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Abstract

Certificateless public key cryptography (CL-PKC) is designed to have suc-
cinct public key management without using certificates at the same time avoid
the key-escrow attribute in the identity-based cryptography. Security mecha-
nisms employing implicit certificates achieve same goals. In this work, we first
unify the security notions of these two types of mechanisms with a modified CL-
PKC formulation. We further present a general key-pair generation algorithm
for CL-PKC schemes and use it to construct certificateless public key signature
(CL-PKS) schemes from standard algorithms. The technique, which we ap-
ply, helps defeat known-attacks against existing constructions, and the resulting
schemes could be quickly deployed based on the existing standard algorithm
implementations. The proposed schemes are particularly useful in the Inter-
net of Things (IoT) to provide security services such as authentication, data
integrity and non-repudiation because of their high efficiency of computation
cost, bandwidth consumption and storage requirement.
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1 Introduction

In a public key cryptography system, a security mechanism to unequivocally demon-
strate the relationship between the public key and the identity of the key’s owner
is indispensable. In the public key infrastructure (PKI) system, the authority is-
sues a certificate to bind a user’s identity with his public key. While the solution
is well-established and universal, the PKI system can be very complicated and faces
many challenges in practice, such as the efficiency and scalability of the system. The
identity-based cryptography (IBC) offers an attractive alternative. In an IBC system,
a user treats his identity as his public key or more accurately everyone can derive a
user’s public key from his identity string through a pre-defined function with a set
of system parameters. Hence, in such system, the public key authenticity problem
becomes trivial, and certificates are no longer necessary. However, the key generation
center (KGC) can generate the private key corresponding to any of identity in an
IBC system. This key-escrow function sometimes causes concerns of users’ privacy.
Moreover, the compromise of the KGC resulting in leaking the master secret could
be a disastrous event.

In 2003, Al-Riyami and Paterson introduced a new paradigm: the certificateless
public key cryptography (CL-PKC) [1]. The CL-PKC is designed to have succinct
public key management without certificates at the same time remove the key-escrow
property embedded in the IBC. In the CL-PKC, a user has a public key, and his
private key is determined by two pieces of secrets: one secret associated with the user’s
identity is extracted from the KGC, and the other is generated by the user himself.
Moreover, one secret is not computable from the other, so the KGC cannot compute
the user’s private key. Hence the CL-PKC is key-escrow free. The approach against
the key replacement attack in the CL-PKC is not to directly prove the authenticity
of a public key with a certificate. Instead, the CL-PKC guarantees that even if a
malicious user successfully replaces a victim’s public key with his own choice, he still
cannot generate a valid signature or compute the agreed session key or decrypt a
ciphertext generated with the false public key and the victim’s identity. This effect
will undoubtedly reduce the interest of launching the attack.

Interestingly, another line of work named “implicit certificate” [23, 15] had been
developed before the birth of CL-PKC. An implicit certificate is comprised of a user’s
identity and a public key reconstruction data, which is used to reconstruct user’s
public key together with KGC’s public key. The validity of user’s public key cannot
be explicitly verified like a certificate with a CA’s signature. Instead, like CL-PKC, a
sound implicit-certificate-based security mechanism guarantees that the key replace-
ment attack cannot compromise the intended security.

In 1998 Arazi submitted a paper [5] to IEEE P1363, which specifies a discrete log-
arithm (DL) based algorithm to generate a “certificate” from the modified Schnorr
signature. Essentially, this scheme is an implicit certificate scheme. Arazi further
described how to construct security mechanisms upon the standardized signature,
encryption, and key agreement scheme respectively with the generated “certificate”
and private key. In 2000, Pintsov and Vanstone [42] proposed an implicit certifi-
cate scheme from the Schnorr signature, called the Optimal Mail Certificate (OMC)
scheme. The scheme was then combined with the Pintsov-Vanstone signature form-
ing a partial message recovery signature. As shown in [14], the OMC scheme cannot
work directly with a standard signature such as ECDSA [33] to form a secure sig-
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nature scheme. In 2001, Brown, Gallant and Vanston [15] described a modification
of the OMC algorithm, which is essentially same as the Arazi’s key generation algo-
rithm. This scheme later becomes known as the elliptic curve Qu-Vanstone (ECQV)
implicit certificate scheme [16]. ECQV has found its applications in the Internet of
Things (IoT). For example, it becomes part of cryptographic suite building blocks in
the ZigBee smart energy standard [54]. Whyte et al. have proposed using the ECQV-
based signature in the vehicle to vehicle (V2V) applications [50]. However, as shown
in [14], the composition of ECQV with ECDSA still suffers from the Kravitz’s attack.
It worths mentioning that Groves developed an elliptic curve-based certificateless sig-
nature named ECCSI [24] “by drawing on ideas set out by Arazi.” ECCSI does not
allow a user to generate his secret. Hence it is more like an identity-based signature
(IBS) as it still maintains the key-escrow attribute. ECCSI has been adopted as a
standard algorithm in 4G-LTE to secure mission-critical communications [19].

In the literature, there are many publications of CL-PKC either presenting con-
crete constructions or researching the formal models of related security notions. A
short and incomplete list includes [1, 2, 6, 8, 17, 28, 29, 30, 27, 32, 35, 36, 37, 47, 51, 52].
In practice, many products have implemented standard cryptographic schemes. If the
CL-PKC constructions can reuse these existing infrastructures, it will certainly help
facilitate the adoption of CL-PKC-based security solutions. However, only some of
the schemes such as [6, 27, 28, 29, 32, 35, 37, 47, 51] do not require pairing, which is a
cumbersome operation, and none of the unbroken CL-PKC algorithms is constructed
upon standard algorithms such as ECDSA, SM2 [21] and ECIES [34].

This type of occurrences happens because most of the work strictly follows the
Al-Riyami-Paterson’s formulation of CL-PKC, except a few such as [6] that made
minor changes. The definition of key generation functions in the Al-Riyami-Paterson’s
CL-PKC formulation [1, 2] excludes the use of implicit certificate schemes such as
OMC and ECQV. And the formulation makes it difficult to construct secure CL-
PKC schemes upon standard algorithms.

On the other hand, there lacks a systematic treatment of the security notions
of an implicit certificate and the security mechanisms using it. In [15], Brown et
al. presented an implicit certificate security model, which however does not address
the impact of a malicious KGC. Moreover, a native composition of a sound implicit
certificate scheme with a standard mechanism such as a provably-secure signature does
not always result in a scheme to achieve the intended security properties. Hence, only
a security definition of implicit certificate schemes is not enough, and it’s important
to formulate security notions for implicit-certificate-based security mechanisms and
so to analyze the security of schemes.

The paper is organized as follows. In Section 2, we revisit the formulation of CL-
PKC and define a unified model, which enables one to use implicit certificate schemes
to generate public and private key to construct efficient CL-PKC schemes and allows
one to systematically analyze the security of mechanisms using implicit certificates.
Then, we present a concrete certificateless key generation algorithm (CL-KGA) and
formally analyze its security in Section 3. We show how to apply a simple technique to
combine the proposed CL-KGA with standard algorithms to securely form CL-PKS
schemes in Section 4. The performance of the proposed schemes are compared with
the related ones in the literature and an implementation on an ARM chip is reported
in Section 5. Finally, we draw a conclusion.
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2 CL-PKC Definition

2.1 CL-PKC Formulation

In this section, we revisit the Al-Riyami-Paterson’s definition of CL-PKC and redefine
the formulations of CL-PKS and CL-PKE. Because this type of cryptographic schemes
share a common key generation process (we call it CL-KGA), we define this process
first and then describe signature and encryption functions.

Given a security parameter k, a CL-KGA uses following five functions to generate
public and private key pairs. The first three functions are probabilistic and the others
are deterministic. Function CL.Setup and CL.Extract-Partial-Key are typically
executed by a KGC, which keeps Msk confidential.

• (Mpk,Msk)← CL.Setup(1k). The output is a master public/secret key pair.

• (UA, xA) ← CL.Set-User-Key(Mpk, IDA). IDA ∈ {0, 1}∗ refers to an identity
string of entity A; the output is a pair of public/secret values.

• (WA, dA) ← CL.Extract-Partial-Key(Mpk, Msk, IDA, UA). The output is a
pair of partial public/private keys.

• sA ← CL.Set-Private-Key(Mpk, IDA, UA, xA, WA, dA). The output is the
private key of entity A.

• PA ← CL.Set-Public-Key(Mpk, IDA, UA, WA). The output is the claimed
public key of entity A.

The above key generation process is substantially different from the Al-Riyami-
Paterson’s definition [1, 2], in which, two public key values UA and WA are not
addressed. We replace their CL.Set-Secret-Value by CL.Set-User-Key to make
UA “visible”. We also modify their CL.Extract-Partial-Key by specifically adding
UA as input and outputting WA. Finally, in our definition, these two values are
explicitly inputted to CL.Set-Private-Key and CL.Set-Public-Key, and xA is
excluded from the input to CL.Set-Public-Key.

Apparently, CL.Set-User-Key can compute any value, which needs xA and is
necessary to generate PA, and include it in UA. Hence, any key generation schemes
following the Al-Riyami-Paterson’s definition can be covered by our definition. On the
other hand, some schemes such as the ones presented in this work achieve the same
goals of CL-PKC but cannot fit with the Al-Riyami-Paterson’s definition. Specif-
ically, the schemes presented in this work require that CL.Extract-Partial-Key
makes use of UA. In [2], Al-Riyami and Paterson elaborated a method to con-
struct Certificate-Based Encryption (CBE) [22] from CL-PKE. It requires to execute
CL.Set-Public-Key immediately after CL.Set-Private-Key and uses PA as part
of IDA to invoke CL.Extract-Partial-Key. This method essentially sets UA = PA
and calls CL.Extract-Partial-Key(Mpk, Msk, IDA‖UA, ∅) with an empty variable
∅ under our definition. We think this circumventive method, which forces inefficient
constructions on many occasions, is unnatural. An example of CL-KGA closely fol-
lowing the Al-Riyami-Paterson’s formulation is given in Appendix 7.2 for comparison.
It shows that there is significant difference between the Al-Riyami-Paterson’s formu-
lation and our new one. By removing xA from the input to CL.Set-Public-Key, the
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KGC can compute PA after executing CL.Extract-Partial-Key. This modification
is important to facilitate the security definitions below.

Once having generated the key pair, the user should be able to execute CL.Verify-
Key to check the correctness of it.

• {valid or invalid}← CL.Verify-Key(Mpk, IDA, PA, sA). The deterministic
function outputs whether (IDA, PA, sA) is valid with regard to Mpk.

In CL-PKC schemes, another value derived from the identity and the master
public key together with PA is used as the real public key. This derivation process
is typically specified in the encryption or signature verification function. Here, we
explicitly define this process as the CL.Calculate-Public-Key function. We think
this generalization could present a more distinct view of CL-PKC constructions.

• OA ← CL.Calculate-Public-Key(Mpk, IDA, PA). The deterministic function
outputs the real public key OA of entity A.

So both PA and OA are treated as the public keys of entity IDA. PA (called the
public key reconstruction data in the implicit certificate work [14]) is distributed in
some way such as through an active directory or as part of a signature or message
exchanged in a key establishment protocol, and OA is computed from Mpk, IDA,
and PA. OA is the one used as the real public key of IDA in the CL.Encrypt or
CL.Verify or a session key computation function.

