
Secure Computation using Leaky Correlations
(Asymptotically Optimal Constructions)∗

Alexander R. Block
Department of Computer Science, Purdue University, USA
block9@purdue.edu

Divya Gupta
Microsoft Research, Bangalore, India
divya.gupta@microsoft.com

Hemanta K. Maji
Department of Computer Science, Purdue University, USA
hmaji@purdue.edu

Hai H. Nguyen
Department of Computer Science, Purdue University, USA
nguye245@purdue.edu

Abstract
Most secure computation protocols can be effortlessly adapted to offload a significant fraction
of their computationally and cryptographically expensive components to an offline phase so that
the parties can run a fast online phase and perform their intended computation securely. During
this offline phase, parties generate private shares of a sample generated from a particular joint
distribution, referred to as the correlation. These shares, however, are susceptible to leakage
attacks by adversarial parties, which can compromise the security of the entire secure computation
protocol. The objective, therefore, is to preserve the security of the honest party despite the
leakage performed by the adversary on her share.

Prior solutions, starting with n-bit leaky shares, either used 4 messages or enabled the secure
computation of only sub-linear size circuits. Our work presents the first 2-message secure compu-
tation protocol for 2-party functionalities that have Θ(n) circuit-size despite Θ(n)-bits of leakage,
a qualitatively optimal result. We compose a suitable 2-message secure computation protocol
in parallel with our new 2-message correlation extractor. Correlation extractors, introduced by
Ishai, Kushilevitz, Ostrovsky, and Sahai (FOCS–2009) as a natural generalization of privacy am-
plification and randomness extraction, recover “fresh” correlations from the leaky ones, which are
subsequently used by other cryptographic protocols. We construct the first 2-message correlation
extractor that produces Θ(n)-bit fresh correlations even after Θ(n)-bit leakage.

Our principal technical contribution, which is of potential independent interest, is the con-
struction of a family of multiplication-friendly linear secret sharing schemes that is simultaneously
a family of small-bias distributions. We construct this family by randomly “twisting then per-
muting” appropriate Algebraic Geometry codes over constant-size fields.
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1 Introduction

Secure multi-party computation (MPC) allows mutually distrusting parties to compute
securely over their private data. Secure computation of most functionalities requires expensive
public-key primitives such as oblivious transfer, even in the semi-honest setting.1 We can
effortlessly adjust most of these existing secure computation protocols so that they offload a
significant fraction of their complex operations to an offline preprocessing phase. Subsequently,
during an online phase, parties can implement extremely fast secure computation protocols.
In fact, several specialized protocols optimize MPC for this online-offline paradigm [ADI+17,
Bea92, BDNP08, DPSZ12, DGN+17, IPS08, KOS16, MNPS04, NNOB12].

For instance, in the two-party setting, we envision this offline phase as a secure imple-
mentation of a trusted dealer who generates private albeit correlated shares (rA, rB) for Alice
and Bob, respectively, sampled from an appropriate joint distribution (RA, RB), referred to
as a correlation. This versatile framework allows the implementation of this trusted dealer
using computational hardness assumptions, secure hardware, trusted hardware, or physical
processes. Furthermore, this offline phase is independent of the final functionality to be
computed, as well as the parties’ private inputs.

A particularly useful correlation is the random oblivious transfer correlation, represented
by ROT. One sample of this correlation generates three random bits x0, x1, b and provides
private shares rA = (x0, x1) to Alice, and rB = (b, xb) to Bob. Note that Alice does not know
the choice bit b, and Bob does not know the other bit x1−b. Let F be the class of functionalities
that admit 2-message secure computation protocols in the ROT-hybrid [Can00, IKOS09].
Note that F includes the powerful class of functions that have a decomposable randomized
encoding [App17, AIK04, IK02]. Alice and Bob can compute the required ROTs in the offline
phase. Then, they can compute any functionality from this class using 2-messages, a protocol
exhibiting optimal message complexity2 and (essentially) optimal efficiency in the usage of
cryptographic resources.

However, the private share of the honest party is susceptible to leakage attacks by an
adversary, both during the generation of the shares and the duration of storing the shares.
We emphasize that the leakage need not necessarily reveal individual bits of the honest
party’s share. The leakage can be on the entire share and encode crucial global information
that can potentially jeopardize the security of the secure computation protocol. This concern
naturally leads to the following fundamental question.

“Can we preserve the security and efficiency of the secure computation during the online
phase despite the adversarial leakage on the honest party’s shares?”

Using the class F of functionalities (defined above) as a yardstick, let us determine the
primary hurdle towards a positive resolution of this question. In the sequel, Fm/2 ⊂ F is
the set of all two-party functionalities that have a 2-message protocol in ROTm/2-hybrid,
i.e., parties start with m/2 independent samples3 from the ROT correlation. In the leaky
correlation setting where an adversary has already leaked global information from the private
share of the honest party, our objective is to design an (asymptotically) optimal secure
computation protocol for the functionalities in Fm/2. That is, starting with leaky correlations

1 A semi-honest adversary follows the prescribed protocol but is curious to find additional information.
2 Message complexity refers to the number of messages exchanged between Alice and Bob.
3 Each sample of ROT gives two bits to each party; (x0, x1) to the first party and (b, xb) to the second

party. Therefore each party receives m-bit shares.
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(of size n), we want to compute any F ∈ Fm/2 such that m = Θ(n) via a 2-message
protocol despite t = Θ(n) bits of leakage. We note that this task is equivalent to the task
of constructing a secure computation protocol for the particular functionality ROTm/2 that
also belongs to Fm/2. This observation follows from the parallel composition of the secure
protocol implementing the functionality ROTm/2 from leaky correlations with the 2-message
protocol for F in the ROTm/2-hybrid. To summarize, our overall objective of designing
optimal secure computation protocols from leaky ROT correlations reduces to the following
equivalent goal.

“Construct a 2-message protocol to compute ROTm/2 securely, where m=Θ(n), from the
leaky ROTn/2 correlation in spite of t = Θ(n) bits of leakage.”

Note that in the ROTn/2-hybrid, both parties have private share of size n bits. The
above problem is identical to correlation extractors introduced in the seminal work of Ishai,
Kushilevitz, Ostrovsky, and Sahai [IKOS09].
Correlation Extractors. Ishai et al. [IKOS09] introduced the notion of correlation extrac-
tors as an interactive protocol that takes a leaky correlation as input and outputs a new
correlation that is secure. Prior correlation extractors either used four messages [IKOS09]
or had a sub-linear production [BMN17, GIMS15], i.e., m = o(n). We construct the first
2-message correlation extractor that has a linear production and leakage resilience, that is,
m = Θ(n) and t = Θ(n). Note that even computationally secure protocols can use the output
of the correlation extractor in the online phase. Section 1.1 formally defines correlation
extractors, and we present our main contributions in Section 1.2.

1.1 Correlation Extractors and Security Model
We consider the standard model of Ishai et al. [IKOS09], which is also used by the subse-
quent works, for 2-party semi-honest secure computation in the preprocessing model. In
the preprocessing step, a trusted dealer draws a sample of shares (rA, rB) from the joint
distribution of correlated private randomness (RA, RB). The dealer provides the secret share
rA to Alice and rB to Bob. Moreover, the adversarial party can perform an arbitrary t-bits
of leakage on the secret share of the honest party at the end of the preprocessing step. We
represent this leaky correlation hybrid4 as (RA, RB)[t].

I Definition 1 (Correlation Extractor). Let (RA, RB) be a correlated private randomness such
that the secret share of each party is n-bits. An (n,m, t, ε)-correlation extractor for (RA, RB)
is a two-party interactive protocol in the (RA, RB)[t]-hybrid that securely implements the
ROTm/2 functionality against information-theoretic semi-honest adversaries with ε simulation
error.

Note that the size of the secret shares output by the correlation extractor is m-bits.
We emphasize that no leakage occurs during the correlation extractor execution. The t-bit
leakage cumulatively accounts for all the leakage before the beginning of the online phase.
We note that, throughout this work, we shall always normalize the total length of the input
shares of each party to n-bits.

4 That is, the functionality samples secret shares (rA, rB) according to the correlation (RA, RB). The
adversarial party sends a t-bit leakage function L to the functionality and receives the leakage L(rA, rB)
from the functionality. The functionality sends rA to Alice and rB to Bob. Note that the adversary
does not need to know its secret share to construct the leakage function because the leakage function
gets the secret shares of both parties as input.



A.R. Block, D. Gupta, H. K. Maji and H.H. Nguyen 5

1.2 Our Contribution
Recall that Fm/2 ⊂ F is the set of all two-party functionalities that have a 2-message protocol
in the ROTm/2-hybrid. We prove the following results.

I Theorem 1 (Asymptotically Optimal Secure Computation from Leaky Correlations). There
exists a correlation (RA, RB) that produces n-bit secret shares such that for all F ∈ Fm/2
there exists a 2-message secure computation protocol for F in the leaky (RA, RB)[t]-hybrid,
where m = Θ(n) and t = Θ(n), with exponentially low simulation error.

The crucial ingredient of Theorem 1 is our new 2-message (n,m, t, ε)-correlation extractor for
ROTn/2. We compose the 2-message secure computation protocol for functionalities in Fm/2

in the ROTm/2-hybrid with our correlation extractor. Our work presents the first 2-message
correlation extractor that has a linear production and a linear leakage resilience (along with
exponentially low insecurity).

I Theorem 2 (Asymptotically Optimal Correlation Extractor for ROT). There exists a 2-
message (n,m, t, ε)-correlation extractor for ROTn/2 such that m = Θ(n), t = Θ(n), and
ε = exp(−Θ(n)).

The technical heart of the correlation extractor of Theorem 2 is another correlation extractor
(see Theorem 3) for a generalization of the ROT correlation. For any finite field F, the
random oblivious linear-function evaluation correlation over F [NP05, WW06], represented
by ROLE

(
F
)
, samples random a, b, x ∈ F and defines rA = (a, b) and rB = (x, z), where

z = ax + b. Note that, for F = GF [2], we have (x0 + x1)b + x0 = xb; therefore, the
ROLE

(
GF [2]

)
correlation is identical to the ROT correlation. One share of the ROLE

(
F
)

correlation has secret share size 2 lg |F|. In particular, the correlation ROLE
(
F
)n/2 lg|F|

provides each party with n/2 lg |F| independent samples from the ROLE(F) correlation and
the secret share size of each party is n-bits for suitable constant sized field F.

I Theorem 3 (Asymptotically Optimal Correlation Extractor for ROLE(F)). There exists a 2-
message (n,m, t, ε)-correlation extractor for ROLE

(
F
)n/2 lg|F| such that m = Θ(n), t = Θ(n),

and ε = exp(−Θ(n)).

In Figure 4, we present our correlation extractor that outputs fresh samples from the same
ROLE

(
F
)
correlation. Finally, our construction obtains multiple ROT samples from each

output ROLE
(
F
)
sample using the OT embedding technique of [BMN17]. Figure 1 positions

our contribution vis-à-vis the previous state-of-the-art. In particular, Figure 1 highlights the
fact that our result simultaneously achieves the best qualitative parameters. Our results are
also quantitatively better than the previous works and we discuss the concrete performance
numbers we obtain for Theorem 3 and Theorem 2 below. For more detailed numerical
comparison with prior works [BMN17, GIMS15, IKOS09], refer to Section 5.

Performance of Correlation Extractors for ROLE
(
F
)
(Theorem 3). Our correlation

extractor for ROLE
(
F
)
relies on the existence of suitable Algebraic Geometry (AG) codes5

over finite field F, such that |F| is an even power of a prime and |F| > 49. We shall use F
that is a finite field with characteristic 2.

As the size of the field F increases, the “quality” of the Algebraic Geometry codes get
better. However, the efficiency of the BMN OT embedding protocol [BMN17] used to

5 Once the parameters of the AG code are fixed, it is a one-time cost to construct its generator matrix.
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Correlation Message Number of OTs Number of Simulation
Description Complexity Produced (m/2) Leakage bits (t) Error (ε)

IKOS [IKOS09] ROTn/2 4 Θ(n) Θ(n) 2−Θ(n)

GIMS [GIMS15] ROTn/2 2 n/ poly lgn (1/4− g)n 2−gn/m

IP
(
Kn/ lg|K|) 2 1 (1/2− g)n 2−gn

BMN [BMN17] IP
(
Kn/ lg|K|) 2 n1−o(1) (1/2− g)n 2−gn

Our Result ROTn/2 2 Θ(n) Θ(n) 2−Θ(n)

ROLE
(
F
)n/2 lg|F| 2 Θ(n) Θ(n) 2−Θ(n)

Figure 1 A qualitative summary of our correlation extractor constructions and a comparison
to prior relevant works. Here K is a finite field and F is a finite field of constant size. The IP

(
Ks
)

is a correlation that samples random rA = (u1, . . . , us) ∈ Ks and rB = (v1, . . . , vs) ∈ Ks such that
u1v1 +· · ·+ usvs = 0. All correlations are normalized so that each party gets an n-bit secret share.
The parameter g is the gap to maximal leakage resilience such that g > 0.

obtain the output ROT in our construction decreases with increasing |F|. For example, with
F = GF

[
214] we achieve the highest production rate m/n = 16.32% if the fractional leakage

rate is t/n = 1%. For leakage rate t/n = 10%, we achieve production rate m/n = 10%.
Figure 7 (Section 5) and Figure 9 (Section 6) summarize these tradeoffs for various choices
of the finite field F.

