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Abstract

Consider the following embedding problem. Alice has input a = (a1, . . . , am) ∈ Fm
and Bob has input b = (b1, . . . , bm) ∈ Fm, where F is a finite field. The two parties
want Bob to receive c = (c1, . . . , cm) such that ci = ai · bi, for all i ∈ {1, . . . ,m}. Alice
and Bob have access to an oracle that takes as input two elements A,B ∈ K from Alice
and Bob, respectively, and outputs the product C = A · B ∈ K to Bob, where K is a
degree-n extension of the finite field F. Alice and Bob want to perform only one call to
this oracle and enable Bob to compute c without any additional communication. Given
n, how large can m be?

More tersely: “How many multiplications over the base field can we perform using
only one multiplication over an extension field?”

Block, Maji, and Nguyen (CRYPTO–2017) proposed this problem and their com-
binatorial solution achieved m = n1−o(1). Our paper presents an explicit embedding
that achieves the optimal asymptotic bound m = Θ(n), where the constant in the
asymptotic notation depends on the size of the base field |F|. The construction of our
proposed embedding relies on the toolkit provided by algebraic function fields.

Although the study of this embedding problem is of independent theoretical inter-
est, we present a few representative applications to secure computation. We construct a
linear number of oblivious transfers based on the computational hardness assumptions
like the pseudorandomness of noisy Reed Solomon codewords with a constant com-
putational overhead. This result enables the efficient secure evaluation of arithmetic
circuits that use arithmetic gates over extension fields of the same base field. Next, we
construct the first correlation extractor with a linear production rate and 1/2 resilience
by composing our embedding with the correlation extractor of Block, Maji, and Nguyen
(CRYPTO–2017).
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1 Introduction

Secure multi-party computation (MPC) allows mutually distrusting parties to compute se-
curely over their private data. Typically, MPC protocols establish a basis to represent the
computation and, subsequently, support arbitrary secure computation in that representation.
For example, we can represent the computation as a circuit that uses boolean AND, and XOR
gates, and represent the input, output, and the intermediate values of the computation in
binary. Alternatively, we can represent the computation as a circuit that uses arithmetic
MUL, and ADD gates over appropriate finite fields, and represent the input, output, and the
intermediate values of the computation as elements from a finite field.

MPC protocols securely implement computations represented using binary gates using
oblivious transfer (OT). The oblivious transfer functionality takes as input a pair of bits
(x0, x1) from the sender and a choice bit b from the receiver, and outputs the bit xb to the
receiver. Parties perform m calls to the OT functionality to securely compute circuits that
have (roughly) m AND gates (and an arbitrary number of XOR gates). We can emulate
computations using arithmetic gates over large fields by implementing the MUL and ADD
arithmetic gates using appropriate circuits.

On the other hand, using oblivious linear-function evaluation (OLE), a natural general-
ization of OT, MPC protocols implement computations represented using arithmetic gates.
The OLE functionality takes as input a pair of field elements (a, b) ∈ F2 from the sender and
an element x ∈ F from the receiver, and outputs the linear evaluation z = a · x + b to the
receiver. Note that, for x0, x1, b ∈ GF [2], we have xb = (x0 +x1)b+x0, i.e., OT is a particular
instantiation of the OLE functionality. As in the setting of boolean circuits, parties perform
m calls to the OLE functionality to securely compute circuits that have (roughly) m MUL
gates.

Computationally secure protocols for the OLE functionality exist based on standard
cryptographic hardness assumptions like the pseudorandomness of noisy Reed-Solomon code-
words. The current state-of-the-art MPC protocols can securely compute arithmetic circuits
by incurring a constant computational overhead [ADI+17]. However, based on this com-
putational hardness assumptions, it is unknown whether we can securely evaluate boolean
circuits with a constant computational overhead as well. Ideally, our objective should be to
simultaneously support evaluation of circuits that incorporate arithmetic as well as boolean
gates. For example, there are natural applications in privacy-preserving data mining where
the circuits involve the simultaneous use of arithmetic gates and boolean range queries (rep-
resented by boolean circuits over an appropriate representation of the field elements). Our
paper’s primary technical contribution, among its other consequences, resolves this problem.

1.1 Multiplication Embedding Problem

This combinatorial embedding problem was originally introduced by Block, Maji, and Nguyen
[BMN17] in the context of leakage-resilient MPC. Let F be a finite field. Alice has private
input a = (a1, . . . , am) ∈ Fm and Bob has private input b = (b1, . . . , bm) ∈ Fm. The two
parties want Bob to receive the output c = (c1, . . . , cm) ∈ Fm such that ci = ai · bi, for all
i ∈ {1, . . . ,m}.
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Alice and Bob have access to an oracle that takes input A ∈ K from Alice and B ∈ K
from Bob, where K is a degree-n extension of the field F, and outputs C = A · B to Bob.
Alice and Bob want to perform only one call to this oracle and enable Bob to compute c.
Note that Alice and Bob perform no additional interactions. Given a fixed value of n and a
particular base field F, how large can m be?

The prior work of Block et al. [BMN17] constructed an embedding that achieved m =
n1−o(1) using techniques from additive combinatorics. This paper, using algebraic function
fields, provides an asymptotically optimal m = Θ(n) construction. Section 1.2 summarizes
our results and a few of its consequences for MPC.

1.2 Our Contributions

Given two vectors a = (a1, . . . , am) ∈ Fm and b = (b1, . . . , bm) ∈ Fm, we represent their
Schur product as the vector a ∗ b = (a1 · b1, . . . , am · bm). We prove the following theorem.

Theorem 1 (Embedding Theorem). Let Fq be a finite field of size q, a power of a prime.
There exists constants c∗q ∈ {1, 2, 3, 4, 6}, cq > 0, and n0 ∈ N such that for all n > n0 where
c∗q divides n, there exist (linear) maps E : Fmq → K and D : K→ Fmq , where K is the degree-n
extension of the field Fq, such that the following constraints are satisfied.

1. We have m > cqn, and

2. For all a,b ∈ Fmq , we have: D
(
E(a) · E(b)

)
= a ∗ b.

Intuitively, an oracle that implements one multiplication over a degree-n extension field K
facilitates the computation of m = Θ(n) multiplications over the base field F. For instance,
assuming the base field F = GF [2], our result shows that we can implement m = Θ(n) AND
gates, which are equivalent to the MUL arithmetic gates over the GF [2], by performing only
one call to the functionality that implements MUL over K = GF [2n]. Section 1.3 presents a
summary of the intuition that inspired our construction, and Section 2 provides the required
technical background and Section 2.2 presents the proof of Theorem 1.

Applications to MPC. Recall that the OLE functionality over the field K takes as input
(A,B) from the sender and X from the receiver, and outputs Z = A ·X +B to the receiver.
Essentially, OLE over the field K generates an additive secret share (−B,Z) of the product
A · X. The embedding of Theorem 1 also helps Alice and Bob implement m independent
OLEs over the base field F, represented by the OLE (F)m functionality, using one OLE over
the extension field K.

Corollary 2. Let F be a finite field and K be a degree-n extension of F. There exists a 2-
party secure protocol for the OLE (F)m functionality in the OLE (K)-hybrid, where m = Θ(n),
that performs only one call to the OLE (K) functionality.