If CL.Verify-Key(Mpk, IDA, PA, sA) returns valid, the key pair (OA, sA),
when used in cryptographic schemes such as encryption or signature, should satisfy
the soundness requirement of those types of mechanisms.

Now we are ready to define the CL-PKS and CL-PKE. A CL-PKS scheme is
specified by following two functions with the key generation scheme above.

• σ ← CL.Sign(Mpk, IDA, PA, sA,m). The probabilistic function signs on a mes-
sage m and outputs a signature σ.

• {valid or invalid}← CL.Verify(Mpk, IDA, PA,m, σ). The deterministic func-
tion outputs whether σ is a valid signature of m with respect to (Mpk, IDA, PA).

A CL-PKE scheme is specified by following two functions together with the key
generation scheme above.

• C ← CL.Encrypt(Mpk, IDA, PA,m). The probabilistic function encrypts a
message m with (Mpk, IDA, PA) and outputs a ciphertext C.

• {m or⊥}←CL.Decrypt(Mpk, IDA, PA, sA, C). The deterministic function out-
puts a plaintext m or a failure symbol ⊥.

As explained above, our CL-PKC formulation covers constructions following the
Al-Riyami-Paterson’s definition. As shown in the following sections, implicit-certificate-
based mechanisms are also embraced by this definition. For example, Appendix 7.1
shows that ECQV fits well in the above formulation as a CL-KGA. It has been demon-
strated in [2] that Gentry’s CBE can be constructed with the Al-Riyami-Paterson’s
CL-PKE. Our generalized definition obviously works for CBE as well.
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2.2 Security Definition

Al-Riyami and Paterson defined the security notion of indistinguishability under adap-
tive chosen-ciphertext attack (IND-CCA) of CL-PKE [1]. A serial of work [30, 52] re-
fined the security notion of existential unforgeability against adaptive chosen-message
attack (EUF-CMA) of CL-PKS. The formal security model of certificateless key agree-
ment (CL-KA) can be found in such as [36]. All of these security notions are defined
with two games. Game 1 is conducted between a challenger C and a Type-I adversary
AI who does not know the master secret key but can replace a user’s public key with
its choice. This type of adversary simulates those who may impersonate a party by
providing others with a false public key. Game 2 is conducted between a challenger C
and a Type-II adversary AII who knows the master secret key (so every entity’s par-
tial private key). This type of adversary simulates a malicious KGC adversary who
eavesdrops the communications between its subscribers or may even switch public
keys among them. We refer to [1, 52, 36] for further details.

Here, we introduce a formal security model of CL-KGA which has not been defined
in the literature and can also serve as a model for implicit certificate mechanisms.1

In CL-PKC, a KGC and its users could be opponent to each other, but they work
together to generate a key pair for an identity ID if both behave honestly. Hence,
they are in a different security world from the classic signature. On the other hand,
we show that one still can make use of the security definition of signature mechanism
to address the security requirements of a CL-KGA.

Intuitively, a secure CL-PKE requires that an adversary knowing xA but without
dA or knowing dA without xA for a valid key pair (IDA, PA, sA) should not be able to
decrypt a ciphertext encrypted with (IDA, PA). Following the two-game definition, a
Type-I adversary AI succeeds in Game 1, if it generates a valid key pair (ID∗, P∗, s∗)
from any (ID∗, U∗) and CL.Extract-Partial-Key(Mpk, Msk, ID∗, U∗) has not been
queried. A Type-II adversary AII succeeds in Game 2 if it generates a valid key pair
(ID∗, P∗, s∗) of which P∗ is generated by the challenger through CL.Set-Public-Key
and related functions and its related secret values x∗ and s∗ are not disclosed to the
adversary. A secure CL-PKE requires that its CL-KGA is safe against these two types
of adversaries. Game 1 is similar to the EUF-CMA notion of a signature scheme.

Similarly, a secure CL-PKS requires that an adversary knowing xA but without
dA or knowing dA without xA should not be able to generate a valid signature with a
key pair (IDA, PA, sA). For non-repudiation, a secure CL-PKS further requires that
an adversary should not be able to generate a signature on a message with a pair
of keys different from the one obtained through a query with CL.Extract-Partial-
Key. More formally, an adversary succeeds in Game 1 if it generates two valid
key pairs (ID∗, P∗, s∗) and (ID∗, P

′
∗, s
′
∗) for any chosen (ID∗, U∗) and CL.Extract-

Partial-Key(Mpk, Msk, ID∗, U∗) has been queried at most once. A secure CL-PKS
requires its CL-KGA is safe against this type of adversary. This requirement is similar
to the strong EUF-CMA notion of a signature scheme [3]. As in a CL-PKE, a CL-PKS
requires that its CL-KGA is also secure against Type-II adversaries.

The two games are depicted in Table 1. In these games, an adversary can access
an oracle OCL to issue queries adaptively before outputting a key pair (ID∗, P∗, s∗)
for test. In both games, query CL.Get-Public-Key, CL.Get-Private-Key and

1In [15], a security model of the implicit certificate mechanism is defined. The model is more like
for a key agreement and does not consider the Type-II adversary.
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CL.Get-User-Key can be asked. And in Game 1, query CL.Extract-Partial-Key
can also be asked.

• Query CL.Extract-Partial-Key(Mpk, Msk, IDA, UA). The oracle follows the
function definition to generate WA and dA and calls function CL.Set-Public-
Key(Mpk, IDA, UA, WA) to get PA. It returns WA and dA after recording
(IDA, PA) in a set Q. The oracle can build the set Q because CL.Set-Public-
Key doesn’t need xA in our CL-KGA formulation.

• Query CL.Get-Public-Key(IDA, bNewKey). If bNewKey is true, the ora-
cle follows function CL.Set-User-Key, CL.Extract-Partial-Key, CL.Set-
Private-Key, and CL.Set-Public-Key sequentially to generate keys, and it
returns PA after recording all the internal keys as (IDA, PA, xA, sA) in a set
L and putting PA in a set P. Otherwise, the oracle returns PA from the latest
record indexed by IDA in L.

• Query CL.Get-Private-Key(IDA, PA). The oracle returns sA from the record
indexed by (IDA, PA) in L after putting (IDA, PA) in a set S1

• Query CL.Get-User-Key(IDA, PA). The oracle returns xA from the record
indexed by (IDA, PA) in L after putting (IDA, PA) in a set S2.

Table 1: The CL-KGA Games

Game 1: Type-I Adversary

1. (Mpk,Msk)← CL.Setup(1k).

2. (ID∗, P∗, s∗)←A
O1
CL

I (Mpk).

3. succeed if (ID∗, P∗) /∈ S1 ∪ Q and valid←CL.Verify-Key(Mpk, ID∗, P∗, s∗).

Game 2: Type-II Adversary

1. (Mpk,Msk)← CL.Setup(1k).

2. (ID∗, P∗, s∗)←A
O2
CL

II (Mpk,Msk).

3. succeed if P∗ ∈ P, (ID∗, P∗) /∈ S1 ∪ S2 and valid←CL.Verify-Key(Mpk, ID∗, P∗, s∗).

In these two games, if no record is found when searching L, the oracle returns an
error. To exclude the cases that the adversary can win trivially, CL.Get-Private-
Key(ID∗, P∗) is disallowed in both games, i.e., (ID∗, P∗) /∈ S1. In Game 1, (ID∗, P∗) is
not allowed in the final test if CL.Extract-Partial-Key(Mpk, Msk, ID∗, U∗) has been
queried for some U∗, and W∗ from the query output satisfies P∗ = CL.Set-Public-
Key(Mpk, ID∗, U∗, W∗), i.e., (ID∗, P∗) /∈ Q. In Game 2, CL.Get-User-Key(ID∗, P∗)
is forbidden, i.e., (ID∗, P∗) /∈ S2, and P∗ has to be a public key generated through a
query CL.Get-Public-Key(IDA, true) for some IDA, i.e., P∗ ∈ P.

Definition 1 A CL-KGA is secure if the success probability of both AI and AII in
the CL-KGA games is negligible.
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Table 2: The CL-PKS-EUF-CMA Games

Game 1: Type-I Adversary

1. (Mpk,Msk)← CL.Setup(1k).

2. (ID∗, P∗,m∗, σ∗)←A
O1
CL

I (Mpk).

3. succeed if (ID∗, P∗) /∈ S1 ∪ Q, (ID∗, P∗,m∗) /∈ M and
valid←CL.Verify(Mpk, ID∗, P∗,m∗, σ∗).

Game 2: Type-II Adversary

1. (Mpk,Msk)← CL.Setup(1k).

2. (ID∗, P∗,m∗, σ∗)←A
O2
CL

II (Mpk,Msk).

3. succeed if P∗ ∈ P, (ID∗, P∗) /∈ S1 ∪ S2, (ID∗, P∗,m∗) /∈ M and
valid←CL.Verify(Mpk, ID∗, P∗,m∗, σ∗).

For CL-PKS, we use the security model shown in Table 2 to define the security
notion of EUF-CMA. As in the CL-KGA games, query CL.Get-Public-Key(IDA,
bNewKey), CL.Get-Private-Key(IDA, PA) and CL.Get-User-Key (IDA, PA) can
be issued in both games, and in Game 1, query CL.Extract-Partial-Key(Mpk, Msk,
IDA, UA) can also be asked. To enable signature queries, the following extra query
is allowed in both games.

• Query CL.Get-Sign(IDA, PA,m). The oracle uses the private key sA from
the record indexed by (IDA, PA) in L to sign the message m and returns the
signature after recording (IDA, PA,m) in a set M. If no private key is found
corresponding to PA belonging to IDA, return an error.

In the security model of [30, 52], the adversary in Game 1 is allowed to issue
another query CL.Replace-Public-Key(IDA, PA), which replaces user IDA’s public
with his choice PA. This query simulates the attack to forge a signature for a targeted
identity but with a faked public key. In this work, we don’t use this query. Instead,
we allow the adversary to provide a public key of his choice in CL.Verify in the final
stage of both games. This arrangement implicitly empowers the adversary to cheat
a signature verifier with a faked public key. Adversaries defined by this approach
corresponds to the normal (instead of strong) adversaries in [30].

As in the CL-KGA games, same restrictions are applied to allowed queries to avoid
trivial cases that the adversary can win. Moreover, CL.Get-Sign(ID∗, P∗, m∗) is
disallowed in both games, which implies (ID∗, P∗, m∗) /∈ M, because the proposed
schemes in this work are not strong EUF-CMA-secure.

Definition 2 A CL-PKS is secure if the success probability of both AI and AII in
the CL-PKS-EUF-CMA games is negligible.

Remark 1 Definition 2 defines a very strong security notion. It requires that without
the help from the KGC, a user of identity IDA cannot generate a pair of keys (PA, sA)
satisfying valid← CL.Verify-Key(Mpk, IDA, PA, sA). This attribute is essential
for a CL-PKS to provide non-repudiation security service. Any CL-PKS scheme
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implementing function CL.Extract-Partial-Key without including UA as part of
the input will be broken by an adversary in Game 1 as follows: the adversary first
issues the CL.Extract-Partial-Key query and generates a valid public key PA and
private key sA following the specification (in this case (IDA, PA) /∈ S1 ∪Q) and then
it produces a signature on any message to win the game.

