
Limitation of the HHSS Obfuscation:
Lattice based Distinguishing Attack

Jung Hee Cheon, Minki Hhan, Jiseung Kim, Changmin Lee

Seoul National University (SNU), Republic of Korea

Abstract. Indistinguishability Obfuscation (iO) is a hopeful tool which
obfuscates a program with the least leakage, and produces various ap-
plications including functional encryption. Recently, a state-of-the-art
obfuscator implementation underlying the branching program matrix,
HHSS, has been suggested by Halevi et. al. in ACM-CCS’17.

In this work, we describe the first attack algorithm which can be applied
to HHSS obfuscation depending on the dimension of the branching pro-
gram matrix. When two matrix branching programs and an obfuscated
program using HHSS obfuscation are given, we can distinguish which
branching program was used to make an obfuscated program.

Our attack uses a left kernel of the product of branching program matri-
ces. If we obtain a short vector in the left kernel, we manipulate the result
of the zerotesting procedure because HHSS obfuscation removes a special
setting called ‘scalar bundling’ in the initialization step for its efficiency.
More precisely, the zerotesting procedure exposes the left kernel of the
product of branching program matrices, so we can use the property em-
ploying a lattice reduction algorithm on the left kernel. Indeed, we find
a short vector what we want using a lattice reduction algorithm. As a

result, we can find a vector what we want in the complexity 2O(d
B−ε),

where d is the dimension of the branching program matrices and a gap
parameter B and a real value ε are given. For example, we can find a
short vector applying the LLL algorithm for the current parameter pro-
posed by HHSS implementation with d = 100. It takes less than a second
with the precomputation of the evaluation of the obfuscated program.

Keywords: Cryptanalysis, Indistinguishability Obfuscation, Matrix Branch-
ing Program, Multilinear Maps

1 Introduction

The program obfuscator, also called software obfuscator, is a compiler which
takes a program P as an input, and outputs a new program O(P) which com-
putes the same function as P but it is infeasible to extract information of P . By
obfuscating, any adversary cannot reverse engineer the program.

Because of this dream property, the obfuscation has been extensively re-
searched. The indistinguishability obfuscation (iO), also known as best-possible
obfuscation [GR07], is the obfuscation which makes the program leak as little
information as any other program with the same functionality and a similar size.

The security assumption of the iO, indistinguishability, is that any adver-
sary cannot computationally distinguish the obfuscated programs iO(BP0) and
iO(BP1) for the same functionally equivalent and the same size programs BP0

and BP1 in a polynomial time.
In FOCS 2013, Garg et. al. firstly suggested a plausible candidate, GGHRSW,

of iO [GGH+13b] based on the matrix branching program (BP), which represent
the program by several matrices and a input function and evaluate by multiplying
matrices, and the cryptographic multilinear map [GGH13a,CLT13,GGH15].

Recently, GGH15 based BP obfuscation has been in the spotlight because
there are schemes which claim provable security under the LWE assumption [GKW17,
WZ17]. In particular, Halevi et. al. presented a new construction of iO and were
successfully implemented their construction [HHSS17]. Their construction does
not use scalar bundling for the efficiency of the implementation, and then only
obfuscates the read-once branching programs. Therefore, HHSS obfuscation can
obfuscate more general programs compared to [LMA+16], which only obfuscates
the point functions.

Branching program based iO and HHSS implementation. A matrix
branching program with dimension d and length ` for t-bit input is the set
of integral matrix BP = {Mi,b}1≤i≤`, b∈{0,1} ⊂ Zd×d with an input function
inp : [`]→ [t]. On a input x ∈ {0, 1}t, BP can be evaluated as follows where xi
is the i-th bit of x:

BP (x) =

{
0 if

∏l
i=1 Mi,xinp(i) = 0

1 otherwise.

The first candidate of iO [GGH+13b] is based on the branching program and
cryptographic multilinear map ENC. Briefly, it gives a zerotesting procedure,
which returns 1 if the top level encodings is zero; otherwise return 0, and a set
of encoded matrices

iO(BP) = {ENCi(R−1
i−1 · αi,b ·Mi,b ·Ri)} for 1 ≤ i ≤ `, b ∈ {0, 1},

where Ri’s are random invertible matrices except R0 = R` = Id and αi,b’s
are scalar bundling elements. Since the multilinear maps allow homomorphic
evaluation, one can evaluate the iO(BP) on input x ∈ {0, 1}t. Moreover, by
checking whether or not the each entry is zero with zerotesting procedure, one
can guarantee the functionality is preserved.

In the case of HHSS implementation, to increase efficiency, the αi,b values are
unified to all ones and the input function is set as the identity function. These
branching programs are called read-once programs. The encoding of HHSS is a
m×m matrix and it is of the form of [GGH15] multilinear map:

Ai−1 · ENCi(R−1
i−1 ·Mi,b ·Ri) = R−1

i−1 ·Mi,b ·Ri ·Ai + Ei (mod q),

where the Ai and Ei are n×m random matrices and n×m small error matrices,
respectively, and q is an integer. In addition, the evaluation of the encoded

2

matrices on input x ∈ {0, 1}` has the following form:

∏̀
i=1

Mi,xi ·A` + E.

Our Technique. We observe that the size of the evaluation value heavily relies
on the matrix Mi,xi . Namely, the size become small when the matrix is zero, and
it would be large if not. Moreover, the plaintext matrices are revealed with errors
in the evaluation value as the left-multiplied matrix. Since we can assume that
we know Mi,b, we can compute the left kernel of Mi,b and a short vector in the
kernel by using lattice algorithms. If the dimension d of plain matrix branching
program is small, we can find such a short vector. Then, the multiplication of
a short left kernel vector and the evaluation value would be small if the given
obfuscated program was generated form Mi,b. Otherwise, the product would
become a large value.

Our Contribution. In this work, we propose a noteworthy distinguishing attack
on HHSS implementation. From this algorithm, we point out that the structural
weakness of HHSS obfuscation due to omitting the scalar bundling randomiza-
tion. Our distinguishing attack for HHSS implementation relies on the dimension
of plain branching program matrices.

More precisely, we suggest a probabilistic algorithm to distinguish whether
b is 0 or 1, given that two functionally equivalent branching programs BP0 and
BP1 and obfuscated program iO(BPb) from HHSS implementation. In other
words, we show that HHSS implementation does not achieve indistinguishability.
Let B be the gap between log2 q and the size of error of top level encodings and
ε be a real number greater than 1 which is related to probability of success of

the attack. Our algorithm then runs in 2O(d
B−ε) and the success probability of

distinguishing attack is at least 1/2 − 1/2ε+1. According to our attack, if d is
smaller than a security parameter λ·(B − ε), we show that HHSS implementation
does not satisfy the indistinguishability with the security parameter λ.

