
A Treasury System for Cryptocurrencies:
Enabling Better Collaborative Intelligence ?

Bingsheng Zhang1, Roman Oliynykov2, and Hamed Balogun3

1 Lancaster University, UK
b.zhang2@lancaster.ac.uk

2 Input Output Hong Kong Ltd.
roman.oliynykov@iohk.io
3 Lancaster University, UK
h.balogun@lancaster.ac.uk

Abstract. A treasury system is a community controlled and decentralized collaborative decision-
making mechanism for sustainable funding of the blockchain development and maintenance. During
each treasury period, project proposals are submitted, discussed, and voted for; top-ranked projects are
funded from the treasury. The Dash governance system is a real-world example of such kind of systems.
In this work, we, for the first time, provide a rigorous study of the treasury system. We modelled,
designed, and implemented a provably secure treasury system that is compatible with most existing
blockchain infrastructures, such as Bitcoin, Ethereum, etc. More specifically, the proposed treasury
system supports liquid democracy/delegative voting for better collaborative intelligence. Namely, the
stake holders can either vote directly on the proposed projects or delegate their votes to experts. Its
core component is a distributed universally composable secure end-to-end verifiable voting protocol. The
integrity of the treasury voting decisions is guaranteed even when all the voting committee members are
corrupted. To further improve efficiency, we proposed the world’s first honest verifier zero-knowledge
proof for unit vector encryption with logarithmic size communication. This partial result may be of
independent interest to other cryptographic protocols. A pilot system is implemented in Scala over the
Scorex 2.0 framework, and its benchmark results indicate that the proposed system can support tens
of thousands of treasury participants with high efficiency.
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1 Introduction

Following the success of Bitcoin, a great number of new cryptocurrencies and blockchain platforms are
emerging on almost daily basis. Blockchains have become largely ubiquitous across various sectors, e.g.,
technology, academia, medicine, economics and finance, etc. Collectively, the net market capitalisation of top
cryptocurrencies exceeds 400 billion USD.

On the one hand, one of the key features expected from cryptocurrencies and blockchain systems is the
absence of a centralized control over the operation process. That is, blockchain solutions should neither rely
on “trusted parties or powerful minority” for their operations, nor introduce such (centralisation) tendencies
into blockchain systems. Decentralization not only offers better security guarantees by avoiding single point
of failure, but may also enable enhanced user privacy techniques. On the other hand, real-world blockchain
systems require steady funding for continuous development and maintenance of the systems. Given that
blockchain systems are decentralized systems, their maintenance and developmental funding should also be
void of centralization risks. Therefore, secure and “community-inclusive” long-term sustainability of funding
is critical for the health of blockchain platforms.

In the early years, the development of cryptocurrencies, such as Bitcoin, mainly rely on patron organi-
zations and donations. Recently, an increasing number of cryptocurrencies are funded through initial coin
offering (ICO) – a popular crowd-funding mechanism to raise money for the corresponding startups or com-
panies. A major drawback of donations and ICOs is that they lack sustainable funding supply. Consequently,
they are not suitable as long-term funding sources for cryptocurrency development due to the difficulty of
predicting the amount of funds needed (or that will be available) for future development and maintenance.

Alternatively, some cryptocurrency companies, such as Zcash Electric Coin Company, take certain per-
centage of hair-cut/tax (a.k.a. founders reward) from the miners’ reward. This approach would provide the
companies a more sustainable funding source for long-term planning of the cryptocurrency development.
Nevertheless, all the aforementioned development funding approaches have risks of centralization in terms
of the decision-making on the development steering. Only a few people4 (in the organisation or company)
participate in the decision-making process on how the available funds will be used. However, the decentralized
architecture of blockchain technologies makes it inappropriate to have a centralized control of the funding for
secure development processes. Sometimes disagreement among the organisation members may lead to catas-
trophic consequences. Examples include the splitting of Ethereum and Ethereum Classic as well as Bitcoin
and Bitcoin Cash.

