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Abstract. In this paper, we construct a Lattice-based one-time Link-
able Ring Signature (L2RS) scheme, which enables the public to verify
if two or more signatures were generated by same signatory, whilst still
preserving the anonymity of the signatory. The L2RS provides uncondi-
tional anonymity and security guarantees under the Ring Short Integer
Solution (Ring-SIS) lattice hardness assumption. The proposed L2RS
scheme is extended to be applied in a protocol that we called Lattice Ring
Confidential transaction (Lattice RingCT) RingCT v1.0, which forms the
foundation of the privacy-preserving protocol in any post-quantum se-
cure cryptocurrency such as Hcash.

Keywords: Linkable Ring Signature, Lattice-Based Cryptography, Post-
Quantum Cryptography, Cryptocurrencies

1 Introduction

The notion of a Ring Signature scheme was initially formalised in [1]. This scheme
allows signing a message on behalf of a spontaneous group of signers, while pre-
serving the anonymity of the signer. The creation of a ring signature does not
require members of a group to cooperate, meaning that this scheme will not
longer have a manager who eventually can reveal the identity of the signer, and
thus the anonymity will be unconditionally preserved. This approach was a re-
markable security improvement when compared with the group signature scheme
[2] where a group manager was part of its construction. Later, an extended prop-
erty called Linkability was introduced in a ring signature scheme, under the name
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of Linkable Spontaneous Anonymous Group but is now known as Linkable Ring
Signature [3]. The linkability property of ring signatures allows one to detect if
two signatures were generated by the same signer (using the same private-key)
whilst still preserving their anonymity. This scheme was proved to be secure un-
der the discrete logarithm assumption and in Random Oracle Model (ROM). In
comparison with previous unlinkable ring signature schemes, this scheme adds
an efficient algorithm to verify the linkability property. Each signature (σ) is ac-
companied by a label (or tag), which is computed based on the signer’s private
key and a hash function modelled as a random oracle in a deterministic manner.
The label can be used by the linking algorithm the check whether two signatures
are created by the same signer. Specifically, if the labels accompanying two sig-
natures are the same, it means that the two signatures are created by the same
signer. This particular feature opens the possibility of many practical scenarios
[3–5], such as, cryptocurrency, in particular the RingCT confidential transaction
protocol adapted in Monero cryptocurrency [6], and e-voting applications.

Nevertheless, the above ring signature schemes are based on classical number-
theory mathematical assumptions, for instance, the hardness of discrete loga-
rithm [7, 8] and factoring large numbers [9]. As a consequence, they are be-
lieved to be vulnerable with the onset of powerful quantum computers [10].
This situation has sparked the primarily motivation of researchers in the area of
post-quantum cryptography to construct secure approaches against these type
of computers. Among the alternatives, lattice-based cryptography has attracted
the attention of this field due to its distinguishing features and new applications.
Algorithms based on lattices tend to be efficient, simple, highly parallelisable and
provide strong provable security guarantees [11, 12].

1.1 Contribution

– We construct a Lattice-based one-time Linkable Ring Signature (L2RS)
scheme. Our L2RS is a generalisation of the BLISS [13] scheme which is
currently one of the practical lattice digital signatures. L2RS provides un-
conditional anonymity as well as unforgeability security guarantees under
the hardness of standard lattice assumptions.

– We devise a new cryptocurrency privacy-preserving protocol that we call
Lattice RingCT v1.0. This protocol employs our proposed post-quantum
L2RS as a fundamental building block along with a homomorphic com-
mitment primitive to provide post-quantum secure confidential transactions
which forms the foundation of the privacy-preserving protocol for blockchain
cryptocurrencies, such as Hcash.

This paper is organised in eight parts, including the introduction. Section 2
gives a brief background of the current linkable ring signature approaches. After
describing the technical description used in Section 3 and the security model in
Section 4, this research shows the construction of the L2RS scheme in Section
5 along with the security analysis in Section 6. In Section 7, we present an
application of this L2RS in a cryptocurrency protocol that we called Lattice
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RingCT v1.0. Finally, a performance analysis of these proposals is presented in
Section 8.

2 Related Work

Linkable Ring Signature (LRS) primitive is receiving attention thanks to its dis-
tinguishing capabilities of anonymously detecting if two linkable ring signatures
are being signed by same signatory. Most of the current linkable ring signature
schemes along with different variants [3, 5, 14–25] rely on the hardness assump-
tions of classical cryptography. Technically, this primitive uses a linkability tag
that has a secure relationship with the signer’s publick-key, then the LRS uses
this tag to verify whether or not a singer signs two signatures. Monero, a cryp-
tocurrency application, exploits this property to prevent double spending while
keeping the user’s anonymity [6].

However, this primitive and its variants will be vulnerable to quantum at-
tacks [10, 26, 12]. This situation has led to a new area in the field of cryptog-
raphy called Post-Quantum Cryptography, aimed at constructing new crypto-
graphic algorithms that are intractable even in the presence of powerful quantum
computers. Among the current post-quantum cryptographic proposals [12, 27],
lattice-based cryptography has attracted the attention of cryptographers. It is a
candidate to be standardised as a post-quantum cryptography solution due to
its efficiency, parallelism, uniqueness and strong security assurances under the
worst-case hardness of lattice problems, which is significantly better than the
average-case hardness of other cryptographic constructions [28, 11].

Digital signatures which are constructed based on lattice-based cryptography
can be categorised into GGH/NTRUSign [29, 30], Hash-and-sign [31] and Fiat-
Shamir signatures [32]. Fiat-Shamir transformation [33, 34] is used by the Bi-
modal Lattice Signature Scheme (BLISS) [13], which is currently one of the most
practical lattice-based digital signature schemes. BLISS has been constructed
using the following well known lattice-based cryptography problems, the Short
Integer Solution (SIS) [35], Ring-SIS [36] and the Ring-LWE (Learning With
Errors) [37] problems 4. The Ring-SIS version of BLISS offers practical runtime
and key sizes. Moreover, this scheme uses a probabilistic test based on rejection
sampling technique to make the distribution of the private-key independent, an
important property that completely hides the private-key from any adversary.

Several lattice-based ring signatures schemes have been proposed in [38–43]
and there were recently three LRS proposals based on lattice-based cryptog-
raphy. The first of these constructions [44], is based on the development of a
lattice-based weak Pseudo Random Function (wPRF), an accumulator scheme
(Acc) and a framework named as Zero-Knowledge Arguments of Knowledge
(ZKAoK). These techniques are used to construct LRS schemes where the secu-
rity guarantees for the LRS properties’ unforgeability, anonymity, linkability and
non-slanderability rely on the lattice problems. The second lattice LRS scheme

4 The Ring-SIS and Ring-LWE refer to the Ring mathematical structure and differ
from the Ring in the Ring Signature scheme.
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[45], uses ideal lattices along with a lattice-based homomorphic commitment in
its construction. The security properties are based on the hardness of lattices;
however, there is no discussion as to how to secure the scheme in terms of non-
slanderability. This scheme is shown to be used in a cryptocurrency application.
The last lattice LRS proposal [46], is devised using lattice-based variants named
Module-SIS and Module-LWE problems and its security properties rely on the
lattice assumptions.

Our (L2RS) scheme was designed independently and concurrently with
[46]. The schemes share similar features, but our scheme offers unconditional
anonymity. The construction of this work, which we call Lattice-based one-
time Linkable Ring Signature (L2RS), is an extension of BLISS, a demonstrated
practical lattice-based digital signature [13]. It is secure in terms of unforgeabil-
ity, linkability and non-slanderability under the lattice hardness of the Ring-SIS
problem and unlike the above Lattice-based LRS schemes [44, 45] and [46], the
L2RS scheme achieves unconditional anonymity, meaning that this scheme will
be secure even if an adversary has unlimited computational resources and time.
As an application of this construction, we designed the Lattice RingCT v1.0,
a cryptocurrency protocol that provides confidential transactions and which its
security guarantees rely on our post-quantum cryptographic L2RS scheme.

3 Preliminaries

The ring R = Z[x]/f(x) is a degree-n polynomial ring, where f(x) is a poly-
nomial of degree of n. The ring Rq is then defined to be the quotient ring
Rq = R/(qR) = Zq[x]/f(x), where Zq denotes the set of all positive inte-
gers modulo q (a prime number q = 1 mod 2n) in the interval [−q/2, q/2] and
f(x) = xn + 1 where n is a power of 2. The challenge Sn,κ, is the set of all bi-
nary vectors of length n and weight κ. Two hash functions modeled as Random

Oracle Model (ROM), H1 with range Sn,κ ⊆ R2q, and H2 with range R1×(m−1)
q .

