
Making AES great again: the forthcoming
vectorized AES instruction

Nir Drucker1,2 and Shay Gueron1,2

1University of Haifa, Haifa, Israel,
and

2Amazon Web Services Inc., Seattle, WA , USA?

Abstract. The introduction of the processor instructions AES-NI and
VPCLMULQDQ, that are designed for speeding up encryption, and their
continual performance improvements through processor generations, has
significantly reduced the costs of encryption overheads. More and more
applications and platforms encrypt all of their data and traffic. As an
example, we note the world wide proliferation of the use of AES-GCM,
with performance dropping down to 0.64 cycles per byte (from ∼ 23
before the instructions), on the latest Intel processors. This is close to the
theoretically achievable performance with the existing hardware support.
Anticipating future applications and increasing demand for high perfor-
mance encryption, Intel has recently announced [1] that its future ar-
chitecture (codename ”Ice Lake”) will introduce new encryption instruc-
tions. These will be able to vectorize the AES-NI and VPCLMULQDQ in-
structions, on wide registers that are available on the AVX512 archi-
tectures. In this paper, we explain how these new instructions can be
used effectively, and how properly using them can lead to the antici-
pated theoretical encryption throughput of around 0.16 cycles per byte.
The included examples demonstrate AES encryption in various modes
of operation, AEAD such as AES-GCM, and the emerging nonce misuse
resistant variant AES-GCM-SIV.

1 Introduction

AES is the most ubiquitous symmetric cipher, used in many applications and sce-
narios. A prominent example is the exponentially growing volume of encrypted
online data. Evidence for this growth, which is strongly supported by the indus-
try (e. g., Intel’s new AES-NI instructions [2–4], and Google’s announcement [5]
on favoring sites that use HTTPS) can be observed, for example, in [6] showing
that more than 70% of online websites today use encryption.

This makes the performance of AES a major target for optimization in soft-
ware and hardware. Dedicated hardware solutions were presented (e. g., [7, 8])
and via the introduction of the AES-NI instructions that were added to x86
general purpose CPUs (and other architectures). These instructions, together
with the progress made in processors’ microarchitectures, allow software to run

? This work was done prior to joining Amazon.

the Authenticated Encryption with Additional Authentication Data (AEAD)
scheme AES-GCM at 0.64 cycles per byte (C/B hereafter), approaching the
theoretical performance of encryption only, 0.625 C/B, on such CPUs. Other
software optimizations, written in OpenCL or CUDA that aim for the Graphical
Processor Unit (GPU) [9,10] achieve the performance of 0.56 C/B and 0.44 C/B,
respectively. Last year, AMD introduced the new ”Zen” processor that has two
AES units [11], and this reduces the theoretical throughput of AES encryption
to 0.31 C/B.

Recently, Intel has announced [1] that its future architecture, microarchitec-
ture codename ”Ice Lake”, will add vectorized capabilities to the existing AES-NI
instructions, namely VAESENC, VAESENCLAST, VAESDEC, and VAESDECLAST (
VAES* for short). These instructions are intended to push the performance of
AES software further down, to a new theoretical throughput of 0.16 C/B.

This can directly speed up AES modes such as AES-CTR and AES-CBC,
and also more elaborate schemes such as AES-GCM and AES-GCM-SIV [12,13]
(a nonce misuse resistant AEAD). These two schemes require fast computa-
tions of the almost XOR-universal hash functions GHASH and POLYVAL,
which are significantly sped up with dedicated ”carry-less multiplication” in-
struction PCLMULQDQ [3,14]. Indeed, fast AES-GCM(-SIV) implementations can
be achieved by using the new instruction that vectorizes the PCLMULQDQ instruc-
tion (VPCLMULQDQ) (see [15]).

In this paper, we demonstrate how to write software that efficiently uses
the new VAES* and VPCLMULQDQ instructions. While the correctness of our
algorithms (and code) can be verified with existing public tools, the actual per-
formance measurements require a real CPU, which is currently unavailable. To
address this difficulty, we give predictions based on instructions’ count of current
and new implementations.

