
Lattice-based Direct Anonymous Attestation (LDAA)

Nada EL Kassema, Liqun Chena, Rachid El Bansarkhanib, Ali El Kaafaranic,
Jan Camenischd, Patrick Houghc, Paulo Martinse, Leonel Sousae

aUniversity of Surrey, UK
bTU Darmstadt, Germany
cUniversity of Oxford, UK

dDfinity, Switzerland
eINESC-ID, Instituto Superior Técnico, Universidade de Lisboa, Portugal

Abstract

The Cloud-Edges (CE) framework, wherein small groups of Internet of Things
(IoT) devices are serviced by local edge devices, enables a more scalable solu-
tion to IoT networks. The trustworthiness of the network may be ensured with
Trusted Platform Modules (TPMs). This small hardware chip is capable of mea-
suring and reporting a representation of the state of an IoT device. When con-
necting to a network, the IoT platform might have its state signed by the TPM
in an anonymous way to prove both its genuineness and secure state through
the Direct Anonymous Attestation (DAA) protocol. Currently standardised
DAA schemes have their security supported on the factoring and discrete log-
arithm problems. Should a quantum-computer become available in the next
few decades, these schemes will be broken. There is therefore a need to start
developing a post-quantum DAA protocol. This paper presents a Lattice-based
DAA (LDAA) scheme to meet this requirement. The security of this scheme is
proved in the Universally Composable (UC) security model under the hardness
assumptions of the Ring Inhomogeneous Short Integer Solution (Ring-ISIS) and
Ring Learning With Errors (Ring-LWE) problems. Compared to the only other
post-quantum DAA scheme available in related art, the storage requirements of
the TPM are reduced twofold and the signature sizes 5 times. Moreover, exper-
imental results show that the signing and verification operations are accelerated
1.1 and 2.0 times, respectively.

Keywords: Lattice based Cryptography, Direct Anonymous Attestation,
Universally Composable Security Model

Email addresses: n.elkassem@surrey.ac.uk (Nada EL Kassem),
liqun.chen@surrey.ac.uk (Liqun Chen), elbansarkhani@cdc.informatik.tu-darmstadt.de
(Rachid El Bansarkhani), elkaafarani@maths.ox.ac.uk (Ali El Kaafarani),
jan@dfinity.org (Jan Camenisch), patrick.hough@maths.ox.ac.uk (Patrick Hough),
paulo.sergio@netcabo.pt (Paulo Martins), las@inesc-id.pt (Leonel Sousa)

Preprint submitted to Elsevier January 7, 2019

1. Introduction

Internet of Things (IoT) devices are becoming increasingly common in our
everyday lives and on industrial applications. Networks of sensors and actua-
tors are being implemented in the general infrastructure to achieve better en-
ergy efficiency; in production to obtain customised mass production; and in
the automotive industry to improve safety, among others. Due to the always
larger amounts of data produced by such sensors, the Cloud-assisted IoT (CoT)
paradigm, wherein the sensors are connected to a central Cloud server, is suf-
fering from scalability issues. In contrast, with the emerging Cloud-Edges (CE)
technology, distributed edge devices, such as smart gateways and local PCs,
offer cloud-like services to only a limited group of devices. These edge devices
should ensure that IoT platforms connecting to the network are in a trustworthy
state and do not constitute an hazard to the remaining nodes.

The Trusted Computing Group (TCG) is an industrial consortium that aims
at the design of standards for trusted systems [1], including the Trusted Plat-
form Module (TPM) [2] and the Trusted Network Connect (TNC) [3]. The
TPM is a piece of security hardware that may be included on the motherboards
of IoT devices [4]. When loading code, including bootloaders, BIOSs, etc., the
binaries are measured and extended into the TPM Platform Configuration Reg-
isters (PCRs). As a result, the PCRs contain a value that is representative of
the current state of the system. When combined with the TNC, which is an
architecture for network access control, the functionality offered by the TPM
may be exploited to ensure that all devices connected to an edge IoT network
are in a secure state [5].

In particular, the Direct Anonymous Attestation (DAA) is a protocol en-
abling a TPM and a Host IoT device not only to authenticate themselves to
a Verifying edge device and to prove that the Host is in a trustworthy state,
but also to do so in a privacy-preserving manner. More concretely, the DAA
provides the TPM with the ability to sign its register values in an anonymous
way, whilst still convincing the Verifier that it possesses valid DAA credentials.
Anonymity is particularly important in applications such as the automotive
industry, wherein tracking of drivers should be prevented.

Recent estimates predict that a quantum computer capable of breaking cryp-
tosystems based on the hardness of factoring and computing the discrete loga-
rithm may be produced in the next few decades [6]. Since the operating period
of IoT devices may be very long, there is a need to update the cryptographic
primitives of current DAA schemes, which rely on classical cryptography, to
be quantum-resistant. In this paper, we design a Lattice-based DAA (LDAA)
scheme suitable for inclusion in future TPMs. Our LDAA scheme is based
on [7], and designed to reduce the workload of the TPM as much as possible.
Unlike in [7], where the Host operations do not help reduce the workload of
the TPM, herein a new lattice based direct anonymous attestation scheme is
proposed that reduces the demands on the TPM in terms of storage costs and
computational resources. Experimental results show that the storage require-
ments of the TPM are reduced twofold and the size of the signatures 5 times

2

when compared with [7]. The signing and verification operations are also ac-
celerated 1.1 and 2.0 times. Furthermore, the security of our LDAA scheme is
based on the hardness of the Ring-ISIS and Ring-LWE problems. As there is no
known quantum algorithm that solves either of these problems, this provides a
promising DAA scheme for the post-quantum age. We also prove the security
of our L-DAA scheme in the Universal Composability (UC) model.

In Section 2, the backgrounds regarding the TPM and lattice-based cryp-
tography are reviewed. Section 3 proposes novel post-quantum cryptographic
primitives, and the new LDAA scheme is built supported on these primitives.
Afterwards, in Section 4, the LDAA security model, supported in the UC frame-
work, is defined. A sketched security proof for our L-DAA scheme, based on this
security model, is presented in Section 5. Finally, we discuss the performance
of the proposed scheme in comparison to related art in Section 6, evaluate it
experimentally in Section 7 and conclude the paper in Section 8. Appendix A
and Appendix B present the security analysis of the novel post-quantum cryp-
tographic primitives. Appendix C discusses several functionalities necessary for
our L-DAA security proof and a detailed security proof of the proposed L-DAA
scheme is presented in Appendix D.

2. Background

In this section, the TPM functionality is reviewed, with a particular focus
on the DAA protocol. Moreover, an overview of lattice-based cryptography is
provided, namely in what regards commitments, signatures and zero-knowledge
proofs-of-knowledge.

2.1. TPM and TNC

The TPM standard defines an hardware chip that serves as the root of trust
of a platform [2]. It can securely store cryptographic key material and platform
measurements that help ensure IoT platforms remain trustworthy. Figure 1
illustrates how the TPM builds a representation of the platform state. As soft-
ware is loaded, hashes of the binaries are extended into the PCRs. The extension
corresponds to the hashing of the concatenation of the previous content of the
PCR with the inputted hash, and the storing of the result in the PCR. The
nature of hardware-based cryptography ensures that the information stored in
the TPM is better protected than software-preserved data. Use-cases benefiting
from the TPM technology are manifold. One may, for instance, seal an hard
drive decryption key to a specific platform state. If the platform is later infected
with a rootkit, the TPM representation of the platform state will change and ac-
cess to the key will not be made available. While this functionality may benefit
CE computing, herein we focus on the attestation functionalities made possible
with the TPM. The TNC defines an architecture for network access control
where these functionalities may be exploited [3]. An edge device, in charge of
an edge network, may require IoT devices to prove that they possess a genuine
TPM platform and that they are in a trustworthy state before access to the

3

IoT Platform

Boot Loaders

UEFI Secure Boot

OS Loader

Kernel &
Boot Drivers

Other Software

TPM

Platform
Configuration
Registers (PCRs)

Issuer

Edge device

DAA credentials

DAA signature of PCRs

Figure 1: TPM-based attestation of an IoT system. As software is loaded, the TPM builds a
representation of the platform state. When access is requested to an Edge network, a DAA
signature of the PCRs is sent to the Edge device

network is granted [5]. This is achieved with the DAA protocol, as represented
on the right-hand side of Figure 1.

DAA. In general, a DAA scheme consists of an issuer, a set of signers and a set
of verifiers. The issuer creates a DAA membership credential for each signer. In
practice, a DAA credential corresponds to a signature of the signer’s identifier
produced by the issuer. A DAA signer consists of the (Host, TPM) pair. Their
membership to the DAA community and trustworthy state is proved by provid-
ing the verifier with a DAA signature of the TPM representation of the Host
state. The DAA signature includes a zero-knowledge proof-of-knowledge, which
is a cryptographic construct used to convince the verifier that the signer pos-
sesses a valid membership credential, but without the verifier learning anything
else about the identity of the signer. In contrast to other privacy-preserving
constructs, like group signatures, DAA does not support the property of trace-
ability, wherein a group manager can identify the signer from a given group
signature. Furthermore, when the DAA issuer also plays the role of a verifier,
the issuer does not obtain more information from a given signature than any ar-
bitrary verifier. However, to prevent a malicious signer from abusing anonymity,
DAA provides two alternative properties as the replacement of traceability. One
is the rogue signer detection, i.e. with a signer’s private key anyone can check
whether a given DAA signature was created under this key or not. The other is
the user-controlled linkability: two DAA signatures created by the same signer
may or may not be linked from a verifier’s point of view. The linkability of DAA

4

signatures is controlled by an input parameter called the basename. If a signer
uses the same basename in two signatures, they are linked; otherwise they are
not.

2.2. Lattice-based Cryptography

Throughout this paper polynomial rings Rq = Zq[x]/〈xn + 1〉 will be used
to build cryptographic operations, where Zq represents the quotient ring Z/qZ
and n is power of 2. Elements of a ∈ Rq are represented as polynomials a =
a0 +a1x+ · · ·+an−1x

n−1 of degree n−1 with integer coefficients. a can also be
represented as a vector (a0, a1, . . . , an−1) ∈ Zn, with ‖a‖∞ denoting the infinity
norm of a (‖a‖∞ = max 0≤j≤n |aj |). Vectors of polynomials are represented as

Â = (a1, . . . ,am) where m is some positive integer. ‖Â‖∞ is the infinity norm
of the vector of polynomials Â defined by ‖Â‖∞ = maxi ‖ai‖∞. Finally, the
following notations are also used. [d] is the set {1, . . . , d} for a positive integer
d. B3n denotes the set of vectors u ∈ {−1, 0, 1}3n having exactly n coordinates
equal to −1, n coordinates equal to 0 and n coordinates equal to 1. β denotes
a positive real norm bound and λ represents a security parameter.

For a fixed Â, the inner-product product Â · Ẑ, ∀Ẑ ∈ Rmq generates a lattice

L(Â) =
{

v|∃Ẑ∈Rm
q
Â · Ẑ = v

}
satisfying Definition 1. Moreover, for a given u,

the lattice L⊥u (Â) is defined as

L⊥u (Â) =
{
Ẑ ∈ Rmq |Â · Ẑ = u

}
.

The security of the proposed DAA scheme will be based on the problems char-
acterised in Definitions 2 and 3. Furthermore, Gaussian distributed samples
over lattices will be required, as per Definition 4.

Definition 1 (Lattices [8]). Let b1,b2, · · · ,bn be linearly independent vectors
over Rm. Let B = [b1|b2| · · · |bn] ∈ Rm×n having these vectors as columns.
The lattice spanned by B is given by

L(B) =

{
n∑
i=1

zibi : zi ∈ Z

}

The vectors b1,b2, · · · ,bn are called a basis of the lattice. The rank n of the
lattice is defined to be the number of vectors in B. If n = m then the lattice L
is said to be a full-rank lattice.

Definition 2 (The Ring Short Integer Solution Problem (Ring-SISn,m,q,β)

[9]). Given m uniformly random elements ai ∈ Rq defining a vector Â =

(a1,a2, . . . ,am), find a nonzero vector of polynomials Ẑ = (z1, z2, . . . , zm) ∈ Rmq
with ‖Ẑ‖∞ ≤ β such that: Â · Ẑ =

∑
i∈[m] ai · zi = 0. The Ring Inhomoge-

neous Short Integer Solution (Ring-ISISn,m,q,β) problem asks to find Ẑ with

‖Ẑ‖∞ ≤ β, and such that: Â · Ẑ = y, for some uniform random polynomial y.

5

Definition 3 (The Ring Learning With Error Problem (Ring-LWE) [10]). Let
χ be an error distribution defined over R, we define the following:

Ring-LWE distribution: Choose a uniformly random ring element s ←↩ Rq
called the secret, and a distribution χ. The ring-LWE distribution As,χ over
Rq × Rq is sampled by choosing a ∈ Rq uniformly at random, choosing ran-
domly the noise e←↩ χ and outputting (a,b) = (a, s · a+e mod q) ∈ Rq×Rq.

Ring-LWE Problems: Let u be uniformly sampled from Rq
1. The decision problem of Ring-LWE asks to distinguish between (a,b) ←
As,χ and (a,u) for a uniformly sampled secret s←↩ Rq.

2. The search Ring-LWE problem asks to return the secret vector s ∈ Rq
given a Ring-LWE sample (a,b) ← As,χ for a uniformly sampled secret
s←↩ Rq.

Definition 4 (Discrete Gaussian Distributions [10]). The discrete Gaussian
distribution on a non empty set L with parameter s, denoted by DL,s, is the dis-
tribution that assigns to each x ∈ L a probability proportional to exp(−π(‖x‖/s)2).

2.3. Boyen’s Signature Scheme

A DAA credential corresponds to a signature of the IoT platform identifier
produced by the Issuer. Herein, signatures will be designed based on Boyen’s
scheme. This scheme operates over a ring Rq, with m = O(log q), and can
sign any message id ∈ {0, 1}`. The scheme includes the algorithms depicted in
Scheme 1. The security of the Boyen signature scheme is based on the hardness
of the Ring-ISIS problem and is proved to be secure in the standard model. We
refer to [11] for the security proof. The proof was improved later in [12] by using
a new trapdoor and ring analogue. A modification to Boyen’s signature scheme
will be proposed in Section 3 to support the issuing of DAA credentials. This
modification will be proven to be secure in Appendix A.

2.4. Baum et al’s Commitment Scheme

The proposed DAA technique follows a non-interactive sigma protocol con-
struction. Sigma protocols are a basic building block for zero-knowledge proofs-
of-knowledge, wherein the prover commits to a series of interrelated values, an
array of challenges is produced, and the prover opens a subset of the com-
mitments according to the challenges. Each opening reveals a property of the
DAA credential held by the IoT device. Given sufficient challenges/openings, an
Edge device will be convinced of the validity of those credentials. Herein, Baum
et al’s commitment scheme [14], shown in Scheme 2 is exploited to develop a
quantum-resistant DAA. The security of this commitment scheme is based on
the hardness of the Ring-ISIS problem. We refer to [14] for the security proof.
In Section 3, Baum et al’s commitment scheme will be modified to handle the
splitting of the prover into two entities (the TPM and the Host) efficiently, and
the new security proof will be introduced in Appendix B.

6

Scheme 1: Boyen’s Signature Scheme

• KeyGen(1λ):

1. Generates a vector of polynomials Â ∈ Rmq together with a trap-

door T̂ . The trapdoor enables sampling vectors of polynomials
following a discrete Gaussian distribution on L⊥v (Â|Âid) for any
v ∈ Rq and Âid ∈ Rmq where | denotes concatenation [13].

2. Samples uniform random vectors of polynomials Âi ∈ Rmq for
i ∈ (0, [`]).

3. Selects a uniform random syndrome u ∈ Rq.
4. Outputs the secret key sk := T̂ and the public key pk :=

(Â, Â0, Â1, . . . , Â`,u, q, β).

• Sign(sk, id ∈ {0, 1}`):

1. Generates a vector of polynomials Âid = [Â|Â0 +
∑`
i=1 idi · Âi] ∈

R2m
q .

2. Using the secret key T̂ , samples Ẑ = (z1, . . . , z2m)←↩ DL⊥u (Âid),s
,

such that Âid · Ẑ ≡ u mod q and ‖Ẑ‖∞ ≤ β.

3. Outputs the signature Ẑ = (z1, . . . , z2m).

• Verify(pk, id, Ẑ): If Âid · Ẑ ≡ u mod q and ‖Ẑ‖∞ ≤ β are satisfied,
output 1, else 0.

Scheme 2: Baum et al’s Commitment Scheme

• C.KeyGen(k): Given a security parameter k, generates the system
parameters (q, Rq, α, γ, B̂), where q is a prime modulus defining

Rq, α and γ are positive numbers, and B̂ is a uniformly random

vector of polynomials in R(d+1)×k
q , for some positive integer d.

• Commit (Ŝ): To commit to a message Ŝ ∈ Rdq , choose a uniformly

random vector of invertible polynomials R̂ ∈ D ⊆ Rk such that
‖R̂‖∞ ≤ α. Compute C = COM(Ŝ, R̂) := B̂R̂ + (0, Ŝ), and output
C.

• Open(C, Ŝ, R̂,p): A valid opening of a commitment C is a 3-tuple:
Ŝ ∈ Rq, R̂ ∈ Rk and an invertible polynomial p ∈ R such that
‖p‖∞ ≤ γ. The verifier checks that

B̂R̂+ (0,pŜ) = pC with ‖R̂‖∞ ≤ α

7

2.5. ISIS Proof

DAA signatures will correspond to a zero-knowledge proof of a Boyen’s sig-
nature. The techniques developed herein to achieve that can be seen as a gener-
alisation of the scheme proposed by Ling et al [15] to prove the knowledge of a
small vector x with ||x||∞ ≤ β such that Ax = y mod q for a secret x ∈ Znq and
public A ∈ Zm×nq , y ∈ Zmq . Instead of arguing directly about x, x is decomposed
into k = dlog2 βe vectors of norm at most 1:

x =

k∑
i=1

2i−1bi

In order to prevent the leakage of the bi, elements from {−1, 0, 1} are added
to the decomposed vectors, so the number of each of them is the same, producing
xi = (bi|ti) ∈ B3n. Finally the matrix A is also extended with 2n 0 columns
A′ = (A|02m×n) such that:

A′
k∑
i=1

2i−1xi = y

The prover now commits to

c1 = COM
(
π0, . . . , πk−1, A

′∑k
i=1 2i−1ri

)
c2 = COM (π0(r0), . . . , πk−1(rk−1))
c3 = COM

(
π0(r0 + x0), . . . , πk−1(rk−1 + xk−1)

)
for random r0, . . . , rk−1 ←↩ Z3n

q and uniformly random permutations π0, . . . , πk−1.
Then, the verifier randomly chooses a challenge i←↩ {1, 2, 3} and the prover re-
veals cj∀j 6= i. If c2, c3 are revealed, the prover will be convinced that the xi are
indeed small. In the other two cases the verifier will be able to validate either
the left or the right-hand side of

A′
k∑
i=1

2i−1ri = A′
k∑
i=1

2i−1(ri + xi)− y,

giving the verifier confidence that the prover knows a preimage of y. Since
revealing all commitments would also reveal the x, the above described process
has to be repeated several times.

