
Secure Boot and Remote Attestation in the Sanctum
Processor

Ilia Lebedev
MIT CSAIL, USA

ilebedev@csail.mit.edu

Kyle Hogan
MIT CSAIL, USA

klhogan@csail.mit.edu

Srinivas Devadas
MIT CSAIL, USA
devadas@mit.edu

Abstract—During the secure boot process for a trusted ex-
ecution environment, the processor must provide a chain of
certificates to the remote client demonstrating that their secure
container was established as specified. This certificate chain is
rooted at the hardware manufacturer who is responsible for
constructing chips according to the correct specification and
provisioning them with key material. We consider a semi-honest
manufacturer who is assumed to construct chips correctly, but
may attempt to obtain knowledge of client private keys during
the process.

Using the RISC-V Rocket chip architecture as a base, we
design, document, and implement an attested execution processor
that does not require secure non-volatile memory, nor a pri-
vate key explicitly assigned by the manufacturer. Instead, the
processor derives its cryptographic identity from manufacturing
variation measured by a Physical Unclonable Function (PUF).
Software executed by a bootloader built into the processor
transforms the PUF output into an elliptic curve key pair. The
(re)generated private key is used to sign trusted portions of the
boot image, and is immediately destroyed. The platform can
therefore provide attestations about its state to remote clients.
Reliability and security of PUF keys are ensured through the
use of a trapdoor computational fuzzy extractor.

We present detailed evaluation results for secure boot and
attestation by a client of a Rocket chip implementation on a
Xilinx Zynq 7000 FPGA.

I. INTRODUCTION

A. Attested Execution

In order for a client to securely execute a remote program
it must be able to verify information about the host system.
Specifically, clients often desire their computations to be run
on trusted hardware, such as Intel SGX or Sanctum [10], [32],
[37], that provides guarantees about the privacy and integrity
of the computation. For the client to be confident that their
remote computation is indeed being run on such a system, it
is necessary for the hardware to have a unique and immutable
cryptographic identity. A system equipped with such hardware
can use this identity to provide the client with an attestation
to its state that can be compared against a manufacturer list of
authentic platforms. In practice, these attestations can be made
anonymous and unlinkable in that an attestation does not reveal

c©2018 IEEE. Personal use of this material is permitted. Permission from
IEEE must be obtained for all other uses, in any current or future media,
including reprinting/republishing this material for advertising or promotional
purposes, creating new collective works, for resale or redistribution to servers
or lists, or reuse of any copyrighted component of this work in other works.

who produced it and no two attestations can be determined to
have the same origin.

In addition to authenticity, it is important that the processor
demonstrate that it has booted correctly, particularly that any
code that could affect the attestation to or subsequent execution
of client code is unmodified from its expected value. Attested
execution thus requires a secure boot process in either a local or
remote client setting. A bootloader must configure the system
as desired by the client and, after booting, the processor needs
to prove that the secure container requested by the client
has been set up properly, i.e., with appropriate privacy and
integrity properties. To accomplish this, the processor presents
a container measurement certificate that can be verified by a
client.

In one common setting, processor hardware or firmware
in a boot ROM cryptographically measures the bootloader
software and all software loaded by the bootloader, then uses
the processor’s secret key to sign the measurement, producing a
certificate. The public key associated with the processor’s secret
key is signed by the manufacturer. The local or remote client
verifies the signature of the processor’s public key using the
manufacturer’s public key, verifies the measurement certificate
using the processor’s public key, and checks the measurement
itself against a client-side stored hash of the expected system
state.

To produce such a certificate the processor must be pro-
visioned with a public key pair. Generally, the manufacturer
produces a key pair for each chip and embeds the private
key into the chip, typically into secure non-volatile memory.
In this scenario however, the manufacturer knows the chip’s
private key without the chip leaking it so even a correctly
manufactured processor could have exposed keys at production.
Alternatively, to maintain privacy of the secret key, a hardware
True Random Number Generator (TRNG) generates a random
seed stored in secure non-volatile memory, which is used to
generate a public/private key pair inside the processor. The
manufacturer signs the public key, which can be stored in
publicly readable non-volatile memory while the private key
never leaves the processor and is unknown to the manufacturer.
Thus, while the manufacturer must be honest, we tolerate a
“curious” manufacturer, as they do have to be trusted to manage
secrets.

An alternative scenario involves the use of silicon Physical
Unclonable Functions (PUFs) [17]. PUFs extract volatile secret

keys from semiconductor manufacturing variation that only
exist when the chip is powered. The first documented use
of PUF generated keys in a secure processor setting was in
the Aegis processor [41]. The PUF was used to generate a
symmetric key shared with the client through a cryptographic
protocol. PUFs are used as symmetric key generators in
commercial products such as Xilinx Ultrascale Zynq FPGAs
[48]1 and Intel/Altera FPGAs [2]. While it has been well
known that a PUF can be used to generate a random seed for a
public/private key generator inside of a secure processor (e.g.,
[12]), we are unaware of any published implementation that
accomplishes this.

B. Our approach

Using the RISC-V Rocket chip architecture [27] as a base,
we design, document, and implement an attested execution
processor that does not require a private key explicitly as-
signed by the manufacturer. Instead, the processor derives its
cryptographic identity from manufacturing variation measured
by a PUF. Software executed by a bootloader built into the
processor transforms the PUF output into an elliptic curve key
pair, the public portion of which is signed by the manufacturer
using its private key. Since a regenerated PUF output needs to
be error corrected, we employ a trapdoor computational fuzzy
extractor [20] to ensure the security of error correction. The
(re)generated private key is used to sign trusted portions of the
boot image, and is immediately destroyed. The signed boot
image is responsible to performing attestations to remote clients.
A client can establish a secure communication channel with
the platform using Diffie-Hellman key exchange and request
the platform signature on the boot image. It can verify this
signature to establish authenticity and integrity of the system
before sending its code and data. Upon receiving the client
code, the boot image can further attest to the state of the client
program prior to execution. We argue that such a processor is
attractive when physical security is important, and when it is
desirable to keep the handling of secret information by entities
to a minimum.

We present detailed evaluation results for key generation,
secure boot and attestation for a Rocket chip implementation
on a Xilinx Zynq 7000 FPGA.

C. Organization of this paper

The rest of this manuscript is organized as follows: Section II
describes prior work and introduces relevant concepts. Sec-
tion III defines the threat model used throughout this manuscript.
Section IV describes key derivation performed at boot and the
hardware the boot ROM root of trust assumes for correct
operation. Our remote attestation protocol is described in
Section V. Section VI describes primitives to implement the
root of trust key derivation. Section VII explores the tradeoffs
and performance of the root of trust; Section VIII concludes.

1The PUF generated key is used to AES-encrypt and decrypt keys that
encrypt and decrypt the FPGA bitstream. Not even the manufacturer knows
the PUF key.

II. BACKGROUND AND RELATED WORK

A. Secure Boot

In order to establish a trusted environment for program
execution, the host system must first have booted into a
verifiable state. If a step in the boot process is not included in
the attestation to the client then its state cannot be guaranteed
and it could potentially compromise the privacy or integrity
of any subsequently loaded programs. A trusted bootloader is
typically the first component in this process and is considered
the root of trust for the boot process. It is the first code to
run upon system initialization and is responsible for checking
the measurements and/or signatures of subsequent components
either locally or by utilizing a piece of trusted hardware such
as a TPM.

The primary distinctions between different secure boot
processes used in practice are how they obtain their attestation
root key, whether the root of trust for measurement/verification
differs from the root of trust for attestation, and whether com-
ponents are verified using a signature from the manufacturer
or by a measurement of their code.

Heads [24] implements a measured boot process supported
by a TPM where the root of trust for the boot process is a
write protected ROM and the root of trust for authentication
and attestation is the TPM. ARM’s TrustZone does not provide
a canonical mechanism for remote attestation, but software
in its secure world is able to implement its own attestation.
Intel’s Secure Boot has both measured and verified modes.
For both modes microcode on the CPU is the root of trust
for the boot process [35]. In the measured mode a TPM is
responsible for storing and attesting to the measurements while
in verified mode each component is signed by the manufacturer
and these signatures are verified prior to loading the component.
In contrast, SGX is not concerned with the boot process of the
system in general and focuses only on providing attestation
and authentication for enclaves post boot using keys stored on
the processor [4], [32].

In all three cases, the TPM manufacturer and potentially the
CPU manufacturer are directly responsible for provisioning
platform attestation/authentication keys.

B. Trusted key derivation

Commercial secure processors such as Intel Skylake (which
includes SGX) and ARM’s secure processor offerings (based
on TrustZone) appear to use some form of non-volatile memory
to store a secret key. SGX patents disclose the use of a PUF
to generate a device-specific key from a fused key obfuscated
in the design [9].

The Aegis processor was introduced in [39], and [41]
described an implementation that used a PUF to generate
a symmetric key for use in attestation. The error correction
scheme used predated fuzzy extractors and was fairly limited
in its capability [16].

Prior work in PUF based key derivation is described below.

1) Physically Obfuscated Keys and Fuzzy Extractors: Silicon
PUFs were introduced in [17], and over the past several years
there have been several proposals for candidate silicon PUF
architectures, which include delay PUFs [40] and SRAM PUFs
[23], and several variants. Our focus here is on error correction
of PUF outputs, so the error-corrected output can be used in
cryptographic applications. A PUF is being used as a Physically
Obfuscated Key (POK) [16]. Delay PUFs naturally provide
“confidence” information, which provides additional knowledge
of the stability of a POK bit [40].

Silicon POK key generation was first introduced using
Hamming codes in [16] and more details were presented
in [38]. The security argument used is information-theoretic.
Specifically, if one requires a k-bit secret from n bits generated
by the POK, then at most n− k bits could be exposed. The
number of correctable errors is quite limited in this approach.