However, our attack implies that these programs cannot be obfuscated using
HHSS. Incidentally, our results also naturally increase the size of the obfuscated
matrices and reduce the efficiency of the HHSS implementation. In other words,
the class that HHSS can practical obfuscate is limited.

Comparison to concurrent and independent work. The concurrent and
independent work of Chen, Vaikuntanathan, and Wee proposed another poly-
nomial time attack on HHSS obfuscation, so called rank attack, in the pa-
per [CVW18]. A little more precisely, their main idea is to construct a special
matrix from several top level encodings of zero for a given obfuscated program.
The rank of the matrix depends on the plain branching program. In other words,
given a branching program P and an obfuscated program O with same functional-
ity as P, by computing the rank, one can distinguish whether O is an obfuscated
program of P or not. This attack implies the traditional general purpose iO

3

scheme over GGH15 graded encoding scheme does not satisfy indistinguishabil-
ity even though the obfuscator includes various safeguards such as Kilian-style
randomization, scalar bundling, and diagonal padding.

Compared to our attack, the rank attack requires several top level encodings
of zero, so it is not applicable to obfuscated BP programs that anyone hardly
obtain encodings of zero such as an evasive function or a point function On the
other hand, our attack affects HHSS obfuscation of such branching programs
which do not even give encodings of zero. However, out attack is only applica-
ble to an obfuscator with Kilian-style randomization and diagonal padding. In
summary, we demonstrate that our attack range is broader than the attackable
program class in HHSS obfuscation, and that the attack range of Chen et al. is
broader than the attackable obfuscation scheme class.

Organization. The preliminaries related to obfuscation are presented in Section
2. The scheme description of HHSS obfuscation is discussed in Section 3. Next,
our distinguishing algorithm with its experimental example and a new parameter
selection are given in Section 4 and finally Section 5 gives the conclusion.

2 Preliminaries

Notation. For an integer q ≥ 2, Zq is the set of integer modulo q and all integers
in Zq are regarded as integers in (−q/2, q/2]. We use the notation Zn×m or Zn×mq

to denote the set of n × m matrices over integers or Zq, respectively. The set
{1, 2, · · · , t} is denoted by [t] for a positive integer t.

Throughout this paper, we regard bold font as a vector or a matrix. Specially,
Id is the identity matrix of dimension d and 0d is the d-dimensional zero matrix.
Moreover, we sometimes abuse the notation 0 as the zero vector. The transpose
of a matrix A is denoted by AT . The 2-norm of a vector x is denoted by ‖x‖2 and
the operator norm of a matrix A ∈ Rn×m is defined as ‖A‖op = sup{‖A · x‖ :
x ∈ Rm with ‖x‖2 = 1}. It induces that the largest singular value of a matrix A
is the same as ‖A‖op and ‖v‖op ≤ ‖v‖2 for any vector v. For an n-dimensional
vector x and an n′-dimensional vector y, let (x||y) denote an n+n′-dimensional
vector formed by concatenating x and y.

Definition 1 (Indistinguishability Obfuscation). For a security parameter
λ ∈ N, an indistinguishability obfuscation iO is a uniform PPT machine for a
circuit class {Cλ} which satisfies the followings:

– For all circuits C ∈ {Cλ} and for all input x,

Pr[C(x) = C ′(x) : C ′ ← iO(C, λ)] = 1

– For two circuits C1, C2 ∈ {Cλ} having the same functionality and for any
PPT distinguisher D, there exists a negligible function negl such that

|Pr[D(iO(C1, λ) = 1]− Pr[D(iO(C2, λ) = 1]| ≤ negl(λ)

4

Security of iO. Let B and B′ be given two matrix branching programs whose
outputs are the same for all inputs x. Then, the security goal of iO is to make
sure that no PPT distinguisherD can distinguish whether an obfuscated program
comes from B or B′.

Moreover, we say “iO does not have indistinguishability” if there exists a
PPT distinguisher D which can determine that the given obfuscated program
iO is an obfuscation of B or an obfuscation of B′.

2.1 Lattice

Lattice. A lattice L ⊂ Rm is the discrete set generated by a set of linearly inde-
pendent column vectors of Rm. For given n linearly independent column vectors
b1,b2, · · · ,bn ∈ Rm, the lattice generated by the set B = {b1,b2, · · · ,bn} with

n ≤ m is the set L =

{
n∑
i=1

ai · bi : ai ∈ Z

}
of integer linear combinations of the

bi, and denoted by L(B). We call m the dimension and n the rank of lattice
L. The determinant det(L) of the lattice L is defined as

√
det(BT ·B) for any

basis matrix B of L.

Lattice reduction algorithm. Lattice reduction algorithms are usually used
to find a short vector in a lattice. LLL algorithm and BKZ algorithm are well
known examples of lattice reduction algorithm, and details of these algorithms
are described in [LLL82,NS06,Ngu11,HPS11]. Two algorithms return a reduced
basis where the first vector is relatively short in the lattice. In this paper, lattice
reduction algorithms are only used to a find short vector of a given lattice.
When employing lattice reduction algorithm on an n-dimensional lattice L, the
shortest output of the algorithm, say b1, satisfies a condition the form: ‖b1‖ ≤
δn · det(L)1/n for some constant δ. We call δ the root Hermite factor.

3 HHSS Indistinguishability Obfuscation

Since the advent of [GGH+13b], the construction of candidate iO is largely
composed of two steps; matrix randomization and encoding using multilinear
map. To instantiate obfuscation and other various applications, three candidates
of cryptographic multilinear maps are suggested [GGH13a,CLT13,GGH15].

Halevi et. al. proposed and implemented an obfuscation [HHSS17] based on
the branching program and cryptographic multilinear map to achieve indistin-
guishability obfuscation. They applied several randomization steps on the matrix
branching program and encoded the randomized matrices by GGH15 multilinear
map.

In this section, we briefly review GGH15 multilinear map and HHSS obfus-
cation construction. For more details, refer to [HHSS17].