Here we also define the security notion for CL-PKE with our new formulation,
which may be of independent interest to analyze CL-PKE schemes. We use the
standard two-stage games shown in Table 3 to define the IND-CCA security notion
of as in [1]. Like the CL-KGA games, query CL.Get-Public-Key(IDA, bNewKey),
CL.Get-Private-Key(IDA, PA) and CL.Get-User-Key(IDA, PA) can be issued in
both games, and in Game 1, query CL.Extract-Partial-Key(Mpk, Msk, IDA, UA)
can also be asked. To enable decryption queries, the following extra query is allowed
in both games.

• Query CL.Decrypt-Message(IDA, PA, C). The oracle uses the private key sA
from the record indexed by (IDA, PA) in L to decrypt the ciphertext C and
returns the output. If no private key is located, then use the latest private key
belonging to user IDA to decrypt C and return the output. The challenger in
stage two records (IDA, PA, C) in a set D, which implies that both AI−2 and
AII−2 cannot ask this query with (ID∗, P∗, C∗).

Table 3: The CL-PKE-IND-CCA Games

Game 1: Type-I Adversary

1. (Mpk,Msk)← CL.Setup(1k).

2. (ID∗, P∗,m1,m2, ρ)←A
O1
CL

I−1 (Mpk).

3. C∗ ← CL.Enc(Mpk, ID∗, P∗,mb) with random b← {0, 1}.

4. b′←A
O1
CL

I−2 (Mpk, ID∗, P∗,m1,m2, C∗, ρ).

5. succeed if b = b′, (ID∗, P∗) /∈ S1 ∪ Q, and (ID∗, P∗, C∗) /∈ D.

Game 2: Type-II Adversary

1. (Mpk,Msk)← CL.Setup(1k).

2. (ID∗, P∗,m1,m2, ρ)←A
O2
CL

II−1(Mpk,Msk).

3. C∗ ← CL.Enc(Mpk, ID∗, P∗,mb) with random b← {0, 1}.

4. b′←A
O2
CL

II−2(Mpk,Msk, ID∗, P∗,m1,m2, C∗, ρ).

5. succeed if b = b′, P∗ ∈ P, (ID∗, P∗) /∈ S1 ∪ S2, and (ID∗, P∗, C∗) /∈ D.

Like the security definition of CL-PKS, the adversary here is not allowed to is-
sue the CL.Replace-Public-Key(IDA, PA) query, instead, at the end of stage one
in both games, the challenger has to encrypt the message mb with a public key P∗
chosen by the adversary. The challenger does not need to answer query CL.Decrypt-
Message(IDA, PA, C) correctly without knowing related private key as in practice.
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Adversaries defined by this approach corresponds to the normal (instead of concep-
tional strong) adversaries in [1].

Definition 3 A CL-PKE is secure if the advantage: 2(Pr[succeed]-1/2) of both AI
and AII in the CL-PKE-IND-CCA games is negligible.

In [14], the authors interpreted the reason that “the composition of two ‘provably
secure’ schemes, namely original OMC and ECDSA, results in an insecure scheme”
as “This situation may be viewed as a specific limitation of the security definition
for implicit certificates given in” [15], “or ... as a broader limitation of provable se-
curity, or ... as a need to formulate all security definitions according to the recently
defined universal composability.” Because both OMC and ECQV appear to be nat-
ural candidates to generate implicit certificates, we interpret this failure of universal
composition as the limitation of implicit certificates in general. That is we should
not purposely define a stronger security notion of implicit certificates, which main-
tains universal composability but excludes those natural constructions such as OMC
and ECQV. Instead, we need to define proper security notion for signature schemes
that employ implicit certificates. The CL-PKS definition above serves such purpose.
Meanwhile, the Al-Riyami-Paterson’s formulation in [1] does not allow to use implicit
certificate schemes such as OMC and ECQV to generate private and public keys and
makes it difficult to construct signature schemes upon widely used standard algo-
rithms such as ECDSA and SM2. This is exactly what a good implicit certificate
scheme intends to achieve. The new CL-PKC definition in this work overcomes this
hurdle. The formulation above unifies the two types of security mechanisms, namely
the one using implicit certificates and CL-PKC, under one umbrella, and brings forth
the benefits of both realms, i.e., efficiency of implicit-certificate-based schemes and
rigorous security analysis approach of CL-PKC.

3 Certificateless Key Generation

3.1 The CL-KGA Scheme

Here following the definition in Section 2, we present a certificateless key generation
algorithm to generate private and public key pairs, which will be used in the CL-PKS
schemes later. The algorithm can also be used to construct CL-PKE and CL-KA
schemes. The scheme is built upon the standard elliptic curve Schnorr signature
(specifically EC-FSDSA [33]). In the description, we use symbol ∈R to denote the
operation to randomly choose from a set, and xG and yG to signify the x-axle and
y-axle of a point G respectively.

• CL.Setup(1k)

1. Select an elliptic curve E : Y 3 = X2 + aX + b defined over a prime field
Fp. The curve has a cyclic point group G of prime order q.

2. Pick a generator G ∈ G.

3. s ∈R Z∗q .
4. PKGC = [s]G.

11



5. Pick two cryptographic hash functions: H1 : {0, 1}∗ → {0, 1}n;
H2 : {0, 1}∗ → Z∗q for some integer n > 0.

6. Output Mpk = (a, b, p, q, G, PKGC , H1, H2) and Msk = s.

• CL.Set-User-Key(Mpk, IDA)

1. xA ∈R Z∗q .
2. UA = [xA]G.

3. Output (UA, xA).

• CL.Extract-Partial-Key(Mpk, Msk, IDA, UA)

1. Z = H1(a‖b‖xG‖yG‖xPKGC‖yPKGC‖IDA).

2. w ∈R Z∗q .
3. X = [w]G.

4. W = UA +X.

5. λ = H2(xW ‖yW ‖Z).

6. t = (w + λ · s) mod q.

7. Output (WA = W,dA = t).

• CL.Set-Private-Key(Mpk, IDA, UA, xA, WA, dA)

1. Output sA = (xA + dA) mod q.

• CL.Set-Public-Key(Mpk, IDA, UA, WA)

1. Output PA = WA.

• CL.Calculate-Public-Key(Mpk, IDA, PA)

1. Z = H1(a‖b‖xG‖yG‖xPKGC‖yPKGC‖IDA).

2. λ = H2(xPA‖yPA‖Z).

3. OA = PA + [λ]PKGC .

• CL.Verify-Key(Mpk, IDA, PA, sA)

1. Z = H1(a‖b‖xG‖yG‖xPKGC‖yPKGC‖IDA).

2. λ = H2(xPA‖yPA‖Z).

3. P ′A = [sA]G− [λ]PKGC .

4. Output valid if PA = P ′A, and invalid otherwise.

It is easy to check that OA = [sA]G and everyone can compute it from public
values. However, the CL.Verify-Key function makes use of sA, so only the owner of
the key pair can validate its correctness. It cannot be done by one just knowing OA.
The equations P ′A = OA − [λ]PKGC and PA = P ′A do not mean a Schnorr signature.
The hash-function H1 in the description is unnecessary in theory, but useful for a
neat implementation. The security of the CL-KGA can be summarised by following
two theorems.

12



Definition 4 Let (G, G, q) be a group of prime order q and G is a generator. The
discrete logarithm problem is given a random P ∈ G to find α such that P = [α]G.

Theorem 1 If there exists a Type-I adversary AI that has a non-negligible probability
of success in Game 1 against the CL-KGA, then the discrete logarithm in the group
G can be solved in polynomial time in the random oracle model.

The reduction behaves very much like the reduction of Schnorr signature in [43].
The challenger simulates the KGC (the signer) to answer CL.Extract-Partial-
Key(Mpk, Msk, IDA, UA) as follows: it randomly chooses w, λ ∈ Z∗q , and returns
(W = [w]G + UA − [λ]PKGC , t = w) if W is a valid point, otherwise resamples w.
This response should be indistinguishable from the result generated with private key
s: it randomly chooses w, λ ∈ Z∗q , and returns (W = [w]G+UA, t = (w+λ·s) mod q).
To answer query CL.Get-Public-Key(IDi, true), randomly select xi, di, λi ∈ Z∗q , re-
turn Pi = [xi]G+[di]G−[λi]PKGC . To answer query CL.Get-Private-Key(IDi, Pi),
return xi+di. To answer CL.Get-User-Key(IDi, Pi), return xi. We skip the details
of the full reduction.

Theorem 2 If there exists a Type-II adversary AII that has a non-negligible proba-
bility of success in Game 2 against the CL-KGA, then the discrete logarithm in the
group G can be solved in polynomial time in the random oracle model.

Proof. Suppose that AII succeeds in Game 2 with a non-negligible probability ε(k) in
time t(k). Given a DL problem (G, G, [α]G), we use AII to construct an algorithm C
to compute α. Suppose that in Game 2, CL.Get-Public-Key is queried Npub times
with bNewKey as true. The challenger C randomly selects an index 0 < I ≤ Npub.
C maintains a tuple T in the form of 〈IDi, Pi, Ui, xi, di, si, wi〉, which is indexed by
(IDi, Pi). Tc has a counter Tc, which increases by one each time when a new entry is
put in T . C answers the queries as follows:

• CL.Setup(1k). C follows the algorithm to compute Mpk and Msk, and passes
the values to AII .

• CL.Get-Public-Key(IDi, bNewKey). If bNewKey is false and at least one
entry in T includes IDi, then C returns Pi in the latest entry of IDi in T ,
otherwise responds differently in the following two cases:

1. If Tc = I, then C runs CL.Extract-Partial-Key(Mpk, Msk, IDi, [α]G) to
get (Wi, di) and the internal random value w∗i , and puts 〈IDi, Wi, [α]G,
⊥, di, ⊥, w∗i 〉 in T ; C returns Wi.

2. Else, C randomly selects xi ∈ Z∗q and runs CL.Extract-Partial-Key(Mpk,
Msk, IDi, [xi]G) to get (Wi, di) and the internal random value wi, and puts
〈IDi, Wi, [xi]G, xi, di, xi + di, wi〉 in T ; C returns Pi.

• CL.Get-Private-Key(IDi, Pi). If there is no entry indexed by (IDi, Pi) in T ,
return error. Otherwise, if si of the found entry is ⊥, then terminate the game
(Event 1), or return si.

• CL.Get-User-Key(IDi, Pi). If there is no entry indexed by (IDi, Pi) in T ,
return error. Otherwise, if xi of the found entry is ⊥, then terminate the game
(Event 2), or return xi.
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• CL.Verify-Key(Mpk, ID∗, P∗, s∗). C searches T , and if the I-th entry does
not include P∗, then terminates the game (Event 3). Otherwise, C outputs
s∗−sλ∗−w∗i as the solution to the DL problem, where λ∗ is computed according
to the specification by querying H1 and H2.

• Query to random oracle H1 or H2: C just simulates these random oracles as
standard ones.