When we use x ← D, it means that x is chosen from the distribution D, and
y ← Rq means that y is chosen uniformly at random according to Rq. Matrices
are written in bold upper case letters whereas vectors are represented in bold
lower case letters, where vectors are column vectors and vT is the transpose
of the vector v. The hardness assumption of this work is the Ring-SIS (Short
Integer Solution) problem and this is defined as follows.

Definition 1 (R-SISKq,n,m,β problem). (Based on [13], Def. 2.3). Let denote
K some uniform distribution over the ring Rn×mq . Given a random matrix A
∈ Rn×mq sampled from K distribution, find a non-zero vector v ∈ Rmq such that
Av = 0 and ‖v‖2 ≤ β, , where ‖ · ‖2 denotes the Euclidean norm.

Lemma 1 (Leftover Hash Lemma (LHL)). (Based on [13], Lemma B.1).
Let H be a universal hash family of hash functions from X to Y. If h← H and
x ← X are chosen uniformly and independently, then the statistical distance

between (h,h(x)) and the uniform distribution on H× Y is at most
1

2

√
|Y |/|X|.
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Remark 1. We use this lemma for a SIS family of hash function H(S0) = A′0 ·
S0 ∈ Rq,with S0 ∈ DomS0 , where each function is indexed by A′0 ∈ R

1×(m−1)
q .

The DomS0 ⊆ R
1×(m−1)
q consists of a vector of Rq elements with coefficients in

set Γ
def
= (−2γ , 2γ). This is a universal hash family if s − s′ is invertible in Rq

for all distinct pairs s, s′ in Γn ⊆ Rq. This can be guaranteed by appropriate
choice q of Rq, e.g. as shown in ([47], Corollary 1.2), it is sufficient to use q such
that f(x) = xn + 1 factors into k irreducible factors mod q and 2γ < 1√

k
· q1/k.

We assume that Rq is chosen to satisfy this condition.

Lemma 2 (Rejection Sampling). (Based on [13], Lemma 2.1). Let V be an
arbitrary set, and h : V → R and f : Zm → R be probability distributions. If
gv : Zm → R is a family of probability distributions indexed by v ∈ V with the
property that there exists a M ∈ R such that ∀v ∈ V,∀v ∈ Zm,M · gv(z) ≥ f(z).
Then the output distributions of the following two algorithms are identical:

1. v ← h, z ← gv, output(z, v) with probability f(z)/(M · gv(z)).
2. v ← h, z ← f, output(z, v) with probability 1/M .

Definition 2 (Gaussian Distribution). The discrete Gaussian distribution
over Zm with standard deviation σ ∈ R and center at zero, is defined by
Dm
σ (x) = ρσ(x)/ρσ(Zm), where ρσ is m dimensional Gaussian function ρσ(x) =

exp
(
−‖x‖2
2σ2

)
.

4 Security model

4.1 Structure of Lattice-based one-time Linkable Ring Signature
(L2RS)

An L2RS scheme has four PPT algorithms (Setup, KeyGen, SigGen, SigVer,
SigLink). In addition, the correctness of this scheme is satisfied by the Signature
correctness SigGen Correctness and the Linkability correctness SigLink Correct-
ness. These algorithms are defined as follows:

– Setup: a PPT algorithm that takes the security parameter λ and produces
the Public Parameters (Pub-Params).

– KeyGen: a PPT algorithm that by taking the Pub-Params, it produces a pair
of keys: the public-key and the private-key.

– SigGen: a PPT algorithm that receives a singer π’s private-key, a message
µ and the list of users’ public-keys in the ring signature L, and outputs a
signature σL(µ).

– SigVer: a PPT algorithm that takes a signature σL(µ), a list of public-keys L
and the message µ, and it verifies if this signature was legitimately created,
this algorithm outputs either: Accept or Reject.

– SigLink: a PPT algorithm that inputs two valid signatures σL(µ1) and σL(µ2)
and it anonymously determines if these signatures were produced by same
signer π. Thus, this algorithm has a deterministic output: Linked or Un-
linked.
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Correctness requirements:

– SigGen Correctness: this guarantees that valid signatures signed by honest
signers will be accepted with overwhelming probability by a verifier.

– SigLink Correctness: this ensures that if two signatures σL(µ1) and σL(µ2) are
signed by an honest signer π, SigLink will output Linked with overwhelming
probability.

4.2 Oracles for adversaries

The following oracles will be available to any adversary who tries to break the
security of an L2RS scheme:

1. Ai ← JO(⊥). The Joining Oracle, on request, adds a new user to the
system. It returns the public-key A ∈ R1×m

2q of the new user.

2. Si ← CO(Ai). The Corruption Oracle, on input a public-key Ai ∈ R1×m
2q

that is a query output of JO, returns the corresponding private-key Si ∈
Rm×1q .

3. σ′L(µ) ← SO(w,L,Aπ, µ). The Signing Oracle, a group size w, a set L of
w public-keys, the public-key of the signer Aπ, and a message µ, returns a
valid signature σ′L(µ).

4.3 Threat Model

– One-time Unforgeability. One time unforgeability for the L2RS scheme
is defined in the following game between a simulator S and an adversary A
who has access to the oracles JO, CO, SO and the random oracle:

1. S generates and gives the list of public-keys L to A.

2. A may query the oracles according to any adaptive strategy.

3. A gives S a ring signature size w, a set L of w public-keys, a message µ
and a signature σL(µ).

A wins the game if:

• Verify(w,L, µ, σL(µ))=accept.
• All of the public-keys in L are query outputs of JO.

• No public-key in L have been input to CO.

• σL(µ) is not a query output of SO.

• No signing key Aπ was queried more than once to SO.

The advantage of the one-time unforgeability in the L2RS scheme is denoted
by

Advantageot−unfA (λ) = Pr[A wins the game ]

Definition 3 (One-Time Unforgeability). The L2RS scheme is one-time

unforgeable if for all PPT adversary A, Advantageot−unfA (λ) is negligible.
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– Unconditional Anonymity. It should not be possible for an adversary A
to tell the public-key of the signer with a probability larger than 1/w, where
w is the cardinality of the ring signature, even assuming that the adversary
has unlimited computing resources.

Unconditional anonymity for L2RS schemes is defined in the following game
between a simulator S and an unbounded adversary A who has access to
the oracle JO.

1. S generates and gives the list of public-keys L to A.

2. A may query JO according to any adaptive strategy.

3. A gives S, a group size w, a set L of w public-keys which are the outputs
of JO, a message µ. Parse the set L as {A1, . . . ,Aw}. S randomly picks
π ∈ {1, . . . , w} and computes σπ = Sign(w,L,Sπ, µ), where Sπ is a
corresponding private-key of Aπ. Then, σπ is given to A.

4. A outputs a guess π′ ∈ {1, . . . , w}.
The anonymity advantage of the L2RS scheme is denoted by

AdvantageAnonA (λ) =
∣∣∣Pr[π′ = π]− 1

w

∣∣∣
Definition 4 (Unconditional Anonymity). The L2RS scheme is uncon-
ditional anonymous if for any unbounded adversary A, AdvantageAnonA (λ)
is zero.

– Linkability. It should be infeasible for a signer to generate two signatures
such that they are determined unlinked using the SigLink algorithm. In this
scenario, the adversary attempts to generate two signatures, using only one
private-key Sπ. To describe this, we use the interaction between a simulator
S and an adversary A:

1. The A queries the JO multiple times and CO only once to get the
private-key Sπ, corresponding to the public-key Aπ.

2. The A outputs two signatures σL(µ) and σ′L′(µ
′) and two lists of public-

keys L and L′.

the A wins the game if:

• The public-keys in L and L′ are outputs of JO.

• By calling SigVer on input σL(µ) and σ′L′(µ
′), it outputs Accept on

both inputs.

• Finally, it gets Unlinked, when calling SigLink on input σL(µ) and
σ′L′(µ

′).

Thus the advantage of the linkability in the L2RS scheme is denoted by

AdvantageLinkA (λ) = Pr[A wins the game].

