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Abstract

We present PanORAMa, the first Oblivious RAM construction that achieves communication
overhead O(logN · log logN) for a database of N blocks and for any block size B = Ω(logN)
while requiring client memory of only a constant number of memory blocks. Our scheme can be
instantiated in the “balls and bins” model in which Goldreich and Ostrovsky [JACM 96] showed
an Ω(logN) lower bound for ORAM communication.

Our construction follows the hierarchical approach to ORAM design and relies on two main
building blocks of independent interest: a new oblivious hash table construction with improved
amortized O (logN + poly(log log λ)) communication overhead for security parameter λ and
N = poly(λ), assuming its input is randomly shuffled; and a complementary new oblivious
random multi-array shuffle construction, which shuffles N blocks of data with communication
O(N log log λ + N logN

log λ ) when the input has a certain level of entropy. We combine these two
primitives to improve the shuffle time in our hierarchical ORAM construction by avoiding heavy
oblivious shuffles and leveraging entropy remaining in the merged levels from previous shuffles.
As a result, the amortized shuffle cost is asymptotically the same as the lookup complexity in
our construction.
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1 Introduction

The cryptographic primitive of Oblivious RAM (ORAM) considers the question of how to enable
a client to outsource its database to an untrusted server and to query it subsequently without any
privacy leakage related to the queries and the database. While encryption can help with hiding
the outsourced content, a much more challenging question is how to hide the leakage from the
access patterns induced by the queries’ execution. This is leakage that is not only ruled out by
the strong formal definition of privacy preserving data outsourcing but has also been proven to be
detrimental in many practical outsourcing settings [25, 6]. Hiding access patterns is only interesting
when coupled with efficiency guarantees for the query execution in the following sense: there is a
trivial access hiding solution which requires linear scan of the whole data at every access. Once
such efficiency properties are in place, ORAM constructions also have another extremely important
application as they are a critical component for secure computation solutions that achieve sublinear
complexity in their input size [31, 24, 40].

Thus, the study of ORAM constructions has been driven by the goal of improving their band-
width overhead per access while providing hiding properties for the access patterns. This study
has been a main research area in Cryptography for the past thirty years, since the notion was
introduced by Goldreich [18], and it has turned ORAM into one of the classical cryptographic
concepts. The seminal works of Goldreich and Ostrovsky [18, 30, 19] introduced the first ORAM
constructions achieving square root and polylogarithmic amortized query efficiency. These early
works also considered the question of a lower bound on the amortized communication complex-
ity required to maintain obliviousness. They presented a lower bound result of O(logC N) blocks
of bandwidth overhead for any ORAM construction for a database of size N blocks and a client
with memory that can store C blocks. However, this result came with a few caveats, which were
clarified and more carefully analyzed in the recent work by Boyle and Naor [5]. A recent work of
Larsen and Nielsen [27] removed these caveats in the online model and presented an Ω(logN) block
communication lower bound for general storage models and computationally bounded adversaries.

ORAM Communication Lower Bound. The ORAM communication lower bound presented
by Goldreich and Ostrovsky [19] applied to constructions using restricted manipulation on the
underlying data (i.e., treating the data as monolithic blocks that are read from, written to and
moved between different memory positions), achieving statistical security and any block size. Boyle
and Naor [5] formalized the model of this lower bound as the “balls and bins” storage model and gave
much more insight into understanding the lower bound of Goldreich and Ostrovsky. They provided
evidence that extending the lower bound beyond the restricted model in the original result will be
a challenging task by showing a reduction from sorting circuits to offline ORAM where all queries
are given ahead of time, which essentially means that extending the offline ORAM lower bound
will imply new lower bounds for sorting circuits. At the same time, Boyle and Naor introduced an
online model for ORAM where queries are selected adaptively during execution. This model avoids
the relation to the lower bound on sorting circuits while reflecting the functionality of most existing
ORAM constructions, which opened the possibility that improving the lower bound in the online
model might be easier than in the offline setting. The recent work of Larsen and Nielsen [27] proved
the best ORAM lower bound which applies to the online model with computational guarantees,
and for any general storage model. However, the server is assumed to act only as storage and it is
known that allowing server-side computation can bypass the lower bound [14].

As we discussed above, the lower bound results apply to all algorithms that work for any block
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size. While there are constructions [38, 40] that match the lower bound in regimes when they are
instantiated with appropriately big block sizes, there is no known result that meets the lower bound
for every block size Ω(logN).

ORAM Constructions. While the lower bound of Goldreich and Ostrovsky has its caveats, it
has become the measure to compare with for every new construction with improved complexity.
We next overview the known ORAM constructions, their models and efficiency with respect to the
requirements for the lower bound. Existing ORAM schemes could be roughly divided into two
categories: constructions [35, 1, 13, 22, 26] that follow the hierarchical blueprint introduced in the
work of Goldreich and Ostrovsky [30, 19], and constructions [37, 17, 38, 12, 40, 36, 7] that follow
the tree-based template with a recursive position map, which was introduced in the work of Shi et
al. [37].

The idea underlying the first class of constructions is to divide the data in levels of increasing
size that form a hierarchy and to instantiate each level with an oblivious access structure that allows
each item to be accessed obliviously only once in that level. The smallest level in the hierarchy is
linearly scanned at each access and each block that is accessed is subsequently moved to this level.
To prevent overflowing of the top levels, there is a deterministic schedule, independent of the actual
accesses, that prescribes how blocks move from the smaller to the bigger levels.

Within the general hierarchical framework, the main optimization question considered in differ-
ent constructions is how to instantiate the oblivious structure in each level. The original Goldreich-
Ostrovsky construction [19] used pseudorandom functions (PRFs) resulting in O(log3N) amortized
communication overhead. Later, the work of Pinkas and Reinman [35] proposed the use of Cuckoo
hash tables. This work suffered from a subtle issue related to the obliviousness of the Cuckoo hash
tables, which was later fixed in the work of Goodrich and Mitzenmacher [22] who showed an ele-
gant algorithm to obliviously construct a Cuckoo hash table. Their main argument was a reduction
of the Cuckoo hash table construction to oblivious sorting that resulted in a O(log2N)-overhead
ORAM. Subsequently, Kushilevitz et al. [26] devised a balancing scheme that further improved
the bandwidth to O(log2N/ log logN). The work of Chan et al. [7] presented a unified framework
for hierarchical ORAM constructions and made explicit the notion of an oblivious hash table in
order to capture the properties of the oblivious structure needed for each level. All the above
constructions require that the client’s memory can hold only a constant number of blocks.

The known hierarchical ORAM constructions do not make any assumptions about the block
sizes used to store data in memory and can be instantiated with any block size B = Ω(logN).
Even the construction with best asymptotic efficiency among existing schemes, when instantiated
with a private random function in the balls and bins model, does not meet the logarithmic lower
bound in the case of client’s memory that holds only a constant number of blocks.

The other main construction template for ORAM schemes leverages the idea of mapping blocks
to random position map (PMAP) indices and then arranging the data in a binary tree with leaves
indexed according to the position map, where each block can reside only in a node on the path to its
corresponding PMAP leaf. Thus, in order to access a block it is sufficient to read the path indexed
by its PMAP value. In order to access efficiently the PMAP for each query, the construction stores
recursively the position map by partitioning it into blocks each of which contains at least two PMAP
indices. After the recursion the construction consists of a logarithmic number of trees of decreasing
size. Every time a block is accessed, it is assigned a new PMAP index and is moved to the root of
the tree. In order to prevent overflowing of nodes, the constructions periodically evict blocks down
their corresponding tree paths. The main difference between different tree-based ORAMs is related
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to the concrete eviction algorithms they use, which have been evolving and improving the ORAM
access overhead. The work of Shi et al. [37] that pioneered the tree-based approach achieved

O(log3N) communication. Gentry et al. [17] improved the overhead to O( log3N
log logN ). Currently

the most efficient tree-based construction is the Path ORAM construction [38], which achieves
O(log2N) bandwidth overhead for general block sizes. If instantiated with blocks of size Ω(log2N),
Path ORAM has bandwidth overhead of O(logN) blocks. The same efficiency holds for Circuit
ORAM [40], which optimizes circuit sizes for ORAM access functionality in secure computation.

The only computational assumption of the above tree-based constructions is related to the
encryption used to hide the content and thus they do offer statistical guarantees in the balls and bins
model. Several works [14, 28] also demonstrate how to bypass the lower bound of communication
complexity, if the server is allowed to do computation on the data it stores, which is enabled by
homomorphic encryption.

Our Contributions. In this paper we present PanORAMa, a computationally secure oblivious
RAM with O(logN ·log logN) bandwidth overhead and constant client memory1. Our construction
works for any block size B = Ω(logN). This assumption is very natural since all known ORAM
constructions including ours require that the blocks store their own addresses for correctness and
this already takes Θ(logN) bits. In addition, PanORAMa is in the balls and bins model of Boyle and
Naor [5] as it treats each data block as an atomic piece of data and the server only fetches blocks from
memory, writes blocks to memory and moves blocks between different memory positions. Thus,
PanORAMa achieves currently the best asymptotic communication overhead among constructions
that work with general block sizes, operate in the balls and bins model and require constant number
of blocks client memory.

Our construction can be modified in a straightforward way to obtain statistical security in the
balls and bins model if the client is provided with access to a private random function, which
matches the assumptions in the original lower bound (see Theorem 6 in [19]). In this case, we
obtain a balls and bins construction that is only O(log logN) away from the lower bound overhead
proven by Goldreich and Ostrovsky [19]. Our construction is also O(log logN) away from the lower
bound by Larsen and Nielsen [27] for general storage models and computational adversaries. As a
result, we show that the balls and bins model of computation is almost as strong as any general
storage model and can only require at most O(log logN) extra communication overhead.

The PanORAMa construction relies on two main building blocks, which can have applications
outside ORAM of independent interest: an oblivious hash table (OHT) and an oblivious random
multi-array shuffle algorithm. For both, we provide new efficient constructions. Specifically,

• Oblivious Hash Table (OHT). An oblivious hash table offers the same functionalities as a
regular hash table (efficient storage and access) while guaranteeing access obliviousness for
non-repeating patterns. We extend the definition of OHT [7] that consists of initialization
and query algorithms as follows. We split the initialization into Init, which shuffles the input
items and inserts dummies, and Build, which uses the output of Init to create the OHT storage
structure. We add an algorithm Extract, which obliviously returns all unqueried items from
the OHT appropriately padded. Our OHT construction offers an amortized access efficiency
of O (logN + log log λ) blocks assuming the starting data is randomly shuffled, where λ is the
security parameter.

1We measure bandwidth and client memory using the size B of a block as a unit.
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• Oblivious Random Multi-Array Shuffle. Complementary to the OHT primitive is our efficient
oblivious random multi-array shuffle algorithm that shuffles together data which initial order
has partial entropy with respect to the adversary. More precisely, our algorithm shuffles
together A1, . . . , AL arrays of total size N , each of which is independently and randomly
shuffled. Suppose that the L arrays are arranged in decreasing size. Then, our shuffle requires
O(N log log λ+ N logN

log λ ) blocks of communication when there exists cutoff = O(log log λ) such

that |Acutoff |+ . . .+ |AL| = O(N log log λ
logN ).

Technical Overview of Our Result. Our ORAM construction follows the general paradigm of
hierarchical ORAM constructions as laid out by Goldreich and Ostrovsky [19] (see Chan et al. [7] for
a formalized presentation of the framework). As we discussed above, the hierarchical constructions
distribute the data in several levels, which are instantiated with oblivious hash tables that provide
access obliviousness for non-repeating queries.

In order to prevent overflow of the OHTs implementing the ORAM levels, every 2i accesses,
all levels of size less or equal than 2i are merged and shuffled together and placed in an oblivious
data structure in the level of capacity 2i+1. While a level of capacity 2j ≤ 2i services exactly 2j

queries before shuffling, the number of real items retrieved from this level can range from 0 to 2j .
All queried items have been moved to smaller levels and thus should not be included in the shuffle
as items coming from this level. The remaining at most 2j unqueried items in the oblivious data
structure need to be extracted and included in the larger capacity level for future queries. As a
result, the shuffle step can be broken down into three phases: extracting unqueried items from each
level, merging the content of multiple levels and initializing a oblivious hash table for the new level.
For many existing hierarchical ORAMs, the dominant cost in the communication complexity arises
from to the use of several oblivious sorts that are used to implement the shuffling functionality while
removing queried items. The best known data-oblivious sorting algorithms [39, 20, 21, 8] used in
these constructions require communication O(N logN). In our work, we show that all three shuffle
phases can be achieved without the use of expensive oblivious sorts by leveraging and maintaining
entropy from previous shuffles, which is manifested in the fact that the unqueried items in each level
are essentially “randomly shuffled”. Similar ideas were previously explored for simpler scenarios
in [34].

