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Abstract

We introduce a new cryptographic primitive called laconic function evaluation (LFE). Using LFE,
Alice can compress a large circuit f into a small digest. Bob can encrypt some data x under this digest
in a way that enables Alice to recover f(x) without learning anything else about Bob’s data. For the
scheme to be laconic, we require that the size of the digest, the run-time of the encryption algorithm
and the size of the ciphertext should all be small, much smaller than the circuit-size of f . We construct
an LFE scheme for general circuits under the learning with errors (LWE) assumption, where the above
parameters only grow polynomially with the depth but not the size of the circuit. We then use LFE to
construct secure 2-party and multi-party computation (2PC, MPC) protocols with novel properties:

• We construct a 2-round 2PC protocol between Alice and Bob with respective inputs xA, xB in
which Alice learns the output f(xA, xB) in the second round. This is the first such protocol which
is “Bob-optimized”, meaning that Alice does all the work while Bob’s computation and the total
communication of the protocol are smaller than the size of the circuit f or even Alice’s input xA.
In contrast, prior solutions based on fully homomorphic encryption are “Alice-optimized”.

• We construct an MPC protocol, which allowsN parties to securely evaluate a function f(x1, ..., xN )
over their respective inputs, where the total amount of computation performed by the parties
during the protocol execution is smaller than that of evaluating the function itself! Each party
has to individually pre-process the circuit f before the protocol starts and post-process the pro-
tocol transcript to recover the output after the protocol ends, and the cost of these steps is larger
than the circuit size. However, this gives the first MPC where the computation performed by
each party during the actual protocol execution, from the time the first protocol message is sent
until the last protocol message is received, is smaller than the circuit size.

1 Introduction

We introduce a new and natural cryptographic primitive, which we call laconic function evaluation (LFE).
In an LFE scheme, Alice has a large circuit f , potentially containing various hard-coded data. She can
deterministically compress f to derive a short digest digestf = Compress(f). Bob can encrypt some data
x under this digest, resulting in a ciphertext ct ← Enc(digestf , x), which Alice is able to decrypt using
only her knowledge of f to recover the output f(x) = Dec(f, ct). Security ensures that Alice does not
learn anything about Bob’s input x beyond the output f(x), as formalized via the simulation paradigm.
The laconic aspect of LFE requires that Bob’s computational complexity is small, and in particular, the
size of digestf , the run-time of the encryption algorithm Enc(digestf , x) and the size of the ciphertext ct
should be much smaller than the circuit-size of f .

As an example, we can imagine that the FBI (acting as Alice) has a huge database D of suspected
terrorists and publishes a short digest of the circuit fD(x) which checks if a person x belongs to the
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database D. An airline (acting as Bob) can use this digest to encrypt the identity of a passenger on their
flight manifest, which lets the FBI learn whether the passenger is on the suspected terrorist list, while
preserving passenger privacy otherwise.1 This is a special case of secure 2-party computation and indeed
we will show that LFE has applications to general secure 2-party and multi-party computation with novel
properties which weren’t achievable using previously known techniques.

We emphasize that, in spite of all of the recent advances in succinct computation on encrypted data
(from fully homomorphic encryption through functional encryption), the very natural notion of LFE has
not been considered in the literature, nor does it follow readily from existing cryptographic tools and
primitives. We discuss the most related primitives below.

Relation to Laconic OT. LFE can be seen as a generalization of the recently introduced notion of
laconic oblivious transfer (LOT) [CDG+17]. In an LOT scheme, Alice has a large database D ∈ {0, 1}M
which she compresses into a short digest digestD = Compress(D). Bob can choose any location i ∈ [M ]
and two messages m0,m1, and create a ciphertext ct ← Enc(digestD, (i,m0,m1)). Alice recovers the
message mD[i], where D[i] is the i’th bit of D, without learning anything about the other message
m1−D[i]. In other words, we can think of LOT as a highly restricted form of LFE for functions of

the form fLOT
D ((i,m0,m1)) = (i,mD[i]), whereas LFE works for arbitrary circuits.2 Using the ideas of

[CDG+17], it is possible to combine LOT with garbled circuits to achieve a “half laconic” 1
2LFE scheme

for arbitrary circuits, where the digest is short but the run-time of the encryption algorithm and the size of
the ciphertext are larger than the circuit size of f . (Essentially, Alice sends an LOT digest corresponding
to a description of the circuit f and Bob sends a garbled universal circuit that takes as input f and
outputs f(x), along with LOT ciphertexts for the labels of the input wires.) Although such 1

2LFE is
already interesting and can be constructed under several different assumptions (e.g., DDH, LWE, etc.)
by leveraging the recent works of [CDG+17, DG17, BLSV18], it will be insufficient for our applications
which crucially rely on a fully laconic LFE scheme.

Relation to Functional Encryption. LFE also appears to be related to (succinct, single-key) func-
tional encryption (FE) [SW05, BW07, KSW08, SS10, BSW11, GVW12, GVW13, GKP+13, BGG+14,
GVW15, Agr17]. However, despite some similarity, the two primitives are distinct and have incomparable
requirements. An FE scheme has a master authority which creates a master public key mpk and master
secret key msk. For any function f , the master authority can use msk to generate a function secret key
skf , which it can give to Alice. Bob can then use mpk to compute an encryption ct ← Enc(mpk, x) of
some value x, which Alice can decrypt using skf to recover f(x) without learning anything else about x.
In a succinct FE scheme, the size of mpk, the run-time of the encryption algorithm and the ciphertext
size are smaller than the circuit size of f . There are important differences between FE and LFE:

• In FE there is a master authority which is a separate party distinct from the users Alice/Bob and
which gives skf to Alice and mpk to Bob. In LFE there is no such additional authority.

• In FE the ciphertext ct is not tied to any specific function f , but is created using a master public
key mpk. Depending on which secret key skf Alice gets she is able to decrypt f(x), but the master
authority is able to learn all of x. In LFE, the ciphertext ct is created using digestf which ties it to
a specific function f , and the ciphertext does not reveal anything beyond f(x) to anyone.

It turns out that LFE generically implies succinct, single-key FE (see Appendix C).3 However, we do
not know of any implication in the reverse direction and it appears unlikely that succinct FE would imply
LFE. Nevertheless, as we will discuss later, our concrete construction of LFE under the learning with

1We may also desire “function privacy”, discussed later, to ensure that the digest does not reveal anything about D.
2In fact, LOT can be seen as a restricted form of “attribute-based LFE” (AB-LFE) discussed later.
3We thank Alex Lombardi for pointing out this implication to us.
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errors assumption borrows heavily from techniques developed in the context of attribute-based encryption
and succinct functional encryption.

1.1 Main Results for LFE

In this work, we construct an LFE scheme under the learning with errors (LWE) assumption. The size
of the digest, the complexity of the encryption algorithm and the size of the ciphertext only scale with
the depth but not the size of the circuit. In particular, for a circuit f : {0, 1}k → {0, 1}` of size |f | and
depth d, and for security parameter λ, our LFE has the following parameters:

• The size of the digest is poly(λ) and the run-time of the encryption algorithm and the size of the
ciphertext are Õ(k + `) · poly(λ, d).

• The run-time of the compression and the decryption algorithms is Õ(|f |) · poly(λ, d).

As in many other prior works building advanced cryptosystems under LWE, we require LWE with a
sub-exponential modulus-to-noise ratio, which follows from the hardness of worst-case lattice problems
with sub-exponential approximation factors and is widely believed to hold.

Necessity of a CRS. It turns out that LFE schemes require some sort of a public seed, which we
refer to as a common reference string (CRS). This is for the same reason that collision-resistant hash
functions (CRHFs) need a public seed; in fact, it is easy to show that the compression function which
maps a circuit f to a digest digestf is a CRHF. In our case, the CRS is a uniformly random string, which
is given as an input to all of the algorithms of the LFE. The CRS is of size k · poly(λ, d). For simplicity,
we will usually ignore the CRS in our simplified notation used throughout the introduction.

Selective vs. Adaptive Security. One caveat of our schemes is that we only achieve selective security
where Bob’s input x must be chosen non-adaptively before the CRS is known. We also consider adaptive
security where Bob’s input x can adaptively depend on the CRS and show that it follows from a natural
and easy to state strengthening of the LWE assumption, which we call adaptive LWE (see the “Our
Techniques” section). Currently, we can only prove the security of adaptive LWE from standard LWE
via a reduction with an exponential loss of security, but it may be reasonable to assume that the actual
security level of adaptive LWE is much higher than this reduction suggests.

Function Hiding. For the default notion of LFE, the compression function that computes digestf =
Compress(f) is deterministic and the output digestf may reveal some partial information about the circuit
f . However, in many cases we may also want a function hiding property, meaning that the digest should
completely hide the function f . In this case the compression function has to use private randomness. We
show that there is a generic way to convert any LFE scheme with a deterministic compression function
and without function hiding into one which has a randomized compression function and is also statistically
function hiding. We also give an alternate more direct approach to achieving statistical function hiding
for our LWE-based construction of LFE.

In a function-hiding LFE with a randomized compression function, Alice will also need to remember
the random coins r that she used to create digestf = Compress(f ; r) as a secret key, which is needed to
decrypt ciphertexts created under this digest. One additional advantage of an LFE with function hiding
security is that, while previously anybody (not just Alice) could decrypt a ciphertext ct← Enc(digestf , x)
to recover f(x) by just knowing the function f , the function hiding property implicitly guarantees that
only Alice can recover f(x) using her private randomness r, while others do not learn anything about
x. This is because an external observer cannot differentiate between a correctly generated digestf and
digestnull, where the latter is the digest of the null function that always outputs 0. Given digestnull and a
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ciphertext ct encrypting x the attacker does not learn anything about x even given the randomness used
to generate the digest.

We note that, although the compression function in function-hiding LFE is randomized, our compiler
guarantees that Bob’s security holds even if Alice chooses the randomness of the compression function
maliciously.

LFE implies succinct FE. We show that selective (respectively adaptive) LFE generically implies
succinct, single-key selective (respectively adaptive) FE. In a nutshell, this is because, starting from a
non-succinct FE, we can build a succinct version by using the LFE encryption as the function for the
non-succinct FE. Now during decryption, we can generate an LFE encryption using the non-succinct
FE, and decrypt the output with the LFE. Meanwhile, succinctness is guaranteed as the circuit which
computes an LFE encryption is small.

1.2 Applications of LFE

As an application of LFE, we construct 2-party and multi-party computation (2PC, MPC) protocols with
novel properties that weren’t previously known.

Bob-Optimized 2-Round 2PC. Consider a 2-round 2PC protocol between Alice and Bob with re-
spective inputs xA, xB where Alice learns the output. Without loss of generality, Alice initiates the
protocol by sending the first round message to Bob and learns the output y = f(xA, xB) after receiving
the second round message from Bob.

If we didn’t care about security we would have two basic insecure approaches to the problem. The
“Alice-optimized” approach is for Alice to send her input xA to Bob and for Bob to compute y = f(xA, xB)
and send it to Alice; Alice’s computation and the total communication of the protocol are equal to
|xA|+ |y| while Bob’s computation is equal to |f |. The “Bob-optimized” approach is for Alice to ask Bob
to send her his input xB and for Alice to then compute y = f(xA, xB); Bob’s computation and the total
communication of the protocol are equal to |xB| while Alice’s computation is equal to |f |. The second
approach appears more natural – after all, if Alice wants to learn the output, she should do the work!

Can we get secure analogues of the above two approaches? Using garbled circuits and oblivious
transfer, we get a protocol which is neither Alice-optimized nor Bob-optimized; the computation of both
parties and the total communication are linear in the circuit size |f |. Using laconic OT, Alice’s first
message can become short but there is no improvement in either party’s computation or the total com-
munication otherwise. Using fully homomorphic encryption (FHE) [Gen09, BV11, GSW13, BV14], we
can get an Alice-optimized protocol: Alice encrypts her input xA in the first round and Bob homomor-
phically computes an encryption of f(xA, xB) in the second round. Alice’s computation and the total
communication of the protocol are (|xA|+ |y|) · poly(λ) while Bob’s computation is |f | · poly(λ). But can
we get a Bob-optimized protocol? Previously, no such 2-round protocol was known.4

In this work, using LFE, we get the first “Bob-optimized” 2-round protocol where Bob’s computation
and the total communication are smaller than the circuit size or even the size of Alice’s input – in
particular, they are bounded by (|xB| + |y|) · poly(λ, d) with d being the depth of the circuit f . The
linear dependence on the output size |y| is inherent for any (semi-malicious) secure protocol, as shown in
[HW15] but it remains an interesting open problem to get rid of the dependence on the circuit depth d.
We summarize the comparison of different approaches in Figure 1.

Our protocol using LFE is extremely simple: Alice sends a digest for the function f(xA, ·) in the first
round and Bob uses the digest to encrypt xB in the second round. To get security for Alice, we use a
function-hiding LFE scheme and we even ensure that Alice’s security holds statistically. The above gives

4If we allow additional rounds, we can use FHE to get a Bob-optimized 3-round protocol: Bob encrypts his input xB

under FHE, Alice homomorphically computes f(xA, xB)⊕ k where k is a random one-time pad, Bob decrypts and sends the
plaintext f(xA, xB)⊕ k to Alice who recovers y = f(xA, xB).
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Approach CRS Communication Computation Assumptions
Alice + Bob = Total Alice Bob

Garbled Circuits – kA |f | |f | |f | |f | OT
Laconic OT O(1) O(1) |f | |f | |f | |f | DDH, etc.
FHE – kA ` kA + ` kA + ` |f | LWE
Our Work kB O(1) kB + ` kB + ` |f | kB + ` LWE

Figure 1: Summary of semi-honest 2-round 2PC where Alice holds xA ∈ {0, 1}kA, Bob holds xB ∈ {0, 1}kB ,
and Alice learns y = f(xA, xB) ∈ {0, 1}`. We suppress multiplicative factors that are polynomial in the
security parameter λ or, for the last row, the circuit depth d.

us a 2PC with semi-honest security. We can think of this as a protocol in the CRS model, or we can even
allow Alice to choose the CRS on her own and send it in the first round to get a protocol in the plain
model. If we think of it as a protocol in the CRS model, we even get “semi-malicious” security where
corrupted parties follow the protocol but can use maliciously chosen randomness. To get fully malicious
security we would need to additionally rely on succinct non-interactive zero-knowledge arguments of
knowledge (ZK-SNARKs) [Mic94, Gro10, BCCT13, BCI+13, GGPR13] and have Alice prove that she
computed the digest correctly.

MPC with Small Online Computation. As our second application, we construct an MPC protocol
that allows N parties to securely evaluate some function f(x1, ..., xN ) over their respective inputs, where
the total amount of computation performed by the parties during the protocol execution is smaller than
that of evaluating the function itself! Of course, the work of the computation must be performed at
some point, even if we didn’t care about security. In our case, the MPC protocol requires each party to
individually pre-process the function f step before the protocol starts and to post-process the protocol
transcript and recover the output after the protocol ends, where the computational complexity of these
steps can exceed the circuit size of f . The pre-processing step is deterministic and can be performed once
per function being evaluated and reused across many executions. However, the main novelty of our MPC
is that the total computation performed by the parties online, from the time they send the first protocol
message and until they receive the last protocol message, is much smaller than the circuit size of f . This
also implies a correspondingly small communication complexity of the protocol.

(We note there are prior MPC protocols that have a separate “offline” phase, which occurs before the
inputs of the computation are known, and an “online” phase which occurs after the inputs are known
and where the online phase is very efficient. However, in these schemes the term “offline” is a misnomer
since the offline phase involves running a protocol and interacting with the other parties. For example,
the parties may run an MPC protocol to compute a garbled circuit for the function f in the offline phase
and then, once their inputs are known, they run another much more efficient MPC protocol to compute
the garbled input for the garbled circuit. In contrast, ours is the first MPC that has a truly offline
pre-processing and post-processing phase, where the parties do not interact with each other, while the
computational complexity of the entire online phase that involves interaction is smaller than the circuit
size.)

Our MPC construction uses an LFE scheme and proceeds as follows:

Pre-processing (offline). Each party individually pre-processes the circuit f by locally computing digestf =
Compress(f). We rely on an LFE scheme with deterministic compression so all parties compute the
same digest. This step can be performed once and can be reused across many executions.

Actual protocol (online). The actual protocol execution between the N parties holding inputs xi just
invokes a generic MPC protocol to compute an LFE ciphertext ct ← Enc(digestf , (x1, . . . , xN ))
which encrypts their joint inputs. Here, we use the fact that the run-time of Enc is small.
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Post-processing (offline). After the protocol finishes, each party individually does a post-processing step
in which it runs the LFE decryption algorithm on ct to recover the output f(x1, . . . , xN ).