Definition 5 (Linkability). The L2RS scheme is linkable if for all PPT
adversary A, AdvantageLinkA is negligible.
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– Non-slanderability. It should be infeasible for an adversary to generate
a valid signature that is linked with respect to a signature created by an
honest user. This means that an adversary can frame an honest user for
signing a valid signature so the adversary can produce another valid signature
such that the SigLink algorithm outputs Linked. To describe this, we use
the interaction between a simulator S and an adversary A:

1. The S generates and gives the list of public-keys L to A.

2. The A queries the JO and CO to obtain Aπ and Sπ, respectively.

3. A gives the generated parameters to S.

4. S uses the private-key Sπ and calls the SO to output a valid signature
σL(µ), which is given to A.

5. The A uses the remaining keys of the ring signature (w − 1) to create a
second signature σ′L(µ) by calling the SO algorithm.

the A wins the game if:

• The verification algorithm SigVer, on input σL(µ) and σ′L(µ), outputs
Accept.

• The keys Aπ and Sπ were not used to generated the second signature
σ′L(µ).

• When calling the SigLink on input σL(µ) and σ′L(µ), it outputs Linked.

Thus the advantage of the non-slanderability in the L2RS scheme is denoted
by

AdvantageNSA (λ) = Pr[A wins the game].

Definition 6 (Non-Slanderability). The L2RS scheme is non-
slanderable if for all PPT adversary A, AdvantageNSA is negligible.

5 L2RS Scheme description

5.1 Setup

By receiving the security parameter λ, this L2RS.Setup algorithm randomly

chooses A′0 = (a0,1, . . . ,a0,m−1) ← R1×(m−1)
q and H′0 = (h0,1, . . . ,h0,m−1) ←

R1×(m−1)
q . This outputs the public parameters (Pub-Params): A′0 and H′0.

Remark 2. To prevent malicious attack, L2RS.Setup incorporates a trapdoor in
A′0 or H′0, in practice L2RS.Setup would generate A′0 and H′0 based on the
cryptographic Hash function H2 evaluated of two distinct and fixed constants.

Definition 7 (Function L2RS.Lift). This function maps R1×m
q to R1×m

2q

with respect to a public parameter A′0 ∈ R
1×(m−1)
q . Given a′1 ∈ Rq, we let

L2RS.Lift(A′0,a
′
1) , (2 ·A′0,−2 · a′1 + q mod 2q) ∈ R1×m

2q .
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5.2 Key Generation - KeyGen

This algorithm receives the public parameters Pub-Params: A′0 and H′0.

1. To generate a key pair in Rq, we:
– Pick (s0,1, . . . , s0,m−1), where every component is chosen uniformly and

independently with coefficients in (−2γ , 2γ).

– Define ST0 = (s0,1, . . . , s0,m−1) ∈ R1×(m−1)
q , and let ST = (ST0 , 1) ∈

R1×m
q .

– Compute a′1 = A′0 · S0 mod q ∈ Rq.
– Return (A′0,a

′
1) ∈ R1×m

q , (ST0 , 1) ∈ R1×m
2q .

2. The L2RS.Lift function is used to compute and return: A = (A0,a1) =
L2RS.Lift(A′0,a

′
1) = (2 ·A′0,−2 · a′1 + q mod 2q) ∈ R1×m

2q .

3. In the private-key ST = (ST0 , 1) ∈ R1×m
q , we consider S0 an element in R2q,

so that this returns the private-key S ∈ Rm×12q .

Note that A · S = q ∈ R2q. The list of the users’ public-keys is defined as
L = {A1, . . . ,Aw}, where w is the number of users in the ring signature scheme.
This KeyGen algorithm is described in the following Algorithm 1:

Algorithm 1 L2RS Algorithm - Key pair generation (A,S)

Input: The public parameters Pub-Params: A′0 and H′0 .
Output: (A,S), where A is the public-key and S is the private-key.
1: procedure L2RS.KeyGen(Pub-Params)

2: Let ST0 = (s0,1, . . . , s0,m−1) ∈ R1×(m−1)
q , where s0,i ← (−2γ , 2γ)n, for 1 ≤ i ≤

m− 1
3: Let ST = (ST0 , 1) ∈ R1×m

q .
4: Compute a′1 = A′0 · S0 mod q ∈ Rq.
5: Call function L2RS.Lift(A′0,a

′
1), and it returns A = (A0,a1) = (2 ·A′0,−2 ·a′1 +

q mod 2q) ∈ R1×m
2q

6: Remark: A · S = q ∈ R2q, where S ∈ Rm×1
2q .

7: return (A,S).

5.3 Signature Generation - SigGen

The SigGen algorithm inputs the user’s private-key Sπ, the message µ, the list
of user’s public-keys L, and will output the signature σL(µ). We call π the index
in {1, . . . , w} of the user or signatory who wants to sign a message µ. For a
message µ ∈ {0, 1}∗, the fixed list of public-keys L and the private-key Sπ which
corresponds to Aπ with 1 ≤ π ≤ w; the following computations are performed:

1. We define the linkability tag as H =
(
H0,h1

)
, where H0 is a fixed public

parameter for all users: H0 = 2 ·H′0 ∈ R
1×(m−1)
2q , and h1 = −H0 ·Sπ,0 + q ∈

R2q, where STπ =
(
STπ,0, 1

)
∈ R1×m

2q , such that H · Sπ = q ∈ R2q.
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2. By choosing a random vector uπ = (u1, . . . , um)T , where ui ← Dn
σ , for 1 ≤

i ≤ m, we calculate cπ+1 = H1

(
L,H, µ,Aπ · uπ,H · uπ

)
.

3. We choose random vector ti = (ti,1, . . . , ti,m)T , where ti,j ← Dn
σ , for 1 ≤

j ≤ m, then for (i = π + 1, . . . , w, 1, 2, . . . , π − 1), we compute ci+1 =

H1

(
L,H, µ,Ai · ti + q · ci,H · ti + q · ci

)
.

4. Select a random bit b ∈ {0, 1} and finally compute tπ = u + Sπ · cπ · (−1)b

using rejection sampling (Definition 2).

5. Output the signature σL(µ) =
(
c1, t1, . . . , tw,H

)
.

A formal description of this algorithm is shown in Algorithm 2.

Algorithm 2 L2RS Algorithm - Signature Generation σL(µ)

Input: Sπ, µ, L, where L = {A1, . . . ,Aw}.
Output: σL(µ) =

(
c1, t1, . . . , tw,H

)
1: procedure L2RS.SigGen(Sπ, µ, L)
2: Set H = (H0,h1), where H0 = 2 ·H′0 and h1 = −H0 · Sπ,0 + q mod 2q
3: Let u = (u1, . . . , um)T , where ui ← Dn

σ , for 1 ≤ i ≤ m.

4: Compute cπ+1 = H1

(
L,H, µ,Aπ · u,H · u

)
.

5: for (i = π + 1, π + 2, . . . , w, 1, 2, . . . , π − 1) do
6: Let ti = (ti,1, . . . , ti,m)T , where ti,j ← Dn

σ , for 1 ≤ j ≤ m.

7: Compute ci+1 = H1

(
L,H, µ,Ai · ti + q · ci,H · ti + q · ci

)
.

8: Choose b← {0, 1}.
9: Let tπ ← u + Sπ · cπ · (−1)b.

10: Continue with probability
1(

M exp

(
− ‖Sπ · cπ‖

2

2σ2

)
cosh

(
〈tπ, Sπ · cπ〉

σ2

))
otherwise Restart.

11: return σL(µ) =
(
c1, t1, . . . , tw,H

)
.

5.4 Signature Verification - SigVer

The SigVer algorithm receives the signature σL(µ) along with the message µ and
the fixed list L, and will output a decisional verification answer: whether accept
or reject the signature (see Algorithm 3). The signature σL(µ) can be publicly
validated by computing H = (H0,h1) in ci+1 for (i = 1, . . . , w), and it is verified
and only accepted under the following four conditions: ‖ti‖2 ≤ B2 for 1 ≤ i ≤ w,

‖ti‖∞ < q/4 for 1 ≤ i ≤ w, c1 = H1

(
L,H, µ,Aw · tw + q · cw,H · tw + q · cw

)
and H0 = 2 ·H′0.
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Algorithm 3 L2RS Algorithm - Signature Verification

Input: σL(µ) =
(
c1, t1, . . . , tw,H

)
, L, µ

Output: Accept or Reject
1: procedure L2RS.SigVer(σL(µ))
2: if H = (H0,h1) and H0 = 2 ·H′0 then Continue
3: for (i = 1, . . . , w) do

4: if ci+1 = H1

(
L,H, µ,Ai · ti + q · ci,H · ti + q · ci

)
then Continue

5: else if ‖ti‖2 ≤ B2 then Continue
6: else if ‖ti‖∞ < q/4 then Continue

7: else if c1 = H1

(
L,H, µ,Aw · tw + q · cw,H · tw + q · cw

)
then Accept

8: else Reject

9: return Accept or Reject

Theorem 1. Let q > 2η
√
mσ and σL(µ) =

(
c1, t1, . . . , tw,H

)
be generated

based on 2 such that ‖ti‖∞ ≤ q/4, for 1 ≤ i ≤ m. Then the output of Algo-
rithm 3 on input σL(µ) is Accept with probability 1− 2−λ.