Fuzzy extractors [13] convert noisy biometric data (either hu-
man or silicon) into reproducible uniform random strings, which
can then serve as secret keys in cryptographic applications. In
the fuzzy extractor framework, it is possible to extract near-full-
entropy keys from a POK source while maintaining information-
theoretic security. The information-theoretic security, however,
comes at a high cost in terms of the raw entropy required and
the maximum tolerable error rate. Even in cases where entropy
remains after error correction (e.g., [31]), there may not be
enough entropy remaining to accumulate the necessary bits for
a 128-bit key.

There are several works that created helper data that is
information-theoretically secure. A soft-decision POK error
correction decoder based on code-offset was described in [29],
[30] where the confidence information part of the helper data
was proven to be information-theoretically secure under an
i.i.d. assumption.

[50] uses POK error correction helper data called Index-
Based Syndrome (IBS), as an alternative to Dodis’ code-offset
helper data. IBS is information-theoretically secure, under the
assumption that POK output bits are independent and identically
distributed (i.i.d.). Given this i.i.d. assumption, IBS can expose
more helper data bits than a standard code-offset fuzzy extractor
construction. Efficiency improvements to IBS that maintained
information-theoretic security are described in [21] and [22].

2) Computational Fuzzy Extractors: Fuller et al. [15] give
a computational fuzzy extractor based on the Learning With
Errors (LWE) problem. In Fuller et al.’s scheme, the output
entropy improves; the error correction capacity, however, does
not. Indeed, Fuller et al. show in their model that computational
fuzzy extractors are subject to the same error correction bounds
as information-theoretic extractors. Their construction therefore
requires exponential time to correct Θ(m) errors, where m is
the number of bits output by the POK.

Fuller et al. expect that the exponential complexity in
correcting a linear number of errors is unlikely to be overcome,
since there is no place to securely put a trapdoor in a fuzzy
extractor. Herder et al. [20] recognized that certain kinds
of silicon biometric sources have dynamically regenerated
confidence information that does not require persistent storage

memory and can in fact serve as a trapdoor. This results
in an efficient extractor in terms of the amount of helper
data and the entropy requirement on the POK, though the
computational requirements of error correction may be higher
than in information-theoretic schemes. However, in the secure
processor application of this paper, error correction can be
done in software making Herder et al.’s scheme attractive; the
additional hardware that is required is a set of ring oscillators
corresponding to the POK.

C. Remote attestation

Attestation by hardware components of a platform allows
remote clients to verify details of the system state. In particular,
clients need to verify both the authenticity of the system
performing the attestation and the integrity of their own remote
application. Platform authenticity is typically verified via its
membership in a manufacturer managed group of all non-
revoked platforms. During the manufacturing process platforms
are provisioned with public key pairs where the secret key is
permanently bound to the platform. Group membership can be
determined by verifying signatures produced by the platform
as only platforms with valid secret keys are able to generate
signatures that can be verified by one of the public keys for the
group. These schemes can also be anonymous and unlinkable
where the verifier learns only the platform’s membership in a
specified group, but not which platform specifically produced
the signature or whether any pair of signatures was produced
by the same platform [7].

These platforms can then be responsible for signing the hash
of a program’s state to demonstrate to a client that it was
loaded as expected. The client’s trust in this process is rooted
in the provisioning of the platform’s secret key. Often, keys
are generated and provisioned explicitly by the manufacturer,
but it is also possible to generate keys on platform using a
TRNG or PUF in such a way that the manufacturer does not
acquire knowledge of the platform’s secret key.

Intel SGX, TXT, and TPMs are all able to provide attestations
to remote clients about platform state using keys directly
provisioned by the device manufacturer. TPM’s use Direct
Anonymous Attestations (DAA) where the signatures do not
reveal the identity of the signer unless the secret key used to
generate the signature is subsequently revealed [1].

D. Isolated execution

XOM [28] introduced the idea of executing sensitive code on
data in isolated containers with an untrusted operating system
handling resource allocation for the secure container.

Aegis [39] instead relies on a trusted security kernel, the
hash of which is collected at runtime and used in conjunction
with the hash of secure containers to derive container keys and
attest to the initial state of the container. Unlike XOM, Aegis
tolerates untrusted memory.

Intel’s Trusted Execution Technology (TXT) [19] is a widely
deployed implementation for trusted execution. However, it
was shown to be susceptible to several confused deputy attacks
[46], [47] that allowed a malicious operating system to direct

a network card to perform direct memory accesses on the
supposedly protected virtual machine. A later revision to TXT
introduced DRAM controller modifications that selectively
block DMA transfers to mitigate these attacks.

Intel’s SGX [4], [32] adapted the ideas in Aegis and XOM
to multi-core processors with a shared, coherent last-level
cache. It is widely deployed in Skylake and later generation
processors and supports isolated execution and attestation of
client processes in the presence of a malicious operating system.
It remains vulnerable to side channel and controlled channel
attacks [6], [49].

Sanctum [10] offers the same promise as Intel’s Software
Guard Extensions (SGX), namely strong provable isolation of
software modules running concurrently and sharing resources,
but protects against an important class of additional software
attacks that infer private information from a program’s memory
access patterns. Sanctum follows a principled approach to
eliminating entire attack surfaces through isolation, rather
than plugging attack-specific privacy leaks. Most of Sanctum’s
logic is implemented in trusted software, called the “Security
Monitor”, which does not perform cryptographic operations
using keys. The Sanctum prototype targets a Rocket RISC-V
core, an open implementation that allows any researcher to
reason about its security properties. The Sanctum prototype
does not implement memory encryption implying that DRAM
is trusted.

ARM’s TrustZone [3] is a collection of hardware modules
that can be used to conceptually partition a system’s resources
between a secure world, which hosts a secure container, and
a “normal” world, which runs an untrusted software stack.
The TrustZone documentation [5] describes semiconductor
intellectual property cores (IP blocks) and ways in which
they can be combined to achieve certain security properties,
reflecting the fact that ARM is an IP core provider, not
a processor manufacturer. Therefore, the mere presence of
TrustZone IP blocks in a system is not sufficient to determine
whether the system is secure under a specific threat model.
The reset circuitry in a TrustZone processor places it in secure
mode, and executes a trusted first-stage in an on-chip ROM.
TrustZone’s TCB includes this bootloader in addition to the
processor and all peripherals that enforce access control for
the secure world.

III. THREAT MODEL: AN HONEST BUT CURIOUS
MANUFACTURER

Our goal is to use a PUF in conjunction with a root of
trust endorsed by the manufacturer to improve the security
of key derivation over the case where the manufacturer is
responsible for explicitly provisioning keys. In this setting the
manufacturer is no longer able to store keys and thus cannot
provision multiple systems with the same key or retroactively
compromise keys.

We consider an “honest” manufacturer with a well-known
public key that follows the specification for constructing the
PUF and CPU without introducing backdoors. The manu-
facturer is also responsible for endorsing the correct root

of trust and not replacing it with a malicious program that
does not follow the protocol in Section IV. The manufacturer
is “curious”, however, and may attempt to learn information
while following the specification, including repeating a protocol
multiple times with different parameters. As a concrete example,
we handle a manufacturer that attempts to learn information
about a PUF output through many runs of the key derivation
protocol.

The root of trust (boot ROM) is assumed to correctly derive
keys from the PUF output, and then measure and endorse a
“payload” software. Much like the hardware itself, we assume
this implementation to be honest and free of bugs, as it is not
replaceable on a given chip.

We assume the system memory is trusted and only accessible
via the processor, which is able to sanitize this memory at
boot, and guard access to cryptographic keys and other private
information stored there. If DRAM must be excluded from the
TCB, one may employ transparent encryption at the DRAM
controller (counter mode AES on the data of all or some
memory accesses) as in XOM [28] and Aegis [39]. Moreover,
if the threat model must protect the access pattern of DRAM
requests – as in the case of a hostile machine operator observing
traffic on the DRAM link – an Oblivious RAM [18] primitive
may be employed, with corresponding overhead as in the
Ascend processor [14].

The Sanctum processor [10] implements a strongly isolated
software container (enclave) primitive, which can be used to
dramatically reduce the size of a system’s software trusted
computing base. Sanctum relies on a trusted (but authenticated)
“Security Monitor” (precisely the payload in this secure boot
scheme), which correctly configures the underlying hardware,
and maintains the invariants needed for the system’s security
argument. Sanctum excludes the operating system and any
software it runs from the TCB (these are therefore loaded
after the secure boot, and are not measured), but allows
the creation and remote attestation of a secure container,
thereby bootstrapping trust in additional software (whereby
the security monitor uses its keys to measure and sign the
secure container). While Sanctum’s security monitor is trusted
to correctly implement its API, it is authenticated, meaning the
remote party seeking attestation is able to reject attestations
coming from a system that loaded a known-vulnerable security
monitor.

IV. ROOT OF TRUST

At reset, the processor must execute instructions beginning
at an address corresponding to a trusted “boot ROM” –
a requirement described in Section VI-A. This first-stage
bootloader, which we denote the “root of trust” is a program
that loads a “payload” binary segment from untrusted storage
into trusted system memory, derives the payload-specific keys
(SKP , PKP), and uses the device key to sign PKP and the
trusted manufacturer’s endorsement of the processor.

Several implementation variations on this common theme
are explored in this section, differing in their construction
of SKDEV and their use of the trusted boot ROM memory.

