
Amortized Complexity of
Information-Theoretically Secure MPC

Revisited

Ignacio Cascudo1, Ronald Cramer2,3, Chaoping Xing4, and Chen Yuan2

1 Aalborg University, Aalborg, Denmark, ignacio@math.aau.dk
2 CWI Amsterdam, Amsterdam, the Netherlands, {cramer, Chen.Yuan}@cwi.nl

3 Leiden University, Leiden, the Netherlands, cramer@math.leidenuniv.nl
4 Nanyang Technological University, Singapore, xingcp@ntu.edu.sg ?

Abstract. A fundamental and widely-applied paradigm due to Franklin
and Yung (STOC 1992) on Shamir-secret-sharing based general n-player
MPC shows how one may trade the adversary threshold t against amor-
tized communication complexity, by using a so-called packed version of
Shamir’s scheme. For e.g. the BGW-protocol (with active security), this
trade-off means that if t + 2k − 2 < n/3, then k parallel evaluations of
the same arithmetic circuit on different inputs can be performed at the
overall cost corresponding to a single BGW-execution.
In this paper we propose a novel paradigm for amortized MPC that offers
a different trade-off, namely with the size of the field of the circuit which
is securely computed, instead of the adversary threshold. Thus, unlike the
Franklin-Yung paradigm, this leaves the adversary threshold unchanged.
Therefore, for instance, this paradigm may yield constructions enjoy-
ing the maximal adversary threshold b(n − 1)/3c in the BGW-model
(secure channels, perfect security, active adversary, synchronous commu-
nication).
Our idea is to compile an MPC for a circuit over an extension field to
a parallel MPC of the same circuit but with inputs defined over its base
field and with the same adversary threshold. Key technical handles are
our notion of reverse multiplication-friendly embeddings (RMFE) and our
proof, by algebraic-geometric means, that these are constant-rate, as well
as efficient auxiliary protocols for creating “subspace-randomness” with
good amortized complexity. In the BGW-model, we show that the latter
can be constructed by combining our tensored-up linear secret sharing
with protocols based on hyper-invertible matrices á la Beerliova-Hirt (or
variations thereof). Along the way, we suggest alternatives for hyper-
invertible matrices with the same functionality but which can be defined
over a large enough constant size field, which we believe is of independent
interest.
As a demonstration of the merits of the novel paradigm, we show that, in
the BGW-model and with an optimal adversary threshold b(n−1)/3c, it

? c©IACR 2018. This article is the final version submitted by the authors to the IACR
and to Springer-Verlag on the 3rd June 2018. The version published by Springer-
Verlag is available at < DOI >.

is possible to securely compute a binary circuit with amortized complex-
ity O(n) of bits per gate per instance. Known results would give n logn
bits instead. By combining our result with the Franklin-Yung paradigm,
and assuming a sub-optimal adversary (i.e., an arbitrarily small ε > 0
fraction below 1/3), this is improved to O(1) bits instead of O(n).

1 Introduction

A fundamental and widely-applied paradigm due to Franklin and Yung [FY92] on
Shamir-secret-sharing based general n-player MPC shows how one may trade the
adversary threshold t against amortized communication complexity, by using a so-
called packed version of Shamir’s scheme. For e.g. the BGW-protocol [BGW88]
(with active security), this trade-off means that if t+2k−2 < n/3, then k parallel
evaluations of the same arithmetic circuit on different inputs can be performed
at the overall cost corresponding to a single BGW-execution. In this paper we
propose a novel paradigm for amortized MPC that offers a different trade-off,
namely with the size of the field of the circuit which is securely computed, instead
of the adversary threshold. In particular, unlike the Franklin-Yung paradigm,
this leaves the adversary threshold unchanged.

We apply our paradigm in the BGW-model: secure channels, perfect security
(privacy and correctness), active adversary, synchronous communication. Our
aim is to achieve MPC that is efficient (in the amortized sense as discussed
above), tolerates an adversary satisfying the maximal threshold (or close) and
that evaluates binary circuits.

We motivate the latter choice as follows. Besides the fact that this is natural
in applications to begin with, we note that many of the protocols in this model
(such as [BGW88]) represent the target function to be computed as an arith-
metic circuit over some finite field, and then process this circuit by distributed
computing of each gate, using secret sharing. However, many of those protocols
require that the size of the underlying finite field is larger the number of parties
n (because of their use of Shamir’s secret sharing scheme [Sha79] of some vari-
ant thereof). This means that applying those protocols to functions which are
already naturally represented as a binary circuit requires to lift this circuit to a
large enough extension field, wherewith the communication complexity incurs a
multiplicative overhead of log n. It is in these cases that our paradigm pays off
by twisting this overhead into a vehicle for parallel evaluations.

Concretely, we get:

Theorem 1. In the BGW-model, there is an efficient MPC protocol for n par-
ties secure against the maximal number of active corruptions b(n − 1)/3c that
computes Ω(log n) evaluations of a single binary circuit in parallel with an amor-
tized communication complexity (per instance) of O(n) bits per gate.

The best known previous result of this kind and in this model is obtained from
the MPC protocol by Beerliová-Trub́ıniová and Hirt [BH08] which communicates
O(n) field elements per gate, but requires the field size over which the arithmetic

2

circuit is defined to be at least 2n, and hence the computation of a binary
circuit with that protocol requires O(n log n) bits of communication per gate.
Our result will be proved by applying our paradigm to Beerliova-Hirt. Note that
the Franklin-Yung paradigm does not apply here as we achieve security against
a maximal adversary. Combining our result with the Franklin-Yung paradigm,
however, we get the following:

Theorem 2. In the BGW-model, for every ε > 0, there is an efficient MPC
protocol for n parties secure against a submaximal number of active corruptions
t < (1− ε)n/3 that computes Ω(n log n) evaluations of a single binary circuit in
parallel with an amortized communication complexity (per instance) of O(1) bits
per gate.

We note that, as opposed to Theorem 1, this theorem may plausibly and alter-
natively be argued without recourse to our novel paradigm: indeed, we could de-
ploy the asymptotically good arithmetic secret sharing schemes from [CCCX09]
(over a suitably large constant extension of F2 so as to get the desired adversary
rate), combined with an overhaul of the complete (say) Beerliova-Hirt protocols
so as to make them work over these schemes instead of Shamir’s. In addition,
this would use some of our present techniques to overcome the arising issue that
the protocol tricks from Beerliova-Hirt involving hyper-invertible matrices (or
an alternative that we discuss later on) are defined over an extension of the field
of definition of the arithmetic secret sharing. Our present approach, however, in
fact uses Beerliova-Hirt essentially as a black-box. Moreover, our approach covers
both theorems with the same method.

As noted in [IKOS09], a complexity of O(1) bits per gate can also be obtained
in the non-amortized setting as long as the number of parties which provide in-
puts is constant, by combining the protocol from [DI06] with the aforementioned
arithmetic secret sharing schemes from [CCCX09]. This would be secure against
an active adversary corrupting t = Ω(n) parties, where the constant is in prin-
ciple small, but this can be brought up to t < (1 − ε)n/3, for any ε, by using
Bracha’s committees technique[Bra85] as described in [DIK10]. If we remove the
assumption on the number of input-providing parties, then the best result in
the non-amortized setting for suboptimal adversaries is given by [DIK10], where
the communication complexity per gate is O(polylog(n)) bits. It is an interesting
question to determine if the communication complexities obtained in Theorems 1
and 2 are optimal in this model5.

We now give a brief preview of our paradigm and its technical challenges.
First we introduce the notion of reverse multiplication friendly embeddings,
which provide a way to embed the ring Fk2 into a field F2m so that coordi-
natewise products “map” to multiplications in the extension field in a certain
manner that we will explain. Furthermore we will need to construct RMFEs with
m = O(k), so that the degree of the extension field does not explode.

5 Some results on lower bounds for communication complexity of gate-by-gate proto-
cols for arithmetic circuits like ours were obtained by [DNPR16] but they do not
seem to be enough to claim such optimality.

3

Second, using such a map as a stepping stone, we construct a compiler that
transforms a secure secret-sharing based computation protocol that evaluates
an arithmetic circuit over a F2m (for example the one by [BH08]) into a secure
protocol for the same number of parties and adversary that allows for parallel
evaluation of k = Θ(m) of a related boolean circuit. Several obstacles appear
when constructing this compiler, as a consequence of moving back and forth
between the algebraic structures and we need to solve these issues with the
introduction of several subprotocols. At the same time we need to ensure that
these subprotocols do not require too much communication, so that this does
not offset the gains from our embedding strategy.

It turns out that these subprotocols rely on a crucial step: we need to find
a way to construct sharings of random elements in prescribed F2-subspaces of
(F2m)v. Our third contribution is a communication-efficient protocol to accom-
plish that. This in turn consists of the following ideas: first, we introduce a
definition of generalized linear secret sharing scheme (GLSSS), where the secret
and shares belong to vector spaces over the same field; then, we cast the strategy
of random generation of sharings based on hyper-invertible matrices, introduced
in [BH08] (and used in [DIK10]), in this language of GLSSS. This is still not
good enough for our purposes, since our GLSSS is only linear over F2, while
the hyper-invertible matrix is defined over F2m . So the last idea we need con-
sists in tensoring-up our scheme, that suitably transforms our F2-GLSSS into a
F2m -GLSSS. Along the way, we suggest alternatives for hyper-invertible matri-
ces with the same functionality but which can be defined over a large enough
constant size field, see Remarks 3 and 4. Although there is no overall advantage
to our work (quantitatively), it does mean that, in the subprotocols where it is
used, “amortization kicks in faster”. Moreover, we believe it is of independent
interest.

1.1 Main ideas

We describe the general idea and the technical challenges we encounter more in
detail.

Reverse multiplication friendly embeddings. As mentioned above, we want
to embed several instances of the computation of a binary circuit into a single
computation of an arithmetic circuit over an extension field. Ideally, we would
wish that the ring Fk2 , where the sum and product are defined coordinatewise,
was isomorphic (as an F2-algebra) to the field F2k , with the usual finite field
sum and product; or said in a different way, that there would be a map η : Fk2 →
F2k satisfying both η(x + y) = η(x) + η(y) and η(x ∗ y) = η(x) · η(y) for all
x,y ∈ Fk2 (where ∗ denotes the coordinatewise product and · denotes the field
product). If such a η existed, then embedding k evaluations of a boolean circuit
into an evaluation of a circuit over F2k would be trivial: just define the arithmetic
circuit C ′ to be the same as the boolean circuit, but substituting the sum and
multiplication gates in F2 by gates performing the same operations in F2k ; then
apply η to the vectors of boolean inputs, evaluate C ′ and map the result back to
F2 with η−1. Furthermore, computing C securely would not be a problem, since

4

the parties holding the inputs would secret-share them after applying η, and the
result of the secure computation of C ′ would be opened prior to applying η−1.