GGH15 multilinear map, which is a graph-induced cryptographic multilinear
map, is used to construct HHSS obfuscation. A directed acyclic graph G = (V,E)

5

for vertex set V and edge set E are used to initiate GGH15 multilinear map.
In particular, we only consider a directed graph G which consists of two chains
of length ` with a common source vertex 0 and a common sink vertext `. They
set the vertices as V = {0, 1, 2, · · · , (` − 1), 1′, 2′, · · · , (` − 1)′, `} and the edges
consist of two chains defined as

0→ 1→ 2→ · · · (`− 1)→ ` and 0→ 1′ → 2′ → · · · (`− 1)′ → `

E = {(i, (i+1)), (i′, (i+1)′)|i ∈ [`−2]}∪{(0, 1), (0, 1′), ((`−1), `), ((`−1)′, `)}.
Let m,n, and q be integers (n � m � q). For each vertex v ∈ V , assign a

random matrix Av ∈ Zn×mq with its trapdoor τv which is needed to efficiently
encode a matrix. An encoding of small plaintext M ∈ Zn×n with respect to edge
u→ v is a small matrix C ∈ Zm×mq such that

Au ·C = M ·Av + E (mod q),

for a small error matrix E ∈ Zn×m. Note that we can easily compute a small
matrix C using the trapdoor τu [MP12].

In HHSS obfuscation, the public parameters of GGH15 multilinear map are
the graph G = (V,E) and m,n, q and only the source-node matrix A0. From
the encodings and public parameters, we can compute the following with public
parameters:

1. Addition C1 + C2 and negation −C1 of two encodings C1,C2 with respect
to edge v → w

2. Multiplication C1 · C2 of encodings C1,C2 with respect to u → v, v → w,
respectively.

3. Zerotesting A0 ·C for an encoding C with respect to edge 0→ `

The above procedures work well in modulus q. In other words, the arithmetic
operations addition and multiplication are homomorphic operation, and the ze-
rotesting procedure checks whether the encoding is encoding of zero matrix or
not. More specifically,

• Let C1 and C2 be two encodings of plaintext matrix M1 and M2 with respect
to edge u → v respectively. i.e., Au · Ci = Mi · Av + Ei (mod q), where
norm of matrices Ci,Ei,Mi are small (i = 1, 2). Then, −C1 and C1 + C2

are encodings of −M1 and M1 + M2 relative to edge u → v. Indeed, we
observe

Au · (−C1) = (−M1) ·Av −E1 (mod q), and

Au · (C1 + C2) = (M1 + M2) ·Av + (E1 + E2) (mod q).

• Let C and C′ be two encodings of M and M′ with respect to edge u → v
and v → w respectively. In other words, Au ·C = M ·Av + E (mod q) and
Av · C′ = M′ · Aw + E′ (mod q) with the small matrices C,C′,E,E′,M,

6

and M′. Then we have

Au · (C ·C′) = (M ·Av + E) ·C′ = M ·Av ·C′ + E ·C′ (mod q)

= M · (M′ ·Aw + E′) + E ·C′ (mod q)

= (M ·M′) ·Aw + M ·E′ + E ·C′ (mod q)

Note that C1 + C2, M1 + M2, and E1 + E2 are small. Moreover, M ·M′,
C ·C′, and M ·E′ + E ·C′ are still small.

• The zerotesting procedure can determine whether a plaintext matrix M is
zero or not by estimating ‖A0 ·C‖ for a given encoding C of M with respect
to edge 0 → `. Specially, if ‖A0 · C‖ ≤ q/210, C is an encoding matrix of
M = 0n.

3.1 Construction of HHSS Obfuscation

Randomizing Branching Program. As noted above, HHSS obfuscation only
support the read-once branching programs since they remove scalar bundlings 1.
A matrix branching program of read-once program for `-bit input is ` pairs of
d× d matrices

B = {(M1,0,M1,1), (M2,0,M2,1), · · · , (M`,0,M`,1)}

such that

fB(x) =

0 if
∏̀
i=1

Mi,xi = 0d

1 otherwise

,

where xi is the i-th bit of input x. In other words, a function inp is the identity.
Halevi et. al. use two randomization steps called higher-dimensional embed-

ding and Kilian-style randomization upon a given read-once branching program
B. For i ∈ [`] and b ∈ {0, 1}, they first embed the matrix Mi,b into a n-
dimensional matrix which is a block diagonal matrix of the form diag(Mi,b,Ri,b),
where Ri,b is a d′ × d′ random (small) matrix. In [HHSS17], they picked d′ =

d
√
λ/2e. After higher-dimensional embedding, they apply Kilian-style random-

ization to the matrix diag(Mi,b,Ri,b) to make it look like a random matrix. In

other words, the randomized matrix M̃i,b is of the form

M̃i,b = S−1
i−1 · diag(Mi,b,Ri,b) · Si, 1 ≤ i ≤ `,

where Si ∈ Zn×n is a random invertible matrix and S0 and S` are identity
matrices over dimension n.

1 Scalar bundling is used to capture the mixed-input attack, which uses invalid inputs
of the matrix branching program. However, read-once programs are not threatened
by this attack.

7

Halevi et. al. employ an additional structure which is called the dummy pro-
gram for the zerotesting procedure. It consists of ` pairs of d×d binary matrices
M′

i,b, where i ∈ [`] and b ∈ {0, 1}. More precisely, the first matrix M′
1,b and

the last matrix M′
`,b in the dummy program are of the form diag(Ibd/2c,0dd/2e)

and diag(0bd/2c, Idd/2e) respectively. Other matrices M′
i,b are set to Id so that

the product
∏̀
i=1

M′
i,b is always the zero matrix. A dummy program should be

also randomized like a branching program with the same random matrix Ri,b in

the lower-right quadrant. Namely, a randomized matrix M̃′
i,b of M′

i,b is of the
form

M̃′
i,b = S′

−1
i−1 · diag(M′

i,b,Ri,b) · S′i, 1 ≤ i ≤ `,
where S′i ∈ Zn×n is a random invertible matrix and S′0 and S′` are identity
matrices.

Randomizing techniques are conducted to branching program and dummy

program, and their functionalities are invariant. In other words,
∏̀
i=1

M̃i,xi −

∏̀
i=1

M̃′
i,xi is zero when

∏̀
i=1

Mi,xi is also zero. Otherwise,
∏̀
i=1

Mi,xi is not zero.

Encoding using the GGH15 Multilinear map. We describe how to employ
the GGH15 multilinear map to encode randomized matrices.

After randomization steps, we recall the setting of GGH15 multilinear map.
Specifically, G = (V,E) is a two-chain graph and let m,n, and q be integers
(d + d′ = n � m � q). We sample random matrices Ai ∈ Zn×mq and A′i ∈
Zn×mq with their trapdoors corresponding vertices i ∈ {1, 2, · · · , (` − 1)} and
i′ ∈ {1′, 2′, · · · , (` − 1)′}, respectively. Moreover, random matrices A0 and A`

are assigned in a source node 0 and a sink node `, respectively. In that case, we
define A0 = A′0 and A` = A′` for convenience.