The first phase for the ORAM shuffle step is the OHT extraction for all shuffled levels. Consider
the extract step for level j ≤ i during a shuffle of levels from 1 to i. Recall that the OHT at each
level offers oblivious access for any sequence of non-repeating queries. This is typically achieved
by obliviously shuffling all real items and Θ(2j) dummy items together during initialization. As a
result, the remaining unqueried real and dummy items persist in some obliviously shuffled manner.
We use this remaining entropy of the unqueried items to construct an OHT extraction algorithm
that efficiently extracts 2j items consisting of all unqueried real items and a sufficient number of
unqueried dummy items in a random order oblivious to the adversary without the use of expensive
oblivious sorts. It suffices to only extract unqueried items as all queried items and their possibly
updated version will be appended to the smallest level after querying. For the smallest level, all
items must be extracted as well as deduplicated. We use an oblivious sort for this since the smallest
level will only contain O(logN) items. The OHT extraction mechanism on each level entering the
shuffle pads the unqueried items with dummy items up to the total capacity of the OHT. Thus,
the extracted items from each level will have different numbers of dummies. However, when we
add all extracted items from all levels, we will have equal numbers of dummy and real items, which
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is exactly the distribution we need for the new level that will be initialized after the shuffle. We
discuss the intuition for efficient extraction in the overview of our OHT construction in Section 4.

The next step of the shuffle is to obliviously merge all extracted items from multiple levels.
One way to achieve this is using an oblivious sort over all items, which would require O(N logN)
for the largest levels. Oblivious sorting achieves very strong hiding guarantees even against an
adversary that knows the entire initial order of the data. However, in the case of the ORAM shuffle
mixing together the items from the shuffled ORAM levels, we have the additional leverage that the
inputs for the shuffle coming from the extraction of each OHT at each level are already randomly
shuffled arrays. More specifically these are multiple arrays of geometrically decreasing size where
each array is randomly ordered in a manner oblivious to the adversary. We design an oblivious
random multi-array shuffle that obliviously merges the randomly ordered input arrays into a single
array, which is a random shuffle of all elements. This algorithm leverages the entropy coming from
the random shuffles of each input array to avoid the cost of expensive oblivious sort. We discuss
the intuition behind this algorithm in the overview our multi-array shuffle in Section 3.

The final phase in the ORAM step shuffle is the OHT initialization for level i + 1 using the
randomly permuted array that is output from the multi-array shuffle. We manage to construct an
efficient algorithm for the initialization that avoids oblivious shuffles of the whole input by crucially
relying on the fact that the input is already randomly shuffled. We further discuss the intuition for
the initialization algorithm of our OHT construction in Section 4.

Oblivious Hash Table. Our oblivious hash table construction is inspired by the two-tier hash
scheme proposed by Chan et al. [9], however, with some significant changes that enable constructing
the OHT without using an oblivious sort on all the data blocks. The idea of Chan et al. [9] is to
allocate the database items into bins on the first level of the hash table using a PRF, where the
size of the bins is set to be O(logδ λ), for some constant 0 ≤ δ < 1, which does not guarantee
non-negligible overflow probability. All overflow items are allocated to a second level where they
are distributed using a second PRF. In order to initialize this two-tier hash scheme, the authors
use an oblivious sort which comes at a cost O(N logN) for N blocks of data.

Our goal is to obtain a construction of an oblivious hash table that allows more efficient oblivious
initialization assuming that the database items are already randomly shuffled. The assumption of
the randomly shuffled input is not arbitrary. We will use our oblivious random multi-array shuffle
to construct this random shuffle of the input in the context of our ORAM construction.

Our initialization algorithm sequentially distributes input items in O(log log λ) levels. At each
level, all remaining items are distributed into small bins according to a secret PRF where the bin
sizes are not hidden. A secret distribution for each bin’s real size is sampled and several small
oblivious shuffles are employed to remove additional blocks from each bin for the next level. In
more detail, we first assign items into buckets according to a PRF non-obliviously taking linear
time in the size of the data. Then, we sample from a binomial distribution loads for all bins that
correspond to randomly distributing only ε fraction of the total number of items. We choose a
cutoff point, thrsh, such that with overwhelming probability, it is larger than any bin load sampled
from the binomial distribution in the second step and, at the same time, is smaller than any load
from the distribution of items induced by the PRF in the first step. We cut the size of each
bin to exactly thrsh items, among which there will be as many real items as the loads sampled
from the binomial distribution and the rest will be dummy items. The remaining overflow items
are distributed recursively in following levels of the OHT where the size of the smallest level is
O(N/ logN). This step guarantees that the oblivious property for the query access patterns since
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they will be distributed according to the bin loads induced from the binomial samples, which are
independent from the loads due to the PRF that the server observed in the clear.

The items assigned to each bin in each level of the OHT are instantiated with another oblivious
hash table construction which we call oblivious bin. An oblivious bin is an OHT with small input
size O(poly(log λ)) for which we can afford to use an oblivious sort for initialization and extraction
without incurring prohibitive efficiency cost. In the full version [32] we present an instantiation for
oblivious bins using a Cuckoo hash table.

The OHT query algorithm consists of one oblivious bin query in each level. The single bin in
the smallest level is always queried. In every other level, we either query the bin determined by
the corresponding PRF if the item has not been found yet, or query a random bin otherwise.

Last but not least, our oblivious hash tables have an oblivious extraction procedure that allows
to separate the unqueried items in the OHT with just an overhead of O(log log λ) per item. Addi-
tionally we guarantee that the extracted items are randomly shuffled and, thus, we can use them
directly as input for our multi-array shuffle. The extraction procedure for our OHT can be done
by implementing the extraction on each of the oblivious bins and concatenating the outputs, since
the items were distributed to bins using a secret distribution function. We obliviously extract each
bin using an oblivious sort.

Oblivious Random Multi-Array Shuffle. Our multi-array random shuffle relies on the obser-
vation that we do not need to hide the access pattern within each of the input arrays since they are
already shuffled. Recall that in the context of ORAM, these input arrays represent the unqueried
items extracted from OHTs of smaller levels. Since our shuffle algorithm will be accessing each
entry of each input array only once, its initial random shuffle suffices for the obliviousness of these
accesses. However, the multi-array shuffle algorithm still needs to hide the interleaving accesses to
the different input arrays. One way to achieve this is to obliviously shuffle the accesses to different
input arrays. If we do this, in general, we will end up doing an oblivious shuffle on the whole input
data, which is too expensive.

Instead, we partition the input arrays by distributing their items at random into a number of

bins of size O( log3 λ
1−2ε ). We also partition the output array into bins of size O(log3 λ), where each

item of the output array is assigned an input array tag that is encrypted and remains hidden. With
all but negligible probability each resulting input bin contains a sufficient number of items from
each input array in order to initialize each output bin. The partitioning into input and output bins
is performed non-obliviously but does not cause any additional leakage as the inputs arrays are
shuffled and the input arrays tags for all output array items are encrypted.

We pair input and output bins and we use items from an input bin to initialize the items in the
corresponding output bin using a sequence of oblivious sorts. In each such initialization, we also
have a number of leftover real items that were not needed for the output bin (the sizes of the input
and output bins were chosen in a way that guarantees that we always have at least as many items
from each input array in the input bin as needed in the output segment). We apply the multi-array
random shuffling algorithm recursively on the arrays containing leftover items from the executions
filling different output bins in order to initialize the remaining output bins (there were more output
bins than input bins but output bins had smaller sizes). After all items have been distributed from
input bins to output bins using the above construction, we use to reverse mapping from output
bins to the output array to place the items in the output array.

The intuition why the above approach helps us to improve our efficiency is that we are using
oblivious sort on small arrays that are of size O(log3 λ) and we perform O( N

log3 λ
) of these shuffles.
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Thus, the total shuffle cost remains O(N log log λ).
Our resulting shuffling procedure achieves such efficiency that it is no longer the dominant cost

in the amortized query complexity for our final ORAM construction. As a result, the optimization
technique presented in the work of Kushilevitz et al. [26], which balances the cost of the lookups
and the cost of the shuffle by splitting each level into several disjoint oblivious hash tables that get
shuffled into separately, does not result in any efficiency improvement when applied to our scheme.

Paper Organization. We present in Section 2 the definitions of the primitives we use in the rest
of the paper. Section 3 describes our construction of an oblivious random multi-array shuffle, which
relies on permutation decomposition lemmas that provide alternative ways to sample randomly a
permutation, which are presented in Appendix A. In Section 4 we describe our general oblivious
hash table construction and its building block the oblivious bin primitive. Finally, we present our
ORAM construction in Section 5. In Appendix B we present an additional overview of related
work.

2 Definitions

In this section we present the definitions for the existing primitives that we use for our constructions
as well as definitions of the new primitives that we introduce in our work.

Notation. We denote Binomial[n, p] the binomial distribution with parameters: n trials each of
which with success probability p. We use X ← Binomial[n, p] to denote that the variable X is
sampled from the binomial distribution according to its probability mass function Pr(k;n, p) =
Pr[X = k] =

(
n
k

)
pk(1 − p)n−k. In a setting where an algorithm Alg is executing using external

memory, we denote by Addrs[Alg] the memory access pattern that consists of all accessed addresses
in the memory. We use PPT as a shorthand for “probabilistic polynomial-time.”

In analyzing our constructions, we express bandwidth and client memory using the size B of a
block as a unit.

2.1 Oblivious RAM

Definition 1 (Oblivious RAM). An oblivious RAM scheme ORAM = (ORAM.Init,ORAM.Access)
consists the following two algorithms:

• (D̃, st) ← ORAM.Init(1λ, D): the initialization algorithm takes as input a database D and
outputs a initialized memory structure D̃.

• (v, st′) ← ORAM.Access(st, D̃, I): the ORAM access algorithm takes as input the ORAM
database D̃, the current state st as well as an instruction I = (op, addr, data), where op ∈
{read,write} and if op = read, then data = ⊥. If op = read, the access algorithm returns as
v the data stored at address addr in the database. Else, if op = write the access algorithm
writes data in location addr in the database. Furthermore, an updated state st′ is returned.

The resulting construction is oblivious if there exists a PPT simulator Sim = (SimInit, SimAccess)
such that for any PPT adversarial algorithm A and for any n = poly(λ),

∣∣∣Pr
[
b = 1 | b← ExptReal,ORAM

A (λ, n)
]
− Pr

[
b′ = 1 | b′ ← ExptIdeal,ORAM

Sim,A (λ, n)
]∣∣∣ < negl(λ),

where the real and ideal executions are defined as follows:
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ExptReal,ORAM
A (λ, n) ExptIdeal,ORAM

Sim,A (λ, n)

(D, stA)← A1(1λ) (D, stA)← A1(1λ)

χ← Addrs[(D̃, st)← ORAM.Init(1λ, D)] χ← Addrs[(D̃, stSim)← SimInit(1
λ, |D|)]

for j = 1 to n for i = 1 to n

(Ij , stA)← A2(stA, D̃, χ) (Ij , stA)← A2(stA, D̃, χ)

χAccess ← Addrs[(st, D̃)← ORAM.Access(st, D̃, Ij)] χAccess ← Addrs[(st, D̃)← SimAccess(stSim)]

χ← χ ∪ χAccess χ← χ ∪ χAccess

2.2 Oblivious Random Multi-Array Shuffle

In oblivious shuffling, we have one array of N data blocks and the task of the algorithm is to shuffle
the blocks into a destination array so that an adversary observing the accesses of the algorithm to
the blocks does not obtain any information regarding the final permutation. The security guarantee
holds even if the initial arrangement of the blocks is known to the adversary. This is sufficient to
be used in the design of Oblivious RAM. An oblivious random multi-array shuffle instead offers
a weaker security guarantee, which we show also suffices for the design of an Oblivious RAM.
For a range of parameters of interest, we present an implementation with improved efficiency in
terms of bandwidth overhead compared to oblivious shuffling. Roughly speaking, in an oblivious
random multi-array random shuffle, we have N blocks partitioned into L arrays A1, . . . ,AL and
the task is to shuffle the N blocks into a destination array according to a permutation chosen
uniformly at random. The associated security notion still guarantees that no information regarding
the final permutation of the blocks is leaked. However, the adversary’s knowledge is limited to the
distribution of blocks to each array and does not include each block’s specific location within the
array. Let us now proceed more formally.

