as

shown in Algorithm 4. The algorithm iterates over all bits from

i ≤ n. It processes a set of candidates Ci at every iteration i , starting
from a single candidate with the noisy x1, x2. At each iteration,

each candidate resulting from the previous iteration expands to

several candidates. Then, to avoid candidate space explosion, it

prunes these candidates based on rules controlled by the algorithm

parameters. Therefore, the configuration parameters of the Prune

procedure manages the search space growth rate while aiming to

increase the probability that the correct solution survives through

iterations.

Expand. To expand a given candidate c at some bit i (i.e. c[i]),
consider the selected bit as a branch in a tree. If we construct a

search tree, then the possibilities for the bits at any level give rise

to new branches in said tree. The tree at any level i contains all the
partial solutions x1, x2 up to the i-th LSB. At any level i there are
(at most) six possible branching candidates that can fulfill (5), listed

in Table 1.

Algorithm 4: Error correction algorithm

Input: N , e , Z
p
i , Z

q
i , n, config parameters

Result: Set C of candidates for corrected n bits of x1 and x2

1 begin

2 x1,x2 ← Using Z
p
i , Z

q
i according to (4)

3 C0 ← {(x1,x2)}

4 for i = 1 to n − 1 do
5 Ei ← ∅

6 foreach c ∈ Ci−1 do
7 Ei = Ei ∪ Expand(c , i)

8 Ci ← Prune(Ei , params)

9 return Cn−1

Table 1: Possible branching candidates.

Possibilities Description

(x1,x2) (5) holds without changes to x1 or x2
(x1 − 0,x2) Remove a zero at position i from x1; no changes to x2
(x1 + 0,x2) Insert a zero at position i in x1; no changes to x2
(x1,x2 − 0) Remove a zero at position i from x2; no changes to x1
(x1,x2 + 0) Insert a zero at position i in x2; no changes to x1

mult A combination of changes in both x1 and x2

One interesting feature of this algorithm is that even if (5) holds

without changing x1 and x2, it still tests the remaining possibilities,

including errors that occur at the same index i in x1 and x2—a
situation not detected using (5).

Figure 6 shows the expansion and pruning procedure for three

consecutive iterations of a candidate c starting at bit i showing the

possible candidates. Here we used ∅ to represent the candidates that

did not generate valid solutions. Note how in the first expansion,

all possible branching candidates fulfilled Equation 5, however,

some of them did not generate viable solutions afterwards or were

pruned.

c[i]

(x1;x2)

(x1 + 0;x2)

(x1;x2) (x1 + 0;x2)

(x1;x2 − 0) mult

∅

(x1 + 0;x2)

∅

(x1;x2 − 0)

(x1 + 0;x2)

mult

(x1 − 0;x2) (x1;x2 + 0)

(x1;x2) (x1 − 0;x2) (x1;x2 + 0) mult

mult

Figure 6: Expansion process for candidate c[i]. Pruned solu-

tions are in red.

The candidate pool grows exponentially. We now turn to restrict-

ing the number of potential candidates (i.e. the partial solutions)

at any level so that finding the correct one is possible through ex-

haustive search among all solutions within a certain feasible limit,

examining situations that control the branching behavior of the

tree.

Prune. The pruning process applies a set of filters to the expanded
candidates Ei . The filter spectrum is very wide and selecting the



best for a given noise model is a challenging task. In this regard,

contrary to [20] we implemented a set of filters in a combined

approach.

Candidates in Ei are grouped based on the total amount of errors

present in both x1 and x2 at iteration i , allowing us to sort the

potential candidates based on this parameter.

The most important filters relate to the number of groups (m) to

keep and the maximum number of candidates in each group (G).
Denote emin as the minimum number of total errors found in all

candidates in Ei , ex the number of errors in x1 or x2, and emult
the

number of multiple errors up to iteration i . We define the filters as

follows:

Max errors over minimum: Keep the candidate if ex1 +ex2 +
e
mult
≤ emin +m holds.

Max candidates: Sort each group based on (ex1+ex2+emult
, e

mult
),

and keep the first G candidates.

The other two filters are very intuitive. The former, defines a

maximum number of consecutive errors. This follows the heuris-

tic that higher error densities should be less probable than lower

ones, therefore it should be more likely that the correct solution

has a smaller error density. The latter helps detect very unlikely

solutions—those with an extremely high number of errors.

Consecutive errors: Discard sequences having more that a

fixed number of consecutive errors.