Section 3 provides the proof of this corollary in the semi-honest setting. Continuing our
working example of F = GF [2], we can implement m = Θ(n) independent OT functionalities
by performing one call to the OLE (K) functionality.
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Using Corollary 2 we can implement a linear number of OTs at a constant overhead
based on the pseudorandomness of noisy Reed-Solomon codewords, which helps construct
an OLE over large (but finite) fields. In fact, we can leverage efficient bilinear multiplica-
tion algorithms [CC87] that incur a constant overhead, to obtain the following result (see
Appendix A).

Corollary 3. Let F be a finite field and K be a degree-n extension of F. Let F1, . . . ,Fk be
finite fields such that Fi is a degree-ni extension of the base field F, for i ∈ {1, . . . , k}. Let
C be a circuit that uses mi arithmetic gates over the field Fi. If m1n1 +· · ·+mknk 6 Θ(n),
then there exists a secure protocol for C in the OLE (K)-hybrid that performs only one call
to the OLE (K) functionality.

Appendix A provides the outline of constant overhead secure computation of OLE (Fi) by
performing Θ(ni) calls to the OLE (F) functionality, where Fi is a degree-ni extension of
the base field F. We emphasize that Corollary 3 allows us the flexibility to generate the
(randomized version of the) OLE (K) in an offline phase of the computation without the
necessity to fix the representation of the computation itself.

Finally, using our embedding, instead of the embedding of [BMN17], we obtain the fol-
lowing result for correlation extractors (cf., [IKOS09] for an introduction).

Corollary 4. For every 1/2 > ε > 0, there exists an n-bit correlated private randomness
such that, despite t = (1/2 − ε)n bits of leakage, we can securely construct m = Θ(εn)
independent OTs from this leaky correlation.

Section 4 presents the details of the definition of correlation extractors and the proof of this
corollary.

1.3 Technical Overview

To illustrate the underlying idea of our embedding, we use the example where |F| = 3n/2,
where K is a degree-n extension of F. Note that in this intuition the size of the base field
implicitly bounds the degree of the extension field K that we can consider. Ideally, our
objective is to obtain multiplication embeddings for small constant-size F for infinitely many
n, which our theorem provides. Nevertheless, we feel that the intuition presented in the
sequel assists the reading of the details of Section 2.

Assume that n is even and m := (n/2− 1). We arbitrarily enumerate the elements in F

F = {f−m, . . . , f−2, f−1, f1, f2, . . . , fn−1}

Suppose the field K is isomorphic to F[t]/π(t), where π(t) ∈ F[t] is an irreducible polynomial
of degree n.

Recall that Alice and Bob have private inputs a = (a1, . . . , am) ∈ Fm and b = (b1, . . . , bm) ∈
Fm. Alice constructs the unique polynomial A(t) ∈ F[t]/π(t) of degree < m such that
A(f−i) = ai, for all i ∈ {1, . . . ,m} using Lagrange interpolation. Similarly, Bob con-
structs the unique polynomial B(t) ∈ F[t]/π(t) of degree < m such that B(f−i) = bi, for all
i ∈ {1, . . . ,m}.
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Suppose the two parties have access to an oracle that multiplies two elements of K
and outputs the result to Bob. Upon receiving the inputs A(t) and B(t) from Alice and
Bob, respectively, which correspond to elements in K, the oracle outputs the result C(t) =
A(t) ·B(t) to Bob.1 Note that C(t) is the convolution of the two polynomials A(t) and B(t).
Moreover, it has the property that C(f−i) = ai · bi, for all i ∈ {1, . . . ,m}. So, Bob can
evaluate the polynomial C(t) at appropriate places to obtain c = a ∗ b.

Note that this protocol crucially relies on the fact that the field F has sufficiently many
places {f−1, . . . , f−m} to enable the encoding of a1, . . . , am as the evaluation of polynomials
at those respective places. For constant-size fields F, this intuition fails to scale to large
values of n. So, we use the toolkit of algebraic function fields for a more generalized and
formal treatment of these intuitive concepts and construct these multiplication embeddings
for every base field F.

2 Embedding Multiplications

Our goal is to embedmmultiplications over Fq using a single multiplication over Fqn such that
m = Θ(n). To do so, we use algebraic function fields over Fq with appropriate parameters.

2.1 Preliminaries

We introduce the basics of algebraic function fields necessary for our construction. We follow
the conventions of [Sti09, Cas10]. Let Fq be a finite field of q elements, where q is a power
of prime.

Definition 1 (Algebraic Function Field). An algebraic function field (or function field for
simplicity) K/Fq of one variable over Fq is an extension field K ⊇ Fq and a finite algebraic
extension of Fq(x) for some element x which is transcendental over Fq.

We let F̃q denote the field of constants of K/Fq. In the remainder of this paper, we only
consider function fields K/Fq such that Fq = F̃q. For ease of presentation, we assume Fq to
always be the field of constants and denote K/Fq by K. The simplest example of a function
field is the rational function field. The function field K is called rational if K = Fq(x) for
x ∈ K which is transcendental over Fq. Explicitly, the rational function field K is written as

K =

{
f(x)

g(x)
: f, g ∈ Fq[x], g 6≡ 0

}
.

Definition 2 (Valuation Ring). A valuation ring of the function field K is a ring O ⊆ K
such that

• Fq ( O ( K, and

• for every z ∈ K, either z ∈ O or z−1 ∈ O.
1Note that this is exact polynomial multiplication because the degree of A(t) and B(t) are both < m. So,

the degree of C(t) is < 2m− 1 = n. This observation, intuitively, implies that “ mod π(t)” does not affect
C(t).
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Valuation rings are used to define a more general “point” of a function field, namely
places.

Definition 3 (Places). A place P of K is the maximal ideal of some valuation ring O of
K. We denote the set of all places of K by P(K).

Places uniquely define their corresponding valuation rings, and valuation rings uniquely
define their corresponding places. This is given by the following lemmas.

Imported Lemma 1 ([Cas10, Proposition 2.5]). A valuation ring O of K is a local ring;
that is, its only maximal ideal is P = O \ O∗, where O∗ denotes the group of units of O.

Imported Lemma 2 ([Cas10, Proposition 2.8]). Given P ∈ P(K), there is a unique valu-
ation ring OP such that P is its maximal ideal. This valuation ring is precisely

OP = {f ∈ K : f−1 6∈ P}.

These two imported lemma state that places and valuation rings are interchangeable. In
fact, a place P is the principle ideal of its corresponding valuation ring OP .

Imported Lemma 3 ([Cas10, Proposition 2.9]). Any valuation ring O of K is a principal
ideal domain. Therefore any place P ∈ P(K) is a principle ideal and can be written in the
form P = tPOP for some tP ∈ P .

Any tP ∈ P which satisfies P = tpOP is called a uniformizing parameter for P . Valuation
rings give rise to valuation maps.

Definition 4 (Valuation Map). For any P ∈ P(K) with any uniformizing parameter tP ,
define the function vP : K → Z ∪ {∞} by

vP (f) :=


n if 0 6= f ∈ OP , and f = tnPu, u ∈ O∗P
−n if f ∈ K \ OP , and f−1 = tnPu, u ∈ O∗P
∞ if f = 0

The value vP (f) is the valuation of f at P .

This map is well-defined since OP is a valuation ring and by the following lemma.

