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Abstract. Direct Anonymous Attestation (DAA) is an anonymous digi-
tal signature that aims to provide both signer authentication and privacy.
DAA was designed for the attestation service of the Trusted Platform
Module (TPM). In this application, a DAA signer role is divided into
two parts: the principal signer which is a TPM, and an assistant signer
which is a standard computing platform in which the TPM is embedded,
called the Host. A design feature of a DAA solution is to make the TPM
workload as low as possible. This paper presents a lattice-based DAA
(L-DAA) scheme to meet this requirement. Security of this scheme is
proved in the Universally Composable (UC) security model under the
hard assumptions of the Ring Inhomogeneous Short Integer Solution
(Ring-ISIS) and Ring Learning With Errors (Ring-LWE) problems. Our
L-DAA scheme includes two building blocks, one is a modification of the
Boyen lattice based signature scheme and another is a modification of
the Baum et al. lattice based commitment scheme. These two building
blocks may be of independent interest.

Keywords: Lattice based cryptography, Direct Anonymous Attesta-
tion, Universally Composable security model.

1 Introduction

In general, a DAA scheme consists of an issuer, a set of signers and a set of ver-
ifiers. The issuer creates a DAA membership credential for each signer. A signer
consists of the (Host, TPM) pair, and can prove their membership by providing
a DAA signature to a verifier. The verifier validates the existance of the member-
ship credential from the given signature without knowing the credential, so the
verifier learns nothing about the identity of the signer. Compared with another
type of membership based anonymous digital signtures, group signatures, DAA
does not support the property of traceability, i.e., a group manager can identify
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the signer from a given group signature. When the DAA issuer also plays the
role of a verifier, the issuer does not obtain more information from a given signa-
ture than any arbitrary verifier. However, to prevent a malicious signer abusing
anonymity, DAA provides two alternative properties as the replacement of the
traceability. One is the rogue signer detection, i.e., with a signer’s private signing
key anyone can check whether or not a given DAA signature was created under
this key. The other is the user-controlled linkability: Two DAA signatures cre-
ated by the same signer may or may not be linked from a verifier’s point of view.
The linkability of DAA signatures is controlled by an input parameter called the
basename. If a signer uses the same basename in two signatures, they are linked,
otherwise they are not.

Related Work As stated by the developer of the TPM specifications, the
trusted computing group [24], more than a billion devices include the TPM tech-
nology; virtually all enterprise PCs, many servers and embedded systems include
the TPM. Every TPM supports DAA. The existing DAA schemes used in the
TPMs are based on either the factorisation problem in the RSA setting or the
discrete logarithm problem in the Elliptic-Curve (EC) setting. The concept and
first DAA scheme was proposed in 2004 by Brickell, Camenisch, and Chen [4].
This scheme is called RSA-DAA and supported by the TPM version 1.2. Later,
Brickell, Chen and Li proposed the first EC-DAA scheme based on symmetric
pairings [5, 6]. There are many EC-DAA schemes, which improve the perfor-
mance of this scheme. Two EC-DAA schemes, based on asymmetric (Type 3)
pairings, are supported by the TPM version 2.0 [7, 12, 13]. Since the factorisation
problem and discrete logarithm problem are known to be vulnerable to quantum
computer attacks [22], all the existing DAA schemes will not be secure in the
post-quantum computer age. Recently, El Bansarkhani and El Kaafarani [1] pro-
posed the first post-quantum direct anonymous attestation scheme from lattice
assumptions. However, the scheme requires massive storage and computation
resources. Section 7 gives a brief overview of this scheme.

Contribution In this paper, we design a lattice based DAA (L-DAA) scheme
suitable for inclusion in the future TPM. Our L-DAA scheme is developed
from [1], and designed to reduce the demands on the TPM in terms of stor-
age costs and computational resources. Tables 1 and 2 in Section 7 provide both
size and computation comparisons between the two schemes. The security of our
L-DAA scheme is based on the hardness of the Ring-ISIS and Ring-LWE prob-
lems. As there is no known quantum algorithm that solves either of these lattice
based problems, this provides a promising DAA scheme for the post-quantum
age. We also proved the security of our L-DAA scheme in the UC model in Sec-
tion 6, the detailed security proof is presented in Appendix D. The proposed
L-DAA scheme makes use of two building blocks. The first is a modification of
the Boyen lattice based signature [3], which combines a TPM signing key with
a DAA credential in an efficient way. The second is a modification of the Baum
et al. lattice based commitment scheme [2], which allows a TPM and its Host to
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jointly create a commitment, where each of them commits and proves his own
secret knowledge and the combination of these two proved commitments is a
DAA signature.

Organization In the next section, we introduce the relevant lattice-based prob-
lems. In Section 3, we discuss the two building blocks used for creating our
L-DAA scheme. In Section 4, we recall a detailed presentation on the existing
DAA security model in the UC framework from [9]. In Section 5, we describe our
L-DAA scheme, a sketched security proof for our L-DAA scheme is presented in
Section 6. Finally, we discuss the performance of the L-DAA scheme in Section 7
and conclude the paper in Section 8. Appendices A and B present the security
analysis of our modifications of the Boyen signature scheme and Baum et al.
commitment scheme. Appendix C presents a discussion on several functional-
ities necessary for our L-DAA security proof, a detailed security proof of the
proposed L-DAA scheme is presented in Appendix D.

2 Preliminaries

Notations The following notation will be used throughout the paper. [d] is the
set {1, . . . , d} for a positive integer d. x←↩ S means that x is a uniformly random
sample drawn from S. Zq represents the quotient ring Z/qZ. a = a0 +a1x+ · · ·+
anx

n represents a polynomial of degree n with integer coefficients, a can also
be represented as a vector (a0, a1, . . . , an) ∈ Zn. ‖a‖∞ denotes the infinity norm
of polynomial a, with ‖a‖∞ = max 0≤j≤n |aj |. Â = (a1, . . . ,am) represents
a vector of polynomials where m is some positive integer and a1, . . . ,am are
polynomials. ‖Â‖∞ is the infinity norm of the vector of polynomials Â defined
by ‖Â‖∞ = maxi ‖ai‖∞. B3n denotes the set of vectors u ∈ {−1, 0, 1}3n having
excatly n coordinates equal to -1, n coordinates equal to 0, and n coordinates
equal to 1. β denotes a positive real norm bound and λ represents a security
parameter.

Parameters Throughout this paper we will use the polynomial rings Rq =
Zq[x]/〈xn + 1〉, with n being a power of 2 (this restriction on n may not be
required for the Ring-LWE problem as it was shown in [20]). Let q ≥ 2 represents
an integer modulus such that q = poly(n). For correctness, we require the main
hardness parameter n, to be large enough (e.g., n ≥ 100) and q > β as both
being at least a small polynomial in n. We also let m = O(log q). A concrete
choice of parameters from [8] can be as follows: n = 256, q = 8380417, m = 14,
and β = 275.

Definition 1 (Lattices [14]). Let b1,b2, · · · ,bn be linearly independent vec-
tors over Rm, the lattice spanned by these vectors is given by

L =
{ n∑
i=1

zibi : zi ∈ Z
}
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The vectors b1,b2, · · · ,bn are called a basis of the lattice. Let B = [b1|b2| · · · |bn] ∈
Rm×n having the basis vectors as columns. The lattice generated by B is denoted
by L(B), and the rank n of the lattice is defined to be the number of vectors in
B. If n = m then the lattice L is said to be a full-rank lattice.

Definition 2 (Discrete Gaussian Distributions [21]). The discrete Gaus-
sian distribution on a non empty set L with parameter s, denoted by DL,s,
is the distribution that assigns to each x ∈ L a probability proportional to
exp(−π(‖x‖/s)2).

Definition 3 (Shortest Vector Problem (SVP) [19]). Given an arbitrary
basis B of some lattice L = L(B), find a shortest nonzero lattice vector, i.e., a
v ∈ L for which ‖v‖ = λ1(L) (where λ1(L) is the length of a shortest nonzero
lattice vector).

Definition 4 (The Ring Short Integer Solution Problem (Ring-SISn,m,q,β)

[19]). Given m uniformly random elements ai ∈ Rq defining a vector Â =

(a1,a2, . . . ,am), find a nonzero vector of polynomials Ẑ = (z1, z2, . . . , zm) ∈ Rmq
with ‖Ẑ‖∞ ≤ β such that: Â · Ẑ =

∑
i∈[m] ai · zi = 0. The Ring Inhomogeneous

Short Integer Solution (Ring-ISISn,m,q,β) problem asks to find Ẑ with ‖Ẑ‖∞ ≤ β,

and such that: Â · Ẑ = y, for some uniform random polynomial y.

Definition 5 (The Ring Learning With Error Problem (Ring-LWE)
[21]). Let χ be an error distribution defined over R, we define the following:

Ring-LWE distribution: Choose a uniformly random ring element s ←↩ Rq
called the secret, the ring-LWE distribution As,χ over Rq × Rq is sampled by
choosing a ∈ Rq uniformly at random, choosing randomly the noise e←↩ χ and
outputting (a,b) = (a, s · a + e mod q) ∈ Rq ×Rq.

Ring-LWE Problems: Let u be uniformly sampled from Rq

1. The decision problem of Ring-LWE asks to distinguish between (a,b)← As,χ
and (a,u) for a uniformly sampled secret s←↩ Rq.

2. The search Ring-LWE problem asks to return the secret vector s ∈ Rq given
a Ring-LWE sample (a,b)← As,χ for a uniformly sampled secret s←↩ Rq.

3 Building Blocks

In this section, we presents a modified Boyen signature scheme and a modified
Baum et. al commitment scheme, which will be used as two building blocks of
our L-DAA scheme presented in Section 5. These two modifications have their
independent interests.
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3.1 A Modification of the Boyen Signature Scheme

We first recall the Boyen’s signature scheme [3], which is over a ring Rq, with
m = O(log q), and can sign any message id ∈ {0, 1}`. The scheme includes the
following algorithms:

– KeyGen(1λ):
1. Generates a vector of polynomials Â ∈ Rmq together with a trapdoor T̂ .

2. Samples uniform random vectors of polynomials Âi ∈ Rmq for i ∈ (0, [`]).
3. Selects a uniform random syndrome u ∈ Rq.
4. Outputs the secret key sk := T̂ and the public key pk := (Â, Â0, Â1, . . . ,
Â`,u, q, β).

– Sign(sk, id ∈ {0, 1}`):
1. Generates a vector of polynomials Âid = [Â|Â0 +

∑`
i=1 idi · Âi] ∈ R2m

q .

2. Using the secret key T̂ , samples Ẑ = (z1, . . . , z2m) ←↩ DL⊥
u(Âid),s

, such

that Âid · Ẑ ≡ u mod q and ‖Ẑ‖∞ ≤ β.
3. Outputs the signature Ẑ = (z1, . . . , z2m).

– Verify(pk, id, Ẑ): If Âid · Ẑ ≡ u mod q and ‖Ẑ‖∞ ≤ β are satisfied, output
1, else 0.

The security of the Boyen signature scheme is based on the hardness of the
Ring-ISIS problem and is proved to be secure in the standard model, we refer
to [3] for the security proof. The proof was improved later in [16] by using a new
trapdoor and ring analogue.

In order to create a DAA credential in our L-DAA scheme presented in
Section 5, we modified the ring variant of Boyen’s signature scheme [17] as
follows:

– KeyGen(1λ): samples one more uniform random vector of polynomials Ât ∈
Rm′q , where m′ ≤ m, and outputs the secret key sk := T̂ and the public key

pk := (Ât, Â, Â0, Â1, . . . , Â`,u, q, β).
– Sign(sk, id ∈ {0, 1}`):

1. Samples a vector of polynomials Ẑt = (z1, . . . , zm′) ←↩ Dm
′

Zn,s such that

‖Ẑt‖∞ ≤ β, and computes Ât · Ẑt ≡ ut mod q.

2. Generates a vector of polynomials Âid = [Â|Â0 +
∑`
i=1 idi · Âi] ∈ R2m

q ,
as in the Boyen scheme.

3. Using the secret key T̂ , samples Ẑh = (zm′+1, . . . , zm′+2m)←↩ DL⊥uh (Âid),s
,

with ‖Ẑh‖∞ ≤ β and such that Âid · Ẑh ≡ uh = (u− ut) mod q.
4. Outputs the signature Ẑ = [Ẑt|Ẑh] = (z1, . . . , zm′+2m).

– Verify(pk, id, Ẑ): If [Ât|Âid] · Ẑ ≡ u mod q and ‖Ẑ‖∞ ≤ β are satisfied,
output 1, else 0.

In the L-DAA scheme, for the simplicity of the persentation of the scheme, we
let m′ = m. The security of this modified Boyen signature scheme is based
on the original Boyen signature scheme which is unforgeable under the hard
assumptions of the SIS problem [3]. The unforgeability of the modified Boyen
signature can be reduced to the existential unforgeability of the original Boyen
signature scheme. A detailed analysis will be given in Appendix A.
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3.2 A Modification of the Baum et al Commitment Scheme

We first briefly describe the Baum et al. commitment scheme presented in [2]
that includes the following algorithms:

– C.KeyGen(k): Given a security parameter k, generates the system param-
eters (q, Rq, α, γ, B̂), where q is a prime modulus defining Rq, Rq =
Zq[x]/〈f(x)〉 where f(x) is a monic and irreducible polynomial over Q, α and

γ are positive numbers, and B̂ is a uniformly random vector of polynomials

in R(d+1)×k
q , for some positive integer d.

– Commit (Ŝ): To commit to a message Ŝ ∈ Rdq , choose a uniformly random

vector of invertible polynomials R̂ ∈ D ⊆ Rk such that ‖R̂‖∞ ≤ α. Compute
C = COM(Ŝ, R̂) := B̂R̂+ (0, Ŝ), and output C.

– Open(C, Ŝ, R̂,p): A valid opening of a commitment C is a 3-tuple: Ŝ ∈
Rq, R̂ ∈ Rk and an invertible polynomial p ∈ R such that ‖p‖∞ ≤ γ. The
verifier checks that

B̂R̂+ (0,pŜ) = pC with ‖R̂‖∞ ≤ α

The security of this commitment scheme is based on the hardness of the Ring-
ISIS problem and we refer to [2] for the security proof. In order to create a DAA
signature, which is jointly signed by a TPM and its Host, we modify the above
Baum et al. commitment scheme by allowing two parties to commit a set of
secret values jointly. This modification is based on the additional homomorphic
property of this scheme.

Let Ŝt ∈ Rltq , and Ŝh ∈ Rlhq , for some integers lt and lh, be the TPM and
the host’s corresponding independent inputs respectively (to be concatenated),
st and sh in Rq be the TPM and the host’s corresponding inputs to be added.