For each i ∈ {0, 1, 2, · · · , `}, we compute two matrices M̃i,b relative to an

edge (i− 1)→ i and M̃′
i,b relative to an edge (i− 1)′ → i′.

i.e., we have

Ai ·Ci,b = M̃i,b ·Ai+1 + Ei,b (mod q)

and A′i ·C′i,b = M̃′
i,b ·A′i+1 + E′i,b (mod q),

for some small errors Ei,b ∈ Zn×m and E′i,b ∈ Zn×m.
In addition, Halevi et. al. utilize an additional structure, called safeguard, to

make attacks harder since its security is suspect. Safeguard uses a Kilian style
randomization again to the output of encodings. Applying the safeguard step,
we have

Ĉi,b = P−1
i−1 ·Ci,b ·Pi and Ĉ′i,b = P′

−1
i−1 ·C′i,b ·P′i

for some random invertible small matrices P0, · · · ,P` and P′0, · · · ,P′` with
P0 = P` = P′0= P′` = Im. Note that a new encoding technique called safe-
guard does not affect the output of zerotesting procedure because of telescopic

8

cancellation and the two matrices corresponding to source and sink are identity
matrices. Hence, the obfuscation consists of the following matrices:

iO(BP) =
(
A0, {Ĉi,b : i ∈ [`], b ∈ {0, 1}}, {Ĉ′i,b : i ∈ [`], b ∈ {0, 1}}

)
.

Evaluation of Obfuscation. For an input x ∈ {0, 1}`, the first step of evalua-

tion is to compute A0 ·

(∏̀
i=1

Ĉi,xi −
∏̀
i=1

Ĉ′i,xi

)
. Since it is of the form

∏̀
i=1

Mi,xi

0d′

 ·A` + Error,

we can determine whether or not a matrix
∏̀
i=1

Mi,xi is the zero matrix from its

norm. In other words, when
∏̀
i=1

Mi,xi is zero A0 ·

(∏̀
i=1

Ĉi,xi −
∏̀
i=1

Ĉ′i,xi

)
is of

the form Error − Error′ and thus sufficiently small.
We abuse some notations to describe precisely. For each vertex i, Ci denotes

an encoding of plaintext M̃i = S−1
i−1 ·Mi · Si relative to a path (i − 1) → i,

and C =
∏̀
i=1

Ci denotes an encoding relative to path 0 → `. Then, we have

A0 ·C =

(∏̀
i=1

M̃i

)
·A` + Error (mod q), and Error is of the form

∑̀
j=1

(
j−1∏
i=1

Mi

)
· Sj−1 ·Ej ·

 ∏̀
i=j+1

Ci

 .

The size of the Error term largely depends on the term E1 ·
∏̀
i=2

C2 since the size

of matrix Ci is larger than that of other Mi, Sj−1 and noise term Ej for all i, j.
Therefore, we can speculate the norm Error from the construction of trapdoor
sampling and error size Ei,∥∥∥∥∥∥E1 ·

∏̀
j=2

Cj

∥∥∥∥∥∥
op

≈ 27 · σ`−1
x ·m`/2 · 2`−1,

where σx is a parameter of spherical Gaussian distribution used in the trapdoor
sampling. For more details of parameters for trapdoor sampling and error size,
refer to Section 5 in [HHSS17] or Appendix.

9

Halevi et.al. designed a zerotesting procedure by estimating ‖A0·C‖. Namely,
the obfuscated program iO(BP)(x) outputs 0 when ‖A0 ·C‖ ≤ q/210. Similarly,
iO(BP)(x) outputs 1 when ‖A0 ·C‖ > q/210. Hence, for the correctness of the
obfuscation program, the following equation should hold.

log q ≥ 7 + log σx · (`− 1) + logm · `/2 + (`− 1) + 10. (1)

In summary, we obtain a circuit iO(BP) such that

iO(BP)(x)2 =

{
0 if ‖A0 ·C‖op ≤ q/210,

1 othersiwe.

Remark. To reduce the size of iO(BP), Halevi et. al. proposed a special encod-
ing for sink `. Specially, A` is a vector in Zn×1

q and E` is also a small vector in
Zm×1
q . If someone wants to encode a small plaintext matrix M with respect to a

path `− 1→ `, compute [M ·A` + E`]q, and sample a small vector C such that
A`−1 ·C = M ·A` + E` using a trapdoor to sample a small vector, and finally
output Ĉ = P`−1 ·C`.

4 Cryptanalysis of the HHSS Implementation

In this section we present our attack, which is called left kernel attack, and
further analysis of HHSS obfuscation.

Two functionally equivalent branching programs {Mi,b,Ni,b}i∈[`],b∈{0,1} are
given. We assume that these matrices are binary matrices since the given pro-
grams in HHSS implementation are all binary. We found that the left-kernel
of plaintext matrices leads distinguishing attack to obfuscated program in the
zerotesting procedure. More precisely, we observe the upper quadrant of the ma-
trix A0 · C is the product of plaintext matrices related to an encoding matrix
C. Hence, by using a left kernel vector of the branching program matrix, we can
disclose some hidden information from the obfuscated program.

4.1 Description of Our Attack.

Let B and B′ be two read-once matrix branching programs for `-bit input corre-
sponding Mi,b ∈ Zd×d and Ni,b ∈ Zd×d for i ∈ [`], b ∈ {0, 1} respectively. Also,
we have a program iO encoded by GH15 multilinear map, but we do not know
whether or not iO is an obfuscation whether iO is an obfuscation of the branch-
ing program B or B′. We want to determine regardless of whether an obfuscated
program iO comes from B or B′.

Suppose we have public matrix A0 of GGH15 multilinear map and following
matrices.

B = {Mi,b : i ∈ [`], b ∈ {0, 1}}, B′ = {Ni,b : i ∈ [`], b ∈ {0, 1}}
iO = {Ĉi,b, Ĉ

′
i,b : i ∈ [`], b ∈ {0, 1}},

2 In their implementation, however, the obfuscated program outputs 1− iO(BP)(x).

10

where Ĉi,b and Ĉ′i,b are encodings of a matrix and a dummy branching program
relative to paths (i − 1) → i and (i − 1)′ → i′ using GGH15 multilinear map,
respectively. Note that matrices Ĉi,b, Ĉ

′
i,b are m×m integer matrices with m ≥ d.

For some input x such that fB(x) = 0 and
∏`
i=1 Mi,xi = 0d, there exists at

least one singular matrix Mi,xi for some i. Let M1,1 be a singular matrix for
convenience. Also, there is a nonzero vector v ∈ Zd such that v ·M1,1 = 0d.
i.e., the left kernel of a matrix M1,1 is not trivial.3 Assume that we can find a
short vector v such that v ·M1,1 = 0d and v ·N1,1 6= 0d. Then, we are able to
distinguish an obfuscated program by employing a vector v ∈ Zd.