Imported Lemma 4 ([Cas10, Proposition 2.12]). For any P ∈ P(K) and uniformizing
parameter tP for P , every element 0 6= f ∈ OP can be uniquely written as f = tnPu for n ∈ N
and u ∈ O∗P . Furthermore, for any 0 6= f ∈ OP and any two uniformizing parameters tP
and t′P of P , if f = tnPu = (t′P )n

′
u′, then n′ = n.

Note that Definition 4 gives an equivalent definition of a valuation ring OP for place P .

Imported Theorem 1 ([Sti09, Theorem 1.1.13]). For any P ∈ P(K), we have OP = {z ∈
K : vP (z) > 0}.

We can now define evaluation of a function at a place.
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Definition 5 (Evaluation at a Place). For any P ∈ P(K), the residue class field of P is
KP := OP/P . The evaluation of f ∈ OP at P is its residue class in KP and is denoted by
f(P ). For f 6∈ OP , its evaluation at P is defined to be f(P ) =∞.

In other words, evaluation of a function f at place P yields the residue class of f in KP .
In fact, KP is isomorphic to a finite field extension of Fq, where the degree of the extension
depends on the place P .

Imported Lemma 5 ([Cas10, Proposition 2.17]). Let P ∈ P(K). Then Fq ⊆ OP and
Fq∩P = {0}. Hence there is a canonical embedding of Fq into KP , so Fq can be considered as
a subfield of KP . Furthermore the degree |KP : Fq| of the field extension satisfies |KP : Fq| 6
|K : Fq(x)| <∞, for any 0 6= x ∈ P .

In particular, if |KP : Fq| = a, then we have KP
∼= Fqa and f(P ) ≡ α ∈ Fqa for f ∈ OP .

Imported Lemma 5 naturally defines the degree of a place P .

Definition 6 (Degree of a place). For every P ∈ P(K), the degree of P is degP := |KP : Fq|.

We denote the set of all places of degree k by P(k)(K). Note that the set P(1)(K) is called
the set of rational places (or rational points). Places are used to define the divisors of a
function field K.

Definition 7 (Divisors). A divisor D of a function fieldK is a formal sum D =
∑

P∈P(K) mPP

where mP ∈ Z and mP = 0 except for a finite number of places P ∈ P(K). We define
Supp(D) := {P ∈ P(K) : mP 6= 0} to be the support of divisor D. The set of all divisors
of K is denoted Div(K).

Note that from Definition 7, it is clear that every place P ∈ P(K) is also a divisor, namely
P = 1 · P ∈ Div(K). Such divisors are called prime divisors. Any divisor D ∈ Div(K) has
corresponding degree depending on places P ∈ Supp(D).

Definition 8 (Degree of a Divisor). For any divisor D =
∑

P∈P(K) mPP , the degree of D is
degD :=

∑
P∈P(K) mP (degP ) ∈ Z.

This definition is consistent with the degree of place P for the case where divisor D is
also a place. We can naturally define the summation of two divisors.

Definition 9 (Sum of Divisors). Let D =
∑

P∈P(K) mPP and D′ =
∑

P∈P(K) nPP be two
divisors. Then D +D′ :=

∑
P∈P(K)(mP + nP )P .

We use Definition 9 to define a partial ordering of divisors.

Definition 10 (Divisor Partial Ordering). For divisors D =
∑

P∈P(K)mPP and D′ =∑
P∈P(K) nPP , we say that D 6 D′ if mP 6 nP for all P ∈ P(K). We say that a divi-

sor D is effective (or positive) if D > 0.

Every f ∈ K \ {0} can be associated with a divisor by the following theorem.

Imported Theorem 2 ([Cas10, Theorem 2.32]). Every f ∈ K \{0} has finitely many zeros
and poles. That is, we have vP (f) = 0 except for finitely many P ∈ P(K).
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We now define the divisor associated to f ∈ K \ {0}.

Definition 11 (Principal Divisors). For any f ∈ K \ {0}, the divisor

(f) :=
∑

P∈P(K)

vP (f)P

is the principal divisor associated to f . We let Prin(K) := {D ∈ Div(K) : ∃f ∈ K\{0}, D =
(f)} denote the set of principal divisors.

Associating every nonzero function f with divisor (f) allows us to define the Riemann-
Roch space.

Definition 12 (Riemann-Roch Space). For a divisor G ∈ Div(K), the Riemann-Roch space
associated with G is defined as

L (G) := {f ∈ K : (f) +G > 0} ∪ {0}.

Note that L (G) is a vector space over Fq for any G ∈ Div(K). We denote the dimension
of L (G) over Fq by `(G). In particular, the dimension of the Riemann-Roch space is bounded
above and below by the degree of its divisor.

Imported Lemma 6 ([Cas10, Lemma 2.51]). For any G ∈ Div(K), we have `(G) 6
degG+ 1. In particular, if degG < 0, then `(G) = 0.

Imported Theorem 3 (Riemann’s Theorem [Cas10, Theorem 2.53]). There exists M ∈ Z
such that for all D ∈ Div(K), we have `(D) >M + degD.

We now define the genus of the function field K.

Definition 13 (Genus). The genus of the function field K is defined as

g(K) := max
D∈Div(K)

degD − `(D) + 1 ∈ N.

When clear from context, we let g := g(K).

The genus always exists and is a non-negative integer by Imported Theorem 3. Next we
define canonical divisors. First we need the following definition.

Definition 14 (Space of Differential Forms). The space of differential forms Ω(K) of K is
the K-vector space generated by the symbols df , f ∈ K, such that

• d(f + g) = df + dg for all f, g ∈ K,

• d(fg) = f · dg + df · g for all f, g ∈ K,

• df = 0 for all f ∈ Fq.

Now we can associate a divisor to any w ∈ Ω(K) \ {0}.
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Definition 15 (Canonical Divisor). For any w ∈ Ω(K)\{0}, the canonical divisor associated
to w is the divisor

(w) :=
∑

P∈P(K)

vP (w)P.

Canonical divisors are well-defined by the following lemma.

Imported Lemma 7 ([Cas10, Proposition 2.62]). For w ∈ Ω(K) \ {0}, we have vP (w) = 0
for all but a finite number of places P ∈ P(K).

Next we state an important result about canonical divisors.

Imported Theorem 4 ([Cas10, Theorem 2.65]). For any canonical divisor W ∈ Div(K),
we have degW = 2g − 2 and `(W ) = g.

We have the tools in place to state the Riemann-Roch Theorem.

Imported Theorem 5 (Riemann-Roch Theorem [Sti09, Theorem 1.5.15]). Let W be a
canonical divisor of K/Fq. Then for each divisor A ∈ Div(K),

`(A) = degA+ 1− g + `(W − A).

The final ingredients for our construction are the following lemma and theorem. The
lemma states that for large enough n, there always exists a prime divisor of degree n in K.
The theorem states that there always exists a construction of a function field K such that
the number of divisors of degree one is large.

Imported Lemma 8 ([BCS97, Lemma 18.21]). Let K/Fq be an algebraic function field of
one variable of genus g and let n be an integer satisfying n > 2 logq g + 6. Then there exists
a prime divisor of degree n of K/Fq.