Unfortunately such an η does not exist: while Fk2 and F2k are isomorphic as
F2-vector spaces, and hence the additive homomorphic condition can be satisfied,
the multiplicative structures of Fk2 and F2k are however different for every k ≥ 2
(e.g. the former structure has zero divisors, while the latter does not).

We then need to find some alternative weaker notion that allows us to travel
back and forth between these two algebraic structures in a manner that it is still
amenable to the secure computation protocols we want to adapt. In order to do
this we introduce the notion of reverse multiplicative friendly embedding6.

Definition 1. Let q be a power of a prime and Fq a field of q elements, let
k, n ≥ 1 be integers. A pair (φ, ψ) is called an (k,m)q-reverse multiplication
friendly embedding (RMFE for short) if φ : Fkq → Fqm and ψ : Fqm → Fkq are
two Fq-linear maps satisfying

x ∗ y = ψ(φ(x) · φ(y))

for all x,y ∈ Fkq .

While this notion has not been explicitely defined7 in the literature to the
best of our knowledge, a construction for RMFEs was introduced in another work
on secure multiparty computation, more precisely on the problem of correlation
extraction [BMN17], where it is used to embed a number of instances of oblivious
linear evaluation over a small field into one instance of OLE over the extension
field. They obtain, for every prime power q and every integer ` ≥ 1, a (2`, 3`)q.
This implies that we can take m = O(klog 3/ log 2) = O(k1.58...). This construction
is unfortunately not enough for our purposes, so in this paper, we show the
existence of RMFEs with constant rate.

Theorem 3. For every finite prime power q, there exists a family of (k,m)q-
RMFE where m = Θ(k).

We show this result using techniques from algebraic geometry. We emphasize
that this is the only point where algebraic geometry is used in our protocol.
As an aside, we also show, by some elementary results on polynomial interpo-
lation, quite practical RMFE’s for moderate values of m and with a reasonable
rate m/k, indicating our main results may also have some practical value.

The compiler. Given a (k,m)2-RMFE (φ, ψ), we construct an information-
theoretically secure protocol compiler that transforms a secure secret-sharing

6 The term “reverse” refers to the fact that multiplicative friendly embeddings where
defined in [CCCX09]. The notions are similar but with the roles of the ring Fk

q

and the field Fqm swapped. Multiplicative friendly embeddings have been studied
more extensively than their reverse counterpart, as they are a special case of bi-
linear multiplication algorithms [CC88]. They are also special cases of arithmetic
codices [CCX12] (see also [CDN15]).

7 Our original motivation for considering this notion (unpublished work, 2014) was to
improve our result on arithmetic secret sharing [CCX11] from CRYPTO 2011.

5

based computation protocol that evaluates an arithmetic circuit over a large
enough finite field F2m into a secure protocol for the same number of parties
and adversary that allows for the simultaneous evaluation of k instances of a
related boolean circuit. The compiler introduces an overhead in the communi-
cation complexity of O(nk) bits per multiplication gate of the circuit (hence
O(n) bits per multiplication). Our compiler requires that the MPC protocol for
the arithmetic circuit over the extension field satisfies a number of properties,
which are quite common and are fulfilled by most Shamir-secret-sharing based
protocols in this model.

The first step of the compiler is to encode the input vectors as elements in
F2m with the map φ. Now one could think that we proceed by evaluating the
arithmetic circuit C ′ over F2m on the encoded inputs, and then decode the result
with ψ. Unfortunately this idea does not work, for several reasons; even setting
aside security considerations, note that this does not ensure correct computation:
it is not even true that ψ(φ(x)) = x for all x, hence it does not compute the
identity circuit correctly. Moreover x1 ∗x2 ∗ . . .∗x` = ψ(φ(x1) ·φ(x2) · . . . ·φ(x`))
does not necessarily hold when ` > 2 either.

The way to correctly compute the result is instead as follows: encode the input
vectors with φ and evaluate the arithmetic circuit C ′ over F2m on the encoded
inputs, but with the additional step that, every time a multiplication gate its
processed, we apply the composition φ◦ψ to the output of the gate. We also need
to slightly adjust the gates corresponding to a NOT gate in C: in C ′ these gates
add the vector φ(1, 1, . . . , 1); moreover if we have random gates in C (gates that
produce a random bit), we will need to create random elements φ(r) ∈ F2m ; we
explain later how we can do this. By doing these transformations, we have the
following invariant: at each wire of the F2m -circuit C ′, the corresponding value
is φ(w), where w = (w1, . . . , wk) is the vector containing, for i = 1, . . . , k, the
bit wi that would sit in the corresponding wire of the boolean circuit C on its
i-th evaluation. Indeed note that

(φ ◦ ψ)(φ(w) · φ(w′)) = φ(ψ(φ(w) · φ(w′))) = φ(w ∗w′)

so multiplying two encoded vectors and then applying φ ◦ ψ yields an encoding
of the coordinatewise product. The rest of the gates obviously preserve this
invariant.

At the last step, we decode the output by applying the inverse φ−1 of φ (which
we insist, does not coincide with ψ). It is easy to derive from the definition of
RMFE that φ is injective and hence φ−1 indeed exists.

Additional auxiliary protocols. However, several roadblocks are introduced
when we want to transform a secret-sharing based secure computation protocol
π′ for C ′ into a secure computation protocol π that computes (k instances of)
C: first, we want each of the input-holding parties to secret share a value φ(xi)
with the secret sharing scheme used in π′, but given that as we will see the image
of φ is not the full F2m , the question is: how do we ensure that a party has not
shared a value outside Imφ instead? Note such problem will not be detected
by π′, as this protocol will “accept” any sharing of a value in F2m as long as

6

the sharing itself is correct, so we will need to add some type of zero-knowledge
proof that ensures that the shared value is in Imφ. The second problem is that
we need some protocol that transforms a sharing of an element a into a sharing
of (φ ◦ ψ)(a). The composition of φ and ψ is a F2-linear map, but this does
not mean that it is F2m -linear, and therefore it is not necessarily true that the
parties can locally compute sharings for the output of this function by using the
F2m -linearity of the scheme8.

We will show that we can reduce these two issues to the following problem:
construct a secure multiparty protocol that outputs a sharing of a random ele-
ment in a prescribed F2-subspace of (F2m)v. That is, given an F2-vector space
V ⊆ Fv2m the protocol should output ([r1], . . . , [rv]) where (r1, . . . , rv) is uni-
formly random in V , and [x] denotes a sharing of x with the secret sharing
scheme used in the protocol for C ′.

GLSSS, tensoring-up and hyper-invertible matrices. In order to generate shar-
ings of random elements of the given subspaces, we want to use a technique intro-
duced in [BH08], based on so-called hyper-invertible matrices. In a nutshell this
technique consist in the following. Suppose we want to create sharings of one of
more random elements satisfying certain relation (we specify below what kind of
relations are allowed). Then each party generates a sharing of random elements
of their choice satisfying the said relation. Next the hyper-invertible matrix is
applied (locally by each party) to the vector containing these n sharings. This
creates n new sharings, which will obbey the same relation, if the parties have
been honest. Next, some of these are opened to different parties, who check that
relation indeed holds. The properties of the matrix will guarantee that if all
honest parties declare themselves happy with this process, then the unopened
sharings are guaranteed to satisfy the same relation.

However, the type of relations that are preserved by the hyper-invertible
matrices are K-linear relations, where K is a field over which the matrix is
defined. Unfortunately, the construction of hyper-invertible matrices from [BH08]
is based on interpolation techniques, and it requires a field K which contains at
least 2n elements. This clearly does not fit well with the F2-linear relations we are
dealing with. Applying an F2m-hyper-invertible matrix to a vector of elements
in V will not necessarily output a vector of elements in V .

In order to solve this, we introduce several ideas. First, we formalize the
idea of “sharing secrets which are bound by K-linear relations” by the notion of
K-generalized linear secret sharing scheme (GLSSS), where the space of secrets
and the spaces of shares are (possibly different) K-vector spaces and the secret
is determined by qualified sets of shares by means of a K-linear map. Our def-
inition has the additional advantage that we do not need to worry about how
encoding of the secret is done. We also show that the hyper-invertible-matrix

8 To explain this further: we can think of the elements in F2m as polynomials in F2[X]
modulo a degree-m irreducible polynomial. Now consider for example the map that
sends u = a0 + a1X + · · · + am−1X

m−1 to F (u) := a0. This is a F2-linear map (it
satisfies F (u + v) = F (u) + F (v)), but not F2m -linear (otherwise there would exist
λ ∈ F2m such that F (u) = λ · u, and it is easy to see that this can not happen).

7

technique fits naturally with the notion of GLSSS, since by means of this notion
we can state one lemma that captures different instances of this technique in
the literature [BH08,DIK10]. However, this is still not enough for our purposes,
because this lemma only works if the hyper-invertible matrix is defined over the
field K.

Then we introduce the concept of interleaved secret sharing scheme. Given
a GLSSS Σ, the m-fold interleaved GLSSS Σ×m is simply the n-player scheme
naturally corresponding to m independent Σ-sharings of m secrets. The reason
this is useful for our problem comes from the following observation, based on
arguments from multilinear algebra (which we call tensoring-up lemma): if we
start by a F2-GLSSS Σ with space of secrets V , there is a natural way in which
we can see the interleaved GLSSS Σ×m as a F2m-GLSSS. Moreover, even though
the space of secrets of the new scheme will be V m, we can crucially access the
individual Σ-sharings of each secret in V , since these are just the components of
the sharing fromΣ×m. This means that the hyper-invertible matrix methodology
can be applied to Σ×m, where each party will bundle together m sharings of
random elements in V as a sharing of a random element in V m, apply the matrix
to the resulting sharings using the Fm2 -linear structure given by the tensoring up
lemma, and “unzip” the result again into sharings of elements in V .

Putting things together. We will show that if we are using Shamir’s scheme (or
any secret sharing scheme where the size of the shares is the same as that of the
secret) then our subprotocols require the communication of O(n) field elements
per gate. Because of our results on reverse multiplication friendly embeddings,
this field will have 2m elements where m = Θ(k).

On the other hand, to compute securely the arithmetic circuit over the ex-
tension field, we can use the protocol in [BH08], which also has communication
complexity of O(n) field elements per gate. Altogether we communicate O(nk)
bits per gate of the circuit to compute securely k evaluations of the circuit, an
amortized cost of O(n) bits per gate. In order for this amortization to work,
we need that 2m is at least n, hence we need to compute at least k = Ω(log n)
evaluations.

Remark 1 (On the Passive Case). One may possibly be inclined to believe that
the case of passive security admits a much simpler solution that only involves
the RFME’s on top of standard protocols. Indeed, after the secure computation
of the product of two φ-encodings, the secure computation of its (φ◦ψ)-image is
linear. However, this is an F2-linear map defined on the extension field, not a lin-
ear combination of elements in this extension field. Therefore, the usual “secure
computation of linear maps is for free” rule does not hold here. In particular,
we still need the same auxiliary protocols with good amortized complexity (in-
cluding the tensoring-up) as in the active case. That said, the hyper-invertible
matrices can be replaced by standard privacy amplification based on error cor-
recting codes over large enough extension fields so as to be able to handle t < n/2
with t maximal or arbitrarily close.