Note that η is chosen such that ‖ti‖ ≤ q/2 is verified with probability 1− 2−λ.
The proof of this theorem will be given in the full version.

5.5 Signature Linkability - SigLink

The SigLink algorithm, illustrated in Algorithm 4, takes two signatures as
its input σL(µ1) and σL(µ2) and it outputs Linked if these signatures were
generated by same signatory, it will output Unlinked otherwise. For a fixed
list of public-keys L and given two signatures: σL(µ1) and σL(µ2), with the

list L which can be described as: σL(µ1) =
(
c1,µ1 , t1,µ1 , . . . , tw,µ1 ,Hµ1

)
and

σL(µ2) =
(
c1,µ2 , t1,µ2 , . . . , tw,µ2 ,Hµ2

)
.

These two signatures must be successfully accepted by the SigVer algorithm,
then one can verify that the linkability property can be achieved if the linkability
tags (Hµ1 and Hµ2) of the above signatures σL(µ1) and σL(µ2) are equal.
The correctness proofs of L2RS.SigGen and L2RS.SigLink are given in Appendix
A.

6 Security Analysis

Theorem 2 (One-Time Unforgeability). Suppose
√

q2n

2(γ+1)·(m−1)·n is negligi-

ble in n and 1
|Sn,κ| is negligible and y = h is polynomial in n, where h denotes the

number of queries to the random oracle H1. If there is a PPT algorithm against
one-time unforgeability of L2RS with non-negligible probability δ, then there exist
a PPT algorithm that can extract a solution to the R-SISKq,n,m,β problem (for
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Algorithm 4 L2RS Algorithm - Signature Linkability

Input: σL(µ1) and σL(µ2)
Output: Linked or Unlinked
1: procedure L2RS.SigLink(σL(µ1), σL(µ2))

2: if
(
L2RS.SigVer(σL(µ1)) = Accept and L2RS.SigVer(σL(µ2)) = Accept

)
then

Continue [
3: else if Hµ1 = Hµ2 then Linked
4: else Unlinked ]

5: return Linked or Unlinked

β = 2B2) with non-negligible probability

(
δ − 1

|Sn,κ|

)
·
(
δ− 1
|Sn,κ|
y − 1

|Sn,κ|

)
−√

q2n

2(γ+1)·(m−1)·n .

Proof. The proof is given in Appendix B.

Theorem 3 (Anonymity). Suppose
√

q2n

2(γ+1)·(m−1)·n is negligible in n with an

attack against the unconditional anonymity that makes h queries to the random
oracle H1, where h, w are polynomial in n, then the L2RS scheme is uncondi-
tionally secure as defined in Definition 4.

Proof. The proof is given in Appendix C.

Theorem 4 (Linkability). The L2RS scheme is linkable in the random oracle
model if the R-SISKq,n,m,β problem is hard.

Proof. The proof is given in Appendix D.

Theorem 5 (Non-Slanderability). For any linkable ring signature, if it sat-
isfies unforgeability and unlinkability, then it satisfies non-slanderability.

Proof. The proof is given in Appendix E.

Corollary 1 (Non-Slanderability). The L2RS scheme is non-slanderable un-
der the assumptions of Theorem 2 and Theorem 4.

7 Lattice RingCT v1.0 Protocol

This protocol is an extension of the original Ring CT protocol described in [48],
and is constructed based on the L2RS scheme. Its algorithms are defined as
follows:

– Setup: this PPT algorithm uses L2RS.Setup where it takes the security pa-
rameter λ and outputs the public parameters.

– KeyGen: this PPT algorithm uses L2RS.KeyGen, it receives the public pa-
rameters and produces a pair of keys, the public-key and the private-key.
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– Mint: a PPT algorithm that is used to generate new coins. This algorithm
receives the public-key A and the amount a, and it outputs a coin cn along
with its associated coin-key ck. An account is formed using the public-key
A and the coin cn. Likewise, the private-key S along with the coin-key ck
is used for the spending authorization.

– Spend: a PPT algorithm, which is used to generate the linkable ring signa-
ture, receives the fixed list of users’ public-keys in the ring signature L, the
Output Wallet OW and some transaction string m ∈ {0, 1}∗, these three pa-
rameter constitute the transaction TX. This algorithm outputs the signature
σL(µ) along with the TX.

– Verify: a deterministic PPT algorithm that takes as input the signature σL(µ)
and the TX, it outputs either: Accept or Reject.

7.1 Scheme construction

Our Lattice RingCT scheme requires homomorphic commitment (Com) as an
additional primitive. It is a cryptographic technique used to provide confidential
transactions, in particular cryptocurrencies [6]. This primitive allows one party
to commit to a chosen value while keeping it secret to other parties, then this
committed value can be revealed later. This model is restricted to have an Input
Wallet (IW ) that will be spent into an Output Wallet (OW) only. We use the
structure of the L2RS.KeyGen scheme Algorithm 1, where the public parameter

A′0 ∈ R
1×(m−1)
q is used to commit to a scalar message m ∈ Domm ⊆ Rq with

Domm = [0, . . . , 2`−1] ⊆ Z. This property is defined as ComA′0
(m,S0) = A′0 ·

S0 + m, where S0 ∈ DomS0 ⊆ R
(m−1)×1
q is the randomness. The properties of

the homomorphic operations are also defined as:

ComA′0
(m1,S0) ⊕ ComA′0

(m2,S
′
0) , ComA′0

(m1,S0) + ComA′0
(m2,S

′
0) mod q

= ComA′0
(m1 + m2,S0 + S′0) mod q, (1)

ComA′0
(m1,S0) 	 ComA′0

(m2,S
′
0) , ComA′0

(m1,S0)− ComA′0
(m2,S

′
0) mod q

= ComA′0
(m1 −m2,S0 − S′0) mod q, (2)

where m1,m2 ∈ Rq; and S0,S
′
0 ∈ R

(m−1)×1
q . The integers m1,m2 ∈ Z are en-

coded in binary as coefficient vectors m1 = (m1,0, . . . ,m1,`−1, 0, . . . , 0) ∈ {0, 1}n

and m2 = (m2,0, . . . ,m2,`−1, 0, . . . , 0) ∈ {0, 1}n where mj =
∑`−1
i=0(mj,i · 2i),

with mj,i ∈ {0, 1} and j ∈ {0, 1}, and m = m1−m2 = (m1,0−m2,0, . . . ,m1,`−1−
m2,`−1, 0, . . . , 0) ∈ {−1, 0, 1}n. The difference between these vectors is zero
∈ Rq if m1 = m2, non-zero otherwise. Hence the commitment is done to bits.

The construction of the Lattice RingCT v1.0 algorithm has the following steps:

1. (Pub-Params) ← Setup(λ): On input security parameter λ, this algorithm
calls L2RS.Setup and outputs the public parameters, A′0 and H′0.
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2. (Ain,Sin) ← KeyGen(Pub-Params): Given the public parameters, we call
L2RS.KeyGen to generate the pair of keys. Thus it outputs the IW pair of
keys (Ain,Sin), where Ain ∈ R1×m

2q is the public-key (or one-time address)

and Sin = (S0, 1) ∈ DomS0 ⊆ Rm×12q is the private-key. The commitment of

the KeyGen is defined as a′1(in) = A′0 ·S0(in) mod q ∈ Rq = ComA′0

(
0,S0(in)

)
.

3. (cn′, ck′)← Mint(Ain, ain): It receives a valid one-time address Ain as well
as an input amount ain ∈ Bnw, where B = {0, 1}. Then, to create a coin cn′in,
this algorithm chooses a coin-key ck′in ∈ DomS0

, where every component
is chosen uniformly and independently with coefficients in (−2γ , 2γ). Then,
the commitment is computed as cn′in = ComA′0

(ain, ck
′
in) and it returns

(cn′in, ck′in). An account constitutes
(
a′1(in), cn′in

)
∈ Rq ×Rq.

4. (TX, σL′(µ))← Spend(µ,OW ): This algorithm follows the steps:
(a) A new coin for the OW is created by the spender. It generates

ck′out ∈ DomS0
, where every component is chosen uniformly and in-

dependently with coefficients in (−2γ , 2γ), then it is computed cn′out =
ComA′0

(
aout, ck′out

)
. The new OW is set as

(
a′1(out), cn′out

)
∈ Rq ×Rq.