Imported Theorem 6 (Garcia and Stichtenoth [GS95], [BCS97, Theorem 18.24]). Let p
be a power of prime, X1 be an indeterminate over Fp2, and K1 := Fp2(X1). For i > 1 let
Ki+1 := Ki(Zi+1), where Zi+1 satisfies the Artin-Schreier equation Zp

i+1 + Zi+1 = Xp+1
m and

Xi := Zi/Xi−1 ∈ Ki (for i > 2). Then Ki/Fp2 has genus gi given by

gi =

{
pi + pi−1 − p i+1

2 − 2p
i−1
2 + 1 if i ≡ 1 mod 2,

pi + pi−1 − 1
2
p
i
2

+1 − 3
2
p
i
2 − p i2−1 + 1 if i ≡ 0 mod 2,

and |P(1)(Ki/Fp2)| > (p2 − 1)pi−1 + 2p > (p− 1)gi.

2.2 Our Construction

In this section, we present our construction which satisfies the requirements of and proves
Theorem 1. The following lemma will be used.

Lemma 1. Let V be a subspace of dimension m of Frq. Then there exists a linear mapping
ψ : Frq → Fmq such that ψ is a bijection from V to Fmq and that ψ(x) ∗ ψ(y) = ψ(x ∗ y) for
every x, y ∈ Frq.
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Proof. Let G be a generator matrix of V , then V = u · G for u ∈ Fm and for any x ∈ Fr
there exists a unique u ∈ Fm such that x = uG. Let s ⊆ [r] be a set of indices such that
G \ GS still has full rank. For example, if G = [I|P ] in standard form, then GS = P , and
S = {m + 1,m + 2, . . . , r}. Note that |S| = r −m. Let G′ = G \ GS and S ′ = [r] \ S. We
define ψ(x) = xS′ . It is easy to see that ψ is a linear map. Now, for any x, y ∈ Fr, we have

ψ(x) ∗ ψ(y) = xS′ ∗ yS′ = (x ∗ y)S′ = ψ(x ∗ y)

Finally, ψ is a bijection from V to Fm since for any x ∈ Fr there exists a unique u ∈ Fm such
that x = uG, and since G′ has full rank.

L (sP )×L (sP )

Fqn × Fqn

κ× κ

Frq × Frq

γ × γ

L (2sP )
φ

Fqn

Frq

κ

γ

∗

mult.

Figure 1: Commutative diagram for performing r pointwise multiplications (the Schur prod-
uct) over Fq using one multiplication over Fqn . The map φ represents polynomial multipli-
cation.

Proof of Theorem 1 . We consider two cases for the size q of the field: (1) q is an even power
of a prime and q > 49, and (2) q < 49 or q is an odd power of a prime.

Case 1. Suppose q > 49 and q is an even power of a prime. In this case we choose c∗q = 1.
Let K/Fq be an algebraic function field of genus g. Let n > 2 logq g+ 6, let s = b(n− 1)/2c,
and let P be a prime divisor of degree one of K/Fq. By Imported Lemma 8 there exists a
prime divisor Q of degree n. Consider the Riemann-Roch space

L (2sP ) = {z ∈ K/Fq | (z) + 2sP > 0},

and the valuation ring of Q

OQ = {z ∈ K/Fq | vQ(z) > 0}.

The vector space L (2sP ) is contained in OQ, which yields that the map κ : L (2sP )→ Fqn
defined as z 7→ z(Q) is a ring homomorphism. The kernel of κ is L (2sP − Q), which has
dimension 0 by Imported Lemma 6 since deg(2sP − Q) = 2s − n < 0. This implies that
κ is injective. Since L (sP ) ⊆ L (2sP ), the restriction of the evaluation map κ|L (sP ) is a
homomorphism from L (sP ) to Fqn and is injective.
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Let r > s and let P1, P2, . . . , Pr be distinct prime divisors of degree one other than P .
Consider the evaluation map γ : L (sP )→ Frq defined by

x 7→ (x(P1), x(P2), . . . , x(Pr)) .

Since deg(sP −
∑
Pi) = s− r < 0, the kernel of this mapping L (sP −

∑
Pi) has dimension

0. Note that γ is a linear map, therefore by the rank-nullity theorem we have dim(ker(γ)) +
dim(Im(γ)) = dim(L (sP )). So dim(Im(γ)) = dim(L (sP )) = s− g + 1. Let m = s− g + 1
and V = Im(γ). Then V is a vector subspace of Frq of dimension m. By Lemma 1, there
exists a bijection ψ : V → Fmq such that it preserves the point-wise product operation; that
is, ψ(x) ∗ ψ(y) = ψ(x ∗ y) for every x, y ∈ V .

We define E : Fmq → K such that E = κ ◦ γ−1 ◦ ψ−1, and D : Im(E) · Im(E)→ Fmq such
that D = ψ ◦ γ ◦ κ−1, where K = Fqn . Note that Im(E) · Im(E) ⊆ K.

Claim 1. The maps E and D are well-defined.

Proof. The definitions of E and D have inversion of functions and the fact is that not all
functions have inverse functions. So we need to prove that we can always do the inversions
γ−1, ψ−1, and κ−1. Since ψ is a bijection from from V to Fmq and γ is also a bijection from
L (sP ) to V , the mapping E is well-defined. To show that D is well-defined, we need to
show that for every y ∈ Im(E)·Im(E), there exists a unique x ∈ L (2sP ) such that y = κ(x).
Because y ∈ Im(E) · Im(E), it must be the case that y = u · v for some u, v ∈ Im(E). Note
κ is a bijection from L (sP ) to Im(κ) = Im(E), so we can define x = κ−1(u) · κ−1(v). Then
κ(x) = κ(κ−1(u) · κ−1(v)) = κ(κ−1(u · v)) = u · v = y and x ∈ L (sP ) · L (sP ). Since
L (sP ) · L (sP ) ⊆ L (2sP ), we have x ∈ L (2sP ). The uniqueness of x follows from the
fact that κ is injective.

Claim 2. E and D are linear maps.

This follows directly from the fact that ψ, κ, and γ are all linear maps. Next we will
show that D

(
E(a) · E(b)

)
= a ∗ b for every a,b ∈ Fmq . Let x, y ∈ L (sP ) such that

a = ψ(x(P1), x(P2), . . . , x(Pr)) = ψ(γ(x)) and b = ψ(y(P1), y(P2), . . . , y(Pr)) = ψ(γ(y))
(such x and y always exist by properties of ψ and γ). Note that

γ(x · y) = ((x · y)(P1), . . . , (x · y)(Pr))

= (x(P1) · y(P1), . . . , x(Pr) · y(Pr))

= (x(P1), . . . , x(Pr)) ∗ (y(P1), . . . , y(Pr))

= γ(x) ∗ γ(y).

Therefore, we have

D(E(a) · E(b)) = D(κ(x) · κ(y)) = D(κ(x · y))

= ψ(γ(x · y)) = ψ(γ(x) ∗ γ(y))

= ψ(γ(x)) ∗ ψ(γ(y)) = a ∗ b.

Finally, since s = b(n− 1)/2c and g = Θ(n), where the constant depends on |Fq|, we
have that m = s− g + 1 = Θ(n). This completes the proof of Case 1.
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Case 2. Suppose q < 49 is a power of prime or q is an odd power of a prime. Then it
suffices to choose c∗q = 6 by the following observations.

1. If q < 49 and a power of a prime, then q6 > 49.

2. If q is an odd power of a prime, then q6 is an even power of a prime.

Figure 2 presents a more careful choice of c∗q.

q

q < 49 q > 49

2 4 8 16 32 3 9 27 5 25 q > 7 q = p2a+1 q = p2a

c∗q 6 3 2 2 2 4 2 2 4 2 2 2 1

Figure 2: Table for our choices of c∗q for Theorem 1. The value of c∗q is chosen minimally
such that qc∗q is an even power of a prime and qc∗q > 49.

