
Achieving Fine-grained Multi-keyword Ranked
Search over Encrypted Cloud Data

Guowen Xu†, Hongwei Li† §
† School of Computer Science and Engineering, University of Electronic Science and Technology of China, China

Abstract—With the advancement of Cloud computing, people
now store their data on remote Cloud servers for larger compu-
tation and storage resources. However, users’ data may contain
sensitive information of users and should not be disclosed to the
Cloud servers. If users encrypt their data and store the encrypted
data in the servers, the search capability supported by the servers
will be significantly reduced because the server has no access
to the data content. In this paper, we propose a Fine-grained
Multi-keyword Ranked Search (FMRS) scheme over encrypted
Cloud data. Specifically, we leverage novel techniques to real-
ize multi-keyword ranked search, which supports both mixed
“AND”, “OR” and “NO” operations of keywords and ranking
according to the preference factor and relevance score. Security
analysis indicates that the FMRS scheme can achieve the data
confidentiality, the privacy protection of index and trapdoor, and
the unlinkability of trapdoor. Extensive experiments using the
real-world dataset demonstrate that the FMRS achieves better
performance than the existing schemes in terms of functionality
and efficiency.

Index Terms—Cloud computing, Multi-keyword search,
Privacy-preserving

I. INTRODUCTION

Cloud computing is an emerging data storage and com-
puting service, which is available to the public users over
the Internet. It significantly saves the local data storage and
computing cost of data owners [1], [2]. However, users’ data
may contain sensitive information of users and should not be
disclosed to the cloud server. Simply encrypting the data may
prevent the server from accessing it, but it also significantly
reduces the search capability of the server. In addition, there
are other security concerns, like some sensitive information
leakage of users.

Recently, the searchable encryption [3]–[5] has been de-
veloped as a fundamental approach to enable searching over
encrypted cloud data, which proceeds as follows. Firstly,
the data owner generates several keywords according to the
outsourced documents. These keywords are then encrypted
and delivered to the cloud server. When a search user intends
to search over the outsourced documents, it can select some
relevant keywords and sends the ciphertext of the selected
keywords to the cloud server. The cloud server then uses the
ciphertext to match the outsourced encrypted keywords, and
returns the matching results to the search user at last. Sun et al.
[6] propose a multi-keyword text search scheme, which builds
the search index based on term frequency and the vector space
model with cosine similarity measure to achieve higher search

result accuracy. To improve the search efficiency, Strizhov
et al. [7] propose a tree-based Substring Position Searchable
Symmetric Encryption (SSP-SSE) to handle substring search
queries over encrypted data, which also involves identifying
the position of the substring within the document. Li et al. [8]
utilize the relevance score and k-nearest neighbor techniques
to design an efficient multi-keyword search scheme, which
supports the mixed“AND”, “OR” and “NO” operations of
keywords. However, these proposed schemes cannot achieve
the ranking according to the preference factor and relevance
score simultaneously.

In this paper, we propose a Fine-grained Multi-keyword
Ranked Search(FMRS) scheme over encrypted cloud data.
Specifically, our original contributions can be summarized as
follows:

• We utilize novel techniques to develop the multi-keyword
ranked search which can achieve mixed “AND”, “OR”
and “NO” operations of keywords while supporting fine-
grained ranking according to the preference factor and
relevance score.

• Security analysis indicates that the proposed FMRS
scheme can achieve the data confidentiality, the privacy
protection of index and trapdoor, and the unlinkability of
trapdoor. Through extensive experiments using the real-
world dataset, we show the performance of the FMRS is
better than other schemes [9], [6], [10] and [8] in terms
of functionality and efficiency.

The remainder of this paper is organized as follows. In
Section III, we describe the preliminaries of the proposed
schemes. In Section II, we outline the system model, threat
model and security requirements. We present the developed
scheme in Section IV. Then we carry out the security analysis
and performance evaluation in Section V and Section VI,
respectively. Finally, Section VIII concludes the paper.

II. SYSTEM MODEL, THREAT MODEL AND
SECURITY REQUIREMENTS

A. System Model

As shown in Fig. 1, we consider a system consists of three
entities.