The computational complexity of the pre-processing and post-processing steps is |f | ·poly(λ, d), where d is
the depth of the circuit f . The computational complexity of each party in the online protocol execution
and the total communication complexity are only poly(λ, d, k, `,N), where k is the input size of each
party and ` is the output size and N is the number of parties. In particular, the communication and
computational complexity of the online phase can be much smaller than the circuit size of f . We inherit
semi-honest or fully-malicious security depending on the MPC used in online phase. We think of the
above protocol as being in the CRS model. However, in the case of semi-honest security, we can also
think of it as a protocol in the plain model by having a single designated party (e.g., party 1) choose the
CRS for the LFE and compute the digest digestf (no other parties do any pre-processing) and use these
as its inputs to the MPC protocol executed in the online phase.

By taking our scheme from the previous paragraph and using a 2-round MPC [MW16, PS16, BP16,
GS17, BL18, GS18] in the online phase (without any additional efficiency constraints), we get a 2-round
MPC where the total computation performed by each party (including pre-processing and post-processing)
is |f | ·poly(λ, d)+poly(λ, k, `, d,N) and the total communication is poly(λ, k, `, d,N). In all prior 2-round
MPC protocols with N parties (even with semi-honest security, even in the CRS model), the computation
performed by each party is at least |f | ·N2. Therefore our result gives improved computational efficiency
for 2-round MPC even if we did not distinguish between online and offline work. In the case of semi-honest
security, if we use a 2-round MPC in the plain model [GS17, BL18, GS18] in the online phase we get a
2-round MPC in the plain-model with the above efficiency. In particular, we get a semi-honest 2-round
MPC in the plain model with communication which is smaller than the circuit size, matching the recent
work of Ananth et al. [ABJ+18] which previously got such result using functional-encryption combiners.

1.3 Our Techniques

Our construction of LFE relies on an adaptation of techniques developed in the context of attribute-based
and functional encryption [BGG+14, GKP+13]. The construction proceeds in two steps. We start by
considering LFE for a restricted class of functionalities, which we call attribute-based LFE (AB-LFE)
in analogy to attribute-based encryption (ABE). In an AB-LFE, Alice computes a digest digestf for a
function f . Bob computes a ciphertext Enc(digestf , x, µ) with an attribute x and a message µ such that
Alice recovers µ if f(x) = 0 and otherwise doesn’t learn anything about µ. (For technical reasons, it
will be easier to use the semantics where 0 denotes “qualified to decrypt” and 1 denotes “unqualified to
decrypt”.) However, the attribute x is always revealed to Alice. We can think of AB-LFE as an LFE
for the “conditional disclosure functionality” CDF[f ](x, µ), which outputs (x, µ) if f(x) = 0 and (x,⊥)
otherwise. As our first step, we construct AB-LFE under the LWE assumption. As our second step, we
show how to generically compile any AB-LFE into an LFE by additionally relying on fully homomorphic
encryption.

First Step: Constructing AB-LFE. Our construction adapts the techniques developed by Boneh et
al. [BGG+14] to construct attribute-based encryption (ABE). In some sense, our construction of AB-LFE
is simpler than that of ABE and we essentially avoid relying on “lattice trapdoors”. Our proof of security
also departs significantly from that of [BGG+14] and appears to be simpler since we avoid embedding
lattice trapdoors in the CRS. One advantage of our simplified proof is that, while for both ABE and AB-
LFE we only get selective security under LWE, for AB-LFE (but not ABE) our proof extends to showing
that adaptive security follows from a simple to state and natural “adaptive LWE” assumption, which
we describe below. We note that, although we manage to construct AB-LFE using similar techniques as
previously used in constructing of ABE, there does not appear to be a “black-box” relationship between
these primitives where one would imply the other.
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We rely on two algorithms EvalPK,EvalCT that were defined by [BGG+14]. Let G ∈ Zn×mq be
a fixed “gadget matrix” from [MP12]. Let Ai ∈ Zn×mq be arbitrary matrices, bi ∈ Zmq be vectors,

f : {0, 1}k → {0, 1} be some circuit and x ∈ {0, 1}k be an input.

• EvalPK(f, {Ai}i∈[k]) outputs a matrix Af ∈ Zn×mq .

• EvalCT(f, {Ai}i∈[k], {bi}i∈[k], x) outputs a vector bf ∈ Znq .

These algorithms are deterministic and have the property that:

if {bi = s>(Ai − xiG) + ei}i∈[k] then bf = s>(Af − f(x)G) + e∗ (1)

where ei and e∗ are some “small” errors. Our basic AB-LFE scheme works as follows.

• The CRS consists of uniformly random matrices A1, . . . ,Ak with Ai ∈ Zn×mq .

• To compress a circuit f : {0, 1}k → {0, 1} we set the digest to be digestf = Af = EvalPK(f, {Ai}i∈[k]).

• The encryption algorithm Enc(digestf , x, µ) encrypts a message µ ∈ {0, 1} with respect to an at-

tribute x ∈ {0, 1}k under a digest digestf = Af . It chooses a random LWE secret s ← Znq and

computes LWE samples bi = s>(Ai−xiG)+ei. It also chooses a random “short” vector t and sets
d = Af · t. Lastly it sets β = 〈s,d〉+ e′ + µ · bq/2e and outputs the ciphertext ct = ({bi}, β, t, x).

• The decryption algorithm computes bf = EvalCT(f, {Ai}i∈[k], {bi}i∈[k], x). By (1), we have bf =

s>(Af − f(x)G) + e∗. If f(x) = 0 then this allows us to recover the message by computing
β − 〈bf , t〉 ≈ µ · bq/2e.

To prove security, we assume that f(x) = 1 and need to show that the ciphertext doesn’t reveal
anything about the encrypted message µ. We can rely on the LWE assumption with a uniformly random
secret s and coefficient (Ai − xiG) to argue that the samples bi are indistinguishable from uniform.
However, to argue that β is also indistinguishable from uniform is slightly more complex. Firstly, we
note that by (1), we have β ≈ 〈bf , t〉 + s>Gt + e′ + µ · bq/2e. Secondly, if we set u = Gt, then u is
uniformly random and t ← G−1(u) can be efficiently sampled from u, so we can efficiently sample β
given u, 〈s,u〉+ e′ + µ · bq/2e. Therefore, when we use the LWE assumption, we also get one additional
sample with the coefficients u which we use to argue that β is indistinguishable from uniform. There is
some subtlety in ensuring that the noise distribution in β is correct and we solve this using the standard
“noise smudging” technique.

Adaptively Secure AB-LFE from Adaptive LWE. The above proof shows selective security, where
the adversary chooses the attribute x ahead of time before seeing the CRS, but breaks down in the case
of adaptive security. The issue is that, if the attribute x is chosen adaptively after the adversary sees the
CRS = {Ai}, then we can no longer argue that the LWE coefficients (Ai − xiG) are uniformly random.
However, the adversary has extremely limited ability to manipulate the coefficients. We formulate a
new but natural “adaptive LWE” assumption where the adversary is first given matrices {Ai}i∈[k], then

adaptively chooses a value x ∈ {0, 1}k, and has to distinguish between LWE samples s>(Ai − xiG) + ei
and uniformly random values. Our proof above shows adaptive security of AB-LFE under adaptive LWE.

What can we say about adaptive LWE? A simple guessing argument allows us to prove the security of
adaptive LWE based on standard LWE by incurring a 2k security loss in the reduction. In other words,
adaptive LWE follows from the sub-exponential security of standard LWE, if we choose the parameters
appropriately. However, it seems plausible to assume that adaptive LWE has a much higher level of
security than this reduction suggests. As far as we can tell, it seems reasonable to assume that it could
have essentially the same level of security as standard LWE and perhaps there is a reduction which only
incurs a polynomial loss. We leave this fascinating question for future work.
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Another interesting question is whether the adaptive LWE assumption could be useful in proving
adaptive security in other contexts, most notably for attribute-based encryption (ABE) of Boneh et al.
[BGG+14]. As far as we can tell, this does not appear to be the case, and the reason that we are able to
prove adaptive security of AB-LFE under adaptive LWE is that our proof differs significantly from that
of the Boneh et al. ABE and does not rely on embedding lattice trapdoors in the CRS. Nevertheless, we
leave this as an interesting possibility for future work.

Second Step: From AB-LFE to LFE. As our second step, we show how to generically compile
AB-LFE to LFE using fully-homomorphic encryption (FHE). This compiler is essentially identical to
that of Goldwassser et al. [GKP+13], which showed how to compile attribute-based encryption (ABE)
to (single key) functional encryption (FE). In addition to FHE, the compiler relies on garbled circuits
which can be constructed from one-way functions.

The high level idea is that, in the LFE scheme, the encryptor Bob first uses an FHE to encrypt
his input x, resulting in an FHE ciphertext x̂. He then constructs a garbled circuit Ĉ which has the
FHE secret key hard-coded inside of it and performs an FHE decryption. Lastly, he uses an AB-LFE
scheme to encrypt all of the labels of the input wires of the garbled circuit with respect to the attribute
x̂ in such a way that Alice recovers exactly the garbled labels that correspond to the homomorphically

evaluated ciphertext f̂(x) = FHE.Eval(f, x̂). Bob sends x̂, Ĉ and the AB-LFE ciphertexts to Alice as his
LFE ciphertext.

Optimizing for Long Output and Final Parameters. The above ideas, combined together, give
an LFE scheme for circuits f : {0, 1}k → {0, 1} with 1-bit output and depth d, where the digest is
of size poly(λ, d) and the encryption run-time and ciphertext size is k · poly(λ, d). The compression and
decryption run-time is |f | · poly(λ, d).

A naive way to get an LFE for circuits f : {0, 1}k → {0, 1}` with `-bit output is to invoke a separate
LFE for each output bit. This would blow up all of the efficiency measures by a multiplicative factor of
`. It turns out that we can do better. We do so by first constructing a “multi-bit output AB-LFE” that
allows Alice to compute a digest digestf for a circuit f : {0, 1}k → {0, 1}` with `-bit output and for
Bob to create a single ciphertext with an attribute x and messages µ1, . . . , µ` such that Alice recovers
µi if and only if the i’th output bit of f(x) is 0. We show how to modify our LWE based AB-LFE
construction to get a “multi-bit output AB-LFE” where the encryption run-time and the ciphertext size
is (k+`)·poly(λ, d) and the compression/decryption run-times remains |f |·poly(λ, d). However, the digest
size in this construction grows by a factor of ` to ` · poly(λ, d). We then show how to compress the digest
further to just poly(λ) independent of `, d. Essentially, instead of using the original AB-LFE digest as is,
we employ an additional layer of laconic OT (LOT) and give out an LOT digest of the AB-LFE digest.
The encryptor creates a garbled version of the underlying AB-LFE encryption algorithm and encrypts
the labels for the garbled circuit under LOT.

Combining all of the above we get an LFE scheme where the size of the CRS is k · poly(λ, d), the
size of the digest is poly(λ), the run-time of the encryption algorithm and the size of the ciphertext are
Õ(k+`)·poly(λ, d) and the run-time of the compression and the decryption algorithms is Õ(|f |)·poly(λ, d).

Additional Results. In Section 5 we describe how to generically add function hiding security to LFE
and in Appendix A we give a more direct construction of function-hiding LFE under LWE. In Appendix
B, we show that a CRS is necessary for LFE. In Appendix C, we show how to generically build a succinct
single-key FE scheme from any LFE. One new implication of this result is that we get adaptively secure
succinct single-key FE under adaptive LWE. In Appendix D, we present LFE protocols for the class
of linear functions under the DDH assumption (and its generalization to the k-Linear assumption) in
prime-order cyclic groups. In Appendix E, we present a more direct construction of LFE protocols for
circuits under LWE using the “dual use” techniques in [BTVW17].

8



2 Preliminaries

2.1 Notations

We will denote by λ the security parameter. The notation negl(λ) denotes any function f such that
f(λ) = λ−ω(1), and poly(λ) denotes any function f such that f(λ) = O(λc) for some c > 0. For a
probabilistic algorithm alg(inputs), we might explicit the randomness it uses by writting alg(inputs; coins).
We will denote vectors by bold lower case letters (e.g. a) and matrices by bold upper cases letters (e.g.
A). We will denote by a> and A> the transposes of a and A, respectively. We will denote by bxe the
nearest integer to x, rounding towards 0 for half-integers. If x is a vector, bxe will denote the rounded
value applied component-wise.

We define the statistical distance between two random variables X and Y over some domain Ω
as: SD(X,Y ) = 1

2

∑
w∈Ω |X(w)− Y (w)| . We say that two ensembles of random variables X = {Xλ},

Y = {Yλ} are statistically indistinguishable, denoted X
s
≈ Y , if SD(Xλ, Yλ) ≤ negl(λ).

We say that two ensembles of random variables X = {Xλ}, and Y = {Yλ} are computation-

ally indistinguishable, denoted X
c
≈ Y , if, for all (non-uniform) PPT distinguishers Adv, we have

|Pr[Adv(Xλ) = 1]− Pr[Adv(Yλ) = 1]| ≤ negl(λ).

2.2 Learning With Errors

Definition 1 (B-bounded distribution). We say that a distribution χ over Z is B-bounded if

Pr[χ ∈ [−B,B] ] = 1.

We recall the definition of the (decision) Learning with Errors problem, introduced by Regev ([Reg05]).

Definition 2 ((Decision) Learning with Errors ([Reg05])). Let n = n(λ) and q = q(λ) be integer parame-
ters and χ = χ(λ) be a distribution over Z. The Learning with Errors (LWE) assumption LWEn,q,χ states
that for all polynomials m = poly(λ) the following distributions are computationally indistinguishable:

(A, s>A + e)
c
≈ (A,u)

where A← Zn×mq , s← Znq , e← χm,u← Zmq .

Just like many prior works, we rely on LWE security with the following range of parameters. We
assume that for any polynomial p = p(λ) = poly(λ) there exists some polynomial n = n(λ) = poly(λ),
some q = q(λ) = 2poly(λ) and some B = B(λ)-bounded distribution χ = χ(λ) such that q/B ≥ 2p and the
LWEn,q,χ assumption holds. Throughout the paper, the LWE assumption without further specification
refers to the above parameters. The sub-exponentially secure LWE assumption further assumes that
LWEn,q,χ with the above parameters is sub-exponentially secure, meaning that there exists some ε > 0
such that the distinguishing advantage of any polynomial-time distinguisher is 2−λ

ε
.

The works of [Reg05, Pei09] showed that the (sub-exponentially secure) LWE assumption with the
above parameters follows from the worst-case (sub-exponential) quantum hardness SIVP and classical
hardness of GapSVP with sub-exponential approximation factors.

2.3 Lattice tools

Noise smudging. We will use the following fact.

Lemma 3 (Smudging Lemma (e.g., [AJL+12])). Let B = B(λ), B′ = B′(λ) ∈ Z be parameters and and
let e1 ∈ [−B,B] be an arbitrary value. Let e2 ← [B′, B′] be chosen uniformly at random. Then the
distribution of e2 is statistically indistinguishable from that of e2 + e1 as long as B/B′ = negl(λ).
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Gadget Matrix [MP12]. For an integer q ≥ 2, define: g = (1, 2, ·, 2dlog qe−1) ∈ Z1×dlog qe
q . The Gadget

Matrix G is defined as G = g ⊗ In ∈ Zn×mq where n ∈ N and m = ndlog qe. There exists an efficiently
computable deterministic function G−1 : Znq → {0, 1}

m such for all u ∈ Znq we have G ·G−1(u) = u. We
let G−1($) denote the distribution obtained by sampling u ← Znq uniformly at random and outputting
t = G−1(u).

Lattice Evolution. We rely on the following algorithms introduced in [BGG+14].

Claim 4 ([BGG+14]). Let n ∈ N and m = ndlog qe. There exists two deterministic algorithms EvalPK
and EvalCT with the following syntax:

• EvalPK(C,A1, . . . ,Ak) takes as input a circuit C : {0, 1}k → {0, 1} and matrices Ai ∈ Zn×mq , and
outputs a matrix AC ∈ Zn×mq ;

• EvalCT(C,A1, . . . ,Ak,b1, . . .bk, x) takes as input a circuit C : {0, 1}k → {0, 1}, matrices Ai ∈
Zn×mq , vectors bi ∈ Zmq and an input x ∈ {0, 1}k, and outputs a vector bC ∈ Zmq ;

such that if there exists some s ∈ Znq such that:

∀i ≤ k, bi = s>(Ai − xiG) + ei with ‖ei‖∞ ≤ B,

then
bC = s>(AC − C(x)G) + eC where ‖eC‖∞ ≤ (m+ 1)d ·B.

Furthermore, the run-time of EvalPK,EvalCT is |C| · poly(n, log q).