Let q∗ := qc
∗
q . Suppose n is sufficiently large, n is divisible by c∗q, and n/c∗q > 2 logq∗ g+ 6.

Now q∗ is an even power of a prime and q∗ > 49, so we are in Case 1 with the following
parameters. Let n∗ := n/c∗, let K/Fq∗ be an algebraic function field of genus g, and let Q be
a prime divisor of degree n∗. Divisor Q exists since n∗ > 2 logq∗ g + 6. Let s = b(n∗ − 1)/2c
and set m = s− g + 1.

Notice for every x ∈ Fq, it holds that x ∈ Fq∗ since Fq is a subfield of Fq∗ . Now consider
any a,b ∈ Fmq . Again we have a,b ∈ Fmq∗ . We define the maps of case 1 with respect to
q∗ and n∗. In particular, we apply the algorithm from case 1 with appropriate changes to q
and n. Concretely, let κ : L (2sP ) → F(q∗)n∗ , let γ : L (sP ) → Frq∗ , and let V = Im(γ). Let
ψ : V → Fmq∗ be a bijection defined by Lemma 1. Let E = κ ◦ γ−1 ◦ψ−1 and D = ψ ◦ γ ◦ κ−1.
Then we have

D(E(a) · E(b)) = a ∗ b

as desired.
Finally, we have s = b(n∗ − 1)/2c = b(n/c∗q − 1)/2c = Θ(n) and g = Θ(n∗) = Θ(n).

Therefore m = s− g + 1 = Θ(n). This completes the proof of case 2.

Remark. We note that the linear map D is defined on the set Im(E) · Im(E) = {x ·y : x, y ∈
Im(E)}. In particular, for our application we never evaluate D on input x 6∈ Im(E) · Im(E).
When given such an input x, D can simply output 0, or any special symbol, say ⊥.

2.3 Function Field Instantiation using Garcia-Stichtenoth Curves

For our embedding, we use appropriate Garcia-Stichtenoth curves to ensure there are enough
places of degree one (rational places) and that there exists a prime divisor of degree n.
Formally, we use Imported Theorem 6 and the following theorem.
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Imported Theorem 7 (Garcia-Stichtenoth [GS96]). For every q that is an even power of
a prime and q > 49, there exists an infinite family of curves {Cu}u∈N such that:

1. The number of rational places #Cu(Fq) > qu/2(
√
q − 1), and

2. The genus of the curve g(Cu) 6 qu/2.

For Theorem 1, we want the following conditions to be satisfied.

1. The number of distinct degree one places is at least r + 1

2. There exists a prime divisor of degree n.

Let q > 49 be an even power of a prime. Then for any u ∈ N, we choose n = qu/2(
√
q−1) ∈ N

and consider the function field given by the curve Cu. By Imported Theorem 7, we have
that the number of rational points #Cu(Fq) > qu/2(

√
q − 1) = n and g(Cu) 6 qu/2 = n√

q−1
.

In particular, for s =
⌊
n−1

2

⌋
, we have s < n and we can always choose r such that s < r 6 n.

Setting r = n − 1, we have that the map γ in the proof of Theorem 1 defines a suitable
Goppa code [Gop81] over Fq. With r = n − 1, we in fact have that there are at least r + 1
distinct prime divisors of degree one. Furthermore, since g 6 n√

q−1
we have

2 logq g + 6 6 2 logq

(
n

√
q − 1

)
+ 6 < n.

So there exists a prime divisor of degree n by Imported Lemma 8. Finally we have

m = s− g + 1 >

⌊
n− 1

2

⌋
− 2 logq

(
n

√
q − 1

)
+ 6 = Θ(n).

Note that g > 0, so we also have m 6
⌊
n−1

2

⌋
+ 6 = Θ(n).

3 Realizing OLE (F)m using one ROLE (K)

In this section, we show how to securely realize m independent copies of OLE (F) using one
sample of ROLE (K), for field F = Fq and K a degree n extension field of F. Intuitively,
the ROLE (K) functionality is an inputless functionality that samples A,B,X uniformly
and independently at random from K, and output (A,B) to one party and (X,Z) to the
other party. This secure realization is achieved by composing two steps. First, we securely
realize one OLE (K) from one ROLE (K) using a standard protocol (cf. the randomized self-
reducibility of the OLE functionality [WW06]). Then, we embed m copies of OLE (F) into
one OLE (K). Formally, we have the following theorem.

Theorem 5 (Realizing multiple small OLE using one large ROLE). Let F be a field of size q,
a power of a prime. Let K be a degree n extension field of F. There exists a perfectly secure
protocol for OLE (F)m in the ROLE (K)-hybrid that performs only one call to the ROLE (K)
functionality and m = Θ(n).
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3.1 Preliminaries

We introduce the functionalities we are interested in.
Oblivious Linear-function Evaluation. For a field (F,+, ·), oblivious linear-function

evaluation over F, represented by OLE (F), is a two-party functionality that takes as input
(a, b) ∈ F2 from Alice and x ∈ F from Bob and outputs z = ax + b to Bob. In particular,
OLE refers to the OLE (GF [2]) functionality.

Random Oblivious Linear-function Evaluation. For a field (F,+, ·), random obliv-
ious linear-function evaluation over F, represented by ROLE (F), is a correlation that sam-
ples a, b, x ∈ F uniformly and independently at random. It provides Alice the secret share
rA = (a, b) and provides Bob the secret share rB = (x, z), where z = ax + b. In particular,
ROLE refers to the ROLE (GF [2]) correlation.

3.2 Securely realizing OLE (K) using one ROLE (K)

The protocol presented in Figure 3 is the standard protocol that implements the OLE (K)
functionality in the ROLE (K)-hybrid with perfect semi-honest security.

Pseudocode of the OLE protocol ρ(K, A∗, B∗, X∗)

Given. Alice has (Ã0, B̃0) and Bob has (X̃0, Z̃0), where Ã0, B̃0, X̃0 are random elements in
K and Z̃0 = Ã0X̃0 + B̃0.

Private Inputs. Alice has private input (A∗, B∗) ∈ K2 and Bob has X∗ ∈ K.

Hybrid. Parties are in ROLE(K)-hybrid.

Interactive Protocol.

1. First Round. Bob sends M = X̃0 −X∗ to Alice.

2. Second Round. Alice sends α = Ã0 + A∗ and β = Ã0M +B∗ + B̃0.

Output Computation. Bob outputs Z∗ = αX∗ + β − Z̃0.

Figure 3: Perfectly secure protocol realizing OLE (K) in the ROLE (K) correlation hybrid.

3.3 Securely realizing OLE (F)m from OLE (K)

This section presents the realization of Corollary 2. Our goal is to embed m independent
copies of OLE (F) into one OLE (K), where m = Θ(n). More concretely, suppose we are
given an oracle that takes as input A∗, B∗ ∈ K from Alice and X∗ ∈ K from Bob, and
outputs Z∗ = A∗ · X∗ + B∗ to Bob. Our aim is to implement the following functionality.
Alice has inputs a = (a1, . . . , am) ∈ Fmq and b = (b1, . . . , bm) ∈ Fmq , and Bob has input
x = (x1, . . . , xm) ∈ Fmq . We want Bob to obtain z = (z1, . . . , zm), where z = a ∗ x + b,
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in other words, zi = ai · xi + bi for every i ∈ [m]. We show that the protocol presented in
Figure 4 achieves m = Θ(n).

