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Abstract. At Asiacrypt 2014, Sun et al. proposed a MILP model[19] to

search differential characteristics for bit-oriented block ciphers. In this

paper, we improve this model to search differential characteristics of

GIFT[3], a new lightweight block cipher proposed at CHES 2017. GIFT

has two versions, namely GIFT-64 and GIFT-128. For GIFT-64, we find

the best 12 rounds differential characteristic with our MILP-based model

and give a key-recovery attack on 19 rounds GIFT-64. For GIFT-128, we

find a 18 rounds differential characteristic and give the first attack on 23

rounds GIFT-128.
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1 Introduction

In recent years, research on lightweight block ciphers has received a lot of at-

tentions. Lightweight block ciphers are widely used in Internet of things and

wireless communication because their structures are simple and they can be run

in low-power environment. Many lightweight block ciphers such as PRESENT[6],

CLEFIA[16], LED[10], PRINCE[7], SIMON and SPECK[4] have been published

in last decades. GIFT[3] is a new lightweight block cipher proposed by Banik et

al. at CHES 2017, which is designed to celebrate 10 years of PRESENT. GIFT

has an SPN structure which is similar to PRESENT. It has two versions, name-

ly GIFT-64 and GIFT-128, whose block sizes are 64 and 128, and the round

numbers are 28 and 40 respectively.

Recently, many classical cryptanalysis methods could be converted to math-

ematical optimization problems which aims to achieve the minimal or maximal

value of an objective function under certain constraints. Mixed-integer Linear

Programming (MILP) is the most widely studied technique to solve these opti-

mization problems. One of the most successful applications of MILP is to search



differential and linear trails. Mouha et al. first applied MILP method to count

active S-boxes of word-based block ciphers[12]. Then, at Asiacrypt 2014, Sun

et al. extended this technique to search differential and linear trails[19], whose

main idea is to derive some linear inequalities through the H-Representation

of the convex hull of all differential patterns of S-box. Xiang et al.[20] intro-

duced a MILP model to search integral distinguisher, Sasaki et al.[15] and Cui

et al.[8] gave the MILP-based impossible differential search model independently.

There are many MILP-based tools proposed already, such as MILP-based dif-

ferential/linear search model for ARX ciphers[9], MILP-based conditional cube

attacks[11] on Keccak[5], etc.

Our Contributions

The designers of GIFT provided the various cryptanalysis[3] on GIFT. They use

MILP to compute the lower bounds for the number of active S-boxes in both

differential cryptanalysis firstly. And then round-reduced differential differential

probability of GIFT is presented. For GIFT-64, they provided a 9 rounds dif-

ferential characteristic with probability of 2−44.415 and they expected that the

differential probability of 13 rounds GIFT-64 will be lower than 2−63. For GIFT-

128, they provided a 9 rounds differential probability of 2−47 and they expected

that the differential probability of 26 rounds GIFT-128 will be lower than 2−127.

The designers did not present actual attack on GIFT in [3].

In this paper, we generalize an efficient two-stage MILP-based model inspired

by Sun et al.’s two-stage model[17]. Our model includes two interactive sub-

models, denoted as outer-MILP and inner-MILP part. The outer-MILP part

obtains the minimal active S-boxes, namely, the truncated differential. And then

the inner-MILP part produce the differential characteristic that matches the

truncated differential with maximal probability. With our two-stage model, we

find some differential characteristics of GIFT-64. Moreover, using the 12 rounds

differential characteristic with probability of 2−60, we give an attack on 19 rounds

reduced GIFT-64 (out of 28 full rounds) with time complexity 2112, memory

complexity 280 and data complexity 263.

In addition, we also improved our search model to find differential charac-

teristics of GIFT-128. Firstly, the algorithm solves a sub-MILP-model to obtain

an acceptable differential characteristic with small number of rounds. Then the

produced output difference serves as input difference of the following sub-MILP-

model. The sub-MILP-model is iterated until the probability of the whole differ-

ential characteristic is higher than our given bound. Using our algorithm, we find

some new differential characteristics, including a new 18 rounds differential char-

acteristic with probability 2−109. Using the 18 rounds differential characteristic

we give the first attack on 23 rounds GIFT-128 (out of 40 full rounds).

The summary of differential analysis of GIFT is shown in Table 1.
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Table 1. Summary of cryptography analysis on GIFT

Type Rounds Time Memory Data Source

GIFT-64 Integral 14 - - - [3]

GIFT-64 Differential 19 2112 280 263 Ours

GIFT-128 Differential 23 2120 286 2120 Ours

2 Parliminaries

2.1 Description of GIFT

GIFT has an SPN structure which is similar to PRESENT. It has two versions,

namely GIFT-64 and GIFT-128, whose block sizes are 64 and 128 and round

numbers are 28 and 40 respectively. Both versions have a key length of 128 bits.

Each round of GIFT consists of three steps: SubCells, PermBits and Ad-

dRoundKey. The round function of GIFT-64 is shown in Figure 1. Similarly,

GIFT-128 adopts 32 4-bit S-boxes for each round.

2 Specifications

In this work, we propose two versions of GIFT, GIFT-64-128 is a 28-round SPN
cipher and GIFT-128-128 is a 40-round SPN cipher, both versions have a key
length of 128-bit. For short, we call them GIFT-64 and GIFT-128 respectively.