We can extend the above algorithms to support circuits C : {0, 1}k → {0, 1}` with multi-bit output.
In this case, we have that:

• EvalPK(C,A1, . . . ,Ak) outputs ` matrices {ACj}j≤` ∈ (Zn×mq )`;

• EvalCT(C,A1, . . . ,Ak,b1, . . .bk, x) outputs ` vectors {bCj}j≤` ∈ (Zmq )`.

The output is identical to having run EvalPK,EvalCT separately for each output bit of C. However, by
processing the entire circuit in one shot (rather than looking at each output bit separately), we ensure
that the run-time of EvalPK,EvalCT remains |C| · poly(n, log q) instead of |C| · ` · poly(n, log q).

2.4 Fully Homomorphic Encryption

A leveled Fully Homomorphic Encryption scheme (FHE) is a set of algorithms (FHE.KeyGen,FHE.Enc,
FHE.Dec,FHE.Eval) satisfying the following properties:

• Security: (FHE.KeyGen,FHE.Enc,FHE.Dec) is a semantically secure encryption scheme;

• Perfect correctness: For all λ, all C : {0, 1}k → {0, 1}` of depth d and x ∈ {0, 1}k:

Pr
[
FHE.Dechsk (FHE.Eval(C,FHE.Enchpk(x))) = C(x) | (hpk, hsk)← FHE.KeyGen(1λ, 1d)

]
= 1;

• Compactness: If C : {0, 1}k → {0, 1}` is a circuit of depth d, then the output length of
FHE.Eval(C, ·) should be ` · poly(λ, d).

• Efficiency: If C : {0, 1}k → {0, 1}` is a circuit of depth d, then FHE.Eval(C, ·), which takes as input
a ciphertext ct, and outputs FHE.Eval(C, ct) can be computed by a circuit of depth d · polylog(λ)
and size |C| · poly(λ, d).

Such FHE schemes are known to exist under the LWE assumption (e.g., [BV11, GSW13]).

10



2.5 Garbled Circuits

We define here garbled circuits, originally introduced by Yao ([Yao82]), and there are now many variants
in the literature ([BHR12]). The following formalization is heavily inspired by the one used in [GKP+13].

A Garbling Scheme is a set of algorithms (GC.Garble,GC.Eval) such that:

• GC.Garble(1λ, C) takes as input the security parameter λ, a circuit C : {0, 1}k → {0, 1}`, and
outputs a garbled circuit Γ and a set of labels {L0

i , L
1
i }i≤k.

• GC.Eval(Γ, {Li}i≤k) takes as input a garbled circuit and a subset of labels, and outputs a value
y ∈ {0, 1}`.

• Algorithms GC.Garble and GC.Eval satisfy the following properties:

Correctness. We have for all circuits C : {0, 1}k → {0, 1}` and for all x ∈ {0, 1}k:

Pr[C(x) = y | (Γ, {L0
i , L

1
i }i≤k)← GC.Garble(1λ, C), y ← GC.Eval(Γ, {Lxii }i≤k) ] = 1,

where xi denotes the ith bit of x.

Circuit and Input privacy. Define the two following experiments:

expRealGC (1λ) : expIdealGC (1λ) :

1. (x,C)← Adv(1λ) 1. (x,C)← Adv(1λ)

2. (Γ, {L0
i , L

1
i }i≤k)← GC.Garble(1λ, C) 2. (Γ̃, {L̃i}i≤k)← SimGC(1λ, |C|, |x|, C(x))

3. b ∈ {0, 1} ← Adv(Γ, {Lxii }i≤k) 3. b ∈ {0, 1} ← Adv(Γ̃, {L̃i}i≤k)
4. Output b. 4. Output b.

We say that (GC.Garble,GC.Eval) is circuit and input private if there exists a PPT simulator SimGC

such that for all stateful PPT adversary Adv, we have:∣∣∣Pr
[
expRealGC (1λ) = 1

]
− Pr

[
expIdealGC (1λ)

] ∣∣∣ ≤ negl(λ).

Efficiency. For any circuit C, and (Γ, {L0
i , L

1
i }i≤k)← GC.Garble(1λ, C), we have the following proper-

ties:

• GC.Garble(1λ, C) has complexity |C| · poly(λ);

• GC.Eval(Γ, ·) has complexity |C| · poly(λ);

• Γ is of size |C| · poly(λ);

• Lbi is of size poly(λ) for all i ≤ k and b ∈ {0, 1}.

2.6 Entropy and Extractors

The min-entropy of a random variable X, is defined as H∞(X) = − log(maxx Pr[X = x]). The (average)
conditional min-entropy [DORS08] of a random variable X conditioned on Y , is defined as H∞(X|Y ) =
− log(Ey maxx Pr[X = x|Y = y]).

Lemma 5 ([DORS08]). If X,Y, Z are jointly distributed random variables and the support of Y is Y
then H∞(X|Y,Z) ≥ H∞(X|Z)− log(|Y|).
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We say that Ext : X × S → Y is a (k, ε)-extractor, if for all joint distribution (X,Z) where X is
supported over X and H∞(X|Z) ≥ k, we have:

SD( (Ext(X;S), Z, S) , (Y, Z, S) ) ≤ ε,

where S is uniform over S and Y is uniform over Y.
The following lemma states that universal hash functions are good extractors:

Lemma 6 (Leftover Hash Lemma [ILL89, DORS08]). Let H = {Hseed : X → Y}seed∈S be a universal
hash function family. Then Ext(x; seed) = Hseed(x) is a (k, ε)-extractor for k = log(|Y|) + 2 log(1/ε).

3 Definition of LFE

In this section, we define our notion of laconic function evaluation (LFE) for a class of circuits C. We
assume that the class C associates every circuit C ∈ C with some circuit parameters C.params. For our
default notion of LFE throughout this paper, unless specified otherwise, we will consider C to be the class
of all circuits with C.params = (1k, 1d) consisting of the input size k and the depth d of the circuit.

Definition 7 (LFE). A laconic function evaluation (LFE) scheme for a class of circuits C consists of
four algorithms crsGen , Compress , Enc and Dec.

• crsGen(1λ, params) takes as input the security parameter 1λ and circuit parameters params and
outputs a uniformly random common random string crs of appropriate length.5

• Compress(crs, C) is a deterministic algorithm that takes as input the common random string crs and
a circuit C ∈ C and outputs a digest digestC .

• Enc(crs, digestC , x) takes as input the common random string crs, a digest digestC and a message x
and outputs a ciphertext ct.

• Dec(crs, C, ct) takes as input the common random string crs, a circuit C ∈ C, and a ciphertext ct
and outputs a message y.

We require the following properties from those algorithms:

Correctness: We require that for all λ, params and C ∈ C with C.params = params:

Pr

y = C(x)

∣∣∣∣∣∣∣∣
crs ← crsGen(1λ, params)

digestC = Compress(crs, C)
ct ← Enc(crs, digestC , x)
y ← Dec(crs, C, ct)

 = 1.

Security: We require that there exists a PPT simulator Sim such that for all stateful PPT adversary
Adv, we have: ∣∣∣Pr

[
expRealLFE(1λ) = 1

]
− Pr

[
expIdealLFE (1λ)

] ∣∣∣ ≤ negl(λ)

for the experiments expRealLFE(1λ) and expIdealLFE (1λ) defined below:

5It would also make sense to allow the crs to be a common reference string which is not necessarily uniform. However,
since our constructions will have a uniformly random crs we restrict ourselves to this requirement throughout the paper.
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expRealLFE(1λ) : expIdealLFE (1λ) :

0. params← Adv(1λ) 0. params← Adv(1λ)
1. crs← crsGen(1λ, params) 1. crs← crsGen(1λ, params)
2. x∗, C ← Adv(crs): 2. x∗, C ← Adv(crs):

C ∈ C , C.params = params C ∈ C , C.params = params
3. digestC = Compress(crs, C) 3. digestC = Compress(crs, C)
4. ct← Enc(crs, digestC , x

∗) 4. ct← Sim(crs, C, digestC , C(x∗))
5. Output Adv(ct) 5. Output Adv(ct)

We refer to the above as adaptive security. We also define a weaker version of selective security where
the above experiments are modified so that Adv has to choose x∗ at the very beginning of the experiment
in step 0, before seeing crs (but can still choose C adaptively).

Composability. Note that, in our security definition, the simulator is given a correctly generated crs
as an input rather than being able to sample it itself. This guarantees composability. Given several
ciphertexts cti encrypting various inputs xi under the same or different digests digestCj

, all using the
same crs, we can simulate all of them simultaneously and security follows via a simple hybrid argument
where we switch them from real to simulated one by one.

Efficiency. The above definition does not directly impose any efficiency restrictions and can therefore
be satisfied trivially by setting digestC = C and Enc(digestC , x) = C(x). The main goal will be to ensure
that the LFE scheme is laconic, meaning that the size of crs, digestC , ct and the run-time of Enc should
all be as small as possible and certainly smaller than the circuit size of C. We will discuss the efficiency
of our constructions as we present them.

4 Construction of LFE from LWE

In this section, we construct LFE for all circuits under the LWE assumption with subexponential modulus-
to-noise ratio. As a stepping stone to build LFE, we consider LFE for a restricted class of functionalities,
which we call attribute-based LFE (AB-LFE) in analogy to attribute-based encryption (ABE).

Definition of AB-LFE. Let C : {0, 1}k → {0, 1} be a circuit. We define the Conditional Disclosure
Functionality (CDF) of C as the function

CDF[C](x, µ) =

{
(x, µ) if C(x) = 0;

(x,⊥) if C(x) = 1,

where x ∈ {0, 1}k, and µ ∈ {0, 1}.
We also generalize this to multi-bit outputs. For a circuit C : {0, 1}k → {0, 1}` we define

CDF[C](x, (µ1, . . . , µ`)) = (x, (µ̃1, . . . , µ̃`)) where

{
µ̃j = µj if Cj(x) = 0;

µ̃j = ⊥ if Cj(x) = 1.
,

where x ∈ {0, 1}k, µj ∈ {0, 1}w and Cj(x) denotes the j’th output bit of C(x).

Definition 8 (AB-LFE). An AB-LFE for a circuit family C is an LFE that supports circuits CDF[C],
for all C ∈ C. We define CDF[C].params = C.params = (1k, 1d) where k is the input size and d is the
depth of C.
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We will consider canonical descriptions of CDF[C] such that one can efficiently recover C given CDF[C].
To simplify notation for AB-LFE we will give the algorithms of the AB-LFE the circuit C as input
rather than CDF[C]. E.g., we will write digestC ← Compress(crs, C) instead of the more cumbersome
digestCDF[C] ← Compress(crs,CDF[C]).

Outline. In Section 4.1, we build an AB-LFE for circuits C with single-bit output. We then present an
optimized construction that supports circuits with multi-bit output in Section 4.2. We discuss adaptive
security for our constructions in Section 4.3. In Section 4.4, we give a generic transformation from
AB-LFE to LFE (assuming FHE).

4.1 Basic AB-LFE from LWE

We first present our simplest construction of an AB-LFE from LWE for the case of a single bit output.

Parameters. We fix integer parameters n,m, q,B,B′ ∈ Z and a B-bounded distribution χ over Z, all of
which are functions of λ, d. In particular, we set m = ndlog qe and the choice of n, q, χ,B comes from the
LWE assumption (see Section 2.2) subject to n = poly(λ, d), q = 2poly(λ,d), and q/B = 8 · (m+ 1)d+1 · 2λ.
We set B′ = B · (m+ 1)d+1 · 2λ.

Construction. We define the procedures crsGen , Compress , Enc and Dec as follows.

• crsGen(1λ, params = (1k, 1d)): Pick k random matrices Ai ← Zn×mq and set:

crs = (A1, . . . ,Ak).

• Compress(crs, C): Output:

digestC = AC = EvalPK(C, {Ai}i≤k) ,

where EvalPK is defined in Section 2.3.

• Enc(crs,AC , (x, µ)): Pick a random s← Znq , ei ← χm for i ≤ k, and compute:

bi = s>(Ai − xiG) + e>i , i ≤ k.

Sample t← G−1($),6 set d = AC · t, and compute

β = s>d + ẽ+ µ · bq/2e,

where ẽ← [−B′, B′]. Output:
ct = ({bi}i≤k, β, t, x).

• Dec(crs, C, ct): If C(x) = 1 output ⊥. Else compute:

b̃ = EvalCT(C, {Ai}i≤k, {bi}i≤k, x) ,

where EvalCT is defined in Section 2.3. Output b(β − b̃>t)/qe.
6Recall G−1($) denotes the distribution of sampling u← Zn

q uniformly at random and outputting t = G−1(u).
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Proof overview. The key observation underlying both correctness and security is that for honestly
generated ciphertexts, we have:

b̃ ≈ s>[AC − C(x)G]

and therefore

β − b̃ · t ≈ C(x) · s>G · t. (2)

In the proof, we will use the above equation to simulate β as b̃ · t + C(x) · s>G · t.

Claim 9 (Correctness). The construction is correct.

Proof. Assume C(x) = 0. Then, by correctness of EvalCT, we have:

b̃ = EvalCT(C, {Ai}i≤k, {bi}i≤k, x) = s>[AC − C(x)G] + e>C = s>AC + e>C ,

with ‖eC‖∞ ≤ (m+ 1)d ·B. Therefore b̃>t = s>d + e>C · t and

β − b̃>t = (s>d + ẽ+ µ · bq/2e)− (s>d + e>C · t) = µ · bq/2e+ ẽ− e>C · t

where |ẽ− e>C · t| ≤ (m+ 1)d+1 ·B +B′ < 2B · (m+ 1)d+1 · 2λ < q/4.

Claim 10 (Security). The construction is selectively secure under the LWE assumption LWEn,q,χ.

Proof. Note that the simulator is given C, x∗ and CDF[C](x∗, µ∗) as input. In particular, if C(x∗) = 0
then the simulator is given (x∗, µ∗) in full and can therefore create the ciphertext honestly as in the Real
experiment. So without loss of generality, we can concentrate on the case C(x∗) = 1. Define the following
simulator:

• Sim(crs, digestC , C, x
∗): pick bi ← Zmq for i ≤ k, pick β ← Zq, and t← G−1($). Output:

ct = ({bi}i≤k, β, t, x∗).

We prove that the experiments expRealLFE(1λ) and expIdealLFE (1λ) from Definition 7 are computationally
indistinguishable via a sequence of hybrids.

Hybrid 0. This is the real experiment expRealLFE(1λ).

Hybrid 1. Here the way β is computed is modified. After computing bi = s>(Ai − x∗iG) + e>i and

sampling t ← G−1($), compute b̃ = EvalCT(C, {Ai}i≤k, {bi}i≤k, x∗) and α = s>Gt + e0 ∈ Zq, where
e0 ← χ. Set

β = b̃ · t + α+ ẽ+ µ · bq/2e,

where ẽ← [−B′, B′].

By correctness of EvalCT and the fact that C(x∗) = 1, we have b̃ = s> (AC −G) + e>C , so that

b̃ · t + α = s>AC · t + e>C · t + e0 = s>d + e>C · t + e0

and therefore, in Hybrid 1, we have

β = s>d + µ∗ · bq/2e+ ẽ+ (e>C · t + e0).

Then, by Lemma 3, the distributions of ẽ + e>Ct + e0 and ẽ are statistically close; and therefore the
distribution of β in Hybrid 1 is statistically close to that in Hybrid 0.
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Hybrid 2. In this hybrid we pick α and {bi}i≤k uniformly at random. We still sample t← G−1($)

and compute b̃ = EvalCT(C, {Ai}i≤k, {bi}i≤k, x) and β = b̃ · t + α+ ẽ+ µ∗ · bq/2e as previously.

We show that Hybrid 1 and Hybrid 2 are computationally indistinguishable under LWEn,q,χ. More
precisely, the reduction receives x∗ from the adversary and gets LWE challenges (u, α) and (Mi,bi)i≤k,
where u ← Znq ,Mi ← Zn×mq . It sets crs = {Ai = Mi + x∗iG}i≤k, and t = G−1(u), and computes β as
previously. Then, if α and {bi} are distributed as LWE samples, then the view of the adversary is as in
Hybrid 1; if they are uniform, then its view is distributed as in Hybrid 2.

Note that Hybrid 2 corresponds to expIdealLFE (1λ) with the simulator Sim defined above since the values
β and {bi}i≤k in Hybrid 2 are uniformly random.

Comparison with the ABE from [BGG+14]. Our construction is very reminiscent of the ABE
from [BGG+14]. In their ABE scheme, there is an additional matrix A0, and the relation d = AC · t is
replaced with d = [A0 | AC ] ·t. The quantities A0,d are part of the master public key and t is the secret
key corresponding to the circuit C. The ABE security proof needs to take into account an adversary that
sees many such t’s with respect to the same d.