8

2 Abstract GLSSS and Hyper-Invertible Matrices

In our protocol application, we will have a linear secret sharing scheme Σ defined
over some “small” finite field K that we wish to deploy in secure computations
involving very useful randomization protocols for secret-sharings (i.e., based on
hyper-invertible matrices) that, unfortunately, require their field of definition to
be a larger extension field L. Below we explain how to treat a number of Σ-
sharings as a single sharing according to a scheme Σ′ that is defined over the
extension field L and that has the same privacy and reconstruction properties
as Σ. The rate does not change either. Furthermore, “constituent” Σ-sharings
remain readily “accessible” from Σ′-sharings for our use in our protocol. Finally,
L-linear operations on Σ′-sharings are easily emulated in terms of K-linear oper-
ations on constituent Σ-sharings. The way to achieve this is by exploiting basic
properties of the tensor product from abstract multilinear algebra.

Another technical aspect of our protocol application is that our Σ is not
explicitly constructed as a K-linear scheme in the most standard way (e.g., from
a given K-linear error correcting code C ⊂ Kn with convenient properties) but
rather implicitly. Namely, Σ will turn out to be a K-linear “subscheme” of a
standard L-linear scheme. Concretely, Σ will correspond to several, independent
instances of Shamir’s scheme over L, where the secrets satisfy K-linear relations.
The resulting scheme is, by all means, K-linear. But instead of complicating
matters by “forcing” this into a standard formulation where the secret (and
the shares) are typically encoded “systematically,” we will capture it formally
by giving an equivalent but “coordinate-free” version of the usual definition of
(general) linear secret sharing.

2.1 An Abstract Definition of GLSSS

For nonempty sets U and I, we let UI denote the indexed Cartesian product
Πi∈IU . For a nonempty subset A ⊂ I, the natural projection πA maps a tuple
u = (ui)i∈I ∈ UI to the tuple (ui)i∈A ∈ UA. Let K be a field.

Definition 2. (Abstract K-GLSSS) A general K-linear secret sharing scheme
Σ consists of the following data.

– A player set I = {1, . . . , n}.
– A finite-dimensional K-vectorspace Z, the secret-space, and a finite-dimensional
K-vectorspace U , the share-space.

– A K-linear subspace C ⊂ UI , where the latter is considered a K-vector space
in the usual way (i.e., direct sum).

– A surjective K-linear map Φ : C −→ Z, its defining map.

Definition 3. Suppose A ⊂ I is nonempty. Then A is a privacy set if the K-
linear map

(Φ, πA) : C −→ Z × πA(C), x 7→ (Φ(x), πA(x))

is surjective. Finally, A is a reconstruction set if, for all x ∈ C, it holds that

πA(x) = 0⇒ Φ(x) = 0.

9

Remark 2. The following observations follow directly from the definition.

– (Privacy) Suppose K is finite. If we fix an arbitrary secret z ∈ Z and select
x ∈ C uniformly random such that Φ(x) = z, then for each privacy set A,
it holds that the distribution of the joint shares πA(x) ∈ UA for A does not
depend on the secret z.
We denote such a random sharing of a secret z as [z], as usual.

– (Reconstruction) For each reconstruction set A, there are K-linear recon-
struction maps {ρi : U → Z}i∈A, depending on A, such that for all x ∈ C,
it holds that ∑

i∈A
ρi(xi) = Φ(x).

By definition, I is a reconstruction set.

2.2 Randomization based on Hyper-Invertible Matrices

Hyper-invertible matrices were introduced in [BH08]. Hyper-invertible matrices
provide a way for several parties to jointly generate sharings of uniformly random
secrets satisfying certain relations. In [BH08], this relation consists in the fact
that the uniformly random element is shared with two different sharings (Shamir
sharings of different thresholds). However, different uses have been found in
other protocols: in [DIK10], the parties generate sharings of uniformly random
elements together with a permutation of their coordinates.

In this section, we show that those two applications of hyper-invertible ma-
trices can both be captured under a common framework through the notion
of generalized linear secret sharing schemes. Moreover, this framework will also
encompass other two applications of this strategy in our protocol.

Definition 4 ([BH08]). A matrix M ∈ K`×`′ is hyper-invertible over K if
every s-by-s submatrix of M is invertible in K, for every 1 ≤ s ≤ min{`, `′}.

As in [BH08], we are only interested in this work in square hyper-invertible
matrices, even though the results can be generalized easily to non-square ones.
If K has at least 2` elements, there is the following construction of an ` by `
hyper-invertible matrix.

Lemma 1 ([BH08]). Let K be a finite field with |K| ≥ 2`. Fix α1, . . . , α`, β1, . . . , β`
distinct elements in K. Let M = (mi,j) where mi,j =

∏
k 6=j

βi−αk

αj−αk
. Then M is a

` by ` hyper-invertible matrix over K.

The interest of square hyper-invertible matrices for secure multiparty compu-
tation protocols arises from the property that any combination of ` inputs/outputs
of the K-linear map induced by M are uniquely determined by, and can be writ-
ten as a linear function of, the other ` inputs/outputs. More formally we have
the following.

10

Lemma 2 ([BH08]). Let M ∈ K`×` be a square hyper-invertible matrix over
K. Consider two subsets A,B ⊆ {1, . . . , `} such that |A| + |B| = `. Then
there is a linear map fA,B : K` → K` such that for every x ∈ K`, we have
fA,B({xi}i∈A, {yi}i∈B) = ({xi}i/∈A, {yi}i/∈B), where y = Mx.

An important observation is that, given an K-vector space Z, we can define
the action of M on vectors from Z`. Moreover, it is trivial to see that the property
above still holds.

Proposition 1. Let M ∈ K`×` be a square hyper-invertible matrix over K and
let Z be a K-linear vector space. Consider two subsets A,B ⊆ {1, . . . , `} such
that |A|+ |B| = `. Then there is a linear map fA,B : Z` → Z` such that for every
x ∈ Z`, we have fA,B({xi}i∈A, {yi}i∈B) = ({xi}i/∈A, {yi}i/∈B), where y = Mx.

Consider now a K-GLSSS Σ with secret space Z, share space U and player
set I. Denote a sharing of an element z ∈ Z by [z]. The goal of the following
protocol is to generate random sharings of a set of uniformly random elements
from Z.

Protocol RandEl

Protocol for a set of parties I = {1, . . . , n′}. Let M be a n′ × n′-hyper-
invertible matrix over K. Let T be an integer with 1 ≤ T ≤ n′.

Output: Sharings [r1], . . . , [rT] of uniformly random elements in Z.

– For i ∈ I, player i selects a uniformly random element si ∈ Z and shares
it among I with Σ.

– The players locally compute ([r1], . . . , [r|I|])T = M · ([s1], . . . , [s|I|])T

(i.e., each party applies M to the vector of shares and interprets the
resulting vector as containing shares to unknown elements s1, . . . , s|I|).

– For i = T + 1, . . . , |I| open ri to party i. Party i checks that this is
indeed a correct sharing to an element from Z and otherwise declares
itself unhappy.

– Output the remaining unopened sharings [r1], . . . , [rT].

Proposition 2. Suppose the active adversary has corrupted at most t′ ≤ (n′ −
1)/3 parties from I. Furthermore suppose Σ has t-privacy with t ≥ t′, u-
reconstruction with u ≤ n′ − t′, and assume that T ≤ n′ − 2t′.

In these conditions if all honest players are happy after the execution of
RandEl, then [r1], . . . , [rT] are correct sharings of uniformly random elements
r1, . . . , rT ∈ Z and the adversary has no information about these values, other
than the fact that they belong to Z.

Proof. The proof essentially follows the steps of [BH08, Lemma 5].
We first consider robustness. First of all, by u-reconstruction, the shares of

the (at least) n′ − t′ honest parties uniquely determine the secrets, so cheating

11

by the adversary by changing the shares corresponding to the corrupted parties
will either be detected or not change the computation of the opened ri. Assume
that all honest players remain happy. Then all sharings opened to honest parties
are valid sharings of elements ri belong to Z. These are at least n′ − T − t′. On
the other hand the n′ − t′ input sharings [si] inputted by the honest parties are
correct sharings of elements in Z. Note these are at least n′ input/output values.
By the properties of the hyper-invertible matrix the rest of inputs/outputs are
a K-linear function of these values; a bit more precisely, for every honest party,
her shares of the remaining inputs/outputs are a K-linear function of her shares
of the honest inputs and the outputs opened by honest parties, and since the
shares of honest parties fix the secrets (and Z is a K-linear vector space), the
unopened secrets must be in Z.

We now consider privacy. First, by t-privacy, the shares of the adversary
provide no information about the inputs provided by and the outputs opened
to honest parties. The adversary does know the inputs si provided by corrupt
parties and the outputs ri opened to corrupt parties. But these are at most 2t′

values. By Proposition 1, it is easy to see that these are completely independent
of any set of n′− 2t′ other inputs/outputs, in particular the T outputted values.

This protocol generalizes the “double-sharing generation” strategy from [BH08]
as well as the “generation of sharings of a random vector and a permutation of
its coordinates” strategy from [DIK10]. In the first case, we can define a GLSSS
that has K as space of secrets, K2 as space of shares and where sharing in that
scheme consists on independently sharing the secret with two standard Shamir
secret sharing schemes of degrees d and d′. As long as t′ ≤ min d, d′ < n− t′, the
conditions of the proposition are satisfied. In the second case, the secret space
would be the `-dimensional K-vector space {(x, π(x)) : x ∈ K`} where π is some
known permutation of the coordinates of x and sharing means to share each co-
ordinate individually with a K-linear scheme, and the proposition holds as long
as this secret sharing scheme satisfies the privacy and reconstruction properties
there.

2.3 Extending the Field of Definition of a GLSSS

Later on, we will encounter situations where our secret space is a F2-linear space,
but not a F2k -linear space, and hence the corresponding GLSSS is only linear
over F2. This does not fit well with the fact that the hyper-invertible matrix
will be defined over F2m . Therefore we detail an strategy to extend the field of
definition of a GLSSS.

To achieve the desired extension of the field of definition of a GLSSS, it
is convenient to define interleaved GLSSS. Informally, the m-fold interleaved
GLSSS Σ×m is the n-player scheme naturally corresponding to m Σ-sharings.
In other words, with the notation of Section 2.1, a sharing in this scheme can be
seen as an m×n matrix whose m rows each represent an element of C and whose
n columns each represent an element of the K-vector space Um, the share-space.
We denote the K-linear subspace of ×i∈IUm collecting these matrices as C×m.