Ideally, all the cryptocurrency stake holders are entitled to participate in the decision-making process
on funding allocation. This democratic type of community-inclusive decentralized decision-making enables a
better collaborative intelligence. The concept of treasury system has been raised to address the highlighted is-
sue. A treasury system is a community controlled and decentralized collaborative decision-making mechanism
for sustainable funding of the underlying blockchain development and maintenance. The Dash governance
system [1] is a real-world example of such systems. A treasury system consists of iterative treasury periods.
During each treasury period, project proposals are submitted, discussed, and voted for; top-ranked projects
are then funded. However, the Dash governance system has a few potential theoretical drawbacks. i) It does
not offer ballot privacy to the voters (a.k.a. masternodes). Therefore, the soundness of any funding decision
might be ill-affected. For instance, the masternodes may be subject to coercion. ii) It fails to effectively
utilize the knowledge of community experts in the decision-making process. This is because the system can
only support very basic type of voting schemes, and the voting power of experts are very limited. iii) The
voting rule and the decision to allow only masternodes to vote in the election makes it “unfairly” difficult
for proposals that do not have the support of the founder and core team to succeed because a considerably
large amount (about 33%) of masternodes are owned/controlled by the founder and/or core team. This is
perfectly captured in a scenario where a proposal despite receiving a decent amount of “YES” votes from
other masternodes may not get funding because the core team (33% of the masternodes) voted “NO” against
it5.

4 For instance, only 4 committee members (i.e. Alex Biryukov, Eran Tromer, Gibson Ashpool, and Zaki Manian)
participated in the 2017 Q4 Zcash Grant review process.

5 In the Dash governance system, a proposal must get at least “+10%” votes in terms of “YES” votes − “NO” votes
w.r.t. to all the votes to get shortlisted.
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Meanwhile, the concept of cryptographic sortition is proposed by Micali [2]. We can use the idea to
randomly sample a small set of users (e.g. 1000 users) with the probability of selection proportional to their
corresponding stake. The selected set of users will vote on what projects to be funded. While this is a scalable
voting solution, it is not ideal for a treasury system decision-making. This is due to the fact that treasury
projects are usually very technical, and normal users may not have solid relevant background (or training)
to make wise decisions.

In this work, we propose to use a different approach – liquid democracy – to achieve better collaborative
intelligence. Liquid democracy (also known as delegative democracy [3]) is an hybrid of direct democracy and
representative democracy. It provides the benefits of both systems (whilst doing away with their drawbacks)
by enabling organisations to take advantage of experts in a treasury voting process, as well as giving the
stakeholders the opportunity to vote. For each project, a voter can either vote directly or delegate his/her
voting power to an expert who is knowledgeable and reknowned in the corresponding area.

Collaborative decision-making. The core component of a treasury system is a decision-making system
that allows members of the community collectively reach some conclusions/decisions. During each treasury
period, anyone can submit a proposal for projects to be funded. Due to shortage of available funds, only
a few of them can be supported. Therefore, a collaborative decision-making mechanism is required. Proper
selection of the voting scheme allows maximizing the number of voters satisfied by the voting results as well
as minimizing voters’ effort. There are many voting schemes in the literature. Hereby, we briefly examine two
plausible candidates i) preferential or ranked voting and ii) approval voting.

Preferential or ranked voting describes certain voting schemes in which voters rank options (or election
candidates) in a hierarchy on the ordinal scale. Its variants include Instant-runoff voting (IRV) [4], Borda
count [5], Single transferable vote [6], Schulze method [7], an optimal single-winner preferential voting system
(the GT system) based on optimal mixed strategies computation [8], etc. However, as shown in [9], preferential
voting has several defects. For instance, adding an outsider to the election candidate list may change results
on voting favourites, etc. Besides, strategic behavior of voters may lead them to stepping down their direct
preferences (e.g., supporting less preferable proposal because it has higher chances of winning, compared
to their most preferred proposal, so as to not have both rejected). This type of strategic behavior hugely
affects consensus, maybe positively, however, it may not truly reflect the preferred choices of individuals.
Consequently, consensus evaluation for the proposals may give an illusion of a high-level consensus without
actual consensus building processes (such as discussions and member interactions) taking place. Furthermore,
a disadvantage of using preferential voting is that we may have a deadlock (a.k.a. voting paradox or Condorcet
paradox), wherein combined preferences of all individual voters may be cyclic despite individual preferences
not being cyclic. Resolving this issue to effectively reflect the sincere voting preference of all participant is
very problematic. Moreover, practical application of this voting rule in a treasury system may be too complex
for the voters/experts due to the demanding workload on ranking tens or even hundreds of proposals.