The paper is organized as follows. Section 2 describes the new VAES* and
VPCLMULQDQ instructions. Section 3 describes our implementations of AES
encryption modes AES-CTR and AES-CBC. Section 4 focuses on the AEAD
schemes AES-GCM and AES-GCM-SIV. In Section 5, we explain our results,
and we conclude in Section 6.

2 Preliminaries

We use AES to refer to AES128. The xor operation is denoted by ⊕, and concate-
nation is denoted by || (e. g., 00100111||10101100 = 0010011110101100, which,
in hexadecimal notation, is the same as 0x27 || 0xac = 0x27ac). The notation
X[j : i], j > i refers to the values of an array X between positions i and j
(included). The case i = j degenerates to X[i]. Here, X can be an array of bits
or of bytes, depending on the context. For an array of bytes X, we denote by X
the corresponding byte swapped array (e. g., X =0x1234, X =0x3412). The
two new vectorized AES-NI and PCLMULQDQ instructions are described next.
The description of other assembly instructions can be found in [16].

2.1 Vectorized AES-NI

Intel’s AES-NI instructions (AES*) include AESKEYGENASSIST and AESIMC to
support AES key expansion and AESENC/DEC(LAST) to support the AES
encryption/decryption, respectively. Alg. 1 illustrates the new VAES* instruc-
tions. These are able to perform one round of AES encryption/decryption on
KL = 1/2/4 128-bit operands (two qwords), having both register-memory and
register-register variant (we use only the latter here). The inputs are two source
operands, which are 128/256/512-bit registers (named xmm, ymm, zmm, re-
spectively), that (presumably) represent the round key and the state (plaintex-
t/ciphertext). The special case KL = 1 using xmm registers degenerates to the
current version of AES*.

Algorithm 1 VAES*, and VPCLMULQDQ instructions [1]

Inputs: SRC1, SRC2 (wide registers)
Outputs: DST (a wide register)

1: procedure VAES*(SRC1, SRC2)
2: for i := 0 to KL− 1 do
3: j = 128i
4: RoundKey[127 : 0] = SRC2[j + 127 : j]
5: T[127 : 0] = (Inv)ShiftRows(SRC1[j + 127 : j])
6: T[127 : 0] = (Inv)SubBytes(T[127 : 0])
7: T[127 : 0] = (Inv)MixColumns(T[127 : 0])

. Only on VAESENC/VAESDEC.
8: DST[j + 127 : j] = T[127 : 0] ⊕ RoundKey[127 : 0]

9: return DST

Inputs: SRC1, SRC2 (wide registers) Imm8 (8 bits)
Outputs: DST (a wide register)

1: procedure VPCLMULQDQ(SRC1, SRC2, Imm8)
2: for i := 0 to KL− 1 do
3: j1 = 2i + Imm8[0]
4: j2 = 2i + Imm8[4]
5: T1[63 : 0] = SRC1[64(j1 + 1)− 1 : 64j1]
6: T2[63 : 0] = SRC2[64(j2 + 1)− 1 : 64j2]
7: DST[128(i + 1)− 1 : 128i] = PCLMULQDQ(T1, T2)

8: return DST

2.2 Vectorized VPCLMULQDQ

Alg. 1 (bottom) illustrate the functionality of the new vectorized VPCLMULQDQ in-
struction. It vectorizes polynomial (carry-less) multiplication, and is able to per-
form KL = 1/2/4 multiplications of two qwords in parallel. The 64-bit mul-
tiplicands are selected from two source operands and are determined by the

value of the immediate byte. The case KL = 1 degenerates to the current
VPCLMULQDQ instruction.

3 Accelerating AES with VAES*

The use of the VAES* instructions for optimizing the various uses of AES is
straightforward for some cases (e. g., AES-ECB, AES-CTR, AES-CBC decryp-
tion). For example, to optimize AES-CTR, which is a naturally parallelizable
mode, we only need to replace each xmm with zmm register and handle the
counter in a vectorized form. In some other case, using the new instruction
is more elaborate (e. g., optimizing AES-CBC encryption, AES-GCM, or AES-
GCM-SIV).