GIFT can be perceived in three different representations. In this paper, we
adopt the classical 1D representation, describing the bits in a row like PRESENT.
It can also be described in bitslice 2D, a rectangular array like RECTANGLE [48]
(see Appendix A), and even in 3D cuboid like 3D [34] (see Appendix B).

Round function. Each round of GIFT consists of 3 steps: SubCells, PermBits,
and AddRoundKey, which is conceptually similar to wrapping a gift:

1. Put the content into a box (SubCells);
2. Wrap the ribbon around the box (PermBits);
3. Tie a knot to secure the content (AddRoundKey).

Figure 1 illustrates 2 rounds of GIFT-64.
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Fig. 1. 2 Rounds of GIFT-64.

Initialization. The cipher receives an n-bit plaintext bn−1bn−2...b0 as the cipher
state S, where n = 64, 128 and b0 being the least significant bit. The cipher
state can also be expressed as s many 4-bit nibbles S = ws−1||ws−2||...||w0,
where s = 16, 32. The cipher also receives a 128-bit key K = k7||k6||...||k0 as
the key state, where ki is a 16-bit word.

SubCells. Both versions of GIFT use the same invertible 4-bit Sbox, GS. The
Sbox is applied to every nibble of the cipher state.

wi ← GS(wi), ∀i ∈ {0, ..., s− 1}.
The action of this Sbox in hexadecimal notation is given in Table 3.
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SubCells Both versions of GIFT use the same invertible 4-bit S-box, which

is the only nonlinear component of the algorithm. The action of this S-box in

hexadecimal notation is given in Table 2.
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Table 2. Sbox of GIFT

x 0 1 2 3 4 5 6 7 8 9 a b c d e f

GS(x) 1 a 4 c 6 f 3 9 2 d b 7 5 0 8 e

PermBits The bit permutation used in GIFT-64 and GIFT-128 are given in

Table 3.

Table 3. Specifications of GIFT Bit Permutation

GIFT-64

i 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

P64(i) 0 17 34 51 48 1 18 35 32 49 2 19 16 33 50 3

i 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

P64(i) 4 21 38 55 52 5 22 39 36 53 6 23 20 37 54 7

i 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47

P64(i) 8 25 42 59 56 9 26 43 40 57 10 27 24 41 58 11

i 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63

P64(i) 12 29 46 63 60 13 30 47 44 61 14 31 28 45 62 15

GIFT-128

i 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

P128(i) 0 33 66 99 96 1 34 67 64 97 2 35 32 65 98 3

i 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

P128(i) 4 37 70 103 100 5 38 71 68 101 6 39 36 69 102 7

i 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47

P128(i) 8 41 74 107 104 9 42 75 72 105 10 43 40 73 106 11

i 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63

P128(i) 12 45 78 111 108 13 46 79 76 109 14 47 44 77 110 15

i 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79

P128(i) 16 49 82 115 112 17 50 83 80 113 18 51 48 81 114 19

i 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95

P128(i) 20 53 86 119 116 21 54 87 84 117 22 55 52 85 118 23

i 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111

P128(i) 24 57 90 123 120 25 58 91 88 121 26 59 56 89 122 27

i 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127

P128(i) 28 61 94 127 124 29 62 95 92 125 30 63 60 93 126 31

AddRoundKey The round key RK is extracted from the key state. A round

key is first extracted from the key state before the key state update.

For GIFT-64, two 16-bit words of the key state are extracted as the round key

RK = U ||V . U and V are XORed to b4i+1 and b4i of the cipher state respectively.

bi represents the i-th bit of the cipher state. ui and vi represent the i-th bit of
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U and V.

U ← k1, V ← k0

b4i+1 ← b4i+1 ⊕ ui, b4i ← b4i ⊕ vi,∀i ∈ {0, · · · , 15}

For GIFT-128, four 16-bit words of the key state are extracted as the round

key RK = U ||V . U and V are XORed to b4i+2 and b4i+1 of the cipher state

respectively.

U ← k5||k4, V ← k1||k0

b4i+2 ← b4i+2 ⊕ ui, b4i+1 ← b4i+1 ⊕ vi,∀i ∈ {0, · · · , 31}

The key state for two versions are updated as follows,

k7||k6|| · · · ||k1||k0 ← k1 ≫ 2||k0 ≫ 12|| · · · ||k3||k2

Round Constants For both versions of GIFT, a single bit ”1” and a 6-bit

round constant C = {c5, c4, c3, c2, c1, c0} are XORed into the cipher state at bit

position n-1,23,19,15,11,7,3 respectively. For GIFT-64, n-1 is 63 and for GIFT-

128, n-1 is 127. {c5, c4, c3, c2, c1, c0} are initialized to ”0”, and they are updated

as follow:

(c5, c4, c3, c2, c1, c0)← (c4, c3, c2, c1, c0, c5 ⊕ c4 ⊕ 1)

2.2 Notations

Kj
i The j-th bit of the i-th round key

∆P The differential in the plaintext

∆Xi
S The differential in the output of the i-th round’s Sbox

∆Xi
P The differential in the output of the i-th round’s Permutation

∆Xi
K The differential in the output of the i-th round’s AddKey

∆Xi
S,P,K ∆Xi

S or ∆Xi
P or ∆Xi

K

∆Xi
S,P,K{m} The m-th bit of ∆Xi

S,P,K

∆Xi
S,P,K{ml-mt} The (mt-ml+1) bits totally from the ml-th bit to the mt-th bit

of ∆Xi
S,P,K

3 Related Works

3.1 Mouha et al.’s Framework for Word-Oriented Block Ciphers

Mouha et al.[13] introduced MILP model to count the number of differentially

active S-boxes for word-oriented block ciphers.
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Definition 1. Consider a string ∆ consisting of n bytes ∆ = (∆0, ∆1, . . . ,∆n−1).