If the I-th entry includes P∗ (¬Event 3), then the game won’t terminate early
(¬Event 1∧¬Event 2) and AII won’t notice any difference between the simulation

and the attacking environment. C solves the DL problem with the probability of ε(k)
Npub

and time O(t(k)). �

3.2 On Some Choices of the Algorithm

One may notice that CL.Verify-Key after step 2 is precisely a standard Schnorr
verification function which verifies the signature (PA, sA) on the message Z.

Message Z here is a hash result of the concatenation of octet representation of
Mpk and IDA. We choose this design based on several considerations. The use of
H1 is unnecessary in theory, but useful for a neat implementation. Z can be only
the concatenation of octet representation of Mpk and IDA. This change would not
affect much the security analysis of the CL-KGA. While from the practical point
of view, the interface of a signature algorithm such as [46] typically only accept a
message digest instead of a full message. This type of interface not only forces a
modular approach for the signing and verification process but also reduces memory
consumption in a (hardware) implementation. Without restricting the length of IDA,
which may include other information such as the time-period of the generated key, et
al., it appears reasonable to introduce an extra hash operation.

The inclusion of Mpk in the input to H1 appears to help only a little on the
security of the CL-KGA. On the key-related attack, Morita et al. showed that one
has to recompute PKGC = [s]G in every signing action before including PKGC in
H1 to defend certain attack [40]. On the aspect of security deduction in the multi-
user setting [9], there won’t be many KGCs, and a user usually will only register
with a handful of them. On the other hand, Z computed in current mode may
serve as a fixed-size globally unique identifier of a user with a KGC. Therefore λ,
which is generated in the Schnorr signing process, may act as a fixed-size globally
unique identifier of the 〈 KGC, user, public-key〉 trio. Instead of using an independent
procedure to compute these values to identify keys, integrating these values into the
cryptographic schemes helps avoid possible management operational mistakes.

The downside of the design is that an extra hash operation is executed in the
CL.Calculate-Public-Key function whenever OA is required and additional storage
is used to store those input values. Fortunately, for the CL.Sign function, saving only
λ is enough if we ignore some advanced key-related attacks and λ is also necessary
for the security of the presented CL-PKS schemes as we will see in Section 4. The
CL.Encrypt and CL.Verify function can compute Z on the fly without the extra
cost of persistent storage.

Overall the benefit brought by the current way of generating Z weighs against
the little extra cost of a hash operation and minor implementation hassle. On the
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unique representation of the domain parameter Mpk, instead of only using PKGC , a
conservative approach of including those essential values is chosen to prevent possible
loopholes including advanced attacks exploiting different curve parameters such as
the invalid-curve attack [4] or the domain parameter shifting attack [49]. If all KGCs
use a fixed curve and G, the value of a, b and G may be excluded from H1.

3.3 Secure Key Provision

In the CL-KGA process, the user queries the KGC his partial keys with his public
key value UA. Once (WA, dA) is generated, there should be a security protection
mechanism to safely distribute these values to the user. One solution is to establish
a secure channel between users and the KGC, which requires extra trust chain or
pre-deployed secrets. Due to the high sensitivity of dA and in pursuit of a more
succinct key management system using CL-PKC, it would be desirable to have a
better solution. Observing that UA is provided by the user who should know the
corresponding private value, the KGC can encrypt dA with UA through a standard
public key encryption algorithm such as ECIES. This approach also implicitly verifies
that the user knows dA, which is although not as critical as a process required for the
same security purpose when a CA issues certificates.

4 CL-PKS

4.1 Generic Approach to Construct CL-PKS

Using CL-KGA, a user with identity IDA generates a pair of keys (PA, sA), and
everyone can call function CL.Calculate-Public-Key(Mpk, IDA, PA) to compute
the real public key OA. A standard signature scheme is defined by three functions
(G,Σ, V ) such that the key generation function G generates a key pair (OA, sA),
the signing function Σ takes (OA, sA,m) as input and produces a signature σ, and
the verification function V takes (OA,m, σ) as input and tests whether σ is a valid
signature of m with respect to OA. An obvious way to construct a CL-PKS is to call
a CL-KGA to generate keys and call Σ in CL.Sign and call CL.Calculate-Public-
Key first to compute OA and then call V to test a signature in CL.Verify. However,
such crude construction with a CL-KGA that is secure by Definition 1 and a signature
scheme that is EUF-CMA-secure even in the multi-user setting [39] does not always
end up with a secure CL-PKS satisfying Definition 2.

Menezes and Smart investigated the security notions of digital signature in the
multi-user setting [39]. They formulated two types of security notions for a signature
scheme in this case. One security notion is formulated against weak-key substitu-
tion (WSK) attacks, which requires that an adversary, if outputs a pair of message
and signature generated upon public key Oi that is also valid with respect to a dif-
ferent public key O∗, should know the private key corresponding to O∗. With this
restriction, they proved that ECDSA is WSK-secure if users share the same domain
parameters such as those in Mpk. In Section 3 we have proved that the CL-KGA,
which bears high similarity with the OMC implicit certificate scheme, is secure by
Definition 1. However, the simple combination of the CL-KGA with ECDSA follow-
ing the suggested method does not produce a secure CL-PKS. In [14] Brown et al.
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detailed a security analysis which shows that the OMC with ECDSA is completely
broken and the ECQV with ECDSA is not safe against an artificial forgery attack.
These cases demonstrate that an EUF-CMA and WSK-secure DSA is not sufficient
for universal composability. This happens because in the CL-PKS setting, an ad-
versary may output a valid tuple (ID∗, P∗,m∗, σ∗) without knowing the private key.
Moreover, m∗ may not have been signed by any entity in the system and P∗ may not
belong to any entity either. Hence, it is necessary that the used EUF-CMA-secure
DSA is at least against the strong-key substitution (SKS) attacks [39], which does
not require the adversary knows the private key corresponding to O∗ after outputting
(ID∗, P∗,m∗, σ∗) for test, where O∗ ←CL.Calculate-Public-Key(Mpk, ID∗, P∗) and
valid←CL.Verify(Mpk, ID∗, P∗,m∗, σ∗).

Here, we show a simple technique to enhance the security of composed schemes.
The intermediate value λ in the CL-KGA, which is generated in the Schnorr signing
process, is called the assignment in the general framework defined in ISO/IEC 14888-
3 [33] for signatures schemes based on discrete logarithm with randomized witness.
If the signing function of the digital signature algorithm (DSA) is signing on (λ‖m)
instead of m, the two algorithms, the CL-KGA and DSA, are linked together to
safeguard the security of resulting CL-PKS. Intuitively, with including λ as the prefix
of the message to be signed, the signer is forced to commit to a public key PA and hence
the corresponding real public key OA before generating a signature. This mechanism
takes away the freedom of a forger to generate a signature before finding a public
key PA satisfying the verification equation. The security of a standard DSA such as
ECDSA guarantees that without knowing the private key, it is unlikely to generate a
valid signature with respect to a given public key OA. Meanwhile, the security of the
CL-KGA assures that without the help of the KGC, the adversary cannot compute
the private key sA corresponding to a given public key OA.

This simple technique works like applying with the so-called “key prefixing” tech-
nique [9, 39] by signing on a message together with the signer’s public key and its
identity indirectly. The technique has been used in [24] to construct ECCSI. We ap-
ply this technique to construct two CL-PKS schemes. We will show later that the
technique indeed plays an essential role to defeat all the known attacks against the
resulting CL-PKS.

4.2 CL-PKS1 from ECDSA

First, we present a scheme (CL-PKS1) using the CL-KGA and the standard ECDSA.
The scheme uses another hash function H3 : {0, 1}∗ → {0, 1}n. In practice, both H1

and H3 are instantiated by a secure hash function like SHA256. H2 is also constructed
from the same hash function by excluding the zero output modulo q.

The presented CL.Sign function from step 3 exactly follows ECDSA to sign with
private key sA on message (λ‖m). The first two steps can be treated as a message
preparation process, which re-generates the assignment computed in the Schnorr sign-
ing process invoked by CL.Extract-Partial-Key. These two steps can further be
saved if λ is pre-computed and stored. CL.Verify function invokes two functions
sequentially. It first activates CL.Calculate-Public-Key to calculate the signer’s
supposed real public key OA and then calls the verification function of ECDSA to ver-
ify signature σ on message (λ‖m) with regard to OA. We note that signing on (λ‖m)
instead of m does not require any modification to the implementation of ECDSA
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Table 4: CL-PKS1

CL.Sign(Mpk, IDA, PA, sA,m) CL.Verify(Mpk, IDA, PA,m, σ)

1. Z = H1(a‖b‖xG‖yG‖
xPKGC ‖yPKGC ‖IDA).

2. λ = H2(xPA‖yPA‖Z).

3. h = H3(λ‖m).

4. r ∈R Z∗q .

5. Q = [r]G.

6. u = xQ mod q.

7. v = r−1 · (u · sA + h) mod q.

8. Output σ = (u, v).

1. Z = H1(a‖b‖xG‖yG‖
xPKGC ‖yPKGC ‖IDA).

2. λ = H2(xPA‖yPA‖Z).

3. OA = PA + [λ]PKGC .

4. h = H3(λ‖m).

5. v1 = v−1 · h mod q.

6. v2 = v−1 · u mod q.

7. Q′ = [v1]G+ [v2]OA.

8. u′ = xQ′ mod q.

9. Output valid if u = u′, and invalid
otherwise.

either in software or hardware.

4.3 On the Power of Using the Assignment as the Key Prefix-
ing

In [14], it’s been shown that both the OMC and ECQV are insecure with ECDSA
in direct composition. The analysis below shows that after applying with the key
prefixing technique of signing on (λ‖m), both CL-PKS1 and ECQV with ECDSA are
secure against the known attacks and CL-PKS1 has better security than the ECQV
with the vanilla ECDSA scheme.

Using the notation of this paper, we revisit the analysis of [14] applying to CL-
PKS1 and ECQV with ECDSA. To guarantee that CL.Verify(Mpk, IDA, PA,m, σ)
outputs valid in CL-PKS1, equation (1) should be satisfied.