Approval voting is an alternative voting method that allows the voters to approve any number of proposals
[10]. Winner(s) are chosen by the largest number of supporting ballots. Approval voting is especially suitable
for multi-winner elections. It has a number of advantages [11]: simple, quick and easy-to-understand voting
process, better expression of true voter intent in his/her ballot, etc.

An extension of approval voting is a ”Yes-No-Abstain” type of voting scheme, where the voters express
”Yes-No-Abstain” opinion for each proposal. This scheme is used in Dash Governance System [12], The
DAO [13], The Fermat Project [14] and other solutions for cryptocurrencies. Recent theoretical analysis of
this election rule with variable number of winners, called Fuzzy threshold voting [15], shows advantages of this
voting scheme for treasury application. Therefore, we will adopt this voting scheme in our treasury system.
Nevertheless, we emphasize that a different voting scheme can be deployed to our treasury system without
significantly changing the underlying cryptographic protocols. In supplementary material A.8 and A.9, we
provide the necessary consensus background and analyse consensus level of this voting scheme with examples.

Our contributions. In this work, we aim to resolve the funding sustainability issue for long-term cryptocur-
rency development and maintenance by proposing a novel treasury system. The proposed treasury system
is compatible with most existing off-the-shelf cryptocurrencies/blockchain platforms, such as Bitcoin and
Ethereum. We highlight the major contributions of this work as follows.

– For the first time, we provide a rigorous security modeling for a blockchain-based treasury voting system
that supports liquid democracy/delegative voting. More specifically, we model the voting system in the
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well-known Universally Composable (UC) framework [16] via an ideal functionality F t,kVote. The function-
ality interacts with a set voters and experts as well as k voting committee members. It allows the voters
to either delegate their voting power to some experts or vote directly on the project. If at least t out of
k voting committee members are honest, the functionality guarantees termination. Even in the extreme
case, when all the voting committee members are corrupted, the integrity of the voting result is still
ensured; however, of course, in that case we don’t guarantee protocol termination.

– We propose an efficient design of the treasury system. The system collects fundings via three potential
sources: (i) Minting new coins; (ii) Taxation from Miners’ reward; (iii) Donations or charity. In an iterative
process, the treasury funds accumulate over time, and the projects are funded periodically. Each treasury
period consists of pre-voting epoch, voting epoch, and post-voting epoch, which can be defined in terms
of the number of blockchain blocks. In the pre-voting epoch, project proposals are submitted, and the
voters/experts are registered. In the voting epoch, the voting committee is selected; after that, they
jointly generate the voting key for the treasury period. The voters and experts then cast their ballots.
In the post-voting epoch, the voting committee computes and signs the treasury decision. The winning
proposals will then be funded.
Any stakeholder in the community can participate in the treasury voting, and their voting power are
proportional to their possessed stake. In our system, we distinguish coin ownership from stake ownership.
That is, the owner of a coin can be different from the owner of the coin’s stake. This allows blockchain-
level stake delegation without transferring the ownership of the coin. It means that the user can delegate
his/her stake to someone else without risk of losing the ultimate control of the coin(s). To achieve this,
we introduced stake ownership verification mechanism using the payload of a coin. (Without loss of
generality, we assume a coin has certain storage field for non-transactional data.)