Fig. 1 compares legacy (Panel a.) and vectorized (Panel b.) codes of AES-
CTR. In both cases, the counter is loaded and incremented first (Steps 6-8 and
7-8, respectively). In Panel b., Steps 9-11, the key schedule is duplicated 4 times
in 11-zmm registers (zmm0-zmm10). The encryption is executed in Steps 9-13,
and 12-16, of Panels a and b, respectively. Finally, the plaintext is xored and the
results are stored.

(a) Legacy AES-CTR (b) Vectorized AES-CTR
1 . set t , %xmm12
2 . set ctrReg , %xmm11
3 inc mask :
4 .long 0 ,0 ,0 ,0 x01000000
5
6 vmovdqu (c t r) , ctrReg
7 . i rp j , 1 , 2 , 3 , 4
8 vpadd inc mask(%r i p) , ctrReg
9 vpxor (key) , ctrReg , t

10 . i rp i , 1 , 2 , 3 , 4 , 5 , 6 , 7 , 8 , 9
11 vaesenc \ i ∗0x10 (key) , t , t
12 .endr
13 vaesenclast 10∗0x10 (key) , t , t
14 vpxor (pt) , t , t
15 vmovdqu tmp , (ct)
16 lea 0x10 (pt) , pt
17 lea 0x10 (ct) , c t
18 .endr

1 . set t , %zmm12
2 . set ctrReg , %zmm11
3 inc mask :
4 .long 0 ,0 ,0 ,0 x01000000 , 0 , 0 , 0 , 0 x02000000
5 .long 0 ,0 ,0 ,0 x03000000 , 0 , 0 , 0 , 0 x04000000
6
7 vbroadcasti64x2 (c t r) , ctrReg
8 vpadd inc mask(%r i p) , ctrReg
9 . i rp i , 0 , 1 , 2 , 3 , 4 , 5 , 6 , 7 , 8 , 9 , 10 , 11

10 vbroadcasti64x2 \ i ∗0x10 (key) ,%zmm\ i
11 .endr
12 vpxorq %zmm0, ctrReg , t
13 . i rp i , 1 , 2 , 3 , 4 , 5 , 6 , 7 , 8 , 9
14 vaesenc %zmm\ i , t , t
15 .endr
16 vaesenclast %zmm10, t , t
17 vpxorq (pt) , t , t
18 vmovdqu64 t , (c t)

Fig. 1. AES-CTR sample (AT&T assembly syntax); ct[511 : 0]=AES-CTR(pt[511 : 0],
key).

A mode like AES-CBC encryption is serial by nature, and cannot be paral-
lelized. However, we note that the VAES* instructions encrypt 2/4 independent
plaintext streams in parallel. To do this, we need to rearrange (“transpose”) the
inputs/outputs in order to make them suitable for vectorized code such as in
Fig. 1.

Fig. 2 illustrates how to handle four independent 4∗128-bit plaintext streams
(A,B,C,D). We first load the four 512-bit values into four zmm registers (red

Fig. 2. Transposing a 4× 4 128-bit (input in red; output in green) by executing eight
VPERMI2Q instructions. Every group of four instructions can run in parallel.

upper left vectors), then use the VPERMI2Q instruction to permute the qwords of
each two vectors A,B and C,D (orange vectors). VPERMI2Q receives two source
operands and a mask operand, which is also the destination operand (all are wide
registers). Therefore, the mask must be re-set before each VPERMI2Q execution.
Finally, we use the VPERMI2Q instruction to calculate the final results (green
right bottom vectors). The flow requires 4 loads 8 permutations and 8 mask
preparations, with total of 20 instructions per 256-bytes of processed data (e. g.,
plaintexts). We find this method to be very efficient. Other transposing methods
can use the VPGATHERQQ/VPSCATTERQQ or the VPUNPCK instructions, but
suffer from high instructions’ latency, or need to use more instructions for the
same task. Note that the VPUNPCK instruction is recommended for transposing
a matrix of size 4 × 4 with elements of size 4 ∗ 64-bit, but this is not the case
here.