• Data owner: The data owner outsources her data to the
cloud server which supports reliable data access. In order
to protect the privacy of data, data is usually encrypted

Fig. 1: System model

through symmetric encryption before being outsourced.
To improve the search efficiency, the data owner needs
to generate a number of keywords for each outsourced
document, and create the corresponding index by the
keywords and a secret key. Finally, the data owner sends
the encrypted documents as well as the corresponding
indexes to the cloud server, and sends the symmetric key
and secret key to search user.

• Cloud server: The cloud server is an intermediate entity
which stores the encrypted documents and correspond-
ing indexes that are received from the data owner, and
provides data access and search services to given search
users. When the cloud server receives a trapdoor from
the search user, it would return a collection of matching
documents based on certain operation.

• Search user: The cloud server supports reliable data
access to the corresponding search users. Generally s-
peaking, a search user queries the documents in the
cloud server with following two steps. Firstly, the search
user uses the secret key and symmetric key to generate
a trapdoor which is sent to the cloud server, then she
receives the matching document collection from the cloud
server and decrypts them with the symmetric key.

B. Threat Model and Security Requirements

In our threat models, the cloud server is generally consid-
ered “honest-but-curious”, which is the same as most related
works on secure cloud data search [6], [9], [10]. Specifically,
on one hand, the cloud server is honest and honestly follows
the designated protocol specification and provides appropriate
services. However, the cloud server is also curious, and could
be “curious” to infer and analyze data (including index) stored
in the cloud server so as to learn additional information. Based
on this situation, we consider two threat models depending on
the information available to the cloud server.

• Known Ciphertext Model: In this model, the cloud
server only knows the encrypted document collection C
and the corresponding index collection I, both of which
are outsourced from the data owner.

• Known Background Model: In this stronger model, the
cloud server is supposed to possess more knowledge than
what can be accessed in the known ciphertext model, such
as the correlation relationship of trapdoors and the related
statistics of other information, i.e., cloud server can obtain
a large amount of statistical information through a known
database which bears the similar nature to the targeting
dataset.

Based on the above threat model, we define the security
requirements as follows:

• Confidentiality of documents: The documents of the data
owner are stored in the cloud server. Due to the privacy
of data, data is usually encrypted through symmetric
encryption before being outsourced, so the contents of
documents should not be identifiable except by the data
owner and the authorized search users.

• Privacy protection of index and trapdoor: As discussed
in Section II-A, for the convenience of users to search the
encrypted cloud data, the index and the trapdoor should
be created by the documents’ keywords and the search
keywords, respectively. If the cloud server knows some
information of index or trapdoor, she can deduce any
association between keywords and encrypted documents.
Therefore, the contents of index and trapdoor privacy
should be ensured and cannot be identified by the cloud
server.

• Unlinkability of trapdoor: Unlinkability of trapdoor, i.e
the cloud server can not get any keyword information
according to the trapdoors. Even if some documents
stored in the cloud server are searched many times,
the cloud server should be unable to determine whether
two trapdoors are generated from the same search re-
quest. Otherwise, the cloud server can deduce relationship
of trapdoors which threatens the privacy of keywords.
Therefore, for the same keywords, trapdoors should be
generated randomly, rather than deterministic.

III. PRELIMINARIES

A. Notation

• F—the document collection to be outsourced, denoted as
a set of N documents F = (F1, F2, · · · , FN).

• C—the encrypted document collection according to F ,
denoted as a set of N documents C = (C1, C2, · · · , CN).

• FID—the identity collection of encrypted documents C,
denoted as FID = (FID1, F ID2, · · · , F IDN).

• W—the keyword dictionary, including m keywords, de-
noted as W = (w1, w2, · · · , wm).

• I—the index stored in the cloud server, which is built
from the keywords of each document, denoted as I =
(I1, I2, · · · , IN).

• W̃—the query keyword set generated by a search user,
which is a subset of W .

• TW̃—the trapdoor for keyword set W̃ .
• F̃ID—the identity collection of documents returned to

the search user.

B. Secure kNN Computation

We leverage the work of Wong et al. [11]. Wong et al.
propose a secure k-nearest neighbor (kNN) scheme which can
encrypt two vectors and calculate their Euclidean distance
secretly. Firstly, the secret key (S,M1,M2) needs to be
generated by data owner. The role of binary vector S is to split
plaintext vector into two random vectors, which can change
the original value of plaintext vector. Then the M1 and M2

are used to encrypt the split vectors. Detailed introduction for
kNN can refer to the literature [11].