3. Proposed Quantum-Resistant DAA Techniques

As noticed in Section 2.1, DAA credentials correspond to a signature of the
IoT identifier produced by the Issuer. In practice, DAA credentials are not held
by a single party, but part of them are stored in the TPM, and another part
in the IoT Host. Boyen’s signature scheme is herein modified as described in
Scheme 3 to achieve this key splitting. The Issuer’s public-key now includes one

8

Scheme 3: Modified Boyen’s Signature Scheme

• KeyGen(1λ): samples one more uniform random vector of polynomi-
als Ât ∈ Rmq than KeyGen in Scheme 1 and outputs the secret key

sk := T̂ and the public key pk := (Ât, Â, Â0, Â1, . . . , Â`,u, q, β).

• Sign(sk, id ∈ {0, 1}`):

1. Samples a vector of polynomials Ẑt = (z1, . . . , zm) ←↩ DmZn,s

such that ‖Ẑt‖∞ ≤ β, and computes Ât · Ẑt ≡ ut mod q.

2. Generates a vector of polynomials Âid = [Â|Â0 +
∑`
i=1 idi · Âi] ∈

R2m
q , as in the Boyen scheme.

3. Using the secret key T̂ , samples Ẑh = (zm+1 . . . , z3m) ←↩
DL⊥uh

(Âid),s
, with ‖Ẑh‖∞ ≤ β and such that Âid · Ẑh ≡ uh =

(u− ut) mod q.

4. Outputs the signature Ẑ = [Ẑt|Ẑh] = (z1, . . . , z3m).

• Verify(pk, id, Ẑ): If [Ât|Âid] · Ẑ ≡ u mod q and ‖Ẑ‖∞ ≤ β are
satisfied, output 1, else 0.

more random vector of polynomials Ât ∈ Rq. Each signature is comprised of two

vectors of polynomials Ẑt and Ẑh of small norm such that [Ât|Âid] · [Ẑt|Ẑh] = u.
Ẑt is held by the TPM and Ẑh by the Host. The security of this modified
Boyen signature scheme is based on the original Boyen signature scheme which
is unforgeable under the hardness assumption of the SIS problem [11]. The
unforgeability of the modified Boyen signature can be reduced to the existential
unforgeability of the original Boyen signature scheme. A detailed analysis of
the security of the modified scheme can be found in Appendix A.

In order to create a DAA signature, which is jointly signed by a TPM and
its Host, we modify Scheme 2 to allow for two parties to commit a set of secret
values jointly. This modification is reflected in Scheme 4 and is based on the
additive homomorphism of the scheme. Let Ŝt ∈ Rltq and Ŝh ∈ Rlhq , for some
integers lt and lh, respectively be the TPM and the Host’s inputs to be concate-
nated, and st and sh in Rq be the TPM and the host’s corresponding inputs to
be added. With Scheme 4, the TPM and the Host are able to jointly commit to

the vector
(
st + sh|Ŝt|Ŝh

)
without one learning about the input values of the

other. The original Baum et al. scheme was proved to hold the properties of
statistically hiding and computationally binding and the proof is based on an
instantiation of the Ring-SIS problem. The security of this modified commit-
ment scheme is based on the original scheme. We argue that splitting the prover
role into two entities does not affect these two properties. A detailed security
analysis of our modification is given in Appendix B.

9

Scheme 4: Modified Baum et al’s Commitment Scheme

To commit to a message Ŝ = [(st+sh)|Ŝt|Ŝh] ∈ Rlt+lh+1
q , the TPM and the

host share a uniformly random vector of polynomials B̂ in R(lt+lh+2)×k
q .

To commit to a message [st|Ŝt], the TPM:

• Chooses a uniformly random vector of invertible polynomials R̂t ∈ D
such that ‖R̂t‖∞ ≤ αt for some small constant αt.

• Computes Ct = COM([st|Ŝt], R̂t) := B̂R̂t+(0|st|Ŝt|0̂ ∈ Rlhq), outputs
Ct.

To commit to a message [sh|Ŝh] the host:

• Chooses a uniformly random vector of invertible polynomials R̂h ∈ D
such that ‖R̂h‖∞ ≤ αh for some small constant αh.

• Computes Ch = COM([sh|Ŝh], R̂h) := B̂R̂h + (0|sh|0̂ ∈ Rltq |Ŝh), out-
puts Ch.

Now we have C = Ct + Ch = B̂(R̂t + R̂h) + (0|st + sh|Ŝt|Ŝh) = COM([st +
sh|Ŝt|Ŝh], R̂t+R̂h) = COM(Ŝ, R̂), where R̂ = R̂t+R̂h and ‖R̂‖∞ < αt+αh.

3.1. Proposed LDAA Scheme

A DAA scheme supported on the above-described quantum-resistant cryp-
tographic constructs is now proposed. The security of this scheme is based on
the Ring-ISIS and Ring-LWE problems. Before proceeding with the description
of the LDAA scheme, we define some standard functionalities that are used in
the TPM technology, as specified in [16]. A detailed characterisation of these
functionalities is presented in Appendix C of this paper.

• Fca is a common certificate authority functionality that is available to all
parties.

• FDcrs is a common reference string functionality that provides participants
with all system parameters.

• Fauth∗ is a special authenticated communication functionality that pro-
vides an authenticated channel between the issuer and the TPM via the
host.

• F lsmt is a secure message transmission functionality that provides an au-
thenticated and encrypted communication between the TPM and the host.

The L-DAA scheme includes the Setup, Join, Sign, Verify, and Link pro-
cesses. The Setup step is described in Scheme 5 and corresponds to the genera-
tion of the parameters shared by the Issuer’s community, along with the Issuer’s
secret-key and the initialisation of its internal state.

10

Scheme 5: LDAA Setup

• Fcrs creates the system parameters: sp = (λ, q, n,m,Rq, c, β, β′, `, η),
where λ, c and η are positive integer security parameters, β and β′

are positive real numbers such that β, β′ < q, and ` is the length of
a message to be signed with Boyen’s signature scheme.

• Upon input (SETUP, sid), where sid is a unique session identifier, the
Issuer first checks that sid = (I, sid′) for some sid′, then creates its
key pair. The Issuer’s public key is pp = (sp, Ât, ÂI , Â0, Â1, ..., Â`,
u, H,H0,H1), where Ât, ÂI , Âi(i = 0, 1, ..., `) ∈ Rmq , u ∈ Rq,
H : {0, 1}∗ → Rq,H0 : {0, 1}∗ → {1, 2, 3}c andH1 : {0, 1}∗ → {0, 1}η
be a collision resistant hash function. The Issuer’s private key is
T̂I , which is the trapdoor of ÂI and ‖T̂I‖∞ ≤ ω, for some small
real number ω. The Issuer initialises the list of joining members
(Members← ∅) and proves that his secret key is well formed by gen-
erating a proof of knowledge πI , and registers the key (T̂I , πI) with
Fca. Finally, it outputs (SETUPDONE, sid).

The Join process is a protocol running between the Issuer I and a platform,
consisting of a TPM tpmi and a Host hostj (with an identifier id). More than one
Join session be may run in parallel. A unique sub-session identifier jsid is used
and this value is given to all parties. The issuer I checks that the TPM-Host
is qualified to execute the trusted computing attestation service, then issues a
credential enabling the platform to create attestations. Via the unique session
identifier jsid, the issuer can differentiate between various Join sessions that
are executed simultaneously. A Join session works in two distinct phases, Join
request and Join proceed. During the Join request, described in Scheme 6, the
TPM generates its private-key X̂t and the corresponding public-key ut, along
with a a linking token nymI associated with the Issuer, and a proof that the
public-key and the token are well formed. The Issuer finalises the Join request
phase by checking the validity of the proof and that the TPM-Host has not
been provisioned before. The linking token enables the Issuer to ensure that no
two TPMs hold the same private key in the Join proceed step. This prevents
a signature from a TPM from tracing back to the signature of another TPM.
Moreover, during Join proceed (see Scheme 7), the Issuer samples a small X̂h

such that [Ât|Âid] · [X̂t|X̂h] = u. X̂h is then transmitted to the Host.
After obtaining the credential from the Join process, tpmi and hostj can sign a

message µ with respect to a basename bsn. We use a unique sub-session identifier
ssid to allow for multiple Sign sessions. Each session has two phases, Sign request
and Sign proceed. While the first, described in Scheme 8, is mostly responsible
for ensuring the TPM and the Host have compatible secret-key shares; in the
second, described in Scheme 9, a zero-knowledge proof-of-knowledge of small
X̂t and X̂h such that [Ât|Âid] · [X̂t|X̂h] = u is produced. More concretely, the

11

Scheme 6: LDAA Join Request

• On input query (JOIN, sid, jsid, tpmi), the host hostj forwards (JOIN,
sid, jsid) to I, who replies by sending (sid, jsid, ρ, bsnI) back to hostj,
where ρ is a uniform random nonce ρ ←↩ {0, 1}λ, and bsnI is the
Issuer’s base name. This message is then forwarded to tpmi.

• The TPM proceeds as follows:

1. It checks that no such entry exists in its storage.

2. It samples a private key: X̂t = (x1, . . . ,xm) ←↩ Rmq with the

condition ‖X̂t‖∞ ≤ β, and stores its key as (sid, hostj, X̂t, id).

3. It computes the corresponding public key ut = Ât · X̂t mod q,
a link token nymI = H(bsnI) · x1 + eI mod q for some error
eI ←↩ DZn,s′ such that ‖eI‖∞ < β′, and generates a signature
based proof:

πut = SPK
{
public := {sp, Ât, ut, bsnI , nymI},

witness := {X̂t = (x1, . . ., xm), eI} :
ut = Ât · X̂t mod q ∧ ‖X̂t‖∞ ≤ β ∧ nymI = H(bsnI) ·x1 + eI

mod q ∧ ‖eI‖∞ ≤ β′
}

(ρ).

4. It sends (nymI , id, ut, πut) to the issuer I via the host by means
of Fauth∗ , i.e., it gives Fauth∗ an input (SEND, (nymI , πut), (sid,
tpmi, I), jsid, hostj).

• The host, upon receiving (APPEND, (nymI , πut), (sid, tpmi, I)) from
Fauth∗ , forwards it to I by sending (APPEND, (nymI , πut

), (sid,
tpmi, I)) to Fauth∗ and keeps the state (jsid, ut, id).

• The Issuer, upon receiving (SENT, (nymI , πut
), (sid,

tpmi, I), jsid, hostj) from Fauth∗ , verifies the proof πut to make sure
that tpmi /∈ Members. I stores (jsid, nymI , πut , id, tpmi, hostj), and
generates the message (JOINPROCEED, sid, jsid, id, πut

).

12

Scheme 7: LDAA Join Proceed

• If the platform chooses to proceed with the Join session, the message
(JOINPROCEED, sid, jsid) is sent to the issuer, who performs as
follows:

1. It checks the record (jsid, nymI , id, tpmi, hostj, πut
). For all

nym′I from the previous Join records, the issuer checks whether
‖nymI−nym′I‖∞ ≤ 2β′ holds; if yes, the issuer treats this session
as a rerun of the Join process; otherwise the issuer adds tpmi to
Members and goes to Step 2. If this is a rerun, the issuer will
further check if ut = u′t; if not the issuer will abort; otherwise
the issuer will jump to Step 4 returning X̂h = X̂ ′h. Note that
this double check will make sure that any two DAA keys will
not include the same x1 value.

2. It calculates the vector of polynomials Âh = [ÂI |Â0 +
∑`
i=1 idi ·

Âi] ∈ R2m
q .

3. It samples, using the issuer’s private key T̂I , a preimage X̂h =
(xm+1, . . . ,x3m) of u − ut such that: Âh · X̂h = uh = u − ut
mod q and ‖X̂h‖∞ ≤ β.

4. It sends (sid, jsid, X̂h) to hostj via Fauth∗ .

• When the host receives the message (sid, jsid, X̂h), it checks that
the equations Âh · X̂h = uh mod q and u = ut + uh are satis-
fied with ‖X̂h‖∞ ≤ β. If the checks are correct, then hostj stores

(sid, tpmi, id, X̂h, ut) and outputs (JOINED, sid, jsid).

13

Scheme 8: LDAA Sign Request

• Upon input (SIGN, sid, ssid, tpmi, bsn, µ), hostj looks up the record

(sid, tpmi, id, ut, X̂h), and sends the message (sid, ssid, bsn, µ) to
tpmi.

• The TPM then does the following:

1. It asks hostj for a permission to proceed.

2. It makes sure to have a Join record (sid, id, X̂t, hostj).

3. It generates a sign entry (sid, ssid, bsn, µ) in its record.

4. Finally it outputs (SIGNPROCEED, sid, ssid, bsn, µ).

TPM and the Host respectively commit to random strings each showing that
either X̂t and X̂h are small or that Ât · X̂t = ut and Âh · X̂h = uh. Through the
additive homomorphism of Scheme 4, the addition of these commitments results
on commitments to strings showing that either X̂t|X̂h is small or that [Ât|Âid] ·
[X̂t|X̂h] = u. The opening of all the commitments would reveal the value of
X̂t|X̂h. Instead, this procedure is iterated multiple times, and at each iteration
a subset of the commitments is revealed at random. The randomness is derived
from the message to be signed. The prover, by checking that the expected
properties are verified for each opening, is convinced that it is communicating
with a genuine TPM/Host pair. This proof is described in a detailed manner
in Section 3.2. In addition, a nym tag is produced that is associated with the
basename bsn.

The verify algorithm, described in Scheme 10, allows anyone to check whether
a signature σ on a message µ with respect to a basename bsn is valid. More-
over, the link algorithm, depicted in Scheme 11 allows anyone to check whether
two signatures (σ, µ) and (σ′, µ′) that were generated for the same basename
bsn stem from the same TPM. This done by checking whether the difference
between the two nym tags has a small norm.

3.2. The proofs θt, θh and π

In this section, the computation of the θt, θh and π is described in detail.
The techniques employed herein can be seen as generalisations of those de-
scribed in Section 2.5. While in the proof described in Section 2.5 the ma-
trix A was public, here the matrix [Ât|Âh] depends on the secret identifier
id. We employ the techniques described in [17] of rewriting [Ât|Âh] · [X̂t|X̂h]
as [Ât|ÂI |Â0|Â1| . . . |Âl] · [X̂t|X̂h1

|X̂h2
|id1X̂h2

| . . . |idlX̂h2
], where X̂h = [X̂h1

∈
Rmq |X̂h2

∈ Rmq], for a public [Ât|ÂI |Â0|Â1| . . . |Âl], and extending and ran-
domising id such that [15] is still applicable.

Our main technical innovation is the proposal of a proof about values that are
shared between the TPM and the Host. Let k = dlog2 βe. Since we are operating
in the ring Rq = Zq[x]/〈xn+1〉, with n = O(λ), then we can transform products

14

Scheme 9: LDAA Sign Proceed

• When tpmi gets permission to proceed for ssid, the TPM proceeds as
follows:

1. It retrieves the records (sid, id, hostj, πut) and
(sid, ssid, bsn, µ).

2. Depending on the input bsn, there are two cases: If bsn 6= ⊥,
the tpm computes the tag nym = H(bsn) · x1 + e mod q, for
an error term e←↩ DZn,s′ such that ‖e‖∞ < β′ and generates a
commitment as described in Subsection 2.4:

θt = COM
{
public := {sp, Ât, nym, bsn, H, ut},

witness := {X̂t = (x1, . . . ,xm), e} :
{Ât · X̂t = ut ∧ ‖X̂t‖∞ ≤ β} ∧ nym =

H(bsn) · x1 + e ∧ ‖e‖∞ ≤ β′
}
.

If bsn=⊥, then tpmi samples a random value bsn← {0, 1}λ, and
then follows the previous case.

3. tpmi sends (sid, ssid, θt, µ) to hostj.

4. When hostj receives the message (sid, ssid, θt, µ), it checks that
θt is valid, and subsequently generates a commitment again as
described in Subsection 2.4:

θh = COM
{
public := {sp, Âh, uh, µ, θt},

witness := {X̂h = (xm+1, . . . ,x3m), id} :

{Âh · X̂h = uh ∧ ‖X̂h‖∞ ≤ β}
}
.

The combination of these two commitments θt and θh as de-
scribed in Subsection 2.4 follows the additive homomorphic
property of the commitment scheme.

5. The TPM and Host run the standard Fiat-Shamir transforma-
tion, and the result is a signature based proof (signed on the
message µ):

π = SPK
{
public := {pp, nym, bsn},

witness := {X̂ = (x1, . . . ,x3m), id, e} :
[Ât|Âh] · X̂ = u ∧ ‖X̂‖∞ ≤ β ∧ nym = H(bsn) · x1 + e

mod q ∧ ‖e‖∞ ≤ β′
}

(µ).

The details of the θt, θh and π computation will be given below.

6. hostj outputs the L-DAA signature σ = (nym, bsn, π).

15

Scheme 10: LDAA Verify

• Let RL denote a revocation list with all the rogue TPM’s secret keys.
Upon input (VERIFY, sid, bsn, σ, µ, RL), the verifier proceeds as
follows:

1. It parses σ as (nym, bsn, π), and checks SPK on π with respect
to bsn, nym, µ and u, verifying the statement:

[Ât|Âh] · X̂ = u ∧ ‖X̂‖∞ ≤ β ∧
nym = H(bsn) · x1 + e mod q ∧ ‖e‖∞ ≤ β′.