The commitment algorithm performed by the TPM and Host works as fol-
lows:

To commit a message Ŝ = [(st + sh)|Ŝt|Ŝh] ∈ Rlt+lh+1
q , the TPM and the

host share a uniformly random vector of polynomials B̂ in R(lt+lh+2)×k
q .

To commit a message [st|Ŝt], the TPM:

– Chooses a uniformly random vector of invertible polynomials R̂t ∈ D such
that ‖R̂t‖∞ ≤ αt for some small constant αt.

– Computes Ct = COM([st|Ŝt], R̂t) := B̂R̂t + (0|st|Ŝt|0̂ ∈ Rlhq ), outputs Ct.

To commit a message [sh|Ŝh] the host:

– Chooses a uniformly random vector of invertible polynomials R̂h ∈ D such
that ‖R̂h‖∞ ≤ αh for some small constant αh.

– Computes Ch = COM([sh|Ŝh], R̂h) := B̂R̂h+(0|sh|0̂ ∈ Rltq |Ŝh), outputs Ch.

Now we have C = Ct + Ch = B̂(R̂t + R̂h) + (0|st + sh|Ŝt|Ŝh) = COM([st +
sh|Ŝt|Ŝh], R̂t + R̂h) = COM(Ŝ, R̂), where R̂ = R̂t + R̂h and ‖R̂‖∞ < αt + αh.
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In summary, we modify the original Baum et al scheme by splitting the prover
into two entities; in the L-DAA scheme, these two entities are the TPM and
the Host. The original Baum et al. scheme was proved to hold the properties
of statistically hidding and computationally binding and the proof is based on
an instantiation of the Ring-SIS problem. The security of this modified commit-
ment scheme is based on the original scheme. We argue that splitting the prover
role into two entities does not affect these two properties. A detailed security
analysis of our modification will be given in Appendix B of this paper.

4 Security Model of DAA

In this paper, we follow the security model for DAA given by Camenish et al. in
[9]. The security definition is given in the Universal Composability (UC) model
with respect to an ideal functionality F ldaa. In UC, an environment ε should not
be able to distinguish with a non negligible probability between two worlds:

1. The real world, where each part in the DAA protocol Π executes its assigned
part of the protocol. The network is controlled by an adversary A that
communicates with ε.

2. The ideal world, in which all parties forward their inputs to a trusted third
party, called the ideal functionality F ldaa, which internally performs all the
required tasks and creates the party’s outputs.

A protocol Π is said to securely realize F ldaa if for every adversary A performing
an attack in the real world, there is an ideal world adversary S that performs
the same attack in the ideal world. More precisely, given a protocol Π, an ideal
functionality Fldaa and an environment ε, we say that Π securely realises Fldaa if
the real world in which Π is used is as secure as the ideal world in which F ldaa
is used. In other worlds, for any adversary A in the real world, there exists a
simulator S in the ideal world such that (ε, F ldaa,S) is indistinguishable from
(ε,Π,A).
In general the security properties that a DAA scheme should enjoy are the
following:

– Unforgeability This property requires that the issuer is honest and should
hold even if the host is corrupt. If all the TPMs are honest, then no adversary
can output a signature on a message M with respect to a basename (bsn).
On the other hand, if not all the TPMs are honest, say n TPMs are corrupt,
the adversary can at most output n unlinkable signatures with respect to
the same basename.

– Anonymity : This property requires that the entire platform (tpmi + hostj)
is honest and should hold even if the issuer is corrupt. Starting from two
valid signatures with respect to two different basenames, the adversary can’t
tell whether these signatures were produced by one or two different honest
platforms.
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– Non-frameability : This requires that the entire platform (tpmi + hostj) is
honest and should hold even if the issuer is corrupt. It ensures that no
adversary can produce a signature that links to signatures generated by an
honest platform.

As in the existing DAA schemes supported by the TPM (either the TPM
Version 1.2 or the TPM Version 2.0), in the proposed L-DAA scheme, privacy
was built on the honesty of the entire platform, i.e., both the TPM and the host
are supposed to be honest. In [10] it is considered that the TPM may be corrupt
and privacy must hold whenever the host is honest, regardless of the corruption
state of the TPM. In order to achieve the best performance, we do not consider
this case in this work and leave it for a future work.

4.1 The Ideal Functionality F l
daa

We now formally define the ideal functionality F ldaa under the assumption of
static corruption, i.e., the adversary decides beforehand which parties are corrupt
and informs F ldaa about them. F ldaa has five interfaces (SETUP, JOIN, SIGN,
VERIFY, LINK) described below. In the UC model as in [9], several sessions of
the protocol are allowed to run at the same time and each session will be given
a global identifier sid that consists of an issuer I and a unique string sid′, i.e.
sid = (sid′, I). We also define the JOIN and SIGN sub-sessions by jsid and ssid.
F ldaa is paramitrized by a leakage function l : {0, 1}∗ → {0, 1}∗, which models
the information leakage that occurs in the communication between a host hostj
and a TPM tpmi. We also define the algorithms that will be used inside the
functionality as follows:

– Kgen(1λ): A probabilistic algorithm that takes a security parameter λ and
generates keys gsk for honest TPMs.

– sig(gsk, µ, bsn): A probabilistic algorithm used for honest TPMs. On input
of a key gsk, a message µ and a basename bsn, it out puts a signature σ.

– ver(σ, µ, bsn): A deterministic algorithm that is used in the VERIFY in-
terface. On input of a signature σ, a message µ and a basename bsn, it out
puts f = 1 if the signature is valid, f = 0 otherwise.

– link(σ1, µ1, σ2, µ2, bsn): A deterministic algorithm that will be used in the
LINK interface. It outputs 1 if both σ1 and σ2 were generated by the same
TPM, 0 otherwise.

– identify(gsk, σ, µ, bsn): A deterministic algorithm that will be used to ensure
consistency with the ideal functionality F ldaa’s internal records. It outputs 1
if a key gsk was used to produce a signature σ, 0 otherwise.

We now define useful functions to check whether or not a TPM key is consistent
with the internal records of F ldaa. We distinguish between the two cases whether
a TPM is honest or corrupt as follows:

1. CkeckGskHonest(gsk): If the tpmi is honest, and no signatures in Signed
or valid signatures in VerResults identify to be signed by gsk, then gsk is
eligible and the function returns 1, otherwise it returns 0.
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2. CkeckGskCorrupt(gsk): If the tpmi is corrupt and @gsk′ 6= gsk and (µ, σ, bsn)
such that both keys identify to be the owners of the same signature σ, then
gsk is eligible and the function returns 1, otherwise it returns 0.

We now explain the interfaces of F ldaa and identify the checks, labed in roman
numerals, that are done by the ideal functionality.

SETUP

On the input(SETUP, sid) from the issuer I, F ldaa does the following:

– Verify that (I, sid′) = sid and output (SETUP, sid) to S.
– SET Algorithms. Upon receiving the algorithms (Kgen, sig, ver, link, iden-

tify) from the simulator S, it checks that (ver, link, identify) are deterministic
[Check-I].

– Output (SETUPDONE, sid) to I.

JOIN

1. JOIN REQUEST: On input (JOIN, sid, jsid, tpmi) from the host hostj to
join the TPM tpmi, the ideal functionality F ldaa proceeds as follows:
– Create a join session 〈jsid, tpmi, hostj, request〉.
– Output (JOINSTART, sid, jsid, tpmi, hostj) to S.

2. JOIN REQUEST DELIVERY: Proceed upon recieving delivery notification
from S.
– Update the session record to 〈jsid, tpmi, hostj, delivery〉.
– If I or tpmi is honest and 〈tpmi, ?, ?〉 is already in Members, output ⊥

[Check II].
– Output (JOINPROCEED, sid, jsid, tpmi) to I.

3. JOIN PROCEED:
– Upon receiving an approval from I, F ldaa updates the session record to
〈jsid, sid, tpmi, hostj, complete〉.

– Output (JOINCOMPLETE, sid, jsid) to S.
4. KEY GENERATION: On input (JOINCOMPLETE, sid, jsid, gsk) from S.

– If both tpmi and hostj are honest, set gsk = ⊥.
– Else, verify that the provided gsk is eligible by performing the following

checks:
• If hostj is corrupt and tpmi is honest, then CheckGskHonest(gsk)=1

[Check III].
• If tpmi is corrupt, then CheckGskCorrupt(gsk)=1 [Check IV].

– Insert 〈tpmi, hostj, gsk〉 into Members, and output (JOINED, sid, jsid)
to hostj.

SIGN

1. SIGN REQUEST: On input (SIGN, sid, ssid, tpmi, µ, bsn) from the host
hostj requesting a DAA signature by a TPM tpmi on a message µ with respect
to a basename bsn, the ideal functionality does the following:
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– Abort if I is honest and no entry 〈tpmi, hostj, ?〉 exists in Members.
– Else, create a sign session 〈ssid, tpmi, hostj, µ, bsn, request〉.
– Output (SIGNSTART, sid, ssid, tpmi, hostj, l(µ, bsn)) to S.

2. SIGN REQUEST DELIVERY: On input (SIGNSTART, sid, ssid) from S,
update the session to 〈ssid, tpmi, hostj, µ, bsn, delivered〉. F ldaa output
(SIGNPROCEED, sid, ssid, µ, bsn) to tpmi.

3. SIGN PROCEED: On input (SIGN PROCEED, sid, ssid) from tpmi

– Update the records 〈ssid, tpmi, hostj, µ, bsn, delivered〉.
– Output (SIGNCOMPLETE, sid, ssid) to S.

4. SIGNATURE GENERATION: On the input (SIGNCOMPLETE, sid, ssid, σ)
from S, if both tpmi and hostj are honest then:
– Ignore the adversary’s signature σ.
– If bsn 6= ⊥, then retrieve gsk from the 〈tpmi, bsn, gsk〉 ∈ DomainKeys.
– If bsn = ⊥ or no gsk was found, generate a fresh key gsk ← Kgen(1λ).
– Check CheckGskHonest(gsk)=1 [Check V].
– Store 〈tpmi, bsn, gsk〉 in DomainKeys.
– Generate the signature σ ← sig(gsk, µ, bsn).
– Check ver(σ, µ, bsn)=1 [Check VI].
– Check identify(σ, µ, bsn, gsk)=1 [Check VII].
– Check that there is no TPM other than tpmi with key gsk′ registered in

Members or DomainKeys such that identify(σ, µ, bsn, gsk′)=1 [Check
VIII].

– If tpmi is honest, then store 〈σ, µ, tpmi, bsn〉 in Signed and output
(SIGNATURE, sid, ssid, σ) to hostj.

VERIFY

– On input (VERIFY, sid, µ, bsn, σ, RL), from a party V to check whether
a given signature σ is a valid signature on a message µ with respect to a
basename bsn and the revocation list RL, the ideal functionality does the
following:

– Extract all pairs (gski, tpmi) from the DomainKeys and Members, for which
identify(σ, µ, bsn, gsk)=1. Set b = 0 if any of the following holds:
• More than one key gski was found [Check IX].
• I is honest and no pair (gski, tpmi) was found [Check X].
• An honest tpmi was found, but no entry 〈?, µ, tpmi, bsn〉 was found in

Signed [Check XI].
• There is a key gsk′ ∈ RL, such that identify(σ, µ, bsn, gsk′)=1 and no

pair (gsk, tpmi) for an honest tpmi was found [Check XII].
– If b 6= 0, set b←ver(σ, µ, bsn) [Check XIII].
– Add 〈σ, µ, bsn, RL, b〉 to VerResults, and output (VERIFIED, sid, b) to
V .

LINK

On input (LINK, sid, σ1, µ1, σ2, µ2, bsn), with bsn 6= ⊥, from a party V
to check if the two signatures stem from the same signer or not. The ideal func-
tionality deals with the request as follows:
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– If at least one of the signatures (σ1, µ1, bsn) or (σ2, µ2, bsn) is not valid
(verified via the VERIFY interface with RL 6= ∅), output ⊥ [Check XIV].

– For each gski in Members and DomainKeys, compute bi ← identify(σ1, µ1, bsn, gski)
and b′i= identify(σ2, µ2, bsn, gski) then set:
• f ← 0 if bi 6= b′i for some i [Check XV].
• f ← 1 if bi = b′i = 1 for some i [Check XVI].

– If f is not defined, set f ←link(σ1, µ1, σ2, µ2, bsn), then output (LINK,
sid, f) to V.

5 The L-DAA Scheme

We now present our L-DAA scheme. Security of this scheme is based on the Ring-
ISIS problem and Ring-LWE problem. The DAA credential is a modification of
the Boyen signature [3, 15], that was described in Subsection 3.1 and its security
is proved in Appendix A. Before proceeding with the L-DAA scheme, we define
some standard functionalities that are used in the TPM technology, as specified
in [9], a detailed describtions of these funtionalities is presented in Appendix C
of this paper.

– Fca is a common certificate authority functionality that is available to all
parties.

– FDcrs is a common reference string functionality that provides participants
with all system parameters.

– Fauth∗ is a special authenticated communication functionality that provides
an authenticated channel between the issuer and the TPM via the host.

– F lsmt is a secure message transmission functionality that provides an authen-
ticated and encrypted communication between the TPM and the host.

The L-DAA scheme includes the SETUP, JOIN, SIGN, VERIFY, and LINK
processes as follows:

SETUP: Fcrs creates the system parameters: sp = (λ, q, n,m,Rq, c, β, β′, `),
where λ and c are positive integer security parameters, β and β′ are positive
real numbers such that β, β′ < q, and ` is the length of a message to be signed
in the Boyen signature.

Upon input (SETUP, sid), where sid is a unique session identifier, the issuer
first checks that sid = (I, sid′) for some sid′, then creates its key pair. Issuer’s
public key is pp = (sp, Ât, ÂI , Â0, Â1, ..., Â`, u, H,H0), where Ât, ÂI , Âi(i =
0, 1, ..., `) ∈ Rmq , u ∈ Rq, H : {0, 1}∗ → Rq, and H0 : {0, 1}∗ → {1, 2, 3}c.
Issuer’s private key is T̂I , which is the trapdoor of ÂI and ‖T̂I‖∞ ≤ ω, for some
small real number ω .

The issuer initializes the list of joining members Memebers ← ∅. The issuer
proves that his secret key is well formed by generating a proof of knowledge πI ,
and registers the key (T̂I , πI) with Fca and outputs (SETUPDONE, sid).

JOIN: The Join process is a protocol running between the Issuer I and a plat-
form, consisting of a TPM tpmi and a Host hostj (with an identifier id). More
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than one Join session may run in parallel. A unique sub-session identifier jsid is
used and this value is given to all parties.

