
PRCash: Centrally-Issued Digital Currency
with Privacy and Regulation

Karl Wüst

ETH Zurich, Switzerland

karl.wuest@inf.ethz.ch

Kari Kostiainen

ETH Zurich, Switzerland

kari.kostiainen@inf.ethz.ch

Vedran Čapkun

HEC Paris, France

capkun@hec.fr

Srdjan Čapkun

ETH Zurich, Switzerland

srdjan.capkun@inf.ethz.ch

ABSTRACT
Decentralized cryptocurrencies based on blockchains provide at-

tractive features, including user privacy and system transparency,

but lack active control of money supply and capabilities for regula-

tory oversight, both existing features of modern monetary systems.

These limitations are critical, especially if the cryptocurrency is

to replace, or complement, existing fiat currencies. Centralized

cryptocurrencies, on the other hand, provide controlled supply of

money, but lack transparency and transferability. Finally, they pro-

vide only limited privacy guarantees, as they do not offer recipient

anonymity or payment value secrecy.

We propose a novel digital currency, called PRCash, where the
control of money supply is centralized, money is represented as

value-hiding transactions for transferability and improved privacy,

and transactions are verified in a distributed manner and published

to a public ledger for verifiability and transparency. Strong privacy

and regulation are seemingly conflicting features, but we overcome

this technical problem with a new regulation mechanism based

on zero-knowledge proofs. Our implementation and evaluation

shows that payments are fast and large-scale deployments practical.

PRCash is the first digital currency to provide control of money

supply, transparency, regulation, and privacy at the same time, and

thus make its adoption as a fiat currency feasible.

1 INTRODUCTION
Over the last ten years, decentralized cryptocurrencies based on

blockchains have gained significant attention. Currencies like Bit-

coin [36] provide attractive new features compared to the currently

widely-used payment methods, including improved privacy, as such
currencies use pseudonyms instead of real identities. Decentral-

ized cryptocurrencies also provide improvements in terms of trans-
parency, because money is represented as transactions that are

published on a ledger, and anyone can verify transaction correct-

ness and creation of new money from the ledger.

However, such designs also lack important features. One limita-

tion of currencies like Bitcoin is that they do not support issuance
control. Instead, creation of new money is based on fixed rules and

schedule. This makes it difficult for a central bank – whose main

tasks include managing the currency and controlling money supply

– to use such a cryptocurrency as fiat money. Another limitation

of decentralized currencies is that they do not support regulation.

Without regulatory oversight, money laundering and other crim-

inal activities are difficult to prevent. These limitations present a

major obstacle for the adoption of a cryptocurrency as fiat money.

Centralized digital currencies, like Chaum’s original e-cash [19],

represent money as coins. Such currencies provide their own ben-

efits, including payer anonymity and control over money supply

through a central issuer. However, they provide no transparency

for the creation of money and no public verifiability for the correct-

ness of transactions. Another drawback of centralized currencies is

that money is typically not transferable and received coins need to

be deposited immediately to the bank to prevent double spending.

This imposes privacy limitations, in particular value secrecy and

recipient anonymity are hard to achieve without transferability.

Our goals and solution. Our goal is to design a novel digital

currency that combines the above discussed desirable properties.

Our currency should (i) provide issuance control that enables adap-
tive monetary policy, (ii) support transparency over issuance of

new money and verifiability of transaction correctness, (iii) enable

regulation so that authorities can track the flow of larger sums of

money, and (iv) guarantee privacy such that payments below a

certain amount have strong anonymity.

In this paper, we design a novel digital currency called PRCash
that can be seen as a hybrid of a centralized and decentralized sys-

tem. In PRCash, the issuance of money is centralized, similar to

traditional e-cash schemes, but money is represented as transac-

tions that are verified in a distributed manner by a pre-defined set

of validators and maintained on a public ledger as a permissioned

blockchain. Such a design enables controlled issuance, provides

transparency and verifiability, and money is transferable, which

allows improved privacy. Our high-level design is similar to a previ-

ous solution, called RSCoin [23]. However, RSCoin lacks important

features (namely, privacy and regulation) that we discuss next.

Strong anonymity and regulatory oversight are conflicting prop-

erties and known transaction techniques provide only one or the

other. For example, transactions that use plaintext identities and

amounts enable regulation but no privacy; usage of pseudonyms im-

proves privacy, but makes regulation ineffective; novel transaction

techniques like Confidential Transactions [34], Mimblewimble [30]

and ZeroCash [40] provide strong privacy protection, but no regu-

lation. In addition, systems like ZeroCash [40] (that provides the

highest level of anonymity) are not efficient enough for a cash-like

system in which transactions should be completed within seconds.

We address this conflict between privacy and regulation with a

novel transaction creation and verification technique that leverages

1



zero-knowledge proofs. Using verifiable pseudorandom identifiers

and range proofs, we limit the total amount of money that any user

can receive anonymously within an epoch. We choose to control

receiving of money, to mimic existing laws in many countries (e.g.,

in the US, received cash transactions exceeding $10,000 must be

reported to the IRS), but our solution can be easily modified to limit

spending as well. The user can choose for each payment if it should

be made anonymous as long as he stays within the allowed limit,

chosen by a regulatory authority. Anonymous transactions have

strong privacy protection: payer anonymity, recipient anonymity

and value secrecy. Regulation based on zero-knowledge proofs has

been previously proposed for coin-based currencies by Camenisch

et al. [14]. Our technique is novel in the sense that it enables regu-

lation for (value-hiding) transactions.

We implemented a prototype of PRCash and evaluated its perfor-

mance. Our currency can handle high transaction loads (e.g., 1000

tps) with modest computing infrastructure (e.g., 4 × 25 quad-core

servers). Due to distributed validation, transaction verification has

no single point of failure, and payment confirmation is fast (e.g.,

less than a second).

Usages. The primary use case that we consider is one where a

central bank uses PRCash to issue digital money to complement,

or replace, cash as the fiat currency. To the best of our knowledge,

PRCash is the first digital currency to provide privacy, regulation,

transparency and issuance control that are all important features

for the usage as fiat money. The performance of our solution makes

such usage feasible. This is in contrast to ZeroCash [40] style trans-

actions that require minutes of computation to be created or de-

centralized currencies like Bitcoin that cannot support real-time

payments or high transaction loads.

Adoption of PRCash as fiat currency could benefit the society in

multiple ways. Individuals gain convenience, as they no longer have

to carry cash, as well as improved privacy, especially for online

payments, and new flexibility, as they can choose which payments

are kept private. Businesses save on costs of handling cash and on

card payment fees. Regulators would have more effective means

of tracking money and expensive manual auditing processes could

be automated. Finally, increased transparency could benefit all in-

volved parties and increase trust in the system. Another interesting

use case is privately-issued money, where the importance of trans-

parency in even greater.

Contributions. To summarize, in this paper we make the fol-

lowing contributions:

• Novel digital currency.We propose PRCash, a novel digital
currency that is the first to provide privacy, transparency,

issuance control and regulation at the same time.

• New techniques. As part of the currency, we develop a new

cryptographic technique for regulation of anonymous trans-

actions based on zero-knowledge proofs.

• Implementation and evaluation. We show that fast, fault-

tolerant, large-scale deployments are possible.

The rest of this paper is organized as follows. Section 2 gives an

overview of our solution. Section 3 describes our currency in detail.

We analyze the security in Section 4 and explain our implementation

and evaluation in Section 5. Section 6 discusses deployment issues,

Section 7 reviews related work, and Section 8 concludes the paper.

2 PRCASH OVERVIEW
Our goal in this paper is to design a new digital currency that

provides a novel combination of features: issuance control, trans-

parency, regulation, and privacy. In this section we give an overview

of our solution, PRCash.

2.1 Motivation for Central Issuance
Research on digital currencies has recently focused on decentralized

systems. In this paper, we deviate from this trend and design a

currency where money is issued centrally. Central issuance for

cryptocurrencies has previously been explored by Danezis and

Meiklejohn with RSCoin [23], though with somewhat different

focus. While we mainly focus on privacy and regulation, RSCoin

focuses on scalability.

Centrally-issued currencies can have significant advantages, es-

pecially if used as fiat money. Control over issuance provides an

important tool for monetary policy, as the issuer can, e.g., increase

supply of money to stimulate the economy when needed. Similar

monetary policy is hard to realize if issuance is distributed and

based on predefined rules and schedule, as in the case of Bitcoin

mining. Another advantage is that a well-established issuer (e.g., a

central bank) can provide reassurance to the public to start using

a digital currency, in contrast to a decentralized solution with no

institutional backing (it seems that the public prefers money that is

reliable and boring rather than new and exciting [42]). Also, fea-

tures like regulation are difficult to achieve in a fully decentralized

setting.

We note that central issuance does not necessarily imply a fully-

centralized solution. The operation of the currency (e.g., transaction

verification, consensus and double-spending protection) can be

distributed for increased security and fault tolerance, as is the case

in our solution.

2.2 System Model
Figure 1 shows the system model of PRCash. Here, we describe the
involved entities:

Issuer. In our currency new money is created by a central entity

called the issuer. This role can be taken, e.g., by a central

bank.

Users. Users in our system can act in two roles: as payers and
as payment recipients. Users of the currency can be private

individuals or organizations.

Validators. Our system leverages a pre-defined (permissioned)

set of validators. Validators have two tasks: they verify cor-

rectness of transactions and publish transactions to a public

data structure, called the ledger, that they also maintain in

distributed manner. The role of the validators could be taken,

e.g., by commercial banks or other institutions appointed by

the central bank.

Regulator. The flow of money is regulated by a central entity

called the regulator. If a user exceeds his allowed limit of

anonymous transactions, his identity is revealed to the reg-

ulator. The role of the regulator could be taken, e.g., by a

public authority like the IRS.

If our system is used for a privately-issued currency, these roles

can be assigned differently (cf. Section 6).



Alice

(Payer)

Bob

(Recipient)

Ledger

Verification

Mixing

Consensus

Validators

Issuer

Regulator

Partial Transaction

(Outputs, Proofs)

T
r
a
n
s
a
c
t
i
o
n

(
I
n
p
u
t
s
,
O
u
t
p
u
t
s
,
P
r
o
o
f
s
)

Block

C
o
n
fi
r
m
a
t
i
o
n

Issues Certificate

Issues Certificate

E
n
c
r
y
p
te
d
ID

(E
n
c
ID
,
P
r
o
o
f,
O
u
tp
u
t)

Issuing Txs

Figure 1: System model and operation. In PRCash, new
money is created centrally by the issuer. Users enroll in the
system by obtaining certificates from the regulator. In each
payment, the payer (Alice) and the recipient (Bob) prepare a
transaction that is sent to permissioned validators who ver-
ify its correctness and add it to the next block in the pub-
lic ledger. If the transaction exceeds the allowed amount of
anonymous payments for Alice or Bob, the identity of the
user is revealed to the regulator.