12

The defining K-linear map Φ×m is just the “row-wise” application of Φ and the
secret-space is the K-vector space Zm. Note that the privacy sets as well as the
reconstruction sets coincide with those of Σ.

A Tensoring-Up Lemma. Let L be an extension field of K of degree m. We
will explain later on how Σ×m is in fact an L-linear GLSSS in a natural and
convenient way, compatible with its K-linearity as already defined. To this end
we need a brief intermezzo derived from basic multilinear algebra, specifically a
special case of base change in tensor products. 9 We will give an explicit lemma
that defers the use of tensor products and their relevant properties to the proof.

Definition 5. For our purposes, a K-algebra is a ring having the field K as a
subring. Suppose R,S are K-algebras. A K-algebra morphism R −→ S is a ring
morphism that fixes K, i.e., it is, in particular, a K-vector space morphism.

Lemma 3. Let L be an extension field of degree r over K and let V be a K-
vector space. Then the following hold:

1. Let Km,m denote the matrix algebra over K consisting of all m x m matrices
with entries in K, with the usual addition and (K-scalar-) multiplication.
Then there is a (non-unique) injective K-algebra morphism

Φ : L −→ Km,m; λ 7→ Φ(λ).

In particular, the image of L is a field isomorphic to it.
2. Each such Φ induces an L-vector space structure on V m by defining L-scalar

multiplication, for each λ ∈ L, as

λ· : V m −→ V m; w 7→ Φ(λ)(w),

where the action of Km,m on V m is the natural one, i.e., multiplication of
an m x m matrix with an m-(column)vector.

If λ ∈ K, it restricts to

λ· : V m −→ V m; w 7→ λ · w,

since Φ fixes K. Hence, this structure is compatible with the standard K-vector
space structure on V m, i.e., as a direct sum over V ,

Proof. As to the first claim for each λ ∈ L, the multiplication-by-λ map on L is
a K-vector space endomorphism on L (i.e., a morphism from L to L). The map
Φ that sends λ ∈ L to this associated morphism is clearly a K-algebra morphism
from L to the K-algebra End of K-vector space endomorphisms of L. Note that
Φ is injective as its domain is a field; the only possibility for its kernel is the

9 For a treatment of abstract tensor-products aimed at a cryptographic audience, we
refer to Ch. 10.9 (pages 229–235) in [CDN15].

13

trivial ideal (0) of L. Since L is a vector space of dimension r over K, it is clear
that, once a basis is fixed, End may be given as Km,m.

As to the second claim, an R-module M consists of an abelian group M , a
ring R (with 1), together with a ring morphism mapping R to the ring of group
endomorphisms of M . It is called a vector space if R is a field. In the present
case, M is the direct sum V m and R is L. By construction, (L, V m, Φ) satisfies
this condition. Finally, note that Φ maps λ ∈ K to λ · I, where I is the identity
matrix.

As the lemma reflects one of the basic merits of tensor products, we verify
it below in such terms and in more generality. By the very definition of tensor
product, if M is an R-module (M and R take the role of V and K, resp.), where
R is a commutative ring with 1, and if S is an extension ring (S takes the role of
L), then the tensor product S ⊗RM is an R-module. By base change, we may,
in fact, naturally view S ⊗RM as an S-module, compatible with the R-module
structure already mentioned. Namely, for each s ∈ S, for each r ∈ R and for each
m ∈M , define s ·(r⊗m) = (sr⊗m) and extend this linearly to all of S⊗RM . If,
in addition, S is free of rank r over R, then, as an R-module, the tensor product
S ⊗R M is isomorphic to Mm. Since S-multiplication by a constant as defined
above is, in particular, an endomorphism of R-modules, it is clear that such a
map can be represented by an element of Km,m.

Linearity over the Extension Field of the Interleaved Scheme. With
the tensoring-up lemma in hand, we now explain how the m-fold interleaved
GLSSS Σ×m is L-linear, compatible with the K-linearity already pointed out.
It is convenient, once again, to think of the elements of C×m as matrices where
each row is an element of C and where each column i collects the corresponding
m shares for player i.

Take an arbitrary such matrix representing an element in C×m and take an
arbitrary λ ∈ L. Write the matrix map Φ(λ) as (Φ1, . . . , Φm) such that the image
of w ∈ Um equals (Φ1(w), . . . , Φm(w)).

Then we simply replace each “column of shares” w = (w1, . . . , wm) ∈ Um by
the column λ ·w = (Φ1(w), ..., Φm(w)). Since, the Φi are K-linear, it is immedi-
ate that application of the K-linear map Φ×m commutes with λ-multiplication.
Thus, Ψ×m is L-linear, compatible with its earlier mention K-linearity. Note
that, for given Σ, this extension depends implicitly on the choice of a K-basis
of L.

In summary:

Proposition 3. Let L be a degree-m extension field of K and let Σ be a K-
GLSSS. Then the m-fold interleaved K-GLSSS Σ×m is naturally viewed as an
L-GLSSS, compatible with its K-linearity.

Use in Protocols. We work with this proposition as follows. Suppose we have
a sharing in Σ×m, i.e., m Σ-sharings

([z1], . . . , [zm]), with z1, . . . , zm ∈ Z.

14

If λ ∈ L, then

λ · ([z1], . . . , [zm]) = (Φ1([z1], . . . , [zm]), . . . , Φr([z1], . . . , [zm])),

which is λ times the given Σ×m-sharing, which, is, again, a Σ×m-sharing.

2.4 Alternatives for Hyper-Invertible Matrices: Same Functionality,
but Constant-Size Field.

We make two remarks about alternative approaches.

Remark 3. From known constructions, hyper-invertible matrices and their utility
in MPC protocols appear tighly connected with polynomial evaluation codes
(MDS codes) and therefore may seem to require a field of definition that grows
as a linear function of n. However, we note that we found that there is an
alternative coding-theoretic construction with essentially the same utility as that
of hyper-invertible matrices but that allows constant-size finite fields, where the
size should be large enough so as to make adversary rate 1/3 possible. In a
nutshell, the argument goes as follows: given a linear code C of length 2n′,
minimum distance d and minimum distance of its dual d⊥ it is not difficult
to see that every coordinate can be written as a linear function of any set of
2n′ − d + 1 coordinates, and that any set of d⊥ − 1 coordinates of a random
codeword are uniformly distributed. Suppose in addition the code has dimension
n′, wlog assume its in systematic form and its generator matrix is G = (In′ |M).
If we can take d, d⊥ ≥ (2/3 + ε)n′ ≥ 2t′ + εn′, then Proposition 2 still holds
for T ≤ εn′. Taking random linear codes over F64 of rate 1/2 should suffice for
this purpose according to the Gilbert-Varshamov bound (and the secret sharing
scheme should then be tensored-up to this field). Although there is no overall
advantage to our work (quantitatively), it does mean that, in the subprotocols
where it is used, “amortization kicks in faster.”

Remark 4. Instead of tensoring-up the secret sharing scheme, we may have taken
hyper-invertible matrices (or the alternative above) and have re-worked them
to be defined over the base field, using the same technique as in tensoring-up
(i.e., viewing the extension field as a matrix algebra over the base field) and
making substitutions accordingly. This leads to a “block-wise” version of hyper-
invertibility which is sufficient for our purposes. However, we feel that the present
approach we took is more natural and leads to cleaner protocols.

3 The Protocol

In this section we detail our protocol π, that securely evaluates k instances
of a binary circuit C in parallel by using a secure computation protocol π′ that
computes securely essentially the same arithmetic circuit defined over a extension
field F2m .

15

3.1 Framework

We consider a network of n parties who communicate via pairwise secure chan-
nels. Up to t of these parties are corrupted by an active adversary, where will
require that t < n/3.

Let C be a boolean circuit consisting of input gates; computation gates which
will be (unbounded fan-in) addition (XOR) gates, fan-in 2 multiplication (AND)
gates and NOT gates (which we can think of as addition with the constant 1);
random gates that output a uniformly random bit and an output gate. We as-
sume that there is a single output gate for simplicity of notation only, as the
generalization of our results to the case where there are more output gates is
straightforward. Let cI , cR, cM be the number of input, random and multiplica-
tion gates respectively.

Given a (k,m)2-RMFE (φ, ψ), we define the following arithmetic circuit Cφ
over the extension field F2m : We replace the XOR and AND gates in C by gates
implementing addition and multiplication in F2m and we replace the NOT gates
by addition with the field element φ((1, 1, . . . , 1)) ∈ F2m(which may not coin-
cide with the element 1 in F2m). For consistency we replace the boolean random
gates by gates which create random elements in F2m ; this does not really have
too much importance, since we will entirely replace the computation of this gate
by a subprotocol.

Preprocessing and player elimination. Our protocol π will have a pre-processing
phase, which is independent of the inputs, and a computation phase.

In addition, π will use the player elimination framework. Player elimination,
introduced in [HMP00], is a technique by which the computation (or part of it) is
first divided in segments and in each segment, if at least one party has deviated
from the protocol, a set of two parties is identified out of which at least one
is a corrupt. The protocol then proceeds by eliminating these two parties and
recompute the segment. This protocol works exactly as described in [BH08], so
we refer the reader to that work for its detailed description. At every step of the
protocol, we will denote by n′ the number of active (not eliminated) parties, and
by t′, the number of active corrupted parties. Note that the invariant t < n′−2t′

always holds.
It is important to mention that, as it occurs in other protocols such as [BH08],

we will use player elimination in the preprocessing phase only.

Conditions on π′. We now describe the conditions that π′ needs to satisfy
so that we can apply our compiler and construct π. First of all, π′ will be a
secret-sharing based protocol and we need to make some assumptions on the
underlying secret sharing scheme.

Given a secret sharing scheme with player set I, by puncturing the scheme
at a subset A ⊆ I we mean that we consider the secret sharing scheme where we
remove the set A of parties (so the new player set is I \A and sharing happens
in the same way as in the original scheme, except that the shares that would
correspond to the subset A are erased).

16

Definition 6. We say that a secret sharing scheme is t-robust if there exists a
polynomial-time algorithm that, when given as input all shares in a sharing [x],
among which at most t are erroneous, outputs x.

We say that a secret sharing scheme on n parties is elimination-compatible
t-robust, if for every 0 ≤ u ≤ t, and any set of 2u parties, puncturing the scheme
at those 2u parties results in a scheme on the other n′ = n− 2u parties which is
t′-robust, where t′ = t− u.

Remark 5. Note that a degree-t Shamir’s secret sharing scheme for n parties
is elimination-compatible t-robust as long as 3t + 1 ≤ n. Indeed, after player
elimination, the set of possible sharings forms a Reed-Solomon code of length n′

and dimension t + 1, and therefore minimum distance n′ − t. There exist well
known efficient algorithms that can correct any e < (n′ − t)/2 errors. But the
number of errors that can be introduced by the adversary is at most t′, and as
we noted above t < n′ − 2t′ which implies t′ < (n− t)/2.