The issuer I checks that the TPM-host is qualified to make the trusted com-
puting attestation service, then issues a credential enabling the platform to cre-
ate attestations. Via the unique session identifier jsid, the issuer can differentiate
between various Join sessions that are executed simultaneously. A Join session
works in two phases, Join request and Join proceed, as follows:

Join Request : On input query (JOIN, sid, jsid, tpmi), the host hostj forwards
(JOIN, sid, jsid) to I, who replies by sending (sid, jsid, ρ, bsnI) back to hostj,
where ρ is a uniform random nonce ρ ←↩ {0, 1}λ, and bsnI is the Issuer’s base
name. This message is then forwarded to tpmi. The TPM proceeds as follows:

1. It checks that no such entry exists in its storage.
2. It samples a private key: X̂t = (x1, . . . ,xm) ←↩ Rmq with the condition

‖X̂t‖∞ ≤ β, and stores its key as (sid, hostj, X̂t, id).

3. It computes the corresponding public key ut = Ât · X̂t mod q, a link token
nymI = H(bsnI) · x1 + eI mod q for some error eI ←↩ DZn,s′ such that
‖eI‖∞ < β′, and generates a signature based proof:

πut = SPK
{
public := {sp, Ât, ut, bsnI , nymI},

witness := {X̂t = (x1, . . ., xm), eI} :
ut = Ât · X̂t mod q ∧ ‖X̂t‖∞ ≤ β ∧ nymI = H(bsnI) · x1 + eI

mod q ∧ ‖eI‖∞ ≤ β′
}

(ρ).

4. It sends (nymI , id, ut, πut) to the issuer I via the host by means of Fauth∗ ,
i.e., it gives Fauth∗ an input (SEND, (nymI , πut), (sid, tpmi, I), jsid, hostj).

The host, upon receiving (APPEND, (nymI , πut), (sid, tpmi, I)) from Fauth∗ ,
forwards it to I by sending (APPEND, (nymI , πut), (sid, tpmi, I)) to Fauth∗

and keeps the state (jsid, ut, id). I upon receiving (SENT, (nymI , πut), (sid,
tpmi, I), jsid, hostj) from Fauth∗ , it verifies the proof πut to make sure that
tpmi /∈ Members. I stores (jsid, nymI , πut , id, tpmi, hostj), and generates the
message (JOINPROCEED, sid, jsid, id, πut).

Join Proceed : If the platform chooses to proceed with the Join session, the mes-
sage (JOINPROCEED, sid, jsid) is sent to the issuer, who performs as follows:

1. It checks the record (jsid, nymI , id, tpmi, hostj, πut). For all nym′I from
the previous Join records, the issuer checks whether ‖nymI − nym′I‖∞ ≤ 2β′

holds; if yes, the issuer treats this session as a rerun of the Join process;
otherwise the issuer adds tpmi to Members and goes to Step 2. If this is a
rerun, the issuer will further check if ut = u′t; if not the issuer will abort;
otherwise the issuer will jump to Step 4 returning X̂h = X̂ ′h. Note that this
double check will make sure that any two DAA keys will not include the
same x1 value.

2. It calculates the vector of polynomials Âh = [ÂI |Â0 +
∑`
i=1 idi · Âi] ∈ R2m

q .
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3. It samples, using the issuer’s private key T̂I , a preimage X̂h = (xm+1, . . . ,x3m)
of u− ut such that: Âh · X̂h = uh = u− ut mod q and ‖X̂h‖∞ ≤ β.

4. It sends (sid, jsid, X̂h) to hostj via Fauth∗ .

When the host recieves the message (sid, jsid, X̂h), it checks that the equa-
tions Âh · X̂h = uh mod q and u = ut + uh are satisfied with ‖X̂h‖∞ ≤ β.
If the checks are correct, then hostj stores (sid, tpmi, id, X̂h, ut) and outputs
(JOINED, sid, jsid).

SIGN: After obtaining the credential from the Join process, tpmi and hostj can
sign a message µ with respect to a basename bsn. We use a unique sub-session
identifier ssid to allow multiple Sign sessions. Each session has two phases, Sign
request and Sign proceed.
Sign request : Upon input (SIGN, sid, ssid, tpmi, bsn, µ), hostj looks up the

record (sid, tpmi, id, ut, X̂h), and sends the message (sid, ssid, bsn, µ) to tpmi.
The TPM then does the following:

1. It asks hostj for a permission to proceed.

2. It makes sure to have a Join record (sid, id, X̂t, hostj).
3. It generates a sign entry (sid, ssid, bsn, µ) in its record.
4. Finally it outputs (SIGNPROCEED, sid, ssid, bsn, µ).

Sign Proceed : When tpmi gets permission to proceed for ssid, the TPM proceeds
as follows:

1. It retrieves the records (sid, id, hostj, πut) and (sid, ssid, bsn, µ).
2. Depending on the input bsn, there are two cases: If bsn 6= ⊥, the tpm com-

putes the tag nym = H(bsn)·x1+e mod q, for an error term e←↩ DZn,s′ such
that ‖e‖∞ < β′ and generates a commitment as described in Subsection 3.2:

θt = COM
{
public := {sp, Ât, nym, bsn, H, ut},

witness := {X̂t = (x1, . . . ,xm), e} :

{Ât · X̂t = ut ∧ ‖X̂t‖∞ ≤ β} ∧ nym = H(bsn) · x1 + e ∧ ‖e‖∞ ≤ β′
}
.

If bsn=⊥, then tpmi samples a random value bsn← {0, 1}λ, and then follows
the previous case.

3. tpmi sends (sid, ssid, θt, µ) to hostj.
4. When hostj recieves the message (sid, ssid, θt, µ), it checks that the proof
θt is valid, and subsequently generates a commitment again as described in
Subsection 3.2:

θh = COM
{
public := {sp, Âh, uh, µ, θt},

witness := {X̂h = (xm+1, . . . ,x3m), id} :

{Âh · X̂h = uh ∧ ‖X̂h‖∞ ≤ β}
}
.

The combination of these two commitments θt and θh as described in Sub-
section 3.2 follows the additional homomorphic property of the commitment
scheme.
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5. The TPM and Host run the standard Fiat-Shamir transformation, and the
result is a signature based proof (signed on the message µ):

π = SPK
{
public := {pp, nym, bsn},

witness := {X̂ = (x1, . . . ,x3m), id, e} :
[Ât|Âh] · X̂ = u ∧ ‖X̂‖∞ ≤ β ∧ nym = H(bsn) · x1 + e

mod q ∧ ‖e‖∞ ≤ β′
}

(µ).

The details of the θt, θh and π computation will be given below.
6. hostj outputs the L-DAA signature σ = (nym, bsn, π).

VERIFY: The verify algorithm allows anyone to check whether a signature
σ on a message µ with respect to a basename bsn is valid. Let RL denotes a
revocation list with all the rogue TPM’s secret keys. Upon input (VERIFY,
sid, bsn, σ, µ, RL), the verifier proceeds as follows:

1. It parses σ as (nym, bsn, π), and checks SPK on π with respect to bsn, nym, µ
and u, then verifies the statement:

[Ât|Âh]·X̂ = u ∧ ‖X̂‖∞ ≤ β ∧ nym = H(bsn)·x1 +e mod q ∧ ‖e‖∞ ≤ β′.

2. It checks that the secret key X̂t that was used to generate nym, doesn’t belong
to the revocation list RL. This is done by checking whether the following
equation holds:

∀x1 ∈ RL, ‖H(bsn) · x1 − nym‖∞ ≤ β′.

3. If all checks passed, the verifier outputs (VERIFIED, ssid, 1), and (VERI-
FIED, ssid, 0) otherwise.

LINK: The link algorithm allows anyone to check whether two signatures (σ, µ)
and (σ′, µ′) that were generated for the same basename bsn stem from the same
TPM. Upon input (LINK, sid, σ, µ, σ′, µ′, bsn) the verifier follows the following
steps:

1. Starting from σ = (nym, bsn, π) and σ′ = (nym′, bsn, π′), the verifier
verifies σ and σ′ individually.

2. If any of the signatures are invalid, the verifier outputs ⊥.
3. Otherwise if ‖nym−nym′‖∞ < 2β′, the verifier outputs 1 (linked); otherwise

0 (not linked).

The details of θt, θh and π: Now we explain the details on how to compute
θt, θh and π. Let k = blog βc + 1 and let {β1, ..., βk} ∈ {0, 1}k be the binary
representation of β. Since we are operating in the ring Rq = Zq[x]/〈xn + 1〉,
then we can transform any linear transformation into matrix vector product. We
construct the matrices Āi = rot(ai), as defined in [17], for i = (1, 2, ..., (`+ 3)m)
for all polynomials ai in Ât, ÂI , Â0, ..., Â` respectively.
Let’s consider the following extensions:
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– id = {id1, ..., id`} ∈ {0, 1}` is extended to id∗ ∈ B2` which is the set of vectors
in {0, 1}2` of hamming weight `.

– Ā∗i = [Āi|0 ∈ Zn×2n] for i = 1 to i = (3 + `)m.

Apply the techniques of decomposition and extension described in [18] on
each of the vectors of X̂ and the vector e, to get the vectors:

{ej}kj=1, {x
j
1}kj=1, {x

j
2}kj=1, . . . , {x

j
3m}kj=1 ∈ B3n

Let Ā∗i+(j+2)m = 0 for j > `, and let xi = 0 ∈ Zn for 3m < i ≤ (3 + 2`)m. Now

we have,

u = [Ât|Âh] · X̂

= [Ât|ÂI |Â0 +
∑̀
i=1

idi · Âi] · X̂

=

3m∑
i=1

Āi · xi +
∑̀
j=1

idj ·
m∑
i=1

Āi+(j+2)m · xi+2m

=

3m∑
i=1

Ā∗i ·

(
k∑
d=1

βdx
d
i

)
+

2∑̀
j=1

idj ·
m∑
i=1

Ā∗i+(j+2)m ·

(
k∑
d=1

βdx
d
i+2m

)

Before proceeding with the proof, the prover:

1. Samples the following masking vectors: {rje ←↩ Z3n
q }kj=1, {r

j
i ←↩ Z3n

q }kj=1 for

i ∈ [3m] and j ∈ [k], and rid∗ ←↩ Z2`
q .

2. Defines the following terms: D = [rot(H(bsn))|0] ∈ Zn×3n
q , vji = xji +

rji , vje = ej + rje, and vid∗ = id∗ + rid∗ .
3. Samples the permutations as follows: τ ←↩ S2` for id∗, {δj ←↩ S3n}kj=1 for

X̂h1
, {ψj ←↩ S3n}kj=1 for X̂h2

, where X̂h = [X̂h1
∈ Rmq |X̂h2

∈ Rmq ], {φj ←↩
S3n}kj=1 for X̂t, and {ϕj ←↩ S3n}kj=1 for e.

Now, we are ready to explain the result. The commitment algorithm COM
used below is as explained in Subsection 3.2.

θt: For the TPM’s commitment θt, the commitment is CMTt = (Ct1,Ct2,Ct3):

– Ct1 = COM(
∑m
i=1 Ā

∗
i · (

∑k
j=1 βjr

j
i ), D · (

∑k
j=1 βjr

j
1) + [I|0] · (

∑k
j=1 βjr

j
e),

{φj}kj=1, {ϕj}kj=1).

– Ct2 = COM({φj(rj1), . . . , φj(r
j
m)}kj=1, {ϕj(rje)}kj=1).

– Ct3 = COM({φj(vj1), . . . , φj(v
j
m)}kj=1, {ϕj(vje)}kj=1).

θh: For the host commitment θh, the commitment is CMTh = (Ch1,Ch2,Ch3):

– Ch1 = COM(
∑(3+2`)m
i=m+1 Ā∗i · (

∑k
j=1 βjr

j
i ), τ, {δj}kj=1, {ψj}kj=1).
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– Ch2 = COM({δj(rjm+1), · · · , δj(rj2m), ψj(r
j
2m+1), . . . , ψj(r

j
3m), ψj(r

j
(τ(1)+2)m+1),

. . . , ψj(r
j
(τ(1)+3)m), . . . , ψj(r

j
(τ(2`)+2)m+1), . . . , ψj(r

j
(τ(2`)+3)m)}kj=1, τ(rid∗)).

– Ch3 = COM({δj(vjm+1), . . . , δj(v
j
2m), ψj(v

j
2m+1), . . . , ψj(v

j
3m), ψj(v

j
(τ(1)+2)m+1),

. . . , ψj(v
j
(τ(1)+3)m), . . . , ψj(v

j
(τ(2`)+2)m+1), . . . , ψj(v

j
(τ(2`)+3)m)}kj=1, τ(vid∗)).

π: tpmi hands out the commitments of the total c rounds to hostj, hostj then
adds it’s own commitments homomorphically to the TPM’s commitments. The
homomorphic addition of the commitments generates the resulting commitments
CMT = (C1,C2,C3) where:

– C1 = COM(
∑m
i=1 Ā

∗
i ·(
∑k
j=1 βjr

j
i )+

∑(3+2`)m
i=m+1 Ā∗i ·(

∑k
j=1 βjr

j
i ), D·(

∑k
j=1 βjr

j
1)

+[I|0] · (
∑k
j=1 βjr

j
e), τ, {φj}kj=1, {δj}kj=1, {ψj}kj=1, {ϕj}kj=1).

– C2 = COM({φj(rj1), . . . , φj(r
j
m), δj(r

j
m+1), . . . , δj(r

j
2m), ψj(r

j
2m+1), . . . , ψj(r

j
3m),

ψj(r
j
(τ(1)+2)m+1), . . . , ψj(r

j
(τ(1)+3)m), . . . ψj(r

j
(τ(2`)+2)m+1), . . . , ψj(r

j
(τ(2`)+3)m)}kj=1,

{ϕj(rje)}kj=1, τ(rid∗)).

– C3 = COM({φj(vj1), . . . , φj(v
j
m), δj(v

j
m+1), . . . , δj(v

j
2m), ψj(v

j
2m+1), . . . , ψj(v

j
3m),

ψj(v
j
(τ(1)+2)m+1), . . . ψj(v

j
(τ(1)+3)m), . . . , ψj(v

j
(τ(2`)+2)m+1), . . . , ψj(v

j
(τ(2`)+3)m)}kj=1,

{ϕj(vje)}kj=1, τ(vid∗)).

The following step is the Fiat-Shamir transformation, which has been used in
the existing DAA schemes. The only difference is that the hash-function output
is used as a random distribution of {1, 2, 3}c.

Challenge: hostj generates the challenges using the Fiat-Shamir’s hash-
function transformation, which is based on a random oracle, which should only
include CMT :

{CHj}cj=1 = H0(µ, {CMTj}cj=1, pp) = {1, 2, 3}c.

Response: For each challenge, tpmi sends it’s own response to hostj, then
hostj provides it’s own response and combines the two responses together. Finally
hostj sends the proof to the verifier. The resulting responses are treated as follows:

– CH = 1 : reveal C2 and C3, i.e., output all the permuted τ(id∗), τ(rid∗),
{φj(xji )}kj=1, {δj(x

j
i )}kj=1, {ψj(x

j
i )}kj=1, {ϕj(ej)}kj=1, {ϕj(rje)}kj=1, {φj(r

j
i )}kj=1,

{δj(rji )}kj=1, {ψj(r
j
i )}kj=1.