2.3 High-Level Operation
Figure 1 illustrates the high-level operation of PRCash. To supply

new money, the issuer creates signed issuance transactions that it

sends to the validators, who verify them and publish them to the

ledger. Similarly, the issuer can remove money (that is in the issuers

possession) from the currency using deletion transactions.

Each user enrolls in the system by obtaining a payment creden-

tial (certificate) from the regulator. Payments involve two parties:

the payer (Alice) and the recipient (Bob). To initiate a payment,

Alice and Bob first agree on the transaction value. Each payment

transaction consists of inputs and outputs, where the inputs are

outputs from previous transactions (cf. Figure 2), as well as asso-

ciated proofs, and for each transaction Alice and Bob can choose

if their identity should remain anonymous. Bob prepares his part

of the transaction (that includes value outputs and proofs) and

sends it to Alice, who completes the transaction (by adding inputs,

change outputs, proofs, and an encrypted identifier in case of a

non-anonymous transaction). Alice sends the complete transaction

to the validators.

The validators work in rounds. In each round, the validators col-

lect incoming transactions, verify their correctness, mix the order of

transaction inputs and outputs for increased privacy (cf. Section 4),

and agree on the set of transaction that should be published. Con-

sensus among validators is achieved through standard (Byzantine

fault tolerant) protocols. Optionally, the privacy and robustness of

the system can be increased by running the functionality of the val-

idators in trusted execution environments (TEEs), such as Intel SGX

Input

$60

Input

$40

Change

Output

$30

Value

Output

$70

Input

$70

Change

Output

$50

Value

Output

$20

Transaction 1 Transaction 2

Figure 2: Transactions overview. Alice uses two inputs for
Transaction 1 to transfer a value of $70 to Bob and creates a
$30 change output in the process. Bob then uses the received
output as an input in later Transaction 2 to Dave.

enclaves [28] (cf. Section 4). At the end of the round, the validators

publish a set of verified transactions as a new block on the ledger.

Once the recipient (Bob) verifies the presence of the transaction

in the ledger, he considers the payment confirmed. Bob can then

use the value outputs from this transaction as inputs in the next

payment (cf. Figure 2).

If a transaction does not pass the verification (e.g., Alice or Bob

attempts to create a transaction that exceeds the allowed anonymity

limit, transaction inputs and outputs do not match, or one of the

attached proofs is invalid), the transaction is rejected by the valida-

tors and not included in the next block. If the transaction contains

any non-anonymous outputs, the validators first verify its correct-

ness, and then forward the encrypted identifier to the regulator,

who can recover the identity of Alice or Bob, depending on which

transaction output was made non-anonymous or exceeded the limit.

2.4 Main Properties
PRCash provides different properties with respect to each involved

entity. We summarize them below:

Issuer. The issuer can choose when and how much new money

is created (or deleted). Every issuance event is recorded on

the ledger. In Section 6, we discuss the option of the keeping

issuance amounts secret.

Users. For users (and third parties), PRCash provides transaction
verifiability. All accepted transactions are recorded on the

ledger and anyone can verify that for each transaction, inputs

match to outputs, and thus transactions can only transfer

existing money from one user to another, and not create new

money. Users also get issuance transparency. This means that

users see every money issuance event and its amount on the

ledger. For double-spending protection, users need to trust

validator consensus. Users also have flexibility in terms of

privacy protection. For each transaction, they can choose if

their identity should be protected or not, and they can make

unlimited non-anonymous transactions. If both the payer

and the recipient choose anonymity protection, our system

provides strong privacy guarantees: payer anonymity, recipi-

ent anonymity and value secrecy. Bob (e.g., merchant) cannot

link multiple payments received from Alice (e.g., customer).

Validators. Validators can see all transactions, but they do not

learn user identities or transaction amounts. Validators have



limited ability to link together multiple transactions from

the same user (cf. Section 4).

Regulator. For the regulator, PRCash provides flexibility. By set-

ting the limit to a suitable value, the regulator can enforce

different regulatory rules. The regulator learns the identity

of each user that exceeds the allowed limit. The regulator

also learns the user identity of every transaction (output)

that is non-anonymous.

2.5 Attacker Models
We consider an adversary that controls all networking between

users and from users to validators. The validators and the regula-

tor are connected with secure links. Regarding the validators, we

consider two different attacker models:

AM1: Compromised validators. In this model, we assume that

f < N /3 validators can be fully compromised, where N is

the total number of validators. The adversary can read any

secrets stored by the compromised validators and modify

their execution control flow.

AM2: Trusted Execution Environments. During system oper-

ation, the attacker may compromise the OS on any validator,

but all validator TEEs (e.g., SGX enclaves) remain secure, i.e.,

the adversary cannot read any data from the TEE or modify

its execution. During system initialization, at most f < N /3

of the validator operating systems may be compromised.

3 PRCASH DETAILS
In this section, we describe PRCash in detail. We first introduce

the main idea of our regulation technique, and then we explain our

system operations. Our solution uses a number of cryptographic

techniques as building blocks. We provide background on them in

Appendix A.

3.1 Regulation Idea
In many countries, it is required by law to report large financial

transactions. For example, the legislation in the US mandates com-

panies and individuals to report any received cash transaction that

exceeds $10,000 [1]. To enable enforcement of such laws, we design

a regulation mechanism that limits the total amount of anonymous

payments any user can receive within a time period (epoch). By

adjusting the amount and the period, authorities can control the

flow of anonymous money, e.g., reception of anonymous payments

up to $10,000 could be allowed within a month. With small changes,

similar limits are also possible for spending instead of receiving

(cf. Section 6).

To realize regulation, for each transaction the user either proves

without disclosing his identity that he does not exceed the limit

va in the current epoch e or he connects his identity encrypted

with the regulators public key to the transaction. For anonymous

transactions within the limit, each user computes a pseudorandom

ID per epoch (PIDe ) that he attaches to his transaction outputs.

He additionally attaches a zero-knowledge proof that the ID was

computed correctly and a range proof over the sum of all transaction

outputs from this PID. These values are sent together with the

transaction outputs to the validators. The proofs are checked by

the validators and after verifying their correctness, the PIDs and

the corresponding proofs are not published with the transactions

to preserve anonymity towards third parties.

Since anonymous change outputs are indistinguishable from

anonymous value transferring outputs, they count towards the

receiving limit of a user. However, since users are in control of

the size of the outputs they receive, they can mitigate this issue

by using smaller received outputs, by splitting larger outputs in

non-anonymous transactions, or by creating large change outputs

non-anonymously (cf. Appendix 6).

During enrollment, the user receives a certificate that allows him
to create correctness proofs required for regulation. As the user

may lose his certificate, or the corresponding private key, we limit

their validity to I∆ epochs.

A similar idea for regulation was proposed previously for central-

ized coin-based digital cash by Camenisch et al. [14]. Our solution

uses blockchain based transactions and thus needs to consider not

just the number of transactions (which is equal to the amount in

coin based systems), but also the transaction amounts. Our solution

therefore uses different zero-knowledge proofs and provides some

additional desired properties (cf. Section 7).

3.2 System Initialization
Our system uses two groupsG = ⟨д⟩ and G = ⟨g1⟩ = ⟨g2⟩ = ⟨h⟩ of
the same order, where the discrete logarithms of g1, g2, and h with

respect to each other are unknown. The involved entities perform

the following initialization steps:

Regulator. The regulator generates a keypair (pkR,S , skR,S ) for
randomizable signatures (cf. Appendix A.4), an encryption

keypair (pkR,E , skR,E ) for Elgamal encryption, and publishes

the public keys as part of the system setup.

Validators. Each validator installs the same code (in its TEE) that

creates a keypair, exports the public key, and seals the pri-

vate key for local storage. The public keys are published as

part of the system setup. Validators use the private keys for

signing new blocks. Users use the validator public keys to

send transactions securely to the validators.

Issuer. The issuer also creates a keypair that he uses for transac-

tions that create and delete money. The issuer publishes his

public key as part of the system setup.

3.3 User Enrollment
Every new user obtains the system setup that includes the public

keys of the regulator, issuer, and validators. To enroll in the system,

the user generates a keypair (pkU , skU ) = (g1skU , skU ) for regula-

tion proofs and sends the public key to the regulator while proving

knowledge of the secret key (cf. Appendix A.2). To ensure that

a user cannot enroll multiple identities, and thus circumvent the

regulation, the regulator has to verify the identity of the user. If a

PKI is already in place, this can be used for identification, otherwise

users could, e.g., be required to visit a registration office in person.

The regulator then creates a certificate consisting of a randomiz-

able signature σ on (skU , IV ) based on the user’s public key pkU
and IV , the index of the first epoch in which the certificate is valid,

and sends the signature σ to the user. Recall that a randomizable

signature is a signature on a list of committed values (cf. Appen-

dix A.4). Using values pkU and IV , the regulator creates and signs



the commitment pkU · g2IV hr = g1skU g2IV hr where r is chosen
at random.

3.4 Regulation Proof Creation
In each epoch e , the user computes a pseudorandom ID as PIDe =

fskU (e) (cf. Appendix A.1) and initializes the value of anonymously

spent transaction outputs to ve = 0. Regulation proofs are created

either when Bob creates value outputs during transaction prepa-

ration or when Alice creates change outputs during transaction

completion. For each output, the user can choose if it should be

made anonymous or non-anonymous. For each new output, the user

creates a regulation proof. Depending on whether the output should

be anonymous or not, he does one of the following to construct the

proof:

Anonymous Output. If the user wants to create an output

anonymously and the value vo of the transaction output plus ve is

below the limit va , the user adds PIDe and a zero-knowledge proof

of knowledge (cf. Appendix A.2) of (skU , IV ,σ ) to the transaction

such that:

(i) The certificate is valid in the current epoch, i.e., a range proof

that Icurrent − I∆ < IV ≤ Icurrent .
(ii) The value PIDe is equal to the output of the pseudorandom

function based on the secret key skU on input e , i.e., PIDe =

fskU (e).
(iii) The certificate is valid, i.e.,

verify(pkR,S , (skU , IV ),σ ) = true

In detail, the regulation proof consists of the following steps:

(i) The user creates two commitments A = g1sku hr1 and B =
g2IV hr2 with two fresh random values r1 and r2 and proves

knowledge of a signature on the openings of these commit-

ments.