From now, let an input x be represented as x1x2 · · ·xn with x1 = 1 such that
fB(x) = 1 and fB′(x) = 1. Then, we observe

v ·
∏̀
i=1

Mi,xi = 0d and v ·
∏̀
i=1

Ni,xi 6= 0d with high probability.

Let M̃i,b and Ñi,b (with i ∈ [`], b ∈ {0, 1}) be randomized matrices of Mi,b and

Ni,b, respectively. If Ĉ is an encoding of
∏`
i=1 M̃i,xi relative to the path 0→ `,

then we have

v̂ · (A0 · Ĉ) = v̂ ·

(∏̀
i=1

M̃i,xi ·A` + Error

)
(mod q)

=

(
v̂ ·
∏̀
i=1

M̃i,xi

)
·A` + v̂ · Error (mod q)

= v̂ · Error (mod q),

where v̂ = (v||0) is an n (= d + d′)-dimensional vector. Note that ‖v̂ · Error
(mod q)‖ must be small if ‖v̂‖ is small. We define a new real value ε ≥ 1 in
order to clarify how much small the term v̂ ·Error (mod q) is. The ε is exploited
to predict the probability to distinguish program later. Moreover, if Ĉ comes
from a plaintext matrix

∏`
i=1 Ñi,xi , then we have

v̂ · (A0 · Ĉ) = v̂ ·

(∏̀
i=1

Ñi,xi ·A` + Error

)
(mod q)

=

(
v̂ ·
∏̀
i=1

Ñi,xi

)
·A` + v̂ · Error (mod q).

Note that ‖v̂ · (A0 · Ĉ)‖ looks like a random over Zq since (v̂ ·
∏`
i=1 Ñi,xi) ·A`

does not vanish.
Therefore, a distinguisher D can output

D(iO) =

{
B if ‖v̂ · (A0 · Ĉ)‖op ≤ q/2ε for some integer ε.

B′ othersiwe.

3 Sometimes it is called the ‘orthogonal lattice’ of the column lattice generated by a
matrix M1,1.

11

Extending the attack. Some programs do not have a short vector v such that
v̂·M1,x1

= 0d, for example, a full rank matrix M1,x1
does not have a nonzero left

kernel vector. However, in that case we can still apply our attacks by employing

a matrix M(1) =

(
M1,1

M1,0

)
instead of M1,1. M(1) must have a nontrivial left

kernel because its rank is d with high probability. Moreover, the determinant of

a lattice generated by M(1) is no more than
√

2d
d

because the entries of a new
matrix are also binary. Thus, we conclude our attack can be applied to HHSS
obfuscation.

In summary, our attack is explicitly described as follows:

Algorithm 1 Left Kernel Attack (Simple case)

Input: q, ε, A0, B = {Mi,b}i∈[`],b∈{0,1}, iO(B′) = {Ĉi,b}i∈[`],b∈{0,1}

Output: True if B = B′, and False otherwise
1: compute the left kernel K of M(1) and its basis B

2: find a short left kernel vector v ∈ K by using a lattice reduction algorithm
3: v̂ = (v||0) ∈ Zd+d

′
with d′-dimension vector 0

4: compute Ĉ =
∏`
i=1 Ĉi,xi for x1 = 0

5: compute z = v̂ ·A0 · Ĉ
6: return True if |z| ≤ q/2ε; otherwise return False.

Toy Example. Now, we give two simple equivalent branching programs and
the results of our attack. Two branching programs B,B′, which satisfy fB(x) =
fB′(x) = 0 for x = 01 and fB(x) = fB′(x) = 1 otherwise, are given as follows:

M0,0 =

(
1 0
1 0

)
, M1,0 =

(
1 0
0 0

)
,

M0,1 =

(
0 0
1 1

)
, M1,1 =

(
0 0
0 1

)
.

N0,0 =

(
1 0
1 0

)
, N1,0 =

(
1 0
1 1

)
,

N0,1 =

(
0 1
0 1

)
, N1,1 =

(
0 0
1 1

)
.

Matrix branching program B Matrix branching program B′

Note that for two left kernel vectors v = (1, 0) and w = (1,−1), the branching
programs satisfy

v ·M0,1 = 0, v ·N0,1 6= 0

w ·N0,1 = 0, w ·M0,1 6= 0,

12

respectively. If we set the security parameter λ = 80 then the embedding di-
mension d′ = 54 and q = 34009074817199 and ε = 10. Let {Ĉi,b} and {D̂i,b} be
the obfuscated programs of M and N, respectively. The evaluation vectors are
computed as follows:

A0 · Ĉ0,1 · Ĉ1,0 =



−10884489
6341880489273
−2809809111564
−9752397591639
−3576418758634
−7724278907092
11995182501421


, A0 · D̂0,1 · D̂1,0 =



−281520684456
−281549139175
−410308959247
−15011968960796
−5708322256588
−2185335626767
−593005703340


.

At last, the inner product values of the extended left kernel vectors v̂ =
(1, 0||0), ŵ = (1,−1||0) and the evaluation vectors are

zv,C = v̂ ·A0 · Ĉ0,1 · Ĉ1,0 = −10884489

zv,D = v̂ ·A0 · D̂0,1 · D̂1,0 = −281520684456

zw,C = ŵ ·A0 · Ĉ0,1 · Ĉ1,0 = −6341891373762

zw,D = ŵ ·A0 · D̂0,1 · D̂1,0 = 28454719.

We can easily observe that the inner products are fairly small if the left kernel
vector corresponds to the obfuscated program. Actually the values zv,C, zw,D
are less than 2−20 · q, whereas zv,D and zw,C are larger than 2−10 · q. Therefore,
the left kernel attack works well for this example.

4.2 Analysis of the Left Kernel Attack

Let M(1) be the matrix defined as above and a lattice L(1) generated by column

vectors of M(1). We denote a lattice L(1)⊥ by an orthogonal lattice of a lattice

L(1). Then, L(1)⊥ is the same as a nontrivial left kernel of a matrix M(1). More-

over, L(1)⊥ has rank d with high probability, and detL(1)⊥ ≤ detL(1) =
√

2d
d
.

On the lattice L(1), if we can find a short vector v′ = (u||w) and compute

(u||0) · (A0 · Ĉ0) + (w||0) · (A0 · Ĉ1), where Ĉ0 and Ĉ1 are encodings of

M1,1 ·
∏`
i=2 Mi,x1

and M1,0 ·
∏`
i=2 Mi,x1

with respect to the path 0 → `, then
we know which program is used to make the obfuscation iO.