– We proposed the world’s first honest verifier zero-knowledge proof/argument for unit vector encryption
with logarithmic size communication. Conventionally, to show a vector of ElGamal ciphertexts element-
wise encrypt a unit vector, Chaum-Pedersen proofs [17] are used to show each of the ciphertexts encrypts
either 0 or 1 (via Sigma OR composition) and the product of all the ciphertexts encrypts 1. Such kind
of proof is used in many well-known voting schemes, e.g., Helios. However, the proof size is linear in the
length of the unit vector, and thus the communication overhead is quite significant when the unit vector
length becomes larger.
In this work, we propose a novel special honest verifier ZK (SHVZK) proof/argument for unit vector
that allows the prover to convince the verifier that a vector of ciphertexts (C0, . . . , Cn−1) encrypts a unit

vector e
(n)
i , i ∈ [0, n−1] with O(log n) proof size. The proposed SHVZK protocol can also be Fiat-Shamir

transformed to a non-interactive ZK (NIZK) proof in the random oracle model.
– We provide prototype implementation [18] of the proposed treasury system for running and benchmarking

in the real world environment. Our implementation is written in Scala programming language over Scorex
2.0 framework and uses TwinsChain consensus for keeping the underlying blockchain. Main functionality
includes proposal submission, registration of voters, experts, voting committe members and their corre-
sponding deposit lock, randomized selection of the voting committee members among voters, distributed
key generation (6-round protocol), ballots casting, joint decryption with recovery in case of faulty commit-
tee members (4-round protocol), randomness generation for the next treasury period (3-round protocol),
reward payments and deposit paybacks, penalties for faulty actors. All implemented protocols are fully
decentralized and resilient up to 50% of malicious or faulty participants. During verification we launched
a testnet that consisted of 12 full nodes successfully operating tens of treasury periods with different
parameters.

2 Preliminaries

Notations. Throughout this paper, we will use the following notations. Let λ ∈ N be the security parameter.
Denote the set {a, a+ 1, . . . , b} by [a, b], and let [b] denote [1, b]. We abbreviate probabilistic polynomial time
as PPT. By a(`), we denote a length-` vector (a1, . . . , a`). When S is a set, s ← S stands for sampling s
uniformly at random from S. When A is a randomised algorithm, y ← A(x) stands for running A on input
x with a fresh random coin r. When needed, we denote y := A(x; r) as running A on input x with the
explicit random coin r. Let poly(·) and negl(·) be a polynomially-bounded function and negligible function,
respectively.
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Fig. 1: Coin and transaction structure.

The blockchain abstraction. Without loss of generality, we abstract the underlying blockchain platform
encompasses the following concepts.

◦ Coin. We assume the underlying blockchain platform has the notion of Coins or its equivalent. Each
coin can be spent only once, and all the value of coin must be consumed. As depicted in Fig. 1, each coin
consists of the following 4 attributes:

– Coin ID: It is an implicit attribute, and every coin has a unique ID that can be used to identify the
coin.

– Value: It contains the value of the coin.

– Cond: It contains the conditions under which the coin can be spent.

– Payload: It is used to store any non-transactional data.

◦ Address. We also generalize the concept of the address. Conventionally, an address is merely a public
key, pk, or hash of a public key, h(pk). To create coins associated with the address, the spending condition
of the coin should be defined as a valid signature under the corresponding public key pk of the address. In
this work, we define an address as a generic representation of some spending condition. Using the recipient’s
address, a sender is able to create a new coin whose spending condition is the one that the recipient intended;
therefore, the recipient may spend the coin later.

◦ Transaction. Each transaction takes one or more (unspent) coins, denoted as {Ini}i∈[n], as input, and it
outputs one or more (new) coins, denoted as {Outj}j∈[m]. Except special transactions, the following condition
holds:

n∑
i=1

Ini.Value ≥
m∑
j=1

Outj .Value

and the difference is interpreted as transaction fee. As shown in Fig. 1, the transaction has a Verification data
field that contains the necessary verification data to satisfy all the spending conditions of the input coins
{Ini}i∈[n]. In addition, each transaction also has a Payload field that can be used to store any non-transactional
data. We denote a transaction as Tx(A;B;C), where A is the set of input coins, B is the set of output coins,
and C is the Payload field. Note that the verification data is not explicitly described for simplicity.

3 The Treasury System

Entities. As mentioned before, the core of a treasury system is a collaborative decision making process, and
all the stake holders are welcome to participate. Let k, `, n,m be integers in poly(λ). The stake holders may
have one or more of the following roles.