Leveraging the pipeline capabilities efficienly Fast AES computations need to
operate on multiple independent blocks in parallel [4], in order to hide the la-
tency of the instrcutions and make the flow depend only on their throughput.
The optimal number of blocks is determined by the latency and throughput
of the VAES* instructions [17], and the number of available registers. The la-
tency of VAES* is 4 cycles on architecture codename ”Skylake” (was 7 cycles
on earlier processor generations), and their throughput is 1 cycle. In addition,
the AVX512 architecture has 32 zmm registers, which can be used together with
the VAES* instructions. For example, in AES-CTR we can allocate 11 registers

for the AES round keys, and split the rest among the counters and their the
plaintext/ciphertext states (∼ 10 each). Consequently, it is possible to process
10 packets of 4 blocks in parallel, instead of only 8 packets of 1 block, as with
the current instructions.

4 AES-GCM and AES-GCM-SIV

AES-GCM [18,19] and AES-GCM-SIV [12,13] are AEAD schemes (AES-GCM-
SIV is nonce-misuse resistant). Their encryption flows are outlined in Algorithms
2 and 3. Both modes include AES-CTR encryption (the code is already shown
in Fig. 1).

Algorithm 2 AES-GCM encryption [18,19]

Inputs: K (128 bits), IV (96 bits), A (AAD), M (message)
Outputs: T (tag, 128 bits), C (ciphertext)

1: procedure AES-GCM(K, IV , A, M)
2: H = AES(K, 0128)
3: CTR0 = IV ||0311
4: for i = 0, 1, . . . , v − 1 do
5: CTRi = CTR[127 : 32]||((CTR[31 : 0] + i) (mod 232)
6: Ci =AES(K,CTRi)⊕Mi

7: T = GHASH(H,A,C) ⊕ AES(K,CTR0)
8: return C, T

Algorithm 3 AES-GCM-SIV encryption [12,13]

Inputs: K1 (128 bits), K2 (128 or 256 bits), N (96 bits), A (AAD), LA (A length
in bytes), M (message), LM (M length in bytes)
Outputs: T (tag, 128 bits), C (ciphertext)

1: procedure AES-GCM-SIV(K1, K2, N , A, LA, M , LM)
2: Tmp = POLYVAL(K1, A||M ||LA||LM)
3: T = AES(K2, 0||(Tmp⊕N)[126 : 0])
4: for i = 0, 1, . . . , v − 1 do
5: CTRi = 1||T [126 : 32]||((T [31 : 0] + i) (mod 232))
6: Ci = AES(K2, CTRi)⊕Mi

7: return C = (C1, . . . , Cv−1), T

We focus on optimizing the universal hashing parts of these algorithms, which
are not identical: AES-GCM uses GHASH and AES-GCM-SIV uses POLYVAL.

Both hash functions operate in F = F2128 (but with different reduction polyno-
mials) and evaluate a polynomial with coefficients X1, X2, . . . , Xs (for some s)
in F at some point H ∈ F (which is the hash key). As shown in [13]:

POLY V AL(H,X1, X2, . . . , Xs) =

(GHASH((H ⊗ x), (X1), (X2), . . . , (Xs)))

so if suffices to demonstrate the implementation of POLYVAL.
The ”Aggregated Reduction” method (see [14]) replaces Hoeren’s method

with a per-block reduction (Ti = ((Xi⊕Ti−1)⊗H) (mod Q(x))), with a deferred
reduction based on pre-computing t > 0 powers of H stored in a table (Htbl).