Max errors (hard threshold): Candidates that exceed a max-

imum number of errors threshold are discarded (ex1 + ex2 +
e
mult
≥ e

th
).

We selected the parameters of these filters to keep the proba-

bility of pruning the correct solution low, while at the same time

keeping the computational requirements affordable for the attacker.

In general terms, the adversary can profile the target environment—

generating a set of known RSA keys and collecting information

about the number of errors, their distribution, etc. for selecting

these parameters. We followed this approach for 100 independent

RSA-2048 keys and tuned these parameters for our attack environ-

ment. We analyzed the number of groups between 5 and 10 and

the number of candidates in each group between 5000 and 15000.

We set the number of consecutive errors filter to three and based

on the observed error rates it is very unlikely that a candidate has

more than 150 errors at any iteration, therefore we set the hard

threshold to this value.

After this characterization, we observed that 37 traces of 100

fit our reduced noise model: only errors in the number of zeros

between ones of x1 and x2. We recovered at least 512 bits from 30

of the test traces, therefore our correction algorithm worked for

80 % of the traces it can handle (reduced noise model). However, as

we used these same traces to tune the filter parameters, this value

should not be taken as ameasure of the success rate of our algorithm.

Section 5.2 shows the experimental results for 10K independent

traces, and from this large set we extracted the estimate that our

error correction algorithm recovers at least 512 bits for 73 % of the

traces that met our reduced noise model (see Section 5.2 for more

details).

It is worth noting that these success rates and handled error rates

are incompatible with other works (e.g. [20]) due to different noise

models with respect to previous work. However, we point out that

the multiple filter approach that we follow in our algorithm could

be an interesting option for addressing other noise models.

Candidates enumeration. One important feature of our algorithm

is the way it enumerates candidates for checking factors of N (i.e.

next stage of our end-to-end attack). As described above, each Ci
consists of a fixed number of groups m with at most G possible

candidates in each group. Say we have 3 groups with 9 candidates

at most in each group, the naïve approach would be to search

all possible candidates in each group until finding the solution

(Figure 7, top). Based on empirical data, we found that the real

solution tends towards the first position of a group. In this case, it

makes more sense to consume the candidates using a round robin

approach (Figure 7, bottom), giving a higher priority to the highest

ranked candidates in each group.

1

Possible Candidate Real Solution

Naive Approach
2 3 4 5 6 7 8 9 10 11 12

1
Round Robin Approach

4 2 5 3 6

Figure 7: Candidate enumeration proposals.

5 FACTORINGWITH PARTIAL

INFORMATION: ENDGAME

In his groundbreaking work, Coppersmith [15] proposed a method

to find small solutions of univariate modular equations with mod-

ulus having unknown factorization. This result finds many uses

in cryptography (mainly in cryptanalysis) as several times in real-

world applications an attacker has access to an oracle that gives

partial information of a secret and the problem of recovering the

remaining part is modeled as a univariate modular equation.

Side-channel attacks play very nicely the oracle role as they

often only reveal a (minority) fraction of secret bits. Also, as in

our scenario even if it is theoretically possible to fully recover the

primes from side-channel traces, it is preferable to only partially

recover them to reduce noise influence.

Coppersmith’s method reduces the modular equation problem

i.e. f (x) = 0 mod p to an equation over the integers i.e. д(x) = 0

with roots easily found by algorithms like Berlekamp-Zassenhaus.

This transformation employs lattice reduction algorithms such as

LLL [32] assuming the original modular equation root is small [15].

Following Coppersmith’s approach, Howgrave-Graham [24] re-

visited the lattice construction and proposed a new method to build

a lattice that allows obtaining a д(x) = 0 from the original modular

equation f (x) = 0 mod p. Howgrave-Graham lattice construction

is often preferred due to its simplicity and numerous practical ad-

vantages [24, 35].

Coppersmith’s result has several implications on RSA security.

For an excellent surveys about its impact, we refer readers to [23,

35]. One of these applications is factoring N when half the bits

of one prime are known—either the most or the least significant



half. The rest of this section details the Coppersmith approach

using the Howgrave-Graham lattice construction (i.e. Coppersmith-

Howgrave-Graham method).