There are several key differences between our AB-LFE and the prior ABE scheme. A crucial distinction
is that our Encryption algorithm takes AC as input, which allows it to sample t and then set d = AC · t.
The value t is a part of our ciphertext. In [BGG+14], the analogous operation is performed by having
a trapdoor for A0 as a master secret key of the ABE and using this trapdoor to sample t that satisfies
d = [A0 | AC ] · t during key generation and including it as part of the secret key for the circuit C. The
proof of security for the ABE scheme is also significantly more complex and involves carefully “puncturing”
the public matrices in Ai in the crs so as to be able to provide secret keys for circuits C if and only if
C(x) = 1. The fact that we don’t need any trapdoors for our construction essentially paves our way to a
much simpler proof.

Message-adaptivity. To argue indistinguishability between Hybrids 1 and 2 from LWE, the reduction
needs to know the challenge attribute x∗ ahead of time to create the crs using its LWE challenges, which
makes the construction selectively secure. However, it doesn’t need to know the message µ∗ at that point.
In particular, our construction is “message-adaptive”, where the adversary has to choose the challenge
attribute x∗ before seeing the crs, but can choose the challenge message µ∗ after seeing the crs.

Efficiency. For circuits with input length k, 1-bit output and depth d the above construction of AB-LFE
from LWE has the following parameters.

• The crs is of size k · poly(λ, d). The digest is of size poly(λ, d).

• The run-time of the encryption algorithm and the size of the ciphertext are k · poly(λ, d).

• The run-time of the compression and the decryption algorithms is |C| · poly(λ, d).

4.2 Improved AB-LFE for Multi-Bit Output

We extend the construction to AB-LFE with multi-bit output. Recall that in this case the encryption
algorithm takes as input (x,µ1, . . . ,µ`) and the decryption algorithm recovers µj for all j such that the
j’th bit of C(x) is 0. We use the notation Cj(x) to denote the j’th bit of C(x). As another difference
from the single-bit case, we now also allow the messages µj ∈ {0, 1}

w to be multi-bit messages rather
than a single bit.

A naive solution to achieve AB-LFE with `-bit output is to use ` separate AB-LFE’s with single-bit
output for the circuits Cj and to encrypt (x, µj) separately under each one (we can reuse the same crs
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across all of them). In that case, all efficiency measures blow up by a multiplicative factor of `: the size
of the ciphertext would be ` · k · poly(λ, d), the size of the digest would be ` · poly(λ, d) and the run-time
of the compression/decryption algorithms would be ` · |C| · poly(λ, d). We show that we can do better
in two steps. First, we show how to compress the ciphertext size to only (` + k) · poly(λ, d) instead of
` · k · poly(λ, d) and the encryption/decryption run-time to |C| · poly(λ, d) instead of ` · |C| · poly(λ, d).
In essence, we show how to reuse the “x part” of the ciphertext across all ` copies. Second, we show
how to also compress the digest from ` · poly(λ, d) to just poly(λ) without blowing up any of the other
parameters.

4.2.1 Compressing the Ciphertext

Construction. We fix the parameters n,m, q,B,B′, χ as in the single bit case.

• crsGen(1λ, params = (1k, 1d)): Pick k random matrices Ai ← Zn×mq and set:

crs = (A1, . . . ,Ak).

• Compress(crs, C): Let C : {0, 1}k → {0, 1}`. Output:

digestC = {ACj}j≤` = EvalPK(C, {Ai}i≤k),

where EvalPK over multi-bit output circuits is defined in Section 2.3.

• Enc(crs, {ACj}j≤`, (x, {µj}j≤`)): Let µj ∈ {0, 1}
w for j ≤ `.

Pick s← Znq , ei ← χm for i ≤ k, and compute:

bi = s>(Ai − xiG) + e>i , i ≤ k,

For j ≤ `, sample Tj ← (G−1($))w ∈ Zm×wq , set Dj = ACj ·Tj , and compute for all j ≤ `

βj = s>Dj + ẽ>j + µj · bq/2e ∈ Z1×w
q ,

where ẽj ← [−B,B]w. Output:

ct = ({bi}i≤k, {βj}j≤`, {Tj}j≤`, x).

• Dec(crs, C, ct): Compute {
b̃j

}
j≤`

= EvalCT(C, {Ai}i≤k, {bi}i≤k, x).

For all j ≤ `, if Cj(x) = 1 set µj = ⊥; else set µj = b(βj − b̃jTj)/qe. Output (µ1, . . .µ`).

Correctness follows directly by the same argument as for Claim 9. For security, we want to ensure
that µj is hidden whenever Cj(x

∗) = 1. However, there are some differences from the single output bit
case here since we may have Cj(x

∗) = 1 for some j and Cj(x
∗) = 0 for others.

Claim 11 (Security). The above construction is selectively secure under the LWE assumption LWEn,q,χ.

Proof. Note that the simulator is given CDF[C](x∗, (µ1, . . . ,µ`)) as input. Denote by I the set of indices
j ≤ ` such that Cj(x

∗) = 0. For all j ∈ I, the simulator is given µj while for all other j 6∈ I the simulator
does not get µj . Define the following new simulator:

17



• Sim(crs, digestC , C,CDF[C](x∗, (µ1, . . . ,µ`))): Pick bi ← Zmq for all i ≤ k and Tj ← (G−1($))w for
all j ≤ `, and compute: {

b̃j

}
j≤`

= EvalCT(C, {Ai}i≤k, {bi}i≤k, x∗).

– For all j ∈ I compute:
βj = b̃j ·Tj + ẽ>j + µj · bq/2e,

where ẽj ← [−B′, B′]w.

– For all j /∈ I pick βj ← Zq uniformly at random.

Output:
ct = ({bi}i≤k, {βj}j≤`, {Tj}j≤`, x∗).

The hybrids follow closely the ones of the proof for the 1-bit version in Section 4.1. There are a few
differences:

Hybrid 1. The way the vectors βj are generated now depends on Cj(x
∗).

We compute bi = s>(Ai − x∗iG) + e>i for i ≤ k (where ei ← χm), and pick Tj ← (G−1($))w for all

j ≤ `, and set
{

b̃j

}
j≤`

= EvalCT(C, {Ai}i≤k, {bi}i≤k, x∗). Then, for all j ≤ `:

• If j ∈ I (i.e. Cj(x
∗) = 0), we directly set βj = b̃j ·Tj + ẽ>j + µj · bq/2e, where ẽj ← [−B′, B′]w.

• If j /∈ I (i.e. Cj(x
∗) = 1) we compute αj = s>GTj + e>0,j , where e0,j ← χw, and set βj =

b̃j ·Tj + αj + ẽ>j + µj · bq/2e, where ẽj ← [−B′, B′]w.

Indistinguishability from the Hybrid 0 follows by the same argument as in the previous proof, as b̃j =
s>[ACj −Cj(x∗)G] + e>Cj

by correctness of EvalCT, where Cj(x
∗) = 0 if j ∈ I and Cj(x

∗) = 1 otherwise.

Lemma 3 then ensures that the distributions of ẽ>j (noise of βj in Hybrid 0), and ẽ>j +e>Cj
Tj +e>0,j (noise

in Hybrid 1 if Cj(x
∗) = 0)) and ẽ>j + e>Cj

Tj (noise in Hybrid 1 if Cj(x
∗) = 1) are statistically close; and

therefore the distributions of βj in both hybrids are statistically indistinguishable.

Hybrid 2. In this hybrid we pick bi at random for all i ≤ k, as well as the αj for all j /∈ I. We

still sample Tj ← (G−1($))w and compute
{

b̃j

}
j≤`

= EvalCT(C, {Ai}i≤k, {bi}i≤k, x) and βj according

to Cj(x
∗) as previously.

We show that Hybrid 1 and Hybrid 2 are computationally indistinguishable under LWEn,q,χ. More
precisely, a Reduction receives {Mi,bi}i≤k for all i ≤ k and {Uj ,αj}j /∈I from the LWE challenge (where
Uj ∈ Zn×wq ). It sets crs = {Ai = Mi + x∗iG}, samples Tj ← (G−1($))w and computes βj as previously.
If {αj}j /∈I and {bi} are LWE samples, then the view of the Adversary is as in Hybrid 1; if they are
uniform, its view is distributed as in Hybrid 2.

Now Hybrid 2 corresponds to expIdealLFE (1λ) with the simulator Sim defined above, which concludes the
proof.

Efficiency. For circuits C : {0, 1}k → {0, 1}` of depth d and for message-length w the above
construction of AB-LFE from LWE has the following parameters:

• The CRS is of size k · poly(λ, d). The digest is of size ` · poly(λ, d).

• The run-time of the encryption algorithm and the size of the ciphertext are (k + ` · w) · poly(λ, d).

• The run-time of the compression algorithm is |C| · poly(λ, d). The run-time of the decryption
algorithm is (|C|+ ` · w) · poly(λ, d).
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4.2.2 Compressing the Digest

We now show how to update the previous construction further to reduce the digest size from “small”
` · poly(λ, d) to “tiny” poly(λ). We do this generically using Laconic OT (LOT) [CDG+17]. Instead of
giving the original “small” digest, we compress it further into a “tiny” digest using LOT. The encryptor
then creates a garbled circuit that takes as input the small digest digestC and computes the ciphertext
under the previous construction. The new ciphertext consists of the garbled circuit and LOT encryptions
of the garbled circuit labels.

Laconic OT. A Laconic OT [CDG+17] is an LFE scheme for functions of the form fD(i, µ0, µ1) =
(i, µD[i]) where D[i] denotes the i’th bit of D. We write LOT.Compress(crs, D) and shorthand for
LOT.Compress(crs, fD). Note that such LOT can be seen as a special form of AB-LFE by running it
twice; once with the function f0,D(i) = D[i] and the attribute/message pair (i, µ0) and once with the
function f1,D(i) = 1 − D[i] and the attribute/message pair (i, µ1). However, for LOT we require an
additional efficiency requirement:

• The compression algorithm LOT.Compress(crs, D) outputs the digest digestD along with a processed
database D̂.

• The decryption algorithm DecD̂(crs, ct) runs in time poly(λ, log |D|) given RAM access to the pro-
cessed database D̂. Moreover, for any index i, there is a circuit of size poly(λ, log |D|) that is given

crs, ct and some subset of the bits of D̂ that depend only on i, and outputs DecD̂(crs, ct).

• The crs and the digest are of size poly(λ), the compression run-time is |D|poly(λ, log |D|) and the
encryption run-time is poly(λ, log |D|).

The work of [CDG+17] shows that one can take a “mildly compressing” LOT which has no efficiency
requirements other than that the digest is at most 1/2 the size of the database and bootstrap it to
construct an LOT with the above efficiency. Since such mildly compressing LOT immediately follows
from AB-LFE, this gives us a construction of LOT under the LWE assumption (the above is overkill
and there are simpler direct constructions of mildly compressing LOT from LWE that don’t go through
AB-LFE as was noted in e.g. [BLSV18] but never fully specified). We also have LOT constructions
under many standard assumptions such as CDH, Factoring and even LPN with extremely low noise
[CDG+17, DG17, BLSV18].

Construction. Let LOT = (LOT.crsGen, LOT.Compress, LOT.Enc, LOT.Dec) be an LOT scheme as
defined above. Let GC = (GC.Garble,GC.Eval) be a circuit garbling scheme as in Section 2.5. Let
LFE = (crsGen,Compress,Enc,Dec) be the AB-LFE. We construct an AB-LFE scheme LFE′ = (crsGen′,
Compress′, Enc′, Dec′) with a compressed digest as follows.

• crsGen′(1λ, params): Run crsLOT ← LOT.crsGen(1λ), crs ← crsGen(1λ, params). Output crs′ =
(crsLOT, crs).

• Compress′(crs′, C): Run digestC ← Compress(crs, C). Run (digest′, D̂)← LOT.Compress(crsLOT, digestC).
Output digest′.

• Enc′(crs′, (x, {µj}j≤`)). Let E(·) be the circuit that has crs, (x, {µj}j≤`) and randomness r hard-
coded, takes as input digestC and outputs Enc(crs, digestC , (x, {µj}j≤`); r). Let (Γ, {L0

i , L
1
i }i∈[t])←

GC.Garble(1λ, E) be the garbled circuit and labels. Let {cti ← LOT.Enc(crsLOT, (i, L
0
i , L

1
i ))}i∈[t].

Output ct′ = (Γ, {cti}i∈[t]).

• Dec′(crs′, C, ct′): Run digestC ← Compress(crs, C) and (digest′, D̂)← LOT.Compress(crsLOT, digestC).

Decrypt Li = LOT.DecD̂(crs, cti). Compute ct = GC.Eval(Γ, {Li}i≤k). Output Dec(crs, C, ct).
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The correctness of the above construction follows immediately.

Claim 12. If LFE is a (selectively) secure AB-LFE, GC is a circuit garbling scheme and LOT is a secure
LOT then LFE′ is a (selectively) secure AB-LFE.

Proof. The simulator Sim′(crs′, digest′, C, y) for LFE′ first runs the simulator Sim(crs, digestC , C, y) of
LFE to get a ciphertext ct. It then runs the simulator of the garbled circuit SimGC(1λ, ct) with the
output ct to get a simulated garbled circuit and input (Γ, {Li}i∈[t]). Lastly it runs the LOT simulator
LOT.Sim(crsLOT, digest

′, (i, Li)) to get ciphertexts cti for i ∈ [t]. It outputs ct′ = (Γ, {cti}i∈[t]).

We rely on a hybrid argument to show the indistinguishability of the real world and the simulation.

Hybrid 0. This is the real experiment expRealLFE(1λ).

Hybrid 1. In this experiment, during the computation of the challenge ciphertext, instead of choosing
{cti ← LOT.Enc(crsLOT, (i, L

0
i , L

1
i ))}i∈[t] we set cti ← LOT.Sim(crsLOT, digest

′, (i, Li)) where Li = Lbii
where bi is the i’th bit of digestC .

Hybrids 0 and 1 are indistinguishable by the security of the LOT scheme.

Hybrid 2. In this experiment, during the computation of the challenge ciphertext, instead of
choosing (Γ, {L0

i , L
1
i }i∈[t]) ← GC.Garble(1λ, E) we choose ct ← Enc(crs, digestC , (x, {µj}j≤`)) and set

(Γ, {Li}i∈[t])← SimGC(1λ, ct).

Hybrids 1 and 2 are indistinguishable by the security of the circuit garbling scheme.

Hybrid 3. In this experiment, during the computation of the challenge ciphertext, instead of choosing
ct← Enc(crs, digestC , (x, {µj}j≤`)) we set ct← Sim(crs, digestC , C, y) where y = CDF[C](x, {µj}j≤`).

Hybrids 2 and 3 are indistinguishable by the security of LFE.

Hybrid 3 corresponds to expIdealLFE (1λ) with the simulator Sim′ defined above, which concludes the
proof.

Efficiency. In the above construction, if we let LFE be the AB-LFE scheme from Section 4.2.1, then
we get the following parameters:

• The size of the CRS is k · poly(λ, d). The digest is of size poly(λ).

• The run-time of the encryption algorithm and the size of the ciphertext are Õ(k+ ` ·w) · poly(λ, d).

• The run-time of the compression algorithm is |C| · poly(λ, d). The run-time of the decryption
algorithm is Õ(|C|+ ` · w) · poly(λ, d).

4.3 Adaptive AB-LFE Security from Adaptive LWE

Our constructions of AB-LFE were only proven to be selectively secure under LWE. We now show how
to prove adaptive security by relying on a new but natural LWE assumption where we give the adversary
some very limited choice over the coefficients used to create LWE samples. In more detail, the adversary
is given matrices A1, . . . ,Ak, adaptively chooses x ∈ {0, 1}k and gets LWE samples with the coefficients
Ai−xiG. We also give the adversary arbitrarily many additional LWE samples with random coefficients.
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Definition 13 ((Decision) Adaptive LWE). We define the decision adaptive LWE assumption ALWEn,k,q,χ
with parameter n, k, q ∈ Z and a distribution χ over Z which are all parametrized by the security param-
eter λ. Let m = ndlog qe. We let G ∈ Zn×mq be the gadget matrix (see Section 2.3).7 For any polynomial

m′ = m′(λ) we consider the following two games Gameβ with β ∈ {0, 1} between a challenger and an
adversary A.

• The Challenger picks k random matrices Ai ← Zn×mq for i ≤ k, and sends them to A.

• A adaptively picks x ∈ {0, 1}k, and sends it to the Challenger.

• The Challenger samples s← Znq . It computes for all i ≤ k:{
bi = s>(Ai − xi ·G) + e>i where ei ← χm if β = 0,

bi ← Zmq if β = 1.

It also picks Ak+1 ← Zn×m′q and computes{
bk+1 = s>Ak+1 + e>k+1 where ek+1 ← χm

′
if β = 0,

bk+1 ← Zm′q if β = 1.

It sends Ak+1, {bi}i≤k+1 to A.

The ALWEn,k,q,χ assumption states that for all polynomial m = m(λ) the games Game0 and Game1

are computationally indistinguishable.