2.3 Oblivious Bin

We introduce a slight modification of our oblivious hash table definition, which we call oblivious
bin. As the name implies, we will use this oblivious structure to store and access data in oblivious
manner within bins which will be used as building blocks in out oblivious hash table scheme. We
will use the oblivious bin for data of smaller size.

Definition 2 (Oblivious Bin). An oblivious hash table scheme OblivBin = (OblivBin.Init, OblivBin.Build,
OblivBin.Lookup, OblivBin.Extract) consists of the following algorithm:

• (D̃, st) ← OblivBin.Init(D): an algorithm that takes as input an array of key-value pairs
D = {(ki, vi)}Ni=1 and outputs a processed version of it D̃.

• (S̃, H̃, st′)← OblivBin.Build(D̃, st): an algorithm that takes as input a processed database D̃
and a state and initializes the hash table H̃ and an additional array S̃ and updates the state
st.

• (v, S̃′, H̃ ′, st′) ← OblivBin.Lookup(k, H̃, S̃, st): an algorithm that takes as input the oblivious
hash table, the additional array, the state produced in the build stage and a lookup key, and
outputs the value vi corresponding to the key ki together with updated hash table H̃ ′ and
state st′. If the k is not found, then v :=⊥.
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ExptReal,OblMultArrShuff
A (λ) ExptIdeal,OblMultArrShuff

Sim,A (λ)

(A1, . . . ,AL, stA)← A1(1λ) (A1, . . . ,AL, stA)← A1(1λ)

for i = 1 to L

Ãi ← τi(Ai) where τi is a random permutation

on |Ai| elements

χ← Addrs[D← OblMultArrShuff(A1, . . . ,AL)] χ← Addrs[D← Sim(|A1|, . . . , |AL|)]
Let π be the induced permutation of the elements in Let π′ be a random permutation on

∑L
i=1 |Ai|

A1, . . . ,AL mapped to D elements

Output b← A2(D, π, stA, χ) Output b← A2(D, π′, stA, χ)

Figure 1: Real and ideal executions for OblMultArrShuff.

• (D̃, st′) ← OblivBin.Extract(H̃, S̃, st): this is an algorithm that takes the hash table, the
auxiliary array and the state after the execution of a number of queries and outputs a database,
which contains only the unqueried items (ki, vi) ∈ D and is padded to size N .

The oblivious property for a bin is identical to that of the oblivious hash table.

2.4 Oblivious Random Multi-Array Shuffle

We start with the definition of a random multi-array shuffling algorithm that obliviously shuffles
together the content of several input array each of which is independently shuffled (see full version
for more detailed discussion of the functionality).

Definition 3 (Oblivious Random Multi-Array Shuffle). A random multi-array shuffle algorithm is
an algorithm D← OblMultArrShuff(A1, . . . ,AL) that takes as input L arrays A1, . . . ,AL containing
a total of N blocks and outputs a destination array D that contain all N blocks. Each of the L
arrays are assumed to have been arranged according to a permutation chosen uniformly at random.
The blocks in D should be arranged according to a permutation chosen uniformly at random.

A random multi-array shuffle algorithm OblMultArrShuff is oblivious if there exists a PPT
simulator Sim, which takes as input (|A1|, . . . , |AL|), such that for any PPT adversary algorithm
A = (A1,A2):∣∣Pr
[
b = 1 | b← ExptReal,OblMultArrShuff

A (λ)
]
−Pr

[
b′ = 1 | b′ ← ExptIdeal,OblMultArrShuff

Sim,A (λ)
] ∣∣ < negl(λ)

where the real and ideal executions are defined in Figure 1.

Intuitively, the definition above captures the security with respect to an adversary that does not
know the original order of the items in the input arrays (i.e., each array is randomly shuffled) but
is allowed to pick the partition of the N blocks across the L levels. We require that the adversary
does not obtain any information about the final permutation of the N blocks and we formally
capture this requirement by providing the adversary with the actual induced permutation in the
real execution and a completely random permutation in the ideal execution. Thus, if the adversary
cannot distinguish the real and the ideal experiment, it follows that it has not learned anything
about the permutation by observing the access pattern leaked from the shuffle algorithm.
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2.5 Oblivious Hash Table

Next we define our oblivious hash table, which provides oblivious access for non-repeating queries.
In addition, it has an extraction algorithm which allows to extract obliviously the unqueried items
remaining in the OHT in a randomly permuted order.

Definition 4 (Oblivious Hash Table). An oblivious hash table scheme OblivHT = (OblivHT.Init,
OblivHT.Build, OblivHT.Lookup, OblivHT.Extract) consists of the following algorithms:

• (D̃, st) ← OblivHT.Init(D): an algorithm that takes as input an array of key-value pairs
D = {(ki, vi)}Ni=1 and outputs a processed version of D, which we denote D̃.

• (H̃, st′) ← OblivHT.Build(D̃, st): an algorithm that takes as input a processed database D̃
and a state and initializes the hash table H̃ and updates the state st.

• (v, H̃ ′, st′) ← OblivHT.Lookup(k, H̃, st): an algorithm that takes as input the oblivious hash
table, H̃, the state produced in the build stage, st, and a lookup key, k, and outputs the value
vi corresponding to the key ki together with an updated hash table, H̃ ′, and updated state,
st′. If the k is a dummy query, then v :=⊥.

• (D̃, st′) ← OblivHT.Extract(H̃, st): an algorithm that takes the hash table, H̃, and the state
after the execution of a number of queries, st, and outputs a database D̃, which contains only
the unqueried items (ki, vi) ∈ D and is padded to size N with dummy items, and the content
of D̃ is randomly permuted.

The resulting hash scheme is oblivious if there exists a PPT simulator Sim = (SimInit, SimBuild,
SimLookup, SimExtract), which takes as input the size of the database |D|, such that for any PPT
adversary algorithm A = (A1,A2,A3) and for any n = poly(λ),∣∣Pr

[
b = 1 | b← ExptReal,OblivHT

A (λ, n)
]
− Pr

[
b′ = 1 | b′ ← ExptIdeal,OblivHT

Sim,A (λ, n)
] ∣∣ < negl(λ),

where the real and ideal executions are defined in Figure 2.

Although it may not be apparent at this stage why we have separate OblivHT.Init and OblivHT.Build
algorithms, the reason is that in the context of our ORAM construction we will instantiate the
OblivHT.Init algorithm with our oblivious random multi-array shuffle.

We want to guarantee that the output of Extract algorithm is randomly shuffled from the point
of view of the adversary. We formalize this similarly to the oblivious random multi-array shuffle,
by providing the adversary with the real induced permutation in the real execution and a random
independent permutation in the ideal execution. If the adversary cannot distinguish which is the
real permutation, it means that it did not learn anything from the access patterns it observed.

3 Oblivious Random Multi-Array Shuffle

In this section, we present a novel oblivious random multi-array random shuffling algorithm that
realizes the idea of leveraging entropy in the input. In particular, we assume that each input array
has been previously shuffled in an order that is not known by the adversary. This assumption allows
us to achieve better efficiency. Our algorithm improves on general oblivious sorting algorithms
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ExptReal,OblivHT
A (λ, n) ExptIdeal,OblivHT

Sim,A (λ, n)

(D, stA)← A1(1λ) (D, stA)← A1(1λ)

χInit ← Addrs[(D̃, st)← OblivHT.Init(D)] χInit ← Addrs[(D̃, stSim)← SimInit(|D|)]
χBuild ← Addrs[(H̃, st)← OblivHT.Build(D, st)] χBuild ← Addrs[(H̃, stSim)← SimBuild(|D|)]
χLookup ←⊥, χ← (χInit, χBuild) χLookup ←⊥, χ← (χInit, χBuild)

for i = 1 to n for i = 1 to n

(ki, stA | {ki 6= kj}1≤j<i)← A2(H̃, stA, χ, χLookup) (ki, stA | {ki 6= kj}1≤j<i)← A2(H̃, stA, χ, χLookup)

χLookup ← Addrs[(H̃, vi, st)← OblivHT.Lookup(ki, H̃, st)] χLookup ← Addrs[(H̃, stSim)← SimLookup(H̃, stSim)]

χExtract ← Addrs[(D̃, st)← OblivHT.Extract(H̃, st)] χExtract ← Addrs[H̃ ← SimExtract(H̃, stSim)]

Let π be the permutation induced on the items D \ {ki}ni=1 Let π′ be a random permutation on N items

and the padding dummies in D̃

Output b← A3(D̃, π, stA, χExtract) Output b← A3(D̃, π′, stA, χExtract)

Figure 2: Real and ideal executions for OblivHT.

achieving bandwidth of O(N log log λ+ N logN
log λ ) blocks for N data blocks. Our entropy requirement

for the input comes in the following form: the N input blocks are divided in L input arrays,
A1, . . . ,AL, each of which is randomly permuted in a manner unknown to the server storing the
arrays. The arrays have sizes N1, . . . , NL where Ni ≥ Ni+1 for i = 1, . . . , L, and there exists
cutoff = O(log log λ) such that |Acutoff | + . . . + |AL| = O(N log log λ

logN ) and |Ai| = Ω( N
log λ) for all

i ∈ {1, . . . , cutoff − 1}, which is the case for geometrically decreasing input array sizes that arise in
the context of the ORAM shuffles.

As all the input arrays are randomly ordered, it suffices to distribute items based only on the
array indices. To ensure the expectations are tightly concentrated, we require input arrays to be at
least Ω( N

log λ) size. Thus, as a first step all small input arrays must be shuffled together in a single
input array using an oblivious sort. Next we randomly sample an assignment, Assign, that specifies
an array index, i ∈ [L] for each location of the output array D with the intention that if Assign(j) = i
for some output array index, j ∈ [N ], then our algorithm should distribute an item from input array
Ai to the j-th location of the output array, D[j]. To distribute items, our algorithm randomly
partitions each of the input arrays A1, . . . ,AL into m̃ input bins, Binin

1 , . . . ,Binin
m̃, of expected polylog

size, i.e., each input bin contains elements from all input arrays. The output array D is also
partitioned into m output bins, Binout

1 , . . . ,Binout
m , of expected polylog size but slightly smaller than

the input bins Binin. To ensure output bins are smaller, m is chosen to be larger than m̃. We
pair up input bins and output bins until we run out of output bins. As long as the input arrays
are large enough, it can be shown that any input bin will have sufficient number of blocks from
each input arrays to fill in the output array locations of the corresponding output bin according to
Assign. Using oblivious sorts on both the input and output bin, the blocks in the input bin can be
obliviously placed into the corresponding output array locations. All unused blocks of the input
bin are padded to hide sizes and placed back into leftover bins LeftoverBin which are separated
according to their original input arrays.

Once all input and output bin pairs are processed, a fraction of the input items have been placed
into an appropriate output array locations. Our algorithm will recursively apply the algorithm using
the leftover bins and unoccupied output array locations as input. Note that revealing which output
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bins are initialized in the recursive steps does not have any additional leakage as long as we are
hiding which items from each input array are placed in these output bins. This is achieved by
the oblivious manner of initializing the leftover bins. Each iteration reduces the input items by a
constant fraction. After O(log logN) recursive iterations, there are O( N

logN ) remaining items, and
we use an oblivious sort to complete the algorithm with only O(N) overhead.

Construction 5. [Oblivious Random Multi-Array Shuffle] We define our oblivious random multi-
array shuffle algorithm OblMultArrShuff, which will also use algorithms OblMultArrShuff.BinShuffle
and OblMultArrShuff.Shuffle as building blocks.

OblMultArrShuff. This algorithm takes as input L shuffled arrays and outputs array D, which
contains a random permutation of the input array elements.

D← OblMultArrShuff(A1, . . . ,AL):

1. Initialize the output array D to be an empty array of size N := |A1|+ . . .+ |AL| blocks.

2. Choose the largest cutoff such that |Acutoff | ≥ N
log λ and then randomly permute the entries of

the arrays Acutoff , . . . ,AL into A0,cutoff using an oblivious random shuffle.