(ii) Prove that B is a commitment to an integer in the range

[Icurrent − I∆ + 1, Icurrent ].
(iii) Given the commitment A to the value skU , prove that

PIDe = fskU (e) = д
1/(e+skU )

i.e., this is the following proof of knowledge:

PK{(α ,γ ) : A = g1αhγ ∧ д · PID−e
e = PIDα

e }

We use the common notation where greek letters correspond

to values of which knowledge is being proven (cf. Appen-

dix A.2). In the proof above, α corresponds to skU and γ
corresponds to the blinding value of the commitment. The

second term proves that the ID was computed correctly since

д · PID−e
e = PIDα

e

⇒ д = PIDe+α
e

⇒ д
1

e+skU =
(
PIDe+α

e
) 1

e+α = PIDe

The interactive protocol can be easily converted to a non-

interactive signature on the message M = H (o) using the

Fiat-Shamir heuristic [27], where o is the transaction output.

Including this message in the zero-knowledge proof binds

the proof to the transaction output.

(iv) The user additionally creates a range proof over the product

of all anonymous outputs that share the same identifier PIDe ,

proving that their combined value is below the allowed limit

va .

The user then updates ve := ve +vo after completing the transac-

tion.

Non-anonymous Output. If the user does not want to create

the output anonymously or the value vo of the output plus ve is

above the transaction amount limit va , the user adds his public key
encrypted with the public key of the regulator to the transaction,

together with a proof that the encryption was created correctly.

The user completes the following steps to create the regulation

proof:

(i) The user creates two commitments A = g1sku hr1 and B =
g2IV hr2 with two fresh random values r1 and r2 and proves

knowledge of a signature on the openings of these commit-

ments.

(ii) Prove that B is a commitment to an integer in the range

[Icurrent − I∆ + 1, Icurrent ].

(iii) Compute C = ENC(pkU ,pkR,E ) =
(
дy1 ,pk

y1
R,E · pkU

)
(iv) Given the commitment A to the value skU , prove that

C = ENC(pkU ,pkR,E ) =
(
дy1 ,pk

y1
R,E · pkU

)
i.e., this is the following proof of knowledge:

PK{(α ,γ1,γ2) :A = g1αhγ1

∧C[0] = дγ2 ∧C[1] = pk
γ2
R,Eд

α }

Here, α again corresponds to skU and γ1 corresponds to

the blinding value of the commitment, while γ2 corresponds
to the random value used for the Elgamal encryption of

the users public key. The interactive protocol can again be

converted to a non-interactive signature on the message

M = H (o) using the Fiat-Shamir heuristic [27], where o is

the transaction output, to bind the proof to the transaction

output.

3.5 Transaction Creation
Our transactions should provide strong privacy and public verifia-

bility at the same time. Previous value-hiding transaction schemes

such as Confidential Transactions [34] and MimbleWimble [30]

(cf. Appendix A.6) are publicly verifiable for correctness, but have

the undesirable property that the payment recipient necessarily

sees the change outputs created by the payer. This means that, e.g.,

a merchant can link two independent sales if a client uses a change

output from a previous transaction with the same merchant.

We adopt the high-level transaction approach from [30], but

enhance our transaction processing for improved privacy. Similar

to [30, 34], our transactions are based on a group G in which the

discrete logarithm problem is hard, with generators д and h for

which the discrete logarithm to each others base is unknown. These

generators are used to represent transaction inputs and outputs as

homomorphic commitments to the associated value, thereby hiding

their values from other parties. The homomorphic commitments

have the property that one can easily add and subtract committed

values without opening the commitments, e.g. for two commitments



Alice

(Payer)

Bob

(Recipient)

Ledger

Verification

Mixing

Consensus

Validators

vT , r ′
Ex0
DLProof(Ex0)
Out1
RangeProof(Out1)
Regulation Proof(Out1)

Partial Transaction

In1
r∆
Ex0
DLProof(Ex0)
Out1
RangeProof(Out1)
Regulation Proof(Out1)
Out2
RangeProof(Out2)
Regulation Proof(Out2)C

o
m
p
l
e
t
e
T
r
a
n
s
a
c
t
i
o
n

Signed by Validators:
Hash(previous Block)

r∆ + r ′∆
Ex0 , DLProof(Ex0)
Ex1 , DLProof(Ex0)

Auxiliary Information:
In3 , In1 , In2
Out4 , RangeProof(Out4)
Out2 , RangeProof(Out2)
Out3 , RangeProof(Out3)
Out1 , RangeProof(Out1)

Block

C
o
n
fi
r
m
a
t
i
o
n

Figure 3: Transaction and block creation. In this example
transaction, Alice pays an amount vT to Bob. First, Bob cre-
ates a partial transaction that he sends to Alice, who com-
pletes it by adding her inputs, outputs and proofs. Alice then
sends the complete transaction over a secure connection to
a validator. The validators verify and mix the transactions
and reach consensus on a block that they then sign and pub-
lish as part of the ledger. The block in this example consists
of the two transactions shown in Figure 4.

дr1hv1
and дr2hv2

to the valuesv1 andv2, one can easily compute a

commitment to their sum v1 +v2 by multiplying the commitments:

дr1hv1 · дr2hv2 = дr1+r2hv1+v2
. If the blinding factors are chosen

carefully, this property can be used to check that the sum of the

input values of a transaction is equal to the sum of the output

values, and the knowledge of the blinding factors can be used to

authenticate and authorize payments [30]. We show in Appendix B

that the knowledge of the blinding factor of an output is a secure

method for payment authorization.

To prevent the above mentioned transaction tracking, we modify

the transaction creation such that the payer finalizes the trans-

action. To increase payment anonymity further, we also include

another output (r∆) that does not have a value attached. This ad-
ditional output is submitted to the validators as a scalar such that

multiple transactions can be merged. Inclusion of such additional

output makes it impossible to later match transaction inputs to

corresponding outputs.
1

1
Matching transaction inputs to outputs after reordering is in general already an

NP-complete problem (subset sum). However, most transactions will only have few

inputs and outputs, which can make linking feasible in practice without this additional

measure.

Our transaction creation protocol, that includes the regulation

proofs explained above, is shown in Figure 3. The protocol proceeds

as follows:

(i) The recipient, Bob, creates k value outputs Outi = дr
′
ihv

′
i

(1 ≤ i ≤ k), for the payment value vT =
∑k
i=1v

′
i . For

each of the value outputs, he also creates a range proof to

prove that the value is in a valid range (i.e., that no over-

flow occurs where money is created out of nothing). He

additionally attaches a regulation proof to each output as

described above in Section 3.4. He then creates an excess
output Ex0 = дr

′
0 that has no value attached, proves knowl-

edge of r ′
0
by proving knowledge of the discrete log of Ex0 to

base д (DLProof(Ex0)) and sends his outputs (including range
proofs, proof of knowledge of r ′

0
and regulation proofs), vT

and r ′ = r ′
0
+
∑k
i=1 r

′
i to Alice. The additional excess output

Ex0 is required to ensure that only Bob can spend his newly

created outputs. Otherwise Alice would know the sum of

the blinding factors of his outputs and could thus spend

them. An example for such a partial transaction is shown in

Figure 3, where Bob creates one value output (Out1).
(ii) If Alice agrees with the transaction valuevT , with her inputs

Ini = дrihvi (1 ≤ i ≤ n), s.t. v =
∑n
i=1vi and r =

∑n
i=1 ri ,

she createsm change outputs Outi = дr
′
ihv

′
i (k < i ≤ k +m),

s.t. v −
∑k+m
i=k+1v

′
i = vT and she creates range proofs and

regulation proofs for these outputs. She then computes a

delta output r∆ = r −
∑k+m
i=k+1 r

′
i − r ′ and combines all of her

inputs, Bob’s and her outputs (including all proofs) and r∆
into a complete transaction. Alice’ inputs are outputs of a

previous transaction that can be a money issuing transaction

as described in Section 3.9. In the example in Figure 3, Alice

uses one input (In1) and one change output (Out2) in the

transaction.

(iii) Finally, Alice sends the complete transaction to one or more

validators, as shown in Figure 3 encrypted under their public

keys. The number of validators depends on the used trans-

action validation strategy (see Section 5).

3.6 Transaction Verification
The validators work in rounds and verify every received transaction.

A transaction is correct, if

(i) all inputs are unspent outputs of previous transactions,

(ii) the range proofs for all outputs are correct,

(iii) the zero-knowledge proof for excess outputs is correct, and

(iv) the total amount of transaction inputs matches the outputs:

Πn
i=1Ini = д

r∆ · Ex0 · Πk+m
i=1 Outi

Two example transactions are shown in Figure 4a. For the transac-

tion fromAlice to Bob, the validators check if In1 = дr∆Ex0Out1Out2
and if the proof of knowledge of the discrete logarithm of Ex0
(DLProof(Ex0)), as well as the range proofs for Out1 and Out2 are
correct.

In addition to verifying the correctness of the transaction itself,

the validators verify the regulation proofs. First, the validators

verify the randomized certificate, i.e., they verify the signature on

the provided commitments and check if the range proof for IV is

correct. If the verification fails, the transaction is discarded.



Ex0 Out1 Out2 r∆ Ex1 Out3 Out4 r ′∆

In1 In2 In3

(a) A transaction from Alice to Bob (on the left) and a transaction from
Charlie to Dave (on the right). The transactions fulfill the conditions In1 =
дr∆Ex0Out1Out2 and In2In3 = д

r ′
∆Ex1Out3Out4, respectively.

r∆ + r ′∆ Ex0 Ex1 Out4 Out2 Out3 Out1

In1In3 In2

(b) The two transactions from above can be merged as shown here. The
merged transactions fulfills the condition Π3

i=1Ini = дr∆+r
′
∆Ex0Ex1Π4

i=1Outi
and is thus still a valid transaction. Since the order of inputs and outputs is
irrelevant for the validity condition, inputs and outputs can be reordered ar-
bitrarily.

Figure 4: Transaction combining. Shownabove are two trans-
actions before and after combining. The first transaction (on
the left) goes from Alice to Bob, the second transaction (on
the right) from Charlie to Dave. Outputs created by Alice
are marked , outputs created by Bob , outputs created by
Charlie and outputs created by Dave .

Otherwise, for anonymous transaction outputs, the validators

verify that PIDe has been computed correctly and that the proof is

bound to the associated output. If this check succeeds, they compute

the product of all outputs from epoch e that share the pseudorandom
identifier PIDe and check if the provided range proof holds for this

product. If this is the case, the total associated value is below the

allowed limit and the transaction can be included in the next block.

Otherwise, the transaction is discarded.

For non-anonymous transaction outputs, the validators verify

the corresponding regulation proof, i.e., that the public key of the

user has been encrypted correctly with the public encryption key

of the regulator and that this proof is bound to the associated trans-

action output. If these verifications are successful, the validators

include the transaction in the next block and forward the output and

the proof to the regulator, otherwise the transaction is discarded.