C. Relevance Score

The relevance score between a keyword and a document
indicates the frequency of the keyword in the document.
Without loss of generality, we adopt a widely used expression
in [12] to evaluate the relevance score as

Score(W̃, Fj) =
∑
w∈W̃

1

|Fj |
· (1 + lnfj,w) · ln(1 +

N

fw
) (1)

where fj,w represents the frequency of keyword w in docu-
ment Fj ; fw represents the number of documents that contain
the keyword w; N represents the number of files in the
collection; and |Fj | represents the length of Fj , which obtained
by counting the number of indexed keywords.

D. Reference Factor

The preference factors of keywords indicate the importance
of keywords in the search keyword set that are personally
defined by the search user. As a search user, she can set the
weight of keywords according to her own preferences. In this
paper, for the convenience of deriving, the search user random-
ly chooses a super-increasing sequence (a1 > 0, a2, · · · , al)
(i.e.,

∑j−1
i=1 ai · D < aj(j = 2, 3, · · · , l)), where ai is the

preference factor of keyword wi.

IV. PROPOSED SCHEME

In this section, we propose a fine-grained multi-keyword
ranked search scheme(FMRS), which can support both mixed
“AND”, “OR” and “NO” operations of keywords and ranking
according to the preference factor and relevance score.

1) Initialization: The data owner randomly generates the
secret key k = (S,M1,M2), where S is a (m+ 1)− dimen-
sional binary vector, M1 and M2 are two (m+ 1)× (m+ 1)
invertible matrices, respectively, m is the number of keywords
in W . Then the data owner sends (k, sk) to search user through
a secure channel, where sk is the symmetric key used to
encrypt documents which are outsourced to the cloud server.

2) Index building: The data owner firstly utilizes symmet-
ric encryption algorithm to encrypt the document collection
(F1, F2, · · ·FN) with the symmetric key sk, and the document
collection are encrypted as Cj (j = 1, 2, · · ·N), then the data
owner generates an m-dimensional binary vector Pi for every
document Ci, where the values of vector Pj (j = 1, 2, · · ·N)
determined by the TF × IDF weighting technique [11], and
the jth item of P represents the relevance score of keyword
wj in the document.

The data owner extends the P to a (m+ 1)− dimension
vector P ′, where P ′[m + 1] = 1. The data owner splits P ′

into two (m+ 1)−dimension vectors (Pa, Pb) using the key
S. i.e, if S[j] = 0, Pa[i] = Pb[i] = P ′[i], otherwise P ′[i] =
Pa[i] + Pb[i], (the value of P ′[i] will be randomly split into
Pa[i] and Pb). Therefore, the index of encrypted document
Cj can be denoted as Ij = (PaM1, PbM2). Finally, the data
owner sends Cj ∥ FIDj ∥ Ij (j = 1, 2, · · · , N)to the cloud
server.

3) Trapdoor generation: The search user firstly generates
the keyword set W̃ , then an m-dimensional binary vector
Q is generated where each bit Q[j] indicates the preference
factors of wj . The preference factors of keywords indicate the
importance of keywords in the search keywords set that are
personally defined by the search user[2]. Q is firstly extended
to (m + 1) dimension vector Q′, where Q′[m + 1] is set to
−s (the value of −s will be defined in the following schemes
in detail), then Q′ is scaled by a random number r ̸= 0 to
generate Q′′ = r · Q′. After applying the same splitting and
encryption processes as above, the tarpdoor TW̃ is generated
as

(
M−1

1 qa,M
−1
2 qb

)
. Finally, the search user sends TW̃ to the

cloud server.
4) Query: With the index Ij (j = 1, 2, · · · , N) and trap-

door TW̃ the final query result is as follows

Rj = Ij · TW̃ = (PaM1, PbM2) ·
(
M−1

1 qa,M
−1
2 qb

)
= Pa · qa + Pb · qb = P ′ ·Q′′

= r · (P ·Q− s)

(2)

A. Model analysis

Compared with the traditional model, we replace the values
of P [i] and Q[i] by the relevance scores and the preference
factors of keywords, respectively. For ease of calculation, the
score is rounded up, i.e, score(wi, Fj) = ⌈10∗score(wi, Fj)⌉,
and we assume that the score is not greater than D,
i.e. score(wi, Fj) < D. And we also assume that
the keyword sets of the the “OR” “AND” and “NO”
opreations are (w′