3. Initialize A0,1, . . . ,A0,cutoff−1 with the content of A1, . . . ,Acutoff−1 respectively.

4. Sample a random assignment function Assign : [N ]→ [cutoff] such that |{b ∈ [N ] : Assign(b) =
i}| = |A0,i| for every i ∈ [cutoff]. Since we assume only constant local memory, which does
not fit the description of Assign, we use the following oblivious algorithm for sampling Assign
at random:

(a) Store an encryption of cnti := |A0,i|, for i ∈ [cutoff] and an encryption of cnt = N on the
server.

(b) For each block b ∈ [N ], set Assign(b) = i with probability cnti
cnt , for i ∈ [cutoff]. We do

this obliviously as follows: choose a random value rb ∈ [cnt] and set Assign(b) to be
equal to the minimal s such that cnt1 + . . . + cnts ≥ rb and s is computed by scanning
the encrypted integers cnt1, . . . , cntcutoff . During the scanning cnts and cnt are each
decreased by 1. Store (b,Enc(Assign(b)) at the server.

5. Let E0 be the array {(b,Enc(Assign(b)))}b∈[N ] describing Assign computed and stored at the
server in the previous step. Note, the server knows the first indices of each pair in E0 as they
are unencrypted.

6. Set L := cutoff.

7. Run OblMultArrShuff.Shuffle(A0,1, . . . ,A0,L,D,E0, N, 0).

8. Return D.

OblMultArrShuff.Shuffle. This algorithm takes as input L randomly shuffled arrays, an output array
D, which might be partially filled, the set of empty indices bi in D together with their corresponding
encrypted Assign(bi) values stored in E`, and an index ` corresponding the current level of recursion.
The algorithm fills D through several recursive steps using the encrypted values of Assign in E` and
the input arrays A`,1, . . . ,A`,L.

OblMultArrShuff.Shuffle(A`,1, . . . ,A`,L,D,E`, `):
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1. If |A`,1|+ . . .+ |A`,L| ≤ N
log λ , assign the items in A`,1, . . . ,A`,L to the remaining open positions

in D using the Assign mappings stored in E` by running:

OblMultArrShuff.BinShuffle(A`,1 ∪ . . . ∪ A`,L,E`,D).

2. Set m := (2ε)` N
log3 λ

and m̃ := (1− 2ε)m.

3. Initialize m̃ input bins Binin
1 , . . . ,Binin

m̃ with random subsets of blocks from the inputs arrays
as follows. For each input array A`,i, i ∈ [L] distribute its blocks across Binin

1 , . . . ,Binin
m̃

assigning each block a bin at random and recording an encryption of the source array index
i. The items of Binin

1 , . . . ,Binin
m̃ are stored encrypted on the server. Note Binin

1 , . . . ,Binin
m̃ will

have different sizes. Furthermore, the above is done in a non-oblivious manner and the server
knows the distribution of the blocks from each A`,i across the input bins.

4. Initialize m output bins Binout
1 , . . . ,Binout

m with random subsets of pairs from E` by assigning
each pair from E` to a randomly selected bin. The items of Binout

1 , . . . ,Binout
m are stored

encrypted on the server. Note the sizes of Binout
1 , . . . ,Binout

m will be different. Furthermore,
the above is done in a non-oblivious manner and the server knows the distribution of the blocks
from each E` across the output bins. Therefore, the server knows the subset of positions from
D assigned to each output bin - these are the b values in each pair (b,Enc(Assign(b))) of E`.

5. Initialize A`+1,1, . . . ,A`+1,L to be empty block arrays.

6. For j = 1, . . . , m̃:

(a) Distribute the blocks from Binin
j in D according to the positions specified by Assign in

the pairs in Binout
j by running

(LeftoverBin1, . . . , LeftoverBinL)←
OblMultArrShuff.BinShuffle(Binin

j ,Binout
j ,D).

(b) Append LeftoverBini to A`+1,i for all i ∈ [L].

7. Collect all uninitialized indices in D together with their corresponding mappings under Assign,
which have been distributed in output bins Binout

m̃+1, . . . ,Binout
m , and set E`+1 := Binout

m̃+1∪ . . .∪
Binout

m .

8. Execute recursively the shuffling functionality on the remainders of the input arrays, which
have not been placed in D so far but were returned as leftovers from the OblMultArrShuff.BinShuffle
executions above, by running OblMultArrShuff.Shuffle( A`+1,1, . . . ,A`+1,L,D,E`+1, `+ 1).

BinShuffle. This is an algorithm that takes as input a bin Binin that contains items, a bin Binout that
contains mappings under Assign of a subset of indices in the input D. BinShuffle distributes all but
an 2ε fraction of the items in Binin into D according to the mappings and positions of D specified in
Binout. The items of Binin that are not placed in D are returned in leftover bins separated according
to their input arrays.

(LeftoverBin1, . . . , LeftoverBinL) ← OblMultArrShuff.BinShuffle(Binin,Binout,D)
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1. For i ∈ [L], create NumLeftoveri := (4ε)NiN log3 λ dummy blocks tagged with an array index i
and append them encrypted to Binin.

2. Obliviously sort Binin according to array index of the blocks placing real blocks before dummy
blocks with the same array index.

3. Let kout
i be the number of pairs (b,Assign(b)) ∈ Binout such that Assign(b) = i for all i ∈ [L].

We compute the values kout
i privately in the following oblivious manner:

(a) Initialize all kout
1 , . . . , kout

L to 0 and store them encrypted on the server.

(b) For each pair (b,Assign(b)) ∈ Binout, scan all the ciphertexts of kout
1 , . . . , kout

L and only
increment kout

Assign(b).

4. Tag all items in Binin with moving, if they are a real item that will be placed in D using the
Assign mapping from Binout; leftover if they are real or dummy items that will be returned as
leftover; or unused if they are dummy items that will be discarded. We obliviously tag items
as follows: for each block j in Binin:

(a) Let i be the input array index of the j-th block in Binin.

(b) For t ∈ [L], download the counter kout
t . If t 6= i, reencrypt and upload back the counter.

If t = i, upload an encryption of a decremented counter Enc(kout
t − 1).

(c) Tag the j-th block as follows: if kout
`,i > 0, then the block is marked as real. If

−NumLeftoveri < kout
`,i ≤ 0, then the block is marked as leftover. Otherwise, the block is

marked as unused.

5. Obliviously sort Binin according to the tags computed in the previous step in a manner where
all blocks with tag moving precede all blocks with tag leftover and both of these precede
blocks with tags unused. All blocks with the same tag are sorted according to their input
array index.

6. The blocks in Binin are separated in the following way:

(a) Blocks that will be placed in D - these are the first |Binout| blocks in the sorted Binin,
which are moved to TempD;

(b) Blocks that will be returned as leftover blocks: these are the next L groups of blocks of
sizes NumLeftover1, . . . ,NumLeftoverL blocks, which are placed in LeftoverBin1, . . . , LeftoverBinL
respectively.

7. Obliviously sort the pairs (b,Assign(b)) in Binout according to input array index Assign(b).
Before sorting, encrypt the b value of each pair of Binout to ensure obliviousness. Recall the
Assign(b) value is already encrypted. Note that TempD and Binout now contain the same
numbers of items tagged with each of the input array indices, which are also sorted according
to these indices. Thus, for each position i ∈ [|Binout|], the block in position i in TempD has
input array index equal to Assign(bi), where (bi,Assign(bi)) is the i-th pair in the sorted Binout.

8. Assign to each block in TempD its corresponding location in D as follows: for i ∈ [|Binout|],
tag the block in position i in TempD with an encryption of bi, where (bi,Assign(bi)) is the i-th
pair in Binout.
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9. Obliviously sort TempD according to tags computed in the previous step and copy the content
of TempD in the positions denoted by their tags in D. Note these positions of D are public
since the positions from D assigned to Binout are known to the server and only encrypted in
Step 7.

How the input shrinks over calls. To get an understanding of OblMultArrShuff, we will analyze
the sizes of the inputs to recursive calls of OblMultArrShuff.Shuffle. Let us start with the very
first execution of OblMultArrShuff.Shuffle. Initially, A0,1, . . . ,A0,L collectively contain exactly N
real blocks and E0 contains N pairs (since all indices of D are still free). The indices of E0 are
uniformly and independently assigned at random to m := N

log3 λ
output bins and each is expected

to have log3 λ indices. The blocks of A0,1, . . . ,A0,L are uniformly and independently distributed
into m̃ := (1−2ε)m input bins and each is expected to have log3 λ/(1− 2ε) ≈ (1+2ε) log3 λ blocks.
We note that E1 consists of only indices of the last 2ε ·m groups (see Step 7). Therefore, E1 will
contain 2εN indices in expectation.

Each execution of OblMultArrShuff.BinShuffle outputs L leftover bins of sizes {(4ε)NiN log3 λ}i=1,...,L.
So, after m executions of OblMultArrShuff.BinShuffle, a total of 4εNi will be placed into each A1,i,
for i = 1, . . . , L. As a result of OblMultArrShuff.Shuffle, E1 is only a 2ε fraction of the size of
E0. Similarly, each A1,i is only a 4ε fraction of the size of A0,i. This reduction continues as
OblMultArrShuff.Shuffle is executed more times. In particular, A`,i will contain exactly (4ε)`Ni

blocks and E` contains (2ε)`N indices in expectation.
The above analysis considers counting both real and dummy blocks. We turn our attention

to strictly real blocks. At each level of OblMultArrShuff.Shuffle, an 2ε fraction of the blocks are
unassigned and will be dealt with by the later executions of OblMultArrShuff.Shuffle. As we have
seen, the unassigned blocks are kept partitioned by array index and, in order to hide the actual
number of blocks that are still to be assigned from each array, dummy blocks are introduced. The
next lemma shows that the number of real blocks in A`,i, N`,i, is binomially distributed.

Lemma 6. The random variable N`,i is distributed according to Binomial[Ni, (2ε)
`].

Proof. We will use the observation that for any i ∈ [L],

N`,i = |{(b,Assign(b)) ∈ E` : Assign(b) = i}|.

The lemma follows by the fact that the events that (b,Assign(b)) ∈ E` are independent and have
probability (2ε)`, for every ` ≥ 0.

For ` = 0, this is trivially true. By inductive hypothesis, assume Pr[(b, i) ∈ E`] = (2ε)`, for
some ` ≥ 0. All pairs of E` are distributed uniformly and independently at random into m bins in
Step 4 of OblMultArrShuff.Shuffle. A single index (b,Assign(b)) ∈ E` appears in E`+1 if and only if
b is assigned to one of Binout

m̃+1, . . . ,Binout
m . Therefore,

Pr[(b, i) ∈ E`+1 | (b, i) ∈ E`] =
m− m̃
m

= 2ε.

Since the assignment of E` is done independently of all previous events, we see that

Pr[(b, i) ∈ E`+1] = Pr[(b, i) ∈ E`] · 2ε = (2ε)`+1.
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In the next lemma, we bound the number of blocks, kin
`,i,j of array of index i, Ai, that are

assigned to the j-th input bin Binin
j of level ` of the algorithm.

Lemma 7. For every i and j and for every level `,

Pr

[
(1 + ε) · Ni

N
log3 λ ≤ kin

`,i,j ≤ (1 + 3ε) · Ni

N
log3 λ

]
≥ 1− negl(λ).

Proof. By Lemma 6, we know that N`,i is distributed according to Binomial[Ni, (2ε)
`]. Moreover,

each block in A`,i is independently and uniformly assigned to one input bin at Step 3 and thus kin
`,i,j

is distributed according to

Binomial

[
Ni,

(2ε)`

m̃

]
= Binomial

[
Ni,

log3 λ

(1− 2ε)N

]
.

Therefore

µ`,i,j := E[kin
`,i,j ] = (1 + 2ε) · Ni

N
· log3 λ

where we used the approximation (1 + 2ε) ≈ 1
1−2ε . By Chernoff Bounds, we get the following:

Pr

[
(1 + ε) · Ni

N
· log3 λ ≤ kin

`,i,j ≤ (1 + 3ε) · Ni

N
· log3 λ

]
= Pr

[
(1− ε)µ`,i,j ≤ kin

`,i,j ≤ (1 + ε)µ`,i,j
]

≥ 1− 2−Ω(µ`,i,j);

where we used the approximations (1 + 2ε) · (1 + ε) ≈ (1 + 3ε) and (1 + 2ε) · (1− ε) ≈ (1 + ε). The
lemma follows by observing that, by Step 2 of OblMultArrShuff, we have N

Ni
< log λ and therefore,

µ`,i,j = Ω(log2 λ).