[v]Q− [u]PA = [h]G+ [λ][u]PKGC . (1)

We express equation (1) using row and column vectors:[
−u v

] [PA
Q

]
=

[
λu h

] [PKGC
G

]
. (2)

The relation of PA and Q to PKGC and G can be expressed as[
PA
Q

]
=

[
d e
f g

] [
PKGC
G

]
. (3)

After replacing [PA, Q] and eliminating [PKGC , G] and transposing the resulting ma-
trix, we have [

d f
e g

] [
−u
v

]
=

[
λu
h

]
. (4)

By multiplying the inverse matrix (we first assume that the matrix is invertible), we
get [

−u
v

]
=

1

dg − ef

[
guλ− fh
−euλ+ dh

]
. (5)
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As in [14], we consider λ as a non-linear function of d and e: λ = L(d, e), since
λ = H2(xPA‖yPA‖Z) and PA = [d]PKGC + [e]G. Similarly, we have u as a non-linear
function of f and g: u = U(f, g), since u = x̃Q = xQ mod q and Q = [f ]PKGC+[g]G.
Different from [14], we have an extra non-linear function h = H(L(d, e)), since h =
H3(λ‖m). This produces five equations:

−u =
guλ− fh
dg − ef

, (6)

v =
−euλ+ dh

dg − ef
, (7)

λ = L(d, e), (8)

u = U(f, g), (9)

h = H(L(d, e)). (10)

Substituting λ, u and h in equation (6) and (7) with equation (8), (9) and (10) re-
spectively, we get

−U(f, g) =
g

dg − ef
U(f, g)L(d, e)− f

dg − ef
H(L(d, e)), (11)

v = − e

dg − ef
U(f, g)L(d, e) +

d

dg − ef
H(L(d, e)). (12)

If we choose g = 0 as the attacks in [14], the adversary needs to resolve the
following equations:

−U(f, 0) =
1

e
H(L(d, e)), (13)

v = −H(L(d, e))(L(d, e) + d)

ef
. (14)

We slight abuse the notation by using a point instead of axles of a point in hash
functions. The above equations can be converted to

PA = [d]PKGC + [e]G, (15)

x̃[f ]PKGC = −1

e
H3(H2(PA‖Z)‖m), (16)

v =
x̃[f ]PKGC · (H2(PA‖Z) + d)

f
. (17)

By using the attacks in [14] on OMC with ECDSA to forge a valid signature, the
attacker simply chooses an identity IDA, a message m and any 0 < d, f < q and

computes u = x̃[f ]PKGC and e = − H3(m)
x̃[f]PKGC

first, and further computes v according

to equation (7). However, in CL-PKS1, e appears on both sides of equation (18) and
the relation is non-linear because of involving hash functions.

e = −H3(H2(([d]PKGC + [e]G)‖Z)‖m)

x̃[f ]PKGC
. (18)

18



Recall that Z = H1(a‖b‖xG‖yG‖xPKGC‖yPKGC‖IDA). Hence, given any 0 < f < q,
if the hash functions are collision resistant, it would be difficult to find d and e or
some IDA or m satisfying equation (18). Conversely, given any proper d and e or some
IDA or m, the hash functions simulated as random oracles would generate a random
j = − 1

eH3(H2(PA‖Z)‖m) corresponding to the x-axle modulo q of a point in a set
J whose cardinality is small for practically used curves [38]. The problem becomes
given (G, [s]G, J) finding f such that [f ][s]G ∈ J for a random s and a random small
set J . This problem appears hard based on the DL assumption.

It’s not difficult to verify that the above analysis also works on the combination
of ECQV with ECDSA. In ECQV plus ECDSA, if (λ‖m) is signed, equation (11)
becomes

−U(f, g)L(d, e) =
g

dg − ef
U(f, g)− f

dg − ef
H(L(d, e)). (19)

When g = 0, the equation of e becomes

e = − H3(H2(([d]PKGC + [e]G)‖Z)‖m)

H2(([d]PKGC + [e]G)‖Z) · x̃[f ]PKGC
. (20)

The Kravitz’s attack [14] requires finding (Z,PA,m) satisfying H3(H2(PA‖Z)‖m)
= H2(PA‖Z). This task becomes difficult if the used hash functions are collision
resistant.

We see that CL-PKS1 can defend known attacks against a direct composition of
these two algorithms. In fact, with including λ in H3, we can establish following
result.

Lemma 1 In the random oracle model, if there exists an efficient algorithm to solve
equation (11), then there exists an efficient algorithm to solve equation (19).

Proof. Suppose that an algorithm A finds a solution to equation (11) with probability
ε(k) in running time t(k). Suppose A makes NH3 queries to H3. Let 0 < ζ ≤ NH3 be
a random integer. We construct an algorithm B by rerunning A. However, this time
for the ζ-th query to H3(λζ‖mζ), the oracle returns hζλζ , where hζ is the output
of the same query in the last run, and all other random oracle queries return same
values as last time. With 1/NH3

probability, B will find a solution to the following
equation

−U(f, g)L−1(d, e) =
g

dg − ef
U(f, g)− f

dg − ef
H(L(d, e)). (21)

Suppose B makes NH2
queries to H2. Let 0 < γ ≤ NH2

be a random integer. We
construct an algorithm D by rerunning B. This time the oracle returns 1/λγ for
the γ-th query to H2(Pγ‖Zγ) and returns H3( 1

λγ
‖mj) = hj , where in the last run

λγ = H2(Pγ‖Zγ) and hj = H3(λγ‖mj) for each j. Overall, if such algorithm A exists,

then there exists an algorithm to solve equation (19) with probability O( ε(k)
NH2

·NH3
)

and time O(t(k)). �
In [14], Brown et al. proved in Theorem 1 that in the combined random oracle

(for the hash function) and generic group model (for the elliptic curve group) [44],
there does not exist an efficiently algorithm, which can find a solution (other than
the Kravitz’s) to equation (22)

−U(f, g)L(d, e) =
g

dg − ef
U(f, g)− f

dg − ef
H ′, (22)
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where H ′ is a hash function only depends on m. Obviously any solution to equation
(19) can be converted to a solution to equation (22) by using λ‖m as the message
input to H ′. Following from Lemma 1, we conclude that there is no efficient algo-
rithm to solve equation (11) in the same model. This result implies that CL-PKS1
has the security equivalent to (in fact better than) the vanilla ECQV with ECDSA
scheme against the attackers who forge a signature by solving equation (11) and (22)
respectively. Note that in the generic group model, the DL problem is hard [44].

Now, let’s consider that the matrix in equation (4) is non-invertible (dg = ef),
and in this case the attacker against CL-PKS1 has to find (Z, PA, m, x̃Q, v) satisfying
the following simultaneous equations

PA = [d][s]G+ [e]G,
Q = [f ][s]G+ [g]G,

dg = ef,

v =
H2(PA‖Z)sx̃Q + dsx̃Q + ex̃Q +H3(H2(PA‖Z)‖m)

fs+ g
. (23)

Note that a valid signature requires H3(H2(PA‖Z)‖m) 6= 0, u = x̃Q 6= 0 and
v 6= 0. Let’s investigate the possible four cases depending on the value of f and e.

1. Case 1: f = 0, d = 0, then g 6= 0 and e 6= 0, and

v =
H2(PA‖Z)sx̃Q + ex̃Q +H3(H2(PA‖Z)‖m)

g
.

Now, PA = [e]G. Hence, if PA is fixed, so is e, and there is only a negligible
probability that H2(PA‖Z) = −e/s.

2. Case 2: f = 0, e = 0, then g 6= 0 and d 6= 0, and

v =
H2(PA‖Z)sx̃Q + dsx̃Q +H3(H2(PA‖Z)‖m)

g
.

Now, PA = [d][s]G. Hence, if PA is fixed, so is d, and there is only a negligible
probability that H2(PA‖Z) = −d.

3. Case 3: e = 0, g = 0, then f 6= 0, d 6= 0, and

v =
H2(PA‖Z)x̃Q + dx̃Q

f
+
H3(H2(PA‖Z)‖m)

fs
.

A valid signature requires H3(H2(PA‖Z)‖m) 6= 0.

4. Case 4: ef = dg 6= 0. H2 as a random oracle forces the attacker to fix PA before
computing v. Let c = ds + e 6= 0 as some constant. From dg = ef , we have
fs+ g = gc/e, so the attacker after querying H2 and H3 computes

v = e
H2(PA‖Z)sx̃Q + cx̃Q +H3(H2(PA‖Z)‖m)

gc
.

Again, there is only a negligible probability that H2(PA‖Z) = −c/s.
In all four cases, there appears to be no simple trick to compute v without knowing
s.

Overall, we can see that the key prefixing method by signing on (λ‖m) indeed
plays an essential role to defeat attacks against CL-PKS1.
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4.4 More CL-PKS from ECDSA-II and Schnorr-DSA

Because ECDSA lacks a security reduction based on a standard complexity assump-
tion, several modifications to ECDSA such as [38] were proposed to address this
issue. All modifications include u as an input to H3. However the way to generate u
is different in each proposal. We use a variant of ECDSA by setting u = xQ (called
ECDSA-II in [38]). For most of the elliptic curves defined over prime fields used in
practice, this modification will not change the size of the representation of u. On the
other hand, this variant can be proved secure in the random oracle with the Improved
Forking Lemma [11] as in [38]. We use this modified ECDSA to construct CL-PKS2.

Table 5: CL-PKS2

CL.Sign(Mpk, IDA, PA, sA,m) CL.Verify(Mpk, IDA, PA,m, σ)

1. Z = H1(a‖b‖xG‖yG‖
xPKGC ‖yPKGC ‖IDA).

2. λ = H2(xPA‖yPA‖Z).

3. r ∈R Z∗q .

4. Q = [r]G.

5. u = xQ.

6. h = H3(u‖λ‖m).

7. v = r−1 · (u · sA + h) mod q.

8. Output σ = (u, v).

1. Z = H1(a‖b‖xG‖yG‖
xPKGC ‖yPKGC ‖IDA).

2. λ = H2(xPA‖yPA‖Z).

3. OA = PA + [λ]PKGC .

4. h = H3(u‖λ‖m).

5. v1 = v−1 · h mod q.

6. v2 = v−1 · u mod q.

7. Q′ = [v1]G+ [v2]OA.

8. u′ = xQ′ .

9. Output valid if u = u′, and invalid
otherwise.

We note that without including λ, even with u as an input to H3, such variant
still suffers from the attacks shown in Section 4.3. This again demonstrates the effec-
tiveness of the key prefixing technique. Another scheme with a standard reduction
is Schnorr DSA: EC-FSDSA [33], a certificateless variant of EC-FSDSA is shown in
Table 6.

Table 6: CL-PKS3

CL.Sign(Mpk, IDA, PA, sA,m) CL.Verify(Mpk, IDA, PA,m, σ)

1. Z = H1(a‖b‖xG‖yG‖
xPKGC ‖yPKGC ‖IDA).

2. λ = H2(xPA‖yPA‖Z).

3. r ∈R Z∗q .

4. Q = [r]G.

5. h = H3(xQ‖yQ‖λ‖m).

6. v = (r + h · sA) mod q.

7. Output σ = (Q, v).

1. Z = H1(a‖b‖xG‖yG‖
xPKGC ‖yPKGC ‖IDA).

2. λ = H2(xPA‖yPA‖Z).

3. OA = PA + [λ]PKGC .

4. h = H3(xQ‖yQ‖λ‖m).

5. Q′ = [v]G− [h]OA.

6. Output valid if Q = Q′, and invalid
otherwise.
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4.5 Security Analysis

Now, we analyze the security of the schemes. Apart from the analysis against the
existing attacks in Section 4.3, we present two formal security results of CL-PKS1 for
building confidence in the scheme. The analysis of CL-PKS1 with a few changes is also
applicable to ECQV with ECDSA if the technique of signing on (λ‖m) is used. We
fully analyze CL-PKS2’s security. The analysis of CL-PKS3 can be done similarly
as CL-PKS2.

Because the CL-PKS1 scheme is the composition of the CL-KGA and ECDSA, the
security of the scheme won’t be better than either of the components. For ECDSA,
the known security result is either based on the collision resistance of the used hash
function in the generic group model [12] or based on so-called the semi-logarithm
problem in the random oracle model [13, 20]. As we have already adopted the random
oracle model to analyze the security of the CL-KGA, here we continue to analyze the
security of the CL-PKS schemes in the same model.