– The project owners O := {O1, . . . ,Ok} are a set of stake holders that have proposed a project for support.

– The voting committees C := {C1, . . . ,C`} are a set of stake holders that are responsible for generating
the voting public key and announcing the voting result.

– The voters V := {V1, . . . ,Vn} are a set of stake holders that lock certain amount of their stake to
participate.

– The experts E := {E1, . . . ,Em} are a special type of voters that have specialists knowledge and expertise
in some field.
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Fig. 2: Treasury system epochs.

Enabling stake delegation. In our treasury system, the voting power of a voter is proportional to the
corresponding locked stake value. We distinguish between the ownership of the stake and the ownership of
the actual coin; namely, the stake of the coin can be “owned” by a user other than the coin owner. This
feature allows us to delegate the stake of a coin to someone else without transferring the ownership of the
coin. To achieve this, we introduce a stake attribute, denoted as S-Attr, that can be attached to the Payload
of a coin. The user who can provide the required data that satisfies the condition(s) in the S-Attr is able
to claim the stake of the coin. Of course, the stake of an unspent coin can only be claimed at most once
at any moment. In practice, to ensure this, additional checks should be executed. If the user A wants to
delegate the stake of a coin to the user B, he simply needs to put the user B’s desired S-Attr in the Payload
of the coin. Note that this type of delegation is persistent in the sense that if the coin is not consumed, the
S-Attr of the coin remains the same. This feature allows users to stay offline while the stake of their coins
can still be used in the treasury process by the delegatees. However, this type of delegation only guarantees
pseudonymity-based privacy level, as everyone can learn “who owns” the stake of the coin by checking the
S-Attr of the coin.

System overview. A treasury system consists of iterative treasury periods. A treasury period can be
divided into three epochs: pre-voting epoch, voting epoch, and post-voting epoch. As shown in Figure 2,
the pre-voting epoch includes two concurrent stages: project proposing stage and voter/expert registration
stage. In the project proposing stage, the users can submit project proposals, asking for the treasury funds.
Meanwhile, the interested stake holders can register themselves as either voters and/or experts to participate
in the decision making process by locking certain amount of their stake in the underlying cryptocurrency. The
voter’s voting power is proportional to his locked stake; while, the expert’s voting power is proportional to
the amount of voting power delegated to him. (We will explain delegation in details in the following sections.)
Analogously, the voter’s (resp. expert’s) treasury reward is proportional to his locked stake (resp. his received
delegations).

At the beginning of the voting epoch, there is a voting committee selection stage, during which, a set of
voting committees will be randomly selected from the registered voters who are willing to be considered for the
committee selection. The probability of being selected is proportional to their locked stake. After the voting
committee are selected, they jointly run a distributed key generation protocol to setup the election public
key. The voters and experts can then submit their ballots in the ballot casting stage. Note that the voters can
either delegate their voting powers to some expert or vote directly on the projects. For each project, the voters
can delegate to different experts. At the post-voting epoch, the voting committee members jointly calculate
and announce the tally result on the blockchain. Finally, in the execution stage, the winning projects are
funded, and the voters, experts, voting committee members are rewarded (or punished) accordingly. Those
transactions will be jointly signed and executed by the voting committee. Meanwhile, the committee members
also jointly commit to a random seed, which will be used to select a new voting committee in the next treasury
period.

Treasury funding sources. As earlier motivated, treasury funding, perhaps is the most crucial ingredi-
ent in a decentralised community-controlled decision-making system. It must not only be regular, but also
be sourced from decentralised means. That is, the source of funding for treasury system should not intro-
duce centralisation into the system. To this end, desirable properties from the funding sources are secure,
sustainable and decentralized.

We note that although it is impossible for all potential funding sources to meet these criteria, a clever
combination of some of these potential sources satisfy the set out requirement. Therefore, we propose 3 major
sources of funding for the treasury system.
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– Taxation/Haircut from block reward: Most blockchain platforms offer block rewards (including transaction
fees) to the block proposer, incentivizing honest behaviour. A fraction of such block rewards can be taken
and contributed to the decentralised treasury. This type of funding source is sustainable as long as the
block rewards of the underlying blockchain platform remain. However, block rewards may fluctuate over
time, and it could cause unpredictability of the available treasury funds.