When the regulator receives transaction outputs with their cor-

responding proofs, he can decrypt the encrypted public key which

serves as identifier for the user. The regulator also checks the proofs

to ensure that the output was indeed created by the owner of the

corresponding public key. Since the regulator knows the real-world

identities associated with each public key, he can then take action

as required.

3.7 Mixing and Consensus
The validators collect a set of verified transactions and in the end of

the round mix them by using two merging properties of our trans-

actions. The first merging option is to combine two valid transac-

tions together which creates another valid transaction. Combining

several transactions into one large transaction breaks the direct

correlation between inputs and outputs in the original transactions.

The more transactions are combined in one round, the harder it

is for third parties to link inputs and outputs based on published,

combined transactions. An example for this process is shown in

Figure 4 where two transactions are combined into one and the

inputs and outputs are reordered. Since the order of inputs and

outputs is irrelevant for the correctness of a transaction, they can

be reordered arbitrarily. Additionally, by only publishing the sum

of the delta outputs instead of the individual values, deciding which

set of transaction outputs belong to which set of inputs becomes

impossible.

The second merging option is compacting. If an output of one

transaction appears as an input in another transaction, thematching

input-output pair can be simply be removed, resulting in a smaller

but still valid transaction. Compacting makes transaction linking

more difficult and improves storage efficiency. Once the validator

has verified and merged (mixed) all received transactions in the

current round, the remaining inputs and outputs can be simply

sorted as a list for publishing.

The validators need to achieve consensus over the content of

the next block depending on the assumed attacker model and used

block validation model. The validators run a Byzantine fault tol-

erant consensus protocol to protect against double spending. If

f < N /3 fully compromised validators are assumed (AM1), the
consensus protocol also needs to cover transaction verification.

The list of published inputs and outputs needs be signed by f + 1
validators. If secure trusted execution environments are assumed

(AM2), transactions only need to be verified by a single validator

and consensus is only required to ensure that no double-spending

has happened.

Validators can cache unspent transaction outputs from all pre-

vious blocks to speed up verification of new transactions (needed

for double-spending protection). After achieving consensus over

a block, validators can remove all inputs of the block from their

cached set and add all new outputs to it.

3.8 Block Structure
Each block consists of a first part signed by the validators and a

second part containing auxiliary information. The first signed part

contains the sum of all delta outputs, all excess outputs including

the zero-knowledge proofs of their exponents, and the hash of the

previous block. Additionally, if the block contains an issuance or

a deletion transaction, the signed part also contains the explicit

amounts of money that are added or removed. As auxiliary infor-

mation, the block contains a list of inputs and a list of outputs

including their range proofs.

An example block that consists of two transactions is shown

in Figure 3. The signed part of the block only contains the excess

outputs and the sum of the delta outputs of all transactions (Ex0, Ex1
and r∆ + r

′
∆ in the example). The transaction inputs and transaction



outputs with a value do not need to be included in the signed part,

but they still need to be published including the range proofs of

the outputs, so that other parties can verify the correctness of the

blockchain.

This block structure allows compression of the blockchain by

compacting transactions across blocks. Outputs of previous transac-

tions that are used as inputs in the new block can be removed from

storage without losing the ability to verify the complete chain. All

that is required for the verification is the set of unspent transaction

outputs, excess and delta outputs of all blocks, and the values of

issuance and deletion transactions. All of this combined can be in-

terpreted as one large transaction that, if valid, implies the validity

of the whole blockchain. This makes the storage required to verify

the full chain very small and slowly growing for third parties that

do not want to store all transactions. An example for this is shown

in Figure 5 (Appendix A).

3.9 Issuance and Deletion
Our currency provides an explicit mechanism for the issuer to

increase, or decrease, the amount of currency in circulation. This

can be done with a special transaction type that requires a signature

from the issuer.

Specifically, the issuer can publish an issuance transactionwith an
explicitly stated amount v . The issuer creates k transaction outputs

Outi = дr
′
ihv

′
i (1 ≤ i ≤ k), such that v =

∑k
i=1v

′
i , and which all

have a range proof attached. The issuer then additionally creates an

excess output Ex0 = дr
′
0 , s.t. r ′

0
+
∑k
i=1 r

′
i = 0 and proves knowledge

of r ′
0
. The transaction is valid, ifhv is equal to the sum of the outputs.

The outputs created by such an issuing transaction could, e.g., be

transferred to commercial banks who can then further distribute the

newly created money. The issued amountv is published in plaintext

to the next block with the issuance transaction. In Appendix 6 we

discuss the option of keeping the amount secret.

The issuer can also remove money in their possession from the

system by creating a special deletion transaction that destroys an

explicitly specified amountv of money. Inputs to the transaction are

n (previously unspent) transaction outputs Ini = дrihvi (1 ≤ i ≤ n).

As output the transaction has k change outputs Outi = дr
′
ihv

′
i

(1 ≤ i ≤ k), and an excess output Ex0 = дr
′
0 , s.t. r ′

0
+
∑k
i=1 r

′
i =∑n

i=1 ri and v +
∑k
i=0v

′
i =

∑n
i=1vi . The transaction is valid if

Πn
i=1Ini = h

v · Ex0 · Πk
i=1Outi

4 SECURITY ANALYSIS
In this section, we provide an informal security analysis of PRCash.

Payment authorization.Wefirst consider an attacker that tries

to spend an output belonging to another user without the knowl-

edge of the corresponding blinding factor. We show in Appendix B

that if an adversary capable of such an attack exists, our assump-

tions are violated, namely either the discrete logarithm problem

can be solved efficiently in the used group or the adversary knows

the discrete logarithm of h to base д, where д and h are the genera-

tors used for the commitments. The intuition behind this is that,

to create a valid transaction, the outputs require range proofs for

which knowledge of the blinding factor is needed and the outputs

have to be chosen such that their product is equal to that of the

inputs.

Double-spending protection. We first consider cases with

f < N /3 fully compromised validator (AM1). During each round,

each non-compromised validator discards transactions with previ-

ously used or otherwise invalid inputs (cf. Section 3.6), and then

all validators run a standard Byzantine fault tolerant consensus

protocol. As a result, all non-compromised validators agree on the

same set of transactions (i.e., the next block). Users consider the

next block confirmed when it has been signed by f + 1 validators.
Thus, compromised validators cannot produce a block that would

contain conflicting transactions and the required number of sig-

natures. When TEEs are considered secure (AM2), the consensus
protocol guarantees that all validators agree on the next block. A

block signed by the TEE of one validator cannot contain conflicting

transactions that allow double spending.

Creation of money. Only the issuer can create new money.

Creation of money using normal transactions is prevented as the

validators verify (i) the range proofs of all outputs for overflow

and (ii) that the sum of inputs values matches the sum of output

values, and only include compliant transactions in the next block.

Assuming f fully compromised validators, the consensus protocol

guarantees that each block (signed by f + 1 validators) contains
only compliant transactions.

Privacy towards third parties. Transaction values are com-

pletely hidden and can therefore not leak any information about

a transaction. Additionally, all transactions are mixed by the val-

idators (in TEEs), and since the delta outputs of all transactions

are summed up (cf. Section 3.5) and not published individually, it

becomes impossible for third parties examining the ledger to deter-

mine which outputs belong to which inputs, even for a merchant re-

ceiving a transaction. PRCash therefore provides k-anonymity [39]

against third parties, where k is the number of transactions in a

block. For example, even if an adversary knows that Alice payed

Bob in a transaction with output Out1 contained in a block with

500 transactions, he can only guess Alice’ input with probability of

at most
1

500
. If more privacy is desired, blocks can be made larger

and validators could even add dummy transactions (with a tradeoff

in efficiency).

Privacy between users. As the payer finalizes the transaction,
the recipient only sees his own outputs, i.e. he is in the same position

as the third party entity with partial information as described above.

The payer additionally sees output commitments from the recipient

which allows him to see when the output is spent. However, once

the output has been used, no more information is leaked to the user.

Privacy towards validators. Assuming secure trusted execu-

tion environments (AM2), a compromised validator OS can with-

hold messages from its TEE, which could be used for a Sybil attack

on the mixing of transactions. If the validator only forwards a sin-

gle real transaction to the TEE, he will be able to determine which

outputs belong to which inputs for that transaction.

Assuming f fully compromised validators (AM1), the adversary
can link transaction inputs and outputs for all transactions that the

compromised validator receives. In addition, the validator is able to

link multiple outputs from the same epoch if they share the same

pseudorandom ID. However, in both cases, the transaction value is

still hidden, no addresses are reused as no explicit adresses exist in

our system, and only a small amount of partial information about



the transaction graph is leaked to the adversary which makes it

unlikely that an analysis similar to deanonymization attacks on

Bitcoin (e.g. [6, 35]) would succeed, as the most powerful heuristics

for such attacks are tracing transactions by amounts and clustering

by addresses.

Regulation enforcement. The security of our regulation sys-

tem relies on the security of the underlying zero-knowledge proofs

and the pseudorandom function. The pseudorandom function (cf. Ap-

pendix A.1) is secure under the decisional Diffie-Hellman inversion

assumption (DDHI). The zero-knowledge proofs rely on the hard-

ness of the discrete logarithm problem (which is implied by DDHI)

and they are secure as non-interactive proofs in the random oracle

model using the Fiat-Shamir heuristic [27, 38].

To bypass regulation, Alice could send the blinding factor of

one of her outputs to Bob. This would allow Bob to spend that

output in the future and additionally Bob’s epoch specific receiving

count would stay unaffected. While this could be seen as a violation

against regulation, we do not consider it a practical attack, because

Bob has no guarantee that Alice will not use the same blinding factor

herself, and thus such direct transfer of blinding factor cannot be

used as a payment (at least not in most payment scenarios). A

payment of this form would be equivalent to Alice disclosing the

private key of one of her addresses to Bob for a payment in Bitcoin

to transfer all of the money in that address to Bob.

5 EVALUATION
We implemented a prototype of PRCash to evaluate its perfor-

mance. In this section, we describe our implementation, transaction

verification models, verification overhead, and overall performance

in terms of throughput and latency.

5.1 Implementation
We implemented a prototype that covers the generation and ver-

ification of transactions, including the regulation proofs. Our im-

plementation uses the randomizable signature from Pointcheval

and Sanders [37] for the generation of certificates. Other signatures

with efficient protocols, such as CL-Signatures [15, 16], could be

used as well. We use the RELIC toolkit [7] for the elliptic curve

and bilinear map operations. Our implementation makes use of the

256-bit elliptic curve BN-P256 as the base curve of a type-3 pairing

that we use for the randomizable signatures. Our range proofs use

commitments to digits in base 4 (cf. Appendix A.3) as this is in

practice the most efficient base for the size and computation of

bit-commitment based proofs. The size and computation required

for the proofs could be optimized by using bulletproofs from Bünz

et al. [11].