1, w
′
2, · · · , w′

l1
), (w′′

1 , w
′′
2 , · · · , w′′

l2
) and

(w′′′
1 , w′′′

2 , · · · , w′′′
l3
), respectively, the “OR”,“AND” and

“NO” operations denoted by ∨,∧ and ¬, respectively. Here
we assume that the “NO” keywords have maximum weight,
“AND” second, “OR” minimum. Thus the corresponding
rule can be represented as (w′

1 ∨ w′
2 ∨ · · · ∨ w′

l1
) ∧ (w′′

1 ∧
w′′

2 ∧ · · · ∧w′′
l2
) ∧ (qw′′′

1 ∧qw′′′
2 ∧ · · · ∧qw′′′

l3
) by the ascending

order of keyword weight, For “OR”,“AND” and “NO”
opreations, the search user chooses a super-increasing
sequence (a1, a2, · · · , al1), (al1+1, al1+2, · · · , al1+l2)

and (al1+l2+1, al1+l2+2 · · · , al1+l2+l3) (
j−1∑
i=1

ai · D <

aj(j = 2, 3 · · ·N)) to achieve searching with
keyword weight, respectively, and we assume that
l1 + l2 + l3 = N . So according to the search keyword
set (w′

1, w
′
2, · · · , w′

l1
, w′′

1 , w
′′
2 , · · · , w′′

l2
, w′′′

1 , w′′′
2 , · · · , w′′′

l3
),

the corresponding values in Q are set as
(a1, · · · , al1 , al1+1, · · · , al1+l2 , al1+l2+1, · · · , al1+l2+l3).
Other values in Q are set as 0.

We demonstrate that our model(FMRS) can achieve logical
search operation as following(for the convenience of deduc-
tion, we still use wi to replace w′

i, w
′′
i and w′′′

i in the following
paragraphs):

Step 1: A search user needs to be sure of the keywords to
be searched for. In FMRS, firstly, the values of score (wi, Fj)
which belongs to“NO” keyword set will be set as 1, then the
search results is:

Rj = r · (P ·Q− s) = r · (
N∑
i=1

score(wi, Fj)ai − s) (3)

(here s is equal to the minimum value of the “NO” keywords
weight, i.e,s = al1+l2+1)

Step 2: Check whether Rj is less than 1 by computing
following equation (4)

Rj = r · (P ·Q− s)

= r · (
N∑
i=1

score(wi, Fj) · ai − s)

= r(

l1+l2∑
i=1

score(wi, Fj)ai +
N∑

i=l1+l2+1

score(wi, Fj)ai − s)

(4)

We know that
j−1∑
i=1

ai · D < aj(j = 2, 3 · · ·N), if all the

keywords in the ”NO” keyword set are not in the keyword sets

of Fj(j = 2, 3 · · ·N), we can infer
N∑

i=l1+l2+1

score(wi, Fj) ·

ai = 0, therefore

Rj = r(

l1+l2∑
i=1

score (wi, Fj) · ai − s)

= r(

l1+l2∑
i=1

score (wi, Fj) · ai − al1+l2+1)

<

l1+l2∑
i=1

D · ai − al1+l2+1

< 0

(5)

In the same way, If there is a keyword belongs to ”NO”
keyword set and which is in the keyword sets of Fj(j =
2, 3 · · ·N), there must be Rj > 0. So, if Rj > 0, we choose
a new Rj and return to Step 2. Otherwise, we go to the next
step.

Step 3: Use Rj to mod (−r · al1+l2+1, r · al1+l2 , · · · , r ·
al1+1) in turn, then check whether the quotient is over or
equal to 1 each time. Besides, the remainder can’t be zero.

For the first time, Rj = r(
l1+l2∑
i=1

score(wi, Fj) · ai − s) = r ·
l1+l2∑
i=1

score(wi, Fj)·ai−rs. Then Rj mod−r ·al1+l2+1 =

r ·
l1+l2∑
i=1

score(wi, Fj) · ai. Obviously, quotient is 1, then we

go to the next step. (the purpose of this step is to eliminate
the effect of s).