(b) A transaction string µ ∈ {0, 1}∗ defines the ring signature message.
(c) The list of the ring signature is constructed as L′ =

{(
â′1(in),i, cn′in,i

)}
∈

Rq × Rq for 1 ≤ i ≤ w with w being the size of the ring signature, its
components are produced as:
– â′1(in),i = a′1(in),i + cn′in,i − cn′out,i = ComA′0

(
ain,i − aout,S0(in),i +

ck′in,i − ck′out
)
.

– cn′in,i = ComA′0

(
ain,i, ck

′
in,i

)
.

(d) We call the L2RS.Lift() function (Definition 7) to lift L′ from R1×m
q

to R1×m
2q :

– L′ =
{(

L2RS.Lift
(
A′0, â

′
1(in),i

)
, L2RS.Lift

(
A′0, cn′in,i

))}
={(

Â1(in),i,CNin,i

)}
∈ R1×m

2q ×R1×m
2q , for 1 ≤ i ≤ w.

– The private-key of π is in the form of S′′in,π =
(
Sin,π,CKin,π

)
∈

Rm×12q ×Rm×12q , where:

• Sin,π =
(
S0(in,π) + ck′in,π − ck′out,π

)
∈ Rm×12q .

• CKin,π =
(
ck′in,π, 1

)
∈ Rm×12q .

(e) By calling the L2RS-DoubleSignGen
(
S′′in,π, L

′, µ
)
, Algorithm 5, we cre-

ate the ring signature σL′(µ) =

(
c1,

(
t1, . . . , tw
t′1, . . . , t

′
w

)
,H

)
.

(f) We set the transaction TX = (µ,L′, OW ).
(g) This algorithm ultimately outputs TX and σL′(µ).

5. (Accept/Reject) ← Verify
(
TX, σL′(µ)

)
: This algorithm calls L2RS-

DoubleSigVer
(
σL′(µ)

)
, using Algorithm 6 and will return either Accept

or Reject.

This construction as stated supports one-IW to one-OW and thus in this
case the range proof [6] is not needed. In the full version of this work, we will
provide more details for the correctness and the security analysis of the hiding
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and binding property; this version will also extend the Lattice RingCT v1.0
scheme to support Multiple-Inputs to Multiple-Outputs (MIMO) wallets, and
therefore a range proof will be given.

Algorithm 5 L2RS-DoubleSignGen Algorithm - Signature Generation σL′(µ)

Input: S′′in,π, µ, L
′, where S′′in,π =

(
Sin,π,CKin,π

)
and L′ =

{(
Â1(in),i,CNin,i

)}w
i=1

Output: σL′(µ) =

(
c1,

(
t1, . . . , tw
t′1, . . . , t

′
w

)
,H

)
1: procedure L2RS.DoubleSignGen(S′′in,π, µ, L

′)
2: Set H = (H0,h1), where H0 = 2 ·H′0 and h1 = −H0 · Sπ,0 + q mod 2q
3: for (1 ≤ i ≤ m) do
4: Let u = (u1, . . . , um)T , where ui ← Dn

σ .
5: Let u′ = (u′1, . . . , u

′
m)T , where u′i ← Dn

σ .

6: Compute cπ+1 = H1

(
L,H, µ, Â1(in),π · u,CNin,π · u′,H · u

)
.

7: for (i = π + 1, π + 2, . . . , w, 1, 2, . . . , π − 1) do
8: for (1 ≤ j ≤ m) do
9: Let ti = (ti,1, . . . , ti,m)T , where ti,j ← Dn

σ .
10: Let t′i = (t′i,1, . . . , t

′
i,m)T , where t′i,j ← Dn

σ .

11: Compute ci+1 = H1

(
L,H, µ, Â1(in),i ·ti+q·ci,CNin,i ·t′i+q·ci,H·ti+q·ci

)
.

12: Choose b← {0, 1} and b′ ← {0, 1}.
13: Let tπ ← u + Sin,π · cπ · (−1)b.

14: Continue with prob.
1

M exp

(
− ‖Sin,π · cπ‖

2

2σ2

)
cosh

(
〈tπ,Sin,π · cπ〉

σ2

) other-

wise Restart.
15: Let t′π ← u′ + CKin,π · cπ · (−1)b

′
.

16: Continue with prob.
1

M exp

(
− ‖CKin,π · cπ‖2

2σ2

)
cosh

(
〈t′π,CKin,π · cπ〉

σ2

)
otherwise Restart.

17: return σL′(µ) =

(
c1,

(
t1, . . . , tw
t′1, . . . , t

′
w

)
,H

)
.

8 Performance Analysis

We proposed a set of parameters (Table 1) to implement the L2RS and Lattice
RingCT v1.0 schemes. They are secure against direct lattice attacks in terms
of the BKZ algorithm Hermite factor δ, using the value of δ = 1.007, based
on the BKZ 2.0 complexity estimates with pruning enumeration-based Shortest
Vector Problem (SVP) [49], this might give 90 − 100 bits of security. We use
the conditions stated in the L2RS.SigVer algorithm and in the security analysis
(Section 6) with γ = 0 and α = 0.5. This analysis turns out signatures sizes of
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Algorithm 6 L2RS-DoubleSigVer Algorithm - Signature Verification

Input: TX = (µ,L′, OW ), σL′(µ) =

(
c1,

(
t1, . . . , tw
t′1, . . . , t

′
w

)
,H

)
, where L′ ={(

Â1(in),i,CNin,i

)}w
i=1

Output: Accept or Reject
1: procedure L2RS.DoubleSigVer(σL′(µ))
2: if H = (H0,h1) and H0 = 2 ·H′0 then Continue
3: for (i = 1, . . . , w) do

4: if ci+1 = H1

(
L,H, µ, Â1(in),i · ti+ q ·ci,CNin,i · t′i+ q ·ci,H · ti+ q ·ci

)
then Continue

5: else if ‖ti‖2 ≤ B2 and ‖t′i‖2 ≤ B2 then Continue
6: else if ‖ti‖∞ < q/4 and ‖t′i‖∞ < q/4 then Continue

7: else if c1 = H1

(
L,H, µ, Â1(in),i ·tw+q ·cw,CNin,w ·t′w+q ·cw,H ·tw+q ·cw

)
then Accept

8: else Reject

9: return Accept or Reject

53 KB and 60 KB for L2RS and Lattice RingCT v1.0, respectively, when the
number of signers in a ring signature (w) is 1. The size of the pair of keys in
L2RS is 0.592 KB (private-key) and 1.252 KB (public-key), whereas this size in
Lattice RingCT v1.0 is 1.184 KB (private-key) and 1.12 KB (public-key).

Table 1. Selected parameters for L2RS and Lattice RingCT v1.0

Name of the Scheme L2RS Lattice-RingCT v1.0

Security parameter (λ) 100 100

n 128 128

κ 32 32

m 73 73

η 2.1 2.1

‖Sc‖ 546.8 546.8

σ 273.4 273.4

log(β) 13.429 13.429

log(q) 35 35

Signature size (w = 1) 51 KB 60 KB

Signature size (w = 5) 89 KB 136 KB

Signature size (w = 10) 136 KB 231 KB

Signature size (w = 15) 183 KB 325 KB

Private-key size 0.592 KB 1.184 KB

Public-key size 1.152 KB 1.12 KB
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A L2RS - Correctness requirements

A.1 Correctness of SigGen

Beyond the required conditions of SigVer, we stated that if σL(µ1) =
(c1, t1, . . . , tw,H) is the output of the SigGen algorithm on input (µ,L,Sπ), then
the output of SigVer on input (µ,L, σL(µ1)) should be accepted. We need to show
that when SigVer computes H1(L,H, µ,Aw ·tw+q ·cw, q ·tw+H·cw), the result is
equal to c1. It is also illustrated that H1(L,H, µ,Ai ·ti+q ·ci,H·ti+q ·ci) = ci+1

for 1 ≤ i ≤ w − 1 in SigVer. In this evaluation, we consider two scenarios, one
when i 6= π and i = π:

– For i 6= π, in SigGen we have ci+1 = H1(L,H, µ,Ai · ti + q · ci,H · ti + q · ci),
while in SigVer we compute ci+1 = H1(L,H, µ,Ai · ti + q · ci,H · ti + q · ci).
These are equal since Ai · ti + q · ci (in SigGen) = Ai · ti + q · ci (in SigVer);
and H · ti + q · ci (in SigGen) = H · ti + q · ci (in SigVer).