Then, the difference vector x = (x0, x1, . . . , xn−1) corresponding to ∆ is defined

as

xi =

{
0 if∆i = 0,

1 otherwise.
(1)

Based on Definition 1, Mouha et al. translated the XOR operation and the linear

transformation to linear inequalities as follows:

– Equations describing the XOR operation: Suppose the input difference

vector for the XOR operation be (x⊕in1, x
⊕
in2) and the corresponding output

difference vector be x⊕out. The following constraints will make sure that when

x⊕in1, x⊕in2 and x⊕out are not all zero, then there are at least two of them are

nonzero: {
x⊕in1 + x⊕in2 + x⊕out ≥ 2d⊕
d⊕ ≥ x⊕in1, d⊕ ≥ x⊕in2, d⊕ ≥ x⊕out

(2)

where d⊕ is a dummy variable taking values in {0,1}.
– Equations describing the linear transformation: Assume linear trans-

formation L transforms the input difference vector (xL1 , x
L
2 , . . . , x

L
m−1) to the

output difference vector (yL1 , y
L
2 , . . . , y

L
m−1). Given the differential branch

number BD. The following constraints can describe the relation between the

input and output difference vectors, they should be subject to:{∑m−1
i xLi +

∑m−1
i yLi ≥ BDdL

dL ≥ xLi , dL ≥ yLi , i ∈ {0, ...,m− 1} (3)

where dL is a dummy variable taking values in {0,1}.

3.2 Sun et al.’s Framework for Bit-Oriented Block Ciphers

At Asiacrypt 2014, Sun et al.[19] extended Mouha et al.’s framework[13] to bit-

oriented ciphers. For bit-oriented ciphers, Mouha et al.’s descriptions of XOR

operation and linear transformation are also suitable.

Definition 2. Consider a string ∆ consisting of n bits ∆ = (∆0, ∆1, . . . ,∆n−1).

Then, the difference vector x = (x0, x1, . . . , xn−1) corresponding to ∆ is defined

as

xi =

{
0 if∆i = 0,

1 if∆i = 1.
(4)

Based on Definition 2, Sun et al. translated the S-box operation to linear in-

equalities as follow:
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– Equations describing the S-box operation Suppose (x0, . . . , xw−1) and

(y0, . . . , yv−1) are the input and output bit-level differences of an w × v S-

box. A is a dummy variable taking values in {0,1} to describe whether the

S-box is active or not. A = 1 holds if and only if x0, x1, . . . , xw−1 are not all

zero. The following constraints should be obeyed:{
A− xi ≥ 0, i ∈ {0, . . . , w − 1}∑w−1
i xi −A ≥ 0

(5)

3.3 Valid Cutting-off Inequalities from the Convex Hull of S-box

The convex hull of a set Q of discrete points in Rn is the smallest convex that

contains Q. A convex hull in Rn can be described as the common solutions of a

set of finitely many linear equalities and inequalities.

If we treat a differential of an w× v S-box as a discrete point in Rw+v, then

we can get a set of finitely many discrete points which includes all possible differ-

ential patterns of this S-box. Suppose p = (x, y) = (x0, . . . , xw−1, y0, . . . , yv−1) is

a differential pattern of an w× v S-box, in which x is the input difference vector

and y is the output difference vector. If a differential pattern p is possible, it

belongs to the set of the possible differential patterns of S-box. As a result, we

can describe this finitely set with the following inequalities:
α0,0x0 + . . .+ α0,w−1xw−1 + β0,0y0 + . . .+ β0,v−1yv−1 + γ0 ≥ 0

. . .

αn,0x0 + . . .+ αn,w−1xw−1 + βn,0y0 + . . .+ βn,v−1yv−1 + γn ≥ 0

(6)

This is called the H-Representation of a w×v S-box. With the help of SageMath[1],

hundreds of linear inequalities can be derived by differential patterns of S-box.

The number of inequalities is very large in general, for example, the number of

inequalities of GIFT S-box given by SageMath is 237. Adding all of them to the

MILP model will make it insolvable in practical time because the efficiency of

a MILP model is reduced radically when the amount of linear inequalities in-

crease. To overcome it, Sun et al. invented a greedy algorithm in [19] for selecting

inequalities from the convex hull.