For the second time , the value of Rj is equal to the re-

mainder operated last time, which is r ·
l1+l2∑
i=1

score(wi, Fj) ·ai,
then we mod r · al1+l2 , here we know

Rj = r ·
l1+l2∑
i=1

score(wi, Fj) · ai

= r ·
l1+l2−1∑

i=1

score(wi, Fj) · ai + r · score(wl1+l2 , Fj) · al1+l2

(6)

If the keyword wl1+l2 (i.e., w′′
l1+l2

) is not in the keyword sets
of Fj(j = 2, 3 · · ·N), then

Rj = r ·
l1+l2−1∑

i=1

score(wi, Fj) · ai

< r ·
l1+l2−1∑

i=1

D · ai

< r · al1+l2

(7)

The quotient of Rjmod r·al1+l2 = 0, we should also choose
a new Rj and return to Step 2. On the contrary, if the keyword
wl1+l2 (i.e., w′′

l1+l2
) is in the keyword sets of Fj , Rjmod r ·

al1+l2 > 1, we go to the next step.
In a similar way, using the Rj to mod (−r · al1+l2−1, r ·

al1+l2−2, · · · , r · al1+1) in turn, if all the keywords in the
”AND” keyword set are in the keyword sets of Fj(j =
2, 3 · · ·N), the quotient is > 1 in each time. Besides, the
final remainder can’t be zero, i.e., the remainder of Rj mods
al1+1 ̸= 0. (The remainder is not 0 guarantee that at least
one “OR” keyword in the document)can satisfy the above
matching rule with “OR”, “AND”and “NO”.

Step 4: For all of the documents that conform to the above
query scheme. Return K documents with the highest scores
by equation (2).

V. SECURITY ANALYSIS

In this section, we analyze the security of the proposed
model. In particular, we focus on how to achieve confidential-
ity of documents, privacy protection of index and trapdoors,
and unlinkability of trapdoors of our proposed model. Other
security features are not the key issues of our scheme.

A. Confidentiality of Documents

In FMRS, the documents of data owner are stored in the
cloud server. For the consideration of privacy, data is gen-
erally encrypted by symmetric encryption (e.g., AES) before
outsourcing. In addition, the secret key sk is generated by the
data owner and is sent to the search user by a secure channel.
AES was proved to be secure in [13]. Any entity that is unable
to obtain the information or content of a document without
the secret key sk. Therefore, the confidentiality of encrypted
documents can be achieved.

B. Privacy Protection of Index and Trapdoor

As discussed in Section IV, for the convenience of search-
ing, the index and the trapdoor should be created by the
documents’ keywords and the search keywords, respectively.
All the index Ij = (paM1, pbM2) and the trapdoor TW̃ =
(M−1

1 qa,M
−1
2 qb) are ciphertexts of vectors (P,Q). The secret

key is K = (S,M1,M2) that generated by data owner in our
model, where S functions as a splitting indicator that divides P
and Q into (pa, pb) and (qa, qb) respectively, then, we use two
invertible matrices M1 and M2 to encrypt (pa, pb) and (qa, qb).
The security of the encryption algorithm has been proved
under the known ciphertext model [11]. Thus, the contents
of index and trapdoor cannot be identified. Therefore, privacy
protection of index and trapdoor is supported in FMRS.

C. Unlinkability of Trapdoor

Some documents stored in the cloud server may be frequent-
ly retrieved. Unlinkability refers to the case where the cloud
server can not obtain keyword information from the trapdoors.
Once unlinkability of trapdoor is broken, the cloud server
can deduce relationship of trapdoors, and threaten the privacy
of keywords. Therefore, for the same keywords, trapdoor
should be generated randomly, rather than deterministic. If
the trapdoor generation algorithm is deterministic, the cloud
server may reveal the relationship of keywords, even though
the cloud server cannot decrypt the trapdoors. We consider
whether the trapdoor TW̃ = (M−1

1 qa,M
−1
2 qb) can be linked

to the keywords, we prove FMRS can achieve the unlinkability
of trapdoors in a strong threat model, i.e., known background
model [9].