2. It checks that the secret key X̂t that was used to generate nym,
doesn’t belong to the revocation list RL. This is done by check-
ing whether the following equation holds:

∀x1 ∈ RL, ‖H(bsn) · x1 − nym‖∞ ≤ β′.

3. If all checks passed, the verifier outputs (VERIFIED, ssid, 1),
and (VERIFIED, ssid, 0) otherwise.

Scheme 11: LDAA Link

• Upon input (LINK, sid, σ, µ, σ′, µ′, bsn) the verifier follows the
following steps:

1. Starting from σ = (nym, bsn, π) and σ′ = (nym′, bsn, π′), the
verifier verifies σ and σ′ individually.

2. If any of the signatures is invalid, the verifier outputs ⊥.

3. Otherwise if ‖nym − nym′‖∞ < 2β′, the verifier outputs 1
(linked); otherwise 0 (not linked).

16

of elements in Rq into matrix-vector products. More concretely, we construct
the matrices Āi = rot(ai), as defined in [17], for i = (1, 2, ..., (` + 3)m), for all
polynomials ai in Ât, ÂI , Â0, ..., Â`, respectively, and the vectors x̄i whose
entries are the coefficients of xi, for i = (1, 2, . . . , 3m), for all polynomials xi in
X̂t and X̂h, respectively, such that the products Āix̄i and aixi are isomorphic.
Furthermore, the following extensions are considered:

• id = {id1, ..., id`} ∈ {0, 1}` is extended to id∗ ∈ B2` which is the set of
vectors in {0, 1}2` of hamming weight `.

• Ā∗i = [Āi|0 ∈ Zn×3n] for i = 1 to i = (3 + `)m and Ā∗i = 0 for (3 + l)m <
i ≤ (3 + 2l)m.

• x̄(2+i)m+j = id∗i · x̄2m+j for 1 ≤ i ≤ 2` and 1 ≤ j ≤ m.

Using techniques similar to those described in Section 2.5, the vectors x̄i
and e are decomposed and extended into vectors of norm at most 1 such that
x̄i =

∑k
d=1 2d−1x̄di [1 : n] and e =

∑k
j=1 ej [1 : n]2j−1, where x̄di [1 : n] and

ej [1 : n] correspond to the first n entries of x̄di and ej , respectively, and

{ej}kj=1, {x̄
j
1}kj=1, {x̄

j
2}kj=1, . . . , {x̄

j
(3+2l)m}

k
j=1 ∈ B3n,

i.e. they have n entries equal to −1, n entries equal to 0 and n entries equal to
1.

The extensions of the Āi and id and the decompositions of the extensions of
the xi satisfy:

u = [Ât|Âh] · X̂

= [Ât|ÂI |Â0 +
∑̀
i=1

idi · Âi] · X̂

=

3m∑
i=1

Āi · x̄i +
∑̀
j=1

idj ·
m∑
i=1

Āi+(j+2)m · x̄i+2m

=

3m∑
i=1

Ā∗i ·

(
k∑
d=1

2d−1x̄di

)
+

2∑̀
j=1

id∗j ·
m∑
i=1

Ā∗i+(j+2)m ·

(
k∑
d=1

2d−1x̄di+2m

)

=

(3+2`)m∑
i=1

Â∗i

(
k∑
d=1

2d−1x̄di

)

The commitment algorithm COM used to compute θt and θh is as explained
in Scheme 4. To produce θt, the TPM samples the vectors {rje ←↩ Z3n

q }kj=1 and

{rji ←↩ Z3n
q }kj=1 for i ∈ [m] and j ∈ [k]; and the permutations {φj ←↩ S3n}kj=1

associated with X̂t, and {ϕj ←↩ S3n}kj=1 for e. The following terms are also

calculated: D = [rot(H(bsn))|0] ∈ Zn×3nq , vji = xji + rji and vje = ej + rje. Now,
θt = (Ct1,Ct2,Ct3) is computed with:

17

• Ct1 = COM(
∑m
i=1 Ā

∗
i ·(
∑k
j=1 2j−1rji), D·(

∑k
j=1 2j−1rj1)+[I|0]·(

∑k
j=1 2j−1rje),

{φj}kj=1, {ϕj}kj=1).

• Ct2 = COM({φj(rj1), . . . , φj(r
j
m)}kj=1, {ϕj(rje)}kj=1).

• Ct3 = COM({φj(vj1), . . . , φj(v
j
m)}kj=1, {ϕj(vje)}kj=1).

In a similar fashion, the Host samples the vectors {rji ←↩ Z3n
q }kj=1 for i−m ∈

[(2 + 2`)m] and j ∈ [k], and rid∗ ←↩ Z2`
q ; and the permutations τ ←↩ S2` for

id∗, {δj ←↩ S3n}kj=1 for X̂h1
and {ψj ←↩ S3n}kj=1 for X̂h2

. It also computes

vji = xji + rji and vid∗ = id∗ + rid∗ . Then θt = (Ch1,Ch2,Ch3) is computed:

• Ch1 = COM(
∑(3+2`)m
i=m+1 Ā∗i · (

∑k
j=1 2j−1rji), τ, {δj}kj=1, {ψj}kj=1).

• Ch2 = COM({δj(rjm+1), · · · , δj(rj2m), ψj(r
j
2m+1), . . . , ψj(r

j
3m), ψj(r

j
(τ(1)+2)m+1),

. . . , ψj(r
j
(τ(1)+3)m), . . . , ψj(r

j
(τ(2`)+2)m+1), . . . , ψj(r

j
(τ(2`)+3)m)}kj=1, τ(rid∗)).

• Ch3 = COM({δj(vjm+1), . . . , δj(v
j
2m), ψj(v

j
2m+1), . . . , ψj(v

j
3m), ψj(v

j
(τ(1)+2)m+1),

. . . , ψj(v
j
(τ(1)+3)m), . . . , ψj(v

j
(τ(2`)+2)m+1), . . . , ψj(v

j
(τ(2`)+3)m)}kj=1, τ(vid∗)).

The proof π is computed using a strategy similar to Section 2.5, but where
the commitments are produced using the homomorphic properties of Scheme 4.
Since multiple iterations of the process described in Section 2.5 are necessary to
achieve high soundness, tpmi hands out the commitments of the total c rounds
to hostj. hostj then adds its own commitments to those of the TPM, generating
CMT = (C1,C2,C3) such that:

• C1 = COM(
∑m
i=1 Ā

∗
i · (

∑k
j=1 2j−1rji) +

∑(3+2`)m
i=m+1 Ā∗i · (

∑k
j=1 2j−1rji), D ·

(
∑k
j=1 2j−1rj1) +[I|0]·(

∑k
j=1 2j−1rje), τ, {φj}kj=1, {δj}kj=1, {ψj}kj=1, {ϕj}kj=1).

• C2 = COM({φj(rj1), . . . , φj(r
j
m), δj(r

j
m+1), . . . , δj(r

j
2m), ψj(r

j
2m+1), . . . , ψj(r

j
3m),

ψj(r
j
(τ(1)+2)m+1), . . . , ψj(r

j
(τ(1)+3)m), . . . ψj(r

j
(τ(2`)+2)m+1), . . . , ψj(r

j
(τ(2`)+3)m)}kj=1,

{ϕj(rje)}kj=1, τ(rid∗)).

• C3 = COM({φj(vj1), . . . , φj(v
j
m), δj(v

j
m+1), . . . , δj(v

j
2m), ψj(v

j
2m+1), . . . , ψj(v

j
3m),

ψj(v
j
(τ(1)+2)m+1), . . . ψj(v

j
(τ(1)+3)m), . . . , ψj(v

j
(τ(2`)+2)m+1), . . . , ψj(v

j
(τ(2`)+3)m)}kj=1,

{ϕj(vje)}kj=1, τ(vid∗)).

Inspired by [18], instead of directly storing the C1, C2 and C3 values in π we
opt to store an hash of them instead. A significant reduction in the proof size is
achieved. Challenges are generated following a Fiat-Shamir approach, namely
by using a hash function that consumes H1(C1)|H1(C2)|H1(C3) and outputs a
random looking distribution of {1, 2, 3}c:

18

{CHj}cj=1 = H0(µ,H1(Cj
1)|H1(Cj

2)|H1(Cj
3)}cj=1, pp) ∈ {1, 2, 3}c.

For each challenge, the tpmi and the hostj combine the required values to
produce the following responses:

• if CH = 1, C2 and C3 are revealed, corresponding to all the permuted
τ(id∗), τ(rid∗), {φj(xji)}kj=1, {δj(xji)}kj=1, {ψj(xji)}kj=1, {ϕj(ej)}kj=1,

{ϕj(rje)}kj=1, {φj(rji)}kj=1, {δj(rji)}kj=1 and {ψj(rji)}kj=1.

• if CH = 2, C1 and C3 are revealed, corresponding to the permutations
τ , {φj}kj=1, {δj}kj=1, {ψj}kj=1, {ϕj}kj=1 and all the v values.

• if CH = 3, C1 and C2 are revealed, corresponding to all the permutations
τ , {φj}kj=1, {δj}kj=1, {ψj}kj=1, {ϕj}kj=1 and all the r values.

Finally hostj sends the proof to the verifier.
Depending on the prover’s inputs, the verifier can always check 2 out of 3

commitments. When CH = 1, the verifier will be convinced that the ej
i and the

x̄j
i were small. When CH = 2 or CH = 3, the verifier will be able to validate

either the left or the right-hand side of the following expressions:

(3+2`)m∑
i=1

Â∗i

k∑
d=1

2d−1rdi =

(3+2`)m∑
i=1

Â∗i

k∑
d=1

2d−1
(
x̄di + rdi

)
− u

D ·
k∑
d=1

2d−1rd1 + [I|0] ·
k∑
d=1

2d−1rde =

D ·
k∑
d=1

2d−1
(
x̄d1 + rd1

)
+ [I|0] ·

k∑
d=1

2d−1
(
rde + ed

)
− nym

4. Security Model of DAA

In this paper, we adapt the security model for DAA given by Camenish et
al. in [16]. The security definition is given in the Universal Composability (UC)
model, represented in Figure 2, with respect to an ideal functionality F ldaa. In
UC, an environment ε should not be able to distinguish with a non-negligible
probability between two worlds:

1. The real world, where each party Pi in the DAA protocol executes its
assigned part of the protocol Π. The network is controlled by an adversary
A that communicates with ε.

2. The ideal world, in which all parties forward their inputs to a trusted third
party, called the ideal functionality F ldaa, which internally performs all the
required tasks and creates the parties’ outputs.

19

ε

A

P1 P2
... Pn

Π

S

P1P2
...Pn

F ldaa

Real World Ideal World

Figure 2: Universal composability security model: the real and the ideal world executions are
indistinguishable to the environment ε.

A protocol Π is said to securely realize F ldaa if for every adversary A performing
an attack in the real world, there is an ideal world adversary S that performs
the same attack in the ideal world. More precisely, given a protocol Π, an ideal
functionality Fldaa and an environment ε, we say that Π securely realises Fldaa
if the real world in which Π is used is as secure as the ideal world in which F ldaa
is used. In general, the security properties that a DAA scheme should enjoy are
the following:

• Unforgeability This property requires that the issuer is honest and should
hold even if the host is corrupt. If all the TPMs are honest, then no adver-
sary can output a signature on a message M with respect to a basename
(bsn). On the other hand, if not all the TPMs are honest, say n TPMs are
corrupt, the adversary can at most output n unlinkable signatures with
respect to the same basename.

• Anonymity : This property requires that the entire platform (tpmi + hostj)
is honest and should hold even if the issuer is corrupt. Starting from two
valid signatures with respect to two different basenames, the adversary
cannot tell whether these signatures were produced by one or two different
honest platforms.

• Non-frameability : This requires that the entire platform (tpmi + hostj) is
honest and should hold even if the issuer is corrupt. It ensures that no
adversary can produce a signature that links to signatures generated by
an honest platform.

As in the standardised DAA schemes supported by the TPM (either the
TPM Version 1.2 or the TPM Version 2.0), in the proposed L-DAA scheme,
privacy was built on the honesty of the entire platform, i.e., both the TPM and

20

Scheme 12: Ideal Setup

On the input(SETUP, sid) from the issuer I, F ldaa does the following:

• Verify that (I, sid′) = sid and output (SETUP, sid) to S.

• SET Algorithms. Upon receiving the algorithms (Kgen, sig, ver, link,
identify) from the simulator S, it checks that (ver, link, identify) are
deterministic [Check-I].

• Output (SETUPDONE, sid) to I.

the host are supposed to be honest. In [19] it is considered that the TPM may
be corrupt and privacy must hold whenever the host is honest, regardless of the
corruption state of the TPM. In order to achieve the best performance, we do
not consider this case in this work and leave it for a future work.

4.1. The Ideal Functionality F ldaa
The ideal functionality F ldaa is now formally defined under the assumption

of static corruption, i.e., the adversary decides beforehand which parties are
corrupt and informs F ldaa about them. F ldaa has five interfaces (Setup, Join,
Sign, Verify, Link) described in Schemes 12, 13, 14, 15 and 16. Scheme 12
provides a functionality akin to Scheme 5; 13 to 6 and 7; 14 to 8 and 9; 15 to
10; and 16 to 11. In the UC model, several sessions of the protocol are allowed
to run at the same time and each session will be given a global identifier sid
that consists of an issuer I and a unique string sid′, i.e. sid = (sid′, I). We
also uniquely identify the Join and Sign sub-sessions with jsid and ssid. F ldaa
is parameterized by a leakage function l : {0, 1}∗ → {0, 1}∗, which models the
information leakage that occurs in the communication between a host hostj and a
TPM tpmi. We also define the following algorithms that are used in Schemes 12,
13, 14, 15 and 16:

• Kgen(1λ): A probabilistic algorithm that takes a security parameter λ
and generates keys gsk for honest TPMs.

• sig(gsk, µ, bsn): A probabilistic algorithm used for honest TPMs. On
input of a key gsk, a message µ and a basename bsn, it outputs a signature
σ.

• ver(σ, µ, bsn): A deterministic algorithm that is used in the VERIFY
interface. On input of a signature σ, a message µ and a basename bsn, it
outputs f = 1 if the signature is valid, f = 0 otherwise.

• link(σ1, µ1, σ2, µ2, bsn): A deterministic algorithm that will be used in
the LINK interface. It outputs 1 if both σ1 and σ2 were generated by the
same TPM with respect to the same bsn, 0 otherwise.

21

Scheme 13: Ideal Join

JOIN

1. JOIN REQUEST: On input (JOIN, sid, jsid, tpmi) from the host
hostj to join the TPM tpmi, the ideal functionality F ldaa proceeds as
follows:

• Create a join session 〈jsid, tpmi, hostj, request〉.
• Output (JOINSTART, sid, jsid, tpmi, hostj) to S.

2. JOIN REQUEST DELIVERY: Proceed upon receiving delivery no-
tification from S.

• Update the session record to 〈jsid, tpmi, hostj, delivery〉.
• If I or tpmi is honest and 〈tpmi, ?, ?〉 is already in Members,

output ⊥ [Check II].

• Output (JOINPROCEED, sid, jsid, tpmi) to I.

3. JOIN PROCEED:

• Upon receiving an approval from I, F ldaa updates the session
record to 〈jsid, sid, tpmi, hostj, complete〉.

• Output (JOINCOMPLETE, sid, jsid) to S.

4. KEY GENERATION: On input (JOINCOMPLETE, sid, jsid, gsk)
from S.

• If both tpmi and hostj are honest, set gsk = ⊥.

• Else, verify that the provided gsk is eligible by performing the
following checks:

– If hostj is corrupt and tpmi is honest, then
CheckGskHonest(gsk)=1 [Check III].

– If tpmi is corrupt, then CheckGskCorrupt(gsk)=1 [Check
IV].

• Insert 〈tpmi, hostj, gsk〉 into Members, and output (JOINED,
sid, jsid) to hostj.

22

Scheme 14: Ideal Sign

1. SIGN REQUEST: On input (SIGN, sid, ssid, tpmi, µ, bsn) from the
host hostj requesting a DAA signature by a TPM tpmi on a message
µ with respect to a basename bsn, the ideal functionality does the
following:

• Abort if I is honest and no entry 〈tpmi, hostj, ?〉 exists in Mem-
bers.

• Else, create a sign session 〈ssid, tpmi, hostj, µ, bsn, request〉.
• Output (SIGNSTART, sid, ssid, tpmi, hostj, l(µ, bsn)) to S.

2. SIGN REQUEST DELIVERY: On input (SIGNSTART, sid, ssid)
from S, update the session to 〈ssid, tpmi, hostj, µ, bsn, delivered〉.
F ldaa output (SIGNPROCEED, sid, ssid, µ, bsn) to tpmi.

3. SIGN PROCEED: On input (SIGNPROCEED, sid, ssid) from tpmi

• Update the records 〈ssid, tpmi, hostj, µ, bsn, delivered〉.
• Output (SIGNCOMPLETE, sid, ssid) to S.

4. SIGNATURE GENERATION: On the input (SIGNCOMPLETE,
sid, ssid, σ) from S, if both tpmi and hostj are honest then:

• Ignore the adversary’s signature σ.

• If bsn 6= ⊥, then retrieve gsk from the 〈tpmi, bsn, gsk〉 ∈ Do-
mainKeys.

• If bsn = ⊥ or no gsk was found, generate a fresh key gsk ←
Kgen(1λ).

• Check CheckGskHonest(gsk)=1 [Check V].

• Store 〈tpmi, bsn, gsk〉 in DomainKeys.

• Generate the signature σ ← sig(gsk, µ, bsn).

• Check ver(σ, µ, bsn)=1 [Check VI].

• Check identify(σ, µ, bsn, gsk)=1 [Check VII].

• Check that there is no TPM other than tpmi with key
gsk′ registered in Members or DomainKeys such that
identify(σ, µ, bsn, gsk′)=1 [Check VIII].

• If tpmi is honest, then store 〈σ, µ, tpmi, bsn〉 in Signed and
output (SIGNATURE, sid, ssid, σ) to hostj.

23

Scheme 15: Ideal Verify

• On input (VERIFY, sid, µ, bsn, σ, RL), from a party V to check
whether a given signature σ is a valid signature on a message µ with
respect to a basename bsn and the revocation list RL, the ideal func-
tionality does the following:

• Extract all pairs (gski, tpmi) from the DomainKeys and Members,
for which identify(σ, µ, bsn, gsk)=1. Set b = 0 if any of the following
holds:

– More than one key gski was found [Check IX].