Performance of Correlation Extractors for ROT (Theorem 2). We know extremely
efficient algorithms that use multiplications over GF [2] to emulate multiplications over any
GF [2s] [CÖ10, CC87]. For example, we can use 15 multiplications over GF [2] to emulate one
multiplication over GF

[
26]. Therefore, we can use 15 samples of ROLE

(
GF [2]

)
to perform

one ROLE
(
GF
[
26]) with perfect semi-honest security. Note that, by applying this protocol,

the share sizes reduce by a factor of 6/15. In general, using this technique, we can convert the
leaky ROLE

(
GF [2]

)
(equivalently, ROT) correlation, into a leaky ROLE

(
F
)
correlation, where

F is a finite field of characteristic 2, by incurring a slight multiplicative loss in the share size.
Now, we can apply the correlation extractor for ROLE

(
F
)
discussed above. By optimizing

the choice of the field F (in our case F = GF
[
210]), we can construct a 2-message correlation

extractor for ROT with fractional leakage rate t/n = 1% and achieve production rate of
m/n = 4.20% (see Figure 8, Section 5). This is several orders of magnitude better than the
production and resilience of the IKOS correlation extractor and uses less number of messages.6

High Leakage Resilience Setting. Ishai et al. [IMSW14] showed that t < n/4 is necessary
to extract even one new sample of ROT from the leaky ROLE

(
F
)n/2 lg F correlation. Our

construction, when instantiated with a suitably large constant-size field F, demonstrates
that if t 6 (1/4− g)n then we can extract Θ(n) new samples of the ROT correlation. The
prior construction of [GIMS15] only achieves a sub-linear production by using sub-sampling
techniques.

I Theorem 4 (Near Optimal Resilience with Linear Production). For every g ∈ (0, 1/4], there
exists a finite field F with characteristic 2 and a 2-message (n,m, t, ε)-correlation extractor
for (RA, RB) = ROLE

(
F
)n/2 lg |F|, where t = (1/4− g)n, m = Θ(n), and ε = exp(−Θ(n)).

6 Even optimistic estimates of the parameters m/n and t/n for the IKOS construction are in the order
of 10−6.



A.R. Block, D. Gupta, H. K. Maji and H.H. Nguyen 7

The production m = Θ(n) depends on the constant g, the gap to optimal fractional resilience.
We prove Theorem 4 in the full version of our work [BGMN18]. Section 5 shows that we can
achieve linear production even for t = 0.22n bits of leakage using F = GF

[
210].

Correlation Extractors for Arbitrary Correlations. Similar to the construction of
IKOS, we can also construct a correlation extractor from any correlation and output samples
of any correlation; albeit it is not round optimal anymore. However, our construction achieves
overall better production and leakage resilience than IKOS because our correlation extractor
for ROT has higher production and resilience. Figure 2 outlines a comparison of these two
correlation extractor constructions for the general case.

(RA, RB)[t] ROT[t]

Kilian
[Kil91]

ROLE[t]

Randomized
Encoding

ROT(t]

One-sided
Corr. Ext.

ROLE(t]

Randomized
Encoding

ROT

One-sided
Corr. Ext. (R′A, R′B)

Randomized
Encoding

IKOS Correlation Extractor

(RA, RB)[t] ROT[t]

Kilian
[Kil91]

ROLE[t]

Bilinear
Mult.

ROLE

ROLE Corr.
Ext.(Figure 4)

ROT

OT Embed.
[BMN17]

(R′A, R′B)

Randomized
Encoding

Our 2-message Correlation Extractor

Figure 2 General correlation extractors that extract arbitrary correlations from arbitrary corre-
lations. Above is the expanded IKOS [IKOS09] correlation extractor and below is ours. Our main
contribution is shown in highlighted part. For brevity, it is implicit that there are multiple samples
of the correlations. The ROLE correlations are over suitable constant size fields. The superscript
“(t]” represents that the correlation is secure against adversarial leakage of only one party.

1.3 Other Prior Relevant Works

Figure 1 already provides the summary of the current state-of-the-art in correlation extractors.
In this section, we summarize works related to combiners: extractors where the adversary
is restricted to leaking individual bits of the honest party’s secret share. The study of OT
combiners was initiated by Harnik et al. [HKN+05]. Since then, there has been work on
several variants and extensions of OT combiners [HIKN08, IPS08, MP06, MPW07, PW08].
Recently, Ishai et al. [IMSW14] constructed OT combiners with nearly optimal leakage
resilience. Among these works, the most relevant to our paper are the ones by Meier,
Przydatek, and Wullschleger [MPW07] and Przydatek, and Wullschleger [PW08]. They use
Reed-Solomon codes to construct two-message error-tolerant7 combiners that produce fresh
ROLEs over large fields8 from ROLEs over the same field. Using multiplication friendly secret
sharing schemes based on Algebraic Geometry Codes introduced by Chen and Cramer [CC06],
a similar construction works with ROLEs over fields with appropriate constant size. We
emphasize that this construction is insecure if an adversary can perform even 1-bit global
leakage on the whole secret of the other party. In our construction, we crucially rely on a
family of linear codes instead of a particular choice of the linear code to circumvent this

7 A sample (rA, rB) is an erroneous sample if it is not in the support of the distribution (RA, RB), i.e.,
it is an incorrect sample. An error-tolerant combiner is a combiner that is secure even if a few of the
input samples are erroneous.

8 The size of the fields increases with n, the size of the secret shares produced by the preprocessing step.



8 Secure Computation using Leaky Correlations

bottleneck. Section 1.4 provides the principal technical ideas underlying our correlation
extractor construction.

In the malicious setting, the feasibility result on malicious-secure combiners for ROT is
reported in [IPS08]. Recently, Cascudo et al. construct a malicious-secure combiner with
high resilience, but m = 1 [CDFR17]. The case of malicious-secure correlation extractors
remains entirely unexplored.

1.4 Technical Overview
At the heart of our correlation extractor constructions is a 2-message ROLE(F)-to-ROLE(F)

extractor, where we start with leaky (RA, RB)[t] =
(

ROLE
(
F
)n/2 lg|F|

)[t]
and produce fresh

secure sample of ROLE
(
F
)m/2 lg|F|. The field F is a constant-size field with characteristic 2,

say F = GF
[
26], and each party gets n-bit shares. Below, we discuss some of the technical

ideas underlying this construction.
This correlation extractor relies on the existence of a family of linear codes over F with

suitable properties that we define below. For this discussion, let us assume that s ∈ N is the
block-length of the codes. Let J be an index set, and we denote the family of linear codes
with block-length s as follows: C = {Cj : j ∈ J }. This family of code C needs to have the
following properties.
1. Multiplication Friendly Good Codes. Each code Cj ⊆ Fs in the family C is a

good code, i.e., its rate and distance is Θ(s). Further, the Schur-product9 of the codes,
i.e., Cj ∗ Cj , is a linear code with distance Θ(s). Such codes can be used to perform
the multiplication of two secrets by multiplying their respective secret shares in secure
computation protocols, hence the name.

2. Small Bias Family. Intuitively, a small bias family defines a pseudorandom distribution
for linear tests. Let S = (S1, . . . , Ss) ∈ Fs and its corresponding linear test be defined as
LS(x1, . . . , xs) := S1x1 +· · ·+ Ssxs. Consider the distribution D of LS(c) for a random
j ∈ J and a randomly sampled codeword c ∈ Cj . If C is a family of ρ-biased distributions,
then the distribution D has statistical distance at most ρ from the output of LS(u) for
random element u ∈ Fs. For brevity, we say that the family C “ρ-fools the linear test
LS .” The concept of small bias distributions was introduced in [AGHP90, NN90] and has
found diverse applications, for example, [AR94, DS05, GW97, NN90].
An interesting property of any linear code C ⊆ Fs is the following. A random codeword
c ∈ C can 0-fool every linear test LS such that S is not a codeword in the dual of C.
However, if S is a codeword in the dual of the code C, then the linear test LS is clearly
not fooled.
So, a randomly chosen codeword from one fixed linear code cannot fool all linear tests.
However, when we consider an appropriate family of linear codes, then a randomly chosen
codeword from a randomly chosen code in this family can fool every linear test.

We construct such a family of codes over small finite fields F that can be of potential
independent interest. Our starting point is an explicit Algebraic Geometry code C ⊆ Fs
that is multiplication friendly [GS96, Gop81]. Given one such code C, we randomly “twist
then permute” the code to define the family C. We emphasize that the production of our

9 Consider a linear code C ⊆ Fs. Let c = (c1, . . . , cs) and c′ = (c′1, . . . , c′s) be two codewords in the code
C. We define c ∗ c′ = (c1c′1, . . . , csc′s) ∈ Fs. The Schur-product C ∗C is defined to be the linear span of
all c ∗ c′ such that c, c′ ∈ C.
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correlation extractor relies on the bias being small. So, it is crucial to construct a family
with extremely small bias. Next, we describe our “twist then permute” operation.

Twist then Permute.10 Suppose C ⊆ Fs is a linear code. Pick any λ = (λ1, . . . , λs) ∈ (F∗)s,
i.e., for all i ∈ [s], λi 6= 0. A λ-twist of the code C is defined as the following linear code

Cλ := {(λ1c1, . . . , λscs) : (c1, . . . , cs) ∈ C} .

Let π : {1, . . . , s} → {1, . . . , s} be a permutation. The π-permutation of the λ-twist of C is
defined as the following linear code

Cπ,λ := {
(
λπ(1)cπ(1), . . . , λπ(s)cπ(s)

)
: (c1, . . . , cs) ∈ C}.

Define J as the set of all (π, λ) such that λ ∈ (F∗)s and π is a permutation of the set
{1, . . . , s}. Note that if C is multiplication friendly good code, then the code Cπ,λ continues
to be multiplication friendly good code. A key observation towards demonstrating that C is
a family of small bias distributions is that the following two distributions are identical (see
Claim 2).
1. Fix S ∈ Fs. The output distribution of the linear test LS on a random codeword c ∈ Cj ,

for a random index j ∈ J .
2. Let T ∈ Fs be a random element of the same weight11 as S. The output distribution of

the linear test LT on a random codeword c ∈ C.
Based on this observation, we can calculate the bias of the family of our codes. Note that
there are a total of ( sw )(q − 1)w elements in Fs that have weight w. Let Aw denote the
number of codewords in the dual of C that have weight w. Our family of codes C fools the
linear test LS with ρ = Aw · ( sw )−1(q − 1)−w, where w is the weight of S ∈ Fs.

We obtain precise asymptotic bounds on the weight enumerator Aw of the dual of the
code C to estimate the bias ρ, for w ∈ {0, 1, . . . , s}. This precise bound translates into higher
production m, higher resilience t, and exponentially low simulation error ε of our correlation
extractor. We remark that for our construction if C has a small dual-distance, then the bias
cannot be small.

I Remark. The performance of the code C supersedes the elementary Gilbert-Varshamov
bound. These Algebraic Geometry codes are one of the few codes in mathematics and
computer science where explicit constructions have significantly better quality than elemen-
tary randomized constructions. So, elementary randomization techniques are unlikely to
produce any (qualitatively) better parameters for this approach, given that the estimations
of the weight enumerator in this work are asymptotically optimal. Therefore, finding better
randomized techniques to construct the family of multiplication friendly good codes that is
also a family of small-bias distributions is the research direction that has the potential to
reduce the bias. This reduction in the bias can further improve the production and leakage
resilience of our correlation extractors.

10 In the literature there are multiple definitions for the equivalence of two linear codes. In particular, one
such notion (cf., [Ple11]), states that two codes are equivalent to each other if one can be twisted-and-
permuted into the other code. For clarity, we have chosen to explicitly define the “twist then permute”
operation.

11The weight of S ∈ Fs is defined as the number of non-zero elements in S.
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2 Preliminaries

We denote random variables by capital letters, for example X, and the values taken by
small letters, for example X = x. For a positive integer n, we write [n] and [−n] to denote
the sets {1, . . . , n} and {−n, . . . ,−1}, respectively. Let Sn be the set of all permutations
π : [n] → [n]. We consider the field F = GF [q], where q = pa, for a positive integer a and
prime p. For any c = (c1, . . . , cη) ∈ Fη, define the function wt(c) as the cardinality of the
set {i : ci 6= 0}. For any two x, y ∈ Fη, let x ∗ y represent the point-wise product of x
and y. That is, x ∗ y = (x1y1, x2y2, . . . , xηyη) ∈ Fη. For a set Y , UY denotes the uniform
distribution on the set Y , and y $← Y denotes sampling y according to UY . For any vector
x ∈ Fη and permutation π ∈ Sη, we define π(x) := (xπ(1), . . . , xπ(η)) for ease of presentation.

2.1 Functionalities and Correlations
Oblivious Transfer. A 2-choose-1 bit Oblivious Transfer (referred to as OT ) is a two
party functionality which takes input (x0, x1) ∈ {0, 1}2 from Alice and input b ∈ {0, 1} from
Bob and outputs xb to Bob.
Random Oblivious Transfer Correlation. A Random 2-choose-1-bit Oblivious Transfer
(referred to as ROT) is an input-less two party correlation that samples bits x0, x1, b uniformly
and independently at random. It outputs secret share rA = (x0, x1) to Alice and rB = (b, xb)
to Bob. The joint distribution of Alice and Bob shares is called a ROT-correlation.
Oblivious Linear-function Evalutation. Given a field (F,+, ·) an Oblivious Linear-
function Evaluation, represented by OLE(F), is a two party functionality that takes input
(a, b) ∈ F2 from Alice and input x ∈ F from Bob and outputs ax+ b to Bob. Moreover, we
use OLE to denote OLE(GF([2]).
Random Oblivious Linear-function Evalutation. Given a field (F,+, ·) a em Random
Oblivious Linear-function Evaluation, represented by ROLE(F), is a two party correlation that
samples field elements a, b, x ∈ F uniformly and independently at random. It provides Alice
the secret share rA = (a, b) and provides Bob the secret share rB = (x, ax+ b). Moreover,
we use ROLE to denote ROLE(GF([2]). Note that ROLE and ROT are functionally equivalent
correlations.

2.2 Correlation Extractors
We denote the functionality of 2-choose-1 bit Oblivious Transfer as OT and Oblivious
Linear-function Evaluation over a field F as OLE(F). Also, we denote the Random Oblivious
Transfer Correlation as ROT and Random Oblivious Linear-function Evaluation over field F
as ROLE(F). When F = GF [2], we denote ROLE

(
F
)
by ROLE.