We assume that the secure multiparty computation protocol π′ to compute
Cφ has the following features:

Assumptions on π′

– π′ may have a preprocessing phase, which is independent of the inputs,
and a computation phase. We allow the protocol to use player elimina-
tion in the preprocessing phase.

– π′ is secure against an active adversary corrupting t parties.
– π′ is a secret-sharing based secure multiparty computation protocol π′

which uses a F2m -secret sharing scheme with t-privacy and which is
elimination-compatible t-robust (the sharing of an element x is denoted
[x])

– In the computation phase every input and intermediate computed value
remain secret shared among the parties with this secret sharing scheme;
the protocol creates these sharings as follows: at every addition gate,
parties locally compute a sharing of the output of the gate from the
sharings of the inputs using the linearity of the scheme; the same holds
for addition and multiplication by known constants; multiplication gates
are processed by a subprotocol Mult that on input [a], [b] produces [ab].

3.2 Result

In the rest of the section we prove the following theorem.

Theorem 4. Assume there exists a (k,m)2-reverse multiplication friendly em-
bedding (φ, ψ), where 2m ≥ 2n and let π′ be a secure multiparty computation
protocol for the arithmetic circuit Cφ over F2m satisfying the assumptions above.

17

Then there exists a multiparty computation protocol secure against an active ad-
versary who corrupts at most t parties and which allows to compute k instances of
the circuit C with communication complexity cc(π) = cc(π′)+(cI+cM+cR)·O(n)
elements of F2m .

3.3 The General Structure of π

The general idea of the construction has been explained in the introduction:
in the first step, for i = 1, . . . , n, the i-th party, who has an input xi =

(x
(1)
i , ..., x

(k)
i) ∈ Fk2 , creates a sharing of [φ(xi)] ∈ F2m . A subprotocol CorrInput

will ensure that this sharing is well constructed (in particular, it hides an ele-
ment from Imφ). Then the parties execute π′ on inputs [φ(x1)], . . . , [φ(xn)], but
every time that there is a multiplication gate, the output of that gate, say [a],
will be re-encoded by applying a sub-protocol ReEncode that creates [φ(ψ(a))]
from [a]. Therefore, at the end of the computation with π′, the parties obtain
φ(y), for y = (y(1), ..., y(k)). Here each y(j) is the output of the evaluation of C

on (x
(j)
1 , ..., x

(j)
N). Every party can now apply φ−1 to recover y.

An additional detail is that for random gates we need to create sharings of
uniformly random elements in Imφ. As we will see, this is exactly the main step
in CorrInput too.

We explain the subprotocols in the following lines.

3.4 Auxiliary Protocols

We will now describe the subprotocols needed in π. We recall that since we use
player elimination, at a given point of the protocol there will be n′ active parties
out of which t′ are corrupted, where n′ = n−2u and t′ = t−u for some 0 ≤ u ≤ t,
and that t < n′− 2t′ always holds. So we describe our protocols taking that into
account (for the sake of notation the active parties are indexed by 1, . . . , n′). In
particular, it will be understood that the secret sharing scheme at a given point
of the protocol is the original secret sharing scheme punctured on 2u parties.

We start with the public reconstruction protocol ReconsPubl. One possibility
could of course be simply to have every party send their share to each other,
after which every party clearly can reconstruct, since the scheme is t′-robust.
However, this incurs in a communication complexity of Θ(n2) elements of the
field. The following idea comes originally from [DN07] and allows to amortize the
reconstruction, so that the communication complexity is still Θ(n2) but Ω(n)
sharings are simultaneously reconstructed.

Protocol ReconsPubl (from [DN07])
Input: [a1], [a2], . . . , [an′−2t′].
Output: All parties obtain a1, a2, . . . , an′−2t′ .
Fix β1, . . . , βn′ ∈ F2m pairwise distinct.

18

– Call uj :=
∑n′−2t′
i=1 aiβ

i
j . For all j, parties locally compute [uj] =∑n′−2t′

i=1 [ai]β
i
j .

– For all i, all parties send their shares of ui to Pi.
– For all i, Pi applies the robust reconstruction algorithm of the secret

sharing scheme to obtain ui.
– For all i, j, Pi sends ui to Pj .
– For all j, Pj applies an standard error decoding algorithm for Reed-

Solomon codes to recover a1, . . . , an′−2t′ from the values ũ1, . . . , ũn′ re-
ceived in the previous step (using that ũi 6= ui for at most t′ values).

Remark 6. ReconsPubl allows to perfectly reconstruct n′ − 2t′ = Ω(n) sharings
by communicating 2n′(n′−1) = O(n2) elements of the field in total, an amortized
cost of O(n) elements of the field per reconstructed sharing.

As it has been mentioned before, both the subprotocols CorrInput and
ReEncode need to use sharings of uniformly random elements in certain F2-
subspaces. These will be generated in the preprocessing phase with the help of
hyper-invertible matrices, by using the techniques introduced in Section 2.

We describe more explicitely how this works. Let V ⊆ Fv2m be a F2-subspace
(in our protocols we will only encounter the cases v = 1, v = 2, but here
we treat the problem more generally). The protocol RandElSub(V) generates
sharings of uniformly random elements in V . Here, by a sharing of an element
u = (u1, . . . , uv) ∈ V we refer to the generalized linear secret sharing scheme that
consists in that each coordinate uj is shared with the secret sharing scheme used
in the protocol. This is an F2-generalized linear secret sharing scheme where the
secret space is V and the share spaces are Fv2m . We will call this secret sharing
scheme Σ, but by abuse of notation we write [u] = ([u1], . . . , [uv]).

We need a n′ × n′-hyper-invertible matrix M over some finite field. Since
|F2m | ≥ 2n′ by assumption, we know how to construct such matrices over F2m ,
by Lemma 1. However, the GLSSS described above is only linear over F2, so in
order to apply the hyper-invertible matrix we need to tensor-up this GLSSS to a
F2m -linear one, using the techniques from Section 2. Recall that this will create
the interleaved F2m-GLSSS Σ×m where the secrets are in V m and each share is
in (F2m)m, to which we apply the hyper-invertible matrix technique. However,
note that the interleaved scheme still allows to access easily the sharings of
the individual elements in V . Namely the scheme has secrets u = (u1, · · · , um)
where uj = (uj,1, . . . , uj,v) ∈ V for j = 1, . . . ,m and the sharing of u consists
of independent sharings of all uj,` ∈ F2m with the scheme used by π′. We abuse
once more notation and denote [u] := ([u1], · · · , [um]) where in turn [ui] =
([ui,1], . . . , [ui,v]).

The protocol is as follows.

19

Protocol RandElSub(V)

Parameter: Let T be an integer with 1 ≤ T ≤ n′ − 2t′.
Output: Sharings [rij,`] of elements rij,` ∈ F2m , i = 1, . . . , T , j = 1, . . . ,m,

` = 1, . . . , v, where rij = (rij,1, . . . , r
i
j,v) are uniformly random elements from

V .

Let M ∈ Fn
′×n′

2m be a hyper-invertible matrix.

– For i = 1, . . . , n′, Pi selects m uniformly random elements si1, · · · , sim ∈
V and creates a sharing [si] := ([si1], · · · , [sim]) with the interleaved secret
sharing scheme Σ×m, where in turn [sij] := ([sij,1], [sij,2], ..., [sij,v]).

– Players locally compute ([r1], . . . , [rn
′
]) = M([s1], . . . , [sn

′
]). Note that

the entries of M are in F2m and that M acts on [si] as explained in
Section 2, using the fact that Σ×m is a F2m −GLSSS.

– For i = T + 1, . . . , n′, every party Pj sends its share of [ri] to Pi. Note
that [ri] can always be parsed as ([ri1], · · · , [rim]), so what Pj sends is her
shares of m values shared with Σ. Pi verifies that the values received
indeed are valid sharings of values (ri1, · · · , rim), and that ri1, . . . , r

i
m ∈ V .

If any check fails, Pi gets unhappy.
– The remaining T sharings [r1], . . . , [rT] are outputted. Note that [ri] =

([ri1], [ri2], . . . , [rim]) where rij = (rij,1, r
i
j,2, . . . , r

i
j,v) ∈ V and rij =

([rij,1], [rij,2], . . . , [rij,v])

Proposition 4. If all honest players are happy after the execution of RandElSub,
then [r1], . . . , [rT] are Σ×m-sharings of uniformly random vectors r1, . . . , rT ∈
V m, i.e., RandElSub produces Σ-sharings of mT uniformly random values rij ∈
V , j = 1, . . . ,m, i = 1, . . . , T , about which the adversary learns no informa-
tion (other than the fact that they are elements from V). The total communi-
cation complexity of RandElSub is (2n′ − T)(n′ − 1)mv field elements, which if
T = n′−2t′ = Θ(n) yields an amortized cost of O(nv) field elements per sharing
of an element in V .

The proof of this result consists in noticing that this protocol is RandEl from
Section 2 applied to the F2m-GLSSS Σ×m.

We will handle the case where parties declare themselves unhappy by means
of the player elimination technique. For the moment we assume that enough
sharings of random elements in the appropriate subspaces have been generated.

Next, we describe the protocol CorrInput which takes as input [a] (where
a ∈ F2m) and whose goal is verifying that a ∈ Imφ. For this the parties take a
sharing [r] of a uniformly random element r ∈ Imφ, that have been generated by
the protocol RandElSub(Imφ). Then they can use it to locally compute [a+ r],
open this sharing and verify that a + r ∈ Imφ, and since Imφ is a F2-vector

20

subspace, r, a + r ∈ Imφ imply that a ∈ Imφ. Moreover, since r is uniformly
random in Imφ, the opened value a+ r gives no additional information on a.

Protocol CorrInput

Input: [a].
Output: Accept if a ∈ Imφ. Reject otherwise.

– Take the next unused sharing [r] produced by RandElSub(Imφ).
– Compute [a+ r] = [a] + [r] locally.
– Use ReconsPubl to open [a+ r]. Let b be the opened value.
– Accept if b ∈ Imφ. Reject otherwise.

It is quite straightforward that this protocol is secure. Note that all hon-
est parties will receive the same output, because ReconsPubl will output the
same value to all of them. Moreover, notice that if [a] is a correct sharing, then
ReconsPubl will succeed reconstructing a+ r even if malicious parties commu-
nicate false shares because ReconsPubl is robust.

Finally, we consider the protocol ReEncode, whose goal is to construct [φ(ψ(a))]
from [a], where a ∈ F2m . We remark first that the composition φ◦ψ : F2m → F2m

is an F2-linear map, but not an F2m -linear map. Therefore we cannot use the F2m-
linearity of the secret sharing scheme to have parties locally compute [φ(ψ(a))]
given [a]. Instead, we use a randomization technique, as in the case of CorrInput.
Define the set

W = {(x, φ(ψ(x))) : x ∈ F2m} ⊆ (F2m)2.