To address the technique shortcoming of the proof, we put a restriction on the
CL.Get-Sign(IDA, PA, m) query. If ID∗ = IDA and P∗ = PA, then each message
m can be queried at most once. This “one-per-message unforgeability” security no-
tion [20] is weaker than the EUF-CMA. However, it is so far the provable one for
ECDSA in the random oracle. We label these two types of adversaries as Type-I−

and Type-II− adversary. We note that for CL-PKS2, this restriction is unnecessary
because of including u in H3.

Definition 5 Let (G, G, q) be a group of prime order q and G is a generator. The
semi-logarithm problem is given a random P ∈ G to find (u, v) such that u =
F([v−1](G+ [u]P ), where F(X) returns x-axle of point X.

For Type-I adversaries, there are two possible attacking cases. Case 1: AIa gen-
erates a signature which is valid with a targeted ID∗ and ID∗’s public key. Case 2:
AIb generates a signature which is valid with a targeted ID∗ but a public key different
from ID∗’s. Note that in this case, ID∗ may have no public key yet. The security
analysis results of these two CL-PKS schemes are as follows.

Lemma 2 If there exists an adversary A−Ia that has a non-negligible probability of
success in Game 1 against CL-PKS1 in the random oracle model, then the semi-
logarithm problem in the group G can be solved in polynomial time.

Proof. Suppose that A−Ia succeeds in Game 1 with a non-negligible probability
ε(k) in time t(k). Given a semi-logarithm problem (G, G, [α]G), we use A−Ia to
construct an algorithm C to find a solution. Suppose that in Game 1, H1 and H2 are
queried NH1 and NH2 times respectively and NKey keys are generated in the game
through CL.Get-Public-Key, and the targeted ID∗ has generated NTKey keys and
NTH3

queries on H3 with the targeted ID∗ and P∗ are called and NE CL.Extract-
Partial-Key queries are asked. The challenger C randomly selects three indices
0 < I ≤ NH1

, 0 < J ≤ NTKey, 0 < K ≤ NTH3
. C maintains a tuple T in the

form of 〈IDi, Pi, λi, Ui, xi, di, si〉, which is indexed by (IDi, Pi). For the presentation
purpose, we use PI to denote the system parameter string a‖b‖xG‖yG‖xPKGC‖yPKGC .
C answers the queries as follows:
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• CL.Setup(1k). C sets PKGC = [α]G, and passes Mpk to A−Ia. C randomly
chooses three values Z∗, h∗ ∈ {0, 1}n and λ∗ ∈ Z∗q .

• H1(PI‖IDA). C maintains a list H1 in the form of 〈Ii, Zi〉. If the input is on
the list, then the hash value is returned. If this is the I-th distinctive query,
then C puts (PI‖IDA, Z∗) on the list, and returns Z∗. Otherwise, it randomly
samples Zi ∈ {0, 1}n (if Zi = Z∗, terminate the game (Event 1)), and returns
Zi after putting the pair into H1.

• H2(PA‖Z). Similarly, C has a list H2 in the form of 〈Ii, λi〉. If the input is
on the list, then the hash value is returned. Otherwise, it randomly samples
λi ∈ Z∗q . If λi 6= λ∗, return λi after putting the pair into H2, else terminate the
game (Event 1).

• H3(λ‖m). C maintains a list H3 in the form of 〈Ii, hi, ui, vi〉. If the input is on
the list, then the hash value hi is returned. Otherwise, C behaves differently in
the following cases:

1. If λ 6= λ∗, then randomly choose hi ∈ {0, 1}n, return hi after putting
(λ‖m,hi,⊥,⊥) into H3.

2. Else, if this is the K-th query, then after putting (λ‖m, h∗, ⊥, ⊥) in the
list, return h∗. Otherwise, randomly sample (ai, bi) ∈ Z∗q2 and compute
ui = F([ai]G + [bi][h∗][α]G), vi = ui/bi, and hi = aiui/bi. C returns hi
after putting (λ‖m,hi, ui, vi) into H3.

• CL.Extract-Partial-Key(Mpk, Msk, IDi, Ui). C randomly selects di, λi ∈ Z∗q ,
and computes Pi = [di]G + Ui − [λi][α]G. C puts (Pi‖Zi, λi) in H2 with Zi =
H1(PI‖IDi) and returns (Pi, di) after putting (IDi, Pi) in a set Q. If H2 has an
entry indexed by (Pi‖Zi) that has different value from λi, terminate the game
(Event 1).

• CL.Get-Public-Key(IDi,bNewKey). If bNewKey is false and at least one entry
in T includes IDi, then C returns Pi in the latest entry of IDi in T . Otherwise,
let Zi = H1(PI‖IDi), and C responds differently in the following cases:

1. If Zi = Z∗, and this is the J -th public key generation on IDi, then compute
Pi = [h∗−λ∗][α]G, put (Pi‖Zi, λ∗) in H2 and randomly select xi ∈ Z∗q and
put (IDi, Pi, λ∗, [xi]G, xi, ⊥, ⊥) in T ; C returns Pi. If H2 has an entry
indexed by (Pi‖Zi) that has different value from λ∗, terminate the game
(Event 1).

2. Else, randomly select xi, di, λi ∈ Z∗q (if λi = λ∗, terminate the game
(Event 1)), compute Pi = [xi]G + [di]G − [λi][α]G, put (Pi‖Zi, λi) in
H2 and (IDi, Pi, λi, [xi]G, xi, di, xi + di) in T ; C returns Pi.

• CL.Get-Private-Key(IDi, Pi). If there is no entry indexed by (IDi, Pi) in T ,
return error. Otherwise, if si of the found entry is ⊥, then terminate the game
(Event 2), or return si.

• CL.Get-User-Key(IDi, Pi). If there is no entry indexed by (IDi, Pi) in T ,
return error. Otherwise, return xi from the found entry.
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• CL.Get-Sign(IDi, Pi,mi). If there is no entry indexed by (IDi, Pi) in T , return
error. Otherwise, use λi from the found entry to query H3(λi‖mi) and respond
as follows:

1. If si from the found entry is not ⊥, then use si as the private key and Pi
as the public key to sign the message and return signature.

2. Else (i.e., λi = λ∗), use λi‖mi to search the list H3.

– If ui is ⊥ on the found entry, then terminate the game (Event 3).

– Else, return (ui, vi) as the signature.

• CL.Verify(Mpk, ID∗, P∗,m∗, σ∗). If Z∗ 6= H1(PI‖ID∗) or λ∗ 6= H2(P∗‖Z∗)
or h∗ 6= H3(λ∗‖m∗) or (ID∗, P∗) ∈ Q, then terminate the game (Event 4).
Otherwise, parse σ∗ as (u∗, v∗) and output (u∗, v∗/h∗).

First, we claim that if the game is not terminated prematurely, then the simulation
is indistinguishable from the environment and the final output is the solution of the
semi-logarithm problem. The output of H1, H2 and H3 are all sampled randomly.
CL.Extract-Partial-Key returns the correct response as Zi = H1(PI‖IDi), λi =
H2(Pi‖Zi), Oi = Pi+[λi]PKGC = [di]G+Ui. The key pair (IDi, Pi, si) for an identity
IDi is also generated randomly. For any (IDi, Pi, si) with IDi 6= ID∗ or Pi 6= P∗,
we have Zi = H1(PI‖IDi), λi = H2(Pi‖Zi), Oi = Pi + [λi]PKGC = [xi + di]G
and si = xi + di with xi, di, si from the entry indexed with (IDi, Pi) in T . Hence,
the key pair is valid and the signature generated by CL.Get-Sign(IDi, Pi,mi) is
also valid. On the case that IDi = ID∗ and Pi = P∗, (ui, vi) is returned as the
signature. According to the reduction, Z∗ = H1(PI‖ID∗), λ∗ = H2(P∗‖Z∗) and
P∗ = [h∗ − λ∗][α]G. Hence, O∗ = P∗ + [λ∗][α]G = [αh∗]G. According to CL.Verify,
we have v1i = v−1i hi = ai, v

2
i = v−1i ui = bi, Q

′
i = [v1i ]G + [v2i ]O∗ = [ai]G + [biαh∗]G.

Hence, xQ′
i

= ui, which means the signature is valid. Furthermore, if (u∗, v∗) is a valid

signature, u∗ = F([v−1∗ h∗]G+[v−1∗ u∗][h∗α]G) = F([(v∗/h∗)
−1](G+[u∗][α]G)) and the

semi-logarithm problem is solved successfully. CL.Get-Private-Key and CL.Get-
User-Key return valid values which satisfy the requirements of the corresponding
function definitions.

Second, we analyze the possibility of finding a solution. Let Event 1 be that
the hash collision happens on either H1 or H2. Let Event 5 be that the adversary
A−Ia indeed chooses the I-th identity as the target, the J -th public key of the target
and the K-th query of H2(λ∗‖m∗) to generate σ∗. If Event 5 happens, then Event
2, 3 and 4 won’t happen. Overall, C solves the semi-logarithm problem with the

probability at least ε(k)
NH1

·NTKey·NTH3
− NH2

+NKey+NE
q − NH1

2n and time O(t(k)). �

Theorem 3 If there exists an adversary A−II that has a non-negligible probability of
success in Game 1 against CL-PKS1 in the random oracle model, then the semi-
logarithm problem in the group G can be solved in polynomial time.

Proof. Suppose that A−II succeeds in Game 2 with a non-negligible probability ε(k) in
time t(k). Given a semi-logarithm problem (G, G, [α]G), we use A−II to construct an
algorithm C to find a solution. Suppose that in Game 2, H1 and H2 are queried NH1

and NH2 times respectively, and NKey keys are generated through CL.Get-Public-
Key and NTH3 queries with the targeted ID∗ and P∗ are called. The challenger
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C randomly selects three indices 0 < I ≤ NH1
, 0 < J ≤ NKey, 0 < K ≤ NTH3

.
C maintains a tuple T in the form of 〈IDi, Pi, λi, Ui, xi, di, si〉, which is indexed by
(IDi, Pi). C answers the queries as follows:

• CL.Setup(1k). C follows the algorithm to compute Mpk and Msk, and passes
the values to AII . In particular, C chooses a random s ∈ Z∗q as Msk and sets
PKGC = [s]G. C randomly chooses four values Z∗, h∗ ∈ {0, 1}n and λ∗, λJ ∈ Z∗q .

• H1(PI‖IDA). C maintains a list H1 in the form of 〈Ii, Zi〉. If the input is on
the list, then the hash value is returned. If this is the I-th distinctive query,
then C puts (PI‖IDA, Z∗) on the list, and returns Z∗. Otherwise, it randomly
samples Zi ∈ {0, 1}n (if Zi = Z∗, terminate the game (Event 1)), and returns
Zi after putting the pair into H1.

• H2(PA‖Z). Similarly, C has a list H2 in the form of 〈Ii, λi〉. If the input is
on the list, then the hash value is returned. Otherwise, it randomly samples
λi ∈ Z∗q . If λi 6= λ∗ and λi 6= λJ , return λi after putting the pair into H2, else
terminate the game (Event 1).

• H3(λ‖m). C maintains a list H3 in the form of 〈Ii, hi, ui, vi〉. If the input is on
the list, then the hash value hi is returned. Otherwise, C behaves differently in
the following cases:

1. If λ 6= λJ and λ 6= λ∗, randomly choose hi ∈ {0, 1}n, return hi after
putting (λ‖m, hi, ⊥, ⊥) into H3.

2. Else (i.e., λ = λ∗ or λ = λJ ), if the J -th public key has not been generated,
terminate the game (Event 1). C responds differently in the following
cases.