– For i = π, in SigGen we have cπ+1 = H1(L,H, µ,Aπ · u,H · u), whereas in
SigVer we calculate cπ+1 = H1(L,H, µ,Aπ ·tπ +q ·cπ,H ·tπ +q ·cπ). In this
case, we need to show that cπ+1 (in SigGen) = cπ+1 (in SigVer). In doing so,
the following equalities need to be proved:
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1. Aπ · u = Aπ · tπ + q · cπ, which is equivalent to Aπ · (u− tπ) = q · cπ.
Here, we replace tπ as defined in Algorithm 2, to obtain:

Aπ · (u− u− Sπ · cπ · (−1)b) = q · cπ ⇐⇒
−Aπ · Sπ · cπ · (−1)b = q · cπ ⇐⇒

−q · cπ · (−1)b = q · cπ

We distinguish two cases for b:

• When b = 0, we verify that -q · cπ = q · cπ mod 2q.
• When b = 1, we have q · cπ = q · cπ mod 2q.

2. H · u = H · tπ + q · cπ, which means that:

H · (u− tπ) = q · cπ ⇐⇒
H · (u− u− Sπ · cπ · (−1)b) = q · cπ ⇐⇒
−H · Sπ · cπ · (−1)b = q · cπ ⇐⇒

−q · cπ · (−1)b = q · cπ

We distinguish between two cases:

• When b = 0, it is verified that −q · cπ = q · cπ mod 2q.
• When b = 1, we have q · cπ = q · cπ mod 2q.

A.2 Correctness of SigLink

We show that an honest user π who signs two messages µ1 and µ2 in the L2RS
with the list of public-keys L, will obtain a Linked answer when query the
SigLink algorithm with overwhelming probability. As shown in Algorithm 4,
two signatures σL(µ1) and σL(µ2) were created, these were also successfully
verified by SigVer. Saying this, the linkability tags Hµ1 and Hµ2 must be equal.
We know that:

Hµ1
= (H0,µ1

,h1,µ1
),where H0,µ1

= 2 ·H′0,µ1
and h1,µ1

= −H0,µ1
· Sπ,0 + q

Hµ2 = (H0,µ2 ,h1,µ2),where H0,µ2 = 2 ·H′0,µ2
and h1,µ2 = −H0,µ2 · Sπ,0 + q

The first part of the linkability tag will have the same output from the oracle as
it uses the same list of public-keys L, thus:

Pr[H0,µ1
= H0,µ2

] = 1.

Ultimately, the second part uses the honest user’s private-key Sπ along with the
first part of the linkability tag, so we conclude that:

Pr[−H0,µ1
· Sπ,0 + q + H0,µ2

· Sπ,0 − q = 0] = 1.
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B Security Analysis - One-Time Unforgeability

As stated in [13], this L2RS scheme relies on the R-SISKq,n,m,β problem to be se-
cure against any existential forger. This means that a forgery algorithm succeeds
with a negligible probability and so we conclude that under this probability, the
attacker will also find a solution to the R-SISKq,n,m,β problem. To prove this,
we start replacing the SigGen algorithm with Hybrid 1 and Hybrid 2 algorithms
that are used to simulate the creation of the L2RS signatures, until we obtain
an algorithm that breaks the R-SISKq,n,m,β problem. These Hybrid algorithms
are illustrated in Algorithm 7 and Algorithm 8, respectively.

The difference between SigGen and Hybrid 1 is that in Hybrid 1 the output
of the random oracle H1 is chosen at random from Sn,κ ⊆ R2q and then it is
programmed, without checking the value of Aw · u and H · u being already set.
This equality can be described as:

H1(L,H, µ,Aw · tw + q · cw,H · cw + q · tw) = H1(L,H, µ,Aw · u,H · u)

Every time the Hybrid 1 is called, the probability of generating a u such that
Aw · u and H · u are equal to one of the previous output that was queried is
at most 2−n+1. We define that the probability of getting a collusion each time
is at most h2−n+1, where “h” is the number of calls to the random oracle H1,
whereas the probability of occurring a collision after “o” queries to the Hybrid 1
is at most o · h2−n+1, which is negligible. (Based on [13], Lemma 3.4).

Algorithm 7 One-Time Unforgeability - Signature algorithm of Hybrid 1

Input: Sπ, µ, L
Output: (c1, t1, . . . , tw,H)
1: procedure Hybrid-1(Sπ, µ, L)
2: Let u = (u1, . . . , um)T where ui ← Dn

σ .

3: Choose at random cπ+1 ← Sn,κ
4: for (i = π + 1, π + 2, . . . , w, 1, 2, . . . , π − 1) do
5: Let ti = (ti,1, . . . , ti,m)T , where ti,j ← Dn

σ .
6: ci+1 ← H1(L,H, µ,Ai · ti + q · ci,H · ti + q · ci)
7: Choose b← {0, 1}
8: tπ ← u + Sπ · cπ · (−1)b

9: Continue with probability
1(

M exp

(
− ‖Sπ · cπ‖

2

2σ2

)
cosh

(
〈tπ, Sπ · cπ〉

σ2

))
otherwise Restart.

10: return (c1, t1, . . . , tw,H)

After analyzing how c1 can be forged, we evaluate the (t1, . . . , tw) of the
L2RS scheme. We claim that these are forgeable when an attacker finds a PPT
algorithm F to solve the R-SISKq,n,m,β problem. This attack can be simulated
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using the Hydrid 2 shown in Algorithm 8, where tπ is directly chosen from the
distribution Dn

σ (Based on [13], Lemma 3.5).
The public-key A ∈ R1×m

2q is generated such A · S = q ∈ R2q and finding a
vector v such that Av = 0 mod q . We denote y = h where y is the number of
times the random oracle H1 is programmed during this attack. Then this attack
is performed as follows:

1. Random coins are selected for the forger φ and signer ψ.
2. The random oracle H1 is called to generate the responses of the users in the

L2RS scheme, (c1, . . . , cw)← Sn,κ.
3. These create a SubRoutine that takes as input (A, φ, ψ, c1, . . . , cw).
4. F is initialized and run by providing the A and forger’s random coins φ.
5. The SubRoutine signs the message µ using the signer’s coins ψ in the Hydrid

2, this produces a signature σL(µ).
6. During the signing process, F will call the oracle H1 and its answers are

placed the list (c1, . . . , cw), it is also kept the queries in a table in the event
that same queries are used in this oracle.

7. F is stopped and it outputs a forgery that is the SubRoutine’s result
(c1, t1, . . . , tw,H), with negligible probability δ. This output has to be suc-
cessfully accepted by the SigVer algorithm.

If the random oracle was not called using some input Ai ·ti+q ·ci,H·ti+q ·ci,
then F has 1/|Sn,κ| chance of producing a c such that c = H1(L,H, µ,A · t +
q · c,H · t + q · c). This turns out that δ− 1/|Sn,κ| be the probability that c = cj
for some j.

Algorithm 8 One-Time Unforgeability - Signature algorithm of Hybrid 2 σL(µ)

Input: Sπ, µ, L
Output: (c1, t1, . . . , tw,H)
1: procedure Hybrid-2(Sπ, µ, L)
2: Let u = (u1, . . . , um)T , where ui ← Dn

σ .
3: Choose at random cπ+1 ← Sn,κ
4: for (i = π + 1, π + 2, . . . , w, 1, 2, . . . , π − 1) do
5: Let ti = (ti,1 . . . ti,m)T , where ti,j ← Dn

σ .
6: ci+1 ← H1(L,H, µ,Ai · ti + q · ci,H · ti + q · ci)
7: Choose b← {0, 1}
8: Choose tπ ← Dm

σ

9: Continue with probability
1

M
otherwise Restart.

10: return (c1, t1, . . . , tw,H)

Forgery 1. Let’s consider the situation that cj+1 is the result after using F
which is cj+1 = H1(L,H, µ′,A · t′ + q · cj ,H · t′ + q · cj). Then by comparing
this with a legitimate signature, we have:

H1(L,H, µ,A · t + q · cj ,H · t + q · cj) = H1(L,H, µ′,A · t′+ q · cj ,H · t′+ q · cj)
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F will find a preimage of cj if µ 6= µ′ or A · t + q · cj 6= A · t′ + q · cj
or H · t + q · cj 6= H · t′ + q · cj . Under this situation, we have with over-
whelming probability that µ = µ′ and A · t + q · cj = A · t′ + q · cj and
H · t + q · cj = H · t′+ q · cj . These equalities will result in: A(t− t′) = 0 mod 2q
and H(t− t′) = 0 mod 2q. We assume that both t and t′ are different and they
met the SigVer conditions, so it yields t− t′ 6= 0 mod q, and ‖t− t′‖ ≤ 2B2.