This is an F2-subspace of (F2m)2. The parties will have called RandElSub on W
in the preprocessing phase in order to create (at least) cM sharings of random
elements in W . They take a unused such sharing [r] = ([r], [φ(ψ(r))]). Then
they can use it to locally compute [a + r], open this value and then compute
[φ(ψ(a))] = [φ(ψ(a+ r))]− [φ(ψ(r))], where [φ(ψ(a+ r))] is some default sharing
of the public element φ(ψ(a + r)), which can be computed from the opened
information a+ r. Note that this opened value a+ r gives no information about
a, since r is uniform in F2m .

Protocol ReEncode

Input: [a].
Output: [φ(ψ(a))].
Let W := {(x, φ(ψ(x))) : x ∈ F2m} ⊆ (F2m)2.

– Take the next unused sharing [r] produced by RandElSub(W). Parse [r]
as ([r], [s]), where s = φ(ψ(r)).

21

– Compute [a+ r] = [a] + [r] locally.
– Use ReconsPubl to open [a+ r]. Let m be the opened value.
– Compute [w] = φ(ψ(m))− [s].
– Output [w].

3.5 Final Protocol

We describe our final protocol. The preprocessing phase will generate sharings
of at least cI + cR uniformly random values in Imφ, and at least cM uniformly
random values in W . In order to incorporate player elimination, we split the
computation of these values in (cI +cM +cR)/t segments. After the computation
of each segment, if some party is unhappy, then all values generated in that
segment are discarded and player elimination is used to identify a set of two
parties containing one malicious party. These two parties are eliminated and the
computation of the segment is restarted with the updated values for n′ and t′

and all parties resetting their status to happy.

Protocol π
Inputs: xi = (x

(1)
i , ..., x

(k)
i) ∈ Fk2 , i = 1, . . . , N , where each xi is known

to some party.
Output: All parties learn y = (y(1), . . . , y(k)) where y(j) is the evaluation

of circuit C on input (x
(j)
1 , ..., x

(j)
N).

(Input-independent) preprocessing phase:

– Generation of random elements in F2-subspaces. The following computa-
tion is splitted in (cI +cM +cR)/t segments. After each segment, if some
party is unhappy, discard that computation, execute player elimination
and restart the segment with the new set of parties.

• The parties run RandElSub(Imφ) enough number of times to create
sharings of at least cI + cR random elements in Imφ.

• The parties run RandElSub(W) enough number of times to create
sharings of at least cM random elements in Imφ.

– The parties execute the preprocessing phase of π′, if there is any.

Computation phase:

– For i = 1, . . . , N , the party holding input xi computes φ(xi) execute the
subprotocol from π′ to create [φ(xi)]. The parties execute CorrInput,
using the next unused sharing produced by RandElSub(Imφ).

– Parties execute the rest of the computation phase of π′ on inputs
([φ(x1)], . . . , [φ(xN)]) with the following changes:

22

At every multiplication gate of C ′, after the parties execute Mult on
inputs ([a], [b]) and obtain [ab], they apply subprotocol ReEncode to [ab]
and produce [φ(ψ(ab))]. Each time ReEncode is called the next unused
sharing produced by RandElSub(W) is used.
At every random gate of C ′ the computation of the gate by π′

is ignored and instead the next unused sharing [φ(r)] produced by
RandElSub(Imφ) is used.

– Let z be the output of π′ in the execution of the protocol. The output
of π is y = φ−1(z).

We consider the communication complexity of π. It executes one instance of
π′, one instance of CorrInput per input gate and one instance of ReEncode per
multiplication gate of the circuit. In turn, both CorrInput and ReEncode execute
the public reconstruction protocol of the secret sharing scheme and both sub-
protocols require one fresh sharing of a random element produced by RandElSub

(invoked on V = Imφ in the case of CorrInput and on V = W in the case of
ReEncode). Note that we can use RandElSub to create these sharings of random
elements in batches of size n log n with a communication complexity O(n2 log n),
which gives an amortized complexity of O(n) field elements per output sharing.

Therefore the communication complexity of the protocol π is cc(π) = cc(π′)+
(cI + cM + cR) ·O(n) field elements.

4 Reverse Multiplicative Friendly Embeddings

In this section, we show, by algebraic geometric means, effective (k,m)q-RMFE’s
with m = O(k) for every finite field Fq. The hidden constant is actually quite
small.

But first show that if the size of the base field q is larger than k − 1 we
can construct a (k, 2k− 1)q-RMFE’s based on some elementary results on poly-
nomial interpolation. Chaining these together by concatenation, we then show
quite practical RMFE’s for moderate values of m and reasonable rate m/k. This
indicates that our main results may also have some practical value.

Lemma 4. For all 1 ≤ k ≤ q + 1, there exists a (k, 2k − 1)q-RMFE.

Proof. Let Fq[X]≤m denote the set of polynomials in Fq[X] of degree at most m
and let ∞m+1 be a formal symbol such that f(∞m+1) is the coefficient of Xm

in f ∈ Fq[X]≤m. Let x1, . . . , xk be pairwise distinct elements in Fq ∪ {∞k} and
let α ∈ Fq2k−1 be such that Fq2k−1 = Fq(α).

By [CDN15, Theorems 11.13, 11.96] the maps

E1 : Fq[X]≤k−1 → Fkq ; f 7→ (f(x1), f(x2), . . . , f(xk))

and
E2 : Fq[X]≤2k−2 → Fq2k−1 ; f 7→ f(α)

23

are isomorphisms of Fq-vector spaces.
Define also

E ′1 : Fq[X]≤2k−2 → Fkq ; f 7→ (f(x′1), f(x′2), . . . , f(x′k))

where x′i := xi if xi ∈ Fq, and x′i :=∞2k−1 if xi =∞k.
Now we define φ = E2 ◦ E−11 and ψ = E ′1 ◦ E−12 (where in the case of φ

the composition makes sense because Fq[X]≤k−1 ⊆ Fq[X]≤2k−2). Then using
that fg(α) = f(α)g(α) and fg(x′i) = f(xi)g(xi) for all f, g ∈ Fq[X]≤k−1, it is
immediate that (φ, ψ) is a (k, 2k − 1)q-RMFE.

Next, we show how to concatenate RMFEs over different finite fields.

Lemma 5. Assume that (φ1, ψ1) is an (k1,m1)qm2 -RMFE and (φ2, ψ2) is an
(k2,m2)q-RMFE. Then

φ : Fk1k2q → Fqm1m2 ,

(x1, . . . ,xk1) 7→ (φ2(x1), . . . , φ2(xn1
)) ∈ Fk1qm2 7→ φ1(φ2(x1), . . . , φ2(xk1))

and
ψ : Fqm1m2 → Fk1k2q ,

α 7→ ψ1(α) = (u1, . . . ,uk1) ∈ Fk1qm2 7→ (ψ2(u1), . . . , ψ2(uk1))

give an (k1k2,m1m2)q-RMFE.

Proof. It is clear that both φ and ψ are Fq-linear. For any x,y ∈ Fk1k2q , we have

ψ(φ(x) · φ(y)) = ψ2 ◦ ψ1(φ1(φ2(x1), . . . , φ2(xk1)) · φ1(φ2(y1), . . . , φ2(yk1)))

= ψ2((φ2(x1), . . . , φ2(xk1)) ∗ (φ2(y1), . . . , φ2(yk1)))

= (ψ2(φ2(x1) · φ2(y1)), . . . , ψ2(φ2(xk1) · φ2(yk1)))

= (x1 ∗ y1, . . . ,xk1 ∗ yk1) = x ∗ y

This completes the proof.

Remark 7 (“On practical parameters”). As a consequence of applying the above
two results we have the following embeddings of Fk2 into extensions of degree up
to 325.

1. For all r ≤ 9, there exists a (2r, 6r− 3)2-RMFE (obtained by concatenation
of (2, 3)2 and (r, 2r − 1)8-RMFEs, both promised by Lemma 4).

2. For all r ≤ 33, there exists a (3r, 10r−5)2-RMFE (obtained by concatenation
of (3, 5)2 and (r, 2r − 1)32-RMFEs, both promised by Lemma 4).

We now move to the asymptotic results, for which we need the methods from
the theory of algebraic function fields. We will not give a detailed explanation of
this area here, and refer the reader to the book by Stichtenoth [Sti09]. However,
we sum up the facts that we need, ignoring some technical details.

A function field F/Fq is an algebraic extension of the rational function field
Fq(x), that contains all fractions of polynomials in Fq[x]. Associated to a function

24

field, there is a non-negative integer g called the genus, and an infinite set of
“places” P , each having a degree degP ∈ N. The number of places of a given
degree is finite. The places of degree 1 are called rational places. Given a function
f ∈ F and a place P , two things can happen: either f has a pole in P , or f
can be evaluated in P and the evaluation f(P) can be seen as an element of
the field Fqdeg P . If f and g do not have a pole in P then the evaluations satisfy
the rules λ(f(P)) = (λf)(P) (for every λ ∈ Fq), f(P) + g(P) = (f + g)(P) and
f(P) · g(P) = (f · g)(P). Note that if P is a rational place (and f does not have
a pole in P) then f(P) ∈ Fq. The functions in F always have the same zeros
and poles up to multiplicity (called order). An important fact of the theory of
algebraic function fields is as follows: call N1(F) the number of rational places of
F . Then over every finite field Fq, there exists an infinite family of function fields
{Fn} such that their genus gn grow with n and limN1(Fn)/gn = cq with cq ∈ R,
cq > 0. The largest constant cq satisfying the property above is called Ihara’s
constant A(q) of Fq. It is known that 0 < A(q) ≤ √q−1 for every finite field Fq.
Moreover, A(q) =

√
q − 1 for q square and that for a prime p and any integer

a ≥ 1, A(p2a+1) ≥ 2(pa+1−1)
p+1+ε where ε = p−1

pa−1 . These two results are constructive,
since explicit families of function fields attaining these values are known, given
in the first case by [GS95,GS96] and in the second case by [BBGS15].

A divisor G is a formal sum of places, G =
∑
cPP , such that cP ∈ Z and

cP = 0 except for a finite number of P . We call this set of places where cP 6= 0
the support of G, denoted supp(G). The degree of G is degG :=

∑
cP degP ∈ Z.

The Riemann-Roch space L(G) is the set of all functions in F with certain
prescribed poles and zeros depending on G (together with the zero function).
More precisely if G =

∑
cPP , every function f ∈ L(G) must have a zero of

order at least |cP | in the places P with cP < 0, and f can have a pole of order
at most cP in the places with cP > 0. The space L(G) is a vector space over Fq.
Its dimension is governed by certain laws (given by the so-called Riemann-Roch
theorem). A weaker version of that theorem called Riemann’s theorem states
that if degG ≥ 2g − 1 then dimL(G) = deg(G) − g + 1. On the other hand, if
degG < 0, then dimL(G) = 0.