5.2 Verification Models
The throughput and latency of PRCash depends on the used trans-

action verification model that in turn is dependent on the assumed

attacker model. For our evaluation, we consider the following three

verification models, to give examples of performance under differ-

ent assumptions and requirements.

VM1: Full replication. In thismodel, all validators verify all trans-

actions, including the regulation proofs, and consensus is

needed on the validity of all transactions and proofs. This

Proof Type Time [s] Size [bytes]

ZKPoK of discrete log (DLProof) 0.00038 64

PIDProof (epoch range = 2
6
) 0.01067 1033

PIDProof (epoch range = 2
8
) 0.01235 1226

PIDProof (epoch range = 2
10
) 0.01404 1419

EncIDProof (epoch range = 2
6
) 0.01115 968

EncIDProof (epoch range = 2
8
) 0.01284 1161

EncIDProof (epoch range = 2
10
) 0.01452 1354

RangeProof (range = 2
8
) 0.00665 722

RangeProof (range = 2
16
) 0.01345 1544

RangeProof (range = 2
20
) 0.01678 1930

RangeProof (range = 2
32
) 0.02722 3088

Table 1: The average time for proof verification for different
proof types and their sizes.

model guarantees transaction correctness, double-spending

protection, and enforcement regulation at all times, given f
compromised validators (AM1).

VM2: Partitioned regulation, replicated verification. In thismodel,

all validators verify correctness of all transactions including

their range proofs, but excluding the regulation proofs. Ver-

ification of regulation proofs is instead partitioned evenly

among the validators. If one validator attests to the validity

of a regulation proof, it is accepted by the other validators.

If a validator gets compromised (AM1), users can transact

anonymously above the regulatory limit. This model may

be used, if validator compromise is considered unlikely and

temporary, and it is acceptable to lose the ability to enforce

regulation momentarily. Transaction correctness (i.e., no

new money is created and no double-spending occurs) is

guaranteed regardless of the compromise. This model may

also be suitable, if e.g. regulation is delegated to commercial

banks that act as validators and check the proofs for their

customers (cf. Section 6).

VM3: Full partitioning. In this model, only one validator TEE

verifies all proofs for each transaction. If one validator TEE

attests to the validity of a transaction and associated proofs,

it is accepted by the other validators. Full partitioning can be

used when validator TEEs are assumed to be secure (AM2).
Consensus is only required for the set of published transac-

tions (i.e., no conflicting transactions and double-spending).

5.3 Transaction Verification Overhead
Wemeasured the verification overhead (shown in Table 1), averaged

over 1000 runs on a single core of an Intel Core i7-4770 CPU, for

the following proof types:

ZKPoK of discrete log. This is a zero-knowledge proof of knowl-
edge (ZKPoK) of the discrete logarithm and is required to

verify that an excess output has no value attached.

PIDProof. This is the proof that the pseudo-random ID was con-

structed correctly, i.e., the user who created the proof is

in possession of a valid certificate on his key and that the

PID was derived correctly from this key. Depending on the

number of epochs for which the signature is valid, the com-

putation time differs, due to the included range proof. In



Table 1, the measurements for epoch ranges between 2
6
and

2
10

are shown.

EncIDProof. This is the proof that the user who created the proof
is in possession of a valid certificate on his key and that

his corresponding public key was correctly encrypted with

the public key of the regulator. Again, the verification time

differs depending on the number of epochs for which the

certificate is valid.

RangeProof. The range proof by itself is used to show that an out-

put is in the correct range, which is necessary to show that

no overflow occurs, and to prove that the sum of anonymous

outputs with the same PID are below the allowed threshold.

The size of the range proof and its verification time depend

on the size of the range. For example, with a granularity of

cents, a range of 2
32

would allow transaction outputs of up

to 43 million dollars.

Most commonly, transactions will have one value-transferring out-

put, one change output, one or more inputs, plus an excess and a

delta output. Since inputs do not require range proofs, and the time

required to compute the commitment to the sum of their values is

negligible compared to the proof verification time, we can estimate

the time required to validate a standard transaction independently

of the number of inputs.

In the case of a transaction with two anonymous outputs (dif-

ferent PIDs each), a full verification of the transaction requires

verifying one ZKPoK of a discrete logarithm, two PID proofs, and

four range proofs (one for each individual output and one per PID).

Since the maximum amount for anonymous transactions is lim-

ited, one can use a smaller range proof than for non-anonymous

transactions. For example, the US requires reporting for transac-

tions above $10,000 [1]. An equivalent regulatory rule with a gran-

ularity of cents would approximately correspond to a range of 2
20
.

Assuming a certificate validity of 2
10

epochs, this leads to a total

verification time of 0.096 seconds.

For transactions with non-anonymous outputs, we can allow a

much larger range (e.g., 2
32
), since in this case the goal is not to

limit transaction size but to prevent overflows. Such a transaction

requires two range proofs, giving, in the same setting as before, a

verification time of 0.084 seconds. Combinations, where one output

is anonymous and one is not, are, of course, also possible.

Given this transaction verification overhead, within one second,

roughly ten transactions can be fully verified on a single core. From

this value we can in turn estimate the required computing resources

to handle the expected transaction load (e.g., 1000 transactions per

second).

In verification modelVM1, each validator checks all transactions
and proofs. To verify 1000 tps, each validator would require ap-

proximately 25 quad-core servers. In VM2, transactions and range

proofs are verified by all validators to protect against overflows

in outputs, but verification of regulation proofs can be partitioned

across the validators. Assuming 16 validators, each of them would

require 15 quad-core servers to process 1000 tps. In VM3, the load
for verification can be fully spread across the validators. With 16

validators each of them would require two quad-core servers to

verify 1000 tps.

# Validators Batch Latency VM1 VM2 VM3

4 (1 region) 6.2MB 0.288s 2000 tx/s 3400 tx/s 72000 tx/s

8 1.6MB 0.58s 250 tx/s 420 tx/s 8800 tx/s

8 6.2MB 1.48s 390 tx/s 670 tx/s 14000 tx/s

16 1.6MB 0.69s 210 tx/s 360 tx/s 7500 tx/s

16 3.1MB 1.04s 280 tx/s 480 tx/s 10000 tx/s

32 0.4MB 0.48s 80 tx/s 130 tx/s 2700 tx/s

32 1.6MB 0.925s 160 tx/s 270 tx/s 5600 tx/s

64 0.4MB 0.824s 40 tx/s 70 tx/s 1500 tx/s

64 1.6MB 1.79s 80 tx/s 140 tx/s 2900 tx/s

Table 2: The latency given the number of validators and
batch size (from [22]). Estimated values for the throughput
given the verification model.

5.4 Consensus Performance and Liveness
The validators also need to run a consensus protocol to agree on the

set of transactions that are published to the ledger. We use the mea-

surements from Croman et al. [22] to estimate the performance of

a standard consensus protocol (PBFT [18]). As their measurements

become bandwidth bound with larger batches, we can use their

numbers for latency and throughput to estimate the throughput in

our system if the batch size in bytes remains the same.

The sizes of our proofs are summarized in Table 1. Note that the

transaction outputs can be reconstructed from their range proofs,

i.e., the size for range proofs includes the transaction output. Since

a normal transaction, consisting of multiple inputs and two out-

puts with an attached value, has a size of approximately 10.8kB

(anonymous outputs) or 9.0kB (non-anonymous outputs) including

all proofs, and the numbers from [22] use 190 byte transactions, the

throughput in terms of transactions per second (tx/s) has to be ad-

justed conservatively by a factor of 0.018 if we require consensus on

all proofs (VM1). In a deployment where no consensus on the valid-

ity of the regulation proofs is required (VM2), the transaction size

reduces to approx. 4.0kB (anonymous) or 6.3kB (non-anonymous),

i.e., we conservatively adjust by a factor of 0.030. In verification

model VM3, the verification of all proofs is partitioned and consen-

sus is only required to protect against double spending and not on

the validity of transactions. The resulting size for the consensus rel-

evant part of a standard transaction (two inputs, two outputs with

attached value, and an unspendable output and the zero-knowledge

proof of its discrete logarithm) is 229 bytes. Since some transactions

can be larger, we assume an average size of 300 bytes which would

correspond to a scaling factor of 0.63.

The achieved values for throughput and latency for the three

verification models are shown in Table 2. For example, with 16

validators and a batch size of 3.1MB, the latency of consensus is

1.04s and the throughput ranges from 10,000 tps (VM3) to 280 tps

(VM1). Note that the measurements on which our estimations are

based, were conducted with nodes that were globally distributed in

8 regions (except for the 4 node experiment). Croman et al. [22] used

t2.medium Amazon EC2 instances which have limited bandwidth. If

the validators are geographically close and have a higher bandwidth

or dedicated lines between them (which would be reasonable for

a digital fiat currency), the throughput could be increased and the

latency could be reduced further.



Liveness in our system is provided by the underlying consen-

sus protocol. In the case of PBFT [18] or similar BFT protocols,

this requires that less than 1/3 of the validator nodes are faulty

(crash or behave arbitrarily). It can be easily seen for VM1 that

this requirement ensures liveness, but might not be obvious for

VM2/3. In VM2/3, if the verification of transaction outputs and

proofs are partitioned among the validators based on some fixed

property (e.g., associated PID), interrupting the communication of

one validator could remove liveness for the transaction outputs

assigned to that validator. However, the partitioning can instead

be done arbitrarily (e.g. a user chooses a validator at random) and

any validator can verify any transaction outputs and associated

proofs. For that, it is only required that a validator informs all other

validators of the PID associated with an anonymous output that

he has verified. This allows other validators to verify range proofs

for that same PID later in the epoch. It follows that VM2/3 offer

the same liveness guarantees as VM1. Since all validator TEEs are
trusted in VM3, faults can no longer be completely arbitrary. Thus,

optimized protocols (e.g., FastBFT [31]) could be used to further

increase throughput, decrease latency, or to scale to a larger number

of validators.

6 DISCUSSION
Regulation limits. PRCash controls the total amount of money

that a user can receive anonymously. All anonymous transaction

outputs, including change outputs, count towards this limit. Change

outputs must be counted, because they are not distinguishable from

value transferring outputs. While new techniques might allow mak-

ing such a distinction, keeping this indistinguishability can be also

explicitly desired: If change outputs and other outputs can be dis-

tinguished, analyzing the transaction graph becomes significantly

easier. Research on Bitcoin shows that tracing change outputs is

one of the most powerful heuristics for deanonymization [6, 35].

We argue that in most deployments, the regulation limit would

be much higher than the typical (anonymous) transaction volume

of users (e.g., $10,000 per month) and they would not be adversely

affected by the inclusion of (small) change inputs. The issue can also

be mitigated by using smaller transaction outputs and, if necessary,

splitting up large outputs into smaller ones using non-anonymous

transaction. Nevertheless, it remains an interesting open question

for future research whether this issue can be solved elegantly with-

out sacrificing privacy by making change outputs distinguishable.