Zero all
other memory

init core

(re)generate
(PKDEV , SKDEV)

(re)generate
(PKP , SKP)

Core 0?

memcpy
payload P

Compute
HP=SHA3(payload)

Sign (PKP , H(P))
with SKDEV

Erase SKDEV and
stack memory

(wake other
cores)

(jump to payload)

yes no

at
each
reset

(wait)

Payload
(attestation

management)

D
RA

M

Signature(PKP , H(P))
with SKDEV

SKP

PKP

H(Payload)
SKDEV

PKDEV
0x80..000

Bootloader
code

(root of trust)
0x1000Tr

us
te

d
 R

O
M

(zero)

Payload
(attestation

management)
Signature(PKP , H(P))

with SKDEV

SKP

PKP

H(Payload)

PKDEV

Bootloader
code

(root of trust)

32B
64B
32B
32B
64B

64B

(zero)

(stack used by
root of trust)

zero or Enc(SKDEV)

1

2

1 2

Payload
(attestation

management)
Signature(PKP , H(P))

with SKDEV

SKP

PKP

H(Payload)

PKDEV

(remote)
Trusted

First
Party

zero or Enc(SKDEV)

OS,
other software,

data

(r
em

ot
e

at
te

st
at

io
n

pr
ot

oc
ol

)

(jump to payload)

(n
et

w
or

k)

Fig. 1. The root of trust signs trusted system software (Payload) and its derived key pair (PKP , SKP) at boot. During remote attestation, the trusted first
party communicates with the processor (or an enclave, in the case of Sanctum), creates an “attestation”, and establishes a shared key with the first party.

Figure 1 shows a general template for all roots of trust examined
in this manuscript.

The processor has multiple cores, all of which execute
starting at the same address after a reset. Our root of trust
stalls all but one core while executing the root of trust
program on Core 0. Because the contents of memory at
boot are undefined, a synchronization via a lock in memory
is not possible; instead, this work relies on all but one core
waiting on an interrupt. Core 0 resumes all other cores via
an inter-processor interrupt at the completion of the root of
trust program. All cores sanitize core-local state (registers,
configurations, etc.) in order to prevent an adversary from
leaking private information via soft reset into a malicious
payload. For the same reason, the root of trust must erase all
uninitialized memory via a memset.

In implementing the root of trust, we rely on a portable
implementation of the SHA3 hash function [36] and ed25519
elliptic curve DSA cryptography (we slightly modify an existing
implementation [34] to use SHA3). For the roots of trust that
use an AES cipher, we again rely on an existing, portable
implementation [26]. The sections below describe our root of
trust implementations that derive cryptographic keys for the
processor and a given payload.

A. Deriving an ephemeral SKDEV for cloud-hosted FPGA
designs

Here, we describe a root of trust in a setting where an
honest but curious party (the “manufacturer”) has access to
the processor at boot, and is available to sign the processor’s
randomly generated public key (SKDEV) messages with their
well-known key. In other words, the “manufacturer” is able to
locally attest the processor, obviating the need for a persistent
cryptographic root in the device. A practical example of this
setting is an FPGA secure processor deployed by a semi-trusted
cloud provider. The hardware platform hosting the secure
processor is time-shared among many mutually distrusting
tenants, and the provider does not guarantee the processor
is deployed on a specific FPGA. In this scenario, the cloud
operator is effectively a “manufacturer” of an ephemeral secure
processor; non-volatile keys are neither meaningful nor easy
to implement in this scenario.

The ephemeral SKDEV key derivation is illustrated in
Figure 2. Here, device keys (PKD, SKD) are derived from a
hashed random value; each instance of the secure processor has
a new cryptographic identity, which does not survive a reset.
The processor commits to (PKD) at boot, and expects the man-
ufacturer (machine that programs the cloud FPGA) to endorse

128 bit
random

seed

TRNG Ed25519
KDF

PKDEV

SKDEV

SHA3 SignM(PKDEV)

(manufacturer/operator signs
PKDEV with its well-known identity)

Fig. 2. Ephemeral SKDEV derivation from entropy.

it with its well-known cryptographic key (SignM (PKDEV)).
This signature binds the processor’s PKDEV to the remote
user’s trust in the manufacturer’s integrity: the processor
eventually performs attestation involving a certificate signed
with SKDEV (cf. Section V), and presents SignM (PKDEV)
to convince the remote user that the certificate is rooted in a
trustworthy platform, not an arbitrary malicious emulation of
the remote attestation protocol.

B. Non-volatile SKP derived from a PUF

In a situation where no trusted party can locally attest to the
processor at boot, e.g., a computer system deployed remotely
in an untrusted environment, remote attestation must be rooted
in a trusted public key. This key must persist across reboots,
and must not be practically recoverable by an adversary.

While the device could be provisioned with a key pair
explicitly, via a tamper-resistant non-volatile memory, this
would assume a lot of trust in the party installing the key.
A “curious” manufacturer may choose to remember the keys,
compromising a processor retroactively by leaking its secret
key, or endowing an untrusted emulator with the same key
pair.

To satisfy the threat model presented earlier (cf. Section III),
we employ a root of trust that repeatably generates its
cryptographic key pair by seeding a Key Derivation Function
(KDF) with a physically obfuscated key via a fuzzy extractor
scheme proposed by Herder et al. [20]. The roots of trust,
P256 and P512 use an array of identical ring oscillator pairs
(a physically obfuscated key, where manufacturing variation
informs the relative frequency of the oscillators in each pair)
and a trapdoor fuzzy extractor to derive a semi-repeatable secret
M -bit #»e (a M -element vector in GF (2)), where M is 256
and 512 for P256 and P512, respectively (this is the only
difference between the two implementations). Section VI-B
details this hardware structure and its parameters.

1) Initial key provisioning by the manufacturer with the PUF:
After the secure processor is manufactured (or the FPGA is
programmed with the design containing the secure processor),
the root of trust provisions a secret 128-bit #»s . From #»s , the
root of trust computes a public M -bit vector

#»

b = A #»s + #»e ,
where A is an M -by-128 matrix in GF (2).

#»

b and A are public
“helper data”, which are used by future invocations of the root
of trust to recover #»s .

128 bit
s

TRNG

ED25519
KDF

PKDEV

SKDEV

SHA3 SignM(PKDEV)

(manufacturer signs PKDEV
with its well-known identity)

PUF M-bit
noisy e

public M x 128
bit matrix A

b=As+e public
M-bit b

(assert fuse is clear)
(assert fuse is set)

Fig. 3. Initial provisioning of PUF-backed device keys.

The key provisioning is illustrated in Figure 3. From
#»s (hashed), an ed25519 key derivation function computes
(PKDEV , SKDEV). The root of trust program then runs to
completion, as shown in Figure 1, conveying (PKDEV ,

#»

b , ...)
(but not #»s or SKDEV , which are erased by the root of trust) to
the payload. The manufacturer is able to learn PKDEV via the
payload, and sign this public key with their own well-known
cryptographic identity.
P256 and P512 employ the TRNG to source a 128-bit

random value for #»s , and use the same A (256-by-128 and
512-by-128 bit matrices, for P256 and P512, respectively)
for all devices, by including A as part of the boot ROM. The
manufacturer selects the matrix A by generating a string of
random bits of the requisite length.

To prevent the manufacturer from repeatedly re-provisioning
keys (which may weaken the secrecy of #»e), the root of trust
requires a fuse (one-time non-volatile memory) to be written
as part of provisioning. Due to a quirk of the FPGA platform,
the root of trust program does not write the fuse itself. Instead,
before selecting #»s , the program ensures a fuse (exposed as a
readable register) is not set, and stalls until its value changes (a
fuse cannot be cleared after being set, so provisioning proceeds
exactly once). The manufacturer sets the fuse via a management
interface (JTAG). If the fuse is set initially, the root of trust
does not provision a new #»s , and instead attempts to recover
it from helper data in untrusted memory, as described below.

We note that the fuse can be avoided by making a stronger
assumption about PUF bits or a stronger assumption on the
hardness of a variant Learning Parity with Noise (LPN) problem
[20].

2) Key recovery with the LPN PUF: At each reset, the
root of trust reconstructs 128-bit secret #»s from public (

#»

b , A),
and uses it to re-compute (PKDEV , PKDEV) as illustrated
in Figure 4. The root of trust reads the array of ring oscillator
pairs to obtain #»e (a somewhat noisy view of the bit vector
used in provisioning #»s), and the corresponding “confidence”
information #»c ∈ {Z}M . As described in the original construc-
tion [20], the root of trust discards low-confidence bits of #»e

128 bit
s

Ed25519
KDF

PKDEV

SKDEV

SHA3

SignM(PKDEV)

PUF M-bit
noisy e

public M x 128
bit matrix A

s=A’-1(b-e’)
public
M-bit b

invertible A’

N-bit e’

(select N highest-con�dence
bits of e, remove corresponding

rows of A, retry if A’ is singular)
(retry if s and b

are inconsitent)

Fig. 4. Key derivation of PUF-backed device keys.

SKDEV

SHA3Payload

Ed25519
KDF

SKP

PKP

H(P)

SignDEV(HP,PKP)Ed25519
Signature

SHA3SHA3
H(P)

PK
P

SK
P

Fig. 5. Key derivation and endorsement by the device of the Payload.

and corresponding rows of
#»

b and A, resulting in #»e ′,
#»

b ′ and
A′, respectively. The bits of #»e with high confidence values
are assumed to be stable across reboots with high probability,
a design requirement for the ring oscillator pairs, as described
in Section VI-B and evaluated in Section VII-C.

If A′ is invertible, the root of trust uses Gauss-Jordan
elimination (in GF (2), informed by [25]) to compute A′−1. A
different A′ is chosen if A′ is singular. A′ is a sampling of 128
128-bit rows from a larger random matrix, so we consider A′ to
be a random 128-by-128 matrix in GF (2). The probability [43]
of A′ having a zero determinant (and therefore singular) is given
by P (n = 128, q = 2) = 1−(1−q−1)(1−q−2)...(1−q−n) =

1−
128∏
i=1

1− 1
2i ≈ 71.12%. The probability that A′ is invertible

is therefore 28.88%, and the root of trust considers ∼ 3.5
matrices before finding one that is invertible, in expectation.
Given an invertible A′, the root of trust straightforwardly
computes #»s ′ = A′−1(

#»

b ′ − #»e ′), and verifies #»s ′ = #»s by
computing

#»

b ′′ = A #»s ′ + #»e ; a very high edit distance between
b and b′′ signals an uncorrected error, and retries with a new
#»e . Section VII-C examines the (very low) expectation of bit
errors among high-confidence elements of #»e .