– I is honest and no pair (gski, tpmi) was found [Check X].

– An honest tpmi was found, but no entry 〈?, µ, tpmi, bsn〉 was
found in Signed [Check XI].

– There is a key gsk′ ∈ RL, such that identify(σ, µ, bsn, gsk′)=1
and no pair (gsk, tpmi) for an honest tpmi was found [Check
XII].

• If b 6= 0, set b←ver(σ, µ, bsn) [Check XIII].

• Add 〈σ, µ, bsn, RL, b〉 to VerResults, and output (VERIFIED,
sid, b) to V .

Scheme 16: Ideal Link

On input (LINK, sid, σ1, µ1, σ2, µ2, bsn), with bsn 6= ⊥, from a party V
to check if the two signatures stem from the same signer or not. The ideal
functionality deals with the request as follows:

• If at least one of the signatures (σ1, µ1, bsn) or (σ2, µ2, bsn) is not
valid (verified via the VERIFY interface with RL 6= ∅), output ⊥
[Check XIV].

• For each gski in Members and DomainKeys, compute bi ←
identify(σ1, µ1, bsn, gski) and b′i= identify(σ2, µ2, bsn, gski) then
set:

– f ← 0 if bi 6= b′i for some i [Check XV].

– f ← 1 if bi = b′i = 1 for some i [Check XVI].

• If f is not defined, set f ←link(σ1, µ1, σ2, µ2, bsn), then output
(LINK, sid, f) to V.

24

• identify(gsk, σ, µ, bsn): A deterministic algorithm that will be used to
ensure consistency with the ideal functionality F ldaa’s internal records. It
outputs 1 if a key gsk was used to produce a signature σ, 0 otherwise.

The following functions are also used to check whether or not a TPM key is
consistent with the internal records of F ldaa:

1. CkeckGskHonest(gsk): If the tpmi is honest, and no signatures in Signed
or valid signatures in VerResults identify to be signed by gsk, then gsk is
eligible and the function returns 1, otherwise it returns 0.

2. CkeckGskCorrupt(gsk): If the tpmi is corrupt and @gsk′ 6= gsk and
(µ, σ, bsn) such that both keys identify to be the owners of the same
signature σ, then gsk is eligible and the function returns 1, otherwise it
returns 0.

5. Security Proof

In this section, we provide a sketch of the security proof. The detailed proof
can be found in Appendix D. A sequence of games based on the model of
Camenish et al. in [16] is presented, and it is shown that there exists no en-
vironment ε that can distinguish the real world protocol Π with an adversary
A, from the ideal world F ldaa with a simulator S. Starting with the real world
protocol game, we change the protocol game by game in a computationally in-
distinguishable way, finally ending with the ideal world protocol. The sequence
of games is as follows:

Game 1 . The Real World Protocol.

Game 2 . Equivalent to Game 1.
An entity C is introduced. C receives all inputs from the honest

parties and simulates the real world protocol for them.

Game 3 . Similar to Game 2 but with a different structure.
C is split into two parts, F and S. F behaves as an ideal functionality.

It receives all the inputs and forwards them to S, who simulates the

real world protocol for honest parties and sends the output to F . F

then forwards the outputs to ε.

Game 4 . ε will notice no change from Game 3.
F now stores the algorithms for the issuer I in the setup interface

and ensures that the structure of sid is correct for an honest I, and

aborts if not. In case I is corrupt, S extracts the secret key for I and

proceeds in the setup interface on behalf of I.

Game 5 . Same outcomes as Game 4.
F now performs the verification and linking checks instead of for-

warding them to S. There are no protocol messages and the outputs

are exactly as in the real world protocol. However, F doesn’t contain

a revocation check in the verification algorithm. Nonetheless, F can

perform this check separately.

25

Game 6 . In all cases F and S can interact to simulate the real world
protocol.

The join interface of F is now changed. F now stores in its records

the members that have joined. If I is honest, F stores the secret

key, extracted from S, for corrupt TPMs. S always has enough in-

formation to simulate the real world protocol except when the issuer

is the only honest party. In this case, S doesn’t know who initiated

the join, so it can’t make a join query with F on the host’s behalf.

Thus, to deal with this case, F can safely choose any corrupt host and

put it into Members. The identities of hosts are only used to create

signatures for platforms with an honest TPM or honest host, so one

needn’t worry about fully corrupted platforms.

Game 7 . A distinguisher between Game 6 and 7 could solve Decision
RLWE.
F now creates anonymous signatures for honest platforms by running

the algorithms defined in the setup interface. Let us start by defin-

ing Game 7.k.k′: in this game F handles the first k′ signing inputs

of tpmk with algorithms and subsequent inputs are forwarded to S

as before. We note that Game 7.0.0=Game 6. For increasing k′,

Game 7.k.k′ will be at some stage equal to Game 7.k + 1.0, this is

because there can only be a polynomial number of signing queries to

be processed. Therefore, for large enough k and k′, F handles all the

signing queries of all TPMs, and Game 7 is indistinguishable from

Game 7.k.k′. To prove that Game 7.k.k′+1 is indistinguishable from

Game 7.k.k′, suppose there exists an environment that can distin-

guish a signature of an honest party using X̂t from a signature using

a different X̂ ′
t, then the environment can solve the Decision Ring

-LWE Problem. Suppose that S is given tuples {(ai,bi)}k
′

i=1, (c,d),

where bi = ai · x1 + ei for a uniform random ai and c ∈ Rq, and it

is challenged to decide if the pair (c,d) is chosen from a Ring LWE

distribution (for some secret x1) or uniform random. S proceeds in

simulating the TPM without knowing the secret x1. S can answer all

the H queries, as S is controlling Fcrs, on bsnj with H(bsnj) = aj for

j ≤ k′. For j = k′+1, S sets H(bsnk′+1) = c, otherwise H(bsnj) = rj
for some uniform random rj and j > k′ + 1. Signing queries on be-

half of tpmi for i < k are forwarded by F to S, which calls the real

world protocol. For i > k, gsks are freshly sampled for each bsni.

However, for tpmk and i ≤ k′, the simulator S sets nymi = bi, and

for i = k′ + 1 it sets nym = d. For i > k′ + 1, S samples fresh

xi and generates nymi = H(bsni) · xi + ei, keeping track of all the

generated nymi such that it always output the same nymi for an asso-

ciated bsni. For each case, tpmk can provide a simulated proof. Any

distinguisher between Game 7.k.k′ and Game 7.k.k′ +1 can solve the

Decision Ring-LWE Problem.

Game 8 . ε observes no difference between Game 7 and Game 8.

26

F now no longer informs S about the message and the basename that

are being signed. If the whole platform is honest, then S can learn

nothing about the message µ and the basename bsn. Instead, S knows

only the leakage l(µ, bsn). To simulate the real world, S chooses a pair

(µ′, bsn′) such that l(µ′, bsn′)=l(µ, bsn).

Game 9 . Game 8 and Game 9 are indistinguishable.
If I is honest, then F now only allows platforms that joined to sign.

An honest host will always check whether it joined with a TPM in the

real world protocol, so there is no difference for honest hosts. Also an

honest TPM only signs when it has joined with the host before. In the

case that an honest tpmi performs a join protocol with a corrupt host

hostj and honest issuer, the simulator will make a join query with F ,

to ensure that tpmi and hostj are in Members.

Game 10 . Checks in Game 10 produce the same results as those of Game
9.

When storing a new gsk = X̂t, F checks CheckGskCorrupt(gsk)=1

or CheckGskHonest(gsk)=1. These checks will always pass. Valid

signatures always satisfy nym = H(bsn) · x1 + e where ‖x1‖∞ < β

and ‖e‖∞ < β′. By the unique Short Vector Problem, there exists

only one tuple (x1, e) such that ‖x1‖∞ < β and ‖e‖∞ < β′ for small

enough β and β′. Thus, CheckGskCorrupt(gsk) will always give the

correct output. Also due to the large min-entropy of discrete Gaus-

sians the probability that sampling a gsk X̂ ′
t = X̂t is negligible, thus

with overwhelming probability there doesn’t exist a signature already

using the same gsk = X̂t, which implies that CheckGskHonest(gsk)

will always give the correct output.

Game 11 . Game 11 produces the same results as Game 10 based on RLWE.
In this game, F checks that honestly generated signatures are valid.

This is true as the sig algorithm always produces signatures pass-

ing through the verification checks. Also those signatures satisfy

identify(gsk, σ, µ, bsn) = 1 which is checked via nym. F also makes

sure, using Members and DomainKeys, that honest users are not

sharing the same secret key gsk. If there exists a key gsk = X̂t

in Members and DomainKeys such that ‖nym − H(bsn)x1‖∞ < β′,

then this breaks the search Ring-LWE problem.

Game 12 . Valid signatures are associated with a single gsk.
Check-IX is added to ensure that there are no multiple gsk values

matching one signature. Since there exists only one pair (x1, eI) such

that ‖x1‖∞ < β and ‖eI‖∞ < β′, satisfying nymI = H(bsn) · x1 + eI,

two different gsks can’t share the same x1.

Game 13 . Game 13 is indistinguishable from Game 12 based on the hard-
ness of the Ring-ISIS Search Problem.

To prevent accepting signatures that were issued by the use of join

credentials not issued by an honest issuer, F adds a further check

Check-X. This is due to the unforgeability of Boyen signatures.

Game 14 . Game 14 is indistinguishable from Game 13 based on the hard-
ness of Ring-LWE.

27

Check-XI is added to F , preventing anyone from forging signatures

using an honest TPM’s gsk and credential. In fact, if a valid signa-

ture is given on a message that the TPM never signed, the proof could

not have been simulated. It would extract x1, breaking the Ring-LWE

problem.

Game 15 . Game 15 is indistinguishable from Game 14 based on the hard-
ness of Ring-LWE.

Check-XII is added to F , ensuring that honest TPMs are not revoked.

If a honest TPM is simulated by means of the Ring-LWE problem

instance, if a proper key RL is found, it must be the secret key of

the target instance. This is again equivalent to solving the search

Ring-LWE problem.

Game 16 . F now includes all the functionalities of F ldaa.
All the remaining checks of the ideal functionality F l

daa that are re-

lated to link queries are now included. Using the fact that if a gsk

matches one signature and not the other, Game 16 is indistinguish-

able from Game 15.

6. Related Work

The DAA schemes used in the current TPM standards are based on either
the factorisation problem in the RSA setting or the discrete logarithm problem
in the Elliptic-Curve (EC) setting. The DAA protocol was firstly conceptualised
in 2004 by Brickell, Camenisch, and Chen [20]. [20] proposed a scheme based on
the difficulty of RSA that was standardised in TPM 1.2. Later, Brickell, Chen
and Li proposed the first EC-DAA scheme based on symmetric pairings [21, 22].
Two EC-DAA schemes, based on asymmetric (Type 3) pairings, have later been
proposed to improve the performance of [21, 22], and are supported by TPM
2.0 [23, 24, 25]. Since the factorisation and discrete logarithm problems are
known to be vulnerable to quantum computer attacks [26], all the standardised
DAA schemes will not be secure in the post-quantum computer age. Recently,
El Bansarkhani and El Kaafarani [7] proposed the first post-quantum direct
anonymous attestation scheme from lattice assumptions. However, the scheme
requires massive storage and computation resources. Section 6.1 gives a brief
overview of this scheme. Since [7] is the only post-quantum DAA scheme avail-
able in related art, the following sections focus on the comparison between the
scheme herein proposed and [7].

6.1. El Bansarkhani and El Kaafarani DAA Scheme [7]

The DAA scheme proposed in [7] works as follows. The Issuer’s public
key consists of ` + 2 vectors in Rmq , namely ÂI , Âi for i = 0, 1, · · · `, and 2
polynomials u and b ∈ Rq. During the join step, the TPM generates a small

secret Ẑ1 ∈ R2m+1
q such that [b|Âid] · [Ẑ1] = ũ mod q. The TPM sends ũ

together with a proof of knowledge π1 to the issuer, who registers both ũ and
the corresponding TPM, and samples (using his secret key) a small credential
Ẑ2 such that Âid · Ẑ2 = u − ũ mod q. Ẑ2 corresponds to the host secret-key

28

Schemes This paper Scheme in [7]
TPM’s Secret key mn (2m+ 1)n
Credential 2mn 2mn
Issuer’s Secret Key m2n m2n
Signature cO(n)[km ((2`+ 3) + 1)] 2ckmO(n)(2`+ 2)
Verification key ((`+ 3)m+ 1)n ((`+ 2)m+ 2)n

Table 2: Keys and signature sizes in terms of the number of elements in Zq . Our main
contribution is reducing the TPM’s secret key size (less than half the size in [7]), as well as
the signature size.

share. The TPM and the host secret-key shares together satisfy u = [b|Âid] ·
[Ẑ1 + (0|Ẑ2)]. To create a signature, the TPM samples a small random vector
T̂ ∈ R2m

q , such that T̂ · Âid mod q is uniform, and shares it with the host. T̂
is used to randomise signatures. Then, the TPM and the host independently
compute π2 and π3, where π2 proves that u′ = [b|Âid] · [Ẑ1 + (0|T̂)] and π3
proves that u − u′ = Âid · (Ẑ2 − T̂). Notice that, in [7], commitments are not
hashed before being stored in π2 or π3. Finally, the host outputs the signature
σ = (π2, π3, u′, µ).

6.1.1. Size Comparison

In our LDAA scheme, the TPM’s secret key size is reduced to m polynomials
in Rq, instead of 2m+ 1 polynomials in [7]. Such a change significantly reduces
the TPM’s computation costs in the join and sign interfaces, as well as the
TPM’s key and the signature sizes. For instance, in the proposed scheme, the
LDAA signature includes c responses to the Fiat-Shamir challenges, where each
response is comprised of O(n)km(2` + 2) elements in Zq provided by the host
and O(n)k(m′+1) provided by the TPM. In [7], the size of the response for each
round is bounded by O(n)km(2`+ 2) elements in Zq for both the host and the
TPM. Thus in our L-DAA scheme, the signature’s size has been significantly
reduced especially for large `. Moreover, the hashing of the commitments in π
further reduces the sizes of the signatures. The verification key set in [7] consists
of the `+ 2 vectors of polynomials ÂI , Âi for i = 0, 1, · · · ` and two polynomials
u and b. In our L-DAA scheme, we add Ât to the verification key set resulting
in ` + 2 vectors of polynomials in Rmq , a vector of polynomials Ât ∈ Rmq and
a polynomial u. Table 2 compares the space efficiency between the proposed
LDAA scheme and the scheme presented in [7].

6.1.2. Computation Costs

To generate the values to be committed for one round of πut
and θt in the

join and sign interfaces of our LDAA scheme, the TPM has to perform at most
m + 1 polynomial multiplications. In [7], the TPM performs at most 2m + 2
polynomial multiplications for generating the values to be committed for each
round of π1 and π2 in the join and sign interfaces, respectively. The compu-
tational cost for the host is of 2m polynomial multiplications for checking the
equality uh = Âh · X̂h in the join interface, and 2m polynomial multiplications

29

Join Sign Verify
Ours In [7] Ours In [7] Ours In [7]

TPM m+ 1 2m+ 2 m+ 1 2m+ 2 - -
Host 2m 2m 2m 2m - -
Issuer m+ 1 2m+ 2 - - - -
Verifier - - - - 3m+ 1 4m+ 2

Table 3: This table compares the computation costs for the generation of the values to be
committed in both schemes, represented by the total number of polynomial multiplications
in Rq for each round of the signatures. The table shows that the computation costs in our
LDAA scheme are significantly reduced for the TPM during joining and signing, and for the
issuer and the verifier.

for generating the values to be committed for each round of θh and π3 in the
sign interfaces for both schemes. The Issuer verifies the responses for each round
of πut

and π1 in both schemes in the join interface. Thus, the issuer’s compu-
tation cost for each round is bounded by m + 1 polynomial multiplications for
our L-DAA scheme and 2m+ 2 in [7]. The verifier validates both the TPM and
the host’s responses. Therefore, the verifier’s computation cost in our L-DAA
scheme is 1 + 3m polynomial multiplications. In [7], the verifier’s computation
cost is 4m+2. All in all, the computational complexity for both the joining and
the signing is approximately halved for the TPM, and verification is accelerated
4/3 times, when the proposed scheme is compared to that of [7].

7. Experimental Results

In order to evaluate the proposed LDAA scheme, both the proposed scheme
and [7] were described in C. Basic operations, such as the Number Theoretic
Transform (NTT)-based multiplication over Rq and the Issuer’s Gaussian sam-
pling, were implemented once and shared between the two schemes. The im-
plementations made use of the following cryptographic parameters: n = 256,
q = 8380417, l = 32, m = 24 and β = 256. Moreover, commitments based on
Baum et al’s proposal were used for both cases. Since all entities, namely the
TPM, the Issuer, the Host and the Verifier, were executed in the same platform,
we have opted to run the experiments on an Intel i9 7900X CPU with 64GB
running at 3.3 GHz operated by CentOS 7.5. The code was compiled with
gcc 4.8.5 with the -Ofast and -march=native flags. The experimental results
herein presented focus on the signing and on the verification operations since
they are the most often executed, and mostly target at comparing the proposed
scheme with [7].

Fig. 3 shows that in practice the size of the TPM private-key share is halved
when the proposed scheme is compared with [7]. This is of particular impor-
tance for TPM platforms, where memory resources are constrained. In Fig. 4,
signature sizes are shown for the proposed scheme, for the proposed scheme
when commitments are not hashed, and for [7]. As predicted in Section 6.1.1,

30

Prop. [7]
0

20

40

60

80

100

S
iz

e
[k

B
]

TPM Host

Figure 3: Private-key material for the proposed
scheme and [7]

Prop. w/ Hash Prop. w/o Hash [7]
0

500

1,000

1,500

2,000

S
iz

e
[M

B
]

Figure 4: Signature size for the proposed
scheme with hashed commitments (Prop. w/
Hash), with regular commitments (Prop. w/o
Hash) and [7]

the signature size of the proposed scheme is halved, when hashing is not consid-
ered, in comparison to the scheme in [7]. This improvement is achieved through
the exploitation of the modified Baum et al’s commitment scheme, enabling the
construction of a single proof of knowledge that reflects the secret-key shared
between the TPM and Host, instead of the two required by [7]. Moreover, by
hashing commitments, the size of the proofs are themselves reduced, resulting
in signatures that are 5 times smaller than [7].