In order to minimize the number of the set of inequalities, Sasaki et al. raised

a MILP-based reduction algorithm in [14] to find the optimal combination with

minimal number of linear inequalities from hundreds of inequalities in the H-

representation of the convex hull, which remove all the impossible differential

patterns of S-box. The algorithm considers each impossible pattern in the DDT

of S-box. An impossible pattern should be excluded from the solution space by

at least one inequality. Under these constraints, we can minimize the number of

inequalities by using MILP model.
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4 MILP-based Model to Search Differential

Characteristic For GIFT-64

4.1 MILP-based two-stage algorithm to search differential

characteristic

In [17], Sun et al. raised a two-stage search algorithm to find differential char-

acteristics of block ciphers. In Sun et al.’s model, truncated differential char-

acteristics with minimal active S-box will be found firstly, and then differential

characteristics matching the truncated differential characteristic can be found in

another model. Sun et al.’s model choose a prespecified threshold of the number

of active S-box. However, it is possible that the characteristic with the highest

probability do not have the minimal number of active S-box. Inspired by Sun

et al.’s model, we propose Algorithm 1 to search the best or better differential

characteristic.
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Algorithm 1 New differential characteristic searching algorithm based on Inner

and Outer-MILP Loop

Require: r round block ciphers; valid cutting-off inequalities from the convex hull of

the S-box; m—number of S-boxes in one round.

Ensure: Minimal number of active S-boxes MinSb; differential characteristic with

maximal probability.

1: Define MPr as the current minimal differential probability.

2: In the Outer-MILP part, construct an MILP modelM1 describing the differential

behavior of the cipher whose objective function is the minimal active S-boxes.

3: Initial MPr = 2−200. Initial MinSb as r ×m.

4: Solve the model M1 using an MILP optimizer.

5: if A feasible solution T D is found in M1, save it to a file. then

6: ♦ begin of Inner-MILP part

7: Construct an MILP modelM2 describing the differential behavior of the cipher

and add T D as a constraint to M2. The objective function is the characteristic

with maximal probability.

8: Solve the model using an MILP optimizer. If a feasible solution x is found, save

x and its probability Pr to the file. If Pr > MPr, set MPr equal to Pr. (If only

the minimal number of active S-boxes is required, it returns MinSb =
∑

Ai,j .)

9: ♦ end of Inner-MILP part

10: end if

11: Add the linear inequality l(T D) to remove the truncated differential T D from the

feasible region of M1.

12: Solve M1 again, if a new solution T D is found, save it and go to step 5 (process

the Inner-MILP part). Else go to step 12.

13: Terminate the procedure and extract all the best differential characteristics and

their corresponding truncated differentials T D. Extract the best characteristic with

probability MPr.

9



Algorithm 1 does not need the predefined threshold and could get the charac-

teristic with highest probability definitely. Algorithm 1 includes two interactive

sub-models, denoted as outer-MILP part and inner-MILP part. The two stages

are interactive. In the outer-MILP part, the objective function is the minimal

active S-boxes. When a solution is found in the outer-MILP part, the truncated

differential that contains the information of the positions of active S-boxes will

input the inner-MILP part as constraints. In the inner-MILP part, it produces

the differential characteristic with maximal probability that matches the trun-

cated differential. Then the algorithm goes to the outer-MILP part with the

truncated differential removed from its feasible region.

In addition, the maximal probability of the derived differential characteristic

is also used to reduce the feasible region of the outer-MILP part dynamically.

In details, if a differential characteristic with larger probability could be found

in the next loops, the number of active S-boxes produced in outer-MILP part

must be lower than a certain bound. The bound is dynamically computed by

the current maximal probability. When the outer-MILP part is infeasible, the

algorithm returned.

We apply Algorithm 1 to search for differential characteristics for GIFT-64,

and get some interesting results.

4.2 Search Differentials of GIFT-64

Algorithm 1 needs two kinds convex hulls about the S-box in the outer-MILP

part and the inner-MILP part respectively. First, we compute the H-presentation

of convex hull of differential patterns of S-box in Appendix A. Using SageMath,

237 inequalities are produced in the H-Representation of the convex hull of

GIFT S-box, then after selecting inequalities by the method introduced in [14],

we get 21 inequalities. Second, we study the convex hull of differential patterns

with probabilities of the S-box. Sun et al. introduced the differential distribution

probability of S-box to MILP-model in [18]. Since, for GIFT S-box, there are 4

possible probabilities, i.e. 1, 2−1.415, 2−2, 2−3, we need three extra bits (p0, p1, p2)

to encode the differential patterns with probability. The new differential pattern

is (x0, x1, x2, x3, y0, y1, y2, y3; p0, p1, p2) ∈ F8+3
2 which satisfies Equation 7.


(p0, p1, p2) = (0, 0, 0), if Prs[(x0, x1, x2, x3)→ (y0, y1, y2, y3)] = 1 = 2−0

(p0, p1, p2) = (0, 0, 1), if Prs[(x0, x1, x2, x3)→ (y0, y1, y2, y3)] = 6/16 = 2−1.415

(p0, p1, p2) = (0, 1, 0), if Prs[(x0, x1, x2, x3)→ (y0, y1, y2, y3)] = 4/16 = 2−2

(p0, p1, p2) = (1, 0, 0), if Prs[(x0, x1, x2, x3)→ (y0, y1, y2, y3)] = 2/16 = 2−3

(7)

Then the objective function is changed to minimize
∑

(3 × p0 + 2 × p1 +

1.415× p2).
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We implement the Algorithm 1 to search for differential characteristics for

GIFT-64. In the Outer-MILP part of the Algorithm 1, the objective function

is to minimize active S-boxes. We get the tighter bound of number of active S-

boxes for 11 and 12 rounds reduced GIFT-64, which are 22 and 24 respectively.