– CH = 2 : reveal C1 and C3, i.e., output all the permutations τ, {φj}kj=1,

{δj}kj=1, {ψj}kj=1, {ϕj}kj=1. and all the r values.

– CH = 3 : reveal C1 and C2, i.e., output all the permutations τ, {φj}kj=1,

{δj}kj=1, {ψj}kj=1, {ϕj}kj=1. and all the v values.

Verification: Depending on the prover’s inputs, the verifier can always check
2 out of 3 commitments. Note that the responses to all 3 commitments allows
one to deduce the witness.
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6 Security Proof

(sketch) In this section, we provide a sketch of the security proof and will give
the detailed proof in Appendix D. During the proof, we present a sequence of
games based on Camenish et al. in [9] (also recalled in Section 4), and show
that there exists no environment ε that can distinguish the real world protocol
Π with an adversary A, from the ideal world F ldaa with a simulator S. Starting
with the real world protocol game, we change the protocol game by game in a
computationally indistinguishable way, finally ending with the ideal world pro-
tocol. We will explain the sequence of games as follows:
Game 1: This is the real world protocol.
Game 2: An entity C is introduced, C receives all inputs from the honest parties
and simulates the real world protocol for them. This is equivilent to Game 1.
Game 3: We now split C into two parts, F and S, where F behaves as an ideal
functionality, it receives all the inputs and forwards them to S, who simulates
the real world protocol for honest parties, and sends the outputs to F . F then
forwards the outputs to ε. This game is simply Game 2 but with different struc-
ture, so Game 3=Game 2.
Game 4: F now behaves differently in the setup interface, it stores the algo-
rithms for the issuer I, F also does checks and ensures that the stucture of sid
is correct for an honest I, and aborts if not. In case I is corrupt, S extracts the
secret key for I and proceeds in the setup interface on behalf of I. Clearly ε will
notice no change, so Game 3=Game 4.
Game 5: F now performs the verification and linking checks instead of forward-
ing them to S. There are no protocol messages and the outputs are excatly as
in the real world protocol. However, the only difference is that the verification
algorithm that F uses doesn’t contain a revocation check, so F can perform this
check separately so the outcomes are equal, Game 4=Game 5.
Game 6: The join interface of F is now changed, F stores in it’s records the
members that joined. If I is honest, F stores the secret key gsk, extracted from
S, for corrupt TPM’s. S always has enough information to simulate the real
world protocol except when the issuer is the only honest party. In this case, S
doesn’t know who initiated the join, so can’t make a join query with F on the
host’s behalf. Thus, to deal with this case, F can safely choose any corrupt host
and put it into Members, the identities of hosts are only used to create signatures
for platforms with an honest TPM or honest host, so fully corrupted platforms
don’t matter. In the only case, when the TPM is already registered in Members,
F may abort the protocol, but I has already tested this case before continuing
with the query JOINPROCEED, hence F will not abort. Thus in all cases, F
and S can interact to simulate the real world protocol, and Game 6=Game 5.
Game 7: In this game, F creates anonymous signatures for honest platforms by
running the algorithms defined in the setup interface. Let us start by defining
Game 7.k.k′, in this game F handles the first k′ signing inputs of tpmk, sub-
sequent inputs are then forwarded to S. For i < k, F handles all the signing
queries with tpmi using algorithms. For i > k, F forwards all signing queries
with tpmi to S who creates signatures as before. Now from the definition of
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Game 7.k.k, we note that Game 7.0.0=Game 6. For increasing k′, Game 7.k.k′

will be at some stage equal to Game 7.k + 1.0, this is because there can only
be a polynomial number of signing queries to be processed. Therefore, for large
enough k and k′, F handles all the signing queries of all TPM’s, and Game 7 is
indistinguishable from Game 7.k.k′.
We want to prove now that Game 7.k.k′+1 is indistinguishable from Game 7.k.k′.
Suppose that there exists an environment that can distinguish a signature of an
honest party using gsk = X̂t from a signature using a different gsk′ = X̂ ′t, then
the environment can solve the Decision Ring -LWE Problem. Suppose that S is
given tuples {(ai,bi)}k

′

i=1, (c,d), where bi = ai ·x1 +ei for a uniform random ai
and c ∈ Rq, and it is challenged to decide, if the pair (c,d) is chosen from a Ring
LWE distribution (for some secret x1) or uniform random. S proceeds in simu-
lating the TPM without knowing the secret x1. S can answer all the H queries,
as S is controlling Fcrs, on bsnj with H(bsnj) = aj for j ≤ k′. For j = k′ + 1, S
sets H(bsnk′+1) = c, otherwise H(bsnj) = rj for some uniform random rj and
j > k′ + 1. Signing queries on behalf of tpmi for i < k are forwarded by F to
S, which calls the real world protocol. For i > k, gsks are freshly sampled for
each bsni. However, for tpmk and i ≤ k′, the simulator S sets nymi = bi, and
for i = k′ + 1 it sets nym = d. For i > k′ + 1, S samples fresh xi and generates
nymi = H(bsni) ·xi+ei, keeping track all the generated nymi such that it always
output the same nymi for an associated bsni. For each case, tpmk can provide
a simulated proof. Any distingisher between Game 7.k.k′ and Game 7.k.k′ + 1
can solve the Decision Ring-LWE Problem.
Game 8: F now no longer informs S about the message and the basename
that are being signed. If the whole platform is honest, then S can learn nothing
about the message µ and the basename bsn, instead S knows only the leak-
age l(µ, bsn). To simulate the real world, S chooses a pair (µ′, bsn′) such that
l(µ′, bsn′)=l(µ, bsn), an environment ε observes no difference, and thus Game
8=Game 7.
Game 9: If I is honest, then F now only allows the platform that joined to sign.
An honest host will always check whether it joined with a TPM in the real world
protocol, so no difference for honest hosts. Also an honest TPM only signs when
it has joined with the host before. In the case that an honest tpmi performs a
join protocol with a corrupt host hostj and honest issuer, the simulator will make
a join query with F , to ensure that tpmi and hostj are in Members. Therefore
Game 9=Game 8.
Game 10: When storing a new gsk = X̂t, F checks CheckGskCorrupt(gsk)=1
or CheckGskHonest(gsk)=1. We want to show that these checks will always pass.
In fact, valid signatures always satisfy nym = H(bsn) · x1 + e where ‖x1‖∞ < β
and ‖e‖∞ < β′. By the unique Short Vector Problem, there exists only one tuple
(x1, e) such that ‖x1‖∞ < β and ‖e‖∞ < β′ for small enough β and β′. Thus,
CheckGskCorrupt(gsk) will always give the correct output. Also due to large
min-entropy of discrete Gaussians the probability that sampling a gsk X̂ ′t = X̂t

is negligible, thus with overwhelming probability there doesn’t exist a signature
already using the same gsk = X̂t, which implies that CheckGskHonest(gsk) will
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always give the correct output. Hence Game 10=Game 9.
Game 11: In this game F checks that honestly generated signatures are always
valid. This is true as sig algorithm always produces signatures passing through
verification checks, also those signatures satisfy identify(gsk, σ, µ, bsn) = 1
which is checked via nym. F also makes sure, using it’s internal records Mem-
bers and DomainKeys that honest users are not sharing the same secret key
gsk. If there exists a key gsk = X̂t in Members and DomainKeys such that
‖nym−H(bsn)x1‖∞ < β′, then this breaks the search Ring-LWE problem, and
hence Game 11=Game 10.
Game 12: Add Check-IX to ensure that there are no multiple gsk values match-
ing to one signature. However, since there exists only one pair (x1, eI) such that
‖x1‖∞ < β and ‖eI‖∞ < β′, satisfying nymI = H(bsn) ·x1+eI, thus two different
gsk′s can’t share the same x1, thus any valid signature should be identified to
one gsk. Thus Game 12=Game 11.
Game 13: To prevent accepting signatures that were issued by use of join cre-
dentials not issued by honest issuer, F adds a further check Check-X. This is
due to the unforgeability of Boyen signatures that is based on the hardness of
the Ring-ISIS Search Problem, so we get Game 13=Game 12.
Game 14: Check-XI is added to F , this would prevent anyone forging signatures
using honest TPM’s gsk and credential. In fact, if a valid signature is given on a
message, that the TPM never signed, the proof could not have been simulated.
It extracts x1, and thus breaks the Ring-LWE problem. So Game 14=Game 13.
Game 15: Check-XII is added to F , this ensures that honest TPMs are not be-
ing revoked. If an honest TPM is simulated by means of the Ring-LWE problem
instance, if a proper key RL is found, it must be the secret key of the target
instance. This is again equivilant to solving the search Ring-LWE problem.
Game 16: All the remaing checks of the ideal functionality F ldaa that are related
to link queries are now included. Using the fact that if a gsk matches to one
signature and not the other, Game 16 is indistinguishable from Game 15, and F
now includes all the functionalities of F ldaa. This concludes the proof. �

7 Performance

Overview of El Bansarkhani and El Kaafarani DAA Scheme [1] This
DAA scheme works as follows: The issuer’s public key consists of `+2 vectors in
Rmq , namely ÂI , Âi for i = 0, 1, · · · `, and 2 polynomials u and b ∈ Rq. The TPM

generates a small secret Ẑ1 ∈ R2m+1
q such that [b|Âid][Ẑ1] = ũ mod q. The TPM

sends ũ together with a proof of knowledge π1 to the issuer, who registers both ũ
and the corresponding TPM, and samples (using his secret key) a small credential
Ẑ2 such that ÂidẐ2 = u − ũ mod q. The TPM and the host together combine
their secret data to obtain a valid credential satisfying u = [b|Âid][Ẑ1 + (0|Ẑ2)].
To create a signature, the TPM samples a small random vector T̂ ∈ R2m

q , such
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that T̂ Âid mod q is uniform, and shares it with the host in order to randomize
the signature. The TPM and the host generate π2 and π3 separately, where π2

proves u′ = [b|Âid][Ẑ1 + (0|T̂ )] and π3 proves u−u′ = Âid(Ẑ2− T̂ ). Finally, the
host outputs the signature σ = (π2, π3, u′, µ).

Size Comparison In our L-DAA scheme, the TPM’s secret key size is reduced
to m′ ≤ m polynomials in Rq, instead of 2m+1 polynomials in [1], while keeping
the same credential size. Such a change has a significant contribution in reducing
the TPM’s computation costs in the join and sign interfaces, as well as reducing
the TPM’s key and the signature sizes. For instance, the host outputs the L-DAA
signature after c rounds of the proof π, the size of the response for each round
is bounded by O(n)km(2`+ 2) elements in Zq for the host, and O(n)k(m′ + 1)
for the TPM. In [1], the size of the response for each round is bounded by
O(n)km(2` + 2) for the host, and O(n)km(2` + 2) for the TPM. Thus in our
L-DAA scheme, the signature’s size has been significantly reduced especially for
large `. The verification key set in [1] consists of the `+ 2 vectors of polynomials
ÂI , Âi for i = 0, 1, · · · ` and two polynomials u and b. In our L-DAA scheme,
we add Ât to the verification key set resulting with `+ 2 vectors of polynomials
in Rmq , a vector of polynomials Ât ∈ Rm

′

q and a polynomial u. Note that as we

consider m′ to be relatively small, then adding Ât may only have a slight impact
on increasing the size of the verification key set. Table 1 compares the space
efficiency between the proposed L-DAA scheme and the scheme presented in [1].

Schemes This paper Scheme in [1]

TPM’s Secret key m′n (2m+ 1)n
Credential 2mn 2mn
Issuer’s Secret Key m2n2 m2n2

Signature cO(n)[k(m′+1)+km(2`+2)] 2ckmO(n)(2`+ 2)
Verification key (`+ 2)mn+ n(m′ + 1) (`+ 2)mn+ 2n

Table 1: Represents the keys and signature sizes, which are determined by the number
of elements in Zq. Our main contribution is reducing the TPM’s secret key size (less
than half the size in [1]), as well as the signature size. Our L-DAA signature size is
significantly reduced especially for large `, this reduction is due to reducing the size of
the TPM’s commitments and responses for each round of π.

Computation Costs To generate the commitments for one round of πut and
θt in the join and sign interfaces of our L-DAA scheme, the TPM has to perform
at most m′ + 1 polynomial multiplications. In [1], the TPM performs at most
2m + 2 polynomial multiplications for generating commitments for each round
of π1 and π2 in the join and sign interfaces respectively. The computation costs
for the host is 2m polynomial multiplications for checking the equality uh =
Âh · X̂h in the join interface, and 2m polynomial multiplications for generating
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the commitments for each round of θh and π3 in the sign interfaces for both
schemes. The Issuer verifies the reponses for each round of πut , π1 in both
schemes in the join interface. Thus the issuer’s computation cost for each round
is thus bounded by m′+ 1 for our L-DAA scheme and 2m+ 2 in [1]. The verifier
verifies both the TPM and the host’s responses. Thus the verifer’s computation
cost in our L-DAA scheme is m′ + 1 + 2m. In [1], the verifer’s computation cost
is 2m+ 2 + 2m = 4m+ 2.

Join Sign Verify

Ours In [1] Ours In [1] Ours In [1]

TPM m′ + 1 2m+ 2 m′ + 1 2m+ 2 - -

Host 2m 2m 2m 2m - -

Issuer m′ + 1 2m+ 2 - - - -

Verifier - - - - 2m+m′+1 4m+ 2

Table 2: This table compares the computation costs in both schemes, represented
by the total number of polynomial multiplications in Rq. The table shows that the
computation costs in our L-DAA scheme are reduced by approximately a factor of two
for each of the TPM (in the join and sign interfaces), the issuer and the verifier.

8 Conclusion and Future Work

In this paper, we have presented a lattice based DAA (L-DAA) scheme. Our
construction relies on the lattice problems which provides promising security
against the known quantum computer attacks. In the future work, the proposed
L-DAA scheme will be implemented in the full range of TPM environments,
i.e., hardware, software and virtualization environments. The scheme may be
further optimised based on the performance evaluation. The final solution of this
research will be a L-DAA scheme suitable for inclusion in the future quantum-
resistant TPM.
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A Security Proof of the Modified Boyen Signture Scheme

In this section we examine a signature scheme (described in Subsection 3.1)
based on the one from [3]. We claim that the same security result applies to this
scheme as in the one in [3] except that here the security of the scheme reduces
to the hardness of solving the inhomogeneous-SIS problem.