Let η be such that 2η lg |F| = n. In this work, we consider the setting when Alice and
Bob start with η samples of the ROLE(F) correlation and the adversary performs t bits of
leakage. We give a secure protocol for extracting multiple secure OTs in this hybrid. Below
we define such an correlation extractor formally using initial ROLE(F) correlations.

2.2.1 Leakage model.
We define our leakage model for ROLE(F) correlations as follows:
1. η-ROLE correlation generation phase. Alice gets rA = {(ai, bi)}i∈[η] ∈ F2η and Bob

gets rB = {(xi, zi)}i∈[η] ∈ F2η such that for all i ∈ [η], ai, bi, xi is uniformly random and
zi = aixi + bi. Note that the size of secret share of each party is n bits.
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2. Corruption and leakage phase. A semi-honest adversary corrupts either the sender
and sends a leakage function L : Fη → {0, 1}t and gets back L(x[η]). Or, it corrupts the
receiver and sends a leakage function L : Fη → {0, 1}t and gets back L(a[η]). Note that
w.l.o.g. any leakage on the sender (resp., receiver) can be seen as a leakage on a[η] (resp.,
x[η]). We again emphasize that this leakage need not be on individual bits of the shares,
but on the entire share, and thus can encode crucial global information.

We denote by (RA, RB) the above correlated randomness and by (RA, RB)[t] its t-leaky
version. Recall the definition for (n,m, t, ε)-correlation extractor (see Definition 1, Section 1.1).
Below, we give the correctness and security requirements.

The correctness condition says that the receiver’s output is correct in all m/2 instances of
ROT. The privacy requirement says the following: Let (s(i)

0 , s
(i)

1 ) and (c(i)
, z

(i)) be the output
shares of Alice and Bob, respectively, in the ith ROT instance. Then a corrupt sender (resp.,
receiver) cannot distinguish between {c(i)}i∈[m/2] (resp.,

{
s

(i)

1−c(i)

}
i∈[m/2]

) and r $←{0, 1}m/2

with advantage more than ε. The leakage rate is defined as t/n and the production rate is
defined as m/n.

2.3 Fourier Analysis over Fields

We give some basic Fourier definitions and properties over finite fields, following the conven-
tions of [Rao07]. To begin discussion of Fourier analysis, let η be any positive integer and let
F be any finite field. We define the inner product of two complex-valued functions.

I Definition 2 (Inner Product). Let f, g : Fη → C. We define the inner product of f and g as

〈f, g〉 := E
x

$←Fη

[
f(x) · g(x)

]
= 1
|F|η

∑
x∈Fη

f(x) · g(x),

where g(x) is the complex conjugate of g(x).

Next, we define general character functions for both F and Fη.

I Definition 3 (General Character Functions). Let ψ : F → C∗ be a group homomorphism
from the additive group F to the multiplicative group C∗. Then we say that ψ is a character
function of F.

Let χ : Fη × Fη → C∗ be a bilinear, non-degenerate, and symmetric map defined as
χ(x, y) = ψ(x · y) = ψ(

∑
i xiyi). Then, for any S ∈ Fη, the function χ(S, ·) := χS(·) is a

character function of Fη.

Given χ, we have the Fourier Transformation.

I Definition 4 (Fourier Transformation). For any S ∈ Fη, let f : Fη → C and χS be a
character function. We define the map f̂ : Fη → C as f̂(S) := 〈f, χS〉. We say that f̂(S) is a
Fourier Coefficient of f at S and the linear map f 7→ f̂ is the Fourier Transformation of f .

Note that this transformation is an invertible linear map. The Fourier inversion formula
is given by the following lemma.

I Lemma 1 (Fourier Inversion). For any function f : Fη → C, we can write f(x) =∑
S∈Fη f̂(S)χS(x).
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2.4 Distributions and Min-Entropy
For a probability distribution X over a sample space U , entropy of x ∈ X is defined as
HX(x) = − lg Pr[X = x]. The min-entropy of X, represented by H∞(X), is defined to
be minx∈Supp(X)HX(x). The binary entropy function, denoted by h2(x) = −x lg x − (1 −
x) lg(1− x) for every x ∈ (0, 1).

Given a joint distribution (X,Y ) over sample space U × V , the marginal distribution Y
is a distribution over sample space V such that, for any y ∈ V , the probability assigned to y
is
∑
x∈U Pr[X = x, Y = y]. The conditional distribution (X|y) represents the distribution

over sample space U such that the probability of x ∈ U is Pr[X = x|Y = y]. The average
min-entropy [DORS08], represented by H̃∞(X|Y ), is defined to be − lgEy∼Y [2−H∞(X|y)].

I Imported Lemma 1 ([DORS08]). If H∞(X) > k and L is an arbitrary `-bit leakage on
X, then H̃∞(X|L) > k − `.

I Lemma 2 (Fourier Coefficients of a Min-Entropy Distribution). Let X : Fη → R be a min-
entropy source such that H∞(X) > k. Then

∑
S |X̂(S)|2 6 |F|−η · 2−k.

2.5 Family of Small-Bias Distributions
I Definition 5 (Bias of a Distribution). Let X be a distribution over Fη. Then the bias of X
with respect to S ∈ Fη is defined as BiasS(X) := |F|η · |X̂(S)|.

Dodis and Smith [DS05] defined small-bias distribution family for distributions over
{0, 1}η. We generalize it naturally for distributions over Fη.

I Definition 6 (Small-bias distribution family). A family of distributions F = {F1, F2, · · · , Fk}
over sample space Fη is called a ρ2-biased family if for every non-zero vector S ∈ Fη following
holds:

E
i

$←[k]
BiasS(Fi)2 6 ρ2.

Following extraction lemma was proven in previous works over {0, 1}η.

I Imported Lemma 2 ([NN90, AR94, GW97, DS05]). Let F = {F1, . . . , Fµ} be ρ2-biased
family of distributions over the sample space {0, 1}η. Let (M,L) be a joint distribution such
that the marginal distribution M is over {0, 1}η and H̃∞(M |L) > m. Then, the following
holds: Let J be a uniform distribution over [µ].

SD
(

(FJ ⊕M,L, J) ,
(
U{0,1}η , L, J

) )
6
ρ

2

(
2η

2m

)1/2
.

A natural generalization of above lemma for distributions over Fη gives the following.

I Theorem 5 (Min-entropy extraction via masking with small-bias distributions). Let F =
{F1, . . . , Fµ} be a ρ2-biased family of distributions over the sample space Fη for field F of
size q. Let (M,L) be a joint distribution such that the marginal distribution M is over Fη
and H̃∞(M |L) > m. Then, the following holds: Let J be a uniform distribution over [µ].

SD ( (FJ ⊕M,L, J) , (UFη , L, J) ) 6 ρ

2

(
|F|η

2m

)1/2
.

For completeness, we give the proof of Theorem 5 in Appendix F.



A.R. Block, D. Gupta, H. K. Maji and H.H. Nguyen 13

2.6 Distribution over Linear Codes
Let C = [η, κ, d, d⊥, d(2)]F be a linear code over F with generator matrix G ∈ Fκ×η. We also
use C to denote the uniform distribution over codewords generated by G. For any π ∈ Sη,
define Gπ = π(G) as the generator matrix obtained by permuting the columns of G under π.

The dual code of C, represented by C⊥, is the set of all codewords that are orthogonal
to every codeword in C. That is, for any c⊥ ∈ C⊥, it holds that 〈c, c⊥〉 = 0 for all c ∈ C.
Let H ∈ F(η−κ)×η be a generator matrix of C⊥. The distance of C⊥ is d⊥.

The Schur product code of C, represented by C(2), is the span of all codewords obtained
as a Schur product of codewords in C. That is, C(2) = C ∗ C := 〈c ∗ c′ : c, c′ ∈ C〉 ⊆ Fη,
where c ∗ c′ denotes the coordinate-wise product of c and c′. The distance of C(2) is d(2).

3 Family of Small-bias distributions with erasure recovery

In this section, we give our construction of the family of small-bias distributions {Cj}j∈J
such that each Cj is a linear code and Cj ∗Cj supports erasure recovery. We formally define
the requirements for our family of distributions in Property 1.

I Property 1. A family of linear code distributions C = {Cj : j ∈ J } over Fη∗ satisfy this
property with parameters δ and γ if the following conditions hold.
1. 2−δ-bias family of distributions. For any 0η∗ 6= S ∈ Fη∗ , E [BiasS(Cj)2] 6 2−δ,

where expectation is taken over j $←J .
2. γ-erasure recovery in Schur Product. For all j ∈ J , the Schur product code of

Cj , that is Cj ∗ Cj = C
(2)
j , supports the erasure recovery of the first γ coordinates.

Moreover, the first γ-coordinates of Cj and C(2)
j are linearly independent of each other.

3.1 Our Construction
Figure 3 presents our construction of a family of linear codes which satisfies Property 1 and
Theorem 6 gives the parameters for our construction.

At a high level, the linear code C is a suitable algebraic geometric code over constant
size field F of block length η∗ = γ + η. The parameters of the code C are chosen such that C
is a 2−δ-biased family of distributions under our “twist-then-permute” operation, and C ∗ C
supports erasure recovery of any γ coordinates. The precise calculation of the parameters of
the code C can be found in Appendix D. Our family of linear codes satisfies the following
theorem.

I Theorem 6. The family of linear code distributions {Cπ,λ : π ∈ Sη∗ , λ ∈ (F∗)η∗} over
Fη∗ given in Figure 3 satisfies Property 1 for any γ < d(2), where d(2) is the distance of the
Schur-product code of C, and

δ =
[(
d⊥ + η∗

√
q − 1 − 1

)(
lg(q − 1)− h2

(
1

q + 1

))]
−
(

η∗
√
q − 1

)
lg q,

where h2 denotes the binary entropy function.

Proof. We first prove erasure recovery followed by the small-bias property.

γ-erasure recovery in Schur Product code. First we note that permuting or re-ordering
the columns of a generator matrix does not change its distance, distance of the Schur-product,
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Family of small-bias distributions with erasure recovery in the product distribution:
Fix a linear code C = [η∗, κ, d, d⊥, d(2)]F with generator matrix G ∈ Fκ×η

∗
, where |F| = q and κ > d(2),

where d(2) is the distance of C ∗ C. Let γ be a fixed natural number (to be determined later during
parameter setting) such that C ∗ C supports γ-erasure recovery. We construct the family of small-bias
distributions {Cπ,λ : π ∈ Sη∗ , λ ∈ (F∗)η

∗
} over Fη

∗
as follows.

1. Let λ ∈ (F∗)η
∗
. Define Gλ = [λ1G1, . . . , λη∗Gη∗ ] ∈ Fκ×η

∗
, where Gi is the ith column of G and

λiGi is the multiplication of Gi by λi.

2. Let π ∈ Sη∗ . Define Gπ,λ = π (Gλ) ∈ Fκ×η
∗
, where π(Gλ) is the permutation of the columns of Gλ

according to permutation π. Then Cπ,λ is the uniform distribution over the linear code generated
by Gπ,λ.

(Enc,Dec) for Cπ,λ: Let (EncC ,DecC) be the Encoder and Decoder for the linear code C.
Enc(m): Compute c = (c1, . . . , cη∗) = EncC(m). Compute c ∗ λ = (λ1c1, . . . , λη∗cη∗). Output
π(c ∗ λ).

Dec(x): Compute c′ = (c′1, . . . , c′η∗) = π−1(x). Compute c′ ∗ λ′ = (λ−1
1 c′1, . . . , λ

−1
η∗ c
′
η∗). Output

DecC(c′ ∗ λ′).

(Enc,Dec) for (Cπ,λ ∗ Cπ,λ): Let (EncC(2) ,DecC(2) ) be the Encoder and Decoder for the linear code
C(2) = C ∗ C.

Enc(m): Compute c = (c1, . . . , cη∗) = EncC(2) (m). Compute c ∗ λ ∗ λ = (λ2
1c1, . . . , λ

2
η∗cη∗). Output

π(c ∗ λ ∗ λ).

Dec(x): Compute c′ = (c′1, . . . , c′η∗) = π−1(x). Compute c′ ∗ λ′ ∗ λ′ = (λ−2
1 c′1, . . . , λ

−2
η∗ c
′
η∗). Output

DecC(2) (c′ ∗ λ′ ∗ λ′).

Figure 3 Our Construction of a Family of Small Bias Linear Code Distributions.

or its capability of erasure recovery (as long as we know the mapping of new columns vis-à-vis
old columns). Let Iγ = {i1, . . . , iγ} be the indices of the erased coordinates of codeword in
C

(2)
π,λ. Hence to show erasure recovery of the coordinates Iγ of a codeword of C(2)

π,λ, it suffices
to show erasure recovery of the γ erased coordinates Jγ = {j1, . . . , jγ} of a codeword of C(2)

λ ,
where Cλ is the uniform codespace generated by Gλ, and π(jk) = ik for every k ∈ [γ].

Note that since γ < d(2), the code C(2) supports erasure recovery of any γ coordinates.
Thus it suffices to show that this implies that C(2)

λ also supports the erasure recovery of any
γ coordinates. Note that since λ ∈ (F∗)η∗ , multiplication of the columns of G according to λ
does not change its distance or distance of the Schur product. Then we do the following to
perform erasure recovery of γ coordinates in C(2)

λ . Let c(2) ∈ C(2)
λ be a codeword with erased

coordinates Jγ = {j1, . . . , jγ}, and let Jη = {j′1, . . . , j′η} be the coordinates of c(2) that have
not been erased. For every j ∈ Jη, compute cj = (λ−1

j )2c
(2)
j . Then the vector (cj)j∈Jη is a

codeword of C(2) with coordinates ci erased for i ∈ Jγ . Since C(2) has γ erasure recovery, we
can recover the ci for i ∈ Jγ . Once recovered, for every i ∈ Jγ , compute c(2)

i = λ2
i ci. This

produces the γ erased coordinates of c(2) in C(2)
λ . Finally, one can map the c(2)

i for i ∈ Jγ to
the coordinates Iγ using π, recovering the erasures in C(2)

π,λ.