After s is recovered, the root of trust computes
(PKDEV , SKDEV) from a KDF over its hash, as before. The
root of trust disables the PUF ring oscillator readout until the
next reset, as described in Section VI-B in order to prevent a
malicious payload from accessing the secret #»e .

C. Payload keys and endorsement

All roots of trust considered in this manuscript identically
derive the payload-specific keys (PKP , SKP) from a SHA3
hash of the payload and SKDEV . The key derivation is
shown in Figure 5; all software libraries needed to do this
were previously introduced to derive device keys. The root
of trust computes H(P) = SHA3(Payload), combines it
with SKDEV , and uses the result to seed an ed25519 KDF.
(PKP , SKP) = KDFed25519(SHA3(SKDEV , H(P))).

128 bit
s

SK

PUF-
backed

key
AES

128 bit
s

PUF-
backed

key
ENCSK AES SK ENCSK

ENCSK is stored in
untrusted memory across reboots

Fig. 6. Key encryption for untrusted storage.

The payload is not assumed to be honest; a malicious
payload may leak its own hash and keys. This does not
compromise the processor’s key SKDEV : the SHA3 hash
is a one-way, collision-resistant function, so even should an
adversary reconstruct the seed from which its keys were derived,
and although H(P) is public, the other hash input (SKDEV)
is not compromised. SKP , meanwhile, is derived, in part, from
the payload’s hash, so an adversary leaking their own keys has
no bearing on the confidentiality of an honest payload’s keys.

Finally, the processor “endorses” the payload by
signing its hash and public key: CertificateP =
SignedSKDEV

(SHA3(H(P), PKP)). Given the
certificates (CertificateDEV , CertificateP) and SKP , an
uncompromised payload can prove to a remote party that it
is indeed a specific piece of software executing on hardware
signed by the trusted manufacturer, as we will describe in
Section V. The payload is expected to safeguard its key (any
payload that leaks its SKP can be emulated by an adversary,
and is not trustworthy).

All intermediate values are, as before, on a stack in memory,
which must be erased before the processor boots the untrusted
payload.

D. Key encryption and minimal root of trust

In the case of the P256AES and P512AES roots of trust,
the processor encrypts its secret keys (SKD, SKPayload) with
a symmetric key derived from the PUF, to be kept in untrusted
non-volatile memory, as shown in Figure 6. To this end, the
root of trust links a portable implementation of the AES
in addition to the SHA3 and ed25519 KDF, and includes
control flow to perform the ed25519 KDF, which will be used
when no encrypted keys are provided with the payload. The
payload is responsible for storing its own encrypted key blob,
as this value is public and untrusted. As shown in Section VII,
decrypting a stored key with AES does offer a performance
advantage over re-deriving the key using the KDF at each
boot. Persistently maintaining the key to be decrypted with
AES requires additional complexity, however, and a larger boot
ROM to accommodate the AES code. This increases the trusted
code base, so implementations should consider this tradeoff
when designing the root of trust.

We consider also a root of trust intended to minimize the
size of the boot ROM by securely loading the previously
described root of trust from untrusted memory (We denote
these five roots of trust HT, HP256, HP256AES, HP512,
and HP512AES). Here, the trusted boot ROM only includes
the instructions needed to copy a root of trust binary from
untrusted memory to DRAM, and verify its hash against an

expected constant. The boot ROM consists of memcpy, SHA3,
a literal expected hash, and a software loop to perform the
hash comparison. Aside from a variation in the size of the root
of trust, and different expected hash constants, the five designs
produce similar binaries, of nearly identical size, as shown in
Section VII.

V. REMOTE ATTESTATION

An immutable hardware root of trust as described in the
previous section allows the platform to provide attestations
about its state to remote clients. Use of a PUF to generate
platform root keys implies that the platform’s keys are both
unique to the system running client code and unknown to any
other party. This gives remote clients high confidence in the
authenticity of any attestations provided by the platform.

A. Remote Attestation with Generic Payload

The payload loaded as part of the system’s boot process is
responsible for handling remote attestation of client processes.
The initial state of the payload is verified as part of the key
generation process, but it must be trusted to maintain its
integrity and the privacy of its keys, PKP and SKP , that
were derived by the device during boot.

The general procedure the payload follows to perform
attestations is outlined in Figure 1 from the initial generation
of keys during the boot process through the sending of
the attestation to the client. The remote client must first
initiate a Diffie-Hellman key exchange to establish a secure
communication channel between itself and the platform. Upon
receiving the Diffie-Hellman parameters g, gA, p from the
client, the payload will then choose a B and compute gB .
It will then send a signature under its secret key, SKP , of
the public key of the device (PKDEV), the signature under
the device secret key of the payload’s public key and hash of
initial payload state (SignSKDEV

(PKpayload, H(payload))),
and the Diffie-Hellman parameters back to the client. The
signature from the device containing the payload’s public key
and a hash of its initial state can be used by the client to
verify that the payload loaded by the device matches the one
it expected. The client can then use the secure communication
channel that has been established to send over any code and
data that it wishes to be run by the platform and will receive
a signature from the payload over a hash of the state of the
client’s program. In this way the client can bootstrap trust in
their remote code from their trust in the secure processor.

B. Remote Attestation with Sanctum

A more detailed protocol as performed by Sanctum is shown
in Figure 7. The primary distinction between the two protocols
is that the payload in the case of Sanctum is its security
monitor which is responsible for enforcing some of the isolation
properties for client enclaves as well as spawning a special
“signing enclave”. The security monitor hashes a client enclave
as it is initialized, and delegates its endorsement to the signing
enclave, which is exclusively able to access SKP . We rely

on the isolation properties of Sanctum enclaves to guarantee
privacy of the signature.

To avoid performing cryptographic operations in the security
monitor, Sanctum instead implements a message passing primi-
tive, whereby an enclave can receive a private message directly
from another enclave, along with the sender’s measurement.
Details are provided in [11].

Sanctum is also capable of handling local attestations without
the presence of a trusted remote party. In this use case requests
for attestation are authenticated by the signing enclave in order
to prevent arbitrary enclaves from obtaining another enclave’s
attestation.

C. Anonymous Attestation

Neither of the protocols outlined here provide anonymous
attestations, but the construction is not incompatible with
anonymous schemes as the attestation protocol is implemented
in replaceable authenticated software. In order to convert the
existing scheme to an anonymous one a trusted party is needed
to handle group membership and revocation. This party, often
the platform manufacturer, is responsible for managing the set
of public keys corresponding to authentic devices. It must also
keep track of any compromised platforms and add their keys
to a revocation list.

As an example, to implement direct anonymous attestation a
platform wishing to prove that it is authentic will demonstrate
to the manufacturer in zero knowledge that it possesses a
secret key corresponding to one of the public keys on the list.
This can be done using a scheme for signatures over encrypted
messages such as [7], [8] and allows the manufacturer to certify
that the platform is authentic without learning which platform
corresponds to a key and breaking its anonymity. To perform
attestations the platform will generate a signature proof of
knowledge over the value to be attested to, the certification
from the manufacturer, and its secret key. Remote clients can
verify based on the platform’s knowledge of a certification from
the manufacturer over its secret key that the attestation came
from an authentic device. These attestations are guaranteed to
be both anonymous in that they reveal no information about
which platform generated them and unlinkable in that no two
attestations can be determined to have come from the same
platform.

For the use case of allowing remote clients to verify that
their outsourced computation is being run on the expected
hardware, anonymity does not provide any immediate benefit,
as the same entity, a cloud provider for example, will often
own a large set of interchangeable platforms on which the
client could have been scheduled. Anonymity could even be
detrimental in the case where the client wishes to verify that the
provider scheduled their computation to a specific datacenter
and did not further outsource it.

VI. REQUIRED HARDWARE

While the secure boot and remote attestation mechanisms
presented in this manuscript are not limited to one specific

Payload
(attestation

management)

Signature(PKP , H(P))
with SKDEV

SKP

PKP

H(Payload)

PKDEV

(remote)
Trusted

First
Party

zero or Enc(SKDEV)

OS,
other software,

data (r
em

ot
e

at
te

st
at

io
n

pr
ot

oc
ol

)

(S / enclave)

(network)

1. Remote (R) trusts (PKDEV),
selects
primes p, g and random A;
sends (p, g, gA (mod p)).

2. Software to be attested (S)
selects random B,
computes gB (mod p)
k=(gA)B(mod p).

3. S produces an attestation:
(Sanctum implements this via
a special “signing enclave”)
A = SignedP(PKDEV,
 SignedDEV(PKP, H(P)),
 p, g, gA,gB, ...)
sends A

3. R computes
k=(gB)A(mod p)
veri�es A
trusts messages
 encrypted with k

Fig. 7. A protocol diagram for remote attestation, as implemented by the
Sanctum processor.

processor architecture, we do rely on some basic properties
and primitives to implement the root of trust key derivation.

Specifically, the processor must boot from a trusted code
sequence with an integrity guarantee, e.g., an on-chip ROM, so
that the measurement and key derivation procedures described
in this work produce deterministic results. An uncompromised
system should be able to reliably generate its root keys, while
changes to the boot process should result in the system deriving
an incorrect key.