In addition, we get a 4 rounds differential characteristic with probability 2−20

as shown in Table 4, and this differential characteristic can be extended to more

rounds because its input differential and output differential are same. So we

get a 12 rounds differential characteristics cycled by three 4 rounds differential

characteristics with probability 2−60 in Table 5. A 13 rounds characteristic with

probability 2−64 can also be generated by adding another round at the beginning

of 12 rounds differential characteristic. Note that the designers of GIFT claimed

that the differential probability of 13 rounds GIFT-64 will be lower than 2−63.

Our result does not violate the claim, however the gap is very small.

Table 4. 4 rounds Differential Characteristic with Probability 2−20

Round Differential-1 Probability

Input 0000 0000 0000 1010 1

1st round 0000 000a 0000 000a 2−6

2nd round 0000 0000 0000 0101 2−10

3rd round 000a 0000 000a 0000 2−16

4th round 0000 0000 0000 1010 2−20

Table 5. 12 rounds Differential Characteristic with Probability 2−60

Round Differential Probability

Input 0000 0000 0000 1010 1

1st round 0000 000a 0000 000a 2−6

2nd round 0000 0000 0000 0101 2−10

3rd round 000a 0000 000a 0000 2−16

4th round 0000 0000 0000 1010 2−20

5th round 0000 000a 0000 000a 2−26

6th round 0000 0000 0000 0101 2−30

7th round 000a 0000 000a 0000 2−36

8th round 0000 0000 0000 1010 2−40

9th round 0000 000a 0000 000a 2−46

10th round 0000 0000 0000 0101 2−50

11th round 000a 0000 000a 0000 2−56

12th round 0000 0000 0000 1010 2−60

4.3 Attack on 19 rounds GIFT-64

Using the 12 rounds differential characteristic with probability 2−60 in Table 5,

we could launch a key-recovery attack against 19 rounds GIFT-64. As shown in
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Table 6, we add 3 rounds at its beginning and 4 rounds at the end of the dif-

ferential characteristic. Therefore, we can attack 19 rounds GIFT-64. According

to the key schedule, the round key used in 1-st, 2-nd, 16-th, 17-th, 18-th and

19-th round corresponds to (k1, k0), (k3, k2), (k7 ≫ 6, k6 ≫ 4), (k1 ≫ 8, k0),

(k3 ≫ 8, k2) and (k5 ≫ 8, k4) in initial key state (k7, k6, k5, k4, k3, k2, k1, k0),

respectively.

∆P ???? ???? ???? ???? ???? ???? ???? ???? ???? ???? ???? ???? ???? ???? ???? ????

∆X1
S ?000 0?00 00?0 000? ?000 0?00 00?0 000? ?000 0?00 00?0 000? ?000 0?00 00?0 000?

∆X1
P 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 ???? ???? ???? ????

∆X1
K 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 ???? ???? ???? ????

∆X2
S 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0?0? 10?0 0?0? 10?0

∆X2
P 0000 0000 0000 1??? 0000 0000 0000 0000 0000 0000 0000 1??? 0000 0000 0000 0000

∆X2
K 0000 0000 0000 1??? 0000 0000 0000 0000 0000 0000 0000 1??? 0000 0000 0000 0000

∆X3
S 0000 0000 0000 0001 0000 0000 0000 0000 0000 0000 0000 0001 0000 0000 0000 0000

∆X3
P 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0001 0000 0001 0000

∆X3
K 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0001 0000 0001 0000

4th round input 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0001 0000 0001 0000

.

.

.
.
.
.

15th round output 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0001 0000 0001 0000

∆X16
S 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 ???? 0000 ???? 0000

∆X16
P 0000 0000 0000 0?0? 0000 0000 0000 ?0?0 0000 0000 0000 0?0? 0000 0000 0000 ?0?0

∆X16
K 0000 0000 0000 0?0? 0000 0000 0000 ?0?0 0000 0000 0000 0?0? 0000 0000 0000 ?0?0

∆X17
S 0000 0000 0000 ???? 0000 0000 0000 ???? 0000 0000 0000 ???? 0000 0000 0000 ????

∆X17
P ?000 ?000 ?000 ?000 0?00 0?00 0?00 0?00 00?0 00?0 00?0 00?0 000? 000? 000? 000?

∆X17
K ?000 ?000 ?000 ?000 0?00 0?00 0?00 0?00 00?0 00?0 00?0 00?0 000? 000? 000? 000?

∆X18
S ???? ???? ???? ???? ???? ???? ???? ???? ???? ???? ???? ???? ???? ???? ???? ????

∆X18
P ???? ???? ???? ???? ???? ???? ???? ???? ???? ???? ???? ???? ???? ???? ???? ????

∆X18
K ???? ???? ???? ???? ???? ???? ???? ???? ???? ???? ???? ???? ???? ???? ???? ????

∆X19
S ???? ???? ???? ???? ???? ???? ???? ???? ???? ???? ???? ???? ???? ???? ???? ????

∆X19
P ???? ???? ???? ???? ???? ???? ???? ???? ???? ???? ???? ???? ???? ???? ???? ????

∆X19
K ???? ???? ???? ???? ???? ???? ???? ???? ???? ???? ???? ???? ???? ???? ???? ????

Table 6. 19 rounds Differential Attack on GIFT-64

Data collection

Since GIFT-64 does not have whitening key layer at the beginning, after the

P permutation of the first round, we could build 2n structures. Each structure

traverses the 16 bits undetermined in ∆X1
P , i.e. the bit labeled by ”?” in ∆X1

P

of Table 6, thus it can generate 216×2−1 = 231 pairs obeying the differential.