Given f, g ∈ L(G) its product f · g is in the space L(2G).
The following is a generalization of Lemma 4

Lemma 6. Let F/Fq be a function field of genus g with k distinct rational places
P1, P2, . . . , Pk. Let G be a divisor of F such that supp(G)∩{P1, . . . , Pk} = ∅ and

dimFq L(G)− dimFq L(G−
∑k
i=1 Pi) = k. If there is a place R of degree m with

m > 2 deg(G), then there exists an (k,m)q-RMFE.

Proof. Consider the map

π : L(G)→ Fkq ; f 7→ (f(P1), . . . , f(Pk)).

Then the kernel of π is L(G −
∑k
i=1 Pi). Since dimFq

Im(π) = dimFq
L(G) −

dimFq
L(G −

∑k
i=1 Pi) = k, π is surjective. Choose a subspace W of L(G) of

dimension k such that π induces an isomorphism between W and Fkq .

25

We write by cf the vector (f(P1), . . . , f(Pk)), and by f(R) the evaluation of
f in the higher degree place R, for a function f ∈ L(2G). We now define

φ : π(V) = Fkq → Fqm ; cf 7→ f(R) ∈ Fqm .

Note that the above f ∈W is uniquely determined by cf . Moreover φ is Fq-linear
and injective since deg(R) > deg(G).

Define
τ : L(2G)→ Fqm ; f 7→ f(R) ∈ Fqm .

Then τ is Fq-linear and injective since m = deg(R) > deg(2G).
Define the map

ψ′ : Im(τ) ⊆ Fqm → Fkq ; f(R) 7→ (f(P1), . . . , f(Pk)) ∈ Fkq .

Note that the above f ∈ L(2G) is uniquely determined by f(R). ψ is Fq-linear
and surjective (but not injective). We extend ψ′ from Im(τ) to all of Fqm linearly
and call the resulting map ψ. We obtain thus the pair (φ, ψ).

For any cf , cg ∈ Fkq we have

ψ(φ(cf) · φ(cg)) = ψ(f(R) · g(R)) = ψ((f · g)(R)) = cfg = cf ∗ cg,

where f, g ∈ W are uniquely determined from cf , cg as explained above.
Note that (fg)(R) belongs to Im(τ) since fg ∈ L(2G). We conclude that (φ, ψ)
defined above is an (k,m)q-RMFE.

Corollary 1. Let F/Fq be a function field of genus g with k distinct rational
places and a place of degree m ≥ 2k+4g−1. Then there exists an (k,m)q-RMFE.

Proof. We take G a divisor of degree k + 2g− 1 whose support is disjoint with
the promised set of k rational places. Then, since both degG ≥ 2g − 1 and
deg(G−

∑k
i=1 Pi) ≥ 2g−1 we can apply the Riemann Theorem to conclude that

dimFq
L(G)−dimFq

L(G−
∑k
i=1 Pi) = deg(G)−g+1− (deg(G)−g+1−k) = k.

We are then in the conditions of Lemma 6.

Proposition 5 ([Sti09], Theorem 5.2.10 (c)). For every function field F/Fq,
and all m ∈ N with 2g+1 ≤ q(m−1)/2(

√
q−1), there exists a place in F of degree

m. In particular this holds for every m ≥ 4g + 3, regardless of q.

This implies that the condition about the existence of the high degree place in
Corollary 1 is in fact always satisfied as soon as k ≥ 2, since any m ≥ 2k+4g−1
satisfies the inequality in the proposition above.

Now we can show the main theorem of this section

Theorem 5. There exists a family of (k,m)q-RMFE with k → ∞ and m =
O(k). More concretely

m

k
→ 2 +

4

A(q)
.

26

Proof. Take a family {F`} of function fields over Fq of growing genus g` → ∞
with N1(F`)/g` → A(q). Since N1(F`) is the number of distinct rational places
of F`, we can take k = N1(F`). Moreover we take m = 2k + 4g` − 1. These
parameters satisfy all conditions in Corollary 1 and therefore the construction
above yields a (k,m)q-RMFE.

For q = 2 a direct application of this result, together with the bound A(2) ≥
97/376 from [XY07] yields a family of (k,m)2-RMFEs with

m

k
→ 2 +

4

A(2)
≤ 2 +

4× 376

97
≈ 15.51.

4.1 An Explicit Construction over F2

The result above for q = 2 is not explicit, since the bound for A(2) was attained
by a non-explicit of function fields. In this section we will show an explicit
construction of a family of RMFEs over F2 with a constant asymptotic ratio.
This example also shows that, fortunately, as was the case for practical values
of k, the expansion expressed by the asymptotic ratio m/k can be quite small.

Proposition 6. There exists a constructive family of (k,m)32-RMFE with k →
∞ and m

k → 62/21.

Proof. This comes from applying Theorem 5, that implies the existence of a
family of (k,m)32-RMFE with k →∞ and m

k → 2 + 4
A(32) .

Now we use that for every prime p and every a ≥ 1, we have A(p2a+1) ≥
2(pa+1−1)
p+1+ε (where ε = p−1

pa−1) and that this is achieved for the explicit construction

in [BBGS15]. In particular p = 2, a = 2 gives A(32) ≥ 21/5. This means 2 +
4

A(32) ≤ 62/21 and concludes the proof.

Corollary 2. There exists a constructive family of (k,m)2-RMFE with k →∞
and

m

k
→ 4.92...

Proof. Applying the concatenation in Lemma 5 to the (3, 5)2-RMFE (from
Lemma 4) and the family of (k1,m1)32-RMFE with m1

k1
→ 62/21 provides a

family of (3k1, 5m1)2-RMFE. Note that 5m1

3k1
→ 5/3× 62/21 = 4.92...

5 Proof of Theorem 1

The last step towards proving Theorem 1 is how to instantiate the protocol π′

that securely computes the arithmetic circuit over F2m . We use the protocol by
Beerliová-Trub́ıniová and Hirt [BH08].

Theorem 6 ([BH08]). There is a protocol π′ which computes an arithmetic
circuit over a field F2m , where |F2m | > 2n, with a communication complexity of
O((cI+cM +cR) ·n+DM ·n2+n3) field elements, where DM is the multiplicative
depth of the circuit.

27

The protocol π′ satisfies all conditions in Section 3. In particular it is a secret-
sharing based protocol where the secret sharing scheme used is degree t-Shamir’s
secret sharing scheme over F2m .

Proof (of Theorem 2). We use Theorem 4 with a (φ, ψ) from the family of (k,m)-
RMFEs with m = Θ(k) constructed in Section 4 and the protocol π′ from
Theorem 6. The total communication complexity is O((cI + cM + cR) ·n+DM ·
n2 +n3) elements of F2m , and therefore O(nm) bits per gate of the circuit. Note
that this allows to compute k = Θ(m) evaluations of the circuit and therefore
the amortized complexity is O(n) bits per gate.

We point out one optimization that it is possible when we combine our com-
piler with [BH08]. Indeed the input phase in [BH08] consists in selecting a sharing
[r] of a random element in F2m which has been generated in their preprocessing
phase and opening this privately to the party Pi holding the input ai ∈ F2m ,
who broadcasts the difference of the random element and ai so that the rest
of the parties update their shares. If we use our compiler as described, in the
next step Pi would prove ai ∈ Imφ. Rather than executing these two phases, we
can merge these two processes in one step: instead of using [r] for a uniformly
random r ∈ F2m , we can have parties take [r′] for a uniformly random r′ ∈ Imφ,
generated in our preprocessing phase by RandElSub(Imφ), then open this to Pi,
and have Pi broadcast the difference of r′− ai. The other parties can now verify
that r′ − ai ∈ Imφ and if so, update their shares accordingly.

6 Proof of Theorem 2

We combine our amortization technique with the packed secret sharing paradigm
to further decrease the communication complexity in the case where the adver-
sary is suboptimal.

The result is based on the observation that one can replace Shamir’s secret
sharing scheme by packed Shamir’s secret sharing in the protocol from [BH08].

Theorem 7. There is a multiparty computation protocol for n parties that eval-
uates ` = Θ(n) instances of an arithmetic circuit over Fq (where q ≥ 2n) with
cI input, cR random and cM multiplication gates, by communicating O(cIn +
cRn + cMn + DMn

2 + n3) field elements, where DM denotes the multiplicative
depth of the circuit. The protocol is secure against an active adversary corrupting
t < (n− 2`+ 2)/3 players.

In order to sketch an argument for this result, we briefly describe how [BH08]
works. This protocol has a preprocessing phase and a computation phase. In
the computation phase, all inputs and intermediate values are shared among
the network of parties using Shamir’s secret sharing of degree t, denoted by
[·]t. In order to process multiplication gates, the protocol uses the well known
randomization technique due to Beaver[Bea91], which relies on auxiliary shared
triplets ([a]t, [b]t, [c]t), where a, b are random field elements and c = ab; these
have been computed in the preprocessing phase.

28

The preprocessing phase uses player elimination and its goal is to generate
the aforementioned triplets as well as “individual” sharings of random elements
that are used in input and random gates. The crucial step in order to obtain
these triplets is to be able to generate “double sharings” of random elements,
more specifically one needs to generate pairs [r]t, [r]t′ and [r]t, [r]2t′ (where t′

as always is the updated corruption tolerance after player elimination). This is
done by means of hyper-invertible matrices in a way we have already sketched in
Section 2. Here an important point underlying the protocol is that the product
of two degree-t polynomials is a degree-2t polynomial. A small detail is that at
some points of the computation the parties need to generate, from a publicly
known value x, the 0-degree sharing [x]0. This is simply that each party defines
as share the value x.

Finally, the other important point to notice regards reconstruction of se-
crets: throughout the protocol two reconstruction protocols are used for the
secret sharing scheme: ReconsPriv reconstructs the secret privately towards a
party, and consists on all other parties sending their shares to her. The proto-
col ReconsPubl, which we have already detailed in this paper, reconstructs a
batch of secrets publicly, with amortized communication. Given a sharing [·]d,
the secret can be reconstructed (with either protocol) t′-robustly if d < n′ − 2t′

and t′-detectably (meaning that either the correct secret is reconstructed or the
party detects the sharing is erroneous) if d < n′− t′. Hence t and t′-degree shar-
ings can be robustly reconstructed and 2t′-degree sharings can be detectably
reconstructed. This is enough for the purposes of [BH08].

We describe how this would be adapted so that packed Shamir secret sharing
is used instead. We recall how packed Shamir secret sharing for n parties and with
secrets in F`q (where ` < n), is defined; by assumption Fq has at least n+ ` < 2n
elements. Fix ω1, . . . , ω`, α1, . . . , αn pairwise distinct points in Fq. Then, for a
degree d ≥ `− 1, degree d-packed Shamir secret sharing works as follows: given
s = (s1, . . . , s`) ∈ F`q, a polynomial f ∈ Fq[X] is chosen uniformly at random

among all polynomials of degree ≤ d with f(ωj) = sj for j = 1, . . . , `. Then [s]`d is
the vector (f(α1), . . . , f(αn)) where f(αi) is sent to the i-th player. This packed
scheme has (d−`+1)-privacy: any set of d−`+1 shares gives no information about
the secret. On the other hand, it has exactly the same reconstruction properties
(even in the presence of errors) as degree d-standard Shamir. In particular, it
has d+ 1-reconstruction (d+ 1 honest shares determine the secret), it is t-robust
as long as d < n− 2t and it has t-detectable reconstruction as long as d < n− t.