Factoring N knowing LSBs of p. Assume we known (without loss

of generality) the n LSBs of a prime p that is a factor of N , i.e. p is

expressed as

p = p̃2n + p0

where p0 is the known portion and p̃ the only unknown. Hence p̃
is a small root of the polynomial

f (x) = x2n + p0 mod p |p̃ | ≤ X

and in this case, small meaning that p̃ is bound by some known

constant X . Coppersmith approach requires f (x) to be monic. To

achieve that, define b = 2
−n

mod N , where b2n = 1 + kN for some

integer k , then express f (x) as follows.

f (x) = x + bp0 mod p |p̃ | ≤ X (6)

Coppersmith-Howgrave-Graham approach aims to solve (6) by

reducing this univariate modular equation to an equation over the

integers, visualized below.

f (x0) = 0 mod p ⇒ fi (x0) = 0 mod pm ⇒ B
LLL

⇒ д(x0) = 0︸                                                                          ︷︷                                                                          ︸
Coppersmith-Howgrave-Graham

From the monic polynomial f (x), build a set of d =m+ t polyno-
mials fi (x) over p

m
according to the Howgrave-Graham approach,

such that these fi (x) have the same root x0 = p̃ modulo pm as f (x)
modulo p [24]. Said polynomials are as follows.

fi (x) = N i fm−i (x) i = 0, 1, · · · ,m − 1

fm+i (x) = x i fm (x) i = 0, 1, · · · , t − 1

The next step builds a lattice B from the fi (x) for 0 ≤ i < d .
Following Howgrave-Graham [24] the basis vectors of B are the

coefficient vectors of fi (xX ). Then, lattice-reduced B should yield

a д(x) over the integers if the Coppersmith-Howgrave-Graham

conditions are respected or heuristically relaxed—we expand later.

The small root bound X defines these conditions and the lattice

dimension d = m + t , therefore we select them such that we can

factor N knowing n bits of p.

5.1 Lattice Parameterization

Three parameters control the effectiveness and efficiency of this

method: X , m and t , where the latter two control the lattice di-

mension (d = m + t ) hence the amount of information in it. This

dimension dictates the running time of LLL , therefore the goal is

to minimizem and t considering that the attacker should run it for

each candidate resulting from the error correction phase.

To validate the Coppersmith-Howgrave-Graham approach, we

used a public SageMath implementation
4
. The objective of this vali-

dation is to obtain—forn, a given number of LSBs—which parameter

set (X , m, t ) yields the right solution with very high probability

while minimizing the runtime as much as possible. This approach

is very similar to that of Nemec et al. [34], where the authors fixed

the bound X and optimizem and t—however we also tweak X to

get some runtime improvements.

4
D. Wong, function coppersmith_howgrave_univariate [link]

One of the main tasks for using Coppersmith-Howgrave-Graham

method is selecting the bound X of the unknown root. Recalling

Section 2.1, N of an RSA-2048 key has exactly 2048 bits by forcing

the two MSBs of p and q to be set, i.e. they have exactly 1024 bits.

Hence for RSA-2048, the inequality (7) holds, where the ordering

of p and q is arbitrary.

q <
√
N < p < 2

1024 < 2

√
N < N (7)

Considering that we known the n LSBs of p, we divide (7) by 2
n

to obtain bounds for p̃.

q

2
n <

√
N

2
n < p̃ <

2
1024

2
n <

2

√
N

2
n <

N

2
n

This results in the bound X = 2

√
N

2
n that should work for both

primes. However, in practice the Coppersmith conditions are slightly

pessimistic, hence in our analysis we also consider X =
√
N
2
n .

Parameters optimization. We aim at finding the parameters that

solve the partial factorization problem given n LSBs of a prime p.
We are interested in obtaining this parametrization for different

values of n, starting from Coppersmith bound for RSA-2048: 512 to

552 bits. The optimization process is as follows: (1) for each n, X ,
m and t we generate 100 RSA-2048 keys using OpenSSL and try to

recover the remaining bits of both primes; (2) filter out those sets

(X ,m t ) that do not achieve 100 % success rate; (3) choose the set

that minimizesm + t for each n.
It is worth noting that each lattice test implies recovering the

same key with p and with q. This is due to the fact that in our attack

scenario (see Section 3.3), the adversary is unaware if the known

LSBs correspond to the larger or smaller prime, hence does not

know if the bound is respected.

For all values of n, the bound X =
√
N
2
n provides highly probable

solutions and sometimes the lattice dimension shrinks by one. At

first glance, this lattice reduction might be seen insignificant. But,

for example, with n = 522 it implies a reduction runtime of roughly

40 s. Indeed this is quick for a single lattice run, but when the

number of candidates to test is high (i.e. after error correction)

every second counts.