– Minting new coins: Coin minting is perhaps the most sustainable funding source among all the others.
At the beginning of each treasury period, certain amount of coins are created to fund the projects.
However, minting may cause inflation in terms of the fiat market value of the underlying cryptocurrency
or blockchain platform.

– Donations or charity: Donation is an opportunistic ad-hoc but unsustainable funding source. Therefore,
meticulous blockchain development planning is difficult if donations is the only means of funding available.

Project proposal. To ensure input independency and eliminate the unfair advantage caused by late sub-
mission, we adopt a two-stage project proposal scheme. In the first stage, the project owners O1, . . . ,Ok post
an encryption of their project proposals (encrypted under the election public key of the previous treasury
period) to the blockchain. At the end of pre-voting epoch and the beginning of the voting epoch, the voting
committee of previous treasury period will jointly decrypt those project proposals (together with revealing
the seed, which will be explained later).

To commit a project, the project owner needs to submit a special transaction in form of

Tx
(
{Ini}ni=1; TCoin; {Project,TID,P-Enc,Addr}

)
,

where {Ini}ni=1 are the input coins, and TCoin is a special output coin whose spending condition is defined
as, the coin can only be spent according to the corresponding treasury decision (cf. Subsection “supplying
the treasury”, below). Moreover, the coin value TCoin.Value ≥ αmin, where αmin is the minimum required
fee for a project proposal to prevent denial-of-service attacks. In the Payload field, Project is a tag that
indicates it is a special project proposal transaction; TID is the treasury ID that is used to uniquely identify
a treasury period; P-Enc is the encrypted project proposal, and Addr is the return address for the project
owner to receive money if the project is funded.

Voter/Expert registration. In order to register to be a voter, a stake holder (or a set of stake holders)
need(s) to submit a special voter registration transaction in forms of

Tx
(
{Ini}ni=1; TCoin;

{
Voter-Reg,TID, {Si}`i=1,S-Cond, vk,Addr

})
,

where {Ini}ni=1 are the input coins, and TCoin is a special output coin whose spending condition is defined
in Subsection “supplying the treasury”, below. In the Payload field, Voter-Reg is a tag that indicates it is
a special voter registration transaction; TID is the treasury ID that be used to uniquely identify a treasury
period; {Si}`i=1 are the freezed unspent coins that will be used to claim stake value, S-Cond is the required
data that satisfies all the stake attributes of {Si}`i=1, vk is a freshly generated signature key; and Addr is the
return address for the voter to receive treasury reward. The voter’s ID is defined as the hash of vk, denoted
as Vi := hash(vk).

Similarly, to register as an expert, a stake holder (or a set of stake holders) need(s) to deposit exact βmin

amount of coins, by submitting a special expert registration transaction in forms of

Tx
(
{Ini}ni=1; TCoin; {Expert-Reg,TID, vk,Addr}

)
,

where {Ini}ni=1 are the input coins, and TCoin is a special output coinwhose spending condition is defined
in Subsection “supplying the treasury”, below. Moreover, the coin value TCoin.Value ≥ βmin. In the Payload
field, Expert-Reg is a tag that indicates it is a special expert registration transaction; TID is the treasury
ID that be used to uniquely identify a treasury period; vk is a freshly generated signature key; and Addr is
the return address for the expert to receive treasury reward.

The expert’s ID is defined as the hash of vk, denoted as Ej := hash(vk). Note that the expert does not
gain reward based on the amount of deposited coins, so it is not rational to deposit significantly more than
βmin coins in practice.
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Voting committee selection. At the beginning of the voting committee selection epoch, the voting com-
mittee of the previous treasury epoch jointly reveal the committed seed, denoted as seed. See supplementary
material A.5 for details.