Post boot the processor is responsible for maintaining the
integrity of the system and the confidentiality of the keys it
receives from the root of trust. As keys are generated in part
based on the authenticity of the software stack, a machine
that boots with malicious or otherwise modified software will
generate different keys than the system would have had it
booted with the expected software stack. Thus, a malicious
software stack may leak its keys without compromising the
security of an honest software system, as the keys for modified
system have no relation to those for the uncompromised soft-
ware stack. The exact isolation mechanism required to maintain
these confidentiality and integrity guarantees depends on the
threat model. Sanctum capably achieves these requirements
for a software adversary via its enclaves and security monitor,
while a system on which all software is trusted may rely on
process isolation alone.

In addition to these basic requirements, the processor
must provide a trusted source of entropy for attestation. In
Section VI-C, we describe the implementation of a true random
number generator (TRNG), which can be read directly by
unprivileged software. In a system where the operating system
is part of the trusted code base, OS-provided entropy may

suffice.
The processor must also store or derive its root cryptographic

key pair (or a seed) in a trustworthy manner. In this manuscript,
we focus on PUF-backed keys and keys derived from TRNG
entropy, as described in Section VI-B. Other systems may
employ non-volatile memory with explicitly provisioned keys,
taking care to adjust the threat model to include the additional
trust in the manufacturer.

A. Baseline Processor Architecture (Sanctum)

The Sanctum processor [10] is a modification of the Rocket
Chip [27] implementation of the RISC-V [45] priv-1.10 [44]
instruction set architecture. Rocket Chip’s straightforward
architecture guarantees that a trusted “boot ROM” executes at
each reset.

Sanctum’s hardware modifications enable strong isolation
(integrity and confidentiality) of software containers (enclaves)
with an insidious threat model of a remote software adversary
able to subvert system software and actively tamper with
network traffic. Sanctum also guarantees the integrity of an
honest “Security Monitor” (SM), which is authenticated at boot,
and maintains meaningful isolation guarantees, as was formally
verified [37]. Sanctum uses RISC-V’s “machine mode” (highest
privilege software) to host the SM, and maintains that the SM
has exclusive access to a portion of DRAM (thus maintaining
its integrity and protecting its keys). The SM routes interrupts
and configures hardware invariants to ensure enclaves do not
involuntarily share resources with any other software. Enclaves
access the TRNG via a user-mode CSR (register), meaning
enclaved software accesses trusted entropy without notifying
the untrusted operating system. Sanctum also guards against
subtle side channel attacks via the cache state and shared page
tables.

Sanctum trusts the integrity and confidentiality of DRAM,
and maintains its security invariants on all DRAM accesses
including DMA and the debugger interface. As a consequence,
the root of trust must include code to sanitize all DRAM
before any untrusted software is allowed to execute, in order
to guarantee keys persist across reboots and be compromised
by malicious system software.

The work described in this manuscript does not rely on
details of any specific ISA, and can be adopted for arbitrary
processor systems so long as the underlying architecture can
provide the basic requirements outlined at the head of this
section.

B. LPN PUF for secure, repeatable key derivation

In order to achieve secure non-volatile keys with an honest-
but-curious manufacturer, we rely on a trapdoor LPN PUF
scheme constructed by Herder et al. [20]. The majority of the
mechanism is implemented in the root of trust software, as
detailed in Section IV-B; the required hardware is an array of M
identical ring oscillator pairs, as shown in Figure 8. Software ac-
cesses this structure via CSRs (control/status registers) at Core
0: puf_disable, puf_select, and puf_cycles, and
puf_readout. Their semantics are explained below.

Ring Oscillator

roi

+1

-

Counter

PUF
Readout[0]

j

j

CounterRing Oscillator

PUF Bit Cell

PUF Bit Cell

PUF Bit Cell
...

ro0

roen

PUFEN

PUF Bit Cell

PUF
Readout[M-1]

j

PUF
Readout[1]

PUF
Readout[2]

Clock

(i delay elements)

PUF
Controller

(reset clears all
FFs and repeats

controller)

FF

FF

PUFDISABLE

PUFSELECT

PUFCYCLES

PUFREADOUT

Reset

(controller emits
a pulse of duration

PUFCYCLES at reset)

ci coxor

Fig. 8. A detailed block diagram of the LPN PUF.

Each ring oscillator pair is endowed with counters to compute
the relative frequency of the pair of ring oscillator: the j-
bit counters are clocked by each ring oscillator, their counts
subtracted to derive a j-bit magnitude. The elements #»e and #»c
vectors, as defined in Section IV-B2 are the sign and absolute
value of each oscillator pair’s magnitude, respectively. The
oscillator (and counter) circuits are identically implemented
to minimize bias due to differences in design among the ring
oscillators – this circuit measures bias from manufacturing
variation. The ring oscillator is a series of delay elements
(buffers), feeding back into an inverting element (XOR) at
the head. Each ring oscillator consists of i delay elements in
total. A controller circuit generates a pulse of puf_cycles
processor clock cycles at reset, simultaneously enabling all ring
oscillators. While enabled, the ring oscillates, and the resulting
signal is used to clock the attached counter circuit. The specific
parameterization of i and j depends on the implementation
platform: the ring oscillators must not oscillate at a higher
frequency than the counter circuit can accommodate. Depending
on the magnitude of manufacturing variation, j can be adjusted
to increase the dynamic range of counters. A more sophisticated,
future design may implement a saturating counter to better
address a platform where high dynamic range of counts is
expected.

The processor can adjust puf_cycles and trigger a soft
reset in order to re-run the PUF with a new duration, in
case of overflowing or insufficient counts. The root of trust
reads magnitude values via a mux, by setting puf_select
and observing puf_readout. Afterwards, the root of trust
disables the readout by setting puf_readout, which latches
and forces puf_readout to 0xFF.F until the processor is
reset. At reset, counters and disabling latch are cleared, and
the PUF is re-run, allowing a new readout.

We implement the LPN PUF hardware on a Xilinx Zynq
7000 FPGA by manually implementing a portable ring oscil-
lator and counter circuit, and aggressively constraining the
relative placement of its components. This implementation, as
shown in Figure 9, occupies a column of SLICEL sites on the
FPGA, which prevents the circuit to be placed sparsely, and
ensures the ring oscillator and counter circuit are contiguous
(constraining the circuit to a row would allow the FPGA tools
to place the circuit sparsely across columns containing BRAMs,

Ri
ng

 O
sc

ill
at

or

co[0]

LUT6 (O6=A1⊕A6)
LUT5

LUT5
AO6

A1
1
0

(A1-A5)→~A1
roen

ro0

(A1-A5)→A1roi

LUT6 (O6=A6)
LUT5 (→1)
LUT5 (→0)

BO6

A6

1
0

ro1
ro0 A6

LUT6 (O6=A6)

CO6 ro2ro1 A6

LUT6 (O6=A6)

DO6 ro3ro2

SLICEL

(entire ring oscillator
and counter are arranged

in one column of SLICEL
elements, as ring oscillator
circuits must be identically

placed and routed)

roiroi-1
(i-

5
de

la
y

el
em

en
ts

)

SLICEL

FF
roen

AX AQPUFEN

Co
un

te
r

co[0]

...

FF AQ

(implemented
as below) O6A6

O6A6

LUT6 (O6=A6)

1
0

LUT6

O6
A6 ci[0]

co[1]co[1]
FF BQ

0
LUT6

O6
A6 ci[1]

co[2]co[2]
FF CQ

0
LUT6

O6
A6 ci[2]

co[3]co[3]
FF DQ

0
LUT6

O6
A6 ci[3]

CARRY4 SLICEL

co[j-1]co[j-1]
FF

LUT6

O6
A6

ci[j-1]CARRY4

... (j-5 counter bits)

SLICEL

(all counter FFs clocked by roi)

...

Fig. 9. Ring oscillator and counter, a critical component of the LPN PUF,
as implemented on a Xilinx Zynq 7000 FPGA. The circuit is placed in the
same column of SLICEL elements to ensure it is identically routed across all
instances.

XOR
Reduction

Sampling clock

(M samples
contribute

to each
 TRNG bit)

TRNG Sample

TRNG bit [0]

TRNG bit [1]

TRNG bit [N-1]

LUT6 (O6=~A6)

LUT5

LUT5

a

b c

{A/B/C/D}

xQ

O6

A6

A1-A5

O5 x

a

0
0
0
0
0 1

0

(LUT-FF pair in a SLICEL)

b

cFF

(A1-A5)→0

(A1-A5)→1

d
FF

c _X

_MUX

d

Fig. 10. A TRNG, as implemented on a Xilinx Zynq 7000 FPGA.

DSPs and other large blocks).
The ring oscillator is a chain of buffers implemented as LUT6

elements. Through trial and error, we determined that using the
A6 input for the ring oscillator (inputs A1-A5 drive a 5-input
lookup table, and are not guaranteed glitch-free) yields the best
results. The inverting element in the oscillator is implemented
as an XOR of the enable signal and the feedback (A1 A6 LUT6
inputs, respectively). We constrain i delay elements of the ring
oscillator to be laid out contiguously in a single column.

Adjacent to each ring oscillator is its counter circuit. As
shown in Figure 9, we exploit detail of the CARRY4 primitive
on the FPGA to implement a small ripple-carry counter without
the use of slow programmable logic. Like the ring oscillator,
we constrain the j bits of counter to be laid out contiguously
in the same column.

C. TRNG via jittery sampling of ring oscillators

In order to implement remote attestation for enclaves in
the presence of malicious system software, Sanctum requires
private, trustworthy entropy. This is needed, at a minimum,
to complete a Diffie Hellman handshake to establish a secure
communications channel with the trusted first party (cf. Sec-
tion V). Enclaves that require non-deterministic behavior (such
as enclaves that generate cryptographic keys) require additional
entropy, but may rely on a PRNG seeded from the initial word
of entropy.