Table 2 summarizes the results of this characterization process

for X =
√
N
2
n . One important aspect is that, for either value of X ,

we could not achieve the Coppersmith bound (n = 512). However,

as pointed out in Section 4 our preliminary simulations suggest

that the probability of recovering/correcting 512 bits is roughly the

same as 522 bits, i.e. n = 522 is adequate in our setting.

We executed this parametrization on Sage 8.1 running on Ubuntu

16.04 on an Intel i7-3770 3.4 GHz. The running times in Table 2

correspond to the average of 100 lattice runs, dominated by the

execution of LLL (Sage 8.1 default).

Table 2: Lattice attack characterization.

n m t time (s)

522 26 27 133.0

532 13 14 3.0

542 9 10 0.7

552 6 7 0.2

https://github.com/mimoo/RSA-and-LLL-attacks


After this characterization, we obtain a set of parameters for

attacking RSA-2048 keys knowing at least n = 522 bits of a prime.

As we obtained the parameters in Table 2 without considering the

ordering of p and q, the results are aligned with the error correction

phase output that similarly does not contain this information.

5.2 Results: End-to-End Attack

To consolidate the attack and validate the successfulness of our

techniques and the attack overall, we collected 10K traces from

10K different RSA key generation executions using OpenSSL. Using

templates and the Pearson correlation coefficient, we extracted

and aligned the GCD operations for p − 1 and q − 1. Out of those
10K traces, 566 traces were useless due to two main reasons: (1)

key generation execution took more time than expected due to

failed primality tests; or (2) spy/victim were preempted for a long

period of time; thus the spy missed capturing one or both of the

GCD operations in any of those cases. The remaining 9434 traces

were almost noise free after processing, therefore we were able

to perform a horizontal analysis on them to extract a tentative LS

sequence of operations, i.e. Zi values, aiming to recover a minimum

of 512 bits per prime value.

We then offloaded the data for these 9434 trials to a cluster for

analysis, containing roughly 1500 nodes mixed between Intel E5-

2680 (Sandy Bridge), E5-2670 (Sandy Bridge), and E5-2630 (Haswell)

cores. In all of the stages that follow, we limited per-job execution

times to 4 CPU hours.

The LS sequences contain errors that the subsequent lattice

attack cannot tolerate—error correction is required to recover suffi-

cient bits. Our lattice attack can factor RSA-2048 knowing 522 bits

of a prime, therefore, we configured our error correction algorithm

to recover the same number of bits. Following the algorithm tun-

ing process (see Section 4.4) we selected the set of pruning filter

parameters shown in Table 3.

Table 3: Parameters for error correction algorithm.

Parameter Value

Max errors over minimum 10

Max candidates per group 15000

Consecutive errors 3

Max errors (hard threshold) 150

On the cluster, we launched the algorithm for the 9434 traces

that contained tentative LS sequences using Table 3 parameters.

From this set, 405 traces did not contain enough information to

recover 522 bits, leaving 9029 processable traces. For each of the

9434 traces, we also analyzed the ground truth correct sequence

to collect data about the probability of recovering a given amount

of bits up to 552. Figure 8 shows the resulting survival probability

curve.

This survival curve gives an idea about the error correcting

algorithm behavior for our large data set. One of the most relevant

results is the probability of recovering at least 522 bits: 27.89 % (2632

of 9434). At the same time, the probability is quite close to that

of 512 bits: 29.17 %. This small difference confirms the estimation

made during the lattice attack parameter optimization: correcting

errors up to 522 bits is not significantly more challenging than

the 512 bits case. Therefore in our setting, improving lattice attack

parameters to Coppersmith’s bound (512 bits) will not significantly

increase the error correction success rate.

Of interest, Figure 8 shows an abrupt probability drop at the start

of the curve. We analyzed it closely and confirmed that roughly 30 %

of the traces have a spy preemption just at the beginning, resulting

in incomplete traces. It seems there is a bias in our environment

that increases the probability of spy preemption at the start of a

GCD execution, yet not in the middle. We are investigating the

reasons behind this bias, but the fact that the Figure 8 curve does

not contain another abrupt drop confirms our bias hypothesis.