Therefore, 2n structures can generate 2n × 231 = 2n+31 pairs.

For such a pair, it has an average probability of 2−16 to meet the differential

in 4-th round in Table 6. Then, the pair encrypted with the right key will obey

the differential after 15th round with probability of 2−60. While the pair with a

wrong key will obey it with a random probability of 2−64. Therefore, with the

right key guess, 2n+31×2−16×2−60 = 2n−45 pairs will obey the differential after

15th round. Here we choose n = 47. So the data complexity is 247 × 216 = 263.

Key recovery
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Round Key bit

1st round k15
1 , k14

1 , k13
1 , k12

1 , k11
1 , k10

1 , k9
1, k

8
1, k

7
1, k

6
1, k

5
1, k

4
1, k

3
1, k

2
1, k

1
1, k

0
1

k15
0 , k14

0 , k13
0 , k12

0 , k11
0 , k10

0 , k9
0, k

8
0, k

7
0, k

6
0, k

5
0, k

4
0, k

3
0, k

2
0, k

1
0, k

0
0

2nd round k15
3 , k14

3 , k13
3 , k12

3 , k11
3 , k10

3 , k9
3, k

8
3, k

7
3, k

6
3, k

5
3, k

4
3, k

3
3, k

2
3, k

1
3, k

0
3

k15
2 , k14

2 , k13
2 , k12

2 , k11
2 , k10

2 , k9
2, k

8
2, k

7
2, k

6
2, k

5
2, k

4
2, k

3
2, k

2
2, k

1
2, k

0
2

16th round k5
7, k

4
7, k

3
7, k

2
7, k

1
7, k

0
7, k

15
7 , k14

7 , k13
7 , k12

7 , k11
7 , k10

7 , k9
7, k

8
7, k

7
7, k

6
7

k3
6, k

2
6, k

1
6, k

0
6, k

15
6 , k14

6 , k13
6 , k12

6 , k11
6 , k10

6 , k9
6, k

8
6, k

7
6, k

6
6, k

5
6, k

4
6

17th round k7
1, k

6
1, k

5
1, k

4
1, k

3
1, k

2
1, k

1
1, k

0
1, k

15
1 , k14

1 , k13
1 , k12

1 , k11
1 , k10

1 , k9
1, k

8
1

k15
0 , k14

0 , k13
0 , k12

0 , k11
0 , k10

0 , k9
0, k

8
0, k

7
0, k

6
0, k

5
0, k

4
0, k

3
0, k

2
0, k

1
0, k

0
0

18th round k7
3, k

6
3, k

5
3, k

4
3, k

3
3, k

2
3, k

1
3, k

0
3, k

15
3 , k14

3 , k13
3 , k12

3 , k11
3 , k10

3 , k9
3, k

8
3

k15
2 , k14

2 , k13
2 , k12

2 , k11
2 , k10

2 , k9
2, k

8
2, k

7
2, k

6
2, k

5
2, k

4
2, k

3
2, k

2
2, k

1
2, k

0
2

19th round k7
5, k

6
5, k

5
5, k

4
5, k

3
5, k

2
5, k

1
5, k

0
5, k

15
5 , k14

5 , k13
5 , k12

5 , k11
5 , k10

5 , k9
5, k

8
5

k15
4 , k14

4 , k13
4 , k12

4 , k11
4 , k10

4 , k9
4, k

8
4, k

7
4, k

6
4, k

5
4, k

4
4, k

3
4, k

2
4, k

1
4, k

0
4

Table 7. Round Keys of GIFT-64

When processing the key recovery, the guessing key bits include: k3
1, k2

1, k1
1,

k0
1, k3

0, k2
0, k1

0, k0
0 in 1st round, k12

3 , k12
2 , k4

3, k4
2 in 2nd round; k6

7, k8
6, k14

7 , k0
6

in 16th round, k7
1, k6

1, k5
1, k4

1, k3
0, k2

0, k1
0, k0

0 in 17th round, as well as all 64

key bits in 18th, 19th round. Totally, we construct 280 counters for the possible

values of the 80 key bits above. The whole attack procedure is a guess and filter

approach. Guess two key bits k0
1, k0

0, then we can partially encrypt the plaintexts.

As the middle values of right pairs should obey ∆X2
S{0} = 0, ∆X2

S{2} = 0,

∆X2
S{3} = 1, the (plaintext, ciphertext) pairs can be filtered with a probability

of 2−3. Similarly, guessing ki1, k
i
0, i = 1, 2, 3 and partially encrypt, corresponding

conditions in ∆X2
S{5, 7}, ∆X2

S{8, 10, 11}, ∆X2
S{13, 15} can filter the pairs with

2−2, 2−3 and 2−2. Totally 1st round provide a filtering probability of 2−10.

Similarly, the encryption at 2-nd, 16-th, 17-th, 18-th round can filter the

pairs with probability 2−6, 2−8, 2−8, 2−48 while all 32 key bits in 19th round

need to be guessed. Thus, 2−2 pairs will be left for a random key, while 4 pairs

should be left for a right key.