2−δ-bias family of distributions. Let C,Cλ, Cπ,λ be the uniform distribution over the
linear codes generated by G,Gλ, Gπ,λ, respectively. Recall that d⊥ is the dual distance for
C. Note that Cλ, Cπ,λ have dual-distance d⊥ as well. Let η∗ = η + γ. Since BiasS(Cπ,λ) =
|F|η∗ |Ĉπ,λ(S)| for every S ∈ Fη∗ , it suffices to show that

E
π,λ

[
Ĉπ,λ(S)2

]
6

1
|F|2η∗ · 2δ .
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To begin, first recall the definition of Cπ,λ:

Cπ,λ := {π(λ1c1, . . . , λη∗cη∗) | (c1, . . . , cη∗) ∈ C}.

Next, given any S ∈ Fη∗ , define S(S) := {π(λ1S1, . . . , λη∗Sη∗) ∈ Fη∗ | ∀π ∈ Sη∗ ∧ λ ∈
(F∗)η∗}. Note that S(S) is equivalently characterized as

S(S) = {T = (T1, . . . , Tη∗) ∈ Fη
∗
| wt(T ) = wt(S)}.

It is easy to see that |S(S)| =
(
η∗

w0

)
(q−1)η∗−w0 , where w0 = η∗−wt(S); i.e., w0 is the number

of zeros in S. We prove the following claim.

I Claim 1. For any S ∈ Fη∗ , we have Ĉπ,λ(S) = Ĉ(π−1(S) ∗ λ).

Proof. Notice that by definition for any x ∈ Cπ,λ, we have Cπ,λ(x) = C(c) since x =
π(λ1c1, . . . , λη∗cη∗) for c ∈ C. This is equivalently stated as Cπ,λ(π(c ∗ λ)) = C(c). For
x = π(λ1y1, . . . , λη∗yη∗) ∈ Fη∗ and any S ∈ Fη∗ , we have

S · x =
η∗∑
i=1

Sixi =
η∗∑
i=1

Si(λπ(i)yπ(i)) =
η∗∑
i=1

(Sπ−1(i))λiyi = (π−1(S) ∗ λ) · y.

where S ·x is the vector dot product. By definition of χS(x), this implies χS(x) = χy(π−1(S)∗
λ). Using these two facts and working directly from the definition of Fourier Transform, we
have

Ĉπ,λ(S) = 1
|F|η∗

∑
x∈Fη∗

Cπ,λ(x)χS(x)

= 1
|F|η∗

∑
c∈Fη∗

Cπ,λ(π(λ1c1, . . . , λη∗cη∗))χS(π(λ1c1, . . . , λη∗cη∗))

= 1
|F|η∗

∑
c∈Fη∗

C(c)χc(π−1(S) ∗ λ) = Ĉ(π−1(S) ∗ λ). J

It is easy to see that wt(π−1(S) ∗ λ) = wt(S), so (π−1(S) ∗ λ) = T ∈ S(S). From this fact
and Claim 1, we prove the following claim.

I Claim 2. For any S ∈ Fn, E
π,λ

[
Ĉπ,λ(S)2

]
= E
T

$←S(S)

[
Ĉ(T )2

]
.

Proof. Suppose we have codeword x ∈ Cπ,λ such that π(λ1c1, . . . , λ
∗
ηc
∗
η) = x, for some

codeword c ∈ C. Let {i1, . . . , iw0} be the set of indices of 0 in c; that is, cj = 0 for all
j ∈ {i1, . . . , iw0}. Then for any permutation π, the set {π(i0), . . . , π(iw0)} is the set of zero
indices in x. Note also that for any index j 6∈ {π(i0), . . . , π(iw0)}, we have xj 6= 0. If this
was not the case, then we have xj = cπ−1(j)λπ−1(j) = 0. Since j 6∈ {π(i0), . . . , π(iw0)}, this
implies π−1(j) 6∈ {i0, . . . , iw0}, which further implies that cπ−1(j) 6= 0. This is a contradiction
since λ ∈ (F∗)η∗ . Thus any permutation π must map the zeros of S to the zeros of c, and
there are w0!(η∗ − w0)! such permutations. Notice now that for any ck = 0, λk can take any
value in F∗, so we have (q−1)w0 such choices. Furthermore, if ck 6= 0 and λkck = xπ−1(k) 6= 0,
then there is exactly one value λk ∈ F∗ which satisfies this equation. Putting it all together,
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we have

E
π,λ

[
Ĉπ,λ(S)2

]
= 1
η∗!(q − 1)η∗

∑
π,λ

Ĉπ,λ(S)2 = 1
η∗!(q − 1)η∗

∑
π,λ

Ĉ
(
π-1(S) ∗ λ

)2
= (w0!(η∗ − w0)!(q − 1)w0)

η∗!(q − 1)η∗
∑

T∈S(S)

Ĉ(T )2

= w0!(η∗ − w0)!
η∗!(q − 1)η∗−w0

∑
T∈S(S)

Ĉ(T )2

=
((

η∗

w0

)
(q − 1)η

∗−w0

)-1 ∑
T∈S(S)

Ĉ(T )2 = E
T

$←S(S)

[
Ĉ(T )2

]
.

where the first line of equality follows from Claim 1. J

With Claim 2, we now are interested in finding δ such that for 0η∗ 6= S ∈ Fη∗

E
T

$←S(S)

[
Ĉ(T )2

]
6

1
|F|2η∗2δ .

We note that since C is a linear code, C has non-zero Fourier coefficients only at codewords
in C⊥.

I Claim 3. For all S ∈ Fη∗ , Ĉ(S) =


1
|F|η∗

S ∈ C⊥

0 otherwise.

Let Aw = |C⊥ ∩ S(S)|, where w = η∗ − w0 = wt(S). Intuitively, Aw is the number of
codewords in C⊥ with weight w. Then from Claim 3, we have

E
T

$←S(S)

[
Ĉ(T )2

]
= |C⊥ ∩ S(S)|
|F|2η∗

(
η∗

η∗−wt(S)
)
(q − 1)wt(S) = Aw

|F|2η∗
(
η∗

w

)
(q − 1)w

Now, our goal is to upper bound Aw. Towards this goal, the weight enumerator for the code
C⊥ is defined as the polynomial

WC⊥(x) =
∑
c∈C⊥

xη
∗−wt(c).

This polynomial can equivalently be written as

WC⊥(x) =
∑

w∈{0,...,η∗}

Awx
η∗−w.

Define a = η∗ − d⊥.

I Imported Theorem 1 (Exercise 1.1.15 from [VNT07]). We have the following relation

WC⊥(x) = xη
∗

+
a∑
i=0

Bi(x− 1)i,

where

Bi =
η∗−i∑

j=η∗−a

(
η∗−j
i

)
Aj > 0 Ai =

a∑
j=η∗−i

(−1)η
∗+i+j

(
j

η∗−i

)
Bj .
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For weight w ∈
{
d⊥, . . . , η∗

}
, we use the following expression to estimate Aw.

Aw =
(
η∗−w
η∗−w

)
Bη∗−w −

(
η∗−w+1
η∗−w

)
Bη∗−w+1 +· · · ±

(
η∗−d⊥
η∗−w

)
Bη∗−d⊥

Since we are interested in the asymptotic behavior (and not the exact value) of Aw, we
note that lgAw ∼ lg Γ(w), where

Γ(w) = max
{(

η∗−w
η∗−w

)
Bη∗−w,

(
η∗−w+1
η∗−w

)
Bη∗−w+1, . . . ,

(
η∗−d⊥
η∗−w

)
Bη∗−d⊥

}
Thus, it suffices to compute Γ(w) for every w (see Appendix C, Lemma 17) and then the
bias (see Appendix C.1). By Appendix C.1, we have the desired result:

δ =
(
d⊥ + η∗

√
q − 1 − 1

)(
lg(q − 1)− h2

(
1

q + 1

))
−
(

η∗
√
q − 1

)
lg q. J

4 Construction of Correlation Extractor

Our main sub-protocol for Theorem 3 takes ROLE(F) as the initial correlation and produces
secure ROLE(F). Towards this, we define a ROLE(F)-to-ROLE(F) extractor formally below.

I Definition 7 ((η, γ, t, ε)-ROLE(F)-to-ROLE(F) extractor). Let (RA, RB) = (ROLE(F))η
be correlated randomness. An (η, γ, t, ε)-ROLE(F)-to-ROLE(F) extractor is a two-party
interactive protocol in the (RA, RB)[t]-hybrid that securely implements the (ROLE(F))γ
functionality against information-theoretic semi-honest adversaries with ε simulation error.

Let (ui, vi) ∈ F2 and (ri, zi) ∈ F2 be the shares of Alice and Bob, respectively, in the ith
output ROLE instance. The correctness condition says that the receiver’s output is correct
in all γ instances of ROLE, i.e., zi = uiri + vi for all i ∈ [γ]. The privacy requirement says
the following: A corrupt sender (resp., receiver) cannot distinguish between {ri}i∈[γ] (resp.,
{ui}i∈[γ]) and UFγ with advantage more than ε.

In Section 4.1, we give our construction for Theorem 3. Later, in Section 4.3, we build on
the construction for Theorem 3 and give our construction for Theorem 2.

4.1 Protocol for ROLE(F) correlation extractor
As already mentioned in Section 1.4, to prove Theorem 3, our main building block will
be (η, γ, t, ε)-ROLE(F)-to-ROLE(F) extractor.That is, the parties start with η samples of
the ROLE(F) correlation such that size of each party’s share is n = 2η log |F| bits. The
adversarial party gets t-bits of leakage. The protocol produces (ROLE(F))γ with simulation
error ε. We give the formal description of the protocol, inspired by the Massey secret sharing
scheme [Mas95], in Figure 4. Note that our protocol is round-optimal and uses a family of
distributions C = {Cj}j∈J that satisfies Property 1 with parameters δ and γ.

Next, we use the ROT embedding technique from [BMN17] to embed σ ROTs in each
fresh ROLE(F) obtained from above protocol. For example, we can embed two ROTs into
one ROLE(GF

[
26]). Using this we get production m = 2σγ, i.e., we get m/2 = σγ secure

ROTs. We note that the protocol from [BMN17] is round-optimal, achieves perfect security
and composes in parallel with our protocol in Figure 4. Hence, we maintain round-optimality.
We give more details on this in Section 4.2.

Correctness of Figure 4. The following lemma characterizes the correctness of the scheme
presented in Figure 4.
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(η, γ, t, ε)-ROLE(F)-to-ROLE(F) Extractor:

Let C = {Cj : j ∈ J } be a family of distributions over Fη+γ satisfying Property 1 for
appropriate values of δ and γ.

Hybrid (Random Correlations): Client A gets random (a[η], b[η]) ∈ F2η and Client B
gets random (x[η], z[η]) ∈ F2η such that for all i ∈ {1, 2, . . . , η}, aixi + bi = zi.

1. Code Generation. Client B samples j $←J .
2. ROLE Extraction Protocol.

a. Client B picks random r = (r−γ , . . . , r−1, r1, . . . , rη) ∼ Cj and computes m[η] =
r[η] + x[η]. Client B sends (m[η], j) to client A.

b. Client A picks the same distribution Cj as client B. Client A picks random u =
(u−γ , . . . , u−1, u1, . . . , uη) ∼ Cj and random v = (v−γ , . . . , v−1, v1, . . . , vη) ∼ C

(2)
j .

Client A computes α[η] = u[η] − a[η], and β[η] = a[η] ∗m[η] + b[η] + v[η] and sends
(α[η], β[η]) to Client B.

c. Client B computes t[η] = (α[η] ∗ r[η]) + β[η]− z[η]. Cleint B performs erasure recovery
on t[η] for C

(2)
j to obtain t[−γ].

d. Client A outputs {ui, vi}i∈{−γ,...,−1} and Client B outputs {ri, ti}i∈{−γ,...,−1}

Figure 4 Our ROLE(F)-to-ROLE(F) Extractor Protocol.

I Lemma 3 (Correctness). If the family of distributions C = {Cj}j∈J satisfies Property 1,
i.e., erasure recovery of first γ coordinates in Schur product, then for all i ∈ {−γ, . . . ,−1},
it holds that ti = uiri + vi.

Proof. First, we prove the following claim.

I Claim 4. For all i ∈ [η], it holds that ti = uiri + vi.

This claim follows from the following derivation.

ti = αiri + βi − zi = (ui − ai)ri + (aimi + bi + vi)− zi
= uiri − airi + ai(ri + xi) + bi + vi

= uiri + aixi + bi + vi − zi
= uiri + vi

From the above claim, we have that t[η] = u[η] ∗ r[η] + v[η]. From the protocol, we have
that u, r ∈ Cj and v ∈ C(2)

j . Consider t̃ = u ∗ r + v ∈ C(2)
j . Note that ti = t̃i for all i ∈ [η].

Hence, when client B performs erasure recovery on t[η] for a codeword in C(2)
j , it would get

t̃[−γ]. This follows from erasure recovery guarantee for first γ coordinates by Property 1. J

Security of Figure 4. To argue the security, we prove that protocol is a secure implemen-
tation of (ROLE(F))γ functionality against an information theoretic semi-honest adversary
that corrupts either the sender or the receiver and leaks at most t-bits from the secret share
of the honest party at the beginning of the protocol. At a high level, we prove the security
of our protocol by reducing it exactly to our unpredictability lemma.

I Lemma 4 (Unpredictability Lemma). Let C = {Cj : j ∈ J } be a 2−δ-biased family of linear
code distributions over Fη∗ , where η∗ = γ + η. Consider the following game between an
honest challenger H and an adversary A:
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1. H samples m[η] ∼ UFη .

2. A sends a leakage function L : Fη → {0, 1}t.
3. H sends L(m[η]) to A.

4. H samples j $← J . H samples a uniform random (r−γ , . . . , r−1, r1, . . . , rη) ∈ Cj . H computes
y[η] = r[η] +m[η] and sends (y[η], j) to A.