Here, we describe a TRNG, which produces a stream of
random data words by sampling free-running ring oscillators.
Clock jitter is considered an unpredictable physical resource
and, given that the (100MHz, as a generous maximum)
sampling frequency is far less than the natural frequency
of the short ring oscillator (in the gigahertz), we assume
the relative jitter of these processes is sufficient to treat
subsequent samples as independent and identically distributed
(i.i.d.) random variables. Furthermore, we assume different (but
identically implemented) ring oscillators and sampling logic to
be i.i.d. Section VII-C rigorously tests these assumptions via
a suite of statistical tests over the TRNG output.

While the bits sampled from the free-running ring oscillator
do not have a 50% fair distribution (bias), an unfair coin flip
can be “conditioned” toward fairness using a von Neumann
corrector by instead recording the parity of several unfair (but
i.i.d.) coin flips. To this end, the TRNG aggregates several

(M) concurrently sampled ring oscillators which are XOR-
ed to produce a single bit of output. Software is able to
construct arbitrarily wide words of entropy by repeatedly
sampling bits from the TRNG. To improve TRNG bandwidth
and convenience, however, we concatenate a parallel vector of
N such that sets of M ring oscillators produce N -bit words
of entropy.

This structure, and the detail of placement and routing of one
sampled ring oscillator in FPGA fabric is shown in Figure 10
and Section VII-C demonstrates that a cryptographically secure
TRNG is achieved with M = 7 or better. To minimize bias, the
ring oscillators and sampling circuit are identically placed and
routed, by manually implementing the structure via constrained
FPGA resources, as shown in the figure. In order to resolve
metastability, each ring oscillator is doubly registered in the ring
oscillator module. The output is aggregated with (M −1) other
ring oscillator samples (this circuit has no fanout), and latched
in the core pipeline; three registers are widely considered
sufficient to prevent metastable bits.

In Sanctum, the TRNG values are exposed to user-mode
software (including enclaves) via a user-mode readable CSR
(control/status register), allowing enclaves to access TRNG
output without notifying the untrusted operating system. Each
core implements its own TRNG to grant private entropy to
each hardware process.

VII. EVALUATION

We evaluate our approach to secure bootstrapping by
measuring the code size and latency of the root of trust. The
evaluation examines a variety of design points (T, P, PAES,
H, etc. defined in Section IV) addressing the threat model of
a honest-but-curious manufacturer. The code size of the root
of trust is a straightforward measurement of the required real
estate in a processor’s trusted boot ROM, which includes the
devicetree and a rudimentary reset vector, as is the case with
an insecure baseline.

Given the bootstrapping operation is performed in a trusted,
isolated environment with no asynchronous events, we use
the number of instructions executed by the root of trust
program to estimate its latency (the time between a reset, and
when the processor transfers control to the payload), given an
assumed clock frequency. The in-order pipeline makes number
of instructions a good proxy for latency. We augment this via a
fixed cost model, which is used to approximate the overheads
due to the memory hierarchy.

We separately examine our implementation of the required
hardware subsystems: the TRNG and PUF, focusing on the
process by which we select appropriate parameters for the
security guarantees these primitives must provide.

We do not evaluate the remote attestation scheme as
described in this manuscript, as it not a part of the root of
trust (boot ROM), and is implemented in any of a variety of
ways by the software system after boot. Also excluded from
evaluation is the performance of inter-enclave communication
and other aspects of the Sanctum processor, as these are not
the main focus of this manuscript.

T P256 P512 P256AES P512AES HT HP256 HP512 HP256AES HP512AES

0

10000

20000

30000

40000

50000

60000

70000

80000

90000

ro
o
t

o
f

tr
u
st

 s
iz

e
 (

B
y
te

s)

53168

74704 74969
83736 83992

1528 1560 1560 1568 1568

Root of Trust (Bootloader) ROM

Code
Data

Fig. 11. Code size of variations of the root of trust.

T P256 P512 P256AES P512AES HT HP256 HP512 HP256AES HP512AES

0.000

0.001

0.002

0.003

0.004

0.005

0.006

0.007

0.008

0.009

ro
o
t

o
f

tr
u
st

 l
a
te

n
cy

 (
S
e
co

n
d
s)

0

0 0

0 0

0

0 0
0 0

Root of Trust latency, excluding zeroing of DRAM

Fig. 12. Measurement root latency for variations on the root of trust, excluding
the clearing of uninitialized DRAM.

A. Root of Trust code size and latency

For all roots of trust considered, we evaluate a simulated
system with 4 in-order 1GHz RISC-V cores booting a 128 KB
payload. We model memory accesses via a simulated cache
hierarchy consisting of a shared 4-way 1 MB L2 cache with 32
byte lines and a random replacement policy (3 cycle accesses),
and private data and instruction caches, each a set-associative 4-
way 32 KB cache with 32 byte lines with a random replacement
policy (30 cycle access time). Our modeled system has 1 GB
DRAM and a 70 cycle access time.

We evaluate the six variations on the root of trust described
in Section IV, and report the root of trust size (required
trusted ROM size) in Figure 11. The minimal roots of trust
(HT and similar) are small indeed, requiring only a 1.47 KB
ROM, which includes only the code needed to copy a root of
trust binary from untrusted memory, hash it, and compare the
result against an expected constant. No significant variation
in the size of the root of trust appeared with a varied size
of the root of trust binary in untrusted memory, meaning
HT,HP256,HP256AES,HP512,HP512AES all require
a 1.5 KB ROM.

The corresponding latency of each root of trust considered
is shown by Figure 11. As expected, the minimal root of trust
ROM designs (HT, etc.) incur a small increase (approximately
0.3 milliseconds) in root of trust latency, but exhibit an
enormous reduction in boot ROM size.

This evaluation does not measure the time to provision the
PUF (to generate a secret key and compute the corresponding
public helper data), as this is a one-time operation, and is
less complex than normal key recovery, which is included in
the measurements here. Increasing the number of PUF ring
oscillators (M) from 256 to 512 did not significantly increase
the root of trust latency, as the costly matrix operations are
performed on a 128 × 128 matrix in GF (2) in all scenarios,
and only the size of straightforward vector operations and

linear scans are increased.
Storing AES-encrypted keys in untrusted memory is some-

what more efficient than re-generating the keys from their seeds
at each boot, although this difference is dwarfed by the latency
of erasing DRAM at boot, as discussed below.

The latency of sanitizing DRAM is excluded from these
results, and is estimated to be 2.35 seconds (on our modeled
system), via a straightforward software loop, for the 1GB of
DRAM in the systems considered, or slightly less, if booting
a larger payload. Given that the latency of sanitizing DRAM
dominates the root of trust, all roots of trust considered exhibit
approximately the same latency at under 2.4 seconds, with
ample opportunity to accelerate the DRAM erasure via DMA
operations. In a system with transparent encryption of DRAM,
cryptographic erasure is a reasonable option (erase only the
keys with which DRAM is encrypted, thereby making the
encrypted data unrecoverable).

B. TRNG

In order to evaluate the TRNG implemented on an FPGA
fabric, we sample a contiguous string of bytes from the TRNG
(one sample per clock cycle), store the stream in a large memory,
and inspect the resulting binary with a suite of statistical tests.
The dieharder [33] suite of statistical tests is run on a
gigabyte of contiguous bytes read from the TRNG; the test
suite is invoked with default configuration (a true random string
is expected to pass each test with 95% probability). The ent
[42] test estimates bit bias (expected bit value) and entropy per
bit in the same binary blob. We report the size of each TRNG
configuration (measured by utilization of SLICEL resources),
and a digest of the results of each test suite. The TRNG was
constrained to densely pack the required circuit on the Xilinx
Zynq 7000 FPGA fabric. A 4 inverter loop with two registers is
packed into one SLICEL primitive, with additional SLICELs
used for an XOR reduction for a TRNG with M > 1.

TABLE I
TRNG PERFORMANCE AND COST.

M
size

(SLICELs)
expected
bit value

entropy
per bit

dieharder
tests passed

1 16 0.5134 0.9995 15/114
3 64 0.5004 1.0000 55/114
5 96 0.5000 1.0000 75/114
7 136 0.5000 1.0000 108/114
9 176 0.5000 1.0000 114/114

The TRNG is configured to output a 64-bit word per cycle,
and this evaluation considers a range (M) of inverters XOR-ed
together to produce each TRNG bit. Slight bias of individual
bits translates into a reduced entropy – an effect mitigated by
increasing M – the number of unpredictable bits XOR-reduced
to produce one bit of entropy. Our evaluation (see Table VII-B)
shows that a 64-bit TRNG produces a cryptographically secure
random stream for M as low as 7 at a modest cost of FPGA
resources (0.24% of the FPGA; for reference, a bare-bones

4 delay
elements

8 delay
elements

12 delay
elements

16 delay
elements

32 delay
elements

Large spread of
frequencies requires
wide counters

Small spread of
frequencies results in
a noisy PUF

Fig. 13. Distribution of repeated frequency measurements for a population of
i-element ring oscillators on a Xilinx Zynq7000 for several i: 4,8,12,16,32.

in-order 32-bit processor without the cache subsystem weighs
in at approximately 600 slices).

The TRNG can be significantly reduced in size by adjusting
its N parameter to produce only a byte of entropy per
sample. Furthermore, lesser parameterizations of M produce a
reasonably high-quality random stream.

C. Trapdoor LPN PUF

We examine the performance of the LPN PUF primitive in
order to select an appropriate parameterization (M : number
of ring oscillator pairs for N = 128, i.e., a 128-bit secret
value) such that the processor is able to tolerate bit errors
in typical conditions, and achieve negligible probability of
failed key recovery at boot. All PUF measurements were
performed with a Xilinx Zynq 7000 device (via a ZC706
development platform) in a typical setting, reasonably isolated
from sources of electric interference, at 72 degrees F. We do
not evaluate the repeatability of the ring oscillator pairs across
temperature and power variations; prior work [20] demonstrates
automotive variation in environmental conditions increases the
noise exhibited by the PUF, and recommends a set of 450
ring oscillator pairs to obfuscate a 128-bit secret value.