We can turn [BH08] into a protocol that computes ` parallel evaluations of
an arithmetic circuit over Fq with O(1) field elements communicated per gate
by doing the following modifications. The standard Shamir sharings [·]t, [·]t′ , [·]0
and [·]2t′ in [BH08] are substituted by packed Shamir sharings [·]`t+`−1, [·]`t′+`−1,

[·]``−1 and [·]`2t′+2`−2, respectively. Multiplication of secrets in Fq becomes now

componentwise multiplication in F`q.
One can then verify that all properties we need are still preserved: first, we

have that 2t′ + 2` − 2 = 2(t′ + ` − 1), which is needed in the shared triplets
generation; moreover, the main scheme is now [·]`t+`−1, which is still t-private;

29

furthermore, under the assumption that t < (n−2`+2)/3, we have 2t′+2`−2 <
n′− t′ and t′+ `− 1 ≤ t+ `− 1 < n′− 2t′, so [·]`t+`−1, [·]`t′+`−1 are have t′-robust

reconstruction and [·]`2t′+2`−2 has t′-detectable reconstruction; finally [·]``−1 is a
degenerate secret sharing scheme that takes the unique polynomial of degree
` − 1 that interpolates the secret and generates the corresponding shares, i.e.,
every party can compute her share given the secret, so it plays exactly the role
which is needed from [·]0 in the original protocol. The double sharing generation
via hyper-invertible matrices still works, because it can be still captured with
our notion of GLSSS. Indeed we will have a Fq-GLSSS where the secret is now
in F`q but each of the shares in F2

q and consists of a share with [·]`d, and another

with [·]′`d (the protocol will need to invoke this with d = t+ `− 1, d′ = t′ + `− 1
and with d = t+ `− 1, d′ = 2t′ + 2`− 2).

This establishes Theorem 7 given that the communication complexity of this
modified protocol is the same as that of [BH08], but it computes ` evaluations
of the arithmetic circuit under the weaker assumption that t < (n− 2`+ 2)/3.

Now we show Theorem 2.

Proof (of Theorem 2). We describe a secure multiparty computation protocol for
n parties with perfect security against an adversary corrupting t < (n−2`+2)/3
parties that computes simultaneously k` evaluations of the binary circuit C with
communication O(k`) bits per gate of the circuit, and hence O(1) bits per gate
per instance. We recover the theorem by taking ` = εn/2.

We briefly describe how to modify our compiler from Section 3 so that it
works with packed Shamir secret sharing.

Take (φ, ψ) from a family of (k,m)2-RMFE with m = Θ(k) and such that
2m > 2n. Define Φ : Fk`2 → (F2m)` and Ψ : (F2m)` → Fk`2 that respectively
consist in applying φ to each block of k coordinates of the input and ψ to each
coordinate of the input. Parties now encode their vectors of inputs with Φ and
provide these to the protocol π′ (for example the vers and they need to prove that
their inputs are in Φ. In order to do this the parties need to apply RandElSub to
ImΦ = (Imφ)` in the preprocessing phase. At multiplication gates, the parties
need to compute [Φ(Ψ(a))] from [a] which can be done in similar fashion as in
Section 3 but using random sharings generated by applying RandElSub to the
F2-subspace W = {(x, Φ(Ψ(x))) : x ∈ F`2m} in the preprocessing phase. We also
need to use that ReconsPubl is t′-robust as explained above.

Because the secret sharing scheme is now the packed version of Shamir’s,
we attain the same complexity as in our protocol, but now we are computing
k` = Θ(kn) evaluations of the circuit. The amortized complexity per gate per
instance of the compiler is therefore O(1) bits. Using this in combination with
the packed version of [BH08] described above as protocol π′ proves the theorem.

7 Acknowledgements

The work of Ronald Cramer and Chen Yuan was supported in part by ERC Ad-
vanced Grant No. 74079 (ALGSTRONGCRYPTO). Part of Chen Yuan’s work

30

was performed while he was employed at NTU in Singapore. The authors thank
Martin Hirt, Ivan Damg̊ard, Yuval Ishai, and Jesper Buus Nielsen for helpful
discussions and the anonymous reviewers for their valuable comments.

References

BBGS15. Alp Bassa, Peter Beelen, Arnaldo Garcia, and Henning Stichtenoth. Towers
of function fields over non-prime finite fields. Moscow Mathematical Journal,
15(1):1–29, 2015.

Bea91. Donald Beaver. Efficient multiparty protocols using circuit randomization.
In Advances in Cryptology - CRYPTO ’91, 11th Annual International Cryp-
tology Conference, Santa Barbara, California, USA, August 11-15, 1991,
Proceedings, pages 420–432, 1991.

BGW88. Michael Ben-Or, Shafi Goldwasser, and Avi Wigderson. Completeness the-
orems for non-cryptographic fault-tolerant distributed computation (ex-
tended abstract). In Proceedings of the 20th Annual ACM Symposium on
Theory of Computing, May 2-4, 1988, Chicago, Illinois, USA, pages 1–10,
1988.

BH08. Zuzana Beerliová-Trub́ıniová and Martin Hirt. Perfectly-secure MPC with
linear communication complexity. In Theory of Cryptography, Fifth Theory
of Cryptography Conference, TCC 2008, New York, USA, March 19-21,
2008., pages 213–230, 2008.

BMN17. Alexander R. Block, Hemanta K. Maji, and Hai H. Nguyen. Secure compu-
tation based on leaky correlations: High resilience setting. In Advances in
Cryptology - CRYPTO 2017 - 37th Annual International Cryptology Con-
ference, Santa Barbara, CA, USA, August 20-24, 2017, Proceedings, Part
II, pages 3–32, 2017.

Bra85. Gabriel Bracha. An o(log n) expected rounds randomized byzantine generals
protocol. In Proceedings of the 17th Annual ACM Symposium on Theory of
Computing, May 6-8, 1985, Providence, Rhode Island, USA, pages 316–326,
1985.

CC88. David Chudnovsky and Gregory Chudnovsky. Algebraic complexities and
algebraic curves over finite fields. Journal of Complexity, 4:285–316, 1988.

CCCX09. Ignacio Cascudo, Hao Chen, Ronald Cramer, and Chaoping Xing. Asymp-
totically good ideal linear secret sharing with strong multiplication over Any
fixed finite field. In Advances in Cryptology - CRYPTO 2009, 29th Annual
International Cryptology Conference, Santa Barbara, CA, USA, August 16-
20, 2009. Proceedings, pages 466–486, 2009.

CCX11. Ignacio Cascudo, Ronald Cramer, and Chaoping Xing. The torsion-limit
for algebraic function fields and its application to arithmetic secret sharing.
In Advances in Cryptology - CRYPTO 2011 - 31st Annual Cryptology Con-
ference, Santa Barbara, CA, USA, August 14-18, 2011. Proceedings, pages
685–705, 2011.

CCX12. Ignacio Cascudo, Ronald Cramer, and Chaoping Xing. The arithmetic
codex. In 2012 IEEE Information Theory Workshop, Lausanne, Switzer-
land, September 3-7, 2012, pages 75–79, 2012.

CDN15. Ronald Cramer, Ivan Damg̊ard, and Jesper Buus Nielsen. Secure Multiparty
Computation and Secret Sharing. Cambridge University Press, 2015.

31

DI06. Ivan Damg̊ard and Yuval Ishai. Scalable secure multiparty computation. In
Advances in Cryptology - CRYPTO 2006, 26th Annual International Cryp-
tology Conference, Santa Barbara, California, USA, August 20-24, 2006,
Proceedings, pages 501–520, 2006.

DIK10. Ivan Damg̊ard, Yuval Ishai, and Mikkel Krøigaard. Perfectly secure mul-
tiparty computation and the computational overhead of cryptography. In
Advances in Cryptology - EUROCRYPT 2010, 29th Annual International
Conference on the Theory and Applications of Cryptographic Techniques,
French Riviera, May 30 - June 3, 2010. Proceedings, pages 445–465, 2010.

DN07. Ivan Damg̊ard and Jesper Buus Nielsen. Scalable and unconditionally secure
multiparty computation. In Advances in Cryptology - CRYPTO 2007, 27th
Annual International Cryptology Conference, Santa Barbara, CA, USA, Au-
gust 19-23, 2007, Proceedings, pages 572–590, 2007.

DNPR16. Ivan Damg̊ard, Jesper Buus Nielsen, Antigoni Polychroniadou, and
Michael A. Raskin. On the communication required for unconditionally
secure multiplication. In Advances in Cryptology - CRYPTO 2016 - 36th
Annual International Cryptology Conference, Santa Barbara, CA, USA, Au-
gust 14-18, 2016, Proceedings, Part II, pages 459–488, 2016.

FY92. Matthew K. Franklin and Moti Yung. Communication complexity of se-
cure computation (extended abstract). In Proceedings of the 24th Annual
ACM Symposium on Theory of Computing, May 4-6, 1992, Victoria, British
Columbia, Canada, pages 699–710, 1992.

GS95. Arnaldo Garćıa and Henning Stichtenoth. A tower of Artin-Schreier exten-
sions of function fields attaining the Drinfeld-Vlăduţ bound. Invent. Math.,
121(1):211–222, 1995.

GS96. Arnaldo Garcia and Henning Stichtenoth. On the asymptotic behaviour of
some towers of function fields over finite fields. J. Number Theory, 61(2):248–
273, 1996.

HMP00. Martin Hirt, Ueli M. Maurer, and Bartosz Przydatek. Efficient secure multi-
party computation. In Advances in Cryptology - ASIACRYPT 2000, 6th
International Conference on the Theory and Application of Cryptology and
Information Security, Kyoto, Japan, December 3-7, 2000, Proceedings, pages
143–161, 2000.

IKOS09. Yuval Ishai, Eyal Kushilevitz, Rafail Ostrovsky, and Amit Sahai. Zero-
knowledge proofs from secure multiparty computation. SIAM J. Comput.,
39(3):1121–1152, 2009.

Sha79. Adi Shamir. How to share a secret. Commun. ACM, 22(11):612–613, 1979.
Sti09. Henning Stichtenoth. Algebraic function fields and codes, volume 254 of

Graduate Texts in Mathematics. Springer-Verlag, Berlin, second edition,
2009.

XY07. Chaoping Xing and Sze Ling Yeo. Algebraic curves with many points over
the binary field. Journal of Algebra, 311(2):775–780, 2007.

32

	Amortized Complexity of Information-Theoretically Secure MPC Revisited