After this analysis, our error correction algorithm was able to

recover 522 bits for 2632 traces. One interestingmetric is the number

of errors considering both LS sequences that it handled, and Figure 9

shows the boxplots of the number of errors for recovering various

bit quantities. The data suggests the number of errors successfully

handled is diverse—for example, recovering 522 bits (rightmost

boxplot), this metric ranges from 24 to 108. It implies that our error

correction algorithm with Table 3 parameters recovered 522 bits

from 2632 traces with error rates that range from 0.02 to 0.10.

Of these 9434 instances, we successfully recovered 2285 private

keys after 12875 lattice trials; Figure 10 “Computed” depicts these

data points. This represents just over 45 days of CPU time. The

remaining 7149 instances break down as follows, whichwe analyzed

using the ground truth private keys. For 347 instances, the partial

prime factor remained amongst the candidates, yet had a poor

ranking, hence the number of lattice iterations needed exceeded

our fixed alloted time (4 h); Figure 10 “Projected” depicts these

data points. In these cases, we verified the lattice output at that

future iteration indeed yields the intended factor. The remaining

6802 instances failed to retain the correct candidate. Regarding the

number of lattice iterations to find a solution, the error correction

algorithm with round-robin enumeration achieved an impressive

median of one lattice iteration for successful instances.

End-to-end attack summary. From a large data set of 9434 inde-

pendent traces, our end-to-end attack achieves a success rate of

27.89 %. The error correction algorithm was able to fix/recover 522

bits for 2632 traces. At the same time, the lattice attack succeeded

for all these 2632 traces, showing the robustness of our lattice attack

parameters for 522 bits (Table 2).

While our experiments represent a true proof-of-concept, it is

worth noting the success rate is far from optimal. Regarding im-

provements, we identified several approaches: (1) employ different

LS sequence extraction methods to obtain several tentative LS se-

quences per trace, subsequently executing our error correction

algorithm and perform a combined analysis; (2) add support for

handling errors in ‘S’ symbols in the LS sequences; (3) use the error

correction algorithm to repair spy preemption. If the spy preemp-

tion window is small enough that exhaustive search on the missing

LS sequence is feasible, then do so and utilize the error correction

algorithm to recover limited bits to obtain a good guess for the most

likely correct solution(s). Initial test results following this approach

yield promising results to handle the abrupt drop in Figure 8.
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6 CONCLUSION

In this work, we proposed a methodology to analyze cryptographic

software for side-channel insecure code path traversal. Applying

our methodology to RSA key generation in OpenSSL uncovered

three new vulnerabilities, one of which we designed an end-to-end

cache-timing attack around, leading to key recoverywith good prob-

ability and modest computational effort. The attack chain consisted

of (1) gathering timings with a combination of Flush+Reload

and performance degradation; (2) locating the trace segments of

interest (two specific GCD executions) within abundant data; (3)

transforming these traces into noisy LS-sequences representing

GCD algorithm state; (4) executing our error correction algorithm,

resulting in a ranked list of partial prime factor candidates; (5)

formulating lattice problems for these candidates that recover the

unknown portion; (6) testing if the result yields a prime factor of

the RSA modulus N , hence the private key.

Executing 10K trials and moving the analysis to a cluster, we

achieved roughly a 28 % success rate for full key recovery. We close

with lessons learned from our work.

Lesson 1: Secure by default. Similar to two recent works [38, 39],

two of the vulnerabilities our methodology uncovered are due to

insecure default behavior—failure to set a particular flag that, by

early exit, diverts the code through algorithms with SCA mitiga-

tions. Had the logic been inverted, taking the secure paths by default

would have prevented these vulnerabilities. For OpenSSL, these

new vulnerabilities continue an unfortunate trend of insecure by

default failures that went undetected during unit testing.

Lesson 2: Knowledge transfer. Our end-to-end attack exploits only
one of the three vulnerabilities our methodology uncovered. The

function we targeted is oblivious to the constant-time flag, hence

having it set or clear has no effect on our attack. Our root cause

analysis (Section 3.1) suggests that the mitigations mainlined as a

result of pioneering academic work [2] failed to consider RSA key

generation as a whole, and the similarities between GCD computa-

tion (which we exploited) and modular inversion with respect to

branching behavior went unnoticed when these mitigations were

independently developed. This disconnect demonstrates the critical

importance of engineers working side-by-side with cryptographers

to ensure that academic results reach their intended impact on

real-world products.

Responsible disclosure. Following responsible disclosure proce-

dures, we reported these issues to OpenSSL and provided fixes,

subsequently merged into the OpenSSL codebase after the embargo

lifted. OpenSSL assigned CVE-2018-0737 based on our work.
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