Known Background Model: In this model, the cloud server
is supposed to possess more knowledge than what can be
accessed in the known ciphertext model. i.e., the cloud server
can obtain a large amount of statistical information through
another database which has a similar nature to the targeted
dataset. In our model, the trapdoor is made up of two parts.
The values of ai(i = 1, 2, · · · , N) are the super-increasing
sequence randomly selected by the search user (assume there
are α possible sequences). And the (m + 1) dimension is
−s defined by the search user, where the value of s is
equal to the minimum value of the “NO” keyword weights.
i.e,s = al1+l2+1. Assuming that the number of different
al1+l2+1 is represented as β. Further, Q′′ = r ·Q′, Q′ is used
to multiply a positive random number r, assuming that all the
possible values of r is 2ηr (if the search user chooses ηr-bit
r). Finally, Q′′ is split into (qa, qb) by the splitting indicator
S. Specifically, if S[i] = 0(i = 1, 2, · · · ,m + 1), the value
of Q′′[i] will be randomly split into qa[i] and qb[i], assuming
the number of ‘0’ in S is µ, and each dimension with qa and
qb is ηq bits. Note that ηs, ηr, µ and ηq are independent of
each other. Then in our model, we calculate the probabilities
of two trapdoors which are the same as follows:

P2 =
1

β · 2ηr · (2ηq)µ
=

1

β · 2ηr+µηq
(8)

Therefore, the larger β, ηr, µ and ηq can achieve the stronger
security, we choose 1024-bit r, then the probability P1 <
1/21024. Thus, the probabilities of two trapdoors which are
the same is negligible. In summary, we present the comparison
results of security level in Table I, where (FMRS)represents
our model. Clearly, all the schemes can achieve confidentiality
of documents and privacy protection of index and trapdoor,
but the OPE schemes [14] cannot achieve the unlinkability
of trapdoor very well because of the similarity relevance
mentioned in [10]. Comparison with our model, the scheme
[8] can not return precise results because the relevance scores
is not utilized.

TABLE I: Comparison of Security Level
[14] [6], [9], [10] [8] FMRS

Confidentiality
√ √ √ √

Privacy protection
√ √ √ √

Unlinkability
√ √ √

VI. PERFORMANCE EVALUATION

In this section, we analyze the performance of the model
by using the method of simulation and comparison with the
existing models [6], [9], [10]. We randomly select a certain
number of data through a real database 1990-2003 [15], and
conduct real-world experiments on an Intel Core i5 2.6 GHz
system.

A. Functionality

We compare the function of [9], [6], [10] and our scheme
in Table II, where (FMRS)represent our model.

MRSE [9] can achieve multi-keyword search and return the
coordinate matching results by using secure kNN computation
scheme. And [6] and [10] consider the relevance scores of
keywords. To a certain extent, it can improve the accuracy
of the search results when compared with [9]. [8] utilizes the
relevance score and k-nearest neighbor techniques to design
an efficient multi-keyword search scheme which supports the
mixed“AND”, “OR” and “NO” operations of keywords(here
[8] I represents the model one of [8], [8] II represents the
model two of [8]). However, the proposed scheme cannot
achieve the ranking according to the preference factor and
relevance score simultaneously. Note that if the values of all
relevance scores and preference factors of keywords as the
same, our model degrades to MRSE and the coordinate match-
ing can be achieved. Besides, a series of logical operations
of “OR”,”AND”,and ”NO” can be realized according to the
different choices of the search user.

B. Efficiency

1) Computation overhead: In order to provide a compre-
hensive analysis of computation overhead, we discuss it from
following phases.

Index building. Note that the Index building phase of
FMRS, which contains the relevance score computing. Con-
sidering the cost of calculating the relevance score, it is

TABLE II: Comparison of Functionalities
[9] [10] [8] I [8] II FMRS

Multi-keyword
search

√ √ √ √ √

Coordinate matching
√ √ √ √ √

Relevance score
√ √ √

Preference factor
√ √

AND OR NO opera-
tions

√ √

200 400 600 800 1000
50

100

150

200

250

300

350

400

450

500

550

Size of dictionary

 ti
m

e(
s)

(a)

2000 4000 6000 8000 10000
50

100

150

200

250

300

350

Number of documents

 ti
m

e(
s)

(b)

Fig. 2: Time for building index. (a) For the different size of
dictionary with the same number of documents, N=6000. (b)
For the different number of documents with the same size of

dictionary, |W| = 400.

negligible in comparison with the cost of index building,
we do not distinguish them. Moreover, because the index
instruction mainly involves with the two multiplications of a
(m+1)×(m+1) invertible matrix and a (m+1)− dimension
splitting vector. as shown in Fig. 2, we can see the time of
building index is significantly associated with the number of
documents and dictionaries.