– In the J -th public key generation Zi 6= Z∗,

∗ λ = λ∗. If this is the K-th query, set hi = h∗, else randomly select
hi ∈ Z∗q , after putting (λ‖m, hi, ⊥, ⊥) in the list, return hi

∗ λ = λJ . Randomly sample (ai, bi) ∈ Z2
q and compute ui =

F([ai]G + [bi][h∗][α]G + [bi][λJ − λ∗][s]G), vi = ui/bi, and hi =
aiui/bi. C returns hi after putting (λ‖m, hi, ui, vi) into H3.

– Otherwise, if this is the K-th query with λ∗, then after putting (λ‖m,
h∗, ⊥, ⊥) in the list, return h∗. Otherwise, randomly sample (ai, bi) ∈
Z∗q2 and compute ui = F([ai]G + [bi][h∗][α]G), vi = ui/bi, and hi =
aiui/bi. C returns hi after putting (λ‖m,hi, ui, vi) into H3.

• CL.Get-Public-Key(IDi,bNewKey). If bNewKey is false and at least one entry
in T includes IDi, then C returns Pi in the latest entry of IDi in T . Otherwise,
let Zi = H1(PI‖IDi), and C responds differently in the following cases:

1. If this is the J -th public key generation in the game, then compute Pi =
[h∗α]G− [sλ∗]G. Put (Pi‖Z∗, λ∗) in H2. If Zi = Z∗, set λi = λ∗, else put
(Pi‖Zi, λJ ) in H2 and set λi = λJ . If the list has an entry indexed by
(Pi‖Zi) that has different value from λi, terminate the game (Event 1).
Put (IDi, Pi, λi, ⊥, ⊥, ⊥, ⊥) in T . C returns Pi.

25



2. Else, randomly select xi, di, λi ∈ Z∗q (if λi = λ∗ or λi = λJ , terminate the
game (Event 1)), compute Pi = [xi]G + [di]G − [λi][s]G, put (Pi‖Zi, λi)
in H2 and (IDi, Pi, Zi, λi, [xi]G, xi, di, xi + di) in T . C returns Pi.

• CL.Get-Private-Key(IDi, Pi). If there is no entry indexed by (IDi, Pi) in T ,
return error. Otherwise, if si of the found entry is ⊥, then terminate the game
(Event 2), or return si.

• CL.Get-User-Key(IDi, Pi). If there is no entry indexed by (IDi, Pi) in T ,
return error. Otherwise, if xi of the found entry is ⊥, then terminate the game
(Event 3), or return xi.

• CL.Get-Sign(IDi, Pi,mi). If there is no entry indexed by (IDi, Pi) in T , return
error. Otherwise, use λi from the found entry to query H3(λi‖mi) and respond
as follows:

1. If si from the found entry is not ⊥, then use si as the private key and Pi
as the public key to sign the message and return signature.

2. Else, use λi‖mi to search the list H3.

– If ui is ⊥ on the found entry, then terminate the game (Event 4).

– Else, return (ui, vi) as the signature.

• CL.Verify(Mpk, ID∗, P∗,m∗, σ∗). If Z∗ 6= H1(PI‖ID∗) or λ∗ 6= H2(P∗‖Z∗) or
h∗ 6= H3(λ∗‖m∗), then terminate the game (Event 5). Otherwise, parse σ∗ as
(u∗, v∗) and output (u∗, v∗/h∗).

It is easy to verify that if the game is not terminated prematurely, then the sim-
ulation is indistinguishable from the environment. In particular, if the targeted ID∗ 6=
IDJ in the CL.Get-Public-Key query, C still answers the CL.Get-Sign(IDJ , PJ ,mi)
properly. Precisely, OJ = PJ + [λJ ][s]G = [h∗α]G + [λJ − λ∗][s]G. According to
CL.Verify, we have v1i = v−1i hi = ai, v

2
i = v−1i ui = bi, Q

′
i = [v1i ]G + [v2i ]OJ =

[ai]G+ [bi][h∗][α]G+ [bi][λJ − λ∗][s]G. Hence, xQ′
i

= ui, which means the signature
is valid. The final output is the solution of the semi-logarithm problem. Let Event
1 be that the hash collision happens on either H1 or H2. If the attacker chooses the
I-th identity and the J -th public key and the K-th message queried with λ∗, then
Event 2, 3, 4 and 5 won’t happen. Hence, C solves the semi-logarithm problem with

probability at least ε(k)
NH1

·NKey·NTH3
− 2

NH2
+NKey
q − NH1

2n and time O(t(k)). �

Lemma 3 If there exists an adversary AIa that has a non-negligible probability of
success in Game 1 against CL-PKS2 in the random oracle model, then the discrete
logarithm problem in the group G can be solved in polynomial time.

The reduction in Lemma 2 can be modified easily for CL-PKS2 but still based on
the strong semi-logarithm assumption. Applying the Multiple-Forking Lemma [10],
the security of CL-PKS2 against AIa can be further reduced to the DL problem. We
skip the details.

Lemma 4 If there exists an adversary AIb that has a non-negligible probability of
success in Game 1 against CL-PKS2 in the random oracle model, then the discrete
logarithm problem in the group G can be solved in polynomial time.

26



Proof. Suppose that in the game, H2 and H3 are queried NH2
and NH3

times re-
spectively, and AIb wins the game with probability ε(k) in time t(k). Given a DL
problem (G, G, [α]G), we use AIb to construct C. C maintains a tuple T in the form
of 〈IDi, Pi, λi, Ui, xi, di, si〉, which is indexed by (IDi, Pi). C answers the queries as
follows:

• CL.Setup(1k). C sets PKGC = [α]G, and passes Mpk to AIb. C randomly
chooses three values Z∗, h∗ ∈ {0, 1}n and λ∗ ∈ Z∗q .

• H1(PI‖IDA). C maintains a list H1 in the form of 〈Ii, Zi〉. If the input is
on the list, then the hash value is returned. Otherwise, it randomly samples
Zi ∈ {0, 1}n, and returns Zi after putting the pair into H1.

• H2(PA‖Z). Similarly, C has a list H2 in the form of 〈Ii, λi〉. If the input is
on the list, then the hash value is returned. Otherwise, it randomly samples
λi ∈ Z∗q , and returns λi after putting the pair into H2.

• H3(u‖λ‖m). C maintains a list H3 in the form of 〈Ii, hi〉. If the input is
on the list, then the hash value hi is returned. Otherwise, randomly sample
hi ∈ {0, 1}n, return hi after putting (u‖λ‖m,hi) into H3.

• CL.Extract-Partial-Key(Mpk, Msk, IDi, Ui). C randomly selects di, λi ∈ Z∗q ,
and computes Pi = [di]G + Ui − [λi][α]G. C puts (Pi‖Zi, λi) in H2 with Zi =
H1(PI‖IDi) and returns (Pi, di).

• CL.Get-Public-Key(IDi,bNewKey). If bNewKey is false and at least one entry
in T includes IDi, then C returns Pi in the latest entry of IDi in T . Otherwise,
randomly select xi, di, λi ∈ Z∗q , compute Pi = [xi]G + [di]G − [λi][α]G, put
(Pi‖Zi, λi) in H2 with Zi = H1(PI‖IDi) and (IDi, Pi, λi, [xi]G, xi, di, xi + di) in
T .

• CL.Get-Private-Key(IDi, Pi). If there is no entry indexed by (IDi, Pi) in T ,
return error. Otherwise, return si from the found entry.

• CL.Get-User-Key(IDi, Pi). If there is no entry indexed by (IDi, Pi) in T ,
return error. Otherwise, return xi from the found entry.

• CL.Get-Sign(IDi, Pi,mi). If there is no entry indexed by (IDi, Pi) in T , return
error. Otherwise, use the found si as the private key and Pi as the public key
to sign the message and return its signature.

C perfectly simulates the attacking environment. Before applying the Multiple-
Forking Lemma [10] to argue the security, we make several assumptions, so to make
the analysis simpler. First, as explained in Section 3, the use of H1 is unnecessary, in
the following analysis we assume H1 to be a normal collision-resistance hash function
and C requires the attacker to output Z instead of ID. Second, in the attacking
process A may query H3(u‖λ‖m) before querying λ = H2(P‖Z). However, as H2 is
simulated as a random oracle, there is only a negligible probability that this event
has happened and at the same time σ is valid. We henceforth ignore this event in the
analysis. C runs the multiple-forking algorithm MFAIb,3(Mpk) and gets four forgeries
(Z,m,P, (ui, vi)), i = 0, . . . , 3 for some Z, some message m and some P . Moreover
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each ui corresponds to a point Qi = ±[ri]G, and u0 = u1 and u2 = u3. If the forged
signatures are valid, by assuming Q0 = [r0]G and Q2 = [r2]G, we have

Q0 = [v−10 h0]G+ [v−10 u0](P + [λ0][α]G),
Q0 = [v−11 h1]G+ [v−11 u0](P + [λ0][α]G),
Q2 = [v−12 h2]G+ [v−12 u2](P + [λ2][α]G),
Q2 = [v−13 h3]G+ [v−13 u2](P + [λ2][α]G).

Let ai = hi/vi for i = 0, . . . , 3, b0 = −u0/v0, b1 = −u0/v1, b2 = −u2/v2 and
b0 = −u2/v3. C computes α′ as follows:

α′ =
(a0 − a1)(b2 − b3)− (a2 − a3)(b0 − b1)

(λ0 − λ2)(b0 − b1)(b2 − b3)
.

If Q0 = −[r0]G or Q2 = −[r2]G, C can compute α′ in a similar way and test its cor-
rectness by checking if [α′]G = [α]G and find the solution to the DL problem. By the

Multiple-Forking Lemma, C solves the DL problem with probability O( ε4(k)
(NH2

+NH3
)6 )

and time O(t(k)). 2 �.

Theorem 4 If there exists an adversary AI that has a non-negligible probability of
success in Game 1 against CL-PKS2 in the random oracle model, then the discrete
logarithm problem in the group G can be solved in polynomial time.

Theorem 4 follows from Lemma 3 and 4.

Theorem 5 If there exists an adversary AII that has a non-negligible probability of
success in Game 2 against CL-PKS2 in the random oracle model, then the discrete
logarithm problem in the group G can be solved in polynomial time.

The reduction in Theorem 3 can be simply modified for CL-PKS2 but still based
on the strong semi-logarithm assumption. Applying the Multiple-Forking Lemma, the
security of CL-PKS2 against AII can be reduced to the DL problem. We skip the
details.

Similar techniques used in the reductions for CL-PKS2 can be applied to analyze
CL-PKS3. Again the use of λ in H3 can help to construct tighter reductions.

Overall, CL-PKS2 and CL-PKS3 are secure schemes with regard to Definition 2
in the random oracle model based on the DL assumption. With two results from
Lemma 2 and Theorem 3, CL-PKS1 still lacks a formal security analysis against
the A−Ib adversary without resorting to the generic group model or introducing new
complexity assumption. On the other hand, the argument in Section 4.3 has demon-
strated its security strength against potential attacks. Particularly, with the result of
Lemma 1, it is shown that CL-PKS1 is more secure than ECQV+ECDSA.