Adaptive LWE implies Adaptive AB-LFE. We notice that the constructions of AB-LFE in Sec-
tions 4.1 and 4.2 are adaptively secure under the adaptive ALWEn,k,q,χ assumption where k is the input
size of the circuit. This follows directly from the proofs of indistinguishability - in particular, the indis-
tinguishability of Hybrids 1 and 2 which relied on the LWE assumption. (The additional LWE challenge
values Ak+1,bk+1 with non-adaptively selected coefficients are used to create (u, α) in the single bit case
or {Uj ,αj}j∈[`] in the multi-bit case needed to generate the ciphertext.)

Security of Adaptive LWE. Note that if the adversary was forced to choose x before seeing {Ai}
then the security of ALWE would follow directly from LWE. We also have a reduction from LWEn,q,χ
to ALWEn,k,q,χ with exponential security loss 2k, where the reduction guesses in advance the adaptive
choice x that the adversary makes during the interaction with the challenger. Therefore, under the
sub-exponential security of LWE we can show the security of ALWE but all of the parameters (lattice
dimension, modulus size etc.) have to scale polynomially with k. Nevertheless, it seems plausible to
assume that ALWE has a much higher level of security than this reduction implies and that the parameters
do not have to scale polynomially with k. We summarize the above by outlining two possible parameter
settings for ALWE.

• Optimistic Parameters: For any polynomial p = p(λ) there exists some polynomial n = n(λ), some
q = q(λ) = 2poly(λ) and some B = B(λ)-bounded distribution χ = χ(λ) such that q/B ≥ 2p and the
ALWEn,k,q,χ assumption holds for all polynomial k = k(λ).

• Provable Parameters: For any polynomials p = p(λ), k = k(λ) there exists some polynomial n =
n(λ), some q = q(λ) = 2poly(λ) and some B = B(λ)-bounded distribution χ = χ(λ) such that
q/B ≥ 2p and the LWEn,k,q,χ assumption holds.

Note the difference – with the provable parameters, the choice of n, q, χ can depend on k while with the
optimistic parameters they do not. The ALWE assumption with provable parameters follows from the
sub-exponential security of LWE. The ALWE assumption with optimistic parameters is plausibly secure
but we do not have any meaningful reduction from LWE.

7The assumption would be meaningful for any other choice of matrix G as well.
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Efficiency of Adaptive AB-LFE. To summarize, under the ALWE assumption with optimistic pa-
rameters we get an adaptively secure AB-LFE with the same parameters as the selectively secure schemes
in Section 4.2. Under the ALWE assumption with provable parameters, which follows from the sub-
exponentially secure LWE assumption, we get an adaptively secure AB-LFE where:

• The crs is of size poly(λ, k, d). The digest is of size poly(λ).

• The run-time of the encryption algorithm and the size of the ciphertext is ` · w · poly(λ, k, d).

• The run-time of the compression algorithm is |C| · poly(λ, k, d).

• The run-time of the decryption algorithm is (|C|+ ` · w) · poly(λ, k, d).

4.4 From AB-LFE to LFE via FHE

We construct a compiler which converts AB-LFE to LFE, assuming the existence of any (leveled) Fully
Homomorphic Encryption (FHE) scheme (defined in Section 2.4). In particular, combined with our
construction of an AB-LFE under LWE and leveled FHE under LWE (e.g., [GSW13]), we get an LFE
under LWE.

Our compiler is very similar to the one introduced in [GKP+13], which compiles any ABE into a
single key FE (assuming FHE). The distinction between ABE and FE is analogous to the one between
AB-LFE and LFE. Intuitively, the compiler works as follows. Alice creates an AB-LFE digest for the
circuit FHE.Eval(C, ·) which takes as input an encryption x̂ of a value x and outputs an encryption ŷ
of y = C(x). The encryptor (Bob) first uses an FHE scheme to encrypt his input x, resulting in an
FHE ciphertext x̂. He then garbles the circuit FHE.Decsk, which has the FHE secret key sk hard-coded
inside of it and performs a decryption. Lastly, he uses the AB-LFE scheme with an attribute x̂ and the
labels of the garbled circuit as messages so that Alice recovers exactly the labels that correspond to the
homomorphically evaluated ciphertext ŷ = FHE.Eval(C, x̂). Bob sends the garbled circuit along with the
AB-LFE ciphertext to Alice as his LFE ciphertext. Alice uses AB-LFE decryption to recover the labels
of ŷ and then feeds these to the garbled circuit to recover y in the clear.

Notation: Two-Outcome AB-LFE. We introduce a piece of simplifying notation to simplify our
description of the compiler. In standard AB-LFE, the encryption algorithm gets (x, µ1, . . . , µ`) and the
decryption recovers the messages µj for all j such that Cj(x) = 0 and does not learn anything about
the others. In “two-outcome ABE” the encryption algorithm gets (x, {(µ0

j , µ
1
j )}j≤`) and the decryption

algorithm recovers µ
Cj(x)
j . Given an AB-LFE scheme (crsGen , Compress , Enc and Dec) we think of

“two-outcome AB-LFE” (crsGen , Compress′ , Enc′ and Dec′) as syntactic sugar for the following:

• Compress′(crs, C) : Given C : {0, 1}k → {0, 1}`, define C̃ : x 7→ (C(x)‖C(x)), where C(x) is the
bitwise complement of C(x). Output Compress(crs, C̃).

• Enc′(crs, digestC ,
(
x, {(µ0

j , µ
1
j )}j≤`

)
): Output Enc(crs, digestC , (x, µ

0
1, . . . , µ

0
` , µ

1
1, . . . , µ

1
` )).

• Dec′(crs, C, ct): Let (µ̃0
1, . . . , µ̃

0
` , µ̃

1
1, . . . , µ̃

1
` ) = Dec(crs, C̃, ct). Set µi to be the one of µ̃0

i , µ̃
1
i which is

not ⊥ and output µ1, . . . , µ`.

Construction. Let (FHE.KeyGen,FHE.Enc,FHE.Dec,FHE.Eval) be a leveled FHE (defined in Section 2.4),
and (GC.Garble,GC.Eval) be a garbling scheme (defined in Section 2.5). Let (AB-LFE.crsGen, AB-LFE.Compress,
AB-LFE.Enc, AB-LFE.Dec) be a “two-outcome” AB-LFE as explained above. We assume the leveled FHE
is such that if C is a circuit of depth d then FHE.Eval(C, ct) can be computed by a circuit of depth
d′(λ, d) = poly(λ, d) and if x ∈ {0, 1}k then the encryption of x is of size k′(λ, k, d) = k · poly(λ, d).

Our LFE scheme is defined as follows.
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• crsGen(1λ, params = (1k, 1d)): Output: crs← AB-LFE.crsGen(1λ, (1k
′(λ,k,d), 1d

′(λ,d))).

• Compress(crs, C): Output:

digestC = AB-LFE.Compress(crs,FHE.Eval(C, ·)).

• Enc(crs, digestC , x): Generate keys for the homomorphic scheme (hpk, hsk) ← FHE.KeyGen(1λ, 1d)
and compute x̂ = FHE.Enchpk(x).

Compute: (Γ, {L0
j , L

1
j}j≤`)← GC.Garble(FHE.Dechsk(·)).

Compute: ctAB-LFE ← AB-LFE.Enc
(
crs, digestC , x̂, {L0

j , L
1
j}j≤`

)
.

Output: ct = (Γ, ctAB-LFE).

• Dec(crs, C, ct): Let {Lj}j≤` = AB-LFE.Dec(crs,FHE.Eval(C, ·), ctAB-LFE). Output:

µ = GC.Eval(Γ, {Lj}j≤`).

Claim 14. Assuming correctness of the underlying AB-LFE, FHE and garbling scheme, the construction
above is correct.

Proof. By correctness of the underlying “two-outcome” AB-LFE, in the Decryption algorithm, AB-LFE.Dec

recovers Lj = L
FHE.Evalj(C,x̂)
j , where FHE.Evalj(C, x̂) denotes the j’th bit of FHE.Eval(C, x̂). Then by

correctness of the garbling scheme, GC.Eval outputs FHE.Dechsk(FHE.Eval(C, x̂)), which is C(x) by cor-
rectness of the FHE.

Claim 15. Assuming the underlying AB-LFE is selectively (resp. adaptively) secure, and the security of
the FHE and garbling scheme, the construction above is selectively (resp. adaptively) secure.

Proof. The proof is very similar to the one in [GKP+13], Section 3.2.
Define the following simulator:

• Sim(crs, digestC , C, C(x∗)): Pick (hpk, hsk) ← FHE.KeyGen(), and compute 0̂ ← FHE.Enchpk(0).

Run the simulator for the garbling scheme SimGC(|FHE.Eval(C, ·)| , | 0̂ |, C(x∗)) to get (Γ̃, {L̃j}j≤`),
where |FHE.Eval(C, ·)| is efficiently computable given C.

Run the AB-LFE Simulator SimAB-LFE to obtain:

ctAB-LFE ← SimAB-LFE(crs, digestC ,FHE.Eval(C, ·),
(

0̂, {L̃j}j≤`
)

).

Output:
ct = (Γ̃, ctAB-LFE).

We prove the claim via a sequence of hybrids.

Hybrid 0. This is the real experiment expRealLFE(1λ).

Hybrid 1. The way ctAB-LFE is generated is modified. Let dj = FHE.Evalj(C, x̂∗) be the j’th bit of
FHE.Eval(C, x̂∗). Compute:

ctAB-LFE ← SimAB-LFE(crs, digestC ,FHE.Eval(C, ·),
(
x̂∗, {Ldjj }j≤`

)
).
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We have that Hybrid 0 is computationally indistinguishable from Hybrid 1 by selective (resp. adaptive)

security of the underlying AB-LFE. This is because for all j, the message µ
dj
j = L

dj
j is authorized, while

µ
dj
j = L

dj
j is not. In particular, the AB-LFE Simulator SimAB-LFE can simulate ctAB-LFE given only L

dj
j

(and not L
dj
j ).

Hybrid 2. The way Γ̃ and ctAB-LFE are generated is modified. We now use the garbling scheme sim-
ulator SimGC (defined in Section 2.5) to compute (Γ̃, {L̃j}j≤`) ← SimGC(C(x∗), |FHE.Eval(C, ·)|), where
|FHE.Eval(C, ·)| can be computed using C. Compute now:

ctAB-LFE ← SimAB-LFE(crs, digestC ,FHE.Eval(C, ·), x̂∗, {L̃j}j≤`),

and output ct = (Γ̃, ctAB-LFE).

This is indistinguishable from Hybrid 1 by security of the garbling scheme (defined in Section 2.5),
as, by correctness of the FHE, we have FHE.Dec(FHE.Eval(C, x̂∗)) = C(x∗).

Hybrid 3. This the ideal experiment expIdealLFE (1λ) with the simulator Sim defined as above, i.e. x̂∗ is
now replaced by 0̂ = FHE.Enchpk(0), so that:

ctAB-LFE ← SimAB-LFE(crs, digestC ,FHE.Eval(C, ·),
(

0̂, {L̃j}j≤`
)

),

This is indistinguishable from Hybrid 2 by security of the FHE scheme.

4.5 Summary of LFE Construction and Parameters

Combining our construction of AB-LFE and our compiler from AB-LFE to LFE we get the following
results.

Selective. Under the LWE assumption with subexponential modulus-to-noise ratio, there exists a se-
lectively secure LFE scheme for circuits C of depth d, input size k and output size ` where:

• The crs is of size k · poly(λ, d). The digest is of size poly(λ).

• The run-time of the encryption algorithm and the size of the ciphertext are Õ(k + `) · poly(λ, d).

• The run-time of the compression and the decryption algorithms is Õ(|C|) · poly(λ, d).

Adaptive. Under the adaptive LWE (ALWE) assumption with “optimistic parameters” there exists an
adaptive LFE scheme with the same efficiency as the selective scheme above.

Under the ALWE assumption with “provable parameters” which follows from the sub-exponential
security of LWE there exists an adaptive LFE scheme where:

• The crs is of size poly(λ, k, d). The digest is of size poly(λ).

• The run-time of the encryption algorithm and the size of the ciphertext are Õ(`) · poly(λ, k, d).

• The run-time of the compression and the decryption algorithms is Õ(|C|) · poly(λ, k, d).
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5 Function-Hiding LFE

In this section, we study an additional security property for LFEs, that we call Function Hiding. In
particular, we want the digest digestC = Compress(crs, C) to completely hide the circuit C. Note that we
cannot achieve any reasonable security when the algorithm Compress is deterministic. We will therefore
consider randomized compression algorithms Compress when considering function hiding. The decryptor
needs to remember the randomness of the compression algorithm as a secret key, which is needed to
decrypt LFE ciphertexts created under the resulting digest.

5.1 Overview of Results

We first provide a definition of function hiding LFEs in Section 5.2. Then in Section 5.3 we provide a
generic construction of a statistical function hiding LFE, given any standard LFE. In Appendix A, we
also give an alternate more direct construction of statistical function hiding LFE by modifying our LWE
based construction.

Overview of the Generic Construction. Our generic construction proceeds in two steps.
In a first step (Section 5.3.1), we show how to upgrade any LFE to function-hiding LFE using generic

2-round 2PC (e.g., based on oblivious transfer (OT) and garbled circuits). This is essentially the same
idea used to get receiver privacy in LOT [CDG+17]. Instead of Alice sending the digest digestC to Bob,
and Bob computing Enc(digestC , x), we use a 2-round 2PC protocol where Alice has input digestC , Bob
has input x, and Alice learns Enc(digestC , x). We set the new digest of the function-hiding scheme to
be Alice’s first message in the 2PC and we set the new encryption of the function-hiding scheme to be
Bob’s reply in the 2PC.8 The efficiency only degrades by some fixed poly(λ) multiplicative factors. If
we rely on an OT scheme where receiver privacy holds statistically, we get a statistical function hiding
security. If we use a 2-round 2PC based on OT and garbled circuits then the transformation preserver
the asymptotic efficiency of the construction – the digest size and the ciphertext size only grow by some
fixed poly(λ) multiplicative factor.

In the second step (Section 5.3.2), we show how to generically construct (semi-malicious secure) OT
with statistical receiver security in the CRS model from AB-LFE (without function hiding). In fact, the
work of [BLSV18] already shows that laconic OT (LOT) implies public-key encryption and the result
there can easily be strengthened to show that it implies such OT as well.9 Since LOT is a special case
of AB-LFE our result follows. However, for completeness, we give a somewhat simpler construction of
OT from AB-LFE. The CRS of the OT scheme consists of a CRS for an AB-LFE scheme as well as an
extractor seed seed. The OT receiver chooses a sufficiently long random value r and encrypts his bit b
by setting b̂ = b ⊕ Ext(r; seed). In addition the receiver creates an AB-LFE digest for the function Cr
which takes as input seed, b̂, and decrypts it to get b = b̂⊕ Ext(r; seed). The receiver message consists of
the LFE digest and the bit b̂. To argue that the receiver message statistically hides the receiver bit b,
we rely on the fact that the digest short and we think of it as some leakage on r which is independent
of seed; therefore, by extractor security, b is statistically hidden even given b̂ and the digest. The sender
uses the AB-LFE to encrypt the message µ0 using the attribute x = (seed, b̂) and the message µ1 using
the attribute x = (seed, 1⊕ b̂) to ensure that the receiver can decrypt only µb.

Overview of the Direct Construction. Our direct construction makes a small modification to our
LWE-based AB-LFE scheme from Sections 4.1, 4.2 to directly add function-hiding security. In that
scheme, the digest was AC = EvalPK(C, {Ai}i≤k) where the matrices Ai are in the CRS. To get function
hiding, we add some additional matrices {Bj}j∈[N ] to the CRS and the compression algorithm picks

a random r ← {0, 1}N and sets the digest to be ÃC = AC +
∑N

j=1 rjBj . The Leftover Hash Lemma

8We need to rely on semi-malicious secure 2PC where security holds even if Alice chooses her randomness maliciously.
9Personal communication from Alex Lombardi.

25



(Lemma 6) states that when N is sufficiently large then the new digest is statistically close to uniform. In
some sense we can think of ÃC as a digest for the function C ′(x, z) = C(x) + 〈r, z〉. To encrypt under an
attribute x, the encryptor then uses the AB-LFE scheme with an attribute (x, z = 0N ). This introduces
essentially no loss in parameters.

The above gives us a statistically function-hiding AB-LFE under LWE. It is easy to see that our com-
piler from AB-LFE to LFE from Section 4.4 preserves function hiding and therefore we get a statistically
function hiding LFE under LWE.