The time complexity is 22 × 231+47 × 232 = 2112, the data complexity is 263

and the memory complexity is 280.
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5 Improved MILP-based Method to Find Differential for

GIFT-128

GIFT-128 adopts 128-bit state and has 32 4-bit S-boxes in each round. The

variables and constrains are twice as many as GIFT-64. The designers of GIFT[2]

gives 9 rounds differential characteristics of GIFT-128. We test Algorithm 1 on

9 rounds GIFT-128 and obtain the designers’ conclusion. But it costs days to

solve. In this section, we devise a segmented MILP-based method to search for

longer differential characteristics for GIFT-128.

Suppose we aim to find a r rounds differential characteristic for a block cipher.

We first divide it as ri rounds (i = 1, 2, ..., t) sub-ciphers and
∑t

1 ri = r. We

choose probability thresholds for r1, r2, ..., rt rounds ciphers as Pr1 , Pr2 , ..., Prt ,

so that the probability pri for ri rounds sub-cipher should be larger than Pri .

Choose a threshold value Ptarget for r rounds. If pr1pr2 . . . prt is larger than

Ptarget, an acceptable solution is found.

As shown in Figure 2, for ri rounds sub-cipher, the input difference are fixed

as the output difference of the differential characteristic Di−1 of ri−1 rounds sub-

cipher, and construct the MILP model Mri . If Mri is feasible, we continue to

construct Mri+1
for ri+1 rounds sub-cipher; else, we remove Di−1 from Mri−1

,

and solve it again. The search terminates until we find the differential charac-

teristics of r1, r2, ..., rt rounds sub-ciphers that could be connected to produce a

r rounds differential characteristic.

Infeasible

ir

feasible

1ir  1ir 

Add input constrain

feasible

Add input constrain

Infeasible

… …

Fig. 2. The framework of our search algorithm

We apply this model to search for differential characteristics for GIFT-128. It

is indeed a heuristic and empirical process. For GIFT-128, it is time consuming

to solve a more than 6 rounds MILP model. In order to keep the efficiency, we

choose ri < 6. Pri is chosen more flexible. According to the designers’ analysis

in [2], for 3/4/5 rounds GIFT-128, the numbers of minimum active S-boxes are

3, 5, and 7, respectively. The length of the sub-cipher can neither be too short

nor be too long. If the number of rounds is smaller than 2, this sub-MILP-model

is unnecessary to solve. On the other hand, if the number of rounds is bigger

14



than 6 or 7, it costs too much time to solve the sub-model that we cannot bear.

We do not want the probability of ri rounds differential characteristic of GIFT-

128 to be much smaller than the highest one. So Pri are chosen according to

the minimum active S-boxes of ri rounds GIFT-128. In this section, we choose

Pri=3 = 2−30, Pri=4 = 2−40 and Pri=5 = 2−50 to act as the exact lower bound

of differential probability of each sub-model.

We use this model and the strategies above choosing parameters to search

for differential characteristics for GIFT-128. We list some results in Table 8. The

12 and 14 rounds differential characteristics are shown in Appendix B.

Table 8. Probabilities of Some Differential Characteristics of GIFT-128

Round Parameters for ri Probability Source

9 – 2−47 [2]

12 r1 = r2 = r3 = r4 = 3 2−62.415 Ours

14 r1 = r2 = 4 and r3 = 6 2−85 Ours

18 r1 = r2 = r3 = 4 and r4 = 6 2−109 Ours

Table 9. 18 rounds Differential Characteristic

Round Input Difference Probability

Input 0000 0000 7060 0000 0000 0000 0000 0000 1

1st 0000 0000 0000 0000 0000 0000 00a0 0000 2−5

2nd 0000 0010 0000 0000 0000 0000 0000 0000 2−7

3rd 0000 0000 0800 0000 0000 0000 0000 0000 2−10

4th 0020 0000 0010 0000 0000 0000 0000 0000 2−12

5th 0000 0000 0000 0000 4040 0000 2020 0000 2−17

6th 0000 5050 0000 0000 0000 5050 0000 0000 2−25

7th 0000 0000 0000 0000 0000 0000 0a00 0a00 2−37

8th 0000 0000 0000 0011 0000 0000 0000 0000 2−41

9th 0008 0000 0008 0000 0000 0000 0000 0000 2−47

10th 0000 0000 0000 0000 2020 0000 1010 0000 2−51

11th 0000 5050 0000 0000 0000 5050 0000 0000 2−61

12th 0000 0000 0a00 0a00 0000 0000 0000 0000 2−73

13th 0000 0000 0011 0000 0000 0000 0000 0000 2−77

14th 0090 0000 00c0 0000 0000 0000 0000 0000 2−83

15th 1000 0000 0080 0000 0000 0000 0000 0000 2−89

16th 0010 0000 0000 0000 0000 0000 8020 0000 2−94

17th 0000 0000 8000 0020 0000 0050 0000 0020 2−101

18th 0000 0100 0020 0800 0014 0404 0002 0202 2−109

The 18 rounds characteristic, shown in Table 9, is constructed by the con-

nection of the following three 4 rounds differential characteristics and a 6 rounds

differential characteristic:

15



(0000 0000 7060 0000 0000 0000 0000 0000)
4−round, 2−12

−−−−−−−−−−−→ (0020 0000 0010 0000 0000 0000 0000 0000)