Ti =((Xi ⊗H)⊕ (Xi−1 ⊗H2)⊕ · · ·⊕
(Xi−(t−1) + Ti−t)⊗Ht) (mod Q(x))

(⊗ is field multiplication; Q(x) is the reduction polynomial).
Fig. 3 compares codes for initializing Htbl. Panel (a) describes the legacy

implementation with t = 8. Panel (b) describes a vectorized implementation for
calculating t = 4 ∗ 8 powers of H. Both snippets use the GFMUL function for
the field multiplication. Fig. 4 presents GFMUL4 that performs 4 multiplica-
tions in parallel. The same code is used for GFMUL and GFMUL2, but over
different registers (xmm/ymm). Steps 1-10 perform ”Schoolbook” multiplica-
tion, and Steps 12-20 perform the reduction (see [14]). An implementation that
uses ”Aggregated Reduction” should first perform H⊗Xt as in Fig. 4, Steps 1-5.
Then process Hi ⊗Xt−i, i = 1, . . . , t− 1 in parallel and accumulate the results.
Subsequently, perform the reduction steps 7-20.

(a) Legacy Htbl-init(8) (b) Vectorized Htbl-init(32)
1 vmovdqu (H) , %xmm0
2 vmovdqu %xmm0, %xmm1
3 . i rp i , 0 , 1 , 2 , 3 , 4 , 5 , 6
4 vmovdqu %xmm0,\ i ∗0x10 (Htbl)
5 ca l l GFMUL
6 .endr
7 vmovdqu %xmm0, 7∗0x10 (Htbl)
8 ret

1 vmovdqu (H) , %xmm0
2 vmovdqu %xmm0, %xmm1
3 vmovdqu %xmm0, (Htbl)
4 ca l l GFMUL
5 vmovdqu %xmm0, 0x10 (Htbl)
6 ca l l GFMUL
7 vbroadcasti64x2 0x10 (Htbl) ,%ymm1
8 vmovdqu64 (Htbl) , %ymm0
9 ca l l GFMUL2

10 vmovdqu64 %ymm0, 0x20 (Htbl)
11 vbroadcasti64x2 0x30 (Htbl) ,%zmm1
12 vmovdqu64 (Htbl) , %zmm0
13 . i rp i , 1 , 2 , 3 , 4 , 5 , 6 , 7
14 ca l l GFMUL4
15 vmovdqu64 %zmm0, \ i ∗0x40 (Htbl)
16 .endr
17 ret

Fig. 3. Initializing the HTBL. (a) legacy t = 8, (b) vectorized t = 8 ∗ 4

1 vpclmulqdq $0x00 , %zmm1, %zmm0, %zmm2
2 vpclmulqdq $0x11 , %zmm1, %zmm0, %zmm5
3 vpclmulqdq $0x10 , %zmm1, %zmm0, %zmm3
4 vpclmulqdq $0x01 , %zmm1, %zmm0, %zmm4
5 vpxorq %zmm4, %zmm3, %zmm3
6
7 vpslldq $8 , %zmm3, %zmm4
8 vpsrldq $8 , %zmm3, %zmm3
9 vpxorq %zmm4, %zmm2, %zmm2

10 vpxorq %zmm3, %zmm5, %zmm5
11
12 vpclmulqdq $0x10 , poly(%r i p) , %zmm2, %zmm3
13 vpshufd $78 , %zmm2, %zmm4
14 vpxorq %zmm4, %zmm3, %zmm2
15
16 vpclmulqdq $0x10 , poly(%r i p) , %zmm2, %zmm3
17 vpshufd $78 , %zmm2, %zmm4
18 vpxorq %zmm4, %zmm3, %zmm2
19
20 vpxorq %zmm5, %zmm2, %zmm0
21 ret

Fig. 4. The function GFMUL4, performs vectorized A1 ⊗A2 (mod Q(x)).

In the vectorized implementation we load 4 values from Htbl into each
zmm register e. g., zmm(i)= {H4i, H4i+1, H4i+2, H4i+3}. To multiply the match-
ing values (Hi, Xt−i), we first need to reverse their order e. g., zmm(i) =
{H4i+3, H4i+2, H4i+1, H4i}. We do this using the VSHUFI64X2 instruction:
”vshufi64x2 0x1b, %zmm(i), %zmm(i), %zmm(i)”. Eventually, we end
with Tj =

∑
i≡j (mod 4)

i=1,...,t

(Hi ⊗Xt−i), j = 1, . . . , 4. Fig. 5 shows the final aggre-

gation step.