If desired, the regulation limit can alternatively be put on spend-
ing. To limit spending, instead of creating regulation proofs for the

outputs, the payer has to create regulation proofs for the inputs of

a transaction.Systems that limit both spending and receiving are

also possible. In such a case, each user would require one key pair

for spending transactions, another for receiving transactions and

two corresponding certificates.

Regulation enforcement. In the traditional banking system it

is usually the responsibility of commercial banks to report high

value transaction. For our system, this would mean that instead

of having one regulator, we could delegate this role to multiple

commercial banks, where each bank would be responsible for the

regulation for their customers. In such a system, a user would re-

ceive a certificate from his bank when, e.g., opening a bank account.

The commercial banks could operate as validators and each bank

would check the regulation proofs that use a certificate signed by

them. Such a deployment would be fitting for partitioned regulation

(VM2/3), where each bank, also acting as validator, is responsible

for checking the regulation proofs of a subset of transaction outputs.

Issuance. Instead of having a central bank issue new currency, a

digital currency, that is still subject to regulatory legislation, could

also be issued by a private company or a consortium. In such a

scenario, the importance of issuance transparency is increased, as

(i) private entities may not be as cautious in their monetary policy

and (ii) the trust in private entities may be lower than the trust in

a central bank. Excessive issuance can have drastic consequences

such as hyperinflation [9] that can even lead to the collapse of the

currency.

The issuance of new currency could be the responsibility of a

single entity, or of a consortium, or could be predefined similar to

systems such as Bitcoin [36]. Alternatively, instead of just providing

issuance transparency, issuance control could be delegated to the

users of the system which poses interesting open questions of how

to realize distributed issuance control on a technical level.

Secrecy of issuance could be a desirable feature, e.g. because

a central bank does not want to publicly release fine-grained is-

suance information, but rather periodic summaries. In such cases,

the explicit issuance values could simply be removed (and privately

shared with banks that distributed the money further). The cen-

tral bank could still prove later the amount they issued, e.g., when

releasing a yearly report.

7 RELATEDWORK
In this section we compare PRCash to payments in the current

monetary system and to previous digital currency systems. Table 3

summarizes our comparison.

Current monetary system. The current monetary systems en-

able two types of payments. The first is cash that provides good

privacy and makes large payments that bypass regulatory over-

sight difficult (although not impossible). The second type is digital

payments that transfer money with the help of a trusted authority,

e.g., credit card payments, bank transfers, as well as systems like

PayPal [5], Apple Pay [2], and Google Wallet [3]. Such payments

provide no privacy, as all transaction details can be seen by the

trusted authority. As shown in Table 3, PRCash provides the com-

bined benefits of cash and digital payments, with added issuance

transparency.

Coin-based systems. Chaum’s original e-cash system [19] uses

a centralized bank and anonymous coins and provides payer anonymity,

but, as received money needs to be deposited immediately to pre-

vent double spending, it cannot hide payment values or ensure

recipient anonymity. Payments are also expensive in the sense

that payments of large amounts of money require the transfer and

processing of many coins.

Various improvements to Chaum’s design have been proposed.

Schemes such as [13, 14, 20] allow offline payments, where pay-

ment recipients can deposit coins later, allowing several payments

to be mixed together, which hides transaction values from the bank

(to certain extent). This has the drawback that it only guarantees



Privacy Functionality Performance Security

P
a
y
e
r

A
n
o
n
y
m
i
t
y

R
e
c
i
p
i
e
n
t

A
n
o
n
y
m
i
t
y

V
a
l
u
e

H
i
d
i
n
g

R
e
g
u
l
a
t
o
r
y

C
o
n
t
r
o
l

I
s
s
u
a
n
c
e

T
r
a
n
s
p
a
r
e
n
c
y

T
r
a
n
s
a
c
t
i
o
n

V
e
r
i
fi
a
b
i
l
i
t
y

T
r
a
n
s
f
e
r
a
b
l
e

C
o
n
s
t
a
n
t

O
v
e
r
h
e
a
d

P
a
y
m
e
n
t
s

D
o
u
b
l
e
-

S
p
e
n
d
i
n
g

P
r
e
v
e
n
t
i
o
n

Current monetary system Cash    G# - -    
Digital payments (credit card, PayPal) - - -  - - G#   

Coin-based systems Traditional e-cash (Chaum [19])  - -  - - - -  
(with trusted authority) Offline e-cash (Chaum et al. [20])  - G# G# - - - - G#

Regulated e-cash (Camenisch et al. [14])  - G#  - - - - G#
Regulated e-cash (online variant of [14])  - -  - - - -  
Transferable e-cash (Balmitsi et al. [8])    - - -  - G#

Transaction-based systems Pseudonymous (Bitcoin [36]) G# G# - -      
(with distributed ledger) Pseudonymous Transactions (RSCoin [23]) G# G# - -      

Plaintext IDs (Hyperledger [4]) - - -       
Value-hiding (Confidential Txs. [34]) G# G#  -      
Value-hiding (MimbleWimble [30]) G#   -      
Fully anonymous (ZeroCash [40])    -      

PRCash          

Table 3: Comparison of payments in the current monetary system and proposed digital currencies ( = provided property,
G# = partially provided property, - = not provided property).

double-spending detection in contrast to double-spending preven-

tion.

The variant that is closest to ours, is a regulated e-cash scheme

by Camenisch et al. [14]. This design allows a trusted authority

to control the total amount of anonymously spent money. We use

similar zero-knowledge proof techniques for PRCash. However, in
their scheme, it suffices to limit the number of transactions, since the

system is coin-based, i.e., the number of spent coins is equal to the

amount. In our solution, we also need to take into account the values

of the transactions, while keeping them secret. In a coin-based

scheme, the size of the transaction and the computation required

to verify the proofs grows with the transaction value. Additionally,

such a system cannot provide recipient anonymity. Partial value

secrecy is possible when offline payments are allowed, but this

option ensures only double-spending detection (no prevention). In

comparison, PRCash provides better privacy, constant payment

overhead, and more transparency.

Transferable e-cash schemes [8] can provide anonymity to both

the payer and the recipient, and also hides transaction values, since

the coins do not need to be deposited immediately. However, such

schemes only detect but do not prevent double-spending, and lack

regulatory control and transparency.

As shown in Table 3, none of the e-cash schemes provides strong

privacy and regulation at the same time, in contrast to PRCash.
Additionally, PRCash provides better transparency and payment

efficiency compared to all e-cash schemes. While compact e-cash

schemes like [13] improve the efficiency of withdrawing and stor-

ing coins, all coin based schemes still require spending each coin

individually and thus the size of the payment and verification time

grows with the payment amount.

Transaction-based systems. Bitcoin [36] uses a consensus

mechanism based on mining incentives, which removes the ne-

cessity for a central authority and makes the digital money trans-

ferable by representing it as transactions on a public ledger. While

Bitcoin is a permissionless design (i.e. anyone can participate in the

consensus protocol), permissioned blockchain deployments (with

a pre-defined set of validators) are also possible. In either model,

transactions can be represented in different ways.

Transactions in Bitcoin, and related cryptocurrencies, are pseudony-

mous which provides limited privacy as transaction amounts are

publicly visible and many transactions can be deanonymized [6, 35].

Additionally, usage of pseudonyms does not allow regulation, as

any user can create an unlimited number of identities for receiving

and spending money. In fact, avoiding any oversight by authorities

is a desired feature in currencies like Bitcoin.

Blockchain transactions can also be based on real identities.

Hyperledger [4] provides frameworks for permissioned blockchains,

where the trusted authorities that maintain the ledger could verify

the identity of each user and encode this to each transaction. Such

systems support easy regulation, but provide no privacy.

Similar to our paper, RSCoin [23] explores the idea of a centrally

issued cryptocurrency, although with a different goal. While we

focus on privacy and regulation, RSCoin focuses on the scalability

of the consensus.

Recently proposed value-hiding blockchain transactions pro-

vide improved privacy guarantees, but no regulation. Confidential

transactions [34] make transaction values private, but do not effi-

ciently protect payer or recipient anonymity. MimbleWimble [30]

provides recipient anonymity, but lacks strong payer anonymity.

ZeroCash [40] provides the strongest level of anonymity, i.e., value,

payer and recipient are completely hidden. However, while veri-

fication is efficient, creating an anonymous transaction requires

minutes of computation which makes it impractical for cash-like

payments, where transaction should be finalized within seconds.

In summary, none of the transaction-based systems provides

simultaneously similar privacy and regulation properties as PRCash
(see Table 3).



8 CONCLUSION
Despite more than three decades of research on digital currencies,

their adoption as fiat money issued by a central bank has not be-

come a reality. While the reasons for this may be numerous, and

not always purely technical, a major obstacle for the adoption of

previous solutions has been missing features, such as controlled

issuance, regulation, privacy and transparency. In this paper, we

have presented PRCash, a novel digital currency that enables all

of these features at the same time, and also provides the required

performance to make replacement of cash with a digital currency

practical. We believe that the new currency, and the new techniques,

put forth in this paper can be a significant step towards the adoption

of digital currencies as legal tender.

REFERENCES
[1] [n. d.]. 31 CFR 1010.330 - Reports relating to currency in excess of $10,000

received in a trade or business. https://www.law.cornell.edu/cfr/text/31/1010.330.

([n. d.]).

[2] [n. d.]. Apple Pay. ([n. d.]). https://www.apple.com/apple-pay.

[3] [n. d.]. Google Wallet. ([n. d.]). https://www.google.com/wallet.

[4] [n. d.]. Hyperledger. ([n. d.]). https://www.hyperledger.org.

[5] [n. d.]. PayPal. ([n. d.]). https://www.paypal.com.

[6] Elli Androulaki, Ghassan O. Karame, Marc Roeschlin, Tobias Scherer, and Srdjan

Capkun. 2013. Evaluating User Privacy in Bitcoin. In Financial Cryptography
and Data Security: 17th International Conference, FC 2013, Okinawa, Japan, April
1-5, 2013, Revised Selected Papers. Springer Berlin Heidelberg, Berlin, Heidelberg,

34–51. https://doi.org/10.1007/978-3-642-39884-1_4

[7] D. F. Aranha and C. P. L. Gouvêa. [n. d.]. RELIC is an Efficient LIbrary for

Cryptography. https://github.com/relic-toolkit/relic. ([n. d.]).

[8] Foteini Baldimtsi, Melissa Chase, Georg Fuchsbauer, and Markulf Kohlweiss.