Given. Two linear maps E and D as in Theorem 1.

Private input. Alice has private inputs a = (a1, . . . , am) ∈ Fmq and b = (b1, . . . , bm) ∈ Fmq .
Bob has private input x = (x1, . . . , xm) ∈ Fmq .

Hybrid. Parties are in the OLE (K)-hybrid.

Private Input Construction.

1. Alice creates private inputs A∗ = E(a) and B∗ = E(b).

2. Bob creates private input X∗ = E(x).

3. Both parties invoke the OLE (K) functionality with respective Alice input (A∗, B∗)
and Bob input X∗. Bob receives Z∗ = A∗X∗ +B∗ = E(a) · E(x) + E(b).

Output Decoding. Bob outputs z = D(Z∗) = D(E(a) · E(x) + E(b)) = a ∗ x + b.

Figure 4: Protocol for embedding m copies of OLE (F) into one OLE (K), where K is a degree
n extension field of F.

Figure 4 is the protocol which realizes Corollary 2. We argue the correctness of the
protocol. In the protocol, Alice creates A∗ = E(a) and B∗ = E(b), and Bob creates
X∗ = E(x). Calling the OLE (K) functionality, Bob receives Z∗ = A∗ ·X∗+B∗. In particular,
Bob receives Z∗ = E(a) ·E(x) +E(b). Then Bob computes D(Z∗). Since D is a linear map
and by Theorem 1, we have m = Θ(n) and the following.

D(Z∗) = D (E(a) · E(x) + E(b))

= D (E(a) · E(x)) +D(E(b))

= a ∗ x + b

3.4 Realization of OLE (F)m in the ROLE (K)-hybrid

The protocol which realizes Theorem 5 is the parallel composition of the protocols presented
in Figure 3 and Figure 4 (Corollary 2). The composition of these protocols in parallel gives
an optimal two-round protocol for realizing OLE (F)m in the ROLE (K)-hybrid with perfect
security and m = Θ(n) by Theorem 1, as desired.
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4 Linear Production Correlation Extractors in the High
Resilience Setting

This section provides the necessary background of correlation extractors and proves Corol-
lary 4. In particular, Corollary 4 is achieved by the construction of a suitable correlation
extractor. A correlation extractor, or correlation in short, is a joint distribution (RA, RB)
which samples shares (rA, rB) according to the distribution and sends secret share rA to
Alice and rB to Bob. Correlations are given to parties in an offline preprocessing phase.
Parties then use their respective secret shares in an online phase in an interactive proto-
col to securely compute an intended functionality. Correlation extractors take leaky shares
of correlations and distill them into fresh randomness to be used to securely compute the
intended functionality. Formally, we define a correlation extractor below.

Definition 16 (Correlation Extractor). Let (RA, RB) be a correlated private randomness
such that the secret share size of each party is n′-bits. An (n′,m, t, ε)-correlation extractor
for (RA, RB) is a two-party interactive protocol in the (RA, RB)[t] hybrid that securely im-
plements the OTm functionality against information-theoretic semi-honest adversaries with
ε-simulation error.

Using this definition we restate Corollary 4 as follows.

Theorem 6 (Half Resilience, Linear Production Correlation Extractor). For all constants
0 < δ < g 6 1/2, there exists a correlation (RA, RB), where each party gets n-bit secret
shares, such that there exists a two-round (n′,m, t, ε)-correlation extractor for (RA, RB),
where m = Θ(n′), t = (1/2− g)n′, and ε = 2−(g−δ)n′/2.

The construction of this correlation extractor achieves linear production m = Θ(n) and
1/2 leakage resilience by composing our embedding (Theorem 1, Corollary 2) with the cor-
relation extractor of Block, Maji, and Nguyen [BMN17]. Prior correlation extractors either
achieved sub-linear production, (significantly) less than 1/2 resilience, or were not round-
optimal.

4.1 Preliminaries

We introduce some useful functionalities and correlations.
Oblivious Transfer. Oblivious transfer, represented by OT, is a two-party functionality

that takes as input (x0, x1) ∈ {0, 1}2 from Alice and b ∈ {0, 1} from Bob and outputs xb to
Bob.

Random Oblivious Transfer Correlation. Random oblivious transfer, represented
by ROT, is a correlation that samples x0, x1, b uniformly and independently at random. It
provides Alice the secret share rA = (x0, x1) and provides Bob the secret share rB = (b, xb).

Recall also the Oblivious Linear-function Evaluation and Random Oblivious
Linear-function Evaluation functionalities from Section 3.1. We denote ROLE (GF [2])
by ROLE. Note that ROT and ROLE are identical (functionally equivalent) correlations.

Inner-product Correlation. For a field (F,+, ·) and n′ ∈ N, inner-product corre-
lation over F of size n′, represented by IP

(
Fn′
)
, is a correlation that samples random
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rA = (x0, . . . , xn′−1) ∈ Fn′ and rB = (y0, . . . , yn′−1) ∈ Fn′ subject to the constraint that
x0 + y0 =

∑n′−1
i=1 xiyi. The secret shares of Alice and Bob are, respectively, rA and rB.

Toeplitz Matrix Distribution. Given a field F, the distribution T(k,n′) represents a
uniform distribution over all matrices of the form [Ik×k‖Pk×n′−k], where Ik×k is the identity
matrix and Pk×n′−k is a Toeplitz matrix with each entry in F. T⊥,(k,n′) is the uniform
distribution over all matrices of the form [Pn′−k×k‖In′−k×n′−k], where I′n−k×n′−k is the identity
matrix and Pn′−k×k is a Toeplitz matrix with each entry in F.

For m ∈ N, the functionality Fm represents the functionality that implements m inde-
pendent copies of any functionality/correlation F .

The following unpredictability lemma is needed to prove security of the correlation ex-
tractor of Theorem 6.

Imported Lemma 9 (Unpredictability Lemma [BMN17]). Let G ∈
{
T(k,η+1),T⊥,(k,η+1)

}
.

Consider the following game between an honest challenger and an adversary:

1. H samples m[η] ∼ UKη .

2. A sends a leakage function L : Kη → {0, 1}t.

3. H sends L
(
m[η]

)
to A.

4. H samples x[k] ∼ UKk , G ∼ G, and computes y{0}∪[n] = x · G + (0,m[η]). H sends
(y[η], G) to A. H picks b $←{0, 1}. If b = 0, then she sends chal = y0 to A; otherwise
(if b = 1) then she sends chal = u ∼ UK to A.

5. A replies with an element b̃ ∈ {0, 1}.

The adversary A wins the game if b = b̃. For any A, the advantage of the adversary is
6 1

2

√
|K|2t
|K|k .

4.2 Extracting one ROLE from a Leaky Inner Product Correlation

Conceptually, Theorem 6 follows from the construction of two protocols. In this section, we
describe the first protocol. Informally, this protocol takes leaky shares of the inner-product
correlation over K, the protocol securely extracts one random sample of ROLE (K). For
completeness we restate the protocol from [BMN17] in Figure 5.

As noted in [BMN17], the security of Figure 5 follows from Imported Lemma 9 over
fields. For full details, see Appendix A of [BMN17]. In particular, the protocol of Figure 5 is
resilient to t = (1/2− g)n′ bits of leakage, for any g ∈ (0, 1/2]. Here, K is a degree n extension
of some suitably chosen base field F of size q, and η is an appropriately chosen constant.