Trapdoor generation. In Trapdoor generation phase, our
model randomly generates a super increasing sequence and a
weight sequence, respectively, which is same as [8]. As shown
in Fig. 3, the time of generating trapdoors is also significantly
associated with the number of dictionaries, instead of the
number of query keywords. It is partly because even if we
do not want to search some keywords, we will still need to
set values for the corresponding elements. With the increase
in the number of the keywords in the dictionary, the time cost
rises.

Query. The computation overhead in Query phase, as
shown in Fig. 4, is significantly associated with the size of
dictionary and the number of documents, instead of the num-
ber of query keywords. Note that, in Trapdoor generation
and Query phases, the computation overheads are irrelative
to the number of query keywords. Thus our schemes are
more efficient compared with some multiple-keyword search
schemes [16], [17], as their cost is linear with the number
of query keywords. Besides, comparing with [8], our model
returns more precise results because of using the relevance
scores.

2000 4000 6000 8000 10000
0

100

200

300

400

500

600

700

Size of dictionary

 ti
m

e(
m

s)

(a)

0 20 30 40 50
50

60

70

80

90

100

110

120

130

140

150

Number of query keywords

 ti
m

e(
m

s)

(b)

Fig. 3: Time for generating trapdoor. (a) For the different
size of dictionary with the same number of query keywords,
|W̃|=20. (b) For the different number of query keywords

with the same size of dictionary, |W| = 4000.

2000 4000 6000 8000 10000
200

250

300

350

400

450

500

Size of dictionary

 ti
m

e(
m

s)

(a)

100

150

200

250

300

350

400

450

500

Number of document

 ti
m

e(
m

s)
(b)

100

150

200

250

300

350

400

450

500

Number of query keywords

 ti
m

e(
m

s)

(c)

Fig. 4: Time for query. (a) For the different size of
dictionary with the same number of documents and number

of search keywords, N = 6000, |W̃| = 20. (b) For the
different number of documents with the same size of

dictionary and number of search keywords,
|W| = 8000, |W̃| = 20. (c) For the different number of

search keyword with the same size of dictionary and number
of documents, N = 6000, |W| = 8000.

VII. RELATED WORK

Searchable encryption has been recently developed as a
fundamental approach to enable searching over encrypted
cloud data. Wang et al. [14] propose a ranked keyword search
scheme which considers the relevance scores of keyword-
s. However, the above schemes cannot efficiently support
multi-keyword search which is widely used to provide the
better experience to the search user. Later, Cao et al. [18]
propose a searchable scheme which solves the problem of
privacy-preserving multi-keyword query over encrypted graph-
structured data in cloud computing, it establishes a set of
strict privacy requirements for such a secure cloud data u-
tilization system to become a reality. Recently, Li et al. [8]
utilize the relevance score and k-nearest neighbor techniques
to design an efficient multi-keyword search scheme which
supports the mixed“AND”, “OR” and “NO” operations of
keywords. However, the proposed scheme cannot achieve the
ranking according to the preference factor and relevance score
simultaneously. In this paper, we propose a fine-grained multi-
keyword ranked search scheme(FMRS), which can support
both mixed “AND”, “OR” and “NO” operations of keywords
and ranking according to the preference factor and relevance
score.

VIII. CONCLUSION

In this paper, we propose a Fine-grained Multi-keyword
Ranked Search (FMRS) shceme over the encrypted cloud data.
Specifically, we develop the multi-keyword ranked search to
support both mixed “AND”, “OR” and “NO” operations of
keywords and ranking according to the preference factor and
relevance score. Security analysis indicates that FMRS scheme
can preserve confidentiality of documents, privacy protection
of index and trapdoor and unlinkability of trapdoor. Real-
world experiments demonstrate that FMRS can achieve better
performance in terms of functionality and efficiency compared
to the existing proposals.

IX. ACKNOWLEDGEMENT

This work is supported by the National Natural Science
Foundation of China under Grants 61472065, U1233108,
U1333127, and 61272525, the International Science and
Technology Cooperation and Exchange Program of Sichuan
Province, China under Grant 2014HH0029, China Post-
doctoral Science Foundation funded project under Grants
2014M552336 and 2015T80972, and State Key Laboratory of
Information Security foundation Open Foundation under Grant
2015-MS-02.