Let sti =
∑`
j=1 Sj .Value for all the stake coins Sj claimed in the payload of the voter registration trans-

action of vki, i.e. sti is the total stake amount claimed by vki. Once seed is announced, any registered voter,
who have an address vki with claimed stake sti, can volunteer to participate in the voting committee if the
following inequality holds:

hash
(
vki, signsk′i

(seed)
)
≤ sti · T

where sk′i is the corresponding signing key for vki, and T is a pre-defined threshold. When the in-equation
holds, he/she can submit a special registration transaction in forms of

Tx
(
{Ini}ni=1; TCoin;

{
VC-Reg,TID, vk, p̃k, signsk′i

(seed),Addr
})

,

where {Ini}ni=1 are the input coins, and TCoin is a special output coin whose spending condition is defined in
Subsection “supplying the treasury”, below. Moreover, the coin value TCoin.Value ≥ γmin. In the Payload field,
VC-Reg is a tag that indicates it is a special voting committee registration transaction; TID is the treasury
ID that be used to uniquely identify a treasury period; vk is a freshly generated signature verification key; p̃k
is a freshly generated public key for a pre-defined public key cryptosystem; signsk′i

(seed) is the signature of
seed under the signing key corresponding to vki; and Addr is the return address for the committee member
to receive treasury reward. The threshold T is properly defined to ensure that approximately λ′ = ω(log λ)
(e.g., λ′ = polylog(λ)) committee members are selected, assuming constant fraction of them will be active.
Note that, analogous to most proof-of-stake systems, T needs to be updated frequently. See [19] for a common
threshold/difficulty T adjustment approach.

Remark. Jumping ahead, we will need honest majority of the voting committee to guarantee voter privacy
and protocol termination. Assume the majority of the stake of all the registered voters is honest; therefore,
the probability that a selected committee member is honest is p = 1/2 + ε for any ε ∈ (0, 1/2]. Let X be the
number of malicious committee members are selected among all λ′ committee members. Since λ′ = ω(log λ),
by Chernoff bound, we have

Pr[X ≥ λ′/2] = Pr[X ≥ (1 + δ)(1/2− ε)λ′]
< exp(−δ2(1/2− ε)λ′/4)

=
1

exp(ω(log λ))
= negl(λ)

for δ = 2ε/(1− 2ε).

Supplying the treasury. Treasury funds are accumulated via a collection of coins. For example, the tax-
ation/haircut of the block reward can be collected through a special transaction at the beginning of each
block. The output of this type of transactions are new coins, whose spending condition, Cond, specifies that
the coin can only be spent according to the corresponding treasury decision. As will be mentioned in details
later, the treasury funds will be distributed in forms of transactions jointly made by the corresponding voting
committee; therefore, the coins dedicated to certain treasury period must allow the voting committee in that
treasury period to jointly spend. More specifically, there are λ′ committee members selected at the begin-
ning of the voting epoch of each treasury period. Let seedTIDi

denote the seed opened in the treasury period
indexed by TIDi. Let {vkj}`j=1 be the set of signature verification keys in the valid committee registration

transactions proposed by vki such that the condition hash
(
vki, signsk′i

(seed)
)
≤ sti ·T holds. The treasury coin

can be spent in a transaction if majority of the signatures w.r.t. {vkj}`j=1 are present.

Handling the treasury specific data in the payload. Note that typically the underlying blockchain
transaction validation rules do not take into account of the content stored in the payload of a transaction.
Therefore, additional checks are needed for the treasury specific transactions. More specifically, we verify the
payload data of those transactions with additional algorithms. In particular, a coin must be frozen during the
entire treasury period in order to claim its stake. This can be done by, for example, adding extra constrain
in spending condition, saying that the coin cannot be spent until the certain block height, which is no earlier
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than the end of the treasury period. Furthermore, the stake of one coin can only be claimed once during each
treasury period.

Decision making. During the decision making, the voting committee members, the voters, and the experts
follow the protocol description in Sec. 4, below. It covers the key generation stage, the ballot casting stage,
and the tally stage. In terms of security, as shown before, with overwhelming probability, the majority of the
committee members are honest, which can guarantee voter privacy and protocol termination. In an unlikely
extreme case, where all the voting committee members are corrupted, our voting scheme can still ensure the
integrity of the voting result. If a cheating voting committee member is detected, she will lose all her deposit.