H picks b $← {0, 1}. If b = 0, then H sends chal = r[−γ] to A; otherwise (if b = 1) H sends
chal = u[γ] ∼ UFγ .

5. A sends b̃ ∈ {0, 1}.

The adversary A wins the game if b = b̃. For any A, the advantage of the adversary is
ε 6 1

2

√
|F|γ2t

2δ .

Proof. Let M[η] be the distribution corresponding to m[η]. Consider M ′[η+γ] = (0γ ,M[η]).
By Imported Lemma 1, H̃∞(M ′|L(M ′)) > η log |F| − t. Recall that C = {Cj : j ∈ J } is a
2−δ-bias family of distributions over Fη+γ . Then, by Theorem 5, we have the following:

SD ( (CJ ⊕M ′,L(M ′),J ) , (UFη+γ ,L(M ′),J ) ) 6 1
2

(
2t · |F|η+γ

2δ · |F|η

) 1
2

= 1
2

√
|F|γ2t

2δ . J

Note this lemma crucially relies on a family of small-bias distributions. Next, we prove the
following security lemma.

I Lemma 5. The simulation error of our protocol is ε 6
√
|F|γ2t

2δ after t bits of leakage,
where γ and δ are the parameters for family of distributions C provided by Property 1.

Proof. We first prove Bob privacy followed by Alice privacy.

Bob Privacy. In order to prove privacy of client B against a semi-honest client A, it suffices
to show that the adversary cannot distinguish between Bob’s secret values (r−γ , . . . , r−1)
and UFγ . We show that the statistical distance of (r−γ , . . . , r−1) and UFγ given the view of
the adversary is at most ε, where ε is defined above.

We observe that client B’s privacy reduces directly to our unpredictability lemma
(Lemma 4) for the following variables. Let X[η] be the random variable denoting B’s
input in the initial correlations. Then, X[η] is uniform over Fη. Note that the adversary gets
L = L(X[η]) that is at most t-bits of leakage. Next, the honest client B picks j $←J and a
random r = (r−γ , . . . , r−1, r1, . . . , rη) ∈ Cj . Client B sends m[η] = r[η] + x[η]. This is exactly
the game between the honest challenger and an semi-honest adversary in the unpredictability
lemma (see Lemma 4). Hence, the adversary cannot distinguish between r[−γ] and UFγ with
probability more than ε.

Alice Privacy. In order to prove privacy of client A against a semi-honest client B, it suffices
to show that the adversary cannot distinguish between Alice’s secret values (u−γ , . . . , u−1)
and UFγ . We show that the statistical distance of (u−γ , . . . , u−1) and UFγ given the view
of the adversary is at most ε, where ε is defined above by reducing to our unpredictability
lemma (see Lemma 4).

Let A[η] denote the random variable corresponding to the client A’s input a[η] in the
initial correlations. Then, without loss of generality, the adversary receives t-bits of leakage
L(A[η]). We show a formal reduction to Lemma 4 in Figure 5. Given an adversary A who can
distinguish between (u−γ , . . . , u−1) and UFγ , we construct an adversary A′ against an honest
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H A′
A

Fixed C = {Cj}j∈J
Pick a[η]

$← Fη
Pick x[η], z[η]

$← Fη(
x[η], z[η]

)
L(·)

` = L(a[η])
Pick j $←J

m[η]

Pick u = (u−γ , . . . , uη) ∼ Cj
Compute α[η] = u[η] − a[η]

α[η]

Compute r[η] = m[η] − x[η]

Pick w = (w−γ , . . . , wη) $← C
(2)
j

Set β[η] = w[η] − α[η] ∗ r[η] + z[η]
α[η], β[η]

b ∼ U{0,1}, y ∼ UFγ

chal = by ⊕ (u[−γ])
chal

b̃

Figure 5 Simulator for Alice Privacy.

challenger H of Lemma 4 with identical advantage. It is easy to see that this reduction is
perfect. The only differences in the simulator from actual protocol are as follows. In the
simulation, the index j of the distribution is picked by the honest challenger H instead of
client B. This is identical because client B is a semi-honest adversary.

Also, the simulator A′ generates β[η] slightly differently. We claim that the distribution
of β[η] in the simulation is identical to that of real protocol.

This holds by correctness of the protocol: t[η] = u[η] ∗ r[η] + v[η] = (α[η] ∗ r[η]) + β[η] − z[η].
Hence, β[η] = (u[η] ∗ r[η] + v[η])− (α[η] ∗ r[η]) + z[η] = w[η] − (α[η] ∗ r[η]) + z[η], where w[−γ,η]

is chosen as a random codeword in C(2)
j . This holds because in the real protocol v[−γ,η] is

chosen as a random codeword in C(2)
j and u[−γ,η] ∗ r[−γ,η] ∈ C

(2)
j . Here, we denote by [−γ, η]

the set {−γ, . . . ,−1, 1, . . . , η}. J

4.2 OT Embedding
The second conceptual block is the ROT embedding protocol from [BMN17], referred to as the
BMN embedding protocol, that embeds a constant number of ROT samples into one sample
of ROLE

(
F
)
, where F is a finite field of characteristic 2. The BMN embedding protocol is a

two-message perfectly semi-honest secure protocol. For example, asymptotically, [BMN17]
embeds (s)1−o(1) samples of ROT into one sample of the ROLE

(
GF [2s]

)
correlation. However,

for reasonable values of s, say for s 6 250, a recursive embedding embeds slog 10/ log 38 samples
of ROT into one sample of the ROLE

(
GF [2s]

)
correlation, and this embedding is more

efficient than the asymptotically good one. Below, we show that this protocol composes
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in parallel with our protocol in Figure 4 to give our overall round optimal protocol for
(n,m, t, ε)-correlation extractor for ROLE(F) correlation satisfying Theorem 3.

We note that the BMN embedding protocol satisfies the following additional properties.
(1) The first message is sent by client B, and (2) this message depends only on the first
share of client B in ROLE(F) (this refers to ri in Figure 4) and does not depend on the
second share (this refers to ti in Figure 4). With these properties, the BMN embedding
protocol can be run in parallel with the protocol in Figure 4. Also, since the BMN protocol
satisfies perfect correctness and perfect security, to prove overall security, it suffices to prove
the correctness and security of our protocol in Figure 4. This holds because we are in the
semi-honest information theoretic setting.

4.3 Protocol for ROT Extractor (Theorem 2)
In this section, we describe a protocol to construct (ROLE(F)η)[t] using (ROLEn)[t], that
is the starting point of our protocol in Section 4.1. This would prove Theorem 2. Here,
ROLE := ROLE

(
GF [2]

)
. Recall that ROLE and ROT are equivalent.

One of the several fascinating applications of algebraic function fields pioneered by the
seminal work of Chudnovsky and Chudnovsky [CC87], is the application to efficiently multiply
over an extension field using multiplications over the base field. For example, 6 multiplications
over GF [2] suffice to perform one multiplication over GF

[
23], or 15 multiplications over

GF [2] suffice for one multiplication over GF
[
26] (cf., Table 1 in [CÖ10]).

Our first step of the correlation extractor for (ROLEn)[t] uses these efficient multiplication
algorithms to (perfectly and securely) implement (ROLE(F)η)[t], where F = GF(2α) is a finite
field with characteristic 2.

We start by describing a protocol for realizing one ROLE
(
F
)
using ROLE`, i.e., ` indepen-

dent samples of ROLE (in the absence of leakage) in Figure 6. Our protocol implements, for
instance, one sample of ROLE

(
GF
[
23]) correlation using 6 samples from the ROT correlation

in two rounds. Our protocol uses a multiplication friendly code D over {0, 1}` and encodes
messages in F. That is, D ∗ D = D(2) ⊂ {0, 1}` is also a code for F. Later, we show how to
extend this to the leakage setting.
Security Guarantee. It is easy to see that the protocol in Figure 6 is a perfectly secure
realization of ROLE(F) in the ROLE`-hybrid against a semi-honest adversary using the fact
that D is a multiplication friendly code for F. Moreover, [IKOS09] proved the following
useful lemma to argue t-leaky realization of ROLE(F) if the perfect oracle call to ROLE` is
replaced by a t-leaky oracle.

I Imported Lemma 3 ([IKOS09]). Let π be a perfectly secure (resp., statistically ε secure)
realization of f in the g-hybrid model, where π makes a single call to g. Then, π is also a
perfectly secure (resp., statistically ε secure) realization of f [t] in the g[t]-hybrid model.

Using the above lemma, we get that the protocol in Figure 6 is a perfect realization of
(ROLE(F))[t] in (ROLE`)[t]-hybrid. Finally, by running the protocol of Figure 6 in parallel for
η samples of ROLE(F) and using Imported Lemma 3, we get a perfectly secure protocol for
(ROLE(F)η)[t] in (ROLEη`)[t]-hybrid.

Round Optimality. To realize the round-optimality in Theorem 2, we can run the protocols
in Figure 6 and Figure 4 in parallel. We note that the first messages of protocols in Figure 6
and Figure 4 can be sent together. This is because the first message of client B in protocol
of Figure 4 is independent of the second message in Figure 6. The security holds because we
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Protocol for ROLE(F) in ROLE` hybrid:

Let D ⊂ {0, 1}` be a multiplication friendly code that encodes messages in F = GF(2α).
Let (EncD,DecD) (resp., EncD(2) ,DecD(2)) be encoding and decoding procedures for D
(resp., D(2)).

Hybrid ROLE`: Client A and client B have access to a single call to ROLE` functionality.
Client A will play as the sender and client B will play as the receiver.

Inputs: Client A has inputs a0, b0 ∈ F and client B has inputs x0 ∈ F.
1. Client A picks a random codeword a[`] ∼ EncD(a0) and b[`] ∼ EncD(2)(b0) Client A

sends a[`], b[`] as sender inputs to ROLE` functionality.
2. Client B picks a random codeword x[`] ∼ EncD(x0) and sends x[`] as receiver input to

ROLE`. Client B gets z[`] ∈ {0, 1}` as output. Client B runs DecD(2)(z[`]) to obtain
z0 ∈ F.

3. Client A outputs a0, b0 and Client B outputs x0, z0.

Figure 6 Perfectly secure protocol for ROLE(F) in ROLE` hybrid

are in the semi-honest information theoretic setting. Hence, overall round complexity is still
2.

5 Parameter Comparison

5.1 Correlation Extractor from ROLE(F)
In this section, we compare our correlation extractor for ROLE

(
F
)
correlation, where F is a

constant size field, with the BMN correlation extractor [BMN17].

BMN Correlation Extractor [BMN17]. The BMN correlation extractor emphasizes
high resilience while achieving multiple ROTs as output. Roughly, they show the following.
If parties start with the IP

(
GF
[
2∆n]1/∆) correlation, then they (roughly) achieve 1

2 −∆
fractional resilience with production that depends on (∆n). Here, ∆ has to be the inverse of
an even natural number > 4.

In particular, the IP
(
GF
[
2n/4

]4) correlation12 achieves the highest production using the
BMN correlation extractor. The resilience of this correlation is ( 1

4 −g), where g ∈ (0, 1/4] is a
positive constant. Then the BMN correlation extractor produces at most (n/4)log 10/ log 38 ≈
(n/4)0.633 fresh samples from the ROT correlation as output when n 6 250. This implies
that the production is m ≈ 2 · (n/4)0.633, because each ROT sample produces private shares
that are two-bits long. For n = 103, the production is m 6 66, for n = 106 the production is
m 6 5, 223, and for n = 109 the production is m 6 413, 913. We emphasize that the BMN
extractor cannot increase its production any further by sacrificing its leakage resilience and

12Recall that the inner-product correlation IP
(
Ks
)
over finite field K samples random rA = (u1, . . . , us) ∈

Ks and rB = (v1, . . . , vs) ∈ Ks such that u1v1 + · · ·+ usvs = 0.
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!h

Field F # of OTs Embedded Production (α = m/n)

Per ROLE
(
F
)
[BMN17]

GF
[
26] 2 4.83%

GF
[
28] 3 11.39%

GF
[
210] 4 15.59%

GF
[
214] 5 16.32%

GF
[
220] 6 14.31%

Figure 7 The production rate of our correlation extractor for ROLE
(
F
)
, where β = t/n = 1%

rate of leakage using different finite fields.

going below 1/4.

Our Correlation Extractor for ROLE
(
F
)
. We shall use F such that q = |F| is an even

power of 2. For the suitable Algebraic Geometry codes [GS96] to exist, we need q > 49.
Since, the last step of our construction uses the OT embedding technique introduced by
BMN [BMN17], we need to consider only the smallest fields that allow a particular number of
OT embeddings. Based on this observation, for fractional resilience β = (t/n) = 1%, Figure 7
presents the achievable production rate α = (m/n). Note that the Algebraic Geometry
codes become better with increasing q, but the BMN OT embedding becomes worse. So, the
optimum α = 16.32% is achieved for F = GF

[
214]. For n = 103, for example, the production

is m = 163, for n = 106 the production is m = 163, 200, and for n = 109 the production is
m = 163, 200, 000. In Figure 9 (Section 6), we demonstrate the trade-off between leakage
rate (Y-axis) with production rate (X-axis). We note that even in the high leakage setting,
for instance, for β = 20%, we have α ≈ 3%. Hence, the production is m ≈ 30, for n = 106

the production is m ≈ 30, 000, and for n = 109 the production is m ≈ 30, 000, 000. Our
production is overwhelmingly higher than the BMN production rate.

5.2 Correlation Extractor for ROT
In this section we compare our construction with the GIMS [GIMS15] correlation extractor
from ROT. The IKOS [IKOS09] correlation extractor is a feasibility result with minuscule
fractional resilience and production rate.