A similar lemma holds for the number of blocks, kout
`,i,j , from Ai that are assigned to a location

of array D that belongs to output bin Binout
j .

Lemma 8. For every i and j and for every level `,

Pr

[
(1− ε) · Ni

N
· log3 λ ≤ kout

`,i,j ≤ (1 + ε) · Ni

N
· log3 λ

]
.

Proof. Each pair of E` is independent and uniformly assigned to one output bin at Step 4 of
OblMultArrShuff.Shuffle. So, kout

`,i,j is distributed according to

Binomial

[
Ni,

(2ε)`

m

]
= Binomial

[
Ni,

log3 λ

N

]
and µ`,i,j := E[kout

`,i,j ] = Ni
N · log3 λ. By Chernoff bounds, we obtain that

Pr

[
(1− ε) · Ni

N
log3 λ ≤ kout

`,i,j ≤ (1 + ε) · Ni

N
log3 λ

]
= Pr

[
(1− ε)µ`,i,j ≤ kout

`,i,j ≤ (1 + ε)µ`,i,j
]

≥ 1− 2−Ω(µ`,i,j).

The lemma follows by observing that, by Step 2 of OblMultArrShuff, we have N
Ni

< log λ and

therefore, µ`,i,j = Ω(log2 λ).
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Lemma 9. The construction OblMultArrShuff aborts with probability negligible in λ.

Proof. OblMultArrShuff aborts only if at Step 4 of OblMultArrShuff.BinShuffle one of the following
two events occurs, for some i, j, `,

1. The j-th input bin contains too few real blocks from array A`,i and thus a dummy block is
marked moving. This happens if kin

`,i,j < kout
`,i,j . But by Lemma 7 and Lemma 8 we have that

kin
`,i,j ≥ (1 + ε) · Ni

N
· log3 λ ≥ kout

`,i,j

except with negligible probability.

2. The j-th input bin contains too many real blocks from array A`,i and thus a real block is
marked unused. This happens if kin

`,i,j > kout
`,i,j + NumLeftoveri = kout

`,i,j + 4εNiN · log3 λ. Again by
Lemma 7 and Lemma 8 we have that

kin
`,i,j ≤ (1 + 3ε) · Ni

N
log3 λ ≤ 4ε · Ni

N
log3 λ+ kout

`,i,j

except with negligible probability.

Theorem 10. The construction OblMultArrShuff is an oblivious random multi-array shuffle ac-
cording to Definition 3.

Proof. We construct a simulation Sim that outputs D as follows. Sim will fill each Ai with encryp-
tions of random values. Sim executes the honest OblMultArrShuff algorithm, which will construct D
filled with the encryptions of random values. The output array generated in the real and simulated
execution are indistinguishable since they contain encryptions of the same number of items.

The access pattern while running OblMultArrShuff involve either linear scans, oblivious sorts and
movements of blocks determined by random coin flips (see Step 3 and 4 of OblMultArrShuff.Shuffle).
However, the random coin flips are revealed publicly and indistinguishable from any other truly
random coin flip sequence. Therefore, the access patterns from the real and simulated execution
are indistinguishable.

Finally, we have to show that final permutation given to the adversary is indistinguishable in
conjunction with the access pattern. In the real experiment, each Ai is permuted according to
a τi hidden from the adversary. OblMultArrShuff applies an Assign function chosen uniformly at
random. We show in Lemma 20 the result is a uniformly random permutation. Since Assign is
chosen before revealing any random values in the access pattern, Assign is independent of access
patterns in the real execution. Therefore, the final permutations in the real and simulated execution
are indistinguishable completing the proof.

Efficiency. For efficiency, we focus on the situation when there exists cutoff = O(log log λ)
such that |Acutoff | + . . . + |AL| = O(N log log λ

logN ). In this case, we show that OblMultArrShuff uses

O(BN log log λ+BN logN
log λ ) bandwidth except with probability negligible in λ.

Note, OblMultArrShuff performs an oblivious sort on |Acutoff | + . . . + |AL| blocks in Step 2 of
OblMultArrShuff. Since |Acutoff |+ . . .+ |AL| = O(N log log λ

logN ), a total of O(BN log log λ) bandwidth is
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required. Constructing Assign in Step 4 requires O(BN · cutoff) = O(BN log log λ). The remaining
steps of OblMultArrShuff require O(N) bandwidth.

Let us now focus on the bandwidth of OblMultArrShuff.BinShuffle. An oblivious sort is applied
to at most |Binin| + 4 log3 λ blocks in Steps 2 and 5. An oblivious sort is applied to at most
|Binout| blocks in Steps 7 and 9. Step 3 requires O(|Binout| · cutoff) = O(|Binout| · log log λ) blocks of
bandwidth. Step 4 requires O(|Binin| · cutoff) = O(|Binin| · log log λ) blocks of bandwidth. All other
steps of OblMultArrShuff.BinShuffle require O(|Binout|+|Binin|) blocks of bandwidth. Altogether, the
total required bandwidth of OblMultArrShuff.BinShuffle is O((|Binin|+log3 λ)(log |Binin|+log log λ)+
|Binout|(log |Binout|+ log log λ)).

Finally, we consider OblMultArrShuff.Shuffle now. If |A`,1|+. . .+|A`,L| ≤ N
log λ , then OblMultArrShuff.Shuffle

executes OblMultArrShuff.BinShuffle at Step 5 requiring O
(
N(logN+log log λ)

log λ

)
blocks of bandwidth.

In the other case, OblMultArrShuff.BinShuffle is executed m̃ times. By Lemma 7, we know that,

for all j ∈ [m̃], |Binin
j | =

L∑
i=1

kin
`,i,j ≤ (1 + 3ε) log3 λ. By Lemma 8, we know that, for all j ∈ [m],

|Binout
j | =

L∑
i=1

kout
`,i,j ≤ (1 + ε) log3 λ. Therefore, each execution of OblMultArrShuff.BinShuffle re-

quires O(log3 λ log log λ) blocks of bandwidth. All executions require O((2ε)`N log log λ) blocks of
bandwidth. The cost of all executions of OblMultArrShuff.Shuffle is∑

`≥0

O((2ε)`N log log λ)) = O(N log log λ)

blocks of bandwidth, for large enough N , when ε < 1/4 thus completing the proof.

4 Oblivious Hash Table

In this section we present our oblivious hash table construction which achieves bandwidth overhead
of O (logN + log log λ) blocks, amortized per query. It uses as a building block the notion of an
oblivious bin, which provides the same security properties as a general OHT but the main difference
is that the oblivious bin structure will be used only for small inputs, which can be obliviously shuffled
without violating out overall efficiency requirements. The largest bins will be of size N

logc λ for c > 1.
We start with our oblivious bin constructions.

4.1 Oblivious Cuckoo Hash Bin

We now present a construction of oblivious bins using cuckoo hashing. In particular, the Init,Build
and Lookup will be identical to the cuckoo hashing hash table presented by Goodrich and Mitzen-
macher [22]. Our modification will be the introduction of an Extract functionality which is integral
to our Oblivious RAM construction. Our oblivious cuckoo hash bin only works on input arrays
with at least log7 λ items.

Construction 11 (Oblivious Cuckoo Hash Bin). Let F be a pseudorandom function and (Gen,Enc,Dec)
be a symmetric key encryption. We define an oblivious hash construction CuckooBin = (CuckooBin.Init,
CuckooBin.Build, CuckooBin.Lookup, CuckooBin.Extract) as follows

• (st, D̃)← CuckooBin.Init
(
D = (ki, vi)

N
i=1

)
:
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1. Generate N dummy items (k′i,⊥)2N
i=N+1 where k′i ∈ Udummy and append them to D.

2. Generate an encryption key SK and set st← SK.

3. Set D̃ = {cti = Enc(SK, (bi, ki, vi))}2Ni=1 where bi = 0 if ki is real and bi = 1 if ki is
dummy. The real and dummy items are in any, not necessarily random, order.

• (st, H̃cuckoo,S)← CuckooBin.Build
(

SK, D̃ = {Enc(SK, (bi, ki, vi))}2Ni=1

)
:

1. Generate PRF keys K1,K2 and encryption key and set st← (K1,K2, SK).

2. Run an oblivious algorithm to construct a Cuckoo hash table that consists of two tables
T1,T2 and a stash S with parameters K1,K2, which contain the items of D̃ using SK to
decrypt entries of D̃ when necessary. Set H̃cuckoo ← (T1,T2, S).

• (v, H̃ ′cuckoo)← CuckooBin.Lookup
(
ki, H̃cuckoo = (T1,T2),S, st = (K1,K2, SK)

)
:

1. Access all items in S as well as items T1[FK1(ki)] and T2[FK2(ki)], decrypting them using
SK and checking whether the stored items matches the search index ki. If the item with
index ki is found, set v to be the corresponding data, and otherwise set v ←⊥.

2. If either T1[FK1(i)] or T2[FK2(i)] is of the form (bi, ki, vi) write back an encryption of
the value (bi, k

′
i,⊥) where k′i is a dummy key.

• (D̃, st′)← CuckooBin.Extract(H̃cuckoo, S, st):

1. Use an oblivious sort together all items in T1, T2 and S according their flag bit bi to
obtain an array H̃.

2. Set D̃ to be the first N items of H̃.

3. Use an oblivious sort to permute D̃ at random.

Theorem 12. The oblivious Cuckoo bin construction CuckooBin presented in Construction 11
is an oblivious hash table according to Definition 4 assuming that the number of input blocks is
Ω(log7 λ).

Proof. The simulator will initiate the Cuckoo hash table using random input as data and our
SimInit outputs 2N ciphertexts encrypting random values. We will use the result of Goodrich
and Mitzenmacher [22], which was later given a complete proof in the work of Chan et al. [7],
which says that there existing a simulator that can simulate the initialization of a Cuckoo table
on n = Ω(log7 λ) elements given just the number of elements with a stash of size O(log λ). We
will use this simulator as our SimBuild. The SimLookup will just access two random locations in
T1 and T2. The indistinguishability of this simulated access from real lookups follows again from
the result of [22]. Finally, SimExtract just runs the regular extraction algorithm on the simulated
oblivious Cuckoo table. The indistinguishability of the real world, where the adversary gets the real
permutation, and the ideal world, where he obtains a random independent permutation, follows
from the fact that the only leakage is the access pattern from the oblivious sort, which does not
reveal any information about the permutation. At the end of CuckooBin.Extract, D̃ is randomly
permuted using an oblivious sort. The random permutation is chosen independently and unifomly
at random. Therefore, the final permutation of D̃ is indistinguishable from a uniformly at random
chosen permutation.
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Efficiency. The initialization, building and extraction algorithms for Cuckoo bin have bandwidth
of O(n log n) blocks. The lookup time has instead bandwidth of O(log n+ log log λ). While at first
sight the Cuckoo bin does not seem to bring any efficiency advantage and it also needs much larger
minimal size of the blocks in order to use Cuckoo hash tables, the majority of the lookup time
O(log n) is spent on reading the stash. When we use several levels of Cuckoo hashes in our general
oblivious hash table construction, we will have a more efficient way to deal with the stashes on
multiple Cuckoo hash bins. In particular, all the stashes can be combined into a single O(log n)
size stash (see [22] for a proof).

Construction 13. [Oblivious Hash Table] Let F be a pseudorandom function and (Gen,Enc,Dec)
be a symmetric key encryption. Moreover, let OblivBin = (OblivBin.Init,OblivBin.Build,OblivBin.Lookup,
OblivBin.Extract) be an oblivious bin. We define oblivious hash OblivHT = (OblivHT.Init, OblivHT.Build,
OblivHT.Lookup, OblivHT.Extract) as follows:

OblivHT.Init. This algorithm receives as input a database D consisting of N key/value pairs and
constructs N real items from the N pairs of D and N additional dummy items. The 2N items are
randomly shuffled and then returned.