5 Performance Evaluation and Application

We first compare the proposed CL-PKS schemes with the related schemes including
existing CL-PKS schemes and standard signature schemes using implicit certificates.

2With the help of λ in H3, a tighter reduction could be established but with much more compli-
cated analysis.
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Many CL-PKS schemes with or without pairing are proposed in the literature. Pairing
(denoted by P , which is a bilinear map: G1 × G2 → G3 such that G1 and G2 are
two cyclic groups and G3 is a related extension field) is a much heavier computation
operation than the point scalar (denoted by S) or exponentiation (denoted by E)
in the field G3. We don’t list all the existing CL-PKS schemes. Instead, only some
commonly referred pairing-based schemes and some most efficient pairing-free schemes
are compared. |G| and |q| denote the bit length of the size of a group G and an integer
q respectively.

Table 7: Performance Comparison

Scheme Key size Computation Signature Security Upon
Private Public Signing Verification size status standard alg.

AP[1] |G1| 2|G1| 1P + 3S 4P + 1E |G1|+ |q| broken[31] No
CPHL[18] |G1| |G1| 2S 2P + 2S 2|G1| proof∗ No

HMSWW[30] |q|+ |G1| |G1| 1S 3P |G1| proof∗ No
ZWXF[52] |q|+ |G1| |G1| 3S 4P 2|G1| proof∗ No

ZZZ[53] |q|+ |G1| |G2| 1S + 2E 1P + 3E |G1|+ 2|q| proof∗ No

HRL[27] |q| |q|+ |G| 1S 5S 2|G| no proof∗,$ No
HCZ[29] |q| 2|G| 1S 3S |G|+ |q| broken[48] No
JHLC[32] |q| 2|G| 1S 3S |G|+ |q| proof∗ No

LXWHH[37] 2|q| 2|G| 1S 3S 2|q| proof∗ No
YSCC[51] |q| |G| 1S 3S |G|+ |q| broken[32] Schnorr

OMC+
ECDSA[14] |q| |G| 1S 3S 2|q| broken[14] ECDSA

ECQV+ known
ECDSA[14] |q| |G| 1S 3S 2|q| attack[14] ECDSA
CL-PKS1 |q| |G| 1S 3S 2|q| partial proof ECDSA

Enhanced
CL-PKS2 |q| |G| 1S 3S |p|+ |q| proof ECDSA
CL-PKS3 |q| |G| 1S 3S |G|+ |q| proof Schnorr

∗ By Remark 1, these schemes do not satisfy the CL-PKS security notion in
Definition 2.

$ The scheme does not fully follow the Al-Riyami-Paterson’s formulation.

According to Table 7, it is known that our schemes are among the most effi-
cient ones. Moreover, CL-PKS1 doesn’t suffer from the Kravitz’s attack that affects
ECQV+ECDSA, and it can be realized by reusing the existing implementation of
ECDSA. This is a particularly important advantage in practice because many secu-
rity elements (SE) have ECDSA embedded and the private key is protected within the
SE. Deploying CL-PKS1 doesn’t need to modify existing hardware chips and won’t
cause extra security concerns because the signing process can use the private key
stored in SE in the same way as ECDSA.

We have implemented CL-PKS1 on the 32-bit Cortex-M4 MCU STM32F4 to
evaluate the performance. STMicroelectronics provides a crypto library [46], which
has interfaces to access to the implementation of ECDSA and point scalar operation
over the NIST p256 elliptic curve. The signing process of CL-PKS1 can directly
call ECDSA signature generation function in the library by signing on (λ‖m). The
verification process first calls the scalar and addition operations to compute OA and
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then calls the verification function of ECDSA in the library. We have also implemented
CL-PKS1 from the scratch to evaluate the performance of a native implementation of
the scheme. In the implementation, the Montgomery modular is applied to compute
multiplication in Fp. The addition and multiplication operations are implemented
with the assembly language. The code is compiled with -O3 option and speed is
measured with STM32F4 working at 168MHz.

Table 8: Implementation of CL-PKS1 on STM32F4

Implementation Code size Stack size Signing time Verification time

STM crypto lib. 15K 0.5K 0.078s 0.076s(scalar)+0.104s(ECDSA ver.)

Our software 11K 0.7K 0.058s 0.132s

Our software implementation is even faster than the one using the library provided
by STMicroelectronics. The speed of the implementation appears quick enough for
most applications.

Systems employing CL-PKS will enjoy the benefit of lightweight key management.
For example, inter-domain authentication in the Internet of Things such as V2V com-
munication [50] requires PKC-based security solutions. Considering the constrained
resource, diversity of devices and the scale of the IoT, an efficient CL-PKS scheme
like CL-PKS1 offers clear advantages over the certificate-based, identity-based, and
raw public key with out-of-band validation (RPK-OOBV) solutions. The certificate
size and the complicated validation process could quickly drain available resources
of a constrained device (see [45] for a detailed evaluation of the impact of a certifi-
cate on IoT devices). The RPK-OOBV has small public key data but requires other
validation mechanisms such as DNSSEC. On the other hand, the proposed CL-PKS
has small key size as RPK-OOBV and removes the necessity of public key validation.
With only slightly larger communication overhead by including the public key PA as
part of a signature as suggested in [7], CL-PKS can work just like an IBS but is free
of the key-escrow concern.

6 Conclusion

In this work, we redefine the formulation of CL-PKC to unify it with security mech-
anisms using implicit certificates. We then construct a CL-KGA from the Schnorr
signature and prove its security in the random oracle model. Furthermore, we demon-
strate that using the assignment computed in the CL.Extract-Partial-Key process
as the key prefixing in the message signing process helps improve the security of a CL-
PKS that is constructed by combining a secure CL-KGA with a standard signature
algorithm. Several of such CL-PKS schemes are described. CL-PKS1 can be im-
plemented based on existing security elements that support ECDSA, and security
analysis shows that it has stronger security than the composition of ECQV with
ECDSA. CL-PKS2 and CL-PKS3 have full security reductions based on the discrete
logarithm assumption in the random oracle model. The results presented in the work
may also shed light on the way of using of ECQV with ECDSA. With little cost, the
security of the ECQV-based signature scheme can benefit from the key prefixing tech-
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nique. However, whether using the assignment as the key prefixing allows universal
composability of a secure CL-KGA with an EUF-CMA-secure DSA, which fits with
the general framework defined in ISO/IEC 14888-3, remains an open problem.
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7 Appendix

7.1 The ECQV Implicit Certificate Scheme as a CL-KGA

For reference, we reprint the ECQV implicit certificate scheme following the descrip-
tion in [16] under the formulation of CL-KGA. ECQV uses the same CL.Setup and
CL.Set-User-Key as the one in Section 3.

CL.Extract-Partial-Key(Mpk, Msk, IDA, UA)

1. w ∈R Z∗q .

2. X = [w]G.

3. W = UA +X.

4. CertA = Encode(W, IDA, ∗).

5. λ = H2(CertA).

6. t = (s+ λ · w) mod q.

7. Output (WA = W,dA = t).

CL.Set-Private-Key(Mpk, IDA, UA, xA, WA, dA)

1. CertA = Encode(WA, IDA, ∗).

2. λ = H2(CertA).

3. Output sA = (λxA + dA) mod q.
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CL.Set-Public-Key(Mpk, IDA, UA, WA)

1. Output PA = WA.

CL.Calculate-Public-Key(Mpk, IDA, PA)

1. CertA = Encode(PA, IDA, ∗).

2. λ = H2(CertA).

3. OA = [λ]PA + PKGC .

CL.Verify-Key(Mpk, IDA, PA, sA)

1. CertA = Encode(PA, IDA, ∗).

2. λ = H2(CertA).

3. P ′A = [1/λ]([sA]G− PKGC).

4. Output valid if PA = P ′A, and invalid otherwise.

7.2 Another CL-KGA

Here we describe another CL-KGA scheme in which CL.Extract-Partial-Key uses
UA as part of IDA to generate dA as suggested in [1]. Function CL.Setup and
CL.Set-User-Key remain unchanged as the one in Section 3.

CL.Extract-Partial-Key(Mpk, Msk, IDA‖UA, ∅)

1. Z = H1(a‖b‖xG‖yG‖xPKGC‖yPKGC‖IDA‖xUA‖yUA).

2. w ∈R Z∗q .

3. W = [w]G.

4. λ = H2(xW ‖yW ‖Z).

5. t = (w + λ · s) mod q.

6. Output (WA = W,dA = t).

CL.Set-Private-Key(Mpk, IDA, UA, xA, WA, dA)

1. Output sA = (xA + dA) mod q.

CL.Set-Public-Key(Mpk, IDA, UA, WA)

1. Output PA = (UA,WA).

CL.Calculate-Public-Key(Mpk, IDA, PA)

1. Parse PA as (UA,WA).

2. Z = H1(a‖b‖xG‖yG‖xPKGC‖yPKGC‖IDA‖xUA‖yUA).
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3. λ = H2(xWA
‖yWA

‖Z).

4. OA = UA +WA + [λ]PKGC .

CL.Verify-Key(Mpk, IDA, PA, sA)

1. Parse PA as (UA,WA).

2. Z = H1(a‖b‖xG‖yG‖xPKGC‖yPKGC‖IDA‖xUA‖yUA).

3. λ = H2(xWA
‖yWA

‖Z).

4. W ′A = [sA]G− UA − [λ]PKGC .

5. Output valid if WA = W ′A, and invalid otherwise.

Compared with the key pair generation process in Section 3, CL.Extract-Partial-
Key here treats UA as part of IDA as proposed in [1] and the published public key
PA now has two points. The input to CL.Set-Public-Key in [1] has xA and does
not include the output of CL.Extract-Partial-Key, so it is unable to include W
in PA. Hence, the construction here does not fully fit with the Al-Riyami-Paterson’s
formulation.

7.3 CL-PKS from SM2-DSA

Here we present a CL-PKS scheme based upon the SM2 digital signature algo-
rithm [21] as in Table 9. The key generation process makes use of the CL-KGA
in Section 3.

Table 9: CL-PKS4 from SM2-DSA

CL.Sign(Mpk, IDA, PA, sA,m) CL.Verify(Mpk, IDA, PA,m, σ)

1. Z = H1(a‖b‖xG‖yG‖
xPKGC ‖yPKGC ‖IDA).

2. λ = H2(xPA‖yPA‖Z).

3. h = H3(λ‖m).

4. r ∈R Z∗q .

5. Q = [r]G.

6. u = (h+ xQ) mod q.

7. v = (1 + sA)−1 · (r − u · sA) mod q.

8. Output σ = (u, v).

1. Z = H1(a‖b‖xG‖yG‖
xPKGC ‖yPKGC ‖IDA).

2. λ = H2(xPA‖yPA‖Z).

3. OA = PA + [λ]PKGC .

4. h = H3(λ‖m).

5. t = (u+ v) mod q.

6. Q′ = [v]G+ [t]OA.

7. u′ = (h+ xQ′ ) mod q.

8. Output valid if u = u′, and invalid
otherwise.

In CL.Sign, step 4-8 is exactly the signing process on a message digest h in SM2
and in CL.Verify step 5-8 is the verification process in SM2 on a signature with
respect to a message digest h and public key OA.
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