Theorem 1. For a prime modulus q = q(λ), if there is a probabilistic algorithm
A that outputs an existential signature forgery, with probability ε, in time τ , and
making Q ≤ q/2 adaptive chosen-message queries, then there is a probabilistic
algorithm B that solves the (q, n,m, β)-ISIS problem in time τ ′ ≈ τ and with
probability ε′ ≥ ε/(3q), for some polynomial function β = poly(λ).

Proof. We begin by assuming that there is such a forger A. Using the power of
A, we construct a solver B that simulates the attack environment for A and uses
the forgery produced by A to create an ISIS solution. B does the following.

Invocation: B receives the random (q, n,m, β)-ISIS problem instance in the
form of a uniformly random matrix A0 ∈ Zn×mq and a uniform vector u ∈ Znq ,
and must find e0 ∈ Zm with ‖e0‖∞ ≤ β and A0e0 = u mod q.

Setup:

1. Pick uniformly random B0 ∈ Zn×mq with associated short trapdoor matrix

TB0 ⊂ ∧⊥(B0).
2. Pick l + 2 short matrices Rt,R0, ...,Rl ∈ Zm×mq .

-Do so by sampling the columns from DZm,η.
3. Define At := A0Rt. Pick a random vector dt ∈ Zm and compute Atdt =: ut

mod q.
4. Pick l + 1 random scalars h0, ..., hl ∈ Zq and set h0 = 1.
5. Output the verification key

V K = [At,A0,C0 = (A0R0 + h0B0), ..., (A0Rl + hlB0)].

Queries: Now A requests signature queries on any message msg which B
answers as follows.

1. Compute the matrix Rmsg =
∑l
i=0(−1)msg[i]Ri.

2. Compute the scalar hmsg =
∑l
i=0(−1)msg[i]hi. If hmsg = 0, abort the simu-

lation.
3. Setting

F = [A0|
l∑
i=0

(−1)msg[i]Ci]

= [A0|A0Rmsg + hmsgB0],

sample dh ∈ Z2m such that F ·dh = uh := (u−ut) mod q and ‖dh‖∞ ≤ β.
Write dh = [dh0 ,dh1 ], where dh0 ,dh1 ∈ Zm.
-Do so by taking the trapdoor TB0 and delegating this to one for the matrix
F via standards methods [11].
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4. Output the signature d =

[
dTt
dTh0
dTh1

]
∈ Z3m.

Forgery: After providingA with signatures on the queried messages,A produces
a forged signature d∗ on a new (unqueried) message msg∗. B then does the
following.

1. Compute the matrix Rmsg∗ =
∑l
i=0(−1)msg∗[i]Ri.

2. Compute the scalar hmsg∗ =
∑l
i=0(−1)msg∗[i]hi. If hmsg∗ 6= 0, abort the

simulation.
3. Assuming hmsg∗ = 0, we have that

u = [At|A0|A0Rmsg∗ + hmsg∗B0] · d mod q,

= [A0Rt|A0|A0Rmsg∗ ] ·

[
dTt
dTh0
dTh1

]
mod q.

Setting e0 = Rt · dt + dh0
+ Rmsg∗ · dh1

we have that A0e0 = u mod q. We
claim that at this point B has found a (q, n,m, β)-ISIS solution.

All that remains to show is that

– e0 is small and non-zero with good probability and therefore a valid ISIS
solution for the stated approximation.

– The completion probability of this procedure (without aborts) is substantial
against an arbitrary attack method for A.

The first of these points is covered by the discussion of Lemma 26 in [3]. A
slight modification needs to be made to the parameter β. In particular, we have
that with overwhelming probability ‖e0‖∞ ≤ β for β = poly(l, n,m) = poly(λ)
provided we set,

β = (1 + (1 +
√
l + 1)

√
mη)
√

3mσ.

Note the extra ‘+1’ in the innermost brackets and the factor of 3 as opposed to
2 in Boyen’s original scheme. These changes have no overall impact on the size
of the (I)SIS parameter which is still β = O(λ3.5).

The completion probability result can be exactly lifted from Lemma 27 of
[3].

B Security Proof of the Modified Baum Commitment
Scheme

We will now prove the security requirements of our modified commitement
scheme based on the hardness of the Ring SIS problem. First we prove that
breaking the binding property implies solving a Ring SIS problem over Rq.
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Lemma 1. (Binding Property): Starting from two correct distinct openings (Ŝ,p, R̂)
and (Ŝ′,p′, R̂′) for the same commitement C, one can efficiently compute a small
solution, with norm bounded by some real number h = f(α, γ), to the Ring SIS
instance defined by the top row of B̂.

Proof. : Let (Ŝ,p, R̂) and (Ŝ′,p′, R̂′) be two different openings for the same
commitement C, then

pC = B̂R̂+ (0,pŜ) (1)

and

p′C = B̂R̂′ + (0,p′Ŝ′) (2)

Multiply equation 1 by p′, and equation 2 by p, then subtract we get:

B̂(p′R̂− pR̂′) = (0,p′p(Ŝ − Ŝ′))

Since Ŝ− Ŝ′ 6= 0 and both p and p′ are invertible, then we have p′p(Ŝ− Ŝ′) 6= 0,
therefore p′R̂−pR̂′ 6= 0. Hence a solution p′R̂−pR̂′ such that ‖p′R̂−pR̂′‖∞ < h,
to the Ring SIS instance defined by the first row of B̂. �

Lemma 2. (Hiding Property): Assume that the mini-entropy of the vectors R̂t
and R̂h sampled from D is at least (lt+lh+2) log (|Rq|)+λ, where λ is a security

parameter, and the function fB̂(R̂) = ÂR̂ for some Â ∈ Rkq , is universal (as
defined in [2]). Then the scheme is statistically hiding.

Proof. : Although the commitment gives the adversary log (|Rq|) bits of infor-

mation on R̂, precisely the dot product of R̂ with the first row B̂1 in B̂, we still
have (lt + lh + 1) log (|Rq|) + λ bits of randomness left in R̂. Let B̂ = [B̂1 ∈
R1×k
q |B̂r ∈ R(lt+lh+1)×k

q ]T , then by the left over hash lemma, it follows that

hB̂r (R̂) is statistically close to random, even given hB̂1
(R̂). Thus, the scheme is

statistically hiding. �
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C Ideal Functionalities From [9]

C.1 Semi-Authenticated Channels via Fauth∗

This functionality must captures the fact that a sender S sends a message con-
taining both authenticated and unauthenticated parts to a receiver R, while
giving the host the power to block the message, replace it and block the com-
munication. Fauth∗ capture these requirements.

1. On input (SEND, sid, ssid, µ1, µ2, F ) from S, check that sid = (S, R, sid′)
for some R and output (REPLACE1, sid, ssid, µ1, µ2, F ) to S;

2. On input (REPLACE1,sid, ssid, µ′
2, F ) from S, output (APPEND,

sid, ssid, µ1, µ
′
2) to F .

3. On input (APPEND, sid, ssid, µ′′
2 ) from F , output (REPLACE2,

sid, ssid, µ1, µ
′′
2 ) to S.

4. On input (REPLACE2, sid, ssid, µ′′′
2 ) from S, output (SENT,

sid, ssid, µ1, µ
′′′
2 ) to R

Fig. 1: The special authenticated communicatioin functionality Fauth∗

C.2 Certification Authority

1. Upon receiving the first message (Register, sid, v) from a party P , send
(Rigester, sid, v) to the adversary;

2. Upon receiving ok from the adversary, if sid = P and this is the first request
from P , then record the pair (P, v).

3. Upon receiving a message (Retrieve, sid) from a party P ′, send (Retrieve,
sid, P ′) to the adversary, and wait for an ok response from the adversary.

4. If there is a recorded pair (sid, v), output (Retrieve, sid, v) to P ′.
5. Else, output (Retrieve, sid, ⊥) to P ′.

Fig. 2: Ideal certification authority functionality Fca

C.3 Secure Message Transmission

This functionality is parametrized by a leakage function l : {0, 1}∗ → {0, 1}∗. For
the security proof, it is required that the leakage function l satisfies the following
property:

l(b) = l(b′) =⇒ l(a, b) = l(a, b′)

This is a natural requirement, as most secure channels will at most leak the
lenght of the plaintext, for which this property holds.
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1. Upon receiving input (Send, S, R, sid, µ) from S, send (Sent,
S, R, sid, l(µ)) to the adversary;

2. Generate a private delayed output (Sent, S, sid, µ) to R and halt.
3. Upon receiving (Corrupt, sid, P ) from the adversay, where P ∈ {S, R},

disclose µ to the adversary.
4. If the adversary provides a value µ′, and P = S, and no output has been

given to R, then output (Sent, S, sid, µ′) to R and halt.

Fig. 3: Ideal secure message transmission functionality F lsmt

C.4 Common Reference String

This functionality is parametrized by a distribution D, from which crs is sampled.

1. Upon receiving input (CRS, sid) from a party P ,verify that sid = (P, sid′)
where P is the set of identities, and P ∈ P, else ignore the input.

2. If there is no r recorded, then choose and record r ← D.
3. Finally, send a public delayed output (CRS, sid, r) to P .

Fig. 4: Ideal crs functionality FDcrs
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D Detailed Security Proof of the L-DAA Scheme

– SETUP

On input (SETUP, sid) from I, output (FORWARD, (SETUP, sid, I) to S.

– JOIN
1. On input (JOIN, sid, jsid, tpmi) from the host hostj, output

(FORWARD, (JOIN, sid, jsid, tpmi), hostj) to S.
2. On input (JOINPROCEED, sid, jsid) from I, output (FORWARD,

(JOINPROCEED, sid, jsid), I) to S.

– SIGN

1. On input (SIGN, sid, ssid, tpmi, bsn) from the host hostj, output
(FORWARD, (SIGN, sid, ssid, tpmi, bsn), hostj) to S.

2. On input (SIGNPROCEED, sid, ssid) from tpmi, output (FORWARD,
(SIGNPROCEED, sid, ssid), tpmi) to S.

– VERIFY

On input (VERIFY, sid, µ, bsn, σ, RL) from V , output (FORWARD,
(VERIFY, sid, µ, bsn, σ, RL), V ) to S.

– LINK

On the input (LINK, sid, σ1, µ1, σ2, µ2, bsn) from V , output (FORWARD,
(LINK, sid, σ1, µ1, σ2, µ2, bsn), V ) to S.

– OUTPUT

On input (OUTPUT, P , µ) from S, output µ to P .

Fig. 5: Game 3 for F
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– Key Gen

Upon receiving input (FORWARD, (SETUP, sid, I)from F , give “I”
(SETUP, sid) .

– JOIN

1. Upon receiving (FORWARD, (JOIN, sid, jsid, tpmi), hostj) from F , give
input (JOIN, sid, jsid, tpmi) to the host “hostj”

2. Upon receiving intput (FORWARD, (JOINPROCEED, sid, jsid), I)
from F , give “I” input (JOINPROCEED, sid, jsid).

– SIGN

1. Upon recieving input (FORWARD, (SIGN, sid, ssid, tpmi, bsn), hostj)
from F ,give “hostj” input (SIGN, sid, ssid, tpmi, bsn).

2. Upon receiving input (FORWARD, (SIGNPROCEED, sid, ssid), tpmi)
from F , give “tpmi” input (SIGNPROCEED, sid, ssid).

– VERIFY

Upon receiving input (FORWARD, (VERIFY, sid, µ, bsn, σ, RL), V ) from
F , give “V ” input (VERIFY, sid, µ, bsn, σ, RL).

– LINK

Upon recieving input (FORWARD, (LINK, sid, σ1, µ1, σ2, µ2, bsn), V )
from F , give “V ” input (LINK, sid, σ1, µ1, σ2, µ2, bsn).

– OUTPUT

When any simulated party “P” outputs a message µ, S sends (OUTPUT,
P, µ)to F .

Fig. 6: Game 3 for S
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– SETUP

1. On input (SETUP, sid) from I, verify that sid = (I, sid′) and output
(SETUP, sid) to S.

2. On input (ALGORITHMS, sid, sign, ver, link, identify, Kgen) from S,
check that ver, link, and identify are deterministic. Store ( sid, sign, ver,
link, identify, Kgen) and output (SETUPDOE, sid) to I.

– JOIN

1. On input (JOIN, sid, jsid, tpmi) from the host hostj, output
(FORWARD, (JOIN, sid, jsid, tpmi), hostj) to S.

2. On input (JOINPROCEED, sid, jsid) from I, output (FORWARD,
(JOINPROCEED, sid, jsid), I) to S.

– SIGN

1. On input (SIGN, sid, ssid, tpmi, bsn) from the host hostj, output
(FORWARD, (SIGN, sid, ssid, tpmi, bsn), hostj) to S.

2. On input (SIGNPROCEED, sid, ssid) from tpmi, output (FORWARD,
(SIGNPROCEED, sid, ssid), tpmi) to S.

– VERIFY

On input (VERIFY, sid, µ, bsn, σ, RL) from V , output (FORWARD,
(VERIFY, sid, µ, bsn, σ, RL), V ) to S.

– LINK

On the input (LINK, sid, σ1, µ1, σ2, µ2, bsn) from V , output (FORWARD,
(LINK, sid, σ1, µ1, σ2, µ2, bsn), V ) to S.

– OUTPUT

On input (OUTPUT, P , µ) from S, output µ to P .

Fig. 7: Game 4 for F
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– KeyGen

Honest I: On input (SETUP, sid) from F
• Check sid = (I, sid′), output ⊥ to I if the check fails.
• Give “I” input (SETUP, sid).

• Upon receiving output (SETUPDONE, sid) from “I”, S takes its private key T̂I .
• Define sig(gsk, µ, bsn) as follows:

∗ Define SamplePre(Âid, T̂I , q, uh, s) that outputs a Boyen signature X̂h [3],

where uh = u− ut with ut = Ât · gsk, X̂h will be our L-DAA credential.
∗ nym = H(bsn) · x1 + e mod q with ‖e‖∞ < β′.

∗ π = SPK
{
public := {pp, nym, bsn},

witness := {X̂ = (x1, · · · ,x3m), id, e} :

[Ât|Âh] · X̂ = u ∧ ‖X̂‖∞ ≤ β ∧ nym = H(bsn) · x1 + e

mod q ∧ ‖e‖∞ ≤ β′
}

(µ).

∗ output the L- DAA signature σ = (nym, bsn, π).
• Define ver(σ, µ, bsn) as follows: It parses σ as (nym, bsn, π), and checks SPK on π

with respect to bsn, nym, µ and u. It output 1 if the proof is valid and 0 otherwise.
• Define link(σ, µ, bsn, σ′, µ′): Check whether two signatures (σ, µ) and (σ′, µ′)

that were generated for the same basename bsn stems from the same TPM. Upon
input (LINK, sid, σ, µ, σ′, µ′, bsn) the verifier follow the following steps:

1. Starting from σ = (nym, bsn, π) and σ′ = (nym′, bsn, π′), the verifier verifies σ
and σ′ individually.

2. If any of the signatures is invalid, the verifier outputs ⊥.
3. Otherwise if ‖nym− nym′‖∞ < 2β′, the verifier outputs 1 (linked); otherwise 0

(not linked).
• Define identify(σ, µ, bsn, gsk) as follows:It parses σ as (nym, bsn, π) and checks that
gsk = (x1, x2, · · · , xm) ∈ Rmq and ‖gsk‖∞ < β, ver(σ, µ, bsn)=1 and

‖nym− x1 · bsn‖∞ < β
′

If so output 1, otherwise output 0.
• Define Kgen as follows: Take gsk ∈ Rmq with ‖gsk‖∞ < β and output gsk.