(st, D̃)← OblivHT.Init(D = {(ki, vi)}Ni=1):

1. Generate key SK← Gen(1λ) and set st← SK.

2. Generate real items of the form {Enc (SK, (0, ki, vi))}Ni=1 and an additional N dummy items
of the form {Enc (SK, (1, ki,⊥))}2Ni=N+1.

3. Compute an oblivious shuffle on the above 2N real and dummy items and set D̃ to be the
result.

OblivHT.Build. This algorithm builds an oblivious hash table from the output of OblivHT.Init.

(st, H̃, S̃)← OblivHT.Build
(
D̃, st

)
: the data D̃ contains exactly half items with tag 0 and exactly

half with tag 1.

1. Return (st, H̃, S̃)← OblivHT.BuildLevel
(
D̃, ∅, N, 1, st

)
.

OblivHT.BuildLevel. This algorithm constructs the levels of the OHT structure. It takes as input
an array D̃ of 2 ·Rreal encrypted items (bi, ki, vi) of which Rreal have bi = 0 (the real items) and Rreal

have bi = 1 (the dummy items). In addition the algorithm takes the items S̃ that were assigned to
the stash by the previous levels, the counter ctr that keeps track of the current level and encryption

key SK used to encrypt the items. The algorithm returns the sequence
(
H̃(ctr), H̃(ctr+1), . . . , H̃(d)

)
of levels of the OHT structure from ctr to the maximum level d, the stashes S̃(d−1) and S̃(d) and
state information st.

The algorithm distinguishes two cases. If the combined size of D̃ and S̃ is not too large (see
Step 1 below) then it constructs an Oblivious Bin H̃(d−1) for D̃ and an Oblivious Bin H̃(d) for S̃
that constitute, respectively, levels d − 1 and d of the OHT. Each level gives a stash, S̃(d−1) and
S̃(d), and a state, std−1 and std.
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Otherwise, the algorithm proceeds as follows. It performs two balls and bins processes. The first
process considers Rreal 0-balls and Rreal 1-balls for a total of n = 2 ·Rreal balls and m := n/(2 logc λ)
bins. We denote by Xreal

j the random variable of the number of the 0-balls that are assigned to the

j-th bin and Xdummy
j to be the random variable of the number of 1-balls that are assigned to the

j-th bin. It is easy to see that E[Xreal
j ] = E[Xdummy

j ] = logc λ. This first process is implemented by
taking each item (bi, ki, vi) and by assigning it to bin j = F(Kctr, ki), where F is a pseudorandom
function and Kctr is a randomly chosen seed. The second process considers the same number of m
bins and a smaller number of n′ := (1−δ)n/2 balls with only 0-tags. This process is only simulated
as the algorithm only needs to sample the random variables Y real

j describing the number of balls in

each bin. It is easy to see that E[Y real
j ] = (1− δ) logc λ.

The algorithm aborts if there exists a bin j such that the number of 0-balls placed in the second
process exceeds the number of 0-balls placed in the first process (that is, Y real

j > Xreal
j ) or if the

number of 1-balls placed in the first process is less than thrsh− Y real
j where thrsh := 2(1− δ) logc λ.

We will later show that the abort probability is negligible by choosing δ appropriately.
Next the algorithm constructs an oblivious bin for each bin j by selecting exactly Y real

j 0-balls

and thrsh − Y real
j 1-balls. Note that each oblivious bin will consider exactly thrsh items and will

produce a new stash S̃(ctr,j) that is added to the S̃ received from previous levels. The selection of
the items of bin j that are considered for the j-th oblivious bin is performed obliviously. The m
oblivious bins consume

∑
j Y

real
j = (1 − δ)n/2 0-balls and

∑
j(thrsh − Y real

j ) = (1 − δ)n/2 1-balls.
Therefore the algorithm is left with the same number, δn/2, of leftover 0 and 1-balls that are col-
lected in array Dover (see Step 2(e)v below) and used to recursively construct the next levels. We
next formally describe algorithm OblivHT.BuildLevel.

(st, H̃, S̃)← OblivHT.BuildLevel
(
D̃, S̃, Rreal, ctr, SK

)
:

1. If |D̃|+ |S̃| = O
(

N
log λ

)
:

(a) Set (s̃t
ctr
, H̃ctr, S̃ctr)← OblivBin.Build(D̃).

(b) Set (s̃t
ctr+1

, H̃ctr+1, S̃ctr+1)← OblivBin.Build(S̃).

(c) Return (stctr = s̃t
ctr
, stctr+1 = (s̃t

ctr+1
,SK)), (H̃ctr, H̃ctr+1), (S̃ctr, S̃ctr+1).

2. Otherwise, construct a level in the oblivious hash table as follows:

(a) Let F be a PRF with output range [ R
real

logc λ ]. Randomly select PRF key Kctr of length λ.

(b) Initialize Rreal

logc λ empty bins.

(c) For each item in D̃, decrypt to get the values (bi, ki, vi) and append Enc(SK, (bi, ki, vi))
to bin F(Kctr, ki).

(d) Let thrsh = 2(1− δ) logc λ.

(e) Set T = (1− δ)Rreal and t = Rreal

logc λ . For 1 ≤ j ≤ Rreal

logc λ do as follows:

i. Sample from the binomial distribution Rj ← Binomial(T, 1
t ).

2

2This can be done in constant time using the Splitting algorithm for binomial random variates in Section 4.4.X4
of [15].

22



ii. Set T = T −Rj and t = t− 1.

iii. If there are less than Rj items with tag value 0 or the total number of items with
tag value 1 is less than thrsh−Rj , then abort.

iv. Linearly scan the items assigned to Bj in Step 2c, leaving the tags bi = 0 to the
first Rj real items from D̃ and setting the tag to of the remaining real items to be
bi = 2; the added dummy items stay with tag bi = 1.

v. Obliviously sort the items assigned to Bj according to their assigned tag. Move all
items at the end of array starting from position thrsh + 1 to array Dover changing
the tag bi = 2 of the real items back to bi = 0.

vi. Initialize an oblivious bin structure on the items left in Bj :

(st(ctr,j), H̃(ctr,j), S̃(ctr,j))← OblivBin.Build(SK,Bj).

vii. For each item in S̃(ctr,j), append the encrypted tag Enc(SK, (ctr, j)) and add to the
set S̃.

(f) Let H̃(ctr) ← Enc
(

SK, {(st(ctr,j), H̃(ctr,j))}Rreal/ logc λ
j=1 ,Kctr

)
.

(g) Call recursively OblivHT.BuildLevel on the leftover items in Dover:

(st′, H̃ ′, S̃′)← OblivHT.BuildLevel
(

Dover, S̃, δR
real, ctr + 1, SK

)
.

(h) Parse H̃ ′ as H̃ ′ = (H̃(ctr+1), . . . , H̃(d)) and st′ as st′ = (stctr+1, . . . , std).

Return (st, H̃, S̃), where st ←
(
stctr, stctr+1, . . . , std

)
, H̃ ←

(
H̃(ctr), H̃(ctr+1), . . . , H̃(d)

)
,

and S̃ ← S̃′.

OblivHT.Lookup. This algorithm retrieves an item stored in the OHT table.

(v, H̃ ′, S̃′, st′)← OblivHT.Lookup(k, H̃, S̃, st):

1. Parse st as st =
(
st1, . . . , std

)
and obtain SK from std.

Parse H̃ as H̃ = (H̃(1), . . . , H̃(d)).

Set found = 0.

2. For ctr = d to 1, do the following:

(a) If found = 0, set j = F(Kctr, k), else choose j at random among the αctr bins at level ctr.

(b) If ctr ≥ d − 1, then execute (v′, H̃ ′, S̃′) ← OblivBin.Lookup(k, H̃(ctr), S̃(ctr), st(ctr)). If
v′ 6=⊥, set v ← v′ and found = 1.

(c) Otherwise when ctr < d− 1, then execute the following two steps

{(st(ctr,k), H̃(ctr,k))}αctr
k=1 ← Dec(SK, H̃(ctr)),

(v′, H̃ ′, S̃′)← OblivBin.Lookup(k, H̃(ctr,j),⊥, st(ctr,j)).

If v′ 6=⊥, set v ← v′ and found = 1.

23



OblivHT.Extract. This algorithm returns a fixed size data array that contains only the unqueried
items in the OHT padded with dummy items.

(D̃, st′)← OblivHT.Extract(H̃, S̃, st):

1. Let st = (st(1), d, SK) and H̃ = (H̃(1), . . . , H̃(d)).

2. Execute (D̃d, std)← OblivBin.Extract(H̃d, S̃d, std).

3. Obliviously sort the items in D̃d according to their appended encrypted tags Enc(SK, (ctr, j))
which denotes that the item comes from the j-th OblivBin in the ctr-th level of the OblivHT.
As a result, we get the stashes S̃(ctr,j) for all OblivBin built at every level.

4. For ctr ∈ [d− 1] and j ∈ [αctr] where αctr = δi−1N
logc λ , let

(D̃ctr,j , st′)← OblivBin.Extract(H̃(ctr,j), S̃(ctr,j), st(ctr,j)),

for each bin Bj in level ctr, where S̃ =⊥ for ctr < d and {(st(ctr,j), H̃(ctr,j))}αctr
j=1 ← Dec(SK, H̃(ctr)).

Append D̃i,j to D̃.

Efficiency. The initialization for the oblivious hash table is an oblivious sort, which we can do
with bandwidth O(N logN). The building of the oblivious hash table from a shuffled array will
be proportional to the the cost of running the build algorithm for each bin at each level plus on
oblivious shuffle per bin. The size of each bin in each level, except the last two, is O(logc λ). The
total number of bins of this size is

log log λ−1∑
i=1

1

logc λ
(2δ)i−1N =

1

logc λ
(1− (2δ)log log λ)N = O

(
N

logc λ

)
.

Each stash is size O(logN) and there are O(N/ logc λ) stashes. Therefore, the total size of all the
stashes is at most O(logN ·N/ logc λ) which is O(N/ log λ) whenever λ = poly(N) and c ≥ 2. In our
case, we have the restriction that c ≥ 7 in order to satisfy the input size required by the oblivious
algorithm to correctly construct a Cuckoo hash table (see Theorem 12). Therefore, the build for
the oblivious hash table will take:

O

(
N

logc λ
(logc λ)(log logc λ) +

N

log λ
logN

)
= O

(
N log log λ+

N

log λ
logN

)
.

A lookup in the oblivious hash table consists of O(log log λ) lookups on bins of size logc λ plus
the lookup on the single bin in the smallest level which is of size N/(logc λ).

The cost of a lookup when we instantiate the bins with Cuckoo bins changes since a lookup in
a Cuckoo bin without a stash has O(log log λ) cost. The cost for the lookup on the two bins in the
smallest level is O(logN + log log λ) since this level has logarithmic stash. Thus, the total lookup
cost is O (logN + log log λ). Thus the OHT lookup can be performed at cost O(log log λ).
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Security. Before stating the main lemma proving that the above construction is an oblivious hash
table, we prove some lemmas that we will consequently use. First we argue what is the number of
levels in out OHT construction.

Lemma 14. The depth of the oblivious hash table is d = O(log log λ).

Proof. The size the input array, D̃, of level i is (2δ)i−1N and we recurse until we reach level of
size N

log λ . Therefore it will take O(log log λ) steps to reach this size. On the other hand, note

that the size of the accumulated stash S̃ is O(logN · Rreal/ logc λ) which is O(N/ logc−1 λ) when
λ = poly(N). Therefore, d = O(log log λ) for our OblivHT construction.

Next we analyze the probability that the algorithm constructing the oblivious hash table fails
and aborts.

Lemma 15. For constants 0 < δ < 1 and c > 1, algorithm OblivHT.Build in the above construction
aborts with negligible probability in Step 2(e)iii.

Proof. First, we estimate the probability that Xreal
j , the random variable of the number Rj sampled

at Step 2(e)i, is larger than Y real
j , the number of real items assigned to bin Bj during Step 2c. We

have E[Xreal
j ] = logc λ and E[Y real

j ] = (1−δ) logc λ and we remind the reader that Rreal is the number

of real items among the total 2Rreal items of δD received in input by OblivHT.BuildLevel.
Using Chernoff bounds and the bound on the fraction of real items in each level, we estimate

the following probabilities:

Pr
[
Xreal
j ≤ (1− α) logc λ

]
≤ e−

α2 logc λ
2 = e−ω(log λ) = negl(λ).