5.2 Definition of Function-Hiding LFE

Firstly, we modify the syntax of LFE as follows. We will consider a randomized compression function
Compress(crs, C; r) which uses random coins r, and now the decryption Dec(crs, C, r, ct) needs the same
randomness r to decrypt. We modify the definitions of correctness and encryption security in Definition
7 to match this change of notation as follows:

• Correctness states that for any r, if digestC = Compress(crs, C; r), and if ct ← Enc(crs, digestC , x),
then Dec(crs, f, r, ct) outputs C(x) with probability 1.

• For encryption security, we modify the experiments expRealLFE(1λ) and expIdealLFE (1λ) (defined in Defi-
nition 7) as follows:

– In step 2 the adversary now chooses x∗, C, r.

– In step 3 we set the digest to digestC = Compress(crs, C; r).

– In step 4 of expIdealLFE (1λ) we now also give the simulator the randomness r and set ct ←
Sim(crs, (C, r), digestC , C(x∗)).

In the selective security version, the adversary chooses x∗ ahead of time in step 0, but can still choose
C, r in step 2 after seeing the crs. The fact that we allow the adversary to choose the randomness r
corresponds to a semi-malicious Alice that chooses adversarial randomness in computing the digest
but we still want to guarantee security for Bob’s ciphertext.

Finally, we add the following function-hiding security requirement:

Definition 16 ((Statistical) Function-Hiding). An LFE is function-hiding if there exists a PPT simulator
SimFH such that for all stateful PPT adversary Adv, we have:∣∣∣Pr

[
expRealFH (1λ) = 1

]
− Pr

[
expIdealFH (1λ)

] ∣∣∣ ≤ negl(λ).

for the experiments defined below:

expRealFH (1λ) : expIdealFH (1λ) :

0. params← Adv(1λ) 0. params← Adv(1λ)
1. crs← crsGen(1λ, params) 1. crs← crsGen(1λ, params)
2. C ← Adv(crs): 2. C ← Adv(crs):

C ∈ C , C.params = params C ∈ C , C.params = params
3. digestC ← Compress(crs, C) 3. digestC ← SimFH(crs, C.params).
4. Output Adv(digestC) 4. Output Adv(digestC)

We say that the scheme is statistically function hiding if the above holds for all (even inefficient) adver-
saries Adv.
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5.3 Generic Construction

We now show how to generically convert any LFE scheme (which is sufficiently compressing) into a
function-hiding LFE with essentially the same asymptotic efficiency.

5.3.1 From 2-round OT to Statistical Function Hiding

We first show that any LFE, combined with any 2-round OT with statistical receiver security, implies
statistical Function Hiding LFE.

Recall: 2-round OT. Our syntax and definition of OT is close to the one from [BL18].
Let (OT.crsGen,OT.Query,OT.Response,OT.Output) be a 2-round OT with the following syntax:

• crs← OT.crsGen(1λ) outputs a crs.

• M (1) = OT.Query(crs, b; r) computes the first message M (1) of the OT from the receiver to the
sender where b is the receiver’s choice bit and r denotes the receiver’s private random coins.

• M (2) ← OT.Response(crs,M (1), µ0, µ1) computes the second message M (2) from the sender to the
receiver, where µ0, µ1 are the sender’s messages.

• µb = OT.Output(M (2), b, r) decrypts the sender message M (2) using the receiver’s private random
coins r.

We will suppose that the OT is statistically secure with respect to the Receiver, and computationally
secure with respect to the sender. Moreover the sender’s security holds even for a semi-malicious receiver.
This is defined formally below.

• Statistical Receiver security: We require that the two following distributions are statistically
close:

(crs,OT.Query(crs, 0))
s
≈ (crs,OT.Query(crs, 1)));

where crs← OT.crsGen(1λ).

• Sender security (with Semi-Malicious Receiver): We require that for all stateful PPT ad-
versary Adv, we have: ∣∣∣Pr

[
exp0

OT (1λ) = 1
]
− Pr

[
exp1

OT (1λ)
] ∣∣∣ ≤ negl(λ).

for the experiment defined below:

expρOT (1λ) :

1. crs← OT.crsGen(1λ)
2. (r, b, µ0, µ1)← Adv(crs)

3. M (1) = OT.Query(crs, b; r),

If ρ = 0 then M (2) ← OT.Response(crs,M (1), µ0, µ1)

else M (2) ← OT.Response(crs,M (1), µb, µb).

4. Output Adv(M (2)).
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Construction of Function-Hiding LFE. Let (LFE.crsGen, LFE.Compress, LFE.Enc, LFE.Dec) be an
LFE with deterministic compression. We define the function-hiding LFE via the following algorithms
(FH.crsGen,FH.Compress,FH.Enc,FH.Dec):

• FH.crsGen(1λ, params): Output crs = (LFE.crs← LFE.crsGen(1λ, params),OT.crs← OT.crsGen(1λ)).

• FH.Compress(crs, C; r): Compute LFE.digest = LFE.Compress(LFE.crs, C).

Let k = |LFE.digest|. Output:

FH.digestC = {OT.Query (OT.crs, (LFE.digest)i ; ri)}i≤k
where (LFE.digest)i denotes the ith bit of LFE.digest and r = {ri}i≤k denotes the randomness used
for the first message of the OT.

• FH.Enc(crs,FH.digestC , x): Sample some randomness t and compute:

(Γ, {Lbi}i≤k)← GC.Garble (LFE.Enc(LFE.crs, ·, x ; t)) ,

(where LFE.Enc(LFE.crs, ·, x ; t) takes as input a digest LFE.digest and outputs an LFE ciphertext
using randomness t).

Parse FH.digestC as {M (1)
i }i≤k, and output:

FH.ct =

(
Γ,
{
OT.Response(OT.crs,M

(1)
i , L0

i , L
1
i )
}
i≤k

)
.

• FH.Dec(crs, C, r = {ri}i≤k,FH.ct = (Γ, {M (2)
i }i≤k)): Compute LFE.digest = LFE.Compress(LFE.crs, C).

For all i ≤ k, recover from the OT the ith label

Li = OT.Output(M
(2)
i , (LFE.digest)i, ri).

Compute:
LFE.ct = GC.Eval(Γ, Li),

and output:
x′ = LFE.Dec(LFE.crs, C, LFE.ct).

Claim 17 (Correctness). The LFE (FH.crsGen,FH.Compress,FH.Enc,FH.Dec) is correct.

Proof. By correctness of the OT, we have:

Li = OT.Output(M
(2)
i , (LFE.digest)i, ri) = L

(LFE.digest)i
i for all i ≤ k.

Then, by correctness of the garbling scheme:

LFE.ct = GC.Eval(Γ, Li) = LFE.Enc(LFE.crs, LFE.digest, x ; t).

Finally, by correctness of the underlying LFE, we have:

x′ = LFE.Dec(LFE.crs, C, LFE.ct) = C(x).

Claim 18 (Security). Suppose that the OT satisfies sender security and that LFE is selectively (resp.
adaptively) secure. Then FH is selectively (resp. adaptively) secure.
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Proof. Define the following Simulator Sim for the LFE experiment:

• Sim(FH.crs,FH.digestC , C, C(x∗)):

Let LFE.Sim be a simulator for the underlying LFE scheme (given by LFE security), and GC.Sim
be a simulator for the garbled circuit (given by security of the garbling scheme).

Compute LFE.digest = LFE.Compress(LFE.crs, C), and let:

LFE.ctSim ← LFE.Sim(LFE.crs, LFE.digest, C, C(x∗)).

Compute:
(Γ̃, {L̃i}i≤k)← GC.Sim(LFE.ctSim, |LFE.Enc|),

Parse FH.digestC as {M (1)
i }i≤k and output:

FH.ct =

(
Γ̃,
{
OT.Response(OT.crs,M

(1)
i , L̃i, L̃i)

}
i≤k

)
.

Hybrid 0. This is the real experiment, as defined in Definition 7.

Hybrid 1. Now, given C, compute LFE.digest = LFE.Compress(LFE.crs, C), and let bi = (LFE.digest)i
be the ith choice bit computed in FH.Compress.

Now the second part of the ciphertext is generated as:

OT.Response(OT.crs,M
(1)
i , Lbii , L

bi
i ), for all i ≤ k.

This is indistinguishable from Hybrid 0 by sender security of the OT.

Hybrid 2. Now compute LFE.ct = LFE.Enc(LFE.crs, LFE.digest, x); and set
(Γ̃, {L̃i}i≤k)← GC.Sim(LFE.ct, N). The ciphertext is now:

FH.ct =

(
Γ̃,
{
OT.Response(OT.crs,M

(1)
i , L̃i, L̃i)

}
i≤k

)
.

This is indistinguishable from Hybrid 1 by the security of the garbling scheme.

Hybrid 3. Now compute LFE.digest = LFE.Compress(LFE.crs, C), and set:

LFE.ctSim ← LFE.Sim(LFE.crs, LFE.digest, C, C(x∗)),

where LFE.Sim is the simulator given by security of the underlying LFE.
Now generate: (Γ̃, {L̃i}i≤k)← GC.Sim(LFE.ctSim, N).
In particular, this corresponds to the ideal experiment with the simulator Sim defined above.

This is indistinguishable from Hybrid 2 by security of the underlying LFE. In particular, if the initial
LFE is selectively (resp. adaptively) secure, then (FH.crsGen,FH.Compress,FH.Enc,FH.Enc) is selectively
(resp. adaptively) secure.

Claim 19 (Statistical Function Hiding). Suppose the OT achieves statistical receiver security. Then the
LFE scheme FH is statistically function hiding.
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Proof. Define the following Simulator SimFH for the Function Hiding experiment:

• SimFH(crs, params): Output

FH.digestC = {OT.Query(OT.crs, 0)}i≤k.

The statistical function-hiding security of FH with the above simulator follows immediately from the
statistical receiver security of the OT scheme via k hybrids, where we switch the i’th OT query from
OT.Query (OT.crs, (LFE.digest)i) to OT.Query (OT.crs, 0).

5.3.2 AB-LFE implies 2-round OT

We now construct a 2-round OT with statistical receiver security from any selectively secure AB-LFE
(without function hiding) which is sufficiently compressing.

On a high level, a naive way to obtain an OT from an LFE would be for the receiver to compute a
digest of the circuit Cb : (µ0, µ1) 7→ µb using her choice bit b and for the sender to encrypt the message
pair (µ0, µ1). However, to get receiver security we would need the LFE to already be function hiding
but our goal is to construct OT from an LFE scheme which does not yet have function hiding security.
We notice that if the LFE is sufficiently compressing then it must provide some limited form of function
hiding since the digest is too short to reveal the function in its entirety. We use this observation to mask
the OT receiver bit b by compressing a much a larger circuit with a large amount of randomness.

Construction. Let N = N(λ) be an integer to be determined later, and let Ext : {0, 1}N × {0, 1}N →
{0, 1} be a strong extractor (see Section 2.6) given by Ext(r; seed) = 〈r, seed〉. By the Leftover Hash
Lemma (Lemma 6), this is a (k, ε)-extractor for any entropy k = ω(log λ) with ε = negl(λ). Notice that
Ext(r; seed) can be computed with a circuit of depth O(logN).

For r ∈ {0, 1}N , define the following circuit Cr:

Cr(seed, b̂) = b̂ ⊕ Ext(r; seed).

Let (crsGen,Compress,Enc,Dec) be an AB-LFE scheme which is “sufficiently compressing” meaning
the following: for a sufficiently large N(λ) = poly(λ) the size of digest = Compress(LFE.crs, Cr) is |digest| ≤
N(λ)− λ. Note that this is a very mild compression requirement and clearly achieved our schemes from
Section 4. We set N = N(λ) to be this sufficiently large polynomial.

Define the following 2-round OT. We assume that the message µ0, µ1 are single bits. To get OT for
larger message size we can compose single bit OTs together.

• OT.crsGen(1λ): Output OT.crs = (LFE.crs, seed) where seed← {0, 1}N and LFE.crs← crsGen(1λ, params)
where params = (1k, 1d) corresponds to the input length k = (N + 1) and the depth d = O(logN)
of the circuits {Cr} defined above.

• OT.Query(OT.crs, b ; r ∈ {0, 1}N ): Compute b̂ = b⊕Ext(r; seed), and compute digest = Compress(LFE.crs, Cr).
Output:

M (1) =
(
b̂, digest

)
.

• OT.Response(OT.crs,M (1), µ0, µ1): Define attributes x0 = (seed, b̂) and x1 = (seed, 1⊕ b̂). Output

M (2) = (ct0, ct1) : ct0 ← Enc (LFE.crs, digest, (x0, µ0)) , ct1 ← Enc (LFE.crs, digest, (x1, µ1)) .

• OT.Output(M (2), b, r): Output:
µ = Dec(LFE.crs, Cr, ctb).
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Claim 20 (Correctness). The OT is correct.

Proof. If the receiver bit is b, we have Cr(xb) = b⊕ b̂ ⊕ Ext(r; seed) = b⊕(b ⊕ Ext(r; seed))⊕ Ext(r; seed) =
0. Therefore, by the correctness of the AB-LFE the ciphertext ctb decrypts to µb.

Claim 21 (Sender Security). The OT satisfies Sender Security (with Semi-Malicious Receiver).

Proof. This follows by selective-security of the underlying AB-LFE.
Let expρOT be the OT Sender Security game. We define a hybrid game H which is the same as expρOT

except that we compute the response M (2) by choosing ctb ← Enc (LFE.crs, digest, (xb, µb)) , ct1−b ←
LFE.Sim(LFE.crs, digest, Cr, x1−b). We show that for ρ ∈ {0, 1} we have expρOT (1λ) is indistinguishable
from H which proves the claim.

Let Adv be an adversary that distinguishes expρOT from H. We show how to use Adv to break the

selective security of AB-LFE. First chooses (β, µ)← {0, 1}2 uniformly at random. Choose seed← {0, 1}N
and give the challenger the AB-LFE input (x, µ) consisting of the attribute x = (β, seed) and message µ.
The challenger replies with LFE.crs. Send OT.crs = (LFE.crs, seed) to Adv who responds with the selection
(r, b, µ0, µ1). If β = Ext(r; seed) and µ = µρ⊕(1−b) then continue else terminate and output a random bit.

Let b̂ = Ext(r; seed) ⊕ b, x0 = (seed, b̂) and x1 = (seed, 1 ⊕ b̂). This implies x1−b = (seed, ρ). Give the
circuit Cr to the challenger and get back a ciphertext ct1−b. Compute ctb ← Enc (LFE.crs, digest, (xb, µb))
and give M (2) = (ct0, ct1) to Adv. Output whatever Adv outputs.

Note that the probability of the above reduction terminating is 1/4 and is independent of the choices of
Adv or the AB-LFE challenger. Conditioned on not terminating, if the AB-LFE challenger is computing
a real ciphertext then the above corresponds to expρOT , where the ct1−b is a real encryption of µρ⊕(1−b)
with attribute x1−b, and if the challenger is using a simulated ciphertext then the above corresponds to
H, where ct1−b is a simulated ciphertext. Therefore if Adv can distinguish these with advantage ε then
the above reduction has advantage ε/4 in the selective AB-LFE game.

Notice that the proof covers the semi-malicious case, where security holds for all r chosen adversarially
(that is, even when r is not necessarily chosen randomly). This is because the AB-LFE experiment allows
its adversary to pick the challenge circuit Cr arbitrarily.

Claim 22 (Statistical Receiver Security). The OT achieves statistical Receiver Security.

Proof. We argue here that the choice bit b is statistically hidden given

OT.crs = (LFE.crs, seed),M (1) =
(
b̂, digest

)
where b̂ = b ⊕ Ext(r; seed), and digest = Compress(LFE.crs, Cr).

By Lemma 5 and the fact that the AB-LFE is “sufficiently compressing” we have H∞(r|digest) ≥
N−|digest| ≥ ω(log λ). Therefore the Leftover Hash Lemma ensures that Ext(r; seed) is statistically close
to uniform even given OT.crs, digest. Therefore:

(OT.crs, (0̂ = Ext(r; seed), digest))
s
≈ (OT.crs, (U1, digest))

s
≈ (OT.crs, (1̂ = 1⊕ Ext(r; seed), digest))

where U1 is a uniformly random bit. This proves the claim.

6 Applications

6.1 “Bob-Optimized” 2-Round 2PC

We present a construction of a 2-round 2-party computation (2PC) protocol for a function f : {0, 1}kA×
{0, 1}kB → {0, 1}` where Alice has input xA ∈ {0, 1}kA , Bob has input xB ∈ {0, 1}kB and Alice learns
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y = f(xA, xB) while Bob does not learn anything. Without loss of generality, Alice initiates the protocol
by sending the first round message to Bob and learns her output after receiving the second round message
from Bob. This is the first such protocol with the following properties:

• The total communication complexity is smaller than Alice’s input size kA.

• Bob’s computational complexity is is smaller than the circuit-size of f or even the size of Alice’s
input kA.

Let LFE = (crsGen , Compress , Enc, Dec) be a function-hiding LFE scheme as defined in Definition 16.
We define the following protocol πf , which is a 2-round protocol in the common random string (CRS)
model.