• S sends (KEYS, sid, sig, ver, link, identify, Kgen) to F .
Corrupt I
S notices this setup as it notices I registering a public key with Fca with sid = (I, sid′).

• If the registered key is in the form (ÂI , πI) and πI is valid, then S extracts T̂I from
πI .

• S defines the algorithms sig, ver, link, and identify as before, but now depending on
the extracted key.

• S sends (SETUP, sid) to F on behalf of I.
• On input (KEYGEN, sid) from F , S sends (KEYS, sid, sig, ver, link, identify, Kgen)

to F .
• On input (SETUPDONE, sid) from F .
• S continues simulating “I”.

– JOIN

Unchanged.

– SIGN

Unchanged.

– VERIFY

Unchanged.

– LINK

Unchanged.

– OUTPUT

When any simulated party “P” outputs a message µ that is not handled by S, S sends
(OUTPUT, P, µ) to F .

Fig. 8: Game 4 for S
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– SETUP

1. On input (SETUP, sid) from I, verify that sid = (I, sid′) and output
(SETUP, sid) to S.

2. On input (ALGORITHMS, sid, sign, ver, link, identify, Kgen) from S,
check that ver, link, and identify are deterministic. Store ( sid, sign, ver,
link, identify, Kgen) and output (SETUPDOE, sid) to I.

– JOIN

1. On input (JOIN, sid, jsid, tpmi) from the host hostj, output
(FORWARD, (JOIN, sid, jsid, tpmi), hostj) to S.

2. On input (JOINPROCEED, sid, jsid) from I, output (FORWARD,
(JOINPROCEED, sid, jsid), I) to S.

– SIGN

1. On input (SIGN, sid, ssid, tpmi, bsn) from the host hostj, output
(FORWARD, (SIGN, sid, ssid, tpmi, bsn), hostj) to S.

2. On input (SIGNPROCEED, sid, ssid) from tpmi, output (FORWARD,
(SIGNPROCEED, sid, ssid), tpmi) to S.

– VERIFY

On input (VERIFY, sid, µ, bsn, σ, RL) from V
• Set f = 0 if there is a gsk′ ∈ RL such that identify(σ, µ, bsn, gsk′) = 1.
• If f 6= 0, set f=ver(σ, µ, bsn).
• Add (σ, µ, bsn, RL, f) to VerResults, out put (VERIFIED, sid, f) to V .

– LINK

On the input (LINK, sid, σ1, µ1, σ2, µ2, bsn) from V
• Output ⊥ if at least one of the signatures (σ1, µ1, bsn) or (σ2, µ2, bsn)

is not valid.
• Set f=link(σ1, µ1, σ2, µ2, bsn), and output (LINK, sid, f) to V .

– OUTPUT

On input (OUTPUT, P , µ) from S, output µ to P .

Fig. 9: Game 5 for F
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– Key Gen

Unchanged.

– JOIN

Unchanged.

– SIGN

Unchanged.

– VERIFY

Nothing to simulate.

– LINK

Nothing to simulate.

Fig. 10: Game 5 for S
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– SETUP

1. On input (SETUP, sid) from I, verify that sid = (I, sid′) and output
(SETUP, sid) to S.

2. On input (ALGORITHMS, sid, sign, ver, link, identify, Kgen) from S,
check that ver, link, and identify are deterministic. Store ( sid, sign, ver,
link, identify, Kgen) and output (SETUPDOE, sid) to I.

– JOIN

1. JOINREQUEST: On input (JOIN, sid, jsid, tpmi) from the host hostj to
join the TPM tpmi

• Create a join session 〈jsid, tpmi, hostj, request 〉.
• Output (JOINSTART, sid, jsid, tpmi, hostj) to S.

2. JOIN REQUEST DELIVERY: Proceed upon recieving delivery
notification from S.
• Update the session record to 〈jsid, tpmi, hostj, delivered〉.
• If I or tpmi is honest and 〈tpmi, ?, ?〉 is already in Members, output
⊥.

• Output (JOINPROCEED, sid, jsid, tpmi) to I.
3. JOIN PROCEED: Upon receiving (JOINPROCEED, sid, jsid, tpmi)

from I
• Update the session record to 〈jsid, sid, tpmi, hostj, complete〉.
• Output (JOINCOMPLETE, sid, jsid) to S.

4. KEY GENERATION: On input (JOINCOMPLETE, sid, jsid, gsk) from
S.
• Update the session record to 〈jsid, tpmi, hostj, complete〉
• If both tpmi and hostj are honest, set gsk = ⊥.
• Insert 〈tpmi, hostj, gsk〉 into Members, and output (JOINED,

sid, jsid) to hostj.

– SIGN

1. On input (SIGN, sid, ssid, tpmi, bsn) from the host hostj, output
(FORWARD, (SIGN, sid, ssid, tpmi, bsn), hostj) to S.

2. On input (SIGNPROCEED, sid, ssid) from tpmi, output (FORWARD,
(SIGNPROCEED, sid, ssid), tpmi) to S.

– VERIFY

On input (VERIFY, sid, µ, bsn, σ, RL) from V
• Set f = 0 if there is a gsk′ ∈ RL such that identify(σ, µ, bsn, gsk′) = 1.
• If f 6= 0, set f=ver(σ, µ, bsn).
• Add (σ, µ, bsn, RL, f) to VerResults, out put (VERIFIED, sid, f) to V .

– LINK

On the input (LINK, sid, σ1, µ1, σ2, µ2, bsn) from V
• Output ⊥ if at least one of the signatures (σ1, µ1, bsn) or (σ2, µ2, bsn)

is not valid.
• Set f=link(σ1, µ1, σ2, µ2, bsn), and output (LINK, sid, f) to V .

– OUTPUT

On input (OUTPUT, P , µ) from S, output µ to P .

Fig. 11: Game 6 for F
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– KeyGen
Unchanged

– JOIN
Honest host, I:

• When S receives (JOINSTART, sid, jsid, tpmi, hostj) from F
• It simulates the real world protocol by giving “hostj” input (JOIN, sid, jsid, tpmi)

and waits for output (JOINPROCEED, sid, jsid, tpmi) from “I”.
• If tpmi is corrupt, S extracts gsk from the proof πut and stores it. If tpmi is honest,
S already knows gsk as it is simulating tpmi.

• S sends (JOINSTART, sid, jsid) to F .
• Upon receiving input (JOINCOMPLETE, sid, jsid) from F , S gives “I” input

(JOINPROCEED, sid, jsid) and waits for output (JOINED, sid, jsid) from “hostj”.
• Output (JOINCOMPLETE, sid, jsid gsk) to F .

Honest host, Corrupt I:

• On input (JOINSTART, sid, jsid, tpmi, hostj) from F , S gives “hostj” input (JOIN,
sid, jsid, tpmi) and waits for output (JOINED, sid, jsid, tpmi) from “hostj”.

• S sends (JOINSTART, sid, jsid) to F .
• Upon receiving input (JOINPROCEED, sid, jsid) from F , S sends

(JOINPROCEED, sid, jsid) to F on behalf of I.
• Upon receiving input (JOINCOMPLETE, sid, jsid) from F , S sends

(JOINCOMPLETE, sid, jsid, ⊥) to F .

Honest TPM , I, Corrupt host:

• S notices this join as “tpmi” receives a nonce ρ from hostj.
• S makes a join query on behalf of hostj by sending (JOIN, sid, jsid, tpmi) to F .
• Upon input (JOINSTART, sid, jsid, tpmi, hostj) from F , S continues the simulation

of “tpmi” until “I” outputs (JOINPROCEED, sid, jsid, tpmi).
• S sends (JOINSTART, sid, jsid) to F .
• Upon input (JOINCOMPLETE, sid, jsid) from F , S sends (JOINCOMPLETE,

sid, jsid, gsk) to F , where gsk is taken from simulating “tpmi”.
• Upon receiving (JOINED, sid, jsid) from F as hostj is corrupt, S gives “I” input

(JOINPROCEED, sid, jsid).

Honest I, Corrupt TPM , host:
• S notices this join as “I” receives (SENT, sid′, (ut, πt), hostj) from Fauth∗ .
• Parse sid’ as (tpmi, sid, I), S then extracts gsk from the proof πut .
• S doesn’t know the identity of the host that started this join, so S chooses some

corrupt hostj and proceeds as if this host initiated this join, although this may not
be the correct host. This makes no difference as when creating signatures we only
look for corrupt host or TPM, so fully corrupted platform are not considered in
generating signatures.

• S makes a join query with tpmi on behalf of hostj by sending (JOIN, sid, jsid, tpmi)
to F .

• Upon receiving input (JOINSTART, sid, jsid, tpmi, hostj) from F , S continues
simulating “I” until it outputs (JOINPROCEED, sid, jsid, tpmi).

• S sends (JOINSTART, sid, jsid) to F .
• Upon receiving (JOINCOMPLETE, sid, jsid) from F , S sends (JOINCOMPLETE,

sid, jsid, gsk) to F .
• Upon receiving (JOINED, sid, jsid) from F as hostj is corrupt, S gives “I” input

(JOINPROCEED, sid, jsid).
Honest TPM, Corrupt host, I:
• S notices this join as tpmi receives a nonce ρ from hostj.
• S simply simulates tpmi honestly, no need to include F as tpmi doesn’t receive inputs

or send outputs in the join interface.
– SIGN

Unchanged.
– VERIFY

Nothing to simulate.
– LINK

Nothing to simulate.

Fig. 12: Game 6 for S
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– SETUP
Unchanged.

– JOIN
Unchanged

– SIGN

• SIGN REQUEST: On input (SIGN, sid, ssid, tpmi, µ, bsn) from the host hostj,

∗ Create a sign session 〈ssid, tpmi, hostj, µ, bsn, request〉.
∗ Output (SIGNSTART, sid, ssid, tpmi, hostj) to S.

• SIGN REUEST DELIVERY: On input (SIGNSTART, sid, ssid) from S, update the
session to 〈ssid, tpmi, hostj, µ, bsn, delivered〉.

• Output (SIGNPROCEED, sid, ssid, µ, bsn) to tpmi.
• SIGN PROCEED: On input (SIGNPROCEED, sid, ssid) from tpmi

∗ Update the records 〈ssid, tpmi, hostj, µ, bsn, delivered〉.
∗ Output (SIGNCOMPETE, sid, ssid) to S.

• SIGNATURE GENERATION: On the input (SIGNCOMPETE, sid, ssid, σ) from S,
if both tpmi and hostj are honest then:

∗ Ignore the adversary’s signature σ.
∗ If bsn 6= ⊥, then retrieve gsk from the 〈tpmi, bsn, gsk〉 ∈ DomainKeys.

∗ If bsn = ⊥ or no gsk was found, generate a fresh key gsk ← Kgen(1λ).
∗ Store 〈tpmi, bsn, gsk〉 in DomainKeys.
∗ Generate the signature σ ← sig(gsk, µ, bsn).
∗ If tpmi is honest, then store 〈σ, µ, tpmi, bsn〉 in Signed and output

(SIGNATURE, sid, ssid, σ) to hostj.

– VERIFY

On input (VERIFY, sid, µ, bsn, σ, RL) from V
• Set f = 0 if there is a gsk′ ∈ RL such that identify(σ, µ, bsn, gsk′) = 1.
• If f 6= 0, set f=ver(σ, µ, bsn).
• Add (σ, µ, bsn, RL, f) to VerResults, out put (VERIFIED, sid, f) to V .

– LINK

On the input (LINK, sid, σ1, µ1, σ2, µ2, bsn) from V
• Output ⊥ if at least one of the signatures (σ1, µ1, bsn) or (σ2, µ2, bsn) is not valid.
• Set f=link(σ1, µ1, σ2, µ2, bsn), and output (LINK, sid, f) to V .

– OUTPUT

On input (OUTPUT, P , µ) from S, output µ to P .

Fig. 13: Game 7 for F
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– KeyGen
Unchanged.

– JOIN
Unchanged

– SIGN
Honest TPM, host:
Upon receiving (SIGNSTART, sid, ssid, tpmi, hostj, bsn, µ) from F .
• S starts the simulation by giving “hostj” input (SIGN, sid, ssid, tpmi, µ, bsn).
• When “tpmi” outputs (SIGNPROCEED, sid, ssid, µ, bsn), S sends (SIGNSTART,

sid, ssid) to F .
• Upon receiving (SIGNCOMPLETE, sid, ssid) from F , output (SIGNPROCEED,

sid, ssid) to “tpmi”.
• When “hostj” outputs (SIGNATURE, sid, ssid, σ), send (SIGNCOMPLETE,

sid, ssid, ⊥) to F .
Honest host, Corrupt TPM:
Upon receiving (SIGNSTART, sid, ssid, tpmi, hostj, bsn, µ) from F .

• Send (SIGNSTART, sid, ssid) to F .
• Upon receiving (SIGNPROCEED, sid, ssid, µ, bsn) from F on behalf of tpmi, as tpmi

is corrupt, S gives “hostj” input (SIGN, sid, ssid, tpmi, µ, bsn).
• When “hostj” outputs (SIGNATURE, sid, ssid, σ), S sends (SIGNPROCEED,

sid, ssid) to F on behlaf of tpmi.
• Upon receiving (SIGNCOMPLETE, sid, ssid) from F , send (SIGNCOMPLETE,

sid, ssid, σ) to F .

Honest TPM, Corrupt host:

• S notices this sign as “tpmi” receives a message µ and bsn from hostj .
• S sends (SIGN, sid, ssid, tpmi, µ, bsn) to F on behalf of hostj.
• Upon receiving (SIGNSTART, sid, ssid, µ, bsn, tpmi, hostj) from F , continue

simulating “tpmi”, until “tpmi” outputs (SIGNPROCEED, sid, ssid, µ, bsn).
• Send (SIGNSTART, sid, ssid) to F .
• Upon receiving (SIGNCOMPLETE, sid, ssid) from F , send (SIGNCOMPLETE,

sid, ssid, ⊥) to F .
• When F outputs (SIGNATURE, sid, ssid, σ) on behalf of hostj, S sends

(SIGNPROCEED, sid, ssid) to “tpmi”.
• send (SIGNCOMPLETE, sid, ssid, σ) to “tpmi”.