Now, we try to analyze an operator norm ‖(u||0)·Error1 +(w||0)·Error2‖op to
find an upper bound of a vector v′ what we need. Let Error1 and Error2 be error
matrices in the encodings Ĉ0 and Ĉ1 respectively, then, ‖Errorj‖op (j = 1, 2) is
bounded by 27 · σ`−1

x ·m`/2 · 2`−1 =: y.
Consider a 2n-dimensional vector

V = (u||0||w||0) ·
(
Error1
Error2

)
.

4 In the original paper, authors recommend that it should be d′ = 7 to satisfy d′ =
d
√
λ/2e, but their implementation chooses d′ = 5.

13

Then, ‖V‖op = ‖(u||0) · Error1 + (w||0) · Error2‖op. Moreover, the following in-
equality holds: ‖(u||0||w||0)‖op ≤ ‖v′‖op ≤ ‖v′‖2 and ‖(Error1||Error2)T ‖op is
bounded by

√
2y.

Therefore, we conclude

‖(u||0) · Error1 + (w||0) · Error2‖op ≤ ‖(u||0||w||0)‖op ·
∥∥∥∥(Error1Error2

)∥∥∥∥
op

≤
√

2 · y · ‖v′‖op ≤
√

2 · y · ‖v′‖2.

Then, a short vector v′ = (u||w) with u,w ∈ Zd should satisfy

‖v′‖2 ≤ δd · (detL(1)⊥)
1
d ≤ q

2ε ·
√

2y
=: 2B/2ε,

where δ is the root Hermite factor of a lattice reduction algorithm and q/
√

2y is
replaced by 2B . We remark B indicates that a gap between underlying modulus

size log2 q and the size of Error. Note that δd · (detL(1)⊥)
1
d ≤ δ2d · (

√
2d
d
)

1
d

because detL(1)⊥ ≤
√

2d
d
.

In summary, we need to check whether the following inequality holds

δd ·
√

2d ≤ q

2ε ·
√

2y
.

Success Probability. The probability that the algorithm distinguishes the pro-
grams M and N from which iO(M) obfuscated is as follows. Let v and w be left
kernel vectors of (M1,0||M1,1)T and (N1,0||N1,1)T , respectively. Then, v·(A0 ·Ĉ)
is unconditionally smaller than q/2ε. That is, Pr[D(M, iO(M)) = M] = 1/2. i.e.,
a distinguisher D (Algorithm 1) can output M with probability 1/2 when iO(M)
is given as an input. On the other hand, assuming that w · (A0 · Ĉ) is a random
value, the probability of ‖w · (A0 · Ĉ)‖op ≤ q/2ε is smaller than (1/2ε)n because
all entries must be smaller than q/2ε. It implies that Pr[D(N, iO(M)) = N)] =
(1/2n·ε+1). In summary, we have the advantage of distinguishing by the proba-
bility |Pr[D(M, iO(M)) = M]−Pr[D(N, iO(M)) = N]| = 1/2−1/2n·ε+1, which
is overwhelming probability on n.

Asymptotic analysis. We give an asymptotic complexity of our attack with
respect to d. In order to obtain such a vector v′, the lattice reduction algorithm
like LLL algorithm and BKZ algorithm [LLL82, HPS11] is required. When the
term B − ε is set as Ω(d), it can be recovered with the LLL algorithm with
polynomial time in n. In the case of B − ε = Ω(d/β), it can be found with BKZ
algorithm with block size β and it runs in 2O(β). In other words, our algorithm

runs in 2
d

B−ε . Therefore, to resist our attack, d is set as O(λ · (B − ε)).

Attack for concrete Parameters. We will now use the lattice reduction al-
gorithm with the root Hermite factor δ to show how iO does not have indistin-
guishability for concrete parameters.

14

In the paper [HHSS17], they set parameters d = 100, n = 105 and commented
δ ≈ 1.006 for a security parameter λ = 80. Moreover, they proposed parameters
`, σx, log2 q and m which are used to implement an iO using GGH15 mmap, and
we describe them in Table 1. As stated above, maximum of the size log2 ‖v′‖2
must be less than B − ε = log2 q − log2 y − ε− 1/2. The details of the bound B
of max log2 ‖v′‖2 are in Table 2.

` 5 8 10 12 14 17 20

σx 218.0 218.3 218.4 218.6 218.7 218.8 218.9

log2 q 133 219 261 322 382 458 542

m 3352 5621 6730 8339 9923 11928 14145

Table 1: Parameters in [HHSS17] when security λ = 80, d = 100

` 5 8 10 12 14 17 20

log2 q 133 219 261 322 382 458 542

log2 y 113 192 246 301 357 439 523

B − ε 18 25 13 19 23 17 17

Table 2: Bound B of a target vector when security λ = 80, d = 105, ε = 1.5

From the above table, if we can find a short vector v′ such that

‖v′‖2 ≤ δd ·
√

2d ≤ 2B−ε, (2)

then we can always distinguish a program iO which comes from B or B′. In-

deed, δd · (
√

2d
d
)

1
d ≈ 25.7� 213 since the root Hermite factor factor δ ≈ 1.006,

B − ε = 13, and d = 100. In conclusion, matrix branching program obfusca-
tion using GGH15 multilinear map does not have indistinguishability using a
lattice reduction algorithm with the root Hermite factor δ ≈ 1.006 when two iO
programs are given. Moreover, its implementation proposed in [HHSS17] is not
secure when employing current parameters.

4.3 Experiments

In this section, we give specific experimental results of the attack. Halevi et. al.
provide some examples of branching program and codes for generating random
branching programs in https://github.com/shaih/BPobfus.

15

Table 3 shows that the time of the obfuscator and the attack for given pa-
rameters of HHSS implementation. The dimension d of the matrix branching
programs is 100. ` denotes the length of branching programs, and m the dimen-
sion of encoded matrices. The evaluation time (step 4 of the left kernel attack)
is assumed precomputed in the attack time on the table. Our attack is carried
out in a second for the given parameter setting with preprocessed evaluation
matrices.

We remark that short left kernel vectors v satisfying ‖v‖∞ ≤ 10 are found by
using LLL algorithm for 100 dimensional randomly generated matrix branching
programs, which is used in the experiments of [HHSS17]. Moreover, all of the
example branching programs given in Github have a binary left kernel vectors.

According to the experiments, the product v · (A0 · Ĉ) is far smaller than
2−10 × q for the short left kernel vector v from the corresponding plain matrix
branching program, whereas it seems a random value modulus q for the left
kernel vector from the different plain matrix branching program.