1 vextracti64x4 $1 , %zmm0, %ymm1
2 vpxor %ymm1, %ymm0, %ymm0
3 vextracti128 $1 , %ymm0, %xmm1
4 vpxor %ymm1, %xmm0, %xmm0

Fig. 5. The vectorized Aggregated Reduction method - Final aggregation.

5 Results

We implemented x86 assembly code for AES-CTR and POLYVAL , using VAES*
and VPCLMULQDQ instructions, pipelining 1 or 8 streams in parallel (the suffix
”x8” distinguishes the implementations). To predict the potential improvement
on future architectures before real samples are available, we used the Intel Soft-
ware Developer Emulator (SDE) [20]. This tool allows us to count the number
of instructions executed during each of the tested functions. We marked the
start/end boundaries of each function with ”SSC marks” 1 and 2, respectively.

This is done by executing ”movl ssc mark, %ebx; .byte 0x64, 0x67,
0x90” and invoking the SDE with the flags ”-start ssc mark 1 -stop ssc mark 2
-mix -icl”. The rationale is that a reduced number of instructions typically indi-
cates improved performance that will be observed on a real processor (although
the exact relation between the instructions count and the eventual cycles count
is not known in advanced).

Table 1 compares the instructions count in our implementations. The results
confirm our prediction that AES algorithms can be sped up by a factor of 3−4x
and that better speedups are expected when operating on larger buffers.

Table 1. Instructions count comparison (lower is better)

Algorithm PT SIZE Legacy Vectorized Ratio
(bytes) impl. impl.

AES-CTR 512 608 178 3.42
AES-CTR 8,192 9,248 2,338 3.96
AES-CTRx8 512 493 150 3.29
AES-CTRx8 8,192 7,453 1,890 3.94
POLYVALx8 4,096 2,816 794 3.55
POLYVALx8 8,192 5,536 1,474 3.76
POLYVALx8 16,384 10,976 2,834 3.87

6 Conclusion

This paper shows how to leverage Intel’s new instruction VPCLMULQDQ and
VAES* for accelerating encryption with AES. Our results predict that optimized
vectorized AES code can approach the new theoretical bound of 0.16 C/B on
forthcoming CPUs, about 4x faster than current implementations. We demon-
strated optimized AES-CTR and AES-GCM(-SIV) code snippets that can ap-
proach this limit. For serial mode such as AES-CBC, we showed how to optimize
code by processing multiple message streams in parallel.

Acknowledgements

This research was supported by: The Israel Science Foundation (grant No. 1018/
16); The Ministry of Science and Technology, Israel, and the Department of
Science and Technology, Government of India; The BIU Center for Research
in Applied Cryptography and Cyber Security, in conjunction with the Israel
National Cyber Bureau in the Prime Minister’s Office; The Center for Cyber
Law and Policy at the University of Haifa.

References

1. −: Intel architecture instruction set extensions programming refer-
ence. https://software.intel.com/sites/default/files/managed/c5/15/
architecture-instruction-set-extensions-programming-reference.pdf
(October 2017)

2. Gueron, S.: Intel R© Advanced Encryption Standard (AES) New Instructions Set
Rev. 3.01. Intel Software Network (2010)

3. Gueron, S., Kounavis, M.: Efficient implementation of the Galois Counter Mode
using a carry-less multiplier and a fast reduction algorithm. Information Processing
Letters 110(14) (2010) 549 – 553

4. Gueron, S.: Intel’s New AES Instructions for Enhanced Performance and Security.
In: FSE. Volume 5665., Springer (2009) 51–66

5. Bahajji, Z.A.: Indexing HTTPS pages by default. https://

security.googleblog.com/2015/12/indexing-https-pages-by-default.html
(Dec 2015)