Forgery 2. In this scenario, we assume that the L2RS scheme can be forged
by an attacker F as it was presented in the Forgery 1 and obtain cj , then
another attacker can generate (c′j , . . . , c

′
w) ← Sn,κ by replaying the first attack

and using same message µ. We use the forking lemma [50] to show the probability
of cj = c′j and the forger uses an oracle response c′j is at least:(

δ − 1
|Sn,κ|

)
·

(
δ− 1
|Sn,κ|
y − 1

|Sn,κ|

)
(3)

Therefore, with the probability (3), F creates a signature σL(µ) =
(c′1, t

′
1, . . . , t

′
w,H) where A·t+q ·cj = A·t′+q ·c′j and H·t+q ·cj = H·t′+q ·c′j .

We now obtained:
A(t − t′) = q(cj − c′j) mod 2q and H(t − t′) = q(cj − c′j) mod 2q. Since

cj−c′j 6= 0 mod 2, so in both cases (A and H), we have t−t′ 6= 0 mod 2q where
‖t − t′‖∞ < q/2. By applying this reduction, we find a small non-zero vector
v = t−t′ 6= 0 mod q. This v will compute Av = 0 mod q with ‖v‖ ≤ 2B2. Since
A mod q = 2(A′0,−a′1) mod q, we have 2(A′0,−a′1)v = 0 mod q, this implies
that (A′0,−a′1)v = 0 mod q, since q is odd. This vector v will be a solution
to the R-SISKq,n,m,β problem with β = 2B2, with respect to (A′0,−a′1) over
Rq. Notice that Hydrid 2 shown in Algorithm 8 no longer uses the private-

key Sπ, except for generating A to obtain the final R-SISKq,n,m,β algorithm. We
modified Hydrid 2 game to Hydrid 3 game shown in Algorithm 9, where it
is changed the key generation of A to output an uniformly random a′1 ← Rq
by the argument of the Leftover Hash Lemma (LHL) - Lemma 1 and our

assumption that
√

q2n

2(γ+1)·(m−1)·n is negligible in n. The success of probability of

an attacker in Hydrid 3 game differs by a negligible amount from the success
probability in Hydrid 2 and is thus non-negligible. Therefore, this vector v will
be also ultimately a solution to the R-SISKq,n,m,β problem with β = 2B2 with
non-negligible probability.

C Security Analysis - Anonymity

We prove the anonymity of this scheme using the sequence-of-games approach
[51] where we make changes between successive games. In doing so, we use the
“transition based on indistinguishability”. We can start this analysis by:

Game 0: Suppose that an attacker A is given the list L, the signature σL(µ),
message µ, and the random oracle models (H1 and H2). The key generation
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Algorithm 9 Key pair generation of Hybrid 3 (A,S)

Input: The public parameters Pub-Params: A′0 and H′0 .
Output: (A,S), where A is the public-key and S is the private-key.
1: procedure Hybrid-3(Pub-Params)

2: Let ST0 = (s0,1, . . . , s0,m−1) ∈ R1×(m−1)
q , where s0,i ← (−2γ , 2γ)n, for 1 ≤ i ≤

m− 1
3: Let ST = (ST0 , 1) ∈ R1×m

q

4: Choose a′1 ←Rq
5: Call function L2RS.Lift(A′0,a

′
1), and it returns A = (A0,a1) = (2 ·A′0,−2 ·a′1 +

q mod 2q) ∈ R1×m
2q

6: Remark: A · S = q ∈ R2q, where S ∈ Rm×1
2q

7: return (A,S).

algorithm creates the pair of users’ keys in the ring signature: Private-Keys ←
(S1, . . . ,Sw) and the Public-Keys ← (A1, . . . ,Aw); a user π is chosen uniformly
at random from the ring signature: π ← 1, . . . , w, then the signature σL(µ)
is generated. So in this Game 0, we first select π ← {0, 1}, then we call the
L2RS.SigGen(Sπ, µ, L). A PPT adversary A outputs a guess π′ for signer’s index
π; thus in the event Game 0, A succeeds in breaking ambiguity Game 0(π =
π′) if Pr[Game 0] ≤ 1

w + non − negligible; otherwise, the A is just randomly
guessing.

Game 1: Changes in this game are made to the user π in the second part of the
linkability tag h1 = −H0 ·Sπ,0 + q mod q, in signature of user π, and public-key
a1 = (−2 ·A′0 ·Sπ,0) ∈ Rq in the KeyGen algorithm. h1 and a1 are now randomly
chosen from Rq. Note that h1 mod 2 = 1 and a1 mod 2 = 1 It can be claimed
that |Pr[Game 0]− Pr[Game 1]| ≤ εLHLG1

.
Where εLHLG1

is the advantage of some efficient algorithm which is negligible.
In these both cases h1 = −H0 · Sπ,0 mod q and a1 = (−2 · A′0 · Sπ,0 mod
q), we know that H0 and A′0 are uniform and Sπ,0 is chosen small and with
coefficients in (−2γ , 2γ). When Sπ,0 is multiplied by H0 and A′0 respectively, it
gives h1 and a1 that are close to uniform over Rq. By applying the Leftover Hash
Lemma (LHL) - Lemma 1, the statistical distance between the distribution of
(h1 mod q and a1 mod q) and the uniform distribution on Rq × Rq is at most

n · 12 ·
√

q2n

2(γ+1)·(m−1)·n . We conclude that in Game 1:

|Pr[Game 0]− Pr[Game 1]| ≤ n · 12 ·
√

q2n

2(γ+1)·(m−1)·n . (4)

Game 2: This time a change is made in the second part of the remaining public-
keys a1,i (1 ≤ i ≤ w, i 6= π) which are in the ring signature list L. They are now
randomly chosen as a1,i ← Rq. It turns out that |Pr[Game 1]−Pr[Game 2]| ≤
εLHLG2

.
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Where εLHLG2
is the advantage of some efficient algorithm which is neg-

ligible. We consider that for (i = 1 to w where i 6= π), we know that
a1,i = (−2 · A′0,i · Si,0 mod q) are uniform and all Si,0’s are chosen small

with coefficients in (−2γ , 2γ). When the Si,0’s are multiplied by A′0,i’s, it gives
a1,i mod q’s that are close to uniform over Rq. By applying the Leftover Hash
Lemma (LHL) - Lemma 1, the statistical distance between the distribution of
the (−2 ·A′0,i ·Si,0 mod q)’s and the uniform distribution on Rq ×Rq is at most

n · 12 ·
√

qn

2(γ+1)·(m−1)·n · (w − 1). So in Game 2, we conclude that:

|Pr[Game 1]− Pr[Game 2]| ≤ n · 12 ·
√

qn

2(γ+1)·(m−1)·n · (w − 1). (5)

Game 3: At this time, we make a change in cπ+1. Instead of programming the
oracle as H1(L,H, µ,Ai · u,H · u), it is now randomly chosen cπ+1 ← Sn,κ. We
have that |Pr[Game 2] − Pr[Game 3]| ≤ εG3 where εG3 is the advantage of
some efficient algorithm which is negligible. This scenario outputs a signature
σL(µ1) = (c1, t1, . . . , tw,H) and programs the oracle as H1(L,H, µ,Aπ · tπ +
Aπ · cπ,H · tπ + q · cπ) = cπ+1. Then, the adversary A makes h queries to H1;
so the distinguishing advantage of the signing algorithm and the one in Game
2 is at most h · 2−n+1. We conclude that in Game 3:

|Pr[Game 2]− Pr[Game 3]| ≤ h · 2−n+1. (6)

Game 4: In this game a change is made in tπ. Namely, instead of computing it
as u + Sπ · cπ · (−1)bit, it is now directly chosen from the Gaussian distribution
Dn
σ . It is argued that |Pr[Game 3]− Pr[Game 4]| ≤ εRSG4

.
Where εRSG4

is the advantage of some efficient algorithm which is negligible.
In previous Games, tπ is computed using rejection sampling - Lemma 2, thus
it will always have a sample from the Gaussian distribution Dn

σ . In this Game,
however, tπ is directly chosen from Dn

σ , this means that the advantage εRSG4

will be zero as in both Game 3 and Game 4, tπ is having same distribution.
In Game 4, we have:

|Pr[Game 3]− Pr[Game 4]| = 0. (7)

Game 5: Finally, in the Game 5, a change is made in the index π. Namely,
instead of choosing π + 1, it will be randomly chosen (1, . . . , w). We claim that
|Pr[Game 4]−Pr[Game 5]| ≤ εG5 where εG5 is the advantage of some efficient
algorithm which is negligible. In this Game 5, we consider that when π is
replaced by a fixed d, it might produce some collisions with previous queries to
the oracle H1; saying this, the adversary A may make h queries to H1; therefore,
the distinguishing advantage of the signing algorithm between Game 4 and this
Game 5 is at most h · 2−n+1 · w. Finally, in Game 5 we have:

|Pr[Game 4]− Pr[Game 5]| ≤ h · 2−n+1 · w. (8)



26 W. Alberto Torres et al.

We also conclude that in Game 5, the adversary’s view is statistical independent
of π, thus Pr[Game 5] = 1

w .
Combining the probabilities of the above games (4), (5), (6), (7) and (8) we
obtain:

|Pr[Game 5]− Pr[Game 0]| ≤ |Pr[Game 1]− Pr[Game 0]|+ |Pr[Game 2]−
Pr[Game 1]|+ |Pr[Game 3]− Pr[Game 2]|+ |Pr[Game 4]− Pr[Game 3]|+
|Pr[Game 5]− Pr[Game 4]|.