Figure 13 shows a distribution of measured RO frequencies
obtained from 1024 measurements spanning several hours and
several power cycles of the FPGA platform. To measure this
distribution, we implemented 1024 ring oscillators of various
lengths driving a 12-bit counter. We run the ring oscillators
for 5.12 microseconds (1024 200MHz processor cycles), and
estimate ring oscillator frequency from recorded counter values
(extremely fast ring oscillators may introduce errors in counts
due to timing closure and overflow). We observe no significant
counter glitches in the recorded population. The distribution
of RO frequencies narrows significantly for oscillators with
a longer delay line. Short, fast oscillators exhibit a wide

95 96 97 98 99
Percentile of PUF bits sampled, in order of decreasing confidence

0

2

4

6

8

10

12

14

16

P
ro

b
a
b
ili

ty
 o

f
o
n
e
 o

r
m

o
re

 e
rr

o
rs

 i
n
 t

h
e
 P

U
F

re
a
d
o
u
t(

%
)

Fig. 14. Probability of one or more bit errors among a greedy sampling 512
ring oscillator pairs, in order of decreasing confidence.

distribution of frequencies, with some noise indicative of
glitching.

Table VII-B details the distribution of ring oscillator frequen-
cies for the 5 configurations considered, including the largest
standard deviation in frequency of any single ring oscillator
observed across the 1024 repeated samples. From this table
and Figure 13, and based on trial and error, we note that an
8-gate ring oscillator is well-suited for an LPN PUF circuit:
with a wide distribution of frequencies, it does not exceed the
device’s rated maximum, shows little evidence of glitching,
and has little variation in RO frequencies over time.

TABLE II
RING OSCILLATOR PERFORMANCE AND COST.

delay
elements

minimum
frequency

expected
frequency

maximum
frequency

maximum
deviation of

RO frequency

4 307 MHz 515 MHz 608 MHz 9MHz
8 218 MHz 277 MHz 303 MHz 5MHz

12 96 MHz 185 MHz 205 MHz 2MHz
16 44 MHz 137 MHz 152 MHz 15MHz
32 62 MHz 70 MHz 76 MHz 0.6 MHz

Each PUF bit is a pair of ring oscillators and counters; the
measurement of a PUF bit is the difference of the two counts,
which conveys the bit value (the sign of the measurement),
and confidence (the magnitude), as described in Section VI-B.
To characterize the PUF bit error rate, we implement 512 PUF
bits with 12-bit counters and 8-element ring oscillators. We
enable the 512 PUF bits for a duration of 1024 processor cycles
(5.12 microseconds), and read out the resulting magnitudes.
We repeat this measurement 1024 times across several hours,
occasionally power cycling the platform. The expected value
of a PUF bit sampled from this population is 0.4688. For
each PUF bit, we define a “gold” value to be the median (most
frequent) value across the 1024-sample population. Figure 14

shows the probability of one or more bit errors (relative to gold
values) in one entire PUF readout. Under typical conditions,
only about one percent of ring oscillator pairs we examined are
unreliable. Among the 90% of ring oscillator pairs with highest
confidence value, no errors were detected across 1024 readouts.
Informally, we note that while this error rate is as high as
10-15% for other ring oscillator configurations, the confidence
information remains a reliable means to select stable PUF bits.

We confirmed that 4 identical FPGA platforms produced
different expected PUF outputs. For a population of 512
PUF bits, we observed 51 with the same value across all
4 platforms, in expectation, after 16 measurements. Under an
i.i.d. assumption, we expect to observe 64 identical bits across
4 devices.

Prior work [20], [25] characterizes their PUF implementation
across the automotive range of environmental conditions, and
selects a much larger M (450) for the same N = 128 in order
to tolerate a higher error rate. Given the above evaluation, we
parameterize the LPN PUF with M = 256 for the P256 root
of trust (a generous margin of POK bits for a 128-bit key, given
our observations under normal conditions), and M = 512 for
the P512 (informed by the reported increased noise in an
automotive environment, as shown in prior work). In practice,
the larger M considered in this case has little performance
overhead, and requires only a few bytes of additional space in
the on-chip boot ROM, as shown in Section VII-A.

VIII. CONCLUSION

We have provided a detailed description of the secure boot
and remote attestation process in a prototype Sanctum processor.
While a significant part of this paper was devoted to PUF-based
key generation, the boot and attestation protocols are agnostic
to where entropy comes from, and are equally applicable to the
case where secret keys or seeds are stored in secure non-volatile
memory, or simply generated by a TRNG. In our prototype
implementation, we have shown that PUFs can be used to
derive keys unknown to the manufacturer while providing an
efficient boot and attestation process.

ACKNOWLEDGEMENTS

This work was partially funded by Delta Electronics, Analog
Devices, and DARPA & SPAWAR under contract N66001-
15-C-4066, and the DARPA SSITH program under contract
HR001118C0018. The U.S. Government is authorized to
reproduce and distribute reprints for Governmental purposes
not withstanding any copyright notation thereon. The views,
opinions, and/or findings expressed are those of the author(s)
and should not be interpreted as representing the official
views or policies of the Department of Defense or the U.S.
Government.

REFERENCES

[1] “Trusted platform module library specification family “2.0”.” Trusted
Computing Group, 2014.

[2] Altera, “Secure Device Manager for Intel R© Stratix 10 Devices Provides
FPGA and SoC Security,”
https://www.altera.com.

[3] T. Alves and D. Felton, “TrustZone: Integrated hardware and software
security,” Information Quarterly, vol. 3, no. 4, pp. 18–24, 2004.

[4] I. Anati, S. Gueron, S. P. Johnson, and V. R. Scarlata, “Innovative
technology for CPU based attestation and sealing,” in Proceedings of
the 2nd International Workshop on Hardware and Architectural Support
for Security and Privacy, HASP, vol. 13, 2013.

[5] ARM Security Technology Building a Secure System using TrustZone R©
Technology, http://infocenter.arm.com/help/topic/com.arm.doc.prd29-
genc-009492c/PRD29-GENC-009492C trustzone security whitepaper.
pdf, ARM Limited, Apr 2009, reference no. PRD29-GENC-009492C.

[6] F. Brasser, U. Müller, A. Dmitrienko, K. Kostiainen, S. Capkun,
and A. Sadeghi, “Software grand exposure: SGX cache attacks are
practical,” CoRR, vol. abs/1702.07521, 2017. [Online]. Available:
http://arxiv.org/abs/1702.07521

[7] E. Brickell, J. Camenisch, and L. Chen, “Direct anonymous attesta-
tion,” in Proceedings of the 11th ACM conference on Computer and
communications security. ACM, 2004, pp. 132–145.

[8] J. Camenisch, M. Drijvers, and A. Lehmann, “Anonymous attestation
with subverted tpms,” in Advances in Cryptology – CRYPTO 2017, J. Katz
and H. Shacham, Eds. Cham: Springer International Publishing, 2017,
pp. 427–461.

[9] V. Costan and S. Devadas, “Intel SGX explained,” Cryptology ePrint
Archive, Report 2016/086, Feb 2016.

[10] V. Costan, I. Lebedev, and S. Devadas, “Sanctum: Minimal hardware
extensions for strong software isolation,” in 25th USENIX Security
Symposium (USENIX Security 16), 2016, pp. 857–874.

[11] ——, “Secure processors part II: Intel SGX security analysis and MIT
sanctum architecture,” in FnTEDA, 2017.

[12] S. Devadas and T. Ziola, “Volatile device keys and applications thereof,”
Jul. 21 2009, uS Patent 7,564,345.

[13] Y. Dodis, L. Reyzin, and A. Smith, “Fuzzy extractors: how to generate
strong keys from biometrics and other noisy data,” in Advances in
Cryptology - Eurocrypt 2004, 2004.

[14] C. Fletcher, M. van Dijk, and S. Devadas, “Secure Proces-
sor Architecture for Encrypted Computation on Untrusted Pro-
grams,” in Proceedings of the 7th ACM CCS Workshop on
Scalable Trusted Computing; an extended version is located at
http://csg.csail.mit.edu/pubs/memos/Memo508/memo508.pdf (Master’s
thesis), Oct. 2012, pp. 3–8.

[15] B. Fuller, X. Meng, and L. Reyzin, “Computational fuzzy extractors,” in
Advances in Cryptology-ASIACRYPT 2013. Springer, 2013, pp. 174–193.

[16] B. Gassend, “Physical random functions,” Master’s thesis, Massachusetts
Institute of Technology. Dept. of Electrical Engineering and Computer
Science., Jan. 2003.

[17] B. Gassend, D. Clarke, M. van Dijk, and S. Devadas, “Silicon physical
random functions,” in Proceedings of the 9th ACM conference on
Computer and communications security (CCS), 2002.

[18] O. Goldreich and R. Ostrovsky, “Software Protection and Simulation on
Oblivious RAMs,” Journal of the ACM, vol. 43, no. 3, pp. 431–473,
1996. [Online]. Available: citeseer.nj.nec.com/goldreich96software.html

[19] D. Grawrock, Dynamics of a Trusted Platform: A building block approach.
Intel Press, 2009.

[20] C. Herder, L. Ren, M. van Dijk, M.-D. Yu, and S. Devadas, “Trapdoor
computational fuzzy extractors and stateless cryptographically-secure
physical unclonable functions,” IEEE Transactions on Dependable and
Secure Computing, vol. 14, no. 1, pp. 65–82, 2017.