2015. Anonymous Transferable E-Cash.. In Public Key Cryptography. 101–124.
[9] Peter Bernholz. 2003. Monetary Regimes and Inflation.
[10] Fabrice Boudot. 2000. Efficient proofs that a committed number lies in an interval.

In Advances in Cryptology—EUROCRYPT 2000. Springer, 431–444.
[11] Benedikt Bünz, Jonathan Bootle, Dan Boneh, Andrew Poelstra, Pieter Wuille,

and Greg Maxwell. 2017. Bulletproofs: Efficient range proofs for confidential
transactions. Technical Report. Cryptology ePrint Archive, Report 2017/1066,

2017. https://eprint. iacr. org/2017/1066.

[12] Jan Camenisch, Rafik Chaabouni, et al. 2008. Efficient protocols for set member-

ship and range proofs. In International Conference on the Theory and Application
of Cryptology and Information Security. Springer, 234–252.

[13] Jan Camenisch, Susan Hohenberger, and Anna Lysyanskaya. 2005. Compact

E-Cash. In Advances in Cryptology - EUROCRYPT 2005, 24th Annual Interna-
tional Conference on the Theory and Applications of Cryptographic Techniques,
Aarhus, Denmark, May 22-26, 2005, Proceedings (Lecture Notes in Computer Science),
Vol. 3494. Springer, 302–321. https://doi.org/10.1007/11426639_18

[14] Jan Camenisch, Susan Hohenberger, and Anna Lysyanskaya. 2006. Balancing

accountability and privacy using e-cash. In International Conference on Security
and Cryptography for Networks. Springer, 141–155.

[15] Jan Camenisch and Anna Lysyanskaya. 2003. A Signature Scheme with Efficient
Protocols. Springer Berlin Heidelberg, Berlin, Heidelberg, 268–289. https://doi.

org/10.1007/3-540-36413-7_20

[16] Jan Camenisch and Anna Lysyanskaya. 2004. Signature Schemes and Anonymous
Credentials from Bilinear Maps. Springer Berlin Heidelberg, Berlin, Heidelberg,

56–72. https://doi.org/10.1007/978-3-540-28628-8_4

[17] Jan Camenisch and Markus Stadler. 1997. Efficient group signature schemes for
large groups. Springer Berlin Heidelberg, Berlin, Heidelberg, 410–424. https:

//doi.org/10.1007/BFb0052252

[18] Miguel Castro and Barbara Liskov. 1999. Practical Byzantine Fault Tolerance.

In Proceedings of the Third Symposium on Operating Systems Design and Im-
plementation (OSDI ’99). USENIX Association, Berkeley, CA, USA, 173–186.

http://dl.acm.org/citation.cfm?id=296806.296824

[19] David Chaum. 1983. Blind Signatures for Untraceable Payments. In Advances in
Cryptology: Proceedings of Crypto 82. Springer US, Boston, MA, 199–203. https:

//doi.org/10.1007/978-1-4757-0602-4_18

[20] D. Chaum, A. Fiat, and M. Naor. 1990. Untraceable Electronic Cash. In Proceedings
on Advances in Cryptology (CRYPTO ’88). Springer-Verlag New York, Inc., New

York, NY, USA, 319–327. http://dl.acm.org/citation.cfm?id=88314.88969

[21] Victor Costan and Srinivas Devadas. 2016. Intel SGX explained. Technical Report.
Cryptology ePrint Archive, Report 2016/086.

[22] Kyle Croman, Christian Decker, Ittay Eyal, Adem Efe Gencer, Ari Juels, Ahmed

Kosba, Andrew Miller, Prateek Saxena, Elaine Shi, Emin Gün Sirer, et al. 2016.

On scaling decentralized blockchains. In International Conference on Financial
Cryptography and Data Security. Springer, 106–125.

[23] George Danezis and Sarah Meiklejohn. 2016. Centrally Banked Cryptocurrencies.

In 23nd Annual Network and Distributed System Security Symposium, NDSS 2016,
San Diego, California, USA, February 21-24, 2016. http://www.internetsociety.org/

sites/default/files/blogs-media/centrally-banked-cryptocurrencies.pdf

[24] Yevgeniy Dodis and Aleksandr Yampolskiy. 2005. A Verifiable Random Function
with Short Proofs and Keys. Springer Berlin Heidelberg, Berlin, Heidelberg, 416–

431. https://doi.org/10.1007/978-3-540-30580-4_28

[25] T. Elgamal. 1985. A public key cryptosystem and a signature scheme based on

discrete logarithms. IEEE Transactions on Information Theory 31, 4 (Jul 1985),

469–472. https://doi.org/10.1109/TIT.1985.1057074

[26] Uriel Feige, Amos Fiat, and Adi Shamir. 1988. Zero-knowledge proofs of identity.

Journal of cryptology 1, 2 (1988), 77–94.

[27] Amos Fiat and Adi Shamir. 1987. How To Prove Yourself: Practical Solutions
to Identification and Signature Problems. Springer Berlin Heidelberg, Berlin,

Heidelberg, 186–194. https://doi.org/10.1007/3-540-47721-7_12

[28] Intel. [n. d.]. Intel Software Guard Extensions. ([n. d.]). https://software.intel.

com/en-us/sgx.

[29] Intel. 2016. Software Guard Extensions Tutorial Series.

(2016). Available at: https://software.intel.com/en-us/articles/

introducing-the-intel-software-guard-extensions-tutorial-series.

[30] Tom Elvis Jedusor. [n. d.]. Mimblewimble. http://mimblewimble.org/

mimblewimble.txt. ([n. d.]).

[31] Jian Liu, Wenting Li, Ghassan O Karame, and N Asokan. 2016. Scalable Byzantine

Consensus via Hardware-assisted Secret Sharing. arXiv preprint arXiv:1612.04997
(2016).

[32] Wenbo Mao. 1998. Guaranteed correct sharing of integer factorization with

off-line shareholders. In Public Key Cryptography. Springer, 60–71.
[33] Ueli M Maurer. 2009. Unifying Zero-Knowledge Proofs of Knowledge.

AFRICACRYPT 9 (2009), 272–286.

[34] Gregory Maxwell. 2015. Confidential Transactions. https://people.xiph.org/

~greg/confidential_values.txt. (2015).

[35] Sarah Meiklejohn, Marjori Pomarole, Grant Jordan, Kirill Levchenko, Damon

McCoy, Geoffrey M Voelker, and Stefan Savage. 2013. A fistful of bitcoins:

characterizing payments among men with no names. In Proceedings of the 2013
conference on Internet measurement conference. ACM, 127–140.

[36] Satoshi Nakamoto. 2008. Bitcoin: A peer-to-peer electronic cash system. (2008).

[37] David Pointcheval and Olivier Sanders. 2016. Short randomizable signatures. In

Cryptographers’ Track at the RSA Conference. Springer, 111–126.
[38] David Pointcheval and Jacques Stern. 1996. Security proofs for signature schemes.

In Eurocrypt, Vol. 96. Springer, 387–398.
[39] Pierangela Samarati and Latanya Sweeney. 1998. Protecting privacy when dis-

closing information: k-anonymity and its enforcement through generalization and
suppression. Technical Report. Technical report, SRI International.

[40] Eli Ben Sasson, Alessandro Chiesa, Christina Garman, Matthew Green, Ian Miers,

Eran Tromer, and Madars Virza. 2014. Zerocash: Decentralized anonymous

payments from bitcoin. In Security and Privacy (SP), 2014 IEEE Symposium on.
IEEE, 459–474.

[41] C. P. Schnorr. 1991. Efficient signature generation by smart cards. Journal of
Cryptology 4, 3 (1991), 161–174. https://doi.org/10.1007/BF00196725

[42] Tim Sullivan. 2015. Transparency, Trust, and Bitcoin. Harvard Business Review
(June 2015).

A BACKGROUND
In this appendix, we provide background information on the cryp-

tographic primitives that we use as building blocks for our currency.

We also summarize Intel’s SGX architecture [28].

A.1 Dodis-Yampolskiy Pseudorandom
Functions

Dodis and Yampolskiy introduced a pseudorandom function [24]

which, for a secret key sk and a generator д of a groupG is defined

as

fsk (x) = д
1/(x+sk )

(1)

This construction is secure if the Decisional Diffie-Hellman In-

version assumption holds in group G.

https://www.law.cornell.edu/cfr/text/31/1010.330
https://www.apple.com/apple-pay
https://www.google.com/wallet
https://www.hyperledger.org
https://www.paypal.com
https://doi.org/10.1007/978-3-642-39884-1_4
https://github.com/relic-toolkit/relic
https://doi.org/10.1007/11426639_18
https://doi.org/10.1007/3-540-36413-7_20
https://doi.org/10.1007/3-540-36413-7_20
https://doi.org/10.1007/978-3-540-28628-8_4
https://doi.org/10.1007/BFb0052252
https://doi.org/10.1007/BFb0052252
http://dl.acm.org/citation.cfm?id=296806.296824
https://doi.org/10.1007/978-1-4757-0602-4_18
https://doi.org/10.1007/978-1-4757-0602-4_18
http://dl.acm.org/citation.cfm?id=88314.88969
http://www.internetsociety.org/sites/default/files/blogs-media/centrally-banked-cryptocurrencies.pdf
http://www.internetsociety.org/sites/default/files/blogs-media/centrally-banked-cryptocurrencies.pdf
https://doi.org/10.1007/978-3-540-30580-4_28
https://doi.org/10.1109/TIT.1985.1057074
https://doi.org/10.1007/3-540-47721-7_12
https://software.intel.com/en-us/sgx
https://software.intel.com/en-us/sgx
https://software.intel.com/en-us/articles/introducing-the-intel-software-guard-extensions-tutorial-series
https://software.intel.com/en-us/articles/introducing-the-intel-software-guard-extensions-tutorial-series
http://mimblewimble.org/mimblewimble.txt
http://mimblewimble.org/mimblewimble.txt
https://people.xiph.org/~greg/confidential_values.txt
https://people.xiph.org/~greg/confidential_values.txt
https://doi.org/10.1007/BF00196725


A.2 Zero-Knowledge Proofs of Knowledge
A zero-knowledge proof of knowledge (ZKPOK) [26] allows one

party (the prover) to prove to another party (the verifier) that a

certain statement is true, without revealing any other information.

Well-known techniques for proving knowledge of a discrete loga-

rithm in zero-knowledge exist, such as [33, 41]. We use the notation

introduced in [17] for proofs of knowledge. For example

PK{(α , β) : x = дα
1
hβ ∧ y = дα

2
} (2)

is a zero-knowledge proof of integers α and β , s.t. x = дα
1
hβ and

y = дα
2
where д1,h,x are elements of a group G1 = ⟨д1⟩ = ⟨h⟩ and

д2,y are elements of a groupG2 = ⟨д2⟩. In this notation, the values

of which knowledge is proven are denoted by greek letters and

all other values are known to the verifier. Using the Fiat-Shamir

heuristic [27], such proofs can be converted to non-interactive

proofs of knowledge.