GIMS Production. The GIMS correlation extractor for ROT [GIMS15] trades-off sim-
ulation error to achieve higher production by sub-sampling the precomputed ROTs. For
β = (t/n) = 1% fractional leakage, the GIMS correlation extractor achieves (roughly)
m = n/4p production with ε = m · 2−p/4 simulation error. To achieve negligible simulation
error, suppose p = log2(n). For this setting, at n = 103, n = 106, and n = 109, the GIMS
correlation extractor obtains m = 3, m = 625, and m = 277, 777, respectively. These numbers
are significantly lower than what our construction achieves.

Our Production. We use a bilinear multiplication algorithm to realize one ROLE
(
F
)

by performing several ROT. For example, we use µ2(s) = 15 ROTs to implement one
ROLE

(
GF [2s]

)
, where s = 6. Thus, our original n-bit share changes into n′-bit share, where
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Field Bilinear Comp.
n′ = s

µ2(s)n β′ = µ2(s)
s
β

OT Embed.
α′ α = s

µ2(s)α
′

F = GF [2s] Mult. µ2(s) [CÖ10] [BMN17]

GF
[
26] 15 6

15n 2.50% 2 4.05% 1.62%

GF
[
28] 24 8

24n 3.00% 3 10.07% 3.35%

GF
[
210] 33 10

33n 3.30% 4 13.86% 4.20%

GF
[
214] 51 14

51n 3.64% 5 14.46% 3.97%

GF
[
220] 81 20

81n 4.05% 6 12.48% 3.08%

Figure 8 The production rate of our correlation extractor for ROT. We are given n-bit shares of
the ROTn/2 correlation, and fix β = t/n = 1% fractional leakage. Each row corresponds to using
our ROLE

(
F
)
-to-ROT correlation extractor as an intermediate step. The final column represents

the production rate α = m/n of our ROT-to-ROT correlation extractor corresponding to the choice
of the finite field F.

n′ = (6/15)n while preserving the leakage t = βn. So, the fractional leakage now becomes
t = β′n′, where β′ = (15/6)β. Now, we can compute the production m′ = α′n′ = αn.

The highest rate is achieved for s = 10, i.e., constructing the correlation extractor for ROT
via the correlation extractor for ROLE

(
GF
[
210]). For this choice, our correlation extractor

achieves production rate α = (m/n) = 4.20%, if the fractional leakage is β = (t/n) = 1%.
For n = 103, n = 106, and n = 109, our construction obtains m = 42, m = 42, 000, and
m = 42, 000, 000, respectively.

5.3 Close to Optimal Resilience
An interesting facet of our correlation extractor for ROLE

(
F
)
is the following. As q = |F|

increases, the maximum fractional resilience, i.e., the intercept of the feasibility curve on the
Y -axis, tends to 1/4. Ishai et al. [IMSW14] showed that any correlation extractor cannot
be resilient to fractional leakage β = (t/n) = 25%. For every g ∈ (0, 1/4], we show that,
by choosing sufficiently large q, we can achieve positive production rate α = (m/n) for
β = (1/4 − g). Thus, our family of correlation extractors (for larger, albeit constant-size,
finite fields) achieve near optimal fractional resilience. Figure 9 (Section 6) demonstrates this
phenomenon for a few values of q. Appendix E provides a proof of this result, thus proving
Theorem 4.

6 Parameter Comparison Graphs

In this section we highlight the feasibility of parameters for our ROT to ROT correlation
extractor (Theorem 2) for a few representative values of q = |F|.

The shaded regions in the graphs in Figure 9 represent the feasible parameter choices.
In particular, the X-axis represents the production rate m/n and the Y -axis represents the
leakage rate t/n given our parameter choices. The full version of the paper [BGMN18] details
the calculation of the feasible parameters.

Note that, as the size of the field F increases, the quality of the algebraic geometric
code used in our construction increases. This observation translates into higher possible
production values and leakage resilience, which is illustrated by increasing q = 26 to q = 214.
However, as the size of the field F increases, the efficiency of the BMN embedding [BMN17]
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reduces, potentially reducing the overall production rate (for example, increasing q = 214 to
q = 220).

Finally, as noted earlier, the feasibility graphs demonstrate that our family of correlation
extractors achieve near optimal fractional resilience. That is, as the size of the field F
increases, the fractional leakage resilience approaches 1/4, which is optimal [IMSW14].
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Figure 9 A comparison of the feasibility regions for our correlation extractors for ROLE
(
F
)
for various

finite fields F of characteristic 2. For each plot, the X-axis represents the relative production rate α = m/n
and the Y -axis represents the fractional leakage resilience β = t/n.
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A Fourier Analysis Basic Definitions

In this section, we prove results relating to Fourier analysis and statements in Section 2.
We begin by showing that χ as stated in Definition 3 is a symmetric, non-degenerate,

bilinear map.
Bilinear map. The function χ is a bilinear map if and only if for every x ∈ Fη, both χ(x, ·)

and χ(·, x) are homomorphisms. This follows immediately by the fact that ψ is a group
homomorphism. Namely, for fixed x ∈ Fη and any y, z ∈ Fη, we have

χx(y + z) = ψ (x · (y + z)) = ψ

(∑
i

xi(y + z)i

)
= ψ

(∑
i

xiyi + xizi

)
= ψ(x · y + x · z) = ψ(x · y)ψ(x · z) = χx(y)χx(z).

The function χ(·, x) is a homomorphism by the same argument.
Non-degenerate. The function χ is non-degenerate if and only if for every 0η 6= x ∈ Fη,

both χ(x, ·) and χ(·, x) are non-trivial. Taking the function ψ to be non-trivial (ψ 6= 1)
immediately yields this property.

Symmetric. The function χ is symmetric if and only if for all x, y ∈ Fη, we have χx(y) =
χy(x). This follows directly since the vector dot product is symmetric.

Therefore χ satisfies all properties stated in Definition 3.
Next we show some properties of any character function χS .

I Lemma 6 (Character Magnitude). |χS | = 1 for any character χS.

Proof. Since χS is a group homomorphism, we have χS(x + y) = χS(x)χS(y) for any
x, y ∈ Fη. Thus χS(0η) = χS(0η)2, which implies that χS(0η) = 1 since ψ(0) = 1. Applying
the homomorphism property repeatedly for x = y, we have

χS(x)|F
η| = χS(|Fη|x) = χS(0) = 1.

Hence |χS(x)| = 1 for all x ∈ Fη. J

I Lemma 7 (Character Conjugate). For any character χS and any x ∈ Fη, we have χS(x) =
χS(x)−1 = χS(−x).

Proof. Note that |χS(x)| = 1 for any S, x ∈ Fη by Lemma 6. Thus by definition of complex
conjugate we have

χS(x)χS(x) = |χS(x)|2 = 1.

This implies χS(x) = χS(x)−1 in C∗. Furthermore, since χ is a bilinear map, for any x ∈ Fη
we have

χS(x)χS(−x) = χS(x− x) = χS(0) = 1 = χS(x)χS(x)

Therefore χS(x) = χS(−x). J

I Lemma 8. For any non-trivial character χS, we have
∑
x∈Fη

χS(x) = 0.

Proof. Since χS is a non-trivial character, there exists a vector v ∈ Fη such that χS(v) 6= 1.
We have

χS(v)
∑
x∈Fη

χS(x) =
∑
x∈Fη

χS(v)χS(x) =
∑
x∈Fη

χS(v + x) =
∑
y∈Fη

χS(y) =
∑
x∈Fη

χS(x)

Thus, we must have
∑
x∈Fη

χS(x) = 0. J
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I Lemma 9 (Orthogonality). For any two characters χS and χT , we have that

〈χS , χT 〉 =
{

1 if S = T
0 otherwise

Proof.

〈χS , χT 〉 = 1
|F|η

∑
x∈Fη

χS(x)χT (x) = 1
|F|η

∑
x∈Fη

χx(S)χx(−T ) = 1
|F|η

∑
x∈Fη

χx(S − T )

If S = T , then 〈χS , χT 〉 = 1
|F|η

∑
x∈Fη

χx(0) = 1. Otherwise, by Lemma 8, we have 〈χS , χT 〉 =

0. J

The following corollary is a direct result of Lemma 6 and Lemma 9.

I Corollary 1 (Orthonormal Basis). The set {χS}S∈Fη is an orthonormal basis for the vector
space {f | f : Fη → C}.

We show linearity of Definition 4.

I Lemma 10 (Linearity of Fourier Transform). For any two functions f, g : Fη → C and for
any a, b ∈ C and S ∈ Fη, we have

̂(af + bg)(S) = af̂(S) + bĝ(S)

Proof. This follows from definition of Fourier transform and the linearity property of inner
product.

̂af + bg(S) = 〈af + bg, χS〉 = 〈af, χS〉+ 〈bg, χS〉 = a〈f, χS〉+ b〈g, χS〉 = af̂(S) + bĝ(S)

J

We note that Lemma 1 (Section 2.3) follows directly from Corollary 1 and Definition 4
since any f : Fη → C can be written as f(x) =

∑
S∈Fη 〈f, χS〉χS(x) =

∑
S∈Fη f̂(S)χS(x)

by definition of orthonormal basis. Next we show how to express the inner product of two
functions in terms of their Fourier coefficients.

I Lemma 11. For any two functions f, g : Fη → C, we have 〈f, g〉 =
∑
S∈Fη f̂(S)ĝ(S).

Proof.

〈f, g〉 = E
x

$←Fη
f(x)g(x)

= 1
|F|η

∑
x∈Fη

(∑
S∈Fη

f̂(S)χS(x)
)(∑

T∈Fη
ĝ(T ) χT (x)

)
[Lemma 1]

= 1
|F|η

∑
x,S,T∈Fη

f̂(S)χS(x)ĝ(T ) χT (x)

=
∑

S,T∈Fη
f̂(S)ĝ(T )

(
1
|F|η

∑
x∈Fη

χS(x)χT (x)
)

=
∑

S,T∈Fη
f̂(S)ĝ(T )〈χS , χT 〉 [Definition 2]

=
∑
S∈Fη

f̂(S)ĝ(S) [Lemma 9]

J
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When f = g, we have Parseval’s identity as a corollary.

I Corollary 2 (Parseval’s Identity). Let f : Fη → C. Then E
x

$←Fη
|f(x)|2 =

∑
S∈Fη

|f̂(S)|2.

Next we prove Lemma 2 (Section 2.4).

Proof. By Corollary 2 and assumption H∞(X) > k, we have∑
S

|X̂(S)|2 = 1
|F|η

∑
x∈Fη

|X(x)|2 6
1
|F|η

∑
x∈Fη

1
2k |X(x)|

= 1
|F|η

1
2k
∑
x∈Fη

|X(x)| = 1
|F|η 2k

J

We introduce the Convolution operator and prove related properties.

I Definition 8 (Convolution). For any two functions f, g : Fη → R, the convolution of f and
g is defined as

(f ∗ g)(x) := E
y∈Fη

f(x− y)g(y)

I Lemma 12 (Fourier Transform of Convolution). For every vector S ∈ Fη, we have f̂ ∗ g(S) =
f̂(S)ĝ(S)

Proof.

f̂ ∗ g(S) = 1
|F|η

∑
x∈Fη

(f ∗ g)(x)χS(x) = 1
|F|2η

∑
x,y∈Fη

f(x− y)g(y)χS(x)

= 1
|F|2η

∑
x,y∈Fη

f(x− y)χS(x− y)g(y)χS(y)

= 1
|F|2η

∑
y∈Fη

g(y)χS(y)
∑
x∈Fη

f(x− y)χS(x− y)

= 1
|F|η

∑
y∈Fη

g(y)χS(y) · f̂(S) = 1
|F|η

f̂(S)
∑
y∈Fη

g(y)χS(y)

= f̂(S)ĝ(S) J

We prove facts about distributions and their Fourier coefficients.

I Lemma 13 (Masking Lemma). Let X,Y : Fη → R be two independent random variables
(functions, distributions). Then |Fη| (X ∗ Y ) is the distribution of the random variable
Z = X ⊕ Y and X̂ ⊕ Y (S) = |F|η ̂(X ∗ Y )(S) = |F|η X̂(S)Ŷ (S).

Proof.

Z(z) = Pr[Z = z] = Pr[X + Y = z] = Pr[X = z − Y ]

=
∑
y∈Fη

Pr[X = z − y|Y = y] =
∑
y∈Fη

Pr[X = z − y] Pr[Y = y]

=
∑
y∈Fη

X(z − y)Y (y) = |F|η (X ∗ Y ) J
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I Lemma 14 (Zeroth Fourier Coefficient of a Distribution). For any distribution f : Fη → R,
we have f̂(0) = 1

|F|η .

Proof.

f̂(0) = 1
|F|η

∑
x∈|F|η

f(x)χ0(x) = 1
|F|η

∑
x∈|F|η

f(x) · 1 = 1
|F|η

J

I Lemma 15 (Fourier Coefficients of Uniform Distributions). Let UFη be the uniform distribution
over Fη. Then, for every nonzero S ∈ Fη, we have ÛFη (S) = 0.

Proof.

ÛFη (S) = 1
|F|η

∑
x∈Fη

UFη (x)χS(x) = 1
|F|η

∑
x∈Fη

1
|F|η

χS(−x)

= 1
|F|2η

∑
S∈Fη

χS(−x) = 0 [Lemma 8]

Note χS is non-trivial if S 6= 0. J

B Algebraic Geometry Codes

I Imported Theorem 2 (Garcia-Stichtenoth [GS96]). For every q that is an even power of a
prime, there exists an infinite family of curves {Cu}u∈N such that:
1. The number of rational points #Cu(Fq) > qu/2(√q − 1), and
2. The genus of the curve g(Cu) 6 qu/2.

Using the above theorem, we get the following corollary.

I Corollary 3. For every q that is an even power of a prime, there exists an [η∗, κ, d, d⊥]q
code C such that:

1. η∗ = qu/2(√q − 1),
2. κ = ∆− qu/2 + 1,
3. d = η∗ −∆, and
4. d⊥ > κ− qu/2 + 1.

Further, d(2) = d(C(2)) = η∗ − 2∆, and there exists an efficient decoding algorithm for
C(2) that can correct

⌊
d(2)−1

2

⌋
errors and d(2) − 1 erasures.