– VERIFY

Nothing to simulate.

– LINK

Nothing to simulate.

Fig. 14: Game 7 for S
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– SETUP
Unchanged.

– JOIN
Unchanged

– SIGN

• SIGN REQUEST: On input (SIGN, sid, ssid, tpmi, µ, bsn) from the host hostj,

∗ Create a sign session 〈ssid, tpmi, hostj, µ, bsn, request〉.
∗ Output (SIGNSTART, sid, ssid, tpmi, hostj, l(µ, bsn)) to S.

• SIGN REUEST DELIVERY: On input (SIGNSTART, sid, ssid) from S, update the
session to 〈ssid, tpmi, hostj, µ, bsn, delivered〉.

• Output (SIGNPROCEED, sid, ssid, µ, bsn) to tpmi.
• SIGN PROCEED: On input (SIGN PROCEED, sid, ssid) from tpmi

∗ Update the records 〈ssid, tpmi, hostj, µ, bsn, delivered〉.
∗ Output (SIGNCOMPETE, sid, ssid) to S.

• SIGNATURE GENERATION: On the input (SIGNCOMPETE, sid, ssid, σ) from S,
if both tpmi and hostj are honest then:

∗ Ignore the adversary’s signature σ.
∗ If bsn 6= ⊥, then retrieve gsk from the 〈tpmi, bsn, gsk〉 ∈ DomainKeys.

∗ If bsn = ⊥ or no gsk was found, generate a fresh key gsk ← Kgen(1λ).
∗ Store 〈tpmi, bsn, gsk〉 in DomainKeys.
∗ Generate the signature σ ← sig(gsk, µ, bsn).
∗ If tpmi is honest, then store 〈σ, µ, tpmi, bsn〉 in Signed and output

(SIGNATURE, sid, ssid, σ) to hostj.

– VERIFY

On input (VERIFY, sid, µ, bsn, σ, RL) from V
• Set f = 0 if there is a gsk′ ∈ RL such that identify(σ, µ, bsn, gsk′) = 1.
• If f 6= 0, set f=ver(σ, µ, bsn).
• Add (σ, µ, bsn, RL, f) to VerResults, out put (VERIFIED, sid, f) to V .

– LINK

On the input (LINK, sid, σ1, µ1, σ2, µ2, bsn) from V
• Output ⊥ if at least one of the signatures (σ1, µ1, bsn) or (σ2, µ2, bsn) is not valid.
• Set f=link(σ1, µ1, σ2, µ2, bsn), and output (LINK, sid, f) to V .

– OUTPUT

On input (OUTPUT, P , µ) from S, output µ to P .

Fig. 15: Game 8 for F
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– KeyGen
Unchanged.

– JOIN
Unchanged

– SIGN
Honest TPM, host:
Upon receiving (SIGNSTART, sid, ssid, tpmi, hostj, l) from F .
• S takes a dummy pair (µ′, bsn′) such that l(µ′, bsn′) = l.
• S starts the simulation by giving “hostj” input (SIGN, sid, ssid, tpmi, µ

′, bsn′).
• When “tpmi” outputs (SIGNPROCEED, sid, ssid, µ′, bsn′), S sends (SIGNSTART,

sid, ssid) to F .
• Upon receiving (SIGNCOMPLETE, sid, ssid) from F , output (SIGNPROCEED,

sid, ssid) to “tpmi”.
• When “hostj” outputs (SIGNATURE, sid, ssid, σ), send (SIGNCOMPLETE,

sid, ssid, ⊥) to F .
Honest host, Corrupt TPM:
Upon receiving (SIGNSTART, sid, ssid, tpmi, hostj, l) from F .

• Send (SIGNSTART, sid, ssid) to F .
• Upon receiving (SIGNPROCEED, sid, ssid, µ, bsn) from F on behalf of tpmi, as tpmi

is corrupt, S gives “hostj” input (SIGN, sid, ssid, tpmi, µ, bsn).
• When “hostj” outputs (SIGNATURE, sid, ssid, σ), S sends (SIGNPROCEED,

sid, ssid, µ, bsn) to F on behlaf of tpmi.
• Upon receiving (SIGNCOMPLETE, sid, ssid) from F , send (SIGNCOMPLETE,

sid, ssid, σ) to F .

Honest TPM, Corrupt host:

• S notices this sign as “tpmi” receives a message µ and bsn from hostj .
• S sends (SIGN, sid, ssid, tpmi, µ, bsn) to F on behalf of hostj.
• Upon receiving (SIGNSTART, sid, ssid, tpmi, hostj, l) from F , continue simulating

“tpmi”, until “tpmi” outputs (SIGNPROCEED, sid, ssid, µ, bsn).
• Send (SIGNSTART, sid, ssid) to F .
• Upon receiving (SIGNCOMPLETE, sid, ssid) from F , send (SIGNCOMPLETE,

sid, ssid, ⊥) to F .
• When F outputs (SIGNATURE, sid, ssid, σ) on behalf of hostj, S sends

(SIGNPROCEED, sid, ssid) to “tpmi”.
• send (SIGNCOMPLETE, sid, ssid, σ) to “tpmi”.

– VERIFY

Nothing to simulate.

– LINK

Nothing to simulate.

Fig. 16: Game 8 for S
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– SETUP
Unchanged.

– JOIN
Unchanged

– SIGN

• SIGN REQUEST: On input (SIGN, sid, ssid, tpmi, µ, bsn) from the host hostj,

∗ Abort if I is honest and no entry 〈tpmi, hostj, ?〉 exists in Members.
∗ Else, create a sign session 〈ssid, tpmi, hostj, µ, bsn, request〉.
∗ Output (SIGNSTART, sid, ssid, tpmi, hostj, l(µ, bsn)) to S.

• SIGN REUEST DELIVERY: On input (SIGNSTART, sid, ssid) from S, update the
session to 〈ssid, tpmi, hostj, µ, bsn, delivered〉.

• Output (SIGNPROCEED, sid, ssid, µ, bsn) to tpmi.
• SIGN PROCEED: On input (SIGN PROCEED, sid, ssid) from tpmi

∗ Update the records 〈ssid, tpmi, hostj, µ, bsn, delivered〉.
∗ Output (SIGNCOMPETE, sid, ssid) to S.

• SIGNATURE GENERATION: On the input (SIGNCOMPETE, sid, ssid, σ) from S,
if both tpmi and hostj are honest then:

∗ Ignore the adversary’s signature σ.
∗ If bsn 6= ⊥, then retrieve gsk from the 〈tpmi, bsn, gsk〉 ∈ DomainKeys.

∗ If bsn = ⊥ or no gsk was found, generate a fresh key gsk ← Kgen(1λ).
∗ Store 〈tpmi, bsn, gsk〉 in DomainKeys.
∗ Generate the signature σ ← sig(gsk, µ, bsn).
∗ If tpmi is honest, then store 〈σ, µ, tpmi, bsn〉 in Signed and output

(SIGNATURE, sid, ssid, σ) to hostj.

– VERIFY

On input (VERIFY, sid, µ, bsn, σ, RL) from V
• Set f = 0 if there is a gsk′ ∈ RL such that identify(σ, µ, bsn, gsk′) = 1.
• If f 6= 0, set f=ver(σ, µ, bsn).
• Add (σ, µ, bsn, RL, f) to VerResults, out put (VERIFIED, sid, f) to V .

– LINK

On the input (LINK, sid, σ1, µ1, σ2, µ2, bsn) from V
• Output ⊥ if at least one of the signatures (σ1, µ1, bsn) or (σ2, µ2, bsn) is not valid.
• Set f=link(σ1, µ1, σ2, µ2, bsn), and output (LINK, sid, f) to V .

Fig. 17: Game 9 for F
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– SETUP
Unchanged.

– JOIN

1. JOINREQUEST: On input (JOIN, sid, jsid, tpmi) from the host hostj to join the
TPM tpmi

• Create a join session 〈jsid, tpmi, hostj, request 〉.
• Output (JOINSTART, sid, jsid, tpmi, hostj) to S.

2. JOIN REQUEST DELIVERY: Proceed upon recieving delivery notification from S.
• Update the session record to 〈jsid, tpmi, hostj, delivered〉.
• If I or tpmi is honest and 〈tpmi, ?, ?〉 is already in Members, output ⊥.
• Output (JOINPROCEED, sid, jsid, tpmi) to I.

3. JOIN PROCEED: Upon receiving (JOINPROCEED, sid, jsid, tpmi) from I
• Update the session record to 〈jsid, sid, tpmi, hostj, complete〉.
• Output (JOINCOMPLETE, sid, jsid) to S.

4. KEY GENERATION: On input (JOINCOMPLETE, sid, jsid, gsk) from S.
• Update the session record to 〈jsid, tpmi, hostj, complete〉
• If both tpmi and hostj are honest, set gsk = ⊥.
• Else, verify that the provided gsk is eligible by performing the following checks:
∗ If hostj is corrupt and tpmi is honest, then CheckGskHonest(gsk)=1.
∗ If tpmi is corrupt, then CheckGskCorrupt(gsk)=1.
∗ Insert 〈tpmi, hostj, gsk〉 into Members, and output (JOINED, sid, jsid) to

hostj.

– SIGN

• SIGN REQUEST: On input (SIGN, sid, ssid, tpmi, µ, bsn) from the host hostj,

∗ Abort if I is honest and no entry 〈tpmi, hostj, ?〉 exists in Members.
∗ Else, create a sign session 〈ssid, tpmi, hostj, µ, bsn, request〉.
∗ Output (SIGNSTART, sid, ssid, tpmi, hostj, l(µ, bsn)) to S.

• SIGN REUEST DELIVERY: On input (SIGNSTART, sid, ssid) from S, update the
session to 〈ssid, tpmi, hostj, µ, bsn, delivered〉.

• Output (SIGNPROCEED, sid, ssid, µ, bsn) to tpmi.
• SIGN PROCEED: On input (SIGN PROCEED, sid, ssid) from tpmi

∗ Update the records 〈ssid, tpmi, hostj, µ, bsn, delivered〉.
∗ Output (SIGNCOMPETE, sid, ssid) to S.

• SIGNATURE GENERATION: On the input (SIGNCOMPETE, sid, ssid, σ) from S,
if both tpmi and hostj are honest then:

∗ Ignore the adversary’s signature σ.
∗ If bsn 6= ⊥, then retrieve gsk from the 〈tpmi, bsn, gsk〉 ∈ DomainKeys.

∗ If bsn = ⊥ or no gsk was found, generate a fresh key gsk ← Kgen(1λ).
∗ Check CheckGskHonest(gsk)=1
∗ Store 〈tpmi, bsn, gsk〉 in DomainKeys.
∗ Generate the signature σ ← sig(gsk, µ, bsn).
∗ If tpmi is honest, then store 〈σ, µ, tpmi, bsn〉 in Signed and output

(SIGNATURE, sid, ssid, σ) to hostj.

– VERIFY

Unchanged

– LINK

Unchanged

Fig. 18: Game 10 for F
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– SETUP
Unchanged.

– JOIN
Unchanged

– SIGN

• SIGN REQUEST: On input (SIGN, sid, ssid, tpmi, µ, bsn) from the host hostj,

∗ Abort if I is honest and no entry 〈tpmi, hostj, ?〉 exists in Members.
∗ Else, create a sign session 〈ssid, tpmi, hostj, µ, bsn, request〉.
∗ Output (SIGNSTART, sid, ssid, tpmi, hostj, l(µ, bsn)) to S.

• SIGN REUEST DELIVERY: On input (SIGNSTART, sid, ssid) from S, update the
session to 〈ssid, tpmi, hostj, µ, bsn, delivered〉.

• Output (SIGNPROCEED, sid, ssid, µ, bsn) to tpmi.
• SIGN PROCEED: On input (SIGN PROCEED, sid, ssid) from tpmi

∗ Update the records 〈ssid, tpmi, hostj, µ, bsn, delivered〉.
∗ Output (SIGNCOMPETE, sid, ssid) to S.

• SIGNATURE GENERATION: On the input (SIGNCOMPETE, sid, ssid, σ) from S,
if both tpmi and hostj are honest then:

∗ Ignore the adversary’s signature σ.
∗ If bsn 6= ⊥, then retrieve gsk from the 〈tpmi, bsn, gsk〉 ∈ DomainKeys.

∗ If bsn = ⊥ or no gsk was found, generate a fresh key gsk ← Kgen(1λ).
∗ Check CheckGskHonest(gsk)=1.
∗ Store 〈tpmi, bsn, gsk〉 in DomainKeys.
∗ Generate the signature σ ← sig(gsk, µ, bsn).
∗ Check ver(σ, µ, bsn)=1.
∗ Check identify(σ, µ, bsn, gsk)=1.
∗ Check the is no TPM other than tpmi with key gsk′ registered in Members or

DomainKeys such that identify(σ, µ, bsn, gsk′)=1.
∗ If tpmi is honest, then store 〈σ, µ, tpmi, bsn〉 in Signed and output

(SIGNATURE, sid, ssid, σ) to hostj.

– VERIFY

On input (VERIFY, sid, µ, bsn, σ, RL) from V
• Set f = 0 if there is a gsk′ ∈ RL such that identify(σ, µ, bsn, gsk′) = 1.
• If f 6= 0, set f=ver(σ, µ, bsn).
• Add (σ, µ, bsn, RL, f) to VerResults, out put (VERIFIED, sid, f) to V .

– LINK

On the input (LINK, sid, σ1, µ1, σ2, µ2, bsn) from V
• Output ⊥ if at least one of the signatures (σ1, µ1, bsn) or (σ2, µ2, bsn) is not valid.
• Set f=link(σ1, µ1, σ2, µ2, bsn), and output (LINK, sid, f) to V .

Fig. 19: Game 11 for F
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– SETUP
Unchanged.

– JOIN
Unchanged

– SIGN

• SIGN REQUEST: On input (SIGN, sid, ssid, tpmi, µ, bsn) from the host hostj,

∗ Abort if I is honest and no entry 〈tpmi, hostj, ?〉 exists in Members.
∗ Else, create a sign session 〈ssid, tpmi, hostj, µ, bsn, request〉.
∗ Output (SIGNSTART, sid, ssid, tpmi, hostj, l(µ, bsn)) to S.

• SIGN REUEST DELIVERY: On input (SIGNSTART, sid, ssid) from S, update the
session to 〈ssid, tpmi, hostj, µ, bsn, delivered〉.

• Output (SIGNPROCEED, sid, ssid, µ, bsn) to tpmi.
• SIGN PROCEED: On input (SIGN PROCEED, sid, ssid) from tpmi

∗ Update the records 〈ssid, tpmi, hostj, µ, bsn, delivered〉.
∗ Output (SIGNCOMPETE, sid, ssid) to S.