REFERENCES

[1] C. Wang, N. Cao, K. Ren, and W. Lou, “Enabling secure and efficient
ranked keyword search over outsourced cloud data,” IEEE Transactions
on Parallel and Distributed Systems, vol. 23, no. 8, pp. 1467–1479,
2012.

[2] M. Yu, K. Yang, L. Wei, and J. Sun, “Practical private information
retrieval supporting keyword search in the cloud,” in 2014 Sixth Inter-
national Conference on Wireless Communications and Signal Processing
(WCSP),, Oct 2014, pp. 1–6.

[3] D. X. Song, D. Wagner, and A. Perrig, “Practical techniques for searches
on encrypted data,” in Proceedings of S&P. IEEE, 2000, pp. 44–55.

[4] R. Li, Z. Xu, W. Kang, K. C. Yow, and C.-Z. Xu, “Efficient multi-
keyword ranked query over encrypted data in cloud computing,” Future
Generation Computer Systems, vol. 30, pp. 179–190, 2014.

[5] H. Li, D. Liu, Y. Dai, T. H. Luan, and X. Shen, “Enabling efficient
multi-keyword ranked search over encrypted cloud data through blind
storage,” IEEE Transactions on Emerging Topics in Computing, 2014,
DOI10.1109/TETC.2014.2371239.

[6] W. Sun, B. Wang, N. Cao, M. Li, W. Lou, Y. T. Hou, and H. Li,
“Verifiable privacy-preserving multi-keyword text search in the cloud
supporting similarity-based ranking,” IEEE Transactions on Parallel and
Distributed Systems, vol. DOI: 10.1109/TPDS.2013.282, 2013.

[7] M. Strizhov and I. Ray, “Substring position search over encrypted cloud
data using tree-based index,” in 2015 IEEE International Conference on
Cloud Engineering (IC2E), March 2015, pp. 165–174.

[8] H. Li, Y. Yang, T. H. Luan, X. Liang, L. Zhou, and X. S. Shen, “Enabling
fine-grained multi-keyword search supporting classified sub-dictionaries
over encrypted cloud data,” IEEE Transactions on Dependable and
Secure Computing, 2015, DOI: 10.1109/TDSC.2015.2406704.

[9] N. Cao, C. Wang, M. Li, K. Ren, and W. Lou, “Privacy-preserving multi-
keyword ranked search over encrypted cloud data,” IEEE Transactions
on Parallel and Distributed Systems, vol. 25, no. 1, pp. 222–233, 2014.

[10] J. Yu, P. Lu, Y. Zhu, G. Xue, and M. Li, “Towards secure multi-
keyword top-k retrieval over encrypted cloud data,” IEEE Transactions
on Dependable and Secure Computing, vol. 10, no. 4, pp. 239–250,
2013.

[11] W. K. Wong, D. W.-l. Cheung, B. Kao, and N. Mamoulis, “Secure
knn computation on encrypted databases,” in Proceedings of SIGMOD
International Conference on Management of data. ACM, 2009, pp.
139–152.

[12] J. Zobel and A. Moffat, “Exploring the similarity space,” in ACM SIGIR
Forum, vol. 32, no. 1. ACM, 1998, pp. 18–34.

[13] N. Ferguson, R. Schroeppel, and D. Whiting, “A simple algebraic
representation of rijndael,” in Selected Areas in Cryptography. Springer,
2001, pp. 103–111.

[14] C. Wang, N. Cao, J. Li, K. Ren, and W. Lou, “Secure ranked keyword
search over encrypted cloud data,” in Proceedings of ICDCS. IEEE,
2010, pp. 253–262.

[15] http://kdd.ics.uci.edu/databases/nsfabs/nsfawards.html.
[16] P. Golle, J. Staddon, and B. Waters, “Secure conjunctive keyword search

over encrypted data,” in Applied Cryptography and Network Security.
Springer, 2004, pp. 31–45.

[17] D. Boneh and B. Waters, “Conjunctive, subset, and range queries on
encrypted data,” in Theory of cryptography. Springer, 2007, pp. 535–
554.

[18] N. Cao, Z. Yang, C. Wang, K. Ren, and W. Lou, “Privacy-preserving
query over encrypted graph-structured data in cloud computing,” in
Proceedings of ICDCS. IEEE, 2011, pp. 393–402.