By replacing the resulting probabilities, we have:

|Pr[Game 5]− Pr[Game 0]| ≤ 1

w
− 1

w
+ ε, (9)

which means that |Pr[Game 5]−Pr[Game 0]| ≤ ε, which itself is smaller than

n · (w − 1)

2
·

(√
q2n

2(γ+1)·(m−1)·n +

√
qn

2(γ+1)·(m−1)·n

)
+ h · 2−n+1 · (1 + w).

We notice that since h and w are polynomial in n, we get h·2−n+1 ·(1+w) is neg-

ligible in n. In addition, we can say that

(√
q2n

2(γ+1)·(m−1)·n +
√

qn

2(γ+1)·(m−1)·n

)
≤

2 ·
√

q2n

2(γ+1)·(m−1)·n , which is negligible by the assumption that
√

q2n

2(γ+1)·(m−1)·n is

negligible. Hence we conclude that ε is negligible, meaning that Pr[Game 0] ≤
1
w + ε.

D Security Analysis - Linkability

Proof. We construct the algorithm B for R-SIS. This algorithm runs the linka-
bility attack game (Definition 5) as follows:

1. B generates using the L2RS.KeyGen algorithm all private-keys Si’s with the
corresponding public-keys Ai’s, then B gives Sπ to the attacker A as a
response to the attacker’s CO query.

2. A outputs two signatures σL(µ1) and σ′L′(µ
′) along with their corresponding

public-key’s lists L and L′ such that both signatures are successfully verified,
but the linkability tags are different h1,µ1

6= h1,µ′ .
3. B computes h1,µπ = −H0 · Sπ,0 + q mod 2q, where π is the true signer’s π

linkability tag. This h1,µπ tag can then be compared with the linkability tags
h1,µ1

and h1,µ′ , output by A, in step 2, and one of them will be different.
4. Without loss of generality, suppose h1,µ1

6= h1,µπ mod 2q. Using the fork-
ing lemma [50], B rewinds the attacker A to the H1 query correspond-
ing to the L2RS.SigVer of the signature σL(µ1). B reruns A with a dif-
ferent response of H1 and ultimately gets another signature: σL(µ2) =
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(c1,µ2
, t1,µ2

, . . . , tw,µ2
,Hµ2

). This second signature is used to extract a solu-
tion to the Ring-SIS problem, in case the A finds an efficient way to unlink
these signatures, as shown in step 7.

5. The adversary A matches the challenge message of both signatures where
Hµ1 and Aw,µ1 are kept. Thus we have:
(a) Aw,µ1

· tw,µ1
+ q · cw,µ1

= Aw,µ1
· tw,µ2

+ q · cw,µ2
,

(b) Hµ1
· tw,µ1

+ q · cw,µ1
= Hµ1

· tw,µ2
+ q · cw,µ2

.
These expressions can be represented as:
(a) Aw,µ1 · (tw,µ1 − tw,µ2) = q · (cw,µ2 − cw,µ1),
(b) Hµ1 · (tw,µ1 − tw,µ2) = q · (cw,µ2 − cw,µ1).
Reducing them modq we have (if (cw,µ2

− cw,µ1
) 6= 0 mod 2):

(a) Aw,µ1
· (tw,µ1

− tw,µ2
) = 0 mod q,

(b) Hµ1
· (tw,µ1

− tw,µ2
) = 0 mod q.

We denote by t′w,µ1
, the first (m− 1) ring elements in tw,µ1 and by t′′w,µ1

the

m-th ring element in tw,µ1
, i.e. tw,µ1

− tw,µ2
=

(
t′w,µ1

− t′w,µ2

t′′w,µ1
− t′′w,µ2

)
∈ Rmq , and

using the public-key and linkability parts, we have:
(a) 2 ·A′0 · (t′w,µ1

− t′w,µ2
) = −2 · a′1 · (t′′w,µ1

− t′′w,µ2
),

(b) 2 · H′0 · (t′w,µ1
− t′w,µ2

) = −2 · h′1,µ1
· (t′′w,µ1

− t′′w,µ2
), where h′1,µ1

,
H′0 · Sπ,0 ∈ Rq.

6. We let S̄0 =
(t′w,µ1−t

′
w,µ2

)

(t′′w,µ1−t
′′
w,µ2

) mod q where (t′′w,µ1
− t′′w,µ2

) 6= 0 mod q. We dis-

tinguish two cases:
(a) If S̄0 6= Sπ,0 mod q, since we have A′0 · S̄0 = A′0 · Sπ,0 = a′1 mod q, then

(S̄0 − S0) is a small non-zero vector SIS solution for A′0 ∈ R
1×(m−1)
q .

(b) If S̄0 = Sπ,0 mod q, then h′1,µ1
= H′0,µ1

· S̄0 mod q = H0,µ1
· S0 mod q.

The target is to show that h1,µ1
= h1,µπ mod 2 and h1,µ1

= h1,µπ mod q.
If so, then we have h1,µ1

= h1,µπ mod 2q, which is a contradiction with
our assumption at step 4 of this proof. We now prove the first target:

h1,µ1
= −2 · h′1,µ1

+ q = 1 mod 2 = −2H′0 · Sπ,0 + q = h1,µπ ,

where the first and the last equalities follow from definition of h1 in
second line of Algorithm 2. To show the second target, we have

h1,µ1 = −2 · h′1,µ1
+ q = −2 · h′1,µ1

mod q

= −2 ·H′0,µ1
· S̄0 mod q = −2 ·H′0,µ1

· Sπ,0 mod q = h1,µπ ,

where the first and the last equalities follow from definition of h1 in
second line of Algorithm 2 and the middle equality is true based on the
argument at the beginning of step (6.b).

7. Since (cw,µ2
− cw,µ1

) 6= 0 mod 2, we have (tw,µ1
− tw,µ2

) 6= 0 mod 2q. In
addition, we know that ‖tw,µ2

− tw,µ1
‖∞ < q/2, which implies that (tw,µ1

−
tw,µ2

) 6= 0 mod q. Ultimately, we have A · (tw,µ1
− tw,µ2

) = 0 mod q and
‖(tw,µ1−tw,µ2) mod q‖ ≤ 2B2. Therefore, this small non-zero vector (tw,µ1−
tw,µ2) is the output of the algorithm B, and this vector will be a solution to

the R-SISKq,n,m,β problem with β = 2B2 for a1 ∈ Rq.
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E Security Analysis - Non-Slanderability

Let’s suppose there is a non-slanderability adversary ASland who is given
pki, ski, i 6= π, and i ∈ {1, . . . w}, and he produces a valid signature σ′L(µ)
with linkability tag Hσ′L(µ)

which is equal to HσL(µ), σL(µ) being the legitimate
signature generated with respect to skπ. This means that ASland can create a
signature with the linkability tag HσL(µ) without knowing skπ. The adversary
can also compute a valid σ′′L(µ) with ski, i 6= π, and i ∈ {1, . . . w} for which
Hσ′′L(µ)

6= Hσ′L(µ)
. We give (σ′′L(µ), σ′L(µ)) to the forger, which can turn it to

an R-SIS solution. In particular, it will be computationally secure when two
valid signatures created by different users are unlinked using the L2RS algo-
rithms. An adversary A will break these properties with negligible probability
as demonstrated in Theorems (2 and 4), and with these probabilities the A
will find a R-SISKq,n,m,β solution. Therefore, non-slanderability is implied by the
definitions and security analysis of the unforgeability and linkability.