The results of the experiments are given in Table 4. The given examples are
the obfuscation of length ` = 5 randomly generated matrix branching programs
and we choose ε = 10 and use LLL lattice reduction algorithm [?]. We note that
the attack should employ the other lattice reduction algorithms to distinguish
larger branching program matrices.

In all experiments, the dominant time of the left kernel attack of the suggested
parameters is the evaluation time of the given obfuscated program. Short vectors
of the left kernel of the given plain branching program matrix with the size
(≤ 400) × (≤ 200) are computed in only few seconds by using LLL algorithm
with NTL library. Computing the product of the evaluation matrix and the short
left kernel vector (modulo q) is also very fast.

We tested all experiments on a server with Intel Xeon Core E5-2620 running
at 2.10 GHz processors with 8 threads. We also remark that the obfuscator runs
slower than Halevi et. al. presented.

` m log q Initialization Obufscation Evaluation Attack

(8×) Intel Xeon CPU E5-2620 2.10GHz

5 3352 134 75.44 330.95 6.85 0.64

8 5621 220 830.07 3017.01 76.45 0.69

10 6730 262 1967.55 9182.40 147.475 0.68

Table 3: Running time (seconds) of the algorithms (` is the length of progams)

16

d m Initialization Obufscation Evaluation Attack

100 3352 75.87 377.77 7.12 0.67

150 4368 148.80 748.70 12.13 2.53

200 5504 275.36 946.49 19.35 7.23

Table 4: Running time (seconds) of the algorithms (d is the number of states)

4.4 Parameter Suggestion

We present the parameter suggestion for HHSS scheme to achieve 2λ security
for iO and to satisfy the functionality/correctness conditions. Basically, as in

the HHSS scheme, for q =
∏k
i=1 p

e
i , the parameter e is set to be 3, pi is ranged

from 71 to 181, the standard deviation σz of z expressed in Algorithm 2 5,
σz, is assumed to 724, and the dimension of the ciphertext matrix m is set as
m̄+ dke. The remaining parameters {B, d, m̄, q, y} are set as follows to achieve
2λ security against our attack.

• B, ε ≥ 1, by default, B = 14.5 and ε = 1.5
• d : the smallest integer satisfying δd ·

√
2d > 2B−ε according to Eq. 2. 6

• m̄ ≥ (
√
λ+ 2) ·

√
d · log2 q according to Eq. 3. 5

• log2 y = log2 σx · (`− 1) + log2m · `/2 + `+ 6.
• log2 q = log2 y + 1/2 +B − ε according to Eq. 1.
• σx > 2896 · (

√
m̄+

√
w + 6) according to Eq. 4. 5

From the above parameter selection, given the security parameter λ = 80,
d should set to be 882. The Table 5 indicates that other parameter values in
each length `. The iO size means the storage of the set of output of obfuscated
matrices

iO = {Ĉi,b, Ĉ
′
i,b : i ∈ [`], b ∈ {0, 1}}.

5 Conclusion

In this paper, we proposed a new cryptanalysis called left kernel attack. To pre-
vent our attack, the parameters of the obfuscation should be increased. Specif-
ically, the dimension of plaintext matrix and the dimension of encoded matrix
would be increased at least five times and at least three times, respectively, than
that of the Halevi et. al.’s suggestion. This increase results in the storage us-
age and the time to obfuscate/evaluate the program increase to approximately

5 Refer to trapdoor sampling in appendix.
6 Like a paper HHSS17, a root Hermite factor δ is used when δ ≈ 1.006 for λ = 80,
δ ≈ 1.00044 for λ = 128, and δ ≈ 1.0023 for λ = 256.

17

` 5 8 10 12 14 17 20

σx 218.1 218.21 218.26 218.31 218.35 218.40 218.44

log2 q 134 216 271 327 383 467 553

m̄ 3,763 4,777 5,351 5,878 6,361 7,024 7,644

m 19,639 31,237 39,749 45,568 53,989 62,590 73,794

iO size 94.0GB 670GB 1.75TB 3.39 TB 6.59TB 13.31TB 26.01TB

Table 5: Parameters suggestion to prevent left kernal attack when security pa-
rameter λ = 80, ε = 1.5, B = 14.5, and d = 882

ten times as much. As an illustration, their signature example, which is 20 nib-
bles (80 bits) and 100 states program obfuscation, would take approximately a
year to obfuscate the program. This size increase reduces the range of HHSS
indistinguishability obfuscator that can be applied.

All attacks proposed in iO area are related to distinguishing between two
branching programs instead of finding information leakage in the given obfus-
cated program. Hence, the problem of extracting secret information such as se-
cret key or plaintext matrices from the obfuscated program remains as an open
question. Moreover, even if someone successfully recovers the plaintext matrices,
it is difficult to recover the original message that is hidden by Kilian randomiza-
tion. How to extract some leakage from the specific program obfuscation is also
an interesting open question.

References

[CLT13] Jean-Sébastien Coron, Tancrède Lepoint, and Mehdi Tibouchi. Practical
multilinear maps over the integers. In Advances in Cryptology - CRYPTO
2013, pages 476–493, 2013.

[CVW18] Yilei Chen, Vinod Vaikuntanathan, and Hoeteck Wee. Ggh15 beyond per-
mutation branching programs: Proofs, attacks, and candidates. Cryptology
ePrint Archive, Report 2018/360, 2018. https://eprint.iacr.org/2018/360.

[GGH13a] S. Garg, C. Gentry, and S. Halevi. Candidate multilinear maps from ideal
lattices. In Proc. of EUROCRYPT, volume 7881 of LNCS, pages 1–17.
Springer, 2013.

[GGH+13b] Sanjam Garg, Craig Gentry, Shai Halevi, Mariana Raykova, Amit Sa-
hai, and Brent Waters. Candidate indistinguishability obfuscation and
functional encryption for all circuits. In 54th Annual IEEE Symposium
on Foundations of Computer Science, FOCS 2013, 26-29 October, 2013,
Berkeley, CA, USA, pages 40–49, 2013.

[GGH15] Craig Gentry, Sergey Gorbunov, and Shai Halevi. Graph-induced multi-
linear maps from lattices. In Theory of Cryptography Conference, pages
498–527. Springer, 2015.

[GKW17] Rishab Goyal, Venkata Koppula, and Brent Waters. Lockable obfuscation.
In Foundations of Computer Science (FOCS), 2017 IEEE 58th Annual
Symposium on, pages 612–621. IEEE, 2017.