• SIGNATURE GENERATION: On the input (SIGNCOMPETE, sid, ssid, σ) from S,
if both tpmi and hostj are honest then:

∗ Ignore the adversary’s signature σ.
∗ If bsn 6= ⊥, then retrieve gsk from the 〈tpmi, bsn, gsk〉 ∈ DomainKeys.

∗ If bsn = ⊥ or no gsk was found, generate a fresh key gsk ← Kgen(1λ).
∗ Check CheckGskHonest(gsk)=1.
∗ Store 〈tpmi, bsn, gsk〉 in DomainKeys.
∗ Generate the signature σ ← sig(gsk, µ, bsn).
∗ Check ver(σ, µ, bsn)=1.
∗ Check identify(σ, µ, bsn, gsk)=1.
∗ Check the is no TPM other than tpmi with key gsk′ registered in Members or

DomainKeys such that identify(σ, µ, bsn, gsk′)=1.
∗ If tpmi is honest, then store 〈σ, µ, tpmi, bsn〉 in Signed and output

(SIGNATURE, sid, ssid, σ) to hostj.

– VERIFY

On input (VERIFY, sid, µ, bsn, σ, RL) from V
• Extract all pairs (gski, tpmi) from the DomainKeys and Members, for which

identify(σ, µ, bsn, gsk)=1.
• Set f = 0 if any of the following holds:

∗ More than one key gski was found.
∗ There is a key gsk′ ∈ RL, such that identify(σ, µ, bsn, gsk′)=1.

• If f 6= 0, set f=ver(σ, µ, bsn).
• Add (σ, µ, bsn, RL, f) to VerResults, out put (VERIFIED, sid, f) to V .

– LINK

On the input (LINK, sid, σ1, µ1, σ2, µ2, bsn) from V
• Output ⊥ if at least one of the signatures (σ1, µ1, bsn) or (σ2, µ2, bsn) is not valid.
• Set f=link(σ1, µ1, σ2, µ2, bsn), and output (LINK, sid, f) to V .

Fig. 20: Game 12 for F
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– SETUP
Unchanged.

– JOIN
Unchanged

– SIGN

• SIGN REQUEST: On input (SIGN, sid, ssid, tpmi, µ, bsn) from the host hostj,

∗ Abort if I is honest and no entry 〈tpmi, hostj, ?〉 exists in Members.
∗ Else, create a sign session 〈ssid, tpmi, hostj, µ, bsn, request〉.
∗ Output (SIGNSTART, sid, ssid, tpmi, hostj, l(µ, bsn)) to S.

• SIGN REUEST DELIVERY: On input (SIGNSTART, sid, ssid) from S, update the
session to 〈ssid, tpmi, hostj, µ, bsn, delivered〉.

• Output (SIGNPROCEED, sid, ssid, µ, bsn) to tpmi.
• SIGN PROCEED: On input (SIGN PROCEED, sid, ssid) from tpmi

∗ Update the records 〈ssid, tpmi, hostj, µ, bsn, delivered〉.
∗ Output (SIGNCOMPETE, sid, ssid) to S.

• SIGNATURE GENERATION: On the input (SIGNCOMPETE, sid, ssid, σ) from S,
if both tpmi and hostj are honest then:

∗ Ignore the adversary’s signature σ.
∗ If bsn 6= ⊥, then retrieve gsk from the 〈tpmi, bsn, gsk〉 ∈ DomainKeys.

∗ If bsn = ⊥ or no gsk was found, generate a fresh key gsk ← Kgen(1λ).
∗ Check CheckGskHonest(gsk)=1.
∗ Store 〈tpmi, bsn, gsk〉 in DomainKeys.
∗ Generate the signature σ ← sig(gsk, µ, bsn).
∗ Check ver(σ, µ, bsn)=1.
∗ Check identify(σ, µ, bsn, gsk)=1.
∗ Check the is no TPM other than tpmi with key gsk′ registered in Members or

DomainKeys such that identify(σ, µ, bsn, gsk′)=1.
∗ If tpmi is honest, then store 〈σ, µ, tpmi, bsn〉 in Signed and output

(SIGNATURE, sid, ssid, σ) to hostj.

– VERIFY

On input (VERIFY, sid, µ, bsn, σ, RL) from V
• Extract all pairs (gski, tpmi) from the DomainKeys and Members, for which

identify(σ, µ, bsn, gsk)=1.
• Set f = 0 if any of the following holds:

∗ More than one key gski was found.
∗ I is honest and no pair (gski, tpmi) was found.
∗ There is a key gsk′ ∈ RL, such that identify(σ, µ, bsn, gsk′)=1.

• If f 6= 0, set f=ver(σ, µ, bsn).
• Add (σ, µ, bsn, RL, f) to VerResults, out put (VERIFIED, sid, f) to V .

– LINK

On the input (LINK, sid, σ1, µ1, σ2, µ2, bsn) from V
• Output ⊥ if at least one of the signatures (σ1, µ1, bsn) or (σ2, µ2, bsn) is not valid.
• Set f=link(σ1, µ1, σ2, µ2, bsn), and output (LINK, sid, f) to V .

Fig. 21: Game 13 for F
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– SETUP
Unchanged.

– JOIN
Unchanged

– SIGN

• SIGN REQUEST: On input (SIGN, sid, ssid, tpmi, µ, bsn) from the host hostj,

∗ Abort if I is honest and no entry 〈tpmi, hostj, ?〉 exists in Members.
∗ Else, create a sign session 〈ssid, tpmi, hostj, µ, bsn, request〉.
∗ Output (SIGNSTART, sid, ssid, tpmi, hostj, l(µ, bsn)) to S.

• SIGN REUEST DELIVERY: On input (SIGNSTART, sid, ssid) from S, update the
session to 〈ssid, tpmi, hostj, µ, bsn, delivered〉.

• Output (SIGNPROCEED, sid, ssid, µ, bsn) to tpmi.
• SIGN PROCEED: On input (SIGN PROCEED, sid, ssid) from tpmi

∗ Update the records 〈ssid, tpmi, hostj, µ, bsn, delivered〉.
∗ Output (SIGNCOMPETE, sid, ssid) to S.

• SIGNATURE GENERATION: On the input (SIGNCOMPETE, sid, ssid, σ) from S,
if both tpmi and hostj are honest then:

∗ Ignore the adversary’s signature σ.
∗ If bsn 6= ⊥, then retrieve gsk from the 〈tpmi, bsn, gsk〉 ∈ DomainKeys.

∗ If bsn = ⊥ or no gsk was found, generate a fresh key gsk ← Kgen(1λ).
∗ Check CheckGskHonest(gsk)=1.
∗ Store 〈tpmi, bsn, gsk〉 in DomainKeys.
∗ Generate the signature σ ← sig(gsk, µ, bsn).
∗ Check ver(σ, µ, bsn)=1.
∗ Check identify(σ, µ, bsn, gsk)=1.
∗ Check the is no TPM other than tpmi with key gsk′ registered in Members or

DomainKeys such that identify(σ, µ, bsn, gsk′)=1.
∗ If tpmi is honest, then store 〈σ, µ, tpmi, bsn〉 in Signed and output

(SIGNATURE, sid, ssid, σ) to hostj.

– VERIFY

On input (VERIFY, sid, µ, bsn, σ, RL) from V
• Extract all pairs (gski, tpmi) from the DomainKeys and Members, for which

identify(σ, µ, bsn, gsk)=1.
• Set f = 0 if any of the following holds:

∗ More than one key gski was found.
∗ I is honest and no pair (gski, tpmi) was found.
∗ An honest tpmi was found, but no entry 〈?, µ, tpmi, bsn〉 was found in Signed.
∗ There is a key gsk′ ∈ RL, such that identify(σ, µ, bsn, gsk′)=1.

• If f 6= 0, set f=ver(σ, µ, bsn).
• Add (σ, µ, bsn, RL, f) to VerResults, out put (VERIFIED, sid, f) to V .

– LINK

On the input (LINK, sid, σ1, µ1, σ2, µ2, bsn) from V
• Output ⊥ if at least one of the signatures (σ1, µ1, bsn) or (σ2, µ2, bsn) is not valid.
• Set f=link(σ1, µ1, σ2, µ2, bsn), and output (LINK, sid, f) to V .

Fig. 22: Game 14 for F
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– SETUP
Unchanged.

– JOIN
Unchanged

– SIGN

• SIGN REQUEST: On input (SIGN, sid, ssid, tpmi, µ, bsn) from the host hostj,

∗ Abort if I is honest and no entry 〈tpmi, hostj, ?〉 exists in Members.
∗ Else, create a sign session 〈ssid, tpmi, hostj, µ, bsn, request〉.
∗ Output (SIGNSTART, sid, ssid, tpmi, hostj, l(µ, bsn)) to S.

• SIGN REUEST DELIVERY: On input (SIGNSTART, sid, ssid) from S, update the
session to 〈ssid, tpmi, hostj, µ, bsn, delivered〉.

• Output (SIGNPROCEED, sid, ssid, µ, bsn) to tpmi.
• SIGN PROCEED: On input (SIGN PROCEED, sid, ssid) from tpmi

∗ Update the records 〈ssid, tpmi, hostj, µ, bsn, delivered〉.
∗ Output (SIGNCOMPETE, sid, ssid) to S.

• SIGNATURE GENERATION: On the input (SIGNCOMPETE, sid, ssid, σ) from S,
if both tpmi and hostj are honest then:

∗ Ignore the adversary’s signature σ.
∗ If bsn 6= ⊥, then retrieve gsk from the 〈tpmi, bsn, gsk〉 ∈ DomainKeys.

∗ If bsn = ⊥ or no gsk was found, generate a fresh key gsk ← Kgen(1λ).
∗ Check CheckGskHonest(gsk)=1.
∗ Store 〈tpmi, bsn, gsk〉 in DomainKeys.
∗ Generate the signature σ ← sig(gsk, µ, bsn).
∗ Check ver(σ, µ, bsn)=1.
∗ Check identify(σ, µ, bsn, gsk)=1.
∗ Check the is no TPM other than tpmi with key gsk′ registered in Members or

DomainKeys such that identify(σ, µ, bsn, gsk′)=1.
∗ If tpmi is honest, then store 〈σ, µ, tpmi, bsn〉 in Signed and output

(SIGNATURE, sid, ssid, σ) to hostj.

– VERIFY

On input (VERIFY, sid, µ, bsn, σ, RL) from V
• Extract all pairs (gski, tpmi) from the DomainKeys and Members, for which

identify(σ, µ, bsn, gsk)=1.
• Set f = 0 if any of the following holds:

∗ More than one key gski was found.
∗ I is honest and no pair (gski, tpmi) was found.
∗ An honest tpmi was found, but no entry 〈?, µ, tpmi, bsn〉 was found in Signed.
∗ There is a key gsk′ ∈ RL, such that identify(σ, µ, bsn, gsk′)=1, and no pair

(tpmi, gski) for honest tpmi was found.
• If f 6= 0, set f=ver(σ, µ, bsn).
• Add (σ, µ, bsn, RL, f) to VerResults, out put (VERIFIED, sid, f) to V .

– LINK

On the input (LINK, sid, σ1, µ1, σ2, µ2, bsn) from V
• Output ⊥ if at least one of the signatures (σ1, µ1, bsn) or (σ2, µ2, bsn) is not valid.
• Set f=link(σ1, µ1, σ2, µ2, bsn), and output (LINK, sid, f) to V .

Fig. 23: Game 15 for F
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– SETUP
Unchanged.

– JOIN
Unchanged

– SIGN

• SIGN REQUEST: On input (SIGN, sid, ssid, tpmi, µ, bsn) from the host hostj,

∗ Abort if I is honest and no entry 〈tpmi, hostj, ?〉 exists in Members.
∗ Else, create a sign session 〈ssid, tpmi, hostj, µ, bsn, request〉.
∗ Output (SIGNSTART, sid, ssid, tpmi, hostj, l(µ, bsn)) to S.

• SIGN REUEST DELIVERY: On input (SIGNSTART, sid, ssid) from S, update the
session to 〈ssid, tpmi, hostj, µ, bsn, delivered〉.

• Output (SIGNPROCEED, sid, ssid, µ, bsn) to tpmi.
• SIGN PROCEED: On input (SIGN PROCEED, sid, ssid) from tpmi

∗ Update the records 〈ssid, tpmi, hostj, µ, bsn, delivered〉.
∗ Output (SIGNCOMPETE, sid, ssid) to S.

• SIGNATURE GENERATION: On the input (SIGNCOMPETE, sid, ssid, σ) from S,
if both tpmi and hostj are honest then:

∗ Ignore the adversary’s signature σ.
∗ If bsn 6= ⊥, then retrieve gsk from the 〈tpmi, bsn, gsk〉 ∈ DomainKeys.

∗ If bsn = ⊥ or no gsk was found, generate a fresh key gsk ← Kgen(1λ).
∗ Check CheckGskHonest(gsk)=1.
∗ Store 〈tpmi, bsn, gsk〉 in DomainKeys.
∗ Generate the signature σ ← sig(gsk, µ, bsn).
∗ Check ver(σ, µ, bsn)=1.
∗ Check identify(σ, µ, bsn, gsk)=1.
∗ Check the is no TPM other than tpmi with key gsk′ registered in Members or

DomainKeys such that identify(σ, µ, bsn, gsk′)=1.
∗ If tpmi is honest, then store 〈σ, µ, tpmi, bsn〉 in Signed and output

(SIGNATURE, sid, ssid, σ) to hostj.

– VERIFY

On input (VERIFY, sid, µ, bsn, σ, RL) from V
• Extract all pairs (gski, tpmi) from the DomainKeys and Members, for which

identify(σ, µ, bsn, gsk)=1.
• Set f = 0 if any of the following holds:

∗ More than one key gski was found.
∗ I is honest and no pair (gski, tpmi) was found.
∗ An honest tpmi was found, but no entry 〈?, µ, tpmi, bsn〉 was found in Signed.
∗ There is a key gsk′ ∈ RL, such that identify(σ, µ, bsn, gsk′)=1, and no pair

(tpmi, gski) for honest tpmi was found.
• If f 6= 0, set f=ver(σ, µ, bsn).
• Add (σ, µ, bsn, RL, f) to VerResults, out put (VERIFIED, sid, f) to V .

– LINK

On the input (LINK, sid, σ1, µ1, σ2, µ2, bsn) from V
• Output ⊥ if at least one of the signatures (σ1, µ1, bsn) or (σ2, µ2, bsn) is not valid.
• For each gski in Members and DomainKeys, compute bi ←

identify(σ1, µ1, bsn, gski) and b′i= identify(σ2, µ2, bsn, gski) then set:
∗ f ← 0 if bi 6= b′i for some i.
∗ f ← 1 if bi = b′i = 1 for some i.

• If f is not defined, set f=link(σ1, µ1, σ2, µ2, bsn), and output (LINK, sid, f) to V .

Fig. 24: Game 16 for F