While in Section 6.1.2 it was predicted that the TPM computation during
signing would asymptotically be twice as fast with the proposed scheme than
with [7], Fig. 5 shows that, in practice, other operations, such as the com-
putation of the commitments, reduce the speed-up to 1.13. Nevertheless, the
verification operation is significantly enhanced when comparing the proposed
scheme with [7], as shown in Fig. 6. Since a single proof needs to be verified
instead of two, speed-ups of 2.04 are achieved. Notice that in Figures 5 and 6
the execution times include the hashing of the commitments.

8. Conclusion and Future Work

The growing IoT infrastructure requires scaleable and reliable networks.
While solutions based on the CE paradigm solve part of the problem, by having
Edge devices servicing small networks of IoT devices, current solutions ensur-
ing the trustworthiness of the network based on TPMs might not be secure
in the long-term. DAA protocols enable IoT systems to prove their genuine-
ness and trustworthy state to an Edge node in an anonymous way. How-
ever, currently standardised DAA schemes are susceptible to post-quantum at-
tacks. While [7] has recently proposed a lattice-based DAA protocol achieving
quantum-resistance, it is computationally cumbersome, since both the TPM
and the Host need to individually generate large proofs-of-knowledge about
their secret-key shares. In contrast, a novel commitment scheme is herein pro-
posed allowing for the construction of commitments to values shared between

31

Prop. [7]
0

50

100

150
E

x
ec

u
ti

o
n

T
im

e
[s

]

TPM Host

Figure 5: Signing performance for the proposed
scheme and [7]

Prop. [7]
0

20

40

60

80

100

120

E
x
ec

u
ti

o
n

T
im

e
[s

]

Verifier

Figure 6: Verification performance for the pro-
posed scheme and [7]

the TPM and the Host. Building on this technique, we are then able to propose
a lattice-based DAA scheme wherein the TPM and the Host interact to pro-
duce a single proof-of-knowledge about their shared secret-key. The proposed
protocol is proved to be secure in the UC security model. Experimental results
show that the resulting scheme reduces the storage requirements of the TPM
twofold and the signature size 5 times. Moreover, the signing and verification
operations are accelerated 1.1 and 2.0 times, respectively. Future work will fo-
cus on further optimising the proposed scheme, to make it even more suitable
to hardware implementations and IoT applications.

References

[1] S. A. Rotondo, Trusted Computing Group, Springer US, Boston, MA, 2011,
pp. 1331–1331. doi:10.1007/978-1-4419-5906-5_498.
URL https://doi.org/10.1007/978-1-4419-5906-5_498

[2] W. Arthur, D. Challener, A Practical Guide to TPM 2.0: Using the Trusted
Platform Module in the New Age of Security, 1st Edition, Apress, Berkely,
CA, USA, 2015.

[3] L. Lorenzin, A. Shah, Trusted network communica-
tions, http://trustedcomputinggroup.org/work-groups/

trusted-network-communications/.

[4] Tpm from pcs to the iot, https://trustedcomputinggroup.org/

tpm-pcs-iot/, accessed: 2018-11-28 (mar 2017).

[5] Trusted network connect (tnc) howto, https://wiki.strongswan.org/

projects/1/wiki/trustednetworkconnect (2018).

[6] Commercial National Security Algorithm Suite and Quantum Computing
FAQ, Tech. rep., National Security Agency/Central Security Service (jan

32

https://doi.org/10.1007/978-1-4419-5906-5_498
http://dx.doi.org/10.1007/978-1-4419-5906-5_498
https://doi.org/10.1007/978-1-4419-5906-5_498
http://trustedcomputinggroup.org/work-groups/trusted-network-communications/
http://trustedcomputinggroup.org/work-groups/trusted-network-communications/
 https://trustedcomputinggroup.org/tpm-pcs-iot/
 https://trustedcomputinggroup.org/tpm-pcs-iot/
https://wiki.strongswan.org/projects/1/wiki/trustednetworkconnect
https://wiki.strongswan.org/projects/1/wiki/trustednetworkconnect
https://cryptome.org/2016/01/CNSA-Suite-and-Quantum-Computing-FAQ.pdf
https://cryptome.org/2016/01/CNSA-Suite-and-Quantum-Computing-FAQ.pdf

2016).
URL https://cryptome.org/2016/01/CNSA-Suite-and-Quantum-Computing-FAQ.

pdf

[7] R. E. Bansarkhani, A. E. Kaafarani, Direct anonymous attestation from
lattices, Cryptology ePrint Archive, Report 2017/1022, https://eprint.
iacr.org/2017/1022 (2017).

[8] J. Hoffstein, J. Pipher, J. Silverman, An Introduction to Mathematical
Cryptography, 1st Edition, Springer Publishing Company, Incorporated,
Springer-Verlag New York, 2008.

[9] C. Peikert, A decade of lattice cryptography, Foundations and Trends R©
in Theoretical Computer Science 10 (4) (2016) 283–424. doi:10.1561/

0400000074.
URL http://dx.doi.org/10.1561/0400000074

[10] O. Regev, The learning with errors problem (invited survey). doi:10.

1109/CCC.2010.26.

[11] X. Boyen, Lattice mixing and vanishing trapdoors: A framework for fully
secure short signatures and more, in: P. Q. Nguyen, D. Pointcheval (Eds.),
Public Key Cryptography – PKC 2010, Springer Berlin Heidelberg, Berlin,
Heidelberg, 2010, pp. 499–517.

[12] D. Micciancio, C. Peikert, Trapdoors for lattices: Simpler, tighter, faster,
smaller, in: D. Pointcheval, T. Johansson (Eds.), Advances in Cryptology –
EUROCRYPT 2012, Springer Berlin Heidelberg, Berlin, Heidelberg, 2012,
pp. 700–718.

[13] R. W. F. Lai, H. K. F. Cheung, S. S. M. Chow, Trapdoors for ideal lat-
tices with applications, in: D. Lin, M. Yung, J. Zhou (Eds.), Information
Security and Cryptology, Springer International Publishing, Cham, 2015,
pp. 239–256.

[14] C. Baum, I. Damg̊ard, V. Lyubashevsky, S. Oechsner, C. Peikert, Efficient
commitments and zero-knowledge protocols from ring-sis with applications
to lattice-based threshold cryptosystems, Cryptology ePrint Archive, Re-
port 2016/997, https://eprint.iacr.org/2016/997 (2016).

[15] S. Ling, K. Nguyen, D. Stehlé, H. Wang, Improved zero-knowledge proofs
of knowledge for the isis problem, and applications, in: K. Kurosawa,
G. Hanaoka (Eds.), Public-Key Cryptography – PKC 2013, Springer Berlin
Heidelberg, Berlin, Heidelberg, 2013, pp. 107–124.

[16] J. Camenisch, M. Drijvers, A. Lehmann, Universally composable direct
anonymous attestation, in: C.-M. Cheng, K.-M. Chung, G. Persiano, B.-
Y. Yang (Eds.), Public-Key Cryptography – PKC 2016, Springer Berlin
Heidelberg, Berlin, Heidelberg, 2016, pp. 234–264.

33

https://cryptome.org/2016/01/CNSA-Suite-and-Quantum-Computing-FAQ.pdf
https://cryptome.org/2016/01/CNSA-Suite-and-Quantum-Computing-FAQ.pdf
https://eprint.iacr.org/2017/1022
https://eprint.iacr.org/2017/1022
http://dx.doi.org/10.1561/0400000074
http://dx.doi.org/10.1561/0400000074
http://dx.doi.org/10.1561/0400000074
http://dx.doi.org/10.1561/0400000074
http://dx.doi.org/10.1109/CCC.2010.26
http://dx.doi.org/10.1109/CCC.2010.26
https://eprint.iacr.org/2016/997

[17] S. Ling, K. Nguyen, H. Wang, Group signatures from lattices: Simpler,
tighter, shorter, ring-based, in: J. Katz (Ed.), Public-Key Cryptography –
PKC 2015, Springer Berlin Heidelberg, Berlin, Heidelberg, 2015, pp. 427–
449.

[18] G. Poupard, J. Stern, Short proofs of knowledge for factoring, in: H. Imai,
Y. Zheng (Eds.), Public Key Cryptography, Springer Berlin Heidelberg,
Berlin, Heidelberg, 2000, pp. 147–166.

[19] J. Camenisch, L. Chen, M. Drijvers, A. Lehmann, D. Novick, R. Urian,
One tpm to bind them all: Fixing tpm 2.0 for provably secure anonymous
attestation, in: 2017 IEEE Symposium on Security and Privacy (SP), 2017,
pp. 901–920. doi:10.1109/SP.2017.22.

[20] E. Brickell, J. Camenisch, L. Chen, Direct anonymous attestation, in:
Proceedings of the 11th ACM Conference on Computer and Communi-
cations Security, CCS ’04, ACM, New York, NY, USA, 2004, pp. 132–145.
doi:10.1145/1030083.1030103.
URL http://doi.acm.org/10.1145/1030083.1030103

[21] E. Brickell, L. Chen, J. Li, A new direct anonymous attestation scheme
from bilinear maps, in: Proceedings of the 1st International Conference on
Trusted Computing and Trust in Information Technologies: Trusted Com-
puting - Challenges and Applications, Trust ’08, Springer-Verlag, Berlin,
Heidelberg, 2008, pp. 166–178. doi:10.1007/978-3-540-68979-9_13.
URL http://dx.doi.org/10.1007/978-3-540-68979-9_13

[22] E. Brickell, L. Chen, J. Li, Simplified security notions of direct anony-
mous attestation and a concrete scheme from pairings, International
Journal of Information Security 8 (5) (2009) 315–330. doi:10.1007/

s10207-009-0076-3.
URL https://doi.org/10.1007/s10207-009-0076-3

[23] E. Brickell, J. Li, A pairing-based daa scheme further reducing tpm re-
sources, in: Proceedings of the 3rd International Conference on Trust and
Trustworthy Computing, TRUST’10, Springer-Verlag, Berlin, Heidelberg,
2010, pp. 181–195.
URL http://dl.acm.org/citation.cfm?id=1875652.1875665

[24] L. Chen, J. Li, Flexible and scalable digital signatures in tpm 2.0, in:
Proceedings of the 2013 ACM SIGSAC Conference on Computer &
Communications Security, CCS ’13, ACM, New York, NY, USA, 2013, pp.
37–48. doi:10.1145/2508859.2516729.
URL http://doi.acm.org/10.1145/2508859.2516729

[25] L. Chen, D. Page, N. P. Smart, On the design and implementation of
an efficient DAA scheme, in: Lecture Notes in Computer Science, Springer
Berlin Heidelberg, 2010, pp. 223–237. doi:10.1007/978-3-642-12510-2_

34

http://dx.doi.org/10.1109/SP.2017.22
http://doi.acm.org/10.1145/1030083.1030103
http://dx.doi.org/10.1145/1030083.1030103
http://doi.acm.org/10.1145/1030083.1030103
http://dx.doi.org/10.1007/978-3-540-68979-9_13
http://dx.doi.org/10.1007/978-3-540-68979-9_13
http://dx.doi.org/10.1007/978-3-540-68979-9_13
http://dx.doi.org/10.1007/978-3-540-68979-9_13
https://doi.org/10.1007/s10207-009-0076-3
https://doi.org/10.1007/s10207-009-0076-3
http://dx.doi.org/10.1007/s10207-009-0076-3
http://dx.doi.org/10.1007/s10207-009-0076-3
https://doi.org/10.1007/s10207-009-0076-3
http://dl.acm.org/citation.cfm?id=1875652.1875665
http://dl.acm.org/citation.cfm?id=1875652.1875665
http://dl.acm.org/citation.cfm?id=1875652.1875665
http://doi.acm.org/10.1145/2508859.2516729
http://dx.doi.org/10.1145/2508859.2516729
http://doi.acm.org/10.1145/2508859.2516729
https://doi.org/10.1007%2F978-3-642-12510-2_16
https://doi.org/10.1007%2F978-3-642-12510-2_16
http://dx.doi.org/10.1007/978-3-642-12510-2_16
http://dx.doi.org/10.1007/978-3-642-12510-2_16

16.
URL https://doi.org/10.1007%2F978-3-642-12510-2_16

[26] P. W. Shor, Polynomial-time algorithms for prime factorization and discrete
logarithms on a quantum computer, SIAM J. on Computing (1997) 1484–
1509.

[27] D. Cash, D. Hofheinz, E. Kiltz, C. Peikert, Bonsai trees, or how to del-
egate a lattice basis, J. Cryptol. 25 (4) (2012) 601–639. doi:10.1007/

s00145-011-9105-2.
URL http://dx.doi.org/10.1007/s00145-011-9105-2

35

http://dx.doi.org/10.1007/978-3-642-12510-2_16
http://dx.doi.org/10.1007/978-3-642-12510-2_16
https://doi.org/10.1007%2F978-3-642-12510-2_16
http://dx.doi.org/10.1007/s00145-011-9105-2
http://dx.doi.org/10.1007/s00145-011-9105-2
http://dx.doi.org/10.1007/s00145-011-9105-2
http://dx.doi.org/10.1007/s00145-011-9105-2
http://dx.doi.org/10.1007/s00145-011-9105-2

Appendix A. Security Proof of the Modified Boyen Signture Scheme

In this section we examine a signature scheme (described in Scheme 3) based
on the one from [11]. We claim that the same security result applies to this
scheme as in the one in [11] except that here the security of the scheme reduces
to the hardness of solving the inhomogeneous-SIS problem.

Theorem 1. For a prime modulus q = q(λ), if there is a probabilistic algorithm
A that outputs an existential signature forgery, with probability ε, in time τ , and
making Q ≤ q/2 adaptive chosen-message queries, then there is a probabilistic
algorithm B that solves the (q, n,m, β)-ISIS problem in time τ ′ ≈ τ and with
probability ε′ ≥ ε/(3q), for some polynomial function β = poly(λ).

Proof. We begin by assuming that there is such a forger A. Using the power
of A, we construct a solver B that simulates the attack environment for A and
uses the forgery produced by A to create an ISIS solution. B does the following.

Invocation: B receives the random (q, n,m, β)-ISIS problem instance in the
form of a uniformly random matrix A0 ∈ Zn×mq and a uniform vector u ∈ Znq ,
and must find e0 ∈ Zm with ‖e0‖∞ ≤ β and A0e0 = u mod q.

Setup:

1. Pick uniformly random B0 ∈ Zn×mq with associated short trapdoor matrix

TB0 ⊂ ∧⊥(B0).
2. Pick l + 2 short matrices Rt, R0, ..., Rl ∈ Zm×mq .

-Do so by sampling the columns from DZm,η.
3. Define At := A0Rt. Pick a random vector dt ∈ Zm and compute Atdt =:

ut mod q.
4. Pick l + 1 random scalars h0, ..., hl ∈ Zq and set h0 = 1.
5. Output the verification key

V K = [At, A0, C0 = (A0R0 + h0B0), ..., (A0Rl + hlB0)].

Queries: Now A requests signature queries on any message msg which B
answers as follows.

1. Compute the matrix Rmsg =
∑l
i=0(−1)msg[i]Ri.

2. Compute the scalar hmsg =
∑l
i=0(−1)msg[i]hi. If hmsg = 0, abort the

simulation.
3. Setting

F = [A0|
l∑
i=0

(−1)msg[i]Ci]

= [A0|A0Rmsg + hmsgB0],

sample dh ∈ Z2m such that F ·dh = uh := (u−ut) mod q and ‖dh‖∞ ≤
β. Write dh = [dh0

,dh1
], where dh0

,dh1
∈ Zm.

-Do so by taking the trapdoor TB0
and delegating this to one for the

matrix F via standards methods [27].

36

4. Output the signature d =

[
dT

t

dT
h0

dT
h1

]
∈ Z3m.

Forgery: After providing A with signatures on the queried messages, A pro-
duces a forged signature d∗ on a new (unqueried) message msg∗. B then does
the following.

1. Compute the matrix Rmsg∗ =
∑l
i=0(−1)msg∗[i]Ri.

2. Compute the scalar hmsg∗ =
∑l
i=0(−1)msg∗[i]hi. If hmsg∗ 6= 0, abort the

simulation.

3. Assuming hmsg∗ = 0, we have that

u = [At|A0|A0Rmsg∗ + hmsg∗B0] · d mod q,

= [A0Rt|A0|A0Rmsg∗] ·

[
dT

t

dT
h0

dT
h1

]
mod q.

Setting e0 = Rt · dt + dh0
+ Rmsg∗ · dh1

we have that A0e0 = u mod q. We
claim that at this point B has found a (q, n,m, β)-ISIS solution.

All that remains to show is that

• e0 is small and non-zero with good probability and therefore a valid ISIS
solution for the stated approximation.

• The completion probability of this procedure (without aborts) is substan-
tial against an arbitrary attack method for A.

The first of these points is covered by the discussion of Lemma 26 in [11]. A
slight modification needs to be made to the parameter β. In particular, we have
that with overwhelming probability ‖e0‖∞ ≤ β for β = poly(l, n,m) = poly(λ)
provided we set,

β = (1 + (1 +
√
l + 1)

√
mη)
√

3mσ.

Note the extra ‘+1’ in the innermost brackets and the factor of 3 as opposed to
2 in Boyen’s original scheme. These changes have no overall impact on the size
of the (I)SIS parameter which is still β = O(λ3.5).

The completion probability result can be exactly lifted from Lemma 27 of
[11].

Appendix B. Security Proof of the Modified Baum Commitment
Scheme

We will now prove the security requirements of our modified commitement
scheme based on the hardness of the Ring SIS problem. First we prove that
breaking the binding property implies solving a Ring SIS problem over Rq.

37

Lemma 1. (Binding Property): Starting from two correct distinct openings
(Ŝ,p, R̂) and (Ŝ′,p′, R̂′) for the same commitement C, one can efficiently com-
pute a small solution, with norm bounded by some real number h = f(α, γ), to
the Ring SIS instance defined by the top row of B̂.