A.3 Range Proofs
A range proof [10, 12] is a specific type of zero knowledge proof

that allows to prove to a verifier that a committed value lies within

a given range. A simple range proof can consist of proving that the

committed value is one of the values in the interval, e.g., to prove

that a commitment C is a commitment дrhx where x ∈ [0, 7] and r
is a random blinding factor, one can prove this with the following

proof of knowledge:

PK{(α) : C = дα ∨C · h−1 = дα

∨C · h−2 = дα ∨ · · · ∨C · h−7 = дα }

Clearly, this becomes inefficient with larger ranges. Instead one

can decompose the value into multiple commitments to the powers

of two (bit commitments), for example, such that the product of

these commitments is equal to the original commitment. It then

suffices to prove for every commitment that it either commits to

zero or the correct power of two [32]. The proof above then be-

comes the following proof by splitting the commitment into three

commitments C0,C1,C2:

PK{(α , β ,γ ) :(C0 = д
α ∨C0 · h

−1 = дα )

∧(C1 = д
β ∨C1 · h

−2 = дβ )

∧(C2 = д
γ ∨C2 · h

−4 = дγ )}

This approach can be generalized to proofs in any base [12].

A.4 Randomizable Signatures
A randomizable signature scheme provides the ability to prove

the possession of a signature on committed values. The signature

schemes by Camenisch and Lysyanskaya [15, 16] or the scheme by

Pointcheval and Sanders [37] allow to obtain a signature on a list of

committed values without disclosing the values to the signer. The

recipient of the signature can then prove efficiently that he is in

possession of a signature on these values using fresh commitments

on the same values.

A.5 Elgamal Encryption
Elgamal encryption [25] is an encryption scheme based on the dif-

ficulty of the discrete logarithm and thus compatible with standard

techniques for zero-knowledge proofs. Elgamal encryption is secure

in a group G if the Decisional Diffie-Hellman assumption holds

in that group. To encrypt a message m ∈ G with the public key

pk ∈ G, a value r is chosen at random and the ciphertext is then

computed as (дr ,m · pkr ). The recipient of a ciphertext (c1, c2) can
then decrypt the message using the secret key sk (corresponding

to the public key pk) asm = c2 · (c
sk
1
)−1.

A.6 Confidential Transactions and
MimbleWimble

In a transaction-based digital currency, Confidential Transactions [34]

represent the transaction input and output values as homomorphic

commitments. As the commitments are homomorphic, one can

choose the blinding factors for the outputs such that the sum of the

input commitments is equal to the sum of the output commitments,

if the sum of the input values is equal to the sum of the output val-

ues. This allows verifying the correctness of a transaction without

knowledge of the transferred values.

MimbleWimble [30] uses the same approch, but adds an addi-

tional non-spendable output to which no value is attached. This

allows the recipient of a transaction to create output commitments

without the payer knowing the blinding factor, i.e., the blinding fac-

tor of the commitment is only known to the recipient of a payment,

and can thus be used to authenticate a following payment.

MimbleWimble has the property that the blockchain can be easily

compressed. Our solution inherits this property from MimbleWim-

ble. The signed part of each block contains a hash of the previous

block, all excess outputs of the block, and the sum of the delta out-

puts. The auxiliary part of the block contains all transaction inputs

and all transaction outputs. Outputs of previous transactions that

are used as inputs in the new block can be removed from the set of

unspent transaction outputs (UTXOs) while new outputs are added.

All spent outputs and inputs can be completely removed from stor-

age once the UTXO set has been updated. Using the UTXOs, excess

and delta outputs of all blocks, and the values of issuance and

deletion transactions, the full chain can still be verified. All of this

combined can be interpreted as one large transaction that, if valid,

implies the validity of the whole blockchain. An example for how

this compression works in PRCash is shown in Figure 5.

A.7 Intel SGX
Intel’s Software Guard Extension (SGX) [28] is a set of CPU instruc-

tions for creating and managing isolated software components,

called enclaves. Enclaves are isolated from all software running on

the system, including privileged OS. Enclave data is handled in

plain-text only inside the CPU (i.e., in caches and registers) and

when moved out of the CPU, e.g., into the memory (DRAM), en-

crypted and integrity protected.

The OS, although untrusted, is responsible for creating and man-

aging enclaves. However, all initialization actions of the OS are

recorded securely by SGX inside the CPU. The initialization process

creates a measurement that captures the enclave’s code configura-
tion and can be used for later verification by an external party using

remote attestation. The sealing capability of SGX enables persistent

secure storage of enclave data such that the data is only available



A B

C D

E F

G H

UTXOs

Signed:
Hash(Bk−1)
r∆,k
Ex0 , Ex1

Auxiliary:
Inputs:

D, A, F

Outputs:

I, J

Bk

Signed:
Hash(Bk )
r∆,k+1
Ex2

Auxiliary:
Inputs:

I, B

Outputs:

K, L

Bk+1

Signed:
Hash(Bk+1)
r∆,k+2
Ex3 ,Ex4 ,Ex5

Auxiliary:
Inputs:

J, C, H

Outputs:

M, N, O

Bk+2

Signed:
Hash(Bk−1)
r∆,k
Ex0 , Ex1

Bk

Signed:
Hash(Bk )
r∆,k+1
Ex2

Bk+1

Signed:
Hash(Bk+1)
r∆,k+2
Ex3 ,Ex4 ,Ex5

Bk+2 E G

K L

M N

O

UTXOs

Figure 5: Blockchain compression. Given a set of unspent transaction outputs (UTXOs) the blockchain can be easily com-
pressed when adding new blocks (here Bk ,Bk+1,Bk+2). All inputs of the new blocks are removed from and new outputs are
added the UTXO set. The inputs and outputs can then be removed from the individual blocks, thus compressing the chain.

to correctly created instances of the same enclave that originally

saved it.

Enclaves cannot execute system calls, and therefore developers

must divide their applications into two parts: protected enclave

and an unprotected part that run as normal user-level process and

handles operations such as file system access and networking using

the untrusted OS. For more detailed explanation of SGX, we refer

the reader to [21, 29].

B PAYMENT AUTHORIZATION PROOF
In this Appendix, we show that, given a group G = ⟨д⟩ = ⟨h⟩, a
transaction output Out = дrhv can only be spent by an authorized

entity, i.e. an entity who knows the secret blinding factor r .

Theorem B.1. If the discrete logarithm problem is hard in G and
the discrete logarithm of h to base д is unknown, the probability that
an outputOut = дrhv can be spent by an adversary without knowing
r is negligible.

Proof. For our proof, we distinguish the following two cases:

Case 1: W.l.g. assume that an attacker is able to create three

outputs Out′ = дr
′

hv , Ex′ = дr
′′

and r∆ s.t. Out = дr∆Ex′Out′,
i.e. дrhv = дr∆дr

′′

дr
′

hv with non-negligible probability. For the

transaction to be valid, the adversary needs to attach a proof of

knowledge of r ′′ and a range proof for v , i.e. a proof of knowledge
of r ′,v s.t. v is in the allowed range. As the zero knowledge proofs

are sound if the discrete logarithm problem is hard, the adversary

knows r ′, r ′′,v (and of course r∆). Consider a game where the

adversary wins, if on input (дrhv ,v) the adversary outputs values

r ′, r ′′, r∆ s.t. дrhv = дr∆дr
′′

дr
′

hv . Clearly, the adversary considered
above can win this game with non-negligible advantage.

We now showhow to construct a solver for the discrete logarithm

problem given this adversary. On input X = дx , the solver creates
a randomized instance (X · дr1hr2 , r2) = (дx+r1hr2 , r2) with r1, r2
chosen uniformly at random. On output (y, z,w) from the adversary,

the solver computes and outputs x ′ = y+z+w−r1. If the adversary
wins the game, clearly x = x ′, i.e. the solver correctly computes the

discrete logarithm of the input X and thus, if the adversary has a

non-negligible probability to be able to create a valid transaction,

the discrete logarithm problem can be solved efficiently in groupG .
As this violates our assumption, it follows that an attacker cannot

create such a valid transaction with non-negligible probability.

Case 2: W.l.g. assume that an attacker is able to create three

outputs Out′ = дr
′

hv
′

, Ex′ = дr
′′

and r∆ s.t. v , v ′
and Out =

дr∆Ex′Out′, i.e. дrhv = дr∆дr
′′

дr
′

hv
′

, with non-negligible proba-

bility. For the transaction to be valid, the adversary needs to attach

a proof of knowledge of r ′′ and a range proof for v ′
, i.e. a proof

of knowledge of r ′,v ′
s.t. v ′

is in the allowed range. As the zero

knowledge proofs are sound if the discrete logarithm problem is

hard, the adversary knows r ′, r ′′,v ′
(and of course r∆). We consider

the game where the adversary wins, if on input (дrhv ,v) the ad-

versary outputs values (r ′, r ′′, r∆,v
′) s.t. дrhv = дr∆дr

′′

дr
′

hv
′

and

v , v ′
.

We now show how this adversary can be used to computeDLд(h).
The solver creates a randomized instance (дr1hr2 , r2) with r1, r2
chosen uniformly at random and gives this as input to the adversary.

On output (y, z,w,u) from the adversary, the solver computes and

outputs x = (y + z +w − r1)(r2 − u)−1. If the adversary wins the

game, this corresponds to DLд(h), which violates our assumption,

i.e. an attacker cannot create such a valid transaction.

□


	Abstract
	1 Introduction
	2 PRCash Overview
	2.1 Motivation for Central Issuance
	2.2 System Model
	2.3 High-Level Operation
	2.4 Main Properties
	2.5 Attacker Models

	3 PRCash Details
	3.1 Regulation Idea
	3.2 System Initialization
	3.3 User Enrollment
	3.4 Regulation Proof Creation
	3.5 Transaction Creation
	3.6 Transaction Verification
	3.7 Mixing and Consensus
	3.8 Block Structure
	3.9 Issuance and Deletion

	4 Security Analysis
	5 Evaluation
	5.1 Implementation
	5.2 Verification Models
	5.3 Transaction Verification Overhead
	5.4 Consensus Performance and Liveness

	6 Discussion
	7 Related Work
	8 Conclusion
	References
	A Background
	A.1 Dodis-Yampolskiy Pseudorandom Functions
	A.2 Zero-Knowledge Proofs of Knowledge
	A.3 Range Proofs
	A.4 Randomizable Signatures
	A.5 Elgamal Encryption
	A.6 Confidential Transactions and MimbleWimble
	A.7 Intel SGX

	B Payment Authorization Proof