Proof. By choosing the Garcia-Stichtenoth curves over Fq (see Imported Theorem 2) and a
divisor D such that degD = ∆, we can define a Goppa code [Gop81] with these parameters.

O’Sullivan [O’S95] proved that the unique decoding can be performed efficiently by the
syndrome-based Berlekamp-Massey-Sakata algorithm with the Feng-Rao [FR93] majority
voting. J

C Analysis of Γ(w): Completing the Proof of Theorem 6

In this section, we analyze the behavior of the function

Γ(w) = max
η∗−w6j6η∗−d⊥

{(
j

η∗ − w

)
Bj

}
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from the proof of Theorem 6 in Section 3. Let q be an even prime power and let

a = η∗ − d⊥ a′ = a−
(

η∗
√
q − 1

)
+ 1 a′′ = a− 2

(
η∗

√
q − 1

)
+ 1.

We use the following results.

I Imported Theorem 3 (Theorem 1.1.18 and 1.1.28 from [VNT07]). For i ∈ {0, 1, . . . , a},
we have the following estimates of Bi.
1. For 0 6 i 6 a′′

Bi =
(
η∗

i

)(
qa
′

qi
− 1
)

2. For a′′ < i 6 a′ (
η∗

i

)(
q

η∗
(√q−1) − 1

)
> Bi >

(
η∗

i

)(qa′
qi
− 1
)

3. For a′ < i 6 a (
η∗

i

)(
qa+1

qi
− 1
)

> Bi > 0

Note that
(

i
η∗−w

)(
η∗

i

)
=
(
η∗

w

)(
w

i−(η∗−w)
)
. Thus the above theorem implies the following

bounds.
1. For 0 6 i 6 a′′ (

i

η∗ − w

)
Bi 6

(
η∗

w

)( w
i−(η∗−w)

)
qa
′−i

2. For a′′ < i 6 a′ (
i

η∗−w
)
Bi 6

(
η∗

w

)( w
i−(η∗−w)

)
q

η∗
(√q−1)

3. For a′ < i 6 a (
i

η∗−w
)
Bi 6

(
η∗

w

)( w
i−(η∗−w)

)
qa+1−i

I Lemma 16. Assume η∗, w are fixed. Let f(i) =
(

w
i−(η∗−w)

)
q−i for η∗ − w 6 i 6 η∗. Let

f1(i) =
(
η∗

w

)
qa
′ · f(i) for 0 6 i 6 a′′,

f2(i) =
(
η∗

w

)
q

η∗
(√q−1) +i · f(i) for a′′ < i 6 a′,

f3(i) =
(
η∗

w

)
qa+1 · f(i), for a′ < i 6 a.

Then f, f1, f3 (asymptotically) have the same critical point at i = η∗ − w + w/(q+1).
More concretely, they are asymptotically increasing in the range [η∗ − w, η∗ − w + w

q+1 ] and
asymptotically decreasing in the range [η∗ − w + w

q+1 , η
∗].

In addition, the function f2 is increasing in the range [η∗ − w, η∗ − w/2],and decreasing
in the range [η∗ − w/2, η∗].

Proof. The function f is asymptotically similar to a binomial distribution of bias p, where
p

1− p = 1
q
⇐⇒ p = 1

q + 1 .

The maximum of the binomial distribution shall be achieved at the critical point

i− (η∗ − w) = p · w = w

q + 1 .

Thus, f(i) is increasing in the range [η∗ − w, η∗ − w + w
q+1 ] and is decreasing in the range

[η∗ − w + w
q+1 , w]. Since the three functions f1, f2, f3 are just scalar multiplication of f(i),

they behave asymptotically same as f . J
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Now, we upper-bound Γ(w).

I Lemma 17. Let p∗ = η∗ − w + w
q+1 . For w ∈ {d

⊥, . . . , η∗}, we have Γ(w) is less than or
equal to
1.
(
η∗

w

)(
w
d⊥

)
q, where w ∈ I1 = [d⊥, ( q+1

q )d⊥]
2.
(
η∗

w

)(
w
w
q+1

)
qa+1−p∗ , where w ∈ I2 = [( q+1

q )d⊥, η∗ − a′]

3.
(
η∗

w

)(
w
w
q+1

)
q

η∗
(√q−1) , where w ∈ I3 = [η∗ − a′, ( q+1

q )(η∗ − a′)]

4.
(
η∗

w

)(
w

η∗−a′
)
q

η∗√
q−1 , where w ∈ I4 = [( q+1

q )(η − a′), η∗ − a′′]

5.
(
η∗

w

)(
w

η∗−a′
)
q

η∗
(√q−1) , where w ∈ I5 = [η∗ − a′′, q+1

q (η∗ − a′′)]

6.
(
η∗

w

)
· max

{(
w
w
q+1

)
qa
′−p∗ ,

(
w

η∗−a′
)
q

η∗
(√q−1)

}
, if w ∈ I6 = [ q+1

q (η∗ − a′′), 2d⊥ + 2η∗√
q−1 ] or

w ∈ I8 = [2d⊥ + 4η∗√
q−1 , η

∗], and(
η∗

w

)
·max

{(
w
w
q+1

)
qa
′−p∗ ,

(
w
w/2
)
q

η∗
(√q−1)

}
, if w ∈ I7 = [2d⊥ + 2η∗√

q−1 , 2d
⊥ + 4η∗√

q−1 ].

Proof. We will use the facts stated in Lemma 16 frequently in our proof.
Case 1: d⊥ 6 w 6

(
q+1

q

)
d⊥, which implies a > η − w > a′ and p∗ > a. In this case, the

function f3 is increasing. So Γ(w) is maximized at a. Therefore

Γ(w) 6
(
η∗

w

)( w
a−η∗+w

)
q =

(
η∗

w

)( w
w−d⊥

)
q =

(
η∗

w

)
( w
d⊥ )q

Case 2:
(

q+1
q

)
d⊥ 6 w 6 η∗ − a′, which implies η∗ − w > a′ and p∗ 6 a. In this case,

the maximum is achieved at p∗. Thus

Γ(w) 6
(
η∗

w

)( w
w
q+1

)
qa+1−p∗

Case 3: η∗ − a′ 6 w 6
(

q+1
q

)
(η∗ − a′), which implies a′′ < η − w 6 a′, p∗ > a′, and

η∗ − w/2 > a′. In this case, the function f3 is maximized at p∗. Thus for a′ < i 6 a,(
i

η∗−w
)
Bi 6

(
η∗

w

)( w
w
q+1

)
qa+1−p∗

This also implies that f2(i) is increasing in the interval [η∗ − w, a′], so the maximum
within this interval is achieved at a′, which yields(

i
η∗−w

)
Bi 6

(
η∗

w

)( w
a′−η∗+w

)
q

η∗
(√q−1) =

(
η∗

w

)( w
η∗−a′

)
q

η∗
(√q−1)

Comparing the two expressions, we note that
( w

w
q+1

)
>
( w
a′−η∗+w

)
since w/2 > w/(q+1) >

a′ − η∗ + w, and similarly q
η∗

(√q−1) > qa+1−p∗ . So in this case, we can see that

Γ(w) 6
(
η∗

w

)( w
w
q+1

)
q

η∗
(√q−1) .

Case 4:
(

q+1
q

)
(η∗ − a′) 6 w 6 η∗ − a′′, which implies a′′ 6 η∗ − w < a′, p∗ 6 a′, and

η∗ − w/2 > a′. In this case, the function f2 is maximized at a′. This implies that for
every η∗ − w 6 i 6 a′ (

i
η∗−w

)
Bi 6

(
η∗

w

)( w
a′−η∗+w

)
q

η∗
(√q−1) .
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Further this implies that the function f3(i) is decreasing in the range [a′, a], and thus we
have (

i
η∗−w

)
Bi 6

(
η∗

w

)( w
a′−η+w

)
qa+1−a′ =

(
η∗

w

)( w
a′−η∗+w

)
q

η∗√
q−1

Thus we have

Γ(w) 6
(
η∗

w

)( w
a′−η+w

)
q

η∗√
q−1 =

(
η∗

w

)( w
η∗−a′

)
q

η∗√
q−1

Case 5: η∗ − a′′ 6 w 6
(

q+1
q

)
(η∗ − a′′), which implies η∗ − w 6 a′′, p∗ > a′′, and

η∗ − w/2 > a′ as long as d⊥ > 2η∗
(q−1)(√q−1) . In this case, f2 is maximized at a′. This

implies that for every a′′ 6 i 6 a′,(
i

η∗−w
)
Bi 6

(
η∗

w

)( w
a′−η∗+w

)
q

η∗√
q−1

Further this implies that the function f1 is increasing. Thus we have for every η∗ − w 6
i 6 a′′, (

i
η∗−w

)
Bi 6

(
η∗

w

)( w
a′′−η∗+w

)
q

η∗√
q−1

It also implies that the function f3 is decreasing. Thus we have for every a′ 6 i 6 a,(
i

η∗−w
)
Bi 6

(
η∗

w

)( w
a′−η∗+w

)
q

η∗
(√q−1)

Note that a′ − η∗ + w < w
2 and a′′ < a′. Hence, in this subcase

Γ(w) 6 ( ηw )
( w
a′−η∗+w

)
q

η∗
(√q−1) =

(
η∗

w

)( w
η∗−a′

)
q

η∗
(√q−1)

.
Case 6:

(
q+1

q

)
(η∗ − a′′) 6 w 6 η, which implies η∗ − w 6 a′′ and p∗ 6 a′′. In this case,

f1 is maximized at p∗. Thus, for every η∗ − w 6 i 6 a′′,(
i

η∗−w
)
Bi 6

(
η∗

w

)( w
w
q+1

)
qa
′−p∗

Further this implies that the function f3 is also decreasing in the range [a′, a], and thus
we have (

i
η∗−w

)
Bi 6

(
η∗

w

)( w
a′−η∗+w

)
q

η∗
(√q−1) for every a′ 6 i 6 a

1. Subcase 1:
(
q+1
q

)
(η∗ − a′′) 6 w 6 2d⊥ + 2η∗√

q−1 , which implies η∗ −w/2 > a′. Thus,
f2 is maximized at a′, which yields for every a′′ 6 i 6 a′(

i
η∗−w

)
Bi 6

(
η∗

w

)( w
η∗−a′

)
q

η∗√
q−1

Hence,

Γ(w) 6 max
{(

η∗

w

)( w
w
q+1

)
qa
′−p∗ ,

(
η∗

w

)( w
η∗−a′

)
q

η∗
(√q−1)

}
2. Subcase 2: 2d⊥ + 2η∗√

q−1 6 w 6 2d⊥ + 4η∗√
q−1 , which implies a′′ 6 η∗ − w/2 6 a′. So

f2 is maximized at η∗ − w/2, which yields for every a′′ 6 i 6 a′(
i

η∗−w
)
Bi 6

(
η∗

w

)( w
w/2
)
q

η∗√
q−1

Hence,

Γ(w) 6 max
{(

η∗

w

)( w
w
q+1

)
qa
′−p∗ ,

(
η∗

w

)( w
w/2
)
q

η∗
(√q−1)

}
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3. Subcase 3: 2d⊥ + 4η∗√
q−1 6 w 6 η∗, which implies η∗ −w/2 6 a′′. So f2 is maximized

at a′′, which yields for every a′′ 6 i 6 a′(
i

η∗−w
)
Bi 6

(
η∗

w

)( w
η∗−a′′

)
q

η∗√
q−1

By Lemma 18, we can show that
( w

w
q+1

)
qa
′−p∗ >

( w
η∗−a′′

)
q

η∗√
q−1 . Hence,

Γ(w) 6 max
{(

η∗

w

)( w
w
q+1

)
qa
′−p∗ ,

(
η∗

w

)( w
η∗−a′

)
q

η∗
(√q−1)

}
This completes the proof. J

We prove the following lemma used to prove Lemma 17.

I Lemma 18. For every natural number ∆, we have the following inequality

q∆ ·
( w
w/(q+1)

)
>
( w
w/(q+1)+∆

)
Proof. Let k = w/(q + 1). then w = k(q + 1). It is easy to see that w−k−i

k+∆−i 6 q for every
0 6 i 6 ∆− 1. Therefore, we have

( w
k+∆ )
(wk ) = k!(w − k)!

(k + ∆)!(w − k −∆)! = (w − k)(w − k − 1) . . . (w − k −∆ + 1)
(k + ∆)(k + ∆− 1) . . . (k + 1)

=
∆−1∏
i=0

w − k − i
k + ∆− i 6

∆−1∏
i=0

q

= q∆

J

I Lemma 19. For every natural number ∆, we have the following inequality( w
w/(q+1)

)
> q∆( w

w/(q+1)−∆
)

Proof. Let k = w/(q + 1). then w = k(q + 1). It is easy to see that w−k+∆−i
k−i > q for every

0 6 i 6 ∆− 1. Therefore, we have

(wk )
( w
k−∆ ) = (k −∆)!(w − k + ∆)!

k!(w − k)! = (w − k + ∆)(w − k + ∆− 1) . . . (w − k + 1)
k(k − 1) . . . (k −∆ + 1)

=
∆−1∏
i=0

w − k + ∆− i
k − i

>
∆−1∏
i=0

q

= q∆

J

C.1 Bias Calculation
Note that in this section S(S) is the same as S(w), where w = wt (S). We are interested in
finding the maximum possible bias. That is,

2−δ 6 max
d⊥6w6η

Γ(w)
|S(w)| .
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which is equivalent to

δ > min
d⊥6w6η

lg |S(w)|
Γ(w)

Define g(w) = lg |S(w)|
Γ(w) .

I Lemma 20. We have the following.
1. Let g1(w) = w lg(q − 1)− h2(d

⊥

w )w − lg q for w ∈ I1, then g1 is decreasing.
2. Let g2(w) = w lg(q−1)−h2( 1

q+1 )w−( wqq+1−d
⊥+1)(lg q) for w ∈ I2, then g2 is decreasing.