Proof. : Let (Ŝ,p, R̂) and (Ŝ′,p′, R̂′) be two different openings for the same
commitement C, then

pC = B̂R̂+ (0,pŜ) (B.1)

and

p′C = B̂R̂′ + (0,p′Ŝ′) (B.2)

Multiply equation B.1 by p′, and equation B.2 by p, then subtract we get:

B̂(p′R̂− pR̂′) = (0,p′p(Ŝ − Ŝ′))

Since Ŝ−Ŝ′ 6= 0 and both p and p′ are invertible, then we have p′p(Ŝ−Ŝ′) 6= 0,
therefore p′R̂−pR̂′ 6= 0. Hence a solution p′R̂−pR̂′ such that ‖p′R̂−pR̂′‖∞ <
h, to the Ring SIS instance defined by the first row of B̂. �

Lemma 2. (Hiding Property): Assume that the mini-entropy of the vectors R̂t
and R̂h sampled from D is at least (lt+lh+2) log (|Rq|)+λ, where λ is a security

parameter, and the function fB̂(R̂) = ÂR̂ for some Â ∈ Rkq , is universal (as
defined in [14]). Then the scheme is statistically hiding.

Proof. : Although the commitment gives the adversary log (|Rq|) bits of in-

formation on R̂, precisely the dot product of R̂ with the first row B̂1 in B̂,
we still have (lt + lh + 1) log (|Rq|) + λ bits of randomness left in R̂. Let

B̂ = [B̂1 ∈ R1×k
q |B̂r ∈ R(lt+lh+1)×k

q]T , then by the left over hash lemma, it

follows that hB̂r
(R̂) is statistically close to random, even given hB̂1

(R̂). Thus,
the scheme is statistically hiding. �

38

Appendix C. Ideal Functionalities From [16]

Appendix C.1. Semi-Authenticated Channels via Fauth∗

This functionality must captures the fact that a sender S sends a message
containing both authenticated and unauthenticated parts to a receiver R, while
giving the host F the power to block the message, replace it and block the
communication. Fauth∗ capture these requirements.

1. On input (SEND, sid, ssid, µ1, µ2, F) from S, check that sid = (S, R, sid′)
for some R and output (REPLACE1, sid, ssid, µ1, µ2, F) to S;

2. On input (REPLACE1,sid, ssid, µ′2, F) from S, output (APPEND,
sid, ssid, µ1, µ

′
2) to F .

3. On input (APPEND, sid, ssid, µ′′2) from F , output (REPLACE2,
sid, ssid, µ1, µ

′′
2) to S.

4. On input (REPLACE2, sid, ssid, µ′′′2) from S, output (SENT, sid, ssid, µ1, µ′′′2)
to R

Figure C.7: The special authenticated communicatioin functionality Fauth∗

Appendix C.2. Certification Authority

1. Upon receiving the first message (Register, sid, v) from a party P , send
(Rigester, sid, v) to the adversary;

2. Upon receiving ok from the adversary, if sid = P and this is the first request
from P , then record the pair (P, v).

3. Upon receiving a message (Retrieve, sid) from a party P ′, send (Retrieve,
sid, P ′) to the adversary, and wait for an ok response from the adversary.

4. If there is a recorded pair (sid, v), output (Retrieve, sid, v) to P ′.

5. Else, output (Retrieve, sid, ⊥) to P ′.

Figure C.8: Ideal certification authority functionality Fca

Appendix C.3. Secure Message Transmission

This functionality is parametrized by a leakage function l : {0, 1}∗ → {0, 1}∗.
For the security proof, it is required that the leakage function l satisfies the
following property:

l(b) = l(b′) =⇒ l(a, b) = l(a, b′)

This is a natural requirement, as most secure channels will at most leak the
lenght of the plaintext, for which this property holds.

39

1. Upon receiving input (Send, S, R, sid, µ) from S, send (Sent, S, R, sid, l(µ))
to the adversary;

2. Generate a private delayed output (Sent, S, sid, µ) to R and halt.

3. Upon receiving (Corrupt, sid, P) from the adversay, where P ∈ {S, R}, disclose
µ to the adversary.

4. If the adversary provides a value µ′, and P = S, and no output has been given
to R, then output (Sent, S, sid, µ′) to R and halt.

Figure C.9: Ideal secure message transmission functionality F l
smt

Appendix C.4. Common Reference String

This functionality is parametrized by a distribution D, from which crs is
sampled.

1. Upon receiving input (CRS, sid) from a party P ,verify that sid = (P, sid′)
where P is the set of identities, and P ∈ P, else ignore the input.

2. If there is no r recorded, then choose and record r ← D.

3. Finally, send a public delayed output (CRS, sid, r) to P .

Figure C.10: Ideal crs functionality FD
crs

40

Appendix D. Detailed Security Proof of the L-DAA Scheme

• SETUP

On input (SETUP, sid) from I, output (FORWARD, (SETUP, sid, I) to S.

• JOIN

1. On input (JOIN, sid, jsid, tpmi) from the host hostj, output (FORWARD,
(JOIN, sid, jsid, tpmi), hostj) to S.

2. On input (JOINPROCEED, sid, jsid) from I, output (FORWARD,
(JOINPROCEED, sid, jsid), I) to S.

• SIGN

1. On input (SIGN, sid, ssid, tpmi, bsn) from the host hostj, output (FOR-
WARD, (SIGN, sid, ssid, tpmi, bsn), hostj) to S.

2. On input (SIGNPROCEED, sid, ssid) from tpmi, output (FORWARD,
(SIGNPROCEED, sid, ssid), tpmi) to S.

• VERIFY

On input (VERIFY, sid, µ, bsn, σ, RL) from V , output (FORWARD, (VER-
IFY, sid, µ, bsn, σ, RL), V) to S.

• LINK

On the input (LINK, sid, σ1, µ1, σ2, µ2, bsn) from V , output (FORWARD,
(LINK, sid, σ1, µ1, σ2, µ2, bsn), V) to S.

• OUTPUT

On input (OUTPUT, P , µ) from S, output µ to P .

Figure D.11: Game 3 for F

• KeyGen

Upon receiving input (FORWARD, (SETUP, sid, I)from F , give “I” (SETUP,
sid) .

• JOIN

41

1. Upon receiving (FORWARD, (JOIN, sid, jsid, tpmi), hostj) from F , give
input (JOIN, sid, jsid, tpmi) to the host “hostj”

2. Upon receiving intput (FORWARD, (JOINPROCEED, sid, jsid), I) from
F , give “I” input (JOINPROCEED, sid, jsid).

• SIGN

1. Upon receiving input (FORWARD, (SIGN, sid, ssid, tpmi, bsn), hostj)
from F , give “hostj” input (SIGN, sid, ssid, tpmi, bsn).

2. Upon receiving input (FORWARD, (SIGNPROCEED, sid, ssid), tpmi)
from F , give “tpmi” input (SIGNPROCEED, sid, ssid).

• VERIFY

Upon receiving input (FORWARD, (VERIFY, sid, µ, bsn, σ, RL), V) from F ,
give “V ” input (VERIFY, sid, µ, bsn, σ, RL).

• LINK

Upon receiving input (FORWARD, (LINK, sid, σ1, µ1, σ2, µ2, bsn), V) from
F , give “V ” input (LINK, sid, σ1, µ1, σ2, µ2, bsn).

• OUTPUT

When any simulated party “P” outputs a message µ, S sends (OUTPUT,
P, µ)to F .

Figure D.12: Game 3 for S

• SETUP

1. On input (SETUP, sid) from I, verify that sid = (I, sid′) and output
(SETUP, sid) to S.

2. On input (ALGORITHMS, sid, sign, ver, link, identify, Kgen) from S,
check that ver, link, and identify are deterministic. Store (sid, sign, ver,
link, identify, Kgen) and output (SETUPDOE, sid) to I.

• JOIN

1. On input (JOIN, sid, jsid, tpmi) from the host hostj, output (FORWARD,
(JOIN, sid, jsid, tpmi), hostj) to S.

2. On input (JOINPROCEED, sid, jsid) from I, output (FORWARD,
(JOINPROCEED, sid, jsid), I) to S.

42

• SIGN

1. On input (SIGN, sid, ssid, tpmi, bsn) from the host hostj, output (FOR-
WARD, (SIGN, sid, ssid, tpmi, bsn), hostj) to S.

2. On input (SIGNPROCEED, sid, ssid) from tpmi, output (FORWARD,
(SIGNPROCEED, sid, ssid), tpmi) to S.

• VERIFY

On input (VERIFY, sid, µ, bsn, σ, RL) from V , output (FORWARD, (VER-
IFY, sid, µ, bsn, σ, RL), V) to S.

• LINK

On the input (LINK, sid, σ1, µ1, σ2, µ2, bsn) from V , output (FORWARD,
(LINK, sid, σ1, µ1, σ2, µ2, bsn), V) to S.

• OUTPUT

On input (OUTPUT, P , µ) from S, output µ to P .

Figure D.13: Game 4 for F

• KeyGen: Honest I: On input (SETUP, sid) from F

– Check sid = (I, sid′), output ⊥ to I if the check fails.

– Give “I” input (SETUP, sid).

– Upon receiving output (SETUPDONE, sid) from “I”, S takes its private
key T̂I .

– Define sig(gsk, µ, bsn) as follows:

∗ Define SamplePre(Âid, T̂I , q, uh, s) that outputs a Boyen signature
X̂h [11], where uh = u−ut with ut = Ât ·gsk, X̂h will be our L-DAA
credential.

∗ nym = H(bsn) · x1 + e mod q with ‖e‖∞ < β′.

∗ π = SPK
{
public := {pp, nym, bsn},

witness := {X̂ = (x1, · · · ,x3m), id, e} :
[Ât|Âh]·X̂ = u ∧ ‖X̂‖∞ ≤ β ∧ nym = H(bsn)·x1+e mod q ∧ ‖e‖∞ ≤
β′
}

(µ). Output the L- DAA signature σ = (nym, bsn, π).

– Define ver(σ, µ, bsn) as follows: It parses σ as (nym, bsn, π), and checks
SPK on π w.r.t bsn, nym, µ and u. It output 1 if the proof is valid and 0
otherwise.

43

– Define link(σ, µ, bsn, σ′, µ′): Check whether two signatures (σ, µ) and
(σ′, µ′) that were generated for the same basename bsn stems from the
same TPM. Upon input (LINK, sid, σ, µ, σ′, µ′, bsn) the verifier follow
the following steps:

1. Starting from σ = (nym, bsn, π) and σ′ = (nym′, bsn, π′), the verifier
verifies σ and σ′ individually.

2. If any of the signatures is invalid, the verifier outputs ⊥.

3. Otherwise if ‖nym − nym′‖∞ < 2β′, the verifier outputs 1 (linked);
otherwise 0 (not linked).

– Define identify(σ, µ, bsn, gsk) as follows: It parses σ as (nym, bsn, π)
and checks that gsk = (x1, x2, · · · , xm) ∈ Rmq and ‖gsk‖∞ < β,
ver(σ, µ, bsn)=1 and

‖nym− x1 · bsn‖∞ < β′

If so output 1, otherwise output 0.

– Define Kgen, take gsk ∈ Rmq with ‖gsk‖∞ < β and output gsk.

– S sends (KEYS, sid, sig, ver, link, identify, Kgen) to F .

Corrupt I: S notices this setup as it notices I registering a public key with Fca
with sid = (I, sid′).

– If the registered key is in the form (ÂI , πI) and πI is valid, then S extracts
T̂I from πI .

– S defines the algorithms sig, ver, link, and identify as before, but now
depending on the extracted key. S sends (SETUP, sid) to F on behalf of
I. On input (KEYGEN, sid) from F , S sends (KEYS, sid, sig, ver, link,
identify, Kgen) to F .

– On input (SETUPDONE, sid) from F . S continues simulating “I”.

• JOIN, SIGN, VERIFY, LINK: Unchanged.

Figure D.14: Game 4 for S

• SETUP

1. On input (SETUP, sid) from I, verify that sid = (I, sid′) and output
(SETUP, sid) to S.

2. On input (ALGORITHMS, sid, sign, ver, link, identify, Kgen) from S,
check that ver, link, and identify are deterministic. Store (sid, sign, ver,
link, identify, Kgen) and output (SETUPDOE, sid) to I.

• JOIN

44

1. On input (JOIN, sid, jsid, tpmi) from the host hostj, output (FORWARD,
(JOIN, sid, jsid, tpmi), hostj) to S.

2. On input (JOINPROCEED, sid, jsid) from I, output (FORWARD,
(JOINPROCEED, sid, jsid), I) to S.

• SIGN

1. On input (SIGN, sid, ssid, tpmi, bsn) from the host hostj, output (FOR-
WARD, (SIGN, sid, ssid, tpmi, bsn), hostj) to S.

2. On input (SIGNPROCEED, sid, ssid) from tpmi, output (FORWARD,
(SIGNPROCEED, sid, ssid), tpmi) to S.

• VERIFY

On input (VERIFY, sid, µ, bsn, σ, RL) from V

– Set f = 0 if there is a gsk′ ∈ RL such that identify(σ, µ, bsn, gsk′) = 1.

– If f 6= 0, set f=ver(σ, µ, bsn).

– Add (σ, µ, bsn, RL, f) to VerResults, output (VERIFIED, sid, f) to V .

• LINK

On the input (LINK, sid, σ1, µ1, σ2, µ2, bsn) from V

– Output ⊥ if at least one of the signatures (σ1, µ1, bsn) or (σ2, µ2, bsn)
is not valid.

– Set f=link(σ1, µ1, σ2, µ2, bsn), and output (LINK, sid, f) to V .

• OUTPUT

On input (OUTPUT, P , µ) from S, output µ to P .

Figure D.15: Game 5 for F

• KeyGen, JOIN, SIGN : Unchanged.

• VERIFY, LINK: Nothing to simulate.

Figure D.16: Game 5 for S

45

• SETUP

1. On input (SETUP, sid) from I, verify that sid = (I, sid′) and output
(SETUP, sid) to S.

2. On input (ALGORITHMS, sid, sign, ver, link, identify, Kgen) from S,
check that ver, link, and identify are deterministic. Store (sid, sign, ver,
link, identify, Kgen) and output (SETUPDOE, sid) to I.

• JOIN

1. JOINREQUEST: On input (JOIN, sid, jsid, tpmi) from the host hostj to
join the TPM tpmi

– Create a join session 〈jsid, tpmi, hostj, request 〉.
– Output (JOINSTART, sid, jsid, tpmi, hostj) to S.

2. JOIN REQUEST DELIVERY: Proceed upon receiving delivery notifica-
tion from S.

– Update the session record to 〈jsid, tpmi, hostj, delivered〉.
– If I or tpmi is honest and 〈tpmi, ?, ?〉 is already in Members, output
⊥.

– Output (JOINPROCEED, sid, jsid, tpmi) to I.

3. JOIN PROCEED: Upon receiving (JOINPROCEED, sid, jsid, tpmi) from
I

– Update the session record to 〈jsid, sid, tpmi, hostj, complete〉.
– Output (JOINCOMPLETE, sid, jsid) to S.

4. KEY GENERATION: On input (JOINCOMPLETE, sid, jsid, gsk) from
S.

– Update the session record to 〈jsid, tpmi, hostj, complete〉
– If both tpmi and hostj are honest, set gsk = ⊥.

– Insert 〈tpmi, hostj, gsk〉 into Members, and output (JOINED,
sid, jsid) to hostj.

• SIGN

1. On input (SIGN, sid, ssid, tpmi, bsn) from the host hostj, output (FOR-
WARD, (SIGN, sid, ssid, tpmi, bsn), hostj) to S.

2. On input (SIGNPROCEED, sid, ssid) from tpmi, output (FORWARD,
(SIGNPROCEED, sid, ssid), tpmi) to S.

• VERIFY

On input (VERIFY, sid, µ, bsn, σ, RL) from V

– Set f = 0 if there is a gsk′ ∈ RL such that identify(σ, µ, bsn, gsk′) = 1.

46

– If f 6= 0, set f=ver(σ, µ, bsn).

– Add (σ, µ, bsn, RL, f) to VerResults, output (VERIFIED, sid, f) to V .

• LINK

On the input (LINK, sid, σ1, µ1, σ2, µ2, bsn) from V

– Output ⊥ if at least one of the signatures (σ1, µ1, bsn) or (σ2, µ2, bsn)
is not valid.

– Set f=link(σ1, µ1, σ2, µ2, bsn), and output (LINK, sid, f) to V .

• OUTPUT

On input (OUTPUT, P , µ) from S, output µ to P .

Figure D.17: Game 6 for F

• KeyGen: Unchanged.

JOIN: Honest host, I

– When S receives (JOINSTART, sid, jsid, tpmi, hostj) from F

– It simulates the real world protocol by giving “hostj” input (JOIN,
sid, jsid, tpmi) and waits for output (JOINPROCEED, sid, jsid, tpmi)
from “I”.

– If tpmi is corrupt, S extracts gsk from the proof πut and stores it. If tpmi

is honest, S already knows gsk as it is simulating tpmi.

– S sends (JOINSTART, sid, jsid) to F .

– Upon receiving input (JOINCOMPLETE, sid, jsid) from F , S gives “I”
input (JOINPROCEED, sid, jsid) and waits for output (JOINED, sid, jsid)
from “hostj”.

– Output (JOINCOMPLETE, sid, jsid gsk) to F .

Honest host, Corrupt I:

– On input (JOINSTART, sid, jsid, tpmi, hostj) from F , S gives “hostj” in-
put (JOIN, sid, jsid, tpmi) and waits for output (JOINED, sid, jsid, tpmi)
from “hostj”.

– S sends (JOINSTART, sid, jsid) to F .

– Upon receiving input (JOINPROCEED, sid, jsid) from F , S sends (JOIN-
PROCEED, sid, jsid) to F on behalf of I.

– Upon receiving input (JOINCOMPLETE, sid, jsid) from F , S sends
(JOINCOMPLETE, sid, jsid, ⊥) to F .

47

Honest TPM , I, Corrupt host:

– S notices this join as “tpmi” receives a nonce ρ from hostj.

– S makes a join query on behalf of hostj by sending (JOIN, sid, jsid, tpmi)
to F .

– Upon input (JOINSTART, sid, jsid, tpmi, hostj) from F , S continues the
simulation of “tpmi” until “I” outputs (JOINPROCEED, sid, jsid, tpmi).

– S sends (JOINSTART, sid, jsid) to F .

– Upon input (JOINCOMPLETE, sid, jsid) from F , S sends (JOINCOM-
PLETE, sid, jsid, gsk) to F , where gsk is taken from simulating “tpmi”.

– Upon receiving (JOINED, sid, jsid) from F as hostj is corrupt, S gives “I”
input (JOINPROCEED, sid, jsid).