(0020 0000 0010 0000 0000 0000 0000 0000)
4−round, 2−29

−−−−−−−−−−−→ (0000 0000 0000 0011 0000 0000 0000 0000)

(0000 0000 0000 0011 0000 0000 0000 0000)
4−round, 2−32

−−−−−−−−−−−→ (0000 0000 0a00 0a00 0000 0000 0000 0000)

(0000 0000 0a00 0a00 0000 0000 0000 0000)
6−round, 2−36

−−−−−−−−−−−→ (0000 0100 0020 0800 0014 0404 0002 0202)

With the 18 rounds differential characteristic, we can add 3 rounds at its

beginning and 2 rounds at the end to attack 23 rounds reduced GIFT-128. The

attack procedure is similar to subsection 4.3. The time complexity is 2120 which

is bounded by the data complexity and the memory complexity is 286 bits to

store the key counters.

6 Conclusion

In this paper, first, we design a more efficient MILP-based differential search

model. Using this model, we give a 12 rounds differential characteristic with

probability 2−60 and get the first 19 rounds key-recovery attack on GIFT-64.

Second, we improve our MILP-based model for block ciphers with large state size.

With this model, we give 18 rounds differential characteristic with probability

2−109 and obtain the first 23 rounds key-recovery attack on GIFT-128.

MILP can efficiently find high-probabilistic differential characteristics when

attacking algorithms whose permutation layer will not cause diffusion. In the

future work, we can try to apply heuristic method to constrain global variables,

so as to find a higher probability differential characteristics.
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A Difference Distribution Table(DDT) of GIFT S-box

Table 10. DDT of GIFT S-box

0 1 2 3 4 5 6 7 8 9 a b c d e f

0 16 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

1 0 0 0 0 0 2 2 0 2 2 2 2 2 0 0 2

2 0 0 0 0 0 4 4 0 0 2 2 0 0 2 2 0

3 0 0 0 0 0 2 2 0 2 0 0 2 2 2 2 2

4 0 0 0 2 0 4 0 6 0 2 0 0 0 2 0 0

5 0 0 2 0 0 2 0 0 2 0 0 0 2 2 2 4

6 0 0 4 6 0 0 0 2 0 0 2 0 0 0 2 0

7 0 0 2 0 0 2 0 0 2 2 2 4 2 0 0 0

8 0 0 0 4 0 0 0 4 0 0 0 4 0 0 0 4

9 0 2 0 2 0 0 2 2 2 0 2 0 2 2 0 0

a 0 4 0 0 0 0 4 0 0 2 2 0 0 2 2 0

b 0 2 0 2 0 0 2 2 2 2 0 0 2 0 2 0

c 0 0 4 0 4 0 0 0 2 0 2 0 2 0 2 0

d 0 2 2 0 4 0 0 0 0 0 2 2 0 2 0 2

e 0 4 0 0 4 0 0 0 2 2 0 0 2 2 0 0

f 0 2 2 0 4 0 0 0 0 2 0 2 0 0 2 2
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B 12 and 14 rounds Differential Characteristic of

GIFT-128

Table 11. 12 rounds Differential Path

Round Input Difference Probability

Input 0000 0000 7060 0000 0000 0000 0000 0000 1

1st 0000 0000 0000 0000 0000 0000 00a0 0000 2−5

2nd 0000 0010 0000 0000 0000 0000 0000 0000 2−7

3rd 0000 0000 0800 0000 0000 0000 0000 0000 2−10

4th 0020 0000 0010 0000 0000 0000 0000 0000 2−12

5th 0000 0000 0000 0000 4040 0000 2020 0000 2−17

6th 0000 5050 0000 0000 0000 5050 0000 0000 2−25

7th 0000 0000 0a00 0a00 0000 0000 0000 0000 2−37

8th 0000 0000 0011 0000 0000 0000 0000 0000 2−41

9th 0090 0000 0000 0000 0060 0000 0000 0000 2−47

10th 1000 0000 0000 0000 0000 0000 0000 2000 2−52

11th 0000 0004 0000 0002 0000 0000 8000 0000 2−57

12th 0000 0000 0404 0020 0200 0010 0101 0000 2−62.415

Table 12. 14 rounds Differential Path

Round Input Difference Probability

Input 0000 0000 0000 0000 0000 0706 0000 0000 1

1st 0000 0000 0000 0000 0000 0a00 0000 0000 2−5

2nd 0000 0000 0000 0100 0000 0000 0000 0000 2−7

3rd 0000 0000 0000 0000 0008 0000 0000 0000 2−10

4th 0000 0000 0000 0000 0000 2000 0000 1000 2−12

5th 0000 0404 0000 0202 0000 0000 0000 0000 2−17

6th 0000 0000 0505 0000 0000 0000 0505 0000 2−25

7th 00a0 00a0 0000 0000 0000 0000 0000 0000 2−37

8th 1100 0000 0000 0000 0000 0000 0000 0000 2−41

9th 6000 0000 0000 0000 0000 0000 c000 0000 2−47

10th 0000 0000 2000 0020 0000 0000 0000 0000 2−51

11th 0041 0000 0000 0000 0014 0000 0000 0000 2−55

12th 9000 0000 0000 c000 0000 0000 3000 1000 2−66

13th 0000 0000 0002 0000 0000 0000 8000 0088 2−77

14th 0000 0001 0040 0020 0000 0012 0010 0003 2−85
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