CRS Generation: Sample the common random string crs← crsGen(1λ, f.params).

First Round (Alice → Bob): Let C = f(xA, ·) be a circuit with Alice’s input hard-coded. Alice
computes digestC ← Compress(crs, C; r) using random coins r. She sends digestC to Bob.

Second Round (Bob → Alice): Bob computes ct← Enc(crs, digestC , xB) and sends ct to Alice.

Output: Alice computes y = Dec(crs, C, r, ct).

We note that in the setting of “semi-honest” security, we can remove the CRS and simply have Alice
sample it and include it together with her first-round message. In the CRS model, we show that the
construction is even “semi-malicious” secure, meaning that the parties follows the protocol as specified
but can use arbitrarily bad randomness. See [AJL+12] for a detailed definition. We consider a static
corruption model where one of the parties can be corrupted before the protocol starts. We also distinguish
between “selective-honest-input” and “adaptive-honest-input” security. In the former, the environment
must choose the input of the honest party selectively before the CRS is chosen while in the latter (which
is the standard notion in MPC) it can do so adaptively depending on the CRS. The input of the semi-
maliciously corrupted party can always be chosen adaptively after the CRS is chosen.

Theorem 23. Given a function-hiding LFE scheme, the protocol πf is a semi-maliciously secure 2-round
2PC protocol with static corruptions in the common random string (CRS) model. If the function-hiding
property holds statistically then the protocol has statistical security against a corrupted Bob. If the LFE
is selectively secure, then the protocol is selective-honest-input secure and if the LFE is adaptively secure,
then the protocol is adaptive-honest-input secure.

Proof. The simulator always chooses crs ← crsGen(1λ, f.params) honestly. We consider two cases where
either Alice or Bob is corrupted separately.

Firstly, we consider the case of a (semi-maliciously) corrupted Bob. Note that no matter what
randomness Bob uses in the second round to compute the ciphertext ct, by perfect correctness we ensure
that Alice gets the correct output y = f(xA, xB). Therefore, the simulator’s only goal is to simulate the
the first message digestC from Alice. It does so by setting C to be the circuit C = f(0kA , ·) with Alice’s
input replaced by 0kA and sampling digestC ← Compress(crs, C). By the (statistical) function-hiding
security of the LFE the above is (statistically) indistinguishable from the way digestC is computed by
Alice in the real world.

Secondly, in the case of a (semi-maliciously) corrupted Alice, the 2PC simulator gets the output
f(xA, xB) and has to simulate the ciphertext ct that Alice receives in the second round. We simply use
the LFE simulator LFE.Sim(crs, digestC , C, f(xA, xB)) to do this and security follows directly from that
of the LFE scheme. We rely on the fact that in the (function-hiding) LFE security definition, the digest
digestC can be chosen using adversarial randomness. If the LFE is only selectively secure, we need to
ensure that Bob’s input xB is chosen by the environment before the CRS is chosen and therefore get a
selective honest-input secure 2PC.
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Instantiation and Parameters. Under the LWE assumption, the above protocol πf can be instan-
tiated to get selective-honest-input semi-malicious security in the CRS model or semi-honest security in
the plain model. For a circuit f : {0, 1}kA × {0, 1}kB → {0, 1}` with depth d we get the following
parameters:

• The size of the CRS is kB · poly(λ, d).

• The communication complexity is Õ(kB+`) ·poly(λ, d). Alice’s first-round message is of size poly(λ)
and Bob’s second-round message is of size Õ(kB + `) · poly(λ, d).

• Alice’s computation complexity is Õ(|f |) · poly(λ, d). Bob’s computation complexity is Õ(kB + `) ·
poly(λ, d).

Under the adaptive LWE (ALWE) assumption with optimistic parameters (see Section 4.3), we get
adaptive-honest-inputs (the usual notion) semi-malicious security with and the same parameters as above.
Under the ALWE assumption with provable parameters, which follows from the sub-exponential security
of LWE, we get adaptive-honest-inputs semi-malicious security where efficiency degrades as follows:

• The size of the CRS is poly(λ).

• The communication complexity is Õ(`) · poly(λ, kB, d).

• Alice’s computation complexity is Õ(|f |) · poly(λ, kB, d). Bob’s computation complexity is Õ(`) ·
poly(λ, kB, d).

We can rely on the result of [AJL+12] which shows that we can compile any semi-malicious protocol
into one with fully malicious security by additionally relying on non-interactive zero-knowledge proofs
of knowledge (NIZK-PoK) in the CRS model. This preserves round-complexity but unfortunately does
not preserve communication and computation complexity. In particular, Alice needs to prove a complex
statement that she computed digestC correctly, meaning that she knows some xA, r such that digestC =
Compress(crs, f(xA, ·); r), in a way that Bob can verify much more efficiently than running f . To do so,
we need to rely on succinct NIZK-PoKs, also known as ZK-SNARKs [Mic94, Gro10, BCCT13, BCI+13,
GGPR13], which allow us to preserve the communication and computation complexity. Such ZK-SNARKs
exist in the random-oracle model or under various “knowledge/extractability” assumptions. Using ZK-
SNARKs, the above-stated results and parameters hold with malicious security.

Observations. If the first message of a 2-round 2PC is shorter than kA, then it can be considered as
a digest of an LFE, which implies that a CRS is required, as shown in Section B. We also recall that
the result of [HW15] shows that any semi-malicious secure 2PC has to have communication complexity
which exceeds the output size `.10

6.2 MPC without Online Computation

We now construct an MPC protocol where N parties with respective inputs x1, . . . , xN can securely
evaluate some function y = f(x1, . . . , xN ) over their inputs so that every party learns y. The protocol
consists of three phases. There is a pre-processing phase in which each party does some local deterministic
computation over the circuit f , but independent of the party’s input. This phase can be reused across
many protocol executions. Then there is an online phase in which the parties communicate with each
other and execute some protocol. Lastly, there is a post-processing phase in which each party does some
local computation over the protocol transcript to recover the output y.

10This result does not hold in the CRS model in general, but it does hold in the non-programmable CRS model where the
simulator gets the CRS as input but cannot choose it, which is the case for us.
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Let LFE = (crsGen , Compress , Enc, Dec) be an LFE scheme as in Definition 7 (with a deterministic
compression function and without function hiding). Let ψ be a generic MPC protocol without any special
efficiency requirements. For a function f : ({0, 1}k)N → {0, 1}`, we define the following two related
protocols πSHf (a semi-honest secure protocol in the plain model) and πMf (a malicious secure protocol in
the CRS model):

The Protocol πMf . A malicious secure protocol in the CRS model.

• CRS Generation: Sample crs← LFE.crsGen(1λ, f.params).

• Pre-Processing: Each party computes digestf = LFE.Compress(crs, f).

• Online Phase: The parties run a generic MPC protocol ψ for the function

ct = LFE.Enc(crs, digestf , (x1, . . . , xN ) ;
⊕
i∈[N ]

ri).

We think of crs, digestf as part of the public function description. Each party i has input (xi, ri),
where ri is chosen uniformly at random, and gets ct as output.

• Post-Processing: Each party computes y = LFE.Dec(crs, f, ct).

The Protocol πSHf . A a semi-honest secure protocol in the plain model.

• Pre-Processing: Party 1 samples crs← LFE.crsGen(1λ, f.params) and computes digestf = LFE.Compress(crs, f).

• Online Phase: The parties run a generic MPC protocol ψ for the function

ct = LFE.Enc(crs, digestf , (x1, . . . , xN ) ;
⊕
i∈[N ]

ri).

The input of party 1 consists of (crs, digestf , x1, r1) and the input of each party i > 1 consists of
(xi, ri). The values ri are chosen uniformly at random. Each party get crs, ct as output.

• Post-Processing: Each party computes y = LFE.Dec(crs, f, ct).

Theorem 24. Assuming that the LFE scheme is selectively secure and that ψ is a semi-honest secure
MPC, the protocol πSHf is a semi-honest secure MPC for f in the plain model. Assuming that the LFE

is adaptively secure and that ψ is a malicious secure MPC, the protocol πMf is a malicious secure MPC
for f in the CRS model. In both cases we assume static corruptions.

Proof. We begin by replacing the invocation of the protocol ψ with an ideal functionality FEnc that
computes LFE.Enc. We can do so by security of ψ in the appropriate setting.

Then we show indistinguishability between the ideal world with a functionality Ff that computes f
and the FEnc-hybrid world in which the parties run the protocol πf with invocations of ψ replaced by
FEnc. Our simulator in the ideal world does the following:

• It runs crs← LFE.crsGen(1λ, f.params) and gives crs to all parties.

• It gets the inputs xi that the corrupted parties send to the ideal functionality FEnc in the online
phase. It sends these inputs to the functionality Ff and gets an output y.

• It runs ct← LFE.Sim(crs, digestf , f, y) and sets it as the output of FEnc.
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The only difference between the simulation in the ideal world and the FEnc-hybrid world is how ct
is generated: in the real world it is generated via LFE.Enc(crs, digestf , (x1, . . . , xN ) ;

⊕
i ri) and since

there is at least one uncorrupted party we can write this as LFE.Enc(crs, digestf , (x1, . . . , xN ) ; r∗) where
r∗ is uniformly random and unknown to the adversary. In the ideal world ct is generated via ct ←
LFE.Sim(crs, digestf , f, y) where y = f(x1, . . . , xN ). These are indistinguishable by the security of the
LFE. Note that in the malicious setting some of the xi values are chosen adaptively depending on the
CRS and therefore we need adaptive LFE security.

Instantiation and Parameters. We can instantiate the protocol ψ with (e.g.,) the [GMW86] protocol,
which provides malicious security, using oblivious transfer based on LWE. By plugging in the parameters
for LFE based on LWE we get the following parameters. For a circuit f : ({0, 1}k)N → {0, 1}` with
depth d we get a semi-honest MPC protocol in the plain model and a malicious-secure MPC in the CRS
model with the following efficiency:

• In the CRS model, the size of the CRS is k ·N · poly(λ, d).

• The communication complexity is (k + `) · poly(λ, d,N).

• Each party’s computation in the online phase is (k + `) · poly(λ, d,N).

• Each party’s computation in the pre-processing/post-processing phase is |f | · poly(λ, d).

Semi-honest security holds under the LWE assumption. Malicious security in the CRS model holds under
the adaptive LWE (ALWE) assumption with optimistic parameters. Under the ALWE assumption with
provable parameters, which follows from the sub-exponential security of LWE, we get a malicious secure
protocol in the CRS model with decreased efficiency where all of the poly(λ, d) and poly(λ, d,N) factors
become poly(λ, d, k,N).

Improving 2-round 2PC. Alternatively, we can instantiate the protocol ψ with a 2-round semi-honest
protocol in the plain model such as the one in [BL18, GS18] based only on OT which follows from LWE. In
that case, we get semi-honest MPC with the same efficiency as above but with only 2 rounds of interaction
in the plain model. Note that the total computational complexity of each party, including pre-processing
and post-processing, is |f | · poly(λ, d) + (k + `) · poly(λ, d,N). Despite many works on 2-round 2-PC
[MW16, PS16, BP16, GS17, GS18, BL18], in all prior constructions the per-party computation is at
least |f | ·N2 even in the semi-honest setting and even in the CRS model. Therefore the above gives an
asymptotic improvement on the computation complexity of 2-round 2-PC even if we do not distinguish
between online and offline computation.

Necessity of Pre-Processing and Post-Processing. We argue that both the pre-processing and
post-processing steps are necessary, at least in the circuit model where the function f is given to the
parties as a circuit.

Assume that we were able to remove the pre-processing step. Since the online computation is small,
most bits of the description of f were never accessed by any party during the protocol until the post-
processing step. But that means that, during the post-processing step, party 1 can modify a random bit
of f (in its head) to get f ′ and with good probability is able to learn f ′(x1, . . . , xN ). This violates security.
(Note that this argument relies on f having a large description. It remains an interesting problem if we
can get rid of pre-processing if f is a Turing Machine with short description.)

Assume we were able to remove the post-processing step. This means that, even if we didn’t care
about security, we now have a method to pre-process an arbitrary circuit f and then evaluate f(x) on
arbitrary inputs x at a lower cost than computing f . But that means that there is an altogether smaller
circuit g that computes f . Since not all circuits are compressible [Sha49] this cannot be done in general.
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A Direct Construction of Function Hiding LFE

We show a natural and efficient way to upgrade the constructions from Section 4.1 and 4.2 to achieve
statistical Function Hiding. Then, given that the transformation of Section 4.4 preserves (statistical)
Function Hiding (as the digest in the transformation is a digest from the underlying LFE), this gives an
alternative construction to get a statistical Function Hiding LFE from LWE.

The idea is to make the digest digestC output by the Compression algorithm Compress (statistically
close to) uniform by adding a random subset sum of extra random matrices. On a high level, this
corresponds to adding to the output an inner product (over the integers) of additional input bits with
a random binary vector. Then, Function Hiding is guaranteed by the Leftover Hash Lemma, while
correctness is preserved by considering that the Encryption algorithm implicitely sets those new inputs
to zero (so that the added inner product equals 0).

For simplicity, we present the construction for the 1-bit AB-LFE scheme (defined in Section 4.1). This
can be directly combined with the modification in Section 4.2 to get Statistical Function Hiding with
many output bits (with an additive overhead in the ciphertext), and also imply a Statistical Function
Hiding for LFE via the compiler of Section 4.4.

Set parameters n,m, q,B, σ, σF as in Section 4.1, and N = 2nm dlog qe.

• crsGen(1λ): Output n+N random matrices in Zn×mq :

crs = ({Ai}i≤k , {Bi}i≤N ) .

• Compress(crs, C): Compute AC = EvalPK(C, {Ai}i≤k). Pick r← {0, 1}N and output:

digestC = ÃC = AC +

N∑
i=1

riBi.

• Enc(crs, ÃC , (x, µ)): Pick s← Znq , ei ← χm for i ≤ k, and compute:

bi = s>(Ai − xiG) + e>i , i ≤ k.

Sample t← G−1($), set d = ÃC · t, and compute

β = s>d + ẽ+ µ · bq/2e,

where ẽ← [−B′, B′], and additionally compute γi = s>bi+e′i
> for i ≤ N , where e′i ← χm. Output:

ct = ({bi}i≤k, {γi}i≤N , β, t, x).

• Dec(crs, C, ct, r): If C(x) = 1 output ⊥. Else compute:

b̃ = EvalCT(C, {Ai}i≤k, {bi}i≤k, x) +

N∑
i=1

riγi,

and output b(β − b̃>t)/qe.

b̃ = EvalCT(C, {Ai}i≤k, {bi}i≤k, x) ,

where EvalCT is defined in Section 2.3. Output b(β − b̃>t)/qe.
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Correctness. Intuitively, adding
∑N

i=1 riγi to b̃ corresponds to adding 〈r, x̃〉 (over the integers) to the
initial message, where x̃ corresponds to N extra input bits (that would be encoded along using matrices
{Bi}i≤N ). The Encryption algorithm, by setting γi = s>bi+e′i

>, implicitly sets x̃ = 0, so that correctness
is maintained.

More formally, we have by correctness of EvalCT: b̃ = s>[AC − C(x)G] + eC + s>(
∑

i≤N ribi) +(∑
i≤N rie

>
i

)
. In particular, if C(x) = 0 then

|b̃− s>d| ≤ (m+ 1)d+1 ·B +B′ +N ·B < q/4.

AB-LFE security. AB-LFE security is preserved in this new construction: the simulator additionally
outputs uniform vectors {γi}i≤N as a part of the ciphertext. In particular, we also switch {γi} to uniform
vectors when arguing LWE (between Hybrid 2 and Hybrid 3, where all the hybrids are defined very
similarly as in Section 4.1)).

Function Hiding. Note that if q is a prime, and N and K are integers, the function

HM : r ∈ {0, 1}N 7→ r>M,

where M ∈ ZN×Kq is a 2-universal hash function.

Therefore, the Leftover Hash Lemma states that given random matrices Bi, we have that
∑N

i=1 riBi

(and therefore digestC ← Compress(crs, C)) is statistically close to uniform over the randomness of r ←
{0, 1}N by setting:

M =

B1[1, 1] · · · B1[n,m]
...

. . .
...

BN [1, 1] · · · BN [n,m]

 ∈ ZN×Kq ,

and setting K = nm dlog qe.

B Necessity of a CRS

In this section we show that LFE and even AB-LFE requires a CRS, at least if we consider non-uniform
adversaries. This is for the same reason that collision resistant hash functions need a CRS. In fact, we
show that the AB-LFE compression function is a collision-resistant hash function.