[21] M. Hiller, D. Merli, F. Stumpf, and G. Sigl, “Complementary IBS:
Application Specific Error Correction for PUFs,” in IEEE Int. Symposium
on Hardware-Oriented Security and Trust. IEEE, 2012.

[22] M. Hiller, M. Weiner, L. Rodrigues Lima, M. Birkner, and G. Sigl,
“Breaking Through Fixed PUF Block Limitations with Differential
Sequence Coding and Convolutional Codes,” in Proceedings of the 3rd
International Workshop on Trustworthy Embedded Devices, ser. TrustED
’13, 2013, pp. 43–54.

[23] D. Holcomb, W. Burleson, and K. Fu, “Initial SRAM State as a
Fingerprint and Source of True Random Numbers for RFID Tags,” in
Proceedings of the Conference on RFID Security, Jul. 2007.

[24] T. Hudson, “Heads,” 2017. [Online]. Available: https://trmm.net/Heads
[25] C. Jin, C. Herder, L. Ren, P. H. Nguyen, B. Fuller, S. Devadas, and

M. van Dijk, “Fpga implementation of a cryptographically-secure puf
based on learning parity with noise,” Cryptography, vol. 1, no. 3, 2017.
[Online]. Available: http://www.mdpi.com/2410-387X/1/3/23

[26] kokke, “tiny-aes-c,” https://github.com/kokke/tiny-AES-c, 2018.

http://infocenter.arm.com/help/topic/com.arm.doc.prd29-genc-009492c/PRD29-GENC-009492C_trustzone_security_whitepaper.pdf
http://infocenter.arm.com/help/topic/com.arm.doc.prd29-genc-009492c/PRD29-GENC-009492C_trustzone_security_whitepaper.pdf
http://infocenter.arm.com/help/topic/com.arm.doc.prd29-genc-009492c/PRD29-GENC-009492C_trustzone_security_whitepaper.pdf
http://arxiv.org/abs/1702.07521
citeseer.nj.nec.com/goldreich96software.html
https://trmm.net/Heads
http://www.mdpi.com/2410-387X/1/3/23
https://github.com/kokke/tiny-AES-c

[27] Y. Lee, A. Waterman, R. Avizienis, H. Cook, C. Sun, V. Stojanovic,
and K. Asanovic, “A 45nm 1.3 GHz 16.7 double-precision GFLOPS/w
RISC-V processor with vector accelerators,” in European Solid State
Circuits Conference (ESSCIRC), ESSCIRC 2014-40th. IEEE, 2014, pp.
199–202.

[28] D. Lie, C. Thekkath, M. Mitchell, P. Lincoln, D. Boneh, J. Mitchell,
and M. Horowitz, “Architectural support for copy and tamper resistant
software,” ACM SIGPLAN Notices, vol. 35, no. 11, pp. 168–177, 2000.

[29] R. Maes, P. Tuyls, and I. Verbauwhede, “Low-Overhead Implementation
of a Soft Decision Helper Data Algorithm for SRAM PUFs,” in
Cryptographic Hardware and Embedded Systems (CHES), 2009, pp.
332–347.

[30] ——, “Soft Decision Helper Data Algorithm for SRAM PUFs,” in
Proceedings of the 2009 IEEE International Conference on Symposium
on Information Theory - Volume 3, ser. ISIT’09, 2009, pp. 2101–2105.

[31] R. Maes, A. Van Herrewege, and I. Verbauwhede, “PUFKY: A Fully
Functional PUF-based Cryptographic Key Generator,” in Proceedings
of the 14th International Conference on Cryptographic Hardware and
Embedded Systems, ser. CHES’12, 2012, pp. 302–319.

[32] F. McKeen, I. Alexandrovich, A. Berenzon, C. V. Rozas, H. Shafi,
V. Shanbhogue, and U. R. Savagaonkar, “Innovative instructions and
software model for isolated execution,” HASP, vol. 13, p. 10, 2013.

[33] G. Novark and E. D. Berger, “Dieharder: Securing the heap,”
in Proceedings of the 17th ACM Conference on Computer and
Communications Security, ser. CCS ’10. New York, NY, USA: ACM,
2010, pp. 573–584. [Online]. Available: http://doi.acm.org/10.1145/
1866307.1866371

[34] O. Peters, “Ed25519,” https://github.com/orlp/ed25519, 2018.
[35] X. Ruan, Boot with Integrity, or Don’t Boot. Berkeley, CA: Apress,

2014, pp. 143–163. [Online]. Available: https://doi.org/10.1007/978-1-
4302-6572-6 6

[36] M.-J. O. Saarinen, “tiny sha3,” https://github.com/mjosaarinen/tiny sha3,
2018.

[37] P. Subramanyan, R. Sinha, I. Lebedev, S. Devadas, and S. A. Seshia,
“A formal foundation for secure remote execution of enclaves,” in
Proceedings of the 2017 ACM SIGSAC Conference on Computer and
Communications Security. ACM, 2017, pp. 2435–2450.

[38] G. E. Suh, “Aegis: A single-chip secure processor,” Ph.D. dissertation,
Massachusetts Institute of Technology. Dept. of Electrical Engineering
and Computer Science., Aug. 2005.

[39] G. E. Suh, D. Clarke, B. Gassend, M. Van Dijk, and S. Devadas, “AEGIS:

architecture for tamper-evident and tamper-resistant processing,” in Pro-
ceedings of the 17th annual international conference on Supercomputing.
ACM, 2003, pp. 160–171.

[40] G. E. Suh and S. Devadas, “Physical unclonable functions for device au-
thentication and secret key generation,” in ACM/IEEE Design Automation
Conference (DAC), 2007.

[41] G. E. Suh, C. W. O’Donnell, I. Sachdev, and S. Devadas,
“Design and Implementation of the AEGIS Single-Chip Secure
Processor Using Physical Random Functions,” in Proceedings of the
32nd ISCA’05. New-York: ACM, June 2005. [Online]. Available:
http://csg.csail.mit.edu/pubs/memos/Memo-483/Memo-483.pdf

[42] J. Walker, “A pseudorandom number sequence test program,” http://www.
fourmilab.ch/random/, 2018.

[43] W. C. Waterhouse, “How often do determinants over finite fields
vanish?” Discrete Mathematics, vol. 65, no. 1, pp. 103 – 104,
1987. [Online]. Available: http://www.sciencedirect.com/science/article/
pii/0012365X87902172

[44] A. Waterman, K. Lee, Asanovic, and S. Inc., “The RISC-V instruction
set manual volume II: Privileged architecture version 1.10,” EECS
Department, University of California, Berkeley, Tech. Rep., May 2017.
[Online]. Available: https://riscv.org/specifications/privileged-isa/

[45] A. Waterman, Y. Lee, D. A. Patterson, and K. Asanovic, “The
RISC-V instruction set manual, volume I: User-level ISA, version
2.0,” EECS Department, University of California, Berkeley, Tech.
Rep. UCB/EECS-2014-54, May 2014. [Online]. Available: http:
//www.eecs.berkeley.edu/Pubs/TechRpts/2014/EECS-2014-54.html

[46] R. Wojtczuk and J. Rutkowska, “Attacking Intel trusted execution
technology,” Black Hat DC, 2009.

[47] R. Wojtczuk, J. Rutkowska, and A. Tereshkin, “Another way to
circumvent Intel R© trusted execution technology,” Invisible Things Lab,
2009.

[48] Xilinx, “Developing Tamper-Resistant Designs with Zynq UltraScale+
Devices,”
https://www.xilinx.com.

[49] Y. Xu, W. Cui, and M. Peinado, “Controlled-channel attacks: Determin-
istic side channels for untrusted operating systems,” in Security and
Privacy (SP), 2015 IEEE Symposium on. IEEE, 2015, pp. 640–656.

[50] M.-D. M. Yu and S. Devadas, “Secure and robust error correction for
physical unclonable functions,” IEEE Design and Test of Computers,

vol. 27, pp. 48–65, 2010.

http://doi.acm.org/10.1145/1866307.1866371
http://doi.acm.org/10.1145/1866307.1866371
https://github.com/orlp/ed25519
https://doi.org/10.1007/978-1-4302-6572-6_6
https://doi.org/10.1007/978-1-4302-6572-6_6
https://github.com/mjosaarinen/tiny_sha3
http://csg.csail.mit.edu/pubs/memos/Memo-483/Memo-483.pdf
http://www.fourmilab.ch/random/
http://www.fourmilab.ch/random/
http://www.sciencedirect.com/science/article/pii/0012365X87902172
http://www.sciencedirect.com/science/article/pii/0012365X87902172
https://riscv.org/specifications/privileged-isa/
http://www.eecs.berkeley.edu/Pubs/TechRpts/2014/EECS-2014-54.html
http://www.eecs.berkeley.edu/Pubs/TechRpts/2014/EECS-2014-54.html

	Introduction
	Attested Execution
	Our approach
	Organization of this paper

	Background and Related Work
	Secure Boot
	Trusted key derivation
	Physically Obfuscated Keys and Fuzzy Extractors
	Computational Fuzzy Extractors

	Remote attestation
	Isolated execution

	Threat Model: An honest but curious manufacturer
	Root of Trust
	Deriving an ephemeral SKDEV for cloud-hosted FPGA designs
	Non-volatile SKP derived from a PUF
	Initial key provisioning by the manufacturer with the PUF
	Key recovery with the LPN PUF

	Payload keys and endorsement
	Key encryption and minimal root of trust

	Remote Attestation
	Remote Attestation with Generic Payload
	Remote Attestation with Sanctum
	Anonymous Attestation

	Required Hardware
	Baseline Processor Architecture (Sanctum)
	LPN PUF for secure, repeatable key derivation
	TRNG via jittery sampling of ring oscillators

	Evaluation
	Root of Trust code size and latency
	TRNG
	Trapdoor LPN PUF

	Conclusion
	References