6. −: Percentage of Web Pages Loaded by Firefox Using HTTPS. https://

letsencrypt.org/stats/#percent-pageloads (Jan 2018)
7. Hodjat, A., Verbauwhede, I.: Area-throughput trade-offs for fully pipelined 30 to

70 Gbits/s AES processors. IEEE Transactions on Computers 55(4) (April 2006)
366–372

8. Mathew, S., Satpathy, S., Suresh, V., Anders, M., Kaul, H., Agarwal, A., Hsu, S.,
Chen, G., Krishnamurthy, R.: 340 mV #x2013;1.1 V, 289 Gbps/W, 2090-Gate
NanoAES Hardware Accelerator With Area-Optimized Encrypt/Decrypt GF(2 4
) 2 Polynomials in 22 nm Tri-Gate CMOS. IEEE Journal of Solid-State Circuits
50(4) (April 2015) 1048–1058

9. Manavski, S.A.: CUDA Compatible GPU as an Efficient Hardware Accelerator for
AES Cryptography. In: 2007 IEEE International Conference on Signal Processing
and Communications. (Nov 2007) 65–68

10. Patchappen, M., Yassin, Y.M., Karuppiah, E.K.: Batch processing of multi-variant
AES cipher with GPU. In: 2015 Second International Conference on Computing
Technology and Information Management (ICCTIM). (April 2015) 32–36

11. −: The ”Zen” Core Architecture. http://www.amd.com/en/technologies/zen-
core (Jan 2018)

12. Gueron, S., Lindell, Y.: GCM-SIV: Full Nonce Misuse-Resistant Authenticated
Encryption at Under One Cycle Per Byte. In: Proceedings of the 22Nd ACM
SIGSAC Conference on Computer and Communications Security. CCS ’15, New
York, NY, USA, ACM (2015) 109–119

13. Gueron, S., Langley, A., Lindell, Y.: AES-GCM-SIV: Specification and Analysis.
Cryptology ePrint Archive, Report 2017/168 (2017) https://eprint.iacr.org/
2017/168.

14. Gueron, S., Kounavis, M.E.: Intel R© carry-less multiplication instruction and its
usage for computing the GCM mode. White Paper (2010)

15. Drucker, N., Gueron, S.: Fast multiplication of binary polynomials with the forth-
coming vectorized VPCLMULQDQ instruction. In: 2018 IEEE 25th Symposium
on Computer Arithmetic (ARITH). (June 2018)

16. −: Intel R©64 and IA-32 architectures software developers manual. Volume 3a:
System Programming Guide (September 2015)

17. −: Intel R©64 and IA-32 Architectures Optimization Reference Manual. (June
2016)

https://software.intel.com/sites/default/files/managed/c5/15/architecture-instruction-set-extensions-programming-reference.pdf
https://software.intel.com/sites/default/files/managed/c5/15/architecture-instruction-set-extensions-programming-reference.pdf
https://security.googleblog.com/2015/12/indexing-https-pages-by-default.html
https://security.googleblog.com/2015/12/indexing-https-pages-by-default.html
https://letsencrypt.org/stats/#percent-pageloads
https://letsencrypt.org/stats/#percent-pageloads
http://www.amd.com/en/technologies/zen-core
http://www.amd.com/en/technologies/zen-core
https://eprint.iacr.org/2017/168
https://eprint.iacr.org/2017/168

18. McGrew, D., Viega, J.: The Galois/counter mode of operation (GCM). Submission
to NIST Modes of Operation Process 20 (2004)

19. McGrew, D.A., Viega, J.: The Security and Performance of the Galois/Counter
Mode (GCM) of Operation. In Canteaut, A., Viswanathan, K., eds.: Progress in
Cryptology - INDOCRYPT 2004, Berlin, Heidelberg, Springer Berlin Heidelberg
(2005) 343–355

20. −: IntelR©Software Development Emulator. https://software.intel.com/en-us/
articles/intel-software-development-emulator

https://software.intel.com/en-us/articles/intel-software-development-emulator
https://software.intel.com/en-us/articles/intel-software-development-emulator

	Making AES great again: the forthcoming vectorized AES instruction