4.3 Extracting m copies of OLE (F) from one ROLE (K)

This section presents the second protocol required to construct Theorem 6. Previously,
[BMN17] presented a construction which embeddedm copies of OLE (F) into a single OLE (K),
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Pseudocode of the extraction protocol π(K, η).

Given. Alice has (X0, X1, . . . , Xη) and Bob has (Y0, Y1, . . . , Yη) such that X0 + Y0 =∑η
i=1XiYi, where X0, . . . , Xη, Y0, . . . , Yη ∈ K. For ease of presentation assume that η is

odd and set w = (η + 1)/2. An adversarial party can obtain arbitrary t-bit leakage on the
share of the other party.

Interactive Protocol.

1. First Round. Bob sample a random generator matrix G from the distribution
Tw×(η+1) such that its elements are in K. Let C be the code generated by G, and C⊥
be its dual code. Let H be the generator matrix for the code C⊥. If the first column
of H is 0η+1−w (i.e., all zeros), then abort the protocol. Bob picks a random codeword
(X̃0, X̃1, . . . , X̃η) ∈ C⊥ and calculates M[η] = Y[η] − X̃[η].

Bob sends M[η] and G to Alice.

2. Second Round. Alice samples a random codeword (Ã0, Ã1, . . . , Ãη) ∈ C and a
random field element B̃0 ∈ K. Alice computes α[η] = X[η] +Ã[η] and β =

〈
X[η],M[η]

〉
−

B̃0 −X0.

Alice sends α[η] and β to Bob.

Output Computation. Alice outputs (Ã0, B̃0) and Bob outputs (X̃0, Z̃0), where Z̃0 =

−
〈
α[η], X̃[η]

〉
− β + Y0.

Figure 5: Protocol to securely extract one random sample of the ROLE (K) functionality
from the leaky IP (Kη+1)

[t] correlation.

with m = n1−o(1) and K a degree n extension field of F. Here we present our m = Θ(n)
solution.

This protocol is exactly the parallel composition of the protocols presented in Figure 3
and Figure 4; i.e., the result of Theorem 5. The result follows by choosing the appropriate
settings. In particular, given q, η, and n′, we set the degree of extension n = n′

(η+1) lg q
. So

m = Θ(n) = Θ(n′).

4.4 Realizing Theorem 6

The realization of Theorem 6 is the parallel composition of the protocols of Figure 5, Figure 3,
and Figure 4 with the following setting. We take (RA, RB) = IP

(
GF
[
2δn

′]1/δ), where n′
and δ are given, η := 1

δ
− 1, and n := n′

(η+1)
. Note n here corresponds to the n in Corollary 4.

The protocol of Figure 5 is a perfectly secure semi-honest protocol for extracting one

ROLE
(
GF
[
2δn

′]) in the
(
IP
(
GF
[
2δn

′]1/δ))[t]

-hybrid which is resilient to t = (1/2−g)n′ bits
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of leakage, for all 0 < δ < g 6 1/2. Then the parallel composition of protocols Figure 3
and Figure 4 is a perfectly secure semi-honest protocol for realizing m copies of OLE (GF [2])
in the ROLE

(
GF
[
2δn

′])-hybrid, and m = Θ(n′) = Θ(n). This proves Theorem 6, and thus
Corollary 4.

4.5 Comparison with Prior Works

Correlation extractors were introduced by Ishai, Kushilevitz, Ostrovsky, and Sahai [IKOS09]
as a natural generalization of privacy amplification and randomness extraction. Since the
initial feasibility result of [IKOS09], there have been significant qualitative and quantitative
improvement in correlation extractor constructions. Figure 6 summarizes the current state-
of-the-art of correlation extractors.

Correlation Message Number of OTs Number of Simulation
Description Complexity Produced (m/2) Leakage bits (t) Error (ε)

IKOS [IKOS09] ROTn/2 4 Θ(n) Θ(n) 2−Θ(n)

GIMS [GIMS15] ROTn/2 2 n/ poly lg n (1/4− g)n 2−gn/m

IP
(
Kn/ lg|K|) 2 1 (1/2− g)n 2−gn

BMN [BMN17] IP
(
Kn/ lg|K|) 2 n1−o(1) (1/2− g)n 2−gn

BGMN [BGMN18] ROTn/2 2 Θ(n) Θ(n) 2−Θ(n)

ROLE (F)n/2 lg|F| 2 Θ(n) Θ(n) 2−Θ(n)

Our Results IP
(
Kn/ lg|K|) 2 Θ(n) (1/2− g)n 2−gn

Figure 6: A qualitative summary of prior relevant works in correlation extractors and a
comparison to our correlation extractor construction. Here K is a finite field and F is a finite
field of constant size. The IP (Ks) is a correlation that samples random rA = (u1, . . . , us) ∈ Ks

and rB = (v1, . . . , vs) ∈ Ks such that u1v1 + · · · + usvs = 0. All correlations have been
normalized so that each party gets an n-bit secret share.

Prior to our work, the BGMN correlation extractors [BGMN18] achieve the best qual-
itative and quantitative parameters. For example, starting with n/2 independent samples
of the ROT correlation, they construct the first round-optimal correlation extractor that
produces m = Θ(n) secure ROT samples despite t = (1/4 − ε)n bits of leakage, for any
ε > 0. Note that any correlation extractor for n/2 ROT samples can have at most t = n/4
resilience [IMSW14].

Our correlation extractor is also round optimal. However, the BMN [BMN17] correlation
extractor and our correlation extractor has resilience in the range t ∈ [1/4, 1/2). Intuitively,
our correlation extractor is ideal where high resilience is necessary. Our correlation extrac-
tor needs a large correlation, for example, the inner-product correlation over large fields.
Contrast this with the case of BGMN extractor that uses multiple samples of the ROT cor-
relation. To achieve t = (1/2 − ε)n resilience, where ε ∈ (0, 1/4], we use the inner-product
correlation over fields of size (roughly) 2nε. Using the multiplication embedding in Theo-
rem 1, our work demonstrates the feasibility of extracting m = Θ(nε) independent ROT
samples when the fractional resilience is in the range t/n ∈ [1/4, 1/2).
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A Chudnovsky-Chudnovsky Bilinear Multiplication

We discuss the reverse problems of Theorem 1 and Theorem 5. We assume familiarity with
Section 2. First we consider the problem of computing one large field multiplications using
many small field multiplications. This is given by the following theorem.

Theorem 7 (Field Extension Multiplication via Pointwise Base Field Multiplication). Let F
be a finite field of size q, a power of a prime. For sufficiently large n, there exists a constant
c′ > 0 and (linear) maps E ′ : K → Fm and D′ : Fm → K, where K is the degree-n extension
of the field F, such that the following constraints are satisfied.

1. We have m > c′n, and

2. For all A,B ∈ K, the following identity holds

D′ (E ′(A) ∗ E ′(B)) = A ·B

where “∗” is pointwise multiplication over Fm.

Note that since the maps E ′ and D′ are linear, the following holds.

Corollary 8. For all A,B,C ∈ K, we have

D′
(
E ′(A) ∗ E ′(B) + E ′(C)

)
= D′

(
E ′(A) ∗ E ′(B)

)
+D′

(
E ′(C)

)
.