3. Let g3(w) = w lg(q − 1)− η∗√
q−1 (lg q)− h2( 1

q+1 )w for w ∈ I3, then g3 is increasing.
4. Let g4(w) = w lg(q − 1) − h2(η

∗−a′
w )w − ( wqq+1 − d⊥ + 1)(lg q) for w ∈ I4, then g4 is

decreasing.
5. Let g5(w) = w lg(q − 1)− h2(η

∗−a′
w )w − η∗√

q−1 (lg q) for w ∈ I5, then g5 is increasing.
6. Let g6(w) = w lg(q − 1)− η∗√

q−1 (lg q)− h2
( 1

2
)
w for w ∈ I7. Then g6 is increasing.

We use the Lemma 20 to bound Lemma 17. We do case analysis on each case of Γ(w).
In the following proof, we will use the facts stated in Lemma 20 frequently. Recall that
g(w) = lg |S(w)|

Γ(w) .

Case 1: d⊥ 6 w 6
(

q+1
q

)
d⊥. Let w1 =

(
q+1
q

)
d⊥, then we have

g(w) > lg (q − 1)w − lg [q( w
d⊥ )] ≈ w lg(q − 1)− h2

(
d⊥

w

)
w − lg q

> g1(w1)

Case 2:
(

q+1
q

)
d⊥ 6 w 6 η∗ − a′. Let w2 = η∗ − a′, then

g(w) > lg(q − 1)w − lg
[( w

w
q+1

)
qa+1−p∗

]
≈ w lg(q − 1)− h2

(
1

q + 1

)
w − (a+ 1− p∗) lg q

= w lg(q − 1)− h2

(
1

q + 1

)
w −

(
wq

q + 1 − d
⊥ + 1

)
(lg q)

> g2(w2)

Case 3: η∗ − a′ 6 w 6 q+1
q

(η∗ − a′). Let w3 = η∗ − a′, then

g(w) > lg(q − 1)w − lg
[( w

w
q+1

)
q

η∗√
q−1

]
= w lg(q − 1)− η∗

√
q − 1 lg q − h2

(
1

q + 1

)
w

> g3(w3)

Case 4: q+1
q

(η∗ − a′) 6 w 6 η∗ − a′′. Let w4 = η∗ − a′′,

g(w) > lg(q − 1)w − lg
[( w

η∗−a′
)
qa+1−p∗

]
≈ w lg(q − 1)− h2

(
η∗ − a′

w

)
w − (a+ 1− p∗) lg q

= w lg(q − 1)− h2

(
η∗ − a′

w

)
w −

(
wq

q + 1 − d
⊥ + 1

)
(lg q)

> g4(w4)
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Case 5: η∗ − a′′ 6 w 6 q+1
q

(η∗ − a′′). Let w5 = η∗ − a′′.

g(w) > lg(q − 1)w − lg
[( w

η∗−a′
)
q

η∗√
q−1

]
≈ w lg(q − 1)− η∗

√
q − 1(lg q)− h2

(
η∗ − a′

w

)
w

> g5(w5)

Case 6: q+1
q

(η∗ − a′′) 6 w 6 η∗. Let w6 = q+1
q (η∗ − a′′), w7 = 2d⊥ + 2η∗√

q−1 , and w8 =
2d⊥ + 4η∗√

q−1 .

g(w) > lg(q − 1)w − lg
( w

w
q+1

)
− lg qa

′−p∗

≈ w lg(q − 1)− h2

(
1

q + 1

)
w − (a′ − p∗) lg q

= w lg(q − 1)− h2

(
1

q + 1

)
w −

(
qw

q + 1 − d
⊥ − η∗

√
q − 1

)
(lg q)

Let g7(w) = g2(w) + η∗√
q−1 (lg q)

1. Subcase 1: For
(
q+1
q

)
(η∗−a′′) 6 w 6 2d⊥+ 2η∗√

q−1 , we have g(w) > min (g7(w7), g5(w6))

2. Subcase 2: For 2d⊥+ 2η∗√
q−1 6 w 6 2d⊥+ 4η∗√

q−1 , we have g(w) > min (g7(w8), g6(w7))
3. Subcase 3: 2d⊥ + 4η∗√

q−1 6 w 6 η∗, we have

g(w) > min (g7(η∗), g5(w8))

Combining all cases together, we obtain

δ > g3(w3) =
[(
d⊥ + η∗

√
q − 1 − 1

)(
lg(q − 1)− h2

(
1

q + 1

))]
−
(

η∗
√
q − 1

)
lg q

Let h2(x) = −x lg x−(1−x) lg(1−x). We claim the following result by applying Stirling’s
approximation.

I Claim 5. For every positive integers n,m, we have

lg
(
n

m

)
≈ h2(m/n)n.

D Parameter Choices for Construction of Theorem 6

We shall now instantiate the parameters of the code discussed in Appendix B used to
instantiate the family of codes used in Theorem 6. The code C has the following parameters.
|F| = q = ps, for prime p and even integer s and q > 49.
η∗ = (√q − 1) · (√q)u, or equivalently η∗/(√q − 1) = (√q)u, and genus g = (√q)u for
u ∈ N
Divisor D with degD = (

√
q−1
2 − ρ)g − 1, for ρ > 0

κ = deg D − g + 1 = (
√
q−1
2 − ρ− 1)g
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d = η∗ − deg D = (
√
q−1
2 + ρ)g + 1

The code C⊥ has the following parameters.
Divisor D⊥ with degree degD⊥ = (

√
q−1
2 + ρ+ 2)g − 1

κ⊥ = deg D⊥ − g + 1 = (
√
q−1
2 + ρ+ 1)g

d⊥ = η∗ − deg D⊥ = (
√
q−1
2 − ρ− 2)g + 1

The code C(2) has the following parameters.
Divisor D(2) with degree degD(2) = (√q − 1− 2ρ)g − 2
κ(2) = deg D(2) − g + 1 = (√q − 2− 2ρ)g − 1
d(2) = η∗ − deg D(2) = 2ρg + 2
Set γ = d(2) − 2 = 2ρg

Simulation Error Computation. We have secret share length n = 2 · η · lg |F| = 2(η∗ −
γ) lg |F|, where η = η∗ − γ. This implies n = 2(lg q)(√q − 1− 2ρ)g.

For each ROLE(GF [2s]), let f(s) be the number of samples of ROT we extract using
[BMN17]. Therefore, the number of ROT samples is m/2 = f(s)γ = f(s)2ρg, which implies
that m = f(s)4ρg.

We have production rate

α = m/n = f(s)2ρ
(lg q)(√q − 1− 2ρ) .

Given a fixed α, we can compute the value of ρ from this equation; namely,

ρ =
(lg q)(√q − 1)α
2(f(s) + (lg q)α) .

Define

QN := (γ/n) lg |F|+ (t/n) = [m/(2f(s)n)](lg q) + β = [(lg q)/(2f(s))]α+ β

Then we are interested in computing the small bias. By Theorem 6, we have that

δ =
(
d⊥ + η∗

√
q − 1 − 1

)
·
(

lg(|F| − 1)− h2

(
1

q + 1

))
− η∗
√
q − 1 lg |F|

=
[(√

q − 1
2 − ρ− 1

)
g

] [
lg(q − 1)− h2

(
1

q + 1

)]
− g(lg q)

Define QD := δ
n . Then we have

QD =

[(√
q−1
2 − ρ− 1

)
g
] [

lg(q − 1)− h2

(
1
q+1

)]
− g(lg q)

2(lg q)(√q − 1− 2ρ)g

=

(√
q−1
2 − ρ− 1

)(
lg(q − 1)− h2

(
1
q+1

))
− lg q

2(lg q)(√q − 1− 2ρ)

Now, let ζ = − 1
n lg ε = QD −QN . We need to ensure that QD > QN so that ζ > 0.

One Choice of parameters. Suppose for q = 214, we are interested in α = 16% and
β = 1%. For these choices of α and β, we have ζ > 0. Figure 9 shows the feasibility region
for α and β for q = 214, as well as other values of q.
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E Proof of Theorem 4

We will show that our correlation extractor can achieve t = (1/4 − g)n, m = Θ(n), and
ε = exp(−Θ(n)). In this section we use the same parameters as in Appendix D for general
field F of size q.

production rate α = m
n

leakage resilience β = t
n = 1

4 − g, where m = c′γ for some constant c′.
QD = δ

n , where δ is the small bias calculated in Appendix C.1
QN = (γ/n) lg |F|+ (t/n) = cα+ β = cα+ 1/4− g for some constant c > 0
ζ = − 1

n lg ε = QD −QN = δ/n− 1/4− cα+ g

Choose α = (g − ε′)/c > 0 for some constant ε′ ∈ (0, g). It is clear that α is a constant.
Then we need to show that there exists a large enough field size q∗ such that ζ is a positive
constant. Recall that

δ = (d⊥ + η∗√
q−1 − 1)(lg(q − 1)− h2( 1

q+1 ))− η∗√
q−1 lg q

d⊥ =
(√

q−1
2 − 2− ρ

)
η∗√
q−1

n = 2(η∗ − γ) lg q
γ = 2ρη∗√

q−1 , where ρ is a constant

Thus, we have the following as η∗ →∞

δ

n
≈

(
√
q−1
2 − 1− ρ) η∗√

q−1 (lg(q − 1)− h2( 1
q+1 ))− η∗√

q−1 lg q
2η∗(1− 2ρ/(√q − 1)) lg q

≈
lg(q − 1)− h2( 1

q+1 )
4(1− 2ρ/(√q − 1)) lg q −

(1 + ρ)
(

lg(q − 1)− h2( 1
q+1 )

)
− lg q

2(1− 2ρ/(√q − 1))(√q − 1) lg q
= f(q).

Note that f(q) is increasing and that f(q)→ 1/4 as q →∞, which implies that there exists
a large enough constant q∗ such that f(q∗) > 1/4− ε′/2. Therefore

ζ > (1/4− ε′/2)− 1/4− c · g − ε
′

c
+ g = ε′/2 > 0

which completes our proof.

F Proof of Theorem 5

For completeness, we restate and prove Theorem 5.
Let F = {F1, . . . , Fµ} be a ρ2-biased family of distributions over the sample space Fη for

field F of size q. Let (M,L) be a joint distribution such that the marginal distribution M is
over Fη and H̃∞(M |L) > m. Then, the following holds:

SD ( (FJ ⊕M,L, J) , (UFη , L, J) ) 6 ρ

2

(
|F|η

2m

)1/2

where J is a uniform distribution over [µ].
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Proof.

2SD ( (FJ ⊕M,L, J) , (UFη , L, J) )

= E
`∼L
j∼J

2SD ( (Fj ⊕M | `, j) , (UFη | `, j) ) = E
`∼L
j∼J

∑
x∈Fη

|(Fj ⊕M | `, j)(x)− (UFη | `, j)(x)|

6 E
`∼L
j∼J

(
|F|η

∑
x∈Fη

|[(Fj ⊕M | `, j)− (UFη | `, j)] (x)|2
)1/2

(1)

= |F|η/2 E
`∼L
j∼J

(
|F|η

∑
S∈Fη

∣∣∣[(Fj ⊕M | `, j)− (UFη | `, j)]
∧

(S)
∣∣∣2)1/2

(2)

= |F|η E
`∼L
j∼J

(∑
S∈Fη

∣∣∣(Fj ⊕M | `, j)∧(S)− (UFη | `, j)
∧

(S)
∣∣∣2)1/2

(3)

= |F|η E
`∼L
j∼J

 ∑
S∈Fη\{0}

∣∣∣(Fj ⊕M | `, j)∧(S)
∣∣∣2
1/2

(4)

= |F|η E
`∼L
j∼J

 ∑
S∈Fη\{0}

|F|2η
∣∣∣(Fj | `, j)∧(S)

∣∣∣2 ∣∣∣(M | `, j)∧(S)
∣∣∣2
1/2

(5)

6 |F|2η
 E
`∼L
j∼J

∑
S∈Fη\{0}

∣∣∣(Fj | `, j)∧(S)
∣∣∣2 ∣∣∣(M | `, j)∧(S)

∣∣∣2
1/2

(6)

= |F|2η
 ∑
S∈Fη\{0}

E
`∼L

E
j∼J

∣∣∣(Fj | `, j)∧(S)
∣∣∣2 ∣∣∣(M | `, j)∧(S)

∣∣∣2
1/2

(7)

= |F|2η
 ∑
S∈Fη\{0}

E
`∼L

[∣∣∣(M | `)∧(S)
∣∣∣2 E
j∼J

∣∣∣(Fj | `, j)∧(S)
∣∣∣2]
1/2

(8)

= |F|2η
 ∑
S∈Fη\{0}

E
`∼L

[∣∣∣(M | `)∧(S)
∣∣∣2 E
j∼J

∣∣∣(Fj | j)∧(S)
∣∣∣2]
1/2

(9)

6 |F|2η
 ∑
S∈Fη\{0}

E
`∼L

[∣∣∣(M | `)∧(S)
∣∣∣2 · ρ2

|F|2η

]1/2

(10)

6 ρ|F|η
(

E
`∼L

∑
S∈Fη

∣∣∣(M | `)∧(S)
∣∣∣2)1/2

(11)

6 ρ|F|η
(

E
`∼L

2−H∞(M | `)
)

(12)

= ρ|F|η
(

2−H̃∞(M | L)
)1/2

(13)

6 ρ|F|η
(

1
|F|η2m

)1/2
(14)

= ρ

(
|F|η

2m

)1/2
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(1) Cauchy-Schwartz (8) M is independent of j
(2) Corollary 2 (9) Fj is independent of ` for every j
(3) Linearity of Definition 4 (10) F is a ρ2-biased family
(4) Lemma 14 and Lemma 15 (11) Linearity of E
(5) Lemma 13 (12) Lemma 2
(6) Jensen’s Inequality (13) Definition of H̃∞
(7) Linearity of E (14) H̃∞(M |L) > m

J
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