Honest I, Corrupt TPM , host:

– S notices this join as “I” receives (SENT, sid′, (ut, πt), hostj) from Fauth∗ .

– Parse sid’ as (tpmi, sid, I), S then extracts gsk from the proof πut .

– S doesn’t know the identity of the host that started this join, so S chooses
some corrupt hostj and proceeds as if this host initiated this join, although
this may not be the correct host. This makes no difference as when cre-
ating signatures we only look for corrupt host or TPM, so fully corrupted
platform are not considered in generating signatures.

– S makes a join query with tpmi on behalf of hostj by sending (JOIN,
sid, jsid, tpmi) to F .

– Upon receiving input (JOINSTART, sid, jsid, tpmi, hostj) from F , S con-
tinues simulating “I” until it outputs (JOINPROCEED, sid, jsid, tpmi).

– S sends (JOINSTART, sid, jsid) to F .

– Upon receiving (JOINCOMPLETE, sid, jsid) from F , S sends (JOIN-
COMPLETE, sid, jsid, gsk) to F .

– Upon receiving (JOINED, sid, jsid) from F as hostj is corrupt, S gives “I”
input (JOINPROCEED, sid, jsid).

Honest TPM, Corrupt host, I:

– S notices this join as tpmi receives a nonce ρ from hostj.

– S simply simulates tpmi honestly, no need to include F as tpmi doesn’t
receive inputs or send outputs in the join interface.

• SIGN, VERIFY, LINK: Unchanged.

Figure D.18: Game 6 for S

48

• SETUP, JOIN: Unchanged.

• SIGN

– SIGN REQUEST: On input (SIGN, sid, ssid, tpmi, µ, bsn) from the host
hostj,

∗ Create a sign session 〈ssid, tpmi, hostj, µ, bsn, request〉.
∗ Output (SIGNSTART, sid, ssid, tpmi, hostj) to S.

– SIGN REUEST DELIVERY: On input (SIGNSTART, sid, ssid) from S,
update the session to 〈ssid, tpmi, hostj, µ, bsn, delivered〉.

– Output (SIGNPROCEED, sid, ssid, µ, bsn) to tpmi.

– SIGN PROCEED: On input (SIGNPROCEED, sid, ssid) from tpmi

∗ Update the records 〈ssid, tpmi, hostj, µ, bsn, delivered〉.
∗ Output (SIGNCOMPETE, sid, ssid) to S.

– SIGNATURE GENERATION: On the input (SIGNCOMPETE,
sid, ssid, σ) from S, if both tpmi and hostj are honest then:

∗ Ignore the adversary’s signature σ.

∗ If bsn 6= ⊥, then retrieve gsk from the 〈tpmi, bsn, gsk〉 ∈ DomainKeys.

∗ If bsn = ⊥ or no gsk was found, generate a fresh key gsk ← Kgen(1λ).

∗ Store 〈tpmi, bsn, gsk〉 in DomainKeys.

∗ Generate the signature σ ← sig(gsk, µ, bsn).

∗ If tpmi is honest, then store 〈σ, µ, tpmi, bsn〉 in Signed and output
(SIGNATURE, sid, ssid, σ) to hostj.

• VERIFY

On input (VERIFY, sid, µ, bsn, σ, RL) from V

– Set f = 0 if there is a gsk′ ∈ RL such that identify(σ, µ, bsn, gsk′) = 1.

– If f 6= 0, set f=ver(σ, µ, bsn).

– Add (σ, µ, bsn, RL, f) to VerResults, output (VERIFIED, sid, f) to V .

• LINK

On the input (LINK, sid, σ1, µ1, σ2, µ2, bsn) from V

– Output ⊥ if at least one of the signatures (σ1, µ1, bsn) or (σ2, µ2, bsn)
is not valid.

– Set f=link(σ1, µ1, σ2, µ2, bsn), and output (LINK, sid, f) to V .

• OUTPUT

On input (OUTPUT, P , µ) from S, output µ to P .

Figure D.19: Game 7 for F

49

• KeyGen, JOIN: Unchanged.

• SIGN :Honest TPM, host:

Upon receiving (SIGNSTART, sid, ssid, tpmi, hostj, bsn, µ) from F .

– S starts the simulation by giving “hostj” input (SIGN,
sid, ssid, tpmi, µ, bsn).

– When “tpmi” outputs (SIGNPROCEED, sid, ssid, µ, bsn), S sends (SIGN-
START, sid, ssid) to F .

– Upon receiving (SIGNCOMPLETE, sid, ssid) from F , output (SIGNPRO-
CEED, sid, ssid) to “tpmi”.

– When “hostj” outputs (SIGNATURE, sid, ssid, σ), send (SIGNCOM-
PLETE, sid, ssid, ⊥) to F .

Honest host, Corrupt TPM: Upon receiving (SIGNSTART,
sid, ssid, tpmi, hostj, bsn, µ) from F .

– Send (SIGNSTART, sid, ssid) to F .

– Upon receiving (SIGNPROCEED, sid, ssid, µ, bsn) from F on be-
half of tpmi, as tpmi is corrupt, S gives “hostj” input (SIGN,
sid, ssid, tpmi, µ, bsn).

– When “hostj” outputs (SIGNATURE, sid, ssid, σ), S sends (SIGNPRO-
CEED, sid, ssid) to F on behlaf of tpmi.

– Upon receiving (SIGNCOMPLETE, sid, ssid) from F , send (SIGNCOM-
PLETE, sid, ssid, σ) to F .

Honest TPM, Corrupt host:

– S notices this sign as “tpmi” receives a message µ and bsn from hostj .

– S sends (SIGN, sid, ssid, tpmi, µ, bsn) to F on behalf of hostj.

– Upon receiving (SIGNSTART, sid, ssid, µ, bsn, tpmi, hostj) from F ,
continue simulating “tpmi”, until “tpmi” outputs (SIGNPROCEED,
sid, ssid, µ, bsn).

– Send (SIGNSTART, sid, ssid) to F .

– Upon receiving (SIGNCOMPLETE, sid, ssid) from F , send (SIGNCOM-
PLETE, sid, ssid, ⊥) to F .

– When F outputs (SIGNATURE, sid, ssid, σ) on behalf of hostj, S sends
(SIGNPROCEED, sid, ssid) to “tpmi”.

– send (SIGNCOMPLETE, sid, ssid, σ) to “tpmi”.

• VERIFY, LINK: Nothing to simulate.

Figure D.20: Game 7 for S

50

• SETUP, JOIN: Unchanged.

• SIGN

– SIGN REQUEST: On input (SIGN, sid, ssid, tpmi, µ, bsn) from the host
hostj,

∗ Create a sign session 〈ssid, tpmi, hostj, µ, bsn, request〉.
∗ Output (SIGNSTART, sid, ssid, tpmi, hostj, l(µ, bsn)) to S.

– SIGN REUEST DELIVERY: On input (SIGNSTART, sid, ssid) from S,
update the session to 〈ssid, tpmi, hostj, µ, bsn, delivered〉.

– Output (SIGNPROCEED, sid, ssid, µ, bsn) to tpmi.

– SIGN PROCEED: On input (SIGN PROCEED, sid, ssid) from tpmi

∗ Update the records 〈ssid, tpmi, hostj, µ, bsn, delivered〉.
∗ Output (SIGNCOMPETE, sid, ssid) to S.

– SIGNATURE GENERATION: On the input (SIGNCOMPETE,
sid, ssid, σ) from S, if both tpmi and hostj are honest then:

∗ Ignore the adversary’s signature σ.

∗ If bsn 6= ⊥, then retrieve gsk from the 〈tpmi, bsn, gsk〉 ∈ DomainKeys.

∗ If bsn = ⊥ or no gsk was found, generate a fresh key gsk ← Kgen(1λ).

∗ Store 〈tpmi, bsn, gsk〉 in DomainKeys.

∗ Generate the signature σ ← sig(gsk, µ, bsn).

∗ If tpmi is honest, then store 〈σ, µ, tpmi, bsn〉 in Signed and output
(SIGNATURE, sid, ssid, σ) to hostj.

• VERIFY

On input (VERIFY, sid, µ, bsn, σ, RL) from V

– Set f = 0 if there is a gsk′ ∈ RL such that identify(σ, µ, bsn, gsk′) = 1.

– If f 6= 0, set f=ver(σ, µ, bsn).

– Add (σ, µ, bsn, RL, f) to VerResults, output (VERIFIED, sid, f) to V .

• LINK On the input (LINK, sid, σ1, µ1, σ2, µ2, bsn) from V

– Output ⊥ if at least one of the signatures (σ1, µ1, bsn) or (σ2, µ2, bsn)
is not valid.

– Set f=link(σ1, µ1, σ2, µ2, bsn), and output (LINK, sid, f) to V .

• OUTPUT

On input (OUTPUT, P , µ) from S, output µ to P .

Figure D.21: Game 8 for F

51

• KeyGen, JOIN: Unchanged.

• SIGN

Honest TPM, host:

Upon receiving (SIGNSTART, sid, ssid, tpmi, hostj, l) from F .

– S takes a dummy pair (µ′, bsn′) such that l(µ′, bsn′) = l.

– S starts the simulation by giving “hostj” input (SIGN,
sid, ssid, tpmi, µ

′, bsn′).

– When “tpmi” outputs (SIGNPROCEED, sid, ssid, µ′, bsn′), S sends
(SIGNSTART, sid, ssid) to F .

– Upon receiving (SIGNCOMPLETE, sid, ssid) from F , output (SIGNPRO-
CEED, sid, ssid) to “tpmi”.

– When “hostj” outputs (SIGNATURE, sid, ssid, σ), send (SIGNCOM-
PLETE, sid, ssid, ⊥) to F .

Honest host, Corrupt TPM:
Upon receiving (SIGNSTART, sid, ssid, tpmi, hostj, l) from F .

– Send (SIGNSTART, sid, ssid) to F .

– Upon receiving (SIGNPROCEED, sid, ssid, µ, bsn) from F on be-
half of tpmi, as tpmi is corrupt, S gives “hostj” input (SIGN,
sid, ssid, tpmi, µ, bsn).

– When “hostj” outputs (SIGNATURE, sid, ssid, σ), S sends (SIGNPRO-
CEED, sid, ssid, µ, bsn) to F on behlaf of tpmi.

– Upon receiving (SIGNCOMPLETE, sid, ssid) from F , send (SIGNCOM-
PLETE, sid, ssid, σ) to F .

Honest TPM, Corrupt host:

– S notices this sign as “tpmi” receives a message µ and bsn from hostj .

– S sends (SIGN, sid, ssid, tpmi, µ, bsn) to F on behalf of hostj.

– Upon receiving (SIGNSTART, sid, ssid, tpmi, hostj, l) from F , con-
tinue simulating “tpmi”, until “tpmi” outputs (SIGNPROCEED,
sid, ssid, µ, bsn).

– Send (SIGNSTART, sid, ssid) to F .

– Upon receiving (SIGNCOMPLETE, sid, ssid) from F , send (SIGNCOM-
PLETE, sid, ssid, ⊥) to F .

52

– When F outputs (SIGNATURE, sid, ssid, σ) on behalf of hostj, S sends
(SIGNPROCEED, sid, ssid) to “tpmi”.

– send (SIGNCOMPLETE, sid, ssid, σ) to “tpmi”.

• VERIFY, LINK: Nothing to simulate.

Figure D.22: Game 8 for S

• SETUP, JOIN: Unchanged.

• SIGN

– SIGN REQUEST: On input (SIGN, sid, ssid, tpmi, µ, bsn) from the host
hostj,

∗ Abort if I is honest and no entry 〈tpmi, hostj, ?〉 exists in Members.

∗ Else, create a sign session 〈ssid, tpmi, hostj, µ, bsn, request〉.
∗ Output (SIGNSTART, sid, ssid, tpmi, hostj, l(µ, bsn)) to S.

– SIGN REUEST DELIVERY: On input (SIGNSTART, sid, ssid) from S,
update the session to 〈ssid, tpmi, hostj, µ, bsn, delivered〉.

– Output (SIGNPROCEED, sid, ssid, µ, bsn) to tpmi.

– SIGN PROCEED: On input (SIGN PROCEED, sid, ssid) from tpmi

∗ Update the records 〈ssid, tpmi, hostj, µ, bsn, delivered〉.
∗ Output (SIGNCOMPETE, sid, ssid) to S.

– SIGNATURE GENERATION: On the input (SIGNCOMPETE,
sid, ssid, σ) from S, if both tpmi and hostj are honest then:

∗ Ignore the adversary’s signature σ.

∗ If bsn 6= ⊥, then retrieve gsk from the 〈tpmi, bsn, gsk〉 ∈ DomainKeys.

∗ If bsn = ⊥ or no gsk was found, generate a fresh key gsk ← Kgen(1λ).

∗ Store 〈tpmi, bsn, gsk〉 in DomainKeys.

∗ Generate the signature σ ← sig(gsk, µ, bsn).

∗ If tpmi is honest, then store 〈σ, µ, tpmi, bsn〉 in Signed and output
(SIGNATURE, sid, ssid, σ) to hostj.

• VERIFY

On input (VERIFY, sid, µ, bsn, σ, RL) from V

– Set f = 0 if there is a gsk′ ∈ RL such that identify(σ, µ, bsn, gsk′) = 1.

– If f 6= 0, set f=ver(σ, µ, bsn).

53

– Add (σ, µ, bsn, RL, f) to VerResults, output (VERIFIED, sid, f) to V .

• LINK

On the input (LINK, sid, σ1, µ1, σ2, µ2, bsn) from V

– Output ⊥ if at least one of the signatures (σ1, µ1, bsn) or (σ2, µ2, bsn)
is not valid.

– Set f=link(σ1, µ1, σ2, µ2, bsn), and output (LINK, sid, f) to V .

Figure D.23: Game 9 for F

• SETUP: Unchanged.

• JOIN: Unchanged.

• SIGN: Unchanged.

• VERIFY: Unchanged.

• LINK: Unchanged.

Figure D.24: Games 9-16 for S

• SETUP: Unchanged.

• JOIN

1. JOINREQUEST: On input (JOIN, sid, jsid, tpmi) from the host hostj to
join the TPM tpmi

– Create a join session 〈jsid, tpmi, hostj, request 〉.
– Output (JOINSTART, sid, jsid, tpmi, hostj) to S.

2. JOIN REQUEST DELIVERY: Proceed upon receiving delivery notifica-
tion from S.

– Update the session record to 〈jsid, tpmi, hostj, delivered〉.
– If I or tpmi is honest and 〈tpmi, ?, ?〉 is already in Members, output
⊥.

– Output (JOINPROCEED, sid, jsid, tpmi) to I.

3. JOIN PROCEED: Upon receiving (JOINPROCEED, sid, jsid, tpmi) from
I

– Update the session record to 〈jsid, sid, tpmi, hostj, complete〉.
– Output (JOINCOMPLETE, sid, jsid) to S.

54

4. KEY GENERATION: On input (JOINCOMPLETE, sid, jsid, gsk) from
S.

– Update the session record to 〈jsid, tpmi, hostj, complete〉
– If both tpmi and hostj are honest, set gsk = ⊥.

– Else, verify that the provided gsk is eligible by performing the following
checks:

∗ If hostj is corrupt and tpmi is honest, then
CheckGskHonest(gsk)=1.

∗ If tpmi is corrupt, then CheckGskCorrupt(gsk)=1.

∗ Insert 〈tpmi, hostj, gsk〉 into Members, and output (JOINED,
sid, jsid) to hostj.

• SIGN

– SIGN REQUEST: On input (SIGN, sid, ssid, tpmi, µ, bsn) from the host
hostj,

∗ Abort if I is honest and no entry 〈tpmi, hostj, ?〉 exists in Members.

∗ Else, create a sign session 〈ssid, tpmi, hostj, µ, bsn, request〉.
∗ Output (SIGNSTART, sid, ssid, tpmi, hostj, l(µ, bsn)) to S.

– SIGN REUEST DELIVERY: On input (SIGNSTART, sid, ssid) from S,
update the session to 〈ssid, tpmi, hostj, µ, bsn, delivered〉.

– Output (SIGNPROCEED, sid, ssid, µ, bsn) to tpmi.

– SIGN PROCEED: On input (SIGN PROCEED, sid, ssid) from tpmi

∗ Update the records 〈ssid, tpmi, hostj, µ, bsn, delivered〉.
∗ Output (SIGNCOMPETE, sid, ssid) to S.

– SIGNATURE GENERATION: On the input (SIGNCOMPETE,
sid, ssid, σ) from S, if both tpmi and hostj are honest then:

∗ Ignore the adversary’s signature σ.

∗ If bsn 6= ⊥, then retrieve gsk from the 〈tpmi, bsn, gsk〉 ∈ DomainKeys.

∗ If bsn = ⊥ or no gsk was found, generate a fresh key gsk ← Kgen(1λ).

∗ Check CheckGskHonest(gsk)=1

∗ Store 〈tpmi, bsn, gsk〉 in DomainKeys.

∗ Generate the signature σ ← sig(gsk, µ, bsn).

∗ If tpmi is honest, then store 〈σ, µ, tpmi, bsn〉 in Signed and output
(SIGNATURE, sid, ssid, σ) to hostj.

• VERIFY, LINK: Unchanged

Figure D.25: Game 10 for F

55

• SETUP, JOIN: Unchanged.

• SIGN

– SIGN REQUEST: On input (SIGN, sid, ssid, tpmi, µ, bsn) from the host
hostj,

∗ Abort if I is honest and no entry 〈tpmi, hostj, ?〉 exists in Members.

∗ Else, create a sign session 〈ssid, tpmi, hostj, µ, bsn, request〉.
∗ Output (SIGNSTART, sid, ssid, tpmi, hostj, l(µ, bsn)) to S.

– SIGN REUEST DELIVERY: On input (SIGNSTART, sid, ssid) from S,
update the session to 〈ssid, tpmi, hostj, µ, bsn, delivered〉.

– Output (SIGNPROCEED, sid, ssid, µ, bsn) to tpmi.

– SIGN PROCEED: On input (SIGN PROCEED, sid, ssid) from tpmi

∗ Update the records 〈ssid, tpmi, hostj, µ, bsn, delivered〉.
∗ Output (SIGNCOMPETE, sid, ssid) to S.

– SIGNATURE GENERATION: On the input (SIGNCOMPETE,
sid, ssid, σ) from S, if both tpmi and hostj are honest then:

∗ Ignore the adversary’s signature σ.