Theorem 7 follows from the results of Chudnovsky-Chudnovsk [CC87]. In particular,
they show that the rank of bilinear multiplication is Θ(n).

Imported Theorem 8 (Chudnovsky and Chudnovsky [BCS97, Theorem 18.20]). For every
power of a prime q there exists a constant cq such that R(Fqn/Fq) 6 cqn, where R is the rank
of the Fq-bilinear map that is multiplication over Fqn.

The theorem states that if K is a degree n extension of Fq, then the bilinear complexity
of multiplication over K is Θ(n). This result is due to the Chudnovsky-Chudnovsky inter-
polation algorithm and the result of Garcia and Stichtenoth found in Imported Theorem 7.

Imported Lemma 10 (Chudnovsky-Chudnovsky Interpolation Algorithm [BCS97, Propo-
sition 18.22]). Let K/Fq be an algebraic function field of one variable of genus g, n >
2 logq g + 6, and assume that there exist at least 4g + 2n prime divisors of degree one of
K/Fq. Then we have R(Fqn/Fq) 6 3g + 2n− 1.

This lemma gives rise to the commutative diagram of Figure 7 which defines the inter-
polation method. This interpolation method implements multiplication over Fqn using r′
pointwise multiplications over Fr′q . This gives that r′ = 3g + 2n− 1 = Θ(n). Setting m = r′

and setting E ′ and D′ according to the interpolation algorithm directly yields Theorem 7.
Concretely, we have the maps E ′ and D′ defined as follows.

E ′ := κ′ ◦ (γ′)−1 D′ := γ′ ◦ (κ′)−1

Note both κ′ and γ′ are linear maps, so E ′ and D′ are also linear maps.
Given E ′ and D′ of Theorem 7, we compute the reverse problem of Theorem 5. That is,

we can use multiple small ROLE to realize one large OLE.
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L (s′P )×L (s′P )

Fqn × Fqn

κ′ × κ′

Fr′q × Fr′q

γ′ × γ′
L (2s′P )

φ

Fqn

Fr′q

κ′

γ′

∗

mult.

Figure 7: Chudnovsky-Chudnovsky interpolation algorithm for performing multiplication
over Fqn using r′ pointwise multiplications over Fr′q , where r′ = Θ(n) and s′ = n+ 2g − 1.

Theorem 9 (Realizing one large OLE using multiple small ROLE). Let F be a field of size q,
a power of a prime. Let K be a degree n extension field of F. There exists a perfectly secure
protocol for OLE (K) in the ROLE (F)m-hybrid that performs only one call to the ROLE (F)m

functionality and m = Θ(n).

To realize Theorem 9, we compose two steps in parallel. First we securely realize OLE (F)m

from ROLE (F)m using a standard protocol. Then we use m copies of OLE (F) to implement
a single OLE (K).

A.1 Securely realizing OLE (F)m using ROLE (F)m

The protocol presented in Figure 8 is an extension of the standard protocol that implements
the OLE (F) functionality in the ROLE (F)-hybrid with perfect semi-honest security. In par-
ticular, it is the m parallel composition of the OLE (F) functionality in the ROLE (F)-hybrid.

Pseudocode of the OLE (F)m protocol

Given. Alice has (a′,b′) and Bob has (x′, z′), where a′,b′,x′ are random elements in Fm
and z′ = a′ ∗ x′ + b′.

Private Inputs. Alice has private input (a∗,b∗) ∈ F2m and Bob has x∗ ∈ Fm.

Hybrid. Parties are in ROLE (F)m-hybrid.

Interactive Protocol.

1. First Round. Bob sends m = x′ − x∗ to Alice.

2. Second Round. Alice sends α = a′ + a∗ and β = a′ ∗m + b∗ + b′.

Output Computation. Bob outputs z∗ = α ∗ x∗ + β − z′.

Figure 8: Perfectly secure protocol realizing OLE (F)m in the ROLE (F)m correlation hybrid.
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A.2 Securely realizing OLE (K) from OLE (F)m

The goal is to usem copies of OLE (F) to compute one OLE (K), wherem = Θ(n). Concretely,
suppose we are given an oracle which takes as input a,b ∈ Fm from Alice and x ∈ Fm from
Bob, and outputs z = a ∗x+b to Bob. Our aim is to implement the following functionality.
Alice has private inputs A ∈ K and B ∈ K, and Bob has input X ∈ K. We want Bob to
obtain Z = AX + B ∈ K. We show that if Alice and Bob use the protocol presented in
Figure 9, we can achieve m = Θ(n). More formally, we have the following lemma.

Lemma 2 (Performing one large OLE using multiple small OLE). Let K be an extension field
of F of degree n. There exists a perfectly secure protocol for OLE (K) in the OLE (F)m-hybrid
that performs only one call to the OLE (F)m functionality and m = Θ(n).

Given. Two linear maps E ′ and D′ as in Theorem 7.

Private input. Alice has private inputs A ∈ K and B ∈ K. Bob has private input X ∈ K.

Hybrid. Parties are in the OLE (F)m-hybrid.

Private Input Construction.

1. Alice creates private inputs a = E ′(A) and b = E ′(B).

2. Bob creates private inputs x = E ′(X).

3. Both parties invoke the the OLE (F)m functionality with respective Alice input (a,b)
and Bob input x. Bob receives z = a ∗ x + b = E ′(A) ∗ E ′(X) + E ′(B).

Output Decoding. Bob outputs Z = D′(z) = D′
(
E ′(a) ∗ E ′(x) + E ′(b)

)
= AX +B.

Figure 9: Protocol for computing one OLE (K) using m copies of OLE (F), where K is a
degree n extension field of F.

Figure 9 realizes Lemma 2. In the protocol, Alice creates a = E ′(A) and b = E ′(B), and
Bob creates x = E ′(X). Calling the OLE (F)m functionality, Bob receives z = a ∗ x + b. In
particular, he receives z = E ′(A) ∗E ′(X) +E ′(B). Bob then computes D′(z). Since D′ is a
linear map and by Theorem 7, we have the following.

D′(z) = D′
(
E ′(A) ∗ E ′(X) + E ′(B)

)
= D′

(
E ′(A) ∗ E ′(X)

)
+D′

(
E ′(B)

)
= AX +B

A.3 Proof of Theorem 9

The protocol which satisfies Theorem 9 is the parallel composition of the protocols presented
in Figure 8 and Figure 9 (Lemma 2). The composition of these protocols in parallel gives
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an optimal two-round protocol for realizing OLE (K) in the ROLE (F)m-hybrid with perfect
security and m = Θ(n) by Theorem 7, as desired.

A.4 Prior Work

Chudnovsky-Chudnovsky [CC87] gave the first feasibility result on the bilinear complexity
of multiplication, showing Θ(n) multiplications in Fq suffice to perform one multiplication
over Fqn . Since then there have been several works on explicit constructions and variants of
the bilinear multiplication algorithms and improved the bounds on the bilinear complexity.

The works of [STV92, GS95, GS96] discuss the construction of appropriate function fields
such that there is sufficient number of rational points for interpolation. Improvement on the
bounds for the bilinear complexity of multiplication and generalizations of the Chudnovsky-
Chudnovsky method appear in [BR04, Ran12, BPR16, BBBT17]. Explicit construction of
multiplication algorithms are discussed in [CÖ10, ABBR15, BBBT17], and in the particular
case of function fields over elliptic curves in [Cha12, BBT13].
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