18

[GR07] Shafi Goldwasser and Guy N. Rothblum. On best-possible obfuscation.
In Theory of Cryptography, 4th Theory of Cryptography Conference, TCC
2007, Amsterdam, The Netherlands, February 21-24, 2007, Proceedings,
pages 194–213, 2007.

[HHSS17] Shai Halevi, Tzipora Halevi, Victor Shoup, and Noah Stephens-
Davidowitz. Implementing bp-obfuscation using graph-induced encoding.
In Proceedings of the 2017 ACM SIGSAC Conference on Computer and
Communications Security, CCS 2017, Dallas, TX, USA, October 30 -
November 03, 2017, pages 783–798, 2017.

[HPS11] Guillaume Hanrot, Xavier Pujol, and Damien Stehlé. Analyzing blockwise
lattice algorithms using dynamical systems. In Advances in Cryptology -
CRYPTO 2011 - 31st Annual Cryptology Conference, Santa Barbara, CA,
USA, August 14-18, 2011. Proceedings, pages 447–464, 2011.

[LLL82] Arjen Klaas Lenstra, Hendrik Willem Lenstra, and László Lovász. Fac-
toring polynomials with rational coefficients. Mathematische Annalen,
261(4):515–534, 1982.

[LMA+16] Kevin Lewi, Alex J. Malozemoff, Daniel Apon, Brent Carmer, Adam
Foltzer, Daniel Wagner, David W. Archer, Dan Boneh, Jonathan Katz,
and Mariana Raykova. 5gen: A framework for prototyping applications
using multilinear maps and matrix branching programs. In Proceedings
of the 2016 ACM SIGSAC Conference on Computer and Communications
Security, Vienna, Austria, October 24-28, 2016, pages 981–992, 2016.

[MP12] D. Micciancio and C. Peikert. Trapdoors for lattices: Simpler, tighter,
faster, smaller. In Proc. of EUROCRYPT, volume 7237 of LNCS, pages
700–718. Springer, 2012.

[Ngu11] Phong Q. Nguyen. Lattice reduction algorithms: Theory and practice. In
Advances in Cryptology - EUROCRYPT 2011 - 30th Annual International
Conference on the Theory and Applications of Cryptographic Techniques,
Tallinn, Estonia, May 15-19, 2011. Proceedings, pages 2–6, 2011.

[NS06] Phong Nguyen and Damien Stehlé. Lll on the average. Algorithmic Number
Theory, pages 238–256, 2006.

[WZ17] Daniel Wichs and Giorgos Zirdelis. Obfuscating compute-and-compare
programs under lwe. In Foundations of Computer Science (FOCS), 2017
IEEE 58th Annual Symposium on, pages 600–611. IEEE, 2017.

A Trapdoor sampling

In this section, we briefly recall the trapdoor-sampling procedure and a related
property employed in [HHSS17]. We note that a matrix A one of the output
of the procedure is exploited in encoding step of iO initializing. In addition, a
trapdoor sampling step would be used to parameter selection. For more details,
we refer to the procedure of section 4 [HHSS17].

At the high level, for a given vector u ∈ Znq , the trapdoor sampling outputs a
pseudo random matrix A ∈ Zm×nq with a trapdoor matrix R and a small vector
x ∈ Zmq such that A · x = u mod q. The procedure consists of two steps. First
the matrices A and R are constructed from “gadget matrix” G ∈ Zn×w, which
is explained below. Next employing the matrix A and R and target vector u, the
small vector x what the constraint is satisfied is obtained. In order to realize the

19

algorithm, the authors used the discrete Gaussian sampling. For simplicity, we
use the notation u← DZm,Σ to sample a vector u ∈ Zm from discrete Gaussian
distribution over Zm with a covariance matrix Σ. Especially, when the covariance
matrix is of the form Σ = σ · I, we denote the distribution as DZm,σ.

Now we describe more details in each step. In [HHSS17], the underlying

modulus q is set as
∏k
i=1 p

e
i , where {pi} are small co-prime factors in the range

from 71 to 181, e equals to 3, and k is set large enough that log2 q-bit satisfies
the parameter suggestion [HHSS17, Sec 5.].

Next, they define a vector g = (g1, · · · , gω) ∈ Zω such that g1 = 1 and
gi+1 = gi · pbi/ec and a gadget matrix G = gT ⊗ In ∈ Zn×ω for ω = n · k · e.
We recall that if an arbitrary vector v is given, it is easy to sample a vector z
of small size satisfying G · z = v by the Micciancio-Peikert method [MP12].

Next, they sample an uniform matrices A1 ∈ Zn×m̄−2n
q , A2 ∈ Zn×nq until A2

is invertible and matrices of small norm R1 ∈ Dm̄−2n×ω
Z,4 , R2 ∈ Dn×ω

Z,4 , then sets

A = [A1|A2|G−A1 ·R1−A2 ·R2]q and R = [R1|R2|I]T so that the matrix A
holds A ·R = G mod q. In order to guarantee the pseudo-randomness of A, it is
enough that [A1 ·R1 + A2 ·R2]q = A2 · (A−1

2 ·A1 ·R1 + R2) is pseudo-random.
Under LWE assumption, (A−1

2 ·A1,A
−1
2 ·A1 ·R1 +R2) has pseudo-randomness

when the followings hold:

m̄ ≥ (
√
λ+ 2) ·

√
n log q. (3)

Finally, given the matrix A, trapdoor matrix R, and a target vector u ∈ Znq ,
one can sample a small vector x satisfying A · x = u mod q. The process is
described in Algorithm 2. We remark that σx must be sufficiently large relative

Algorithm 2 Computing Encrypted Distance Vectors

Input: A, R, and u

Output: x

1: p← DZm,Σ with covariance matrix Σ = σ2
x · I− σ2

z ·R ·RT

2: v = u−A · p mod q.
3: z← DZω,σz satisfying G · z = v mod q.
4: Output x = p + R · z mod q.

to product of σz and s(R), so that Σp is positive definite. To ensure that σz is
set as 4 · maxi(pi) = 4 · 181 = 724 and by Lemma 1, s(R) is bounded by
4 · (
√
m̄+

√
ω + 6) without 2−36 error probability in [HHSS17]. It implies that

σx > σz · s(R) = 2896 · (
√
m̄+

√
ω + 6). (4)

We state a useful lemma to estimate the size of trapdoor sampling matrices.

Lemma 1 ([MP12], Lemma 2.9). Let M ∈ Rn×m be a γ-sub-Gaussian random
matrix with parameter σ and s(M) be the largest singular value of M. Then, we
have s(M) ≤ C · σ · (

√
m +

√
n + t) for some universal constant C > 0 except

with probability at most 2 exp(γ) exp(−πt2).

20