∗ If bsn 6= ⊥, then retrieve gsk from the 〈tpmi, bsn, gsk〉 ∈ DomainKeys.

∗ If bsn = ⊥ or no gsk was found, generate a fresh key gsk ← Kgen(1λ).

∗ Check CheckGskHonest(gsk)=1.

∗ Store 〈tpmi, bsn, gsk〉 in DomainKeys.

∗ Generate the signature σ ← sig(gsk, µ, bsn).

∗ Check ver(σ, µ, bsn)=1.

∗ Check identify(σ, µ, bsn, gsk)=1.

∗ Check the is no TPM other than tpmi with key gsk′ registered in
Members or DomainKeys such that identify(σ, µ, bsn, gsk′)=1.

∗ If tpmi is honest, then store 〈σ, µ, tpmi, bsn〉 in Signed and output
(SIGNATURE, sid, ssid, σ) to hostj.

• VERIFY: On input (VERIFY, sid, µ, bsn, σ, RL) from V

– Set f = 0 if there is a gsk′ ∈ RL such that identify(σ, µ, bsn, gsk′) = 1.

– If f 6= 0, set f=ver(σ, µ, bsn).

– Add (σ, µ, bsn, RL, f) to VerResults, output (VERIFIED, sid, f) to V .

• LINK: On the input (LINK, sid, σ1, µ1, σ2, µ2, bsn) from V

– Output ⊥ if at least one of the signatures (σ1, µ1, bsn) or (σ2, µ2, bsn)
is not valid.

– Set f=link(σ1, µ1, σ2, µ2, bsn), and output (LINK, sid, f) to V .

Figure D.26: Game 11 for F

56

• SETUP, JOIN: Unchanged.

• SIGN

– SIGN REQUEST: On input (SIGN, sid, ssid, tpmi, µ, bsn) from the host
hostj,

∗ Abort if I is honest and no entry 〈tpmi, hostj, ?〉 exists in Members.

∗ Else, create a sign session 〈ssid, tpmi, hostj, µ, bsn, request〉.
∗ Output (SIGNSTART, sid, ssid, tpmi, hostj, l(µ, bsn)) to S.

– SIGN REUEST DELIVERY: On input (SIGNSTART, sid, ssid) from S,
update the session to 〈ssid, tpmi, hostj, µ, bsn, delivered〉.

– Output (SIGNPROCEED, sid, ssid, µ, bsn) to tpmi.

– SIGN PROCEED: On input (SIGN PROCEED, sid, ssid) from tpmi

∗ Update the records 〈ssid, tpmi, hostj, µ, bsn, delivered〉.
∗ Output (SIGNCOMPETE, sid, ssid) to S.

– SIGNATURE GENERATION: On the input (SIGNCOMPETE,
sid, ssid, σ) from S, if both tpmi and hostj are honest then:

∗ Ignore the adversary’s signature σ.

∗ If bsn 6= ⊥, then retrieve gsk from the 〈tpmi, bsn, gsk〉 ∈ DomainKeys.

∗ If bsn = ⊥ or no gsk was found, generate a fresh key gsk ← Kgen(1λ).

∗ Check CheckGskHonest(gsk)=1.

∗ Store 〈tpmi, bsn, gsk〉 in DomainKeys.

∗ Generate the signature σ ← sig(gsk, µ, bsn).

∗ Check ver(σ, µ, bsn)=1.

∗ Check identify(σ, µ, bsn, gsk)=1.

∗ Check the is no TPM other than tpmi with key gsk′ registered in
Members or DomainKeys such that identify(σ, µ, bsn, gsk′)=1.

∗ If tpmi is honest, then store 〈σ, µ, tpmi, bsn〉 in Signed and output
(SIGNATURE, sid, ssid, σ) to hostj.

• VERIFY: On input (VERIFY, sid, µ, bsn, σ, RL) from V

– Extract all pairs (gski, tpmi) from the DomainKeys and Members, for
which identify(σ, µ, bsn, gsk)=1.

– Set f = 0 if any of the following holds:

∗ More than one key gski was found.

∗ There is a key gsk′ ∈ RL, such that identify(σ, µ, bsn, gsk′)=1.

– If f 6= 0, set f=ver(σ, µ, bsn).

– Add (σ, µ, bsn, RL, f) to VerResults, output (VERIFIED, sid, f) to V .

57

• LINK: On the input (LINK, sid, σ1, µ1, σ2, µ2, bsn) from V

– Output ⊥ if at least one of the signatures (σ1, µ1, bsn) or (σ2, µ2, bsn)
is not valid.

– Set f=link(σ1, µ1, σ2, µ2, bsn), and output (LINK, sid, f) to V .

Figure D.27: Game 12 for F

• SETUP, JOIN: Unchanged.

• SIGN

– SIGN REQUEST: On input (SIGN, sid, ssid, tpmi, µ, bsn) from the host
hostj,

∗ Abort if I is honest and no entry 〈tpmi, hostj, ?〉 exists in Members.

∗ Else, create a sign session 〈ssid, tpmi, hostj, µ, bsn, request〉.
∗ Output (SIGNSTART, sid, ssid, tpmi, hostj, l(µ, bsn)) to S.

– SIGN REUEST DELIVERY: On input (SIGNSTART, sid, ssid) from S,
update the session to 〈ssid, tpmi, hostj, µ, bsn, delivered〉.

– Output (SIGNPROCEED, sid, ssid, µ, bsn) to tpmi.

– SIGN PROCEED: On input (SIGN PROCEED, sid, ssid) from tpmi

∗ Update the records 〈ssid, tpmi, hostj, µ, bsn, delivered〉.
∗ Output (SIGNCOMPETE, sid, ssid) to S.

– SIGNATURE GENERATION: On the input (SIGNCOMPETE,
sid, ssid, σ) from S, if both tpmi and hostj are honest then:

∗ Ignore the adversary’s signature σ.

∗ If bsn 6= ⊥, then retrieve gsk from the 〈tpmi, bsn, gsk〉 ∈ DomainKeys.

∗ If bsn = ⊥ or no gsk was found, generate a fresh key gsk ← Kgen(1λ).

∗ Check CheckGskHonest(gsk)=1.

∗ Store 〈tpmi, bsn, gsk〉 in DomainKeys.

∗ Generate the signature σ ← sig(gsk, µ, bsn).

∗ Check ver(σ, µ, bsn)=1.

∗ Check identify(σ, µ, bsn, gsk)=1.

∗ Check the is no TPM other than tpmi with key gsk′ registered in
Members or DomainKeys such that identify(σ, µ, bsn, gsk′)=1.

∗ If tpmi is honest, then store 〈σ, µ, tpmi, bsn〉 in Signed and output
(SIGNATURE, sid, ssid, σ) to hostj.

• VERIFYOn input (VERIFY, sid, µ, bsn, σ, RL) from V

58

– Extract all pairs (gski, tpmi) from the DomainKeys and Members, for
which identify(σ, µ, bsn, gsk)=1.

– Set f = 0 if any of the following holds:

∗ More than one key gski was found.

∗ I is honest and no pair (gski, tpmi) was found.

∗ There is a key gsk′ ∈ RL, such that identify(σ, µ, bsn, gsk′)=1.

– If f 6= 0, set f=ver(σ, µ, bsn).

– Add (σ, µ, bsn, RL, f) to VerResults, output (VERIFIED, sid, f) to V .

• LINK: On the input (LINK, sid, σ1, µ1, σ2, µ2, bsn) from V

– Output ⊥ if at least one of the signatures (σ1, µ1, bsn) or (σ2, µ2, bsn)
is not valid.

– Set f=link(σ1, µ1, σ2, µ2, bsn), and output (LINK, sid, f) to V .

Figure D.28: Game 13 for F

• SETUP, JOIN: Unchanged.

• SIGN

– SIGN REQUEST: On input (SIGN, sid, ssid, tpmi, µ, bsn) from the host
hostj,

∗ Abort if I is honest and no entry 〈tpmi, hostj, ?〉 exists in Members.

∗ Else, create a sign session 〈ssid, tpmi, hostj, µ, bsn, request〉.
∗ Output (SIGNSTART, sid, ssid, tpmi, hostj, l(µ, bsn)) to S.

– SIGN REUEST DELIVERY: On input (SIGNSTART, sid, ssid) from S,
update the session to 〈ssid, tpmi, hostj, µ, bsn, delivered〉.

– Output (SIGNPROCEED, sid, ssid, µ, bsn) to tpmi.

– SIGN PROCEED: On input (SIGN PROCEED, sid, ssid) from tpmi

∗ Update the records 〈ssid, tpmi, hostj, µ, bsn, delivered〉.
∗ Output (SIGNCOMPETE, sid, ssid) to S.

– SIGNATURE GENERATION: On the input (SIGNCOMPETE,
sid, ssid, σ) from S, if both tpmi and hostj are honest then:

∗ Ignore the adversary’s signature σ.

∗ If bsn 6= ⊥, then retrieve gsk from the 〈tpmi, bsn, gsk〉 ∈ DomainKeys.

∗ If bsn = ⊥ or no gsk was found, generate a fresh key gsk ← Kgen(1λ).

∗ Check CheckGskHonest(gsk)=1.

59

∗ Store 〈tpmi, bsn, gsk〉 in DomainKeys.

∗ Generate the signature σ ← sig(gsk, µ, bsn).

∗ Check ver(σ, µ, bsn)=1.

∗ Check identify(σ, µ, bsn, gsk)=1.

∗ Check the is no TPM other than tpmi with key gsk′ registered in
Members or DomainKeys such that identify(σ, µ, bsn, gsk′)=1.

∗ If tpmi is honest, then store 〈σ, µ, tpmi, bsn〉 in Signed and output
(SIGNATURE, sid, ssid, σ) to hostj.

• VERIFY: On input (VERIFY, sid, µ, bsn, σ, RL) from V

– Extract all pairs (gski, tpmi) from the DomainKeys and Members, for
which identify(σ, µ, bsn, gsk)=1.

– Set f = 0 if any of the following holds:

∗ More than one key gski was found.

∗ I is honest and no pair (gski, tpmi) was found.

∗ An honest tpmi was found, but no entry 〈?, µ, tpmi, bsn〉 was found
in Signed.

∗ There is a key gsk′ ∈ RL, such that identify(σ, µ, bsn, gsk′)=1.

– If f 6= 0, set f=ver(σ, µ, bsn).

– Add (σ, µ, bsn, RL, f) to VerResults, output (VERIFIED, sid, f) to V .

• LINK: On the input (LINK, sid, σ1, µ1, σ2, µ2, bsn) from V

– Output ⊥ if at least one of the signatures (σ1, µ1, bsn) or (σ2, µ2, bsn)
is not valid.

– Set f=link(σ1, µ1, σ2, µ2, bsn), and output (LINK, sid, f) to V .

Figure D.29: Game 14 for F

• SETUP, JOIN: Unchanged.

• SIGN

– SIGN REQUEST: On input (SIGN, sid, ssid, tpmi, µ, bsn) from the host
hostj,

∗ Abort if I is honest and no entry 〈tpmi, hostj, ?〉 exists in Members.

∗ Else, create a sign session 〈ssid, tpmi, hostj, µ, bsn, request〉.
∗ Output (SIGNSTART, sid, ssid, tpmi, hostj, l(µ, bsn)) to S.

– SIGN REUEST DELIVERY: On input (SIGNSTART, sid, ssid) from S,
update the session to 〈ssid, tpmi, hostj, µ, bsn, delivered〉.

60

– Output (SIGNPROCEED, sid, ssid, µ, bsn) to tpmi.

– SIGN PROCEED: On input (SIGN PROCEED, sid, ssid) from tpmi

∗ Update the records 〈ssid, tpmi, hostj, µ, bsn, delivered〉.
∗ Output (SIGNCOMPETE, sid, ssid) to S.

– SIGNATURE GENERATION: On the input (SIGNCOMPETE,
sid, ssid, σ) from S, if both tpmi and hostj are honest then:

∗ Ignore the adversary’s signature σ.

∗ If bsn 6= ⊥, then retrieve gsk from the 〈tpmi, bsn, gsk〉 ∈ DomainKeys.

∗ If bsn = ⊥ or no gsk was found, generate a fresh key gsk ← Kgen(1λ).

∗ Check CheckGskHonest(gsk)=1.

∗ Store 〈tpmi, bsn, gsk〉 in DomainKeys.

∗ Generate the signature σ ← sig(gsk, µ, bsn).

∗ Check ver(σ, µ, bsn)=1.

∗ Check identify(σ, µ, bsn, gsk)=1.

∗ Check the is no TPM other than tpmi with key gsk′ registered in
Members or DomainKeys such that identify(σ, µ, bsn, gsk′)=1.

∗ If tpmi is honest, then store 〈σ, µ, tpmi, bsn〉 in Signed and output
(SIGNATURE, sid, ssid, σ) to hostj.

• VERIFY: On input (VERIFY, sid, µ, bsn, σ, RL) from V

– Extract all pairs (gski, tpmi) from the DomainKeys and Members, for
which identify(σ, µ, bsn, gsk)=1.

– Set f = 0 if any of the following holds:

∗ More than one key gski was found.

∗ I is honest and no pair (gski, tpmi) was found.

∗ An honest tpmi was found, but no entry 〈?, µ, tpmi, bsn〉 was found
in Signed.

∗ There is a key gsk′ ∈ RL, such that identify(σ, µ, bsn, gsk′)=1, and
no pair (tpmi, gski) for honest tpmi was found.

– If f 6= 0, set f=ver(σ, µ, bsn).

– Add (σ, µ, bsn, RL, f) to VerResults, output (VERIFIED, sid, f) to V .

• LINK: On the input (LINK, sid, σ1, µ1, σ2, µ2, bsn) from V

– Output ⊥ if at least one of the signatures (σ1, µ1, bsn) or (σ2, µ2, bsn)
is not valid.

– Set f=link(σ1, µ1, σ2, µ2, bsn), and output (LINK, sid, f) to V .

Figure D.30: Game 15 for F

61

• SETUP, JOIN: Unchanged.

• SIGN

– SIGN REQUEST: On input (SIGN, sid, ssid, tpmi, µ, bsn) from the host
hostj,

∗ Abort if I is honest and no entry 〈tpmi, hostj, ?〉 exists in Members.

∗ Else, create a sign session 〈ssid, tpmi, hostj, µ, bsn, request〉.
∗ Output (SIGNSTART, sid, ssid, tpmi, hostj, l(µ, bsn)) to S.

– SIGN REUEST DELIVERY: On input (SIGNSTART, sid, ssid) from S,
update the session to 〈ssid, tpmi, hostj, µ, bsn, delivered〉.

– Output (SIGNPROCEED, sid, ssid, µ, bsn) to tpmi.

– SIGN PROCEED: On input (SIGN PROCEED, sid, ssid) from tpmi

∗ Update the records 〈ssid, tpmi, hostj, µ, bsn, delivered〉.
∗ Output (SIGNCOMPETE, sid, ssid) to S.

– SIGNATURE GENERATION: On the input (SIGNCOMPETE,
sid, ssid, σ) from S, if both tpmi and hostj are honest then:

∗ Ignore the adversary’s signature σ.

∗ If bsn 6= ⊥, then retrieve gsk from the 〈tpmi, bsn, gsk〉 ∈ DomainKeys.

∗ If bsn = ⊥ or no gsk was found, generate a fresh key gsk ← Kgen(1λ).

∗ Check CheckGskHonest(gsk)=1.

∗ Store 〈tpmi, bsn, gsk〉 in DomainKeys.

∗ Generate the signature σ ← sig(gsk, µ, bsn).

∗ Check ver(σ, µ, bsn)=1.

∗ Check identify(σ, µ, bsn, gsk)=1.

∗ Check the is no TPM other than tpmi with key gsk′ registered in
Members or DomainKeys such that identify(σ, µ, bsn, gsk′)=1.

∗ If tpmi is honest, then store 〈σ, µ, tpmi, bsn〉 in Signed and output
(SIGNATURE, sid, ssid, σ) to hostj.

• VERIFY: On input (VERIFY, sid, µ, bsn, σ, RL) from V

– Extract all pairs (gski, tpmi) from the DomainKeys and Members, for
which identify(σ, µ, bsn, gsk)=1.

– Set f = 0 if any of the following holds:

∗ More than one key gski was found.

∗ I is honest and no pair (gski, tpmi) was found.

∗ An honest tpmi was found, but no entry 〈?, µ, tpmi, bsn〉 was found
in Signed.

62

∗ There is a key gsk′ ∈ RL, such that identify(σ, µ, bsn, gsk′)=1, and
no pair (tpmi, gski) for honest tpmi was found.

– If f 6= 0, set f=ver(σ, µ, bsn).

– Add (σ, µ, bsn, RL, f) to VerResults, output (VERIFIED, sid, f) to V .

• LINK: On the input (LINK, sid, σ1, µ1, σ2, µ2, bsn) from V

– Output ⊥ if at least one of the signatures (σ1, µ1, bsn) or (σ2, µ2, bsn)
is not valid.

– For each gski in Members and DomainKeys, compute bi ←
identify(σ1, µ1, bsn, gski) and b′i= identify(σ2, µ2, bsn, gski) then set:

∗ f ← 0 if bi 6= b′i for some i.

∗ f ← 1 if bi = b′i = 1 for some i.

– If f is not defined, set f=link(σ1, µ1, σ2, µ2, bsn), and output (LINK,
sid, f) to V .

Figure D.31: Game 16 for F

63

	Introduction
	Background
	TPM and TNC
	Lattice-based Cryptography
	Boyen's Signature Scheme
	Baum et al's Commitment Scheme
	ISIS Proof

	Proposed Quantum-Resistant DAA Techniques
	Proposed LDAA Scheme
	The proofs t, h and

	Security Model of DAA
	The Ideal Functionality Fdaal

	Security Proof
	Related Work
	El Bansarkhani and El Kaafarani DAA Scheme cryptoeprint:2017:1022
	Size Comparison
	Computation Costs

	Experimental Results
	Conclusion and Future Work
	Security Proof of the Modified Boyen Signture Scheme
	Security Proof of the Modified Baum Commitment Scheme
	Ideal Functionalities From CaDrLe16
	Semi-Authenticated Channels via Fauth*
	Certification Authority
	Secure Message Transmission
	Common Reference String

	Detailed Security Proof of the L-DAA Scheme