AB-LFE Compression is Collision Resistant. Consider the class of functions fy(x) := 〈y, x〉, where
x, y ∈ {0, 1}k for some k. Assume we have a (selectively secure) AB-LFE scheme which is “sufficiently
compressing”, meaning that for a sufficiently large k = k(λ) = poly(λ), if digest = Compress(crs, fy) then
|digest| < k. Then Hcrs(y) = Compress(crs, fy) is a Collision-Resistant Hash Function with the seed crs.

Claim 25 ((AB-)LFE is Collision Resistant). Suppose (crsGen,Compress,Enc,Dec) is a selectively secure
AB-LFE which is “sufficiently compressing”. Then Hcrs(y) = Compress(crs, fy) is a Collision-Resistant
Hash Function.

Proof. Suppose that an adversary A breaks the collision resistance on H. We build a reduction R that
breaks the security of the AB-LFE as follows.
R declares a random challenge attribute x∗ and a random message µ. It then receives a CRS, and

forwards it to A, who outputs a collision y 6= y′ for Hcrs with some non-negligible advantage.
R receives a challenge ciphertext ct. Note that as y 6= y′ and f·(·) 2-universal, we have that fy(x

∗) 6=
fy′(x

∗) with probability 1/2 (over the randomness of x∗ alone); the reduction aborts if it is not the case.
If it doesn’t, suppose without loss of generality that fy(x

∗) = 0 and fy′(x
∗) = 1.
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The reduction then chooses C which computes fy′(·), so that fy′(x
∗) = 1 in the LFE experiment. It

then receives a challenge ciphertext ct.
Now, by correctness of the AB-LFE, the reduction can, in the real experiment, decrypt the ciphertext

using fy and recover µ; but in the Ideal one the ciphertext is independent of µ, which allows to distinguish
the real and the ideal experiments with non-negligible probability.

Necessity of a CRS. This construction shows the necessity of using a CRS in the compression algo-
rithm for AB-LFE. Indeed, without a CRS, a non-uniform adversary can store such a collision y 6= y′ as
advice, and use it to break security.

“Very Selective” AB-LFE imply UOWHFs. We can also consider an alternative definition of LFE
security, where the adversary has to declare the circuit C and the input x before seeing the CRS, which
we call “Very Selective” security.

The reduction above can be directly extended to show that the compression algorithm of a “Very
Selective” LFE applied on a 2-universal hash function is a Universal One-Way Hash Function (UOWHF).
The only difference is that the adversary for the UOWHF chooses y and sends it to the reduction, who
sets fy(·) as a challenge circuit before seeing the CRS.

The same argument as above shows that a CRS is also necessary in that case.

C LFE Implies Succinct FE

In this section we show how to build a succinct single-key Functional Encryption (FE) scheme from
any LFE. This result was pointed out to us by Alex Lombardi and we include it in our paper with his
permission. Note that there already exists constructions of succinct, simulation-secure, single-key FE
from LWE [GKP+13]; so this section in particular gives an alternative construction from LWE. However,
one new implication of our result is that we can also get adaptively secure FE under the adaptive LWE
assumption. Throughout this section we only consider single-key FE.

In a nutshell, we start with a non-succinct FE and show how to use LFE to make it succinct. Instead
of using the FE to compute the function itself, we use the FE to compute an LFE ciphertext. Succinctness
follows as the circuit computing an LFE encryption is small. Note that (adaptive, simulation-secure) non-
succinct FE can be constructed from public-key encryption [SS10, GVW12]. Since we already showed
that (AB-)LFE implies 2-round OT (Section 5.3.2) which implies public-key encryption, we have that
LFE implies (adaptive, simulation-secure) non-succinct FE.

We refer to (e.g.) [GKP+13] for a definition of selective (resp. adaptive) simulation-secure, single-key
FE.

Succinctness for a FE scheme captures that the fact that both the encryption time and ciphertext
size should be sub-linear in the size of the circuits it supports. As for the laconic aspect of LFE, we
leave the exact efficiency requirements for succinctness somewhat loose. Looking ahead, instantiating the
construction below with our LFE from LWE will give an FE scheme with encryption time and ciphertext
size only growing with the depth of the circuits in the family, and not their size.

Theorem 26. Assuming the existence of a selectively (resp. adaptively) secure LFE, there exists a
succinct, selective (resp. adaptive), simulation-secure, single-key, functional encryption scheme.

If an LFE, for a circuit family C with circuit parameters C.params, has an encryption circuit of size
T = T (C.params, λ) (where the inputs to the encryption circuit are both the message and the randomness
for the LFE encryption), then the resulting FE has encryption time and ciphertext size T · poly(λ).

Let (FE.Setup,FE.KeyGen,FE.Enc,FE.Dec) be an adaptive, simulation-secure single-key FE (but with
potentially large ciphertexts), which exists assuming the existence of LFE [GVW12], as LFE implies
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public-key encryption (see Section 5.3.2). Its encryption time and the size of its ciphertexts are T ·poly(λ),
where T upper bounds the size of the circuits supported by the FE scheme.

Let (LFE.crsGen, LFE.Compress, LFE.Enc, LFE.Dec) be a selective (resp. adaptive) LFE.
Define the following functional encryption scheme:

• Setup(1λ): Compute LFE.crs← LFE.crsGen(1λ), and (FE.mpk,FE.msk)← FE.Setup(1λ). Output:

mpk = FE.mpk ;

msk = (LFE.crs,FE.msk).

• KeyGen(msk, C): On input a circuit C and the master secret key msk, define the circuit CLFE, which
on input (x, r) outputs LFE.Enc(LFE.crs, digestC , x ; r), where digestC = LFE.Compress(LFE.crs, C).
Compute FE.skCLFE

← FE.KeyGen(CLFE), and output:

skC = (FE.skCLFE
, LFE.crs, C).

• Enc(mpk, x): On input x and the master public key mpk, pick some LFE encryption randomness r,
and output:

ct← FE.Enc(FE.mpk, (x, r)).

• Dec(skC , ct): On input ct and a function key skC , first compute:

ctLFE = FE.Dec(FE.skCLFE
, ct).

Then output:
y = LFE.Dec(LFE.crs, C, ctLFE).

Claim 27 (Correctness). The functional encryption scheme above is correct.

Proof. By correctness of the inner functional encryption scheme, we have ctLFE = LFE.Enc(LFE.crs, digestC , x ; r);
and by correctness of the LFE we have LFE.Dec(LFE.crs, C, ctLFE) = C(x).

Succinctness follows from the fact that the encryption time and the ciphertext size are the ones of
the inner functional encryption ciphertexts, which only depend on the size |CLFE| = T (C.params, λ) of
CLFE, and not the size of C itself. More precisely, the size of the ciphertexts for the final FE scheme is
|CLFE| · poly(λ).

Claim 28 (Simulation security). Suppose the inner functional encryption scheme is single-key, adaptive,
simulation-secure; and the LFE is selectively (resp. adaptively) secure. Then the resulting functional
encryption scheme is selectively (resp. adaptively) secure.

Proof. We proceed via a sequence of hybrids.

Hybrid 0. This is the real experiment for the security for functional encryption.

Hybrid 1. In this hybrid we modify how we generate the challenge ciphertext ct∗. We now pick a
random r, and compute

ct∗LFE = LFE.Enc(LFE.crs, digestC , x
∗ ; r).

We now use the simulator FE.Sim given by the security requirement of the inner FE scheme to compute:

ct∗ = FE.Sim(skC , ct
∗
LFE).

43



Hybrids 0 and 1 are indistinguishable by simulation security of the inner FE scheme.

Hybrid 2. We once again modify the way we generate ct∗. We now use the LFE simulator LFE.Sim
to compute:

ct∗LFE = LFE.Sim(LFE.crs, C, digestC , C(x∗)),

and compute as before:
ct∗ = FE.Sim(skC , ct

∗
LFE).

Hybrids 1 and 2 are indistinguishable by security of the LFE, and Hybrid 2 corresponds to the ideal
experiment for the security of the functional encryption, which concludes the proof.

Semi-adaptive FE from selective LFE. Starting from a selective LFE, our resulting succinct FE
actually achieves a stronger notion of semi-adaptivity, where the challenge message x∗ can be chosen after
seeing the master public key mpk, but before receiving the function secret key skC . This is because we
can put the CRS of the LFE in the function secret keys instead of the master public key.

Adaptive FE from adaptive LWE. The transformation above shows that adaptive LFE implies
adaptive succinct FE. In particular the construction above does give us an adaptive succinct FE from the
Adaptive LWE assumption. Interestingly, as far as we know, the construction of succinct FE in [GKP+13]
does not seem to get adaptivity from (the polynomial hardness of) our Adaptive LWE assumption. This
is because adaptivity in their construction requires an inner ABE to be adaptively secure; and all the
current construction of ABE from LWE rely on carefully embedding trapdoors when generating the public
key in the security proof. Thus it is not clear how to prove adaptive security for current constructions of
ABEs by only relying on Adaptive LWE.

D LFE for Simple Functions

In this section, we present LFE protocols for the class of linear functions under the k-Linear assumption
in prime-order cyclic groups. Here, we reserve k for k-Linear, and n for the length of the inputs to the
circuit.

D.1 LFE for Linear Functions from k-Lin

We present a LFE for the class of linear functions Cy : x 7→ x>y. Functionality only works when the
output is small. The construction is very similar to the functional encryption scheme for linear functions
in [ABDP15, ALS16, Wee17].

Construction. Fix a prime order group G of order q, and we will use the implicit representation
notation for group elements where [·] denote entry-wise exponentiation for a matrix. We will rely on the
k-Linear (and more generally MDDH assumption) which says that

[A], [As] ≈c [A], [c]

where A← Z(k+1)×k
q , s← Zkq , c← Zk+1

q .

• crsGen(1λ): Pick A← Zk×nq and outputs

crs = [A] ∈ Gk×n .
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• Compress(crs, Cy): Output:
digestC = [Ay] ∈ Gk×1 .

• Enc(crs, digestC ,x): Pick s← Zkq , and compute:

ct = ([b] = [s>A + x>], [β] = [s>Ay]) ∈ G1×(n+1).

• Dec(crs,y, ct): Output the discrete log of [by − β].

Correctness. Correctness is straightforward.

Adaptive security. We first write down the simulator:

• simulate the crs and digestC honestly as in crsGen and Compress.

• on input a = Cy(x) from the ideal functionality, pick b← Z1×n
q and output

ct = ([b], [by − a]).

To prove that the simulator works, we consider an intermediate hybrid as before, where [b] is computed
as in the honest Enc, and β is computed (given [b], Cy(x)) as in the simulator. This distribution is
identically distributed to the real distribution, and computationally indistinguishable from the simulated
one via the k-Linear assumption applied to [A], [s>A].

D.2 LFE for Linear Predicates from k-Lin

Next, we consider the “predicate” variant where

Cy(x, µ) =

{
µ if x>y = 0

⊥ otherwise

This basically follows from applying the previous construction to the vectors vx | µ where v ← Zq is
chosen by Enc and y | 1.

• crsGen(1λ): pick A← Zk×nq and outputs

crs = [A] ∈ Gk×n

• Compress(crs, Cy): Output:
digestC = [Ay] ∈ Gk×1

• Enc(crs, digestC , (x, µ)): Pick s← Zkq , v ← Zq, and compute:

ct = ([b] = [s>A + vx>)], [β] = [s>Ay] · µ) ∈ G1×(n+1).

• Dec(crs,y, ct): Output [β] · ([by])−1.

Correctness. Correctness is straightforward.
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Adaptive security. We first write down the simulator:

• simulate the crs and digestC honestly as in crsGen and Compress.

• on input a = Cy(x, µ) from the ideal functionality (it is convenient to think of a as being either µ
or random), pick b← Z1×n

q and output

ct = ([b], [by − a]).

To prove that the simulator works, we consider an intermediate hybrid as before, where [b] is computed
as in the honest Enc, and β is computed (given [b], Cy(x)) as in the simulator. This distribution is
identically distributed to the real distribution, and computationally indistinguishable from the simulated
one via the k-Linear assumption applied to [A], [s>A].

E LFE from LWE – A Direct Construction

We describe how to use the “dual use” technique from BTVW [BTVW17] (used to obtain simpler con-
structions of predicate encryption for circuits from LWE ([GVW15]) to obtain a direct construction of
LFE from LWE. The idea is to use the same secret vector s for the BGG+ encodings ([BGG+14]), and
the FHE encryption from [GSW13] of the attribute x.

Let Ψ1, . . . ,Ψk denote GSW encryptions of x under the key s and let Ψf denote an encryption of
f(x) obtained via homomorphic evaluation of C. Suppose for simplicity that FHE decryption is given by

s>Ψf ≈ C(x) · s>G

Now, we also give out BGG+ encodings of the binary representation of Ψ1, . . . ,Ψk under some public
matrices Ai’s under the same s. As it turns out, given C, we can “recode” these encodings to something
of the form:

s>[AC + Ψf ] ≈ s>[AC + C(x)G]

which is exactly what we want!
The actual construction is a bit more involved because FHE decryption is actually given by

[s | −1]>Ψf ≈ C(x) · [s | −1]>G.

E.1 Construction

BTVW matrix computation. [BTVW17] extended the evaluation of matrices from Secetion 2.3 to
deal with functions whose output is a matrix instead of a bit (we still treat the input as bits). Suppose
f : x1, . . . , x` 7→ XC where these matrices have the same dimensions as A1,A2, . . . ,A`. Then, we can
recode

A1 − x1G, . . . ,A` − x`G 7→ AC −XC

where AC is deterministically derived from A1, . . . ,A`. As before, we use EvalPK to denote the derivation
of AC from Ai’s and EvalCT to denote the derivation of s>(AC −XC) from s>(Ai − xiG)’s. We defer
the details to [BTVW17, Section 4.1] and the full version of this paper.

Notation. We use gadget matrices G ∈ Z(n+1)×(n+1) log q
q and we write G ∈ Zn×(n+1) log q

q to denote
all but the last row of G. Given a circuit computing a function f : {0, 1}` → {0, 1}, and GSW FHE
encryptions Ψ := (Ψ1, . . . ,Ψ`) of x1, . . . , x`, we write ΨC to denote fhe.eval(f,Ψ). Noting that ΨC is a
matrix, we let ΨC denote the last row of ΨC , and ΨC to denote all but the last row of ΨC . In addition,
we write Ĉ to denote the circuit that computes Ψ 7→ ΨC , namely it takes as input the bits of Ψ and
outputs the matrix ΨC .
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LFE Protocol. Consider the class {C : {0, 1}k → {0, 1} has depth at most d}.

• crsGen(1λ): pick the common random string to be L random matrices:

crs = (A1, . . . ,AL) ∈ Zn×mq .

where L = k · (n+ 1)2 · log2 q.

• Compress(crs, C): Output:

digestC = AĈ = EvalPK(Ĉ, {Ai}i≤L) ,

where EvalPK, Ĉ are defined as above.

• Enc(crs,AC ,x): Pick s← Znq , e′i ← χm for i ≤ k, and compute:

Ψi =

(
Bi

s>Bi + e′i

)
+ xiG.

Let x̂ denote the binary representation of [Ψ1 | · · ·Ψk]. Compute

bi = s>(Ai − x̂iG) + e>i , i ≤ L.

Sample t← G−1($), and compute
β = s> ·AĈ · t + ẽ,

where ẽ← χ̃. Output:
ct = ({bi}i≤L, β, t, x).

• Dec(crs, C, ct): Compute ΨC along with

b̃ = EvalCT(Ĉ, {Ai}i≤L, {bi}i≤L, x) ,

(where EvalCT is defined as above), and compute:

η = β − (b̃ + ΨC) · t.

Output the most significant bit of η.

Correctness. Correctness follows from the fact that for honestly generated ciphertexts, b̃ satisfies

b̃ ≈ s>[AĈ −ΨC ]

In addition, we have
[s | −1]ΨC ≈ C(x) · [s | −1]G

Putting the two together, we have

β − (b̃ + ΨC) · t ≈ C(x) · [s | −1]G · t (3)

upon which correctness follows readily.
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Security. The proof of security follows from the earlier strategy:

• First, simulate β in the challenge ciphertext using (3):

β ≈ (b̃ + ΨC) · t + C(x) · [s | −1]G · t

• As before, sample a uniformly random u and compute t← G−1(u), and simulate β as

β ≈ (b̃ + ΨC) · t + C(x) · [s | −1]u

• Use LWE with secret s to replace the bj ’s, s>ū, s>Bi’s with random.

• This means that we can simulate bj ’s and the Ψi’s with uniformly random vectors/matrices, and

simulate β with random if C(x) = 1, and with (b̃ + ΨC) · t if C(x) = 0.

Extension to multi-bit output. We may proceed as in Section 4.2 to obtain an extension to `-bit
output. The modifications are as follows:

• Compress will compute AĈ1
, . . . ,AĈ`

;

• Enc will compute b̃ as before, and sample t1, . . . , t` to compute β1, . . . , β`.
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