Pr
[
Y real
j ≥ (1 + α)(1− δ) logc λ

]
≤ e−

α2(1−δ) logc λ
2 = e−ω(log λ) = negl(λ).

If δ > 2α
1+α then (1 − α) logc λ > (1 + α)(1 − δ) logc λ, hence Pr[Xreal

j < Y real
j ] = negl(N). Since

0 < 2α
1+α < 1 for 0 < α < 1, we do not have any additional restrictions on the value of δ.

Next, we estimate the number of dummy items that are placed into bin Bj . Let Xdummy
j be the

random variable denoting the number of dummy items assigned to bin Bj in Step 2c. Let Y dummy
j

be the random variable denoting the number of dummy items assigned by the private binomial
sampling of Step 2(e)i, which is equal to thrsh − Rj where thrsh = 2(1 − δ) logc λ. Once again,

E[Xdummy
j ] = logc λ and E[Y dummy

j ] = thrsh − E[Rj ] = (1 − δ) logc λ. Using the same analysis as
above, it can be shown that the number of dummy items required is always satisfied except with
probability negligible in N .

With the above lemmas, we are ready to state our main security theorem about the oblivious
hash table construction.

Theorem 16. Construction 13 is an oblivious hash table according to Definition 4.

Proof. We construct a simulator Sim = (SimBuild(N), SimLookup(),SimExtract(N)) for the above con-
struction as follows:

• SimBuild(N) runs the OblivHT.Build algorithm using random elements as real elements for the
database, and using the simulator for the construction of the oblivious bins.
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• SimLookup() chooses a random bin at each level for the oblivious hash table and runs SimB
Lookup()

for that bin.

• SimExtract(N) run the extraction simulator for each bin with input the corresponding thrsh
value for that level.

The access pattern in the above simulated distribution is indistinguishable from the real execution
for the following reasons:

• The distributions of real items vs random values across bins is indistinguishable since the
distributions of the corresponding PRF values are indistinguishable. Also the sampled dis-
tributions of real items are indistinguishable when generated from the same number real and
dummy items.

• The simulated and the real lookups are indistinguishable as long as the protocol does not
abort, which happens with all but negligible probability as we proved in Lemma 15. If we
build protocol has completed without abort, the distributions of the real items in bin across
each level is independent from the initial distributions of all items across all bins using the
PRF and this distributions remains hidden after the completion of OblivHT.Build since we
ensure that each bin contains fewer items than the threshold and we don not reveal how
many fewer. Also this distribution of real items across bins is indistinguishable from the
distributions where the real items were assigned at random among the bins. The former is
the distribution revealed from the real execution lookups, and the later is the distribution
revealed by the simulated queries.

• The indistinguishability of the real and the ideal extraction follows from the indistinguisha-
bility of the bin extractors, which are executed on public values dependent only on the size of
the database. We note that the extract procedure of the OHT returns in total N elements:
the extract procedure in each level returns total of 2(1−δ)Rreal elements from the extractions
across all bins, and the size of the Dover = 2δRreal for the next recursive call. If the bin in the
final level is initialized with R′ items, then the extract algorithm for that bin will also return
R′ items. Thus, the total size of the data returned from extract is N elements. Furthermore,
exactly R′/2 items will be with tag 0 and the remaining R′/2 items will be with tag 1 denoting
real and dummy items.

• We will argue the items in the output of the extraction algorithm are shuffled under a permu-
tation chosen uniformly at random. We can consider the decomposition of this permutation
as defined in Lemma 21 of Appendix A. The unqueried items are distributed according to
a PRF into different bins in OblivHT.BuildLevel. Since OblivHT.Extract only deals with un-
queried items, the distribution of unqueried items corresponds to the unrevealed outputs of
PRF evaluations with a secret key. Therefore, the distribution of unqueried items is indistin-
guishable from sampling a random Assign function. Finally, the bin extraction methods will
apply the local permutations to unqueried items within each bin. Therefore, by Lemma 21,
the final permutation of unqueried and dummy items after OblivHT.Extract is indistinguish-
able from a permutation chosen uniformly at random.
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5 Oblivious RAM Construction

In this section we present our ORAM construction, which follows the hierarchical blueprint. It
uses our OHT to store the data assigned to each level as well as our oblivious random multi-array
shuffle to merge the content of consecutive levels when moving data from smaller to bigger levels
in the ORAM. Note that our OblivHT construction from above only works for inputs with at least
O(log7 n) items. In our ORAM construction, whenever we instantiate an OblivHT with less than
O(log7 n) items, we will use the original OblivHT constructions from the work of Goodrich and
Mitzenmacher [22] which uses simple hashing as well as oblivious sorting over the entire input
array. The extract functionality for these OblivHT constructions are implemented by using an
oblivious sort over the hash table. Using these two OblivHT constructions, we obtain the following
result:

Theorem 17. Assuming the existence of a PRF, Construction 18 is an Oblivious RAM with
O(logN · log logN) amortized block communication cost per query.

Construction 18. Let OblivHT = (OblivHT.Init, OblivHT.Build, OblivHT.Lookup, OblivHT.Extract)
be an oblivious hash table and OblMultArrShuff be an oblivious random multi-array shuffle. Let
U = Ureal∪Udummy∪Uquery, where the items of the database come from Ureal, items used for padding
in the construction come from Udummy and dummy queries use values from Uquery. We construct an
oblivious RAM scheme ORAM = (ORAM.Init,ORAM.Access) as follows:

ORAM.Init. This algorithm initializes an ORAM memory structure using an input database.

(D̃, st)← ORAM.Init(1λ, D):

1. Create a hierarchy of logN levels {`i}logN
i=α of size 2i where N is the size of D and 2α =

O(logN).

2. Initialize an oblivious hash table that contains the whole database by running

(stInit, D̃
′)← OblivHT.Init(D)

(stBuild, H̃, S̃)← OblivHT.Build
(
D̃, stInit

)
.

3. Set the first level to be the array representing the stash for the oblivious hash table `α ← S̃;
the last level to be the new oblivious hash table `logN ← (stBuild, H̃); and all other levels to

be empty {`i ← (⊥,⊥)}logN−1
i=α+1 .

4. Set D̃ ← {`i}logN
i=α . Output (D̃, st) where st contain the secret encryption key in stBuild.

ORAM.Access. This algorithm takes as input a database access instruction and executes it in an
oblivious way having access to an ORAM memory structure.

(v, st)← ORAM.Access(st, D̃, I, cnt) :

1. If cnt = 2j for some j, invoke ORAM.Shuffle({`i}ji=α) defined below.
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2. Parse D̃ ← {`i}logN
i=k where `i = (sti, H̃i) and I = (op, addr, data).

3. Set flag found = 0.

4. Do a linear scan on the items (kj , vj) stored in the array stored in the smallest level `α looking
for item with k = addr. If such an item is found, set found = 1.

5. For i = α+ 1 to logN , do the following:

(a) If found = 1, then sample a random query from k ← Uquery
3. Otherwise, set k ← addr.

(b) Do a lookup in the oblivious hash table at that level:

(v, H̃ ′i,⊥, st′i)← OblivHT.Lookup(k, H̃i,⊥, sti).

(c) Update `i ← (st′i, H̃
′
i)

(d) If op = read, the set d = Enc(SK, (addr, v)), else if op = write, set d = Enc(SK, (addr, data)).
Append d to the array stored in `α where SK is stored in st.

ORAM.Shuffle. This algorithm shuffles together the data from a number of consecutive levels in
the ORAM hierarchical memory structure.

D̃ ← ORAM.Shuffle({`i, st}ji=α):

1. Append to the smallest level `α, 2α+1 dummy items from Udummy and then apply an oblivious
shuffle on the resulting set of real and dummy items and set Ãα to be the output of the
oblivious shuffle.

2. If j = logN , then we are shuffling all levels.

(a) Use an oblivious sort on all Θ(N) input items in `α, . . . , `logN . This oblivious sort will
remove any extra dummy items inserted by Oblivious Bin lookups and only maintain
the required N dummy items for OblivHT.Build. After oblivious sorting, we get an array
ÃlogN which contains 2N items with the N real items and N dummy items shuffled
randomly.

(b) Execute (stlogN , H̃logN , S̃logN )← OblivHT.Build(D̃, st).

(c) Set `logN ← (stlogN , H̃logN ).

(d) Set `α ← S̃logN and all intermediate levels {`i ←⊥}logN
i=α+1 to be empty.

(e) Return D̃ ← {`i}logN
i=α .

3. Otherwise when j < logN :

(a) For i = α+ 1 to j: parse `i = (sti, H̃i)

(Ãi, st′i)← OblivHT.Extract(H̃i, sti).

3We assume that dummy queries do not repeat. We can enforce this either by setting the universe Uquery to be
large enough or by keeping a counter for the dummy queries.
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(b) Run the multi-array shuffle algorithm on the data extracted from each level oblivious
hash table

D̃ ← OblMultArrShuff
(
{Ãi}ji=α

)
.

(c) Construct an oblivious hash table using the output from the multi-array shuffle

(stj , H̃j , S̃j)← OblivHT.Build
(
D̃, st

)
.

(d) Set `j ← (stj , H̃j), `α ← S̃j and all intermediate levels to be empty {`i ←⊥}j−1
i=α+1.

(e) Return D̃ ← {`i}logN
i=α .

Correctness. The OblivHT.Build algorithm expects input that has equal numbers of real and
dummy items. Thus, we need to argue that the input array to the multi-array shuffle contain
equal numbers of real and dummy value. The OblivHT.Extract functionality returns an array of
size equal to the capacity for real items of the oblivious hash table. The size of of Ãα is 2α+1 + 1
and the size of each Ãα+i for 1 ≤ i ≤ t − 1 is 2α+i. Thus, total size of

∑t
i=1 |Ãα+i| will be

2α+1 +
∑α+t

i=α+1 2i =
∑α+t

i=1 2i −
∑α

i=1 2i = 2α+1 + 2α+t+1 − 2α+1 = 2α+t+1. At the same time the
total number of real items across the first t levels is at most 2α+t. By adding a number of real
items on the order of the smallest level, we can ensure the number of real items is exactly half of
the size of the array D̃ from the multi-array shuffle, which is correct input for OblivHT.Build.

Theorem 19. Construction 18 is an access pattern hiding oblivious RAM scheme according to
Definition 1.

Proof. We construct a simulator for the ORAM scheme as follows. For the initialization phase,
SimInit just invokes the OHT simulators SimInit and SimBuild. The query simulator SimAccess uses
the query simulators SimLookup for each oblivious hash table in each level of the ORAM. To sim-
ulate the shuffling procedures SimAccess uses the OHT SimExtract and then the multi-array shuffle
simulator SimMultArrShuff . Note that the inputs for both the extraction and the shuffle simulators
are deterministically depending only on the size of the database. The indistinguishability of the
simulation from the real execution follows from the simulators that we used and the fact that their
inputs are completely defined by the size of the database.

Efficiency. We evaluate the amortized query complexity over N ORAM accesses on database of
size N , assuming that N = poly(λ). First, we deal with the case when we shuffle all levels as it
is a special case. When shuffling all levels, we employ an oblivious sort on Θ(N) items resulting
in Θ(N logN) bandwidth overhead. However, this happens ever Θ(N) operations meaning an
amortized cost of Θ(logN). For all smaller levers, after each 2i accesses we reshuffle the top i levels
using the oblivious random multi-array shuffle. Thus, we have the following total cost of the shuffle
for all levels with at least log8N items:

O

(
N ′ log log λ+

N ′ logN ′

log λ

)
= O(N log log λ),where N ′ =

logN∑
i=logα

2i,
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which results in amortized cost of O(log log λ) blocks per access from the shuffle. The cost for a
look up across all levels consists of the scan on the smallest level which takes O(logN) plus the cost
of the OHT without stash access for each level, which is O (logN log log λ) when we use Cuckoo
bins in the OHT. For all levels with less than log8N items, we use the OblivHT built using simple
hashing and oblivious sorts over entire input arrays, which costs logN blocks for each lookup as
well as O(logN log logN) blocks during shuffling. As there are only O(log logN) levels with less
than log8N items, the increased cost of these smaller levels do not affect the total complexity of our
ORAM. Therefore, the amortized complexity of a lookup is O (logN log logN) when λ = poly(N).

5.1 Optimization Discussion

In our hierarchical ORAM construction each level has capacity to hold all preceding smaller levels
and each level stores all blocks using a single oblivious hash table. Kushilevitz et al. [26] presented
an optimization to hierarchical ORAM constructions where each level has capacity to hold K times
the joint capacity of all smaller levels. Each level is implemented using K disjoint oblivious hash
tables. When a level gets full, then the level’s contents are moved to an empty oblivious hash
table of the next larger level of the hierarchical ORAM. This optimization decreases the amortized
shuffling cost by a factor of O(logK) at the cost of increasing the online cost of ORAM queries
by a factor of O( K

logK ) and it is effective only when the amortized shuffling cost is larger than the
online query costs (like for example in [23]).

For our construction, the two effects resulting from this modification are: first, an ORAM
query must perform K oblivious hash table accesses per level and, secondly, the number of levels
in the hierarchy decreases from O(logN) to O( logN

logK ). The online bandwidth of an ORAM query

becomes O(K logN log log λ
logK ) or O(K logN(log log λ)2

logK ) blocks depending on the underlying oblivious bin

scheme used. The amortized bandwidth of shuffling becomes O( logN log log λ
logK ). We observe that

the bandwidth is minimized when K = O(1), which results in the same asymptotic overhead
as the construction in Section 5. Therefore, our ORAM construction does not benefit from this
optimization.
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A Permutation Decomposition

Oblivious shuffle algorithms are a central building block in many ORAM constructions. The obliv-
ious properties of these algorithms are very strong and they guarantee that the output is shuffled
under a random permutation that the adversary server does not learn anything about even when he
knows in the input in the clear. However, in many cases, oblivious shuffles are used as intermediate
steps of ORAM constructions when the server does not know the input for the shuffles in the clear.
Often, parts of the input are still in a shuffled state from a previous step in the ORAM algorithm.
This means that the input has more entropy to the adversary compared to the setting where the
input is given in the clear by the server. In our constructions, we will leverage this input entropy
in order to achieve oblivious properties for a random shuffle with better efficiency.

In the first decomposition, we assume that we are given a fixed partition of [N ] into A1, . . . , AL.
To generate a random permutation, one can permute each of A1, . . . , AL according to randomly gen-
erated τ1, . . . , τL and then randomly mix the elements of L into a single array. If the permutations
of the partitions and mixing are performed obliviously, the result permutation is indistinguishable
from a random permutation by any PPT adversary even if the adversary knows the initial partition
A1, . . . , AL. This decomposition is used by our multi-array shuffle algorithm, which presents an
oblivious shuffle algorithm on input that consists of several smaller arrays each of which are shuf-
fled according to a random permutation hidden from the adversary. We can think of this input as
an intermediate state of the shuffle where the τi permutations have been already applied and the
algorithm completes the second part of the permutation by obliviously mixing the different arrays.

Our second decomposition instead simply receives a set of integers N1, . . . , NL that sum up to
N . One can generate a random permutation by randomly partitioning [N ] into the sets A1, . . . , AL
each with size N1, . . . , NL respectively, each of the sets are permuted using randomly chosen per-
mutations τ1, . . . , τL and the permuted arrays are, simply, concatenated. Our oblivious hash table
constructions will mirror this decomposition. In the initialization of oblivious hash tables, items
are distributed according to a random partitioning. Items remain in this state while the hash table
is processing queries. Unqueried items remain randomly partitioned independent of the access pat-
terns seen during the initialization and queries execution, and therefore remains hidden from the
adversary. This intermediate state of the shuffle is given as input to the extract function, which
applies τ1, . . . , τL to each set completing the random permutation for unqueried items.

First Decomposition. Fix any N1, . . . , NL such that N = N1 + . . . + NL and any partition of
[N ] into sets A1 ∪ . . . ∪ AL = [N ]. We consider the following decomposition of a permutation π
into functions (Assign, {τi}i∈[L]), where Assign : [N ] → [L] and |Assign−1(j)| = Nj for all j ∈ [L]
and τj : [Nj ]→ [Nj ] for j ∈ [L]. Assign is a random mixing of the L arrays where Assign explicitly
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states that π(i) ∈ AAssign(i). Let Assign−1(i) be ordered in an increasing order and let Assign−1(i)[j]
be the j-th largest item. We define π as follows:

π(i) = Assign−1(l)[τl(k)] where i ∈ Al and k = |{j : j < i and j ∈ Al}|.

In the above decomposition, Assign allocates exactly Ni locations for items of Ai, while τi
describes the arrangement of the items of Ai within the Ni locations. In words, π assigns the k-th
largest item of Al to the τl(k)-th largest index of Assign−1(l). This process is well defined since
|Assign−1(l)| = |Ai|.

We argue in the next lemma that we can sample a uniform permutation π by sampling uniform
assignment function, Assign and uniform permutations {τi}i∈[L].

Lemma 20. For all L > 0, N1, . . . , NL = N and a partitions A1 ∪ . . . ∪ AL = [N ] such that
|Ai| = Ni for all i ∈ [L], the permutation output by the process above is uniformly distributed over
the set of permutation over N elements.

Proof. Our proof will proceed in two steps. First, we show that the process has N ! possible choices
of (Assign, τ1, . . . , τL) and any two such choices give different permutations as output.

The number of possible choices (Assign, τ1, . . . , τL) is easily seen to be(
N

N1, . . . , NL

)
·
∏
i∈[L]

Ni! = N !.

Let (Assign, τ1, . . . , τL) 6= (Assign′, τ ′1, . . . , τ
′
L) and let π and π′ be the associated permutations.

Suppose Assign(i) 6= Assign′(i) for some i ∈ [N ]. Then π(i) ∈ AAssign(i) while π′(i) ∈ AAssign′(i),
which implies that π and π′ are different. Suppose instead Assign and Assign′ coincide on all inputs.
Then, there exists j ∈ [L] and k ∈ [Nj ] such that τj(k) 6= τ ′j(k). In π, the k-th largest item in

Aj will be placed into Assign−1(l)[τj(k)] while the same item will be placed into Assign−1(l)[τ ′j(k)]
meaning π and π′ are different.

Second Decomposition. We can also decompose permutations in another way. Fix anyN1, . . . , NL

such that N1 + . . . + NL = N . First, choose a random partitioning Distribute : [N ] → [L] of the
integers in [N ] into sets A1, . . . , AL of sizes N1, . . . , NL respectively. In other words, i ∈ Aj if and
only if Distribute(i) = j. Each set Aj is permuted according to a randomly selected permutation
τj over [Nj ]. Finally, the permutation π is obtained by concatenating of permuted A1, . . . , AL.
Formally, π is defined as

π(i) =
∑

1≤j<Distribute(i)

Nj + τDistribute(i)(k) where k = |{j : j < i and Distribute(i) = Distribute(j)}|.

The next lemma proves that π is uniformly distributed over the set of permutation of [N ].

Lemma 21. For all L > 0, the permutation output by the above process is uniformly distributed
over the set of permutations over N elements.

Proof. Again, the number of possible (Distribute, τ1, . . . , τj) is easily seen to be N ! following the
same process as Lemma 20.
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To show injectivity, pick (Distribute, τ1, . . . , τL) 6= (Distribute′, τ ′1, . . . , τ
′
L) and let π and π′ be

the associated permutations. Suppose that Distribute(i) < Distribute′(i) without loss of generality.
We know that π(i) ≤ N1 + . . . + NDistribute(i) while π′(i) > N1 + . . . + NDistribute′(i) meaning that
π and π′ differ. On the other hand, suppose Distribute = Distribute′ and τj(k) 6= τ ′j(k) for some
j ∈ [L] and k ∈ [Nj ]. Denote A1, . . . , AL as the sets induced by Distribute as well as Distribute′. In
this case, the k-th largest item of Aj is placed into different locations meaning π and π′ differ.

B Related Work

Since its inception in [18], the concept of an Oblivious RAM has been object of intense study and
several constructions with different properties have been proposed. As we have already pointed out
above, our construction is in the most general model in which no assumption is made on the block
size and the server is considered a storage device and not required to perform any computation on
the blocks. The constructions of [19, 35, 22, 26] are all in the same general model as ours. Weakening
any of these assumptions leads to more efficient, albeit less general, constructions. Specifically,
Circuit ORAM [40] has overhead O(α(N) · logN) for blocks of size N ε, for any α(N) = ω(1) and
constant ε. If the server is also considered to have some computational ability then the overhead can
be reduced even further. Onion Oblivious RAM of [14] only requires a constant overhead provided
that the blocks have size Ω(log6N). This requirement was reduced to Ω(log4N) by [28]

The logarithmic lower bound of Goldreich and Ostrovsky [19] only applies to statistically secure
construction in balls and bins model, as pointed out by Boyle and Naor [5]. Specifically, this
model only allows data to be shuffled around while not allowing sophisticated data encodings.
Furthermore, Boyle and Naor show that without obtaining currently unknown superlinear lower
bounds in sorting circuit sizes, there is no hope of getting lower bounds for Oblivious RAM in the
general setting.

The client of a hierarchical Oblivious RAM typically uses a Pseudo-Random Function to re-
member where each block is stored and this is the main reason why they manage to guarantee only
computational security. In the original construction of Goldreich and Ostrovsky [19], the need for a
PRF can be removed, thus obtaining statistical security in the balls and bins model where blocks are
modeled as indistingushable blobs of data, provided that the client has access to a private random
function. Damg̊ard et al. [13] and Ajtai [1] gave statistically secure constructions in the standard
model with a overhead of O(

√
N · log2N). The tree-based approach, pioneered by Shi et al. [37]

instead does not need to remember where each block is stored; for example, Path ORAM [38] stores
the position map recursively in smaller Oblivious RAMs. Thus, they offer statistical security with

polylogarithmic overhead. Gentry et al. [17] improved the overhead to O( log3N
log logN ). Currently, the

most efficient construction with statistical security is Path ORAM with O(log2N) overhead. The
construction of Chung et al. [12] has a slightly worse overhead of O(log2N · log logN) but a much
simpler proof of security and performance. Further work by Ren et al. [36] improve the hidden
constants of tree-based constructions.

Boyle et al. [4] introduced the notion of Oblivious Parallel RAM, which modeled the scenario
of multiple processes accessing shared memory in parallel. Further works [11, 10, 7] have improved
the overhead of Oblivious Parallel RAMs. Chan et al. [9] present lower bounds on the depth of
Oblivious Parallel RAMs.

In recent years, the problem of using Oblivious RAM in multiparty computation has been heav-
ily studied. Gordon et al. [24] showed that Oblivious RAM could be used to perform two-party
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computation in sublinear amortized time. Many works improving the asymptotics of Oblivious
RAM for multiparty computation were presented [41, 40]. Further works have shown that consid-
ering ORAM constructions with worse asymptotics but smaller hidden constants can lead to better
practical efficiency [42, 16].

Data-oblivious sorting is an important building block of many previous Oblivious RAM con-
structions. Batcher [3] presented an O(N log2N)-sized sorting circuit. Ajtai et al. [2] presented
an O(N logN)-sized sorting circuit, however with very large constants. Goodrich [20] presented
an O(N logN) randomized sorting algorithm with smaller constants, but larger depth. After-
wards, Goodrich [21] presented a deterministic O(N logN) sorting algorithm with similarly smaller
constants, but large depth. Chan et al. [8] present a cache-oblivious sorting algorithm. Data-
oblivious shuffling is another primitive regularly used in Oblivious RAMs. Waksman [39] presented
an O(N logN) permutation network. Ohrimenko et al. [29] present an oblivious shuffle using
O(N logC N) bandwidth when the client has C blocks of storage available. Patel et al. [33] improve
the hidden constants of the oblivious shuffle. In the same work, the notion of K-oblivious shuffling
is introduced, which generalizes the knowledge of the adversary with respect to the input. In par-
ticular it assumes that out of the N blocks that are input for the shuffle the adversary knows the
identities of only K. Leveraging the entropy of the remaining N −K blocks the K-oblivious shuffle
2N + O(K logC K) bandwidth for any client with C blocks of storage available. Our multi-array
shuffle uses ideas from the K-oblivious shuffle as starting point but achieves better asymptotic
complexity and handles much more complex input entropy, which is crucial for its application to
ORAM that achieves the new best asymptotic communication complexity.
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