For each project, the voters/experts need to submit an independent ballot. The voter can either delegate
his voting power to some expert or directly express his opinion on the project; whereas, the expert shall only
vote directly on the project. In our prototype, we adopt the “YES-NO-ABSTAIN” type of voting scheme. More
specifically, after the voting, the project proposals are scored based on the number of yes votes minus the
number of no votes. Proposals that got at least 10% (of all votes) of the positive difference are shortlisted, and
all the remaining project proposals are discarded. Shortlisted proposals are ranked according to their score,
and the top ranked proposals are funded in turns until the treasury fund is exhausted. Each of the voting
committee members will then sign the treasury decision and treasury transactions, and those transactions
are valid if it is signed by more than t-out-of-k voting committee members.

Post-voting execution. Certain proportion (e.g. 20%) of the treasury fund will be used to reward the voting
committee members, voters and experts. The voting committee members C` ∈ C will receive a fix amount of
reward, denoted as ζ1. Note that as the voting committee members are required to perform more actions in
the next treasury period, their reward will only be transferred after the completion of those actions at the end
of pre-voting epoch in the next treasury period. The voter Vi ∈ V will receive reward that is proportional to
his/her deposited amount, denoted as ζ2 · sti, where sti is the amount of the stake claimed by Vi. The expert
Ej ∈ E will receive reward that is proportional to his/her received delegations, denoted as ζ3 ·Dj , where Dj

is the amount of delegations that Ej has received. Meanwhile, if a voting committee member cheats or an
expert fails to submit a valid ballot, he/she will lose the deposited coin as a punishment. In addition, the
voting committee members will joint generate and commit a random seed for the next treasury period. The
protocol is depicted in Sec. 4, below.

The first block after treasury period will include all the necessary transactions for treasury funding
executions. Those transactions will be signed by all the voting committee members.

4 The proposed voting scheme

In this section, we will describe our decentralized voting schemes that support vote delegation in the UC
framework. We first provide the security model in the following.

4.1 Security modeling

The entities involved in the voting schemes are a set of voting committee members C := {C1, . . . ,Ck}, a set
of voters V := {V1, . . . ,Vn}, and a set of experts E := {E1, . . . ,Em}. We consider the security of our treasury
voting scheme in the UC framework with static corruption. The security is based on the indistinguishability
between real/hybrid world executions and ideal world executions, i.e., for any PPT real/hybrid world adver-
sary A we will construct an ideal world PPT simulator S that can present an indistinguishable view to the
environment Z operating the protocol.

The Ideal world execution. In the ideal world, the voting committee C, the voters V, and the experts E
only communicate to an ideal functionality FVote during the execution. The ideal functionality FVote accepts
a number of commands from C,V, E . At the same time it informs the adversary of certain actions that take
place and also is influenced by the adversary to elicit certain actions. The ideal functionality FVote is depicted
in Fig. 3, and it consists of three phases: Preparation, Voting/Delegation, and Tally.

Preparation phase. During the preparation phase, the voting committees Ci ∈ C need to initiate the
voting process by sending (Init, sid) to the ideal functionality F t,kVote. The voting will not start until all the
committees have participated the preparation phase.
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The functionality F t,kVote interacts with a set of voting committees C := {C1, . . . ,Ck}, a set of voters V :=
{V1, . . . ,Vn}, a set of experts E := {E1, . . . ,Em}, and the adversary S. It is parameterized by a delegation calcula-
tion algorithm DelCal (described in Fig. 4) and a tally algorithm TallyAlg (described in Fig. 5) and variables φ1, φ2,
τ , J1, J2, J3, T1 and T2. Denote Ccor and Chonest as the set of corrupted and honest voting committees, respectively.
Initially, φ1 = ∅, φ2 = ∅, τ = ∅, J1 = ∅, J2 = ∅, and J3 = ∅.

Preparation:

– Upon receiving (Init, sid) from the voting committee Ci ∈ C, set J1 := J1 ∪ {Ci}, and send a notification
message (InitNotify, sid,Ci) to the adversary S.

Voting/Delegation:

– Upon receiving (Vote, sid, vi) from the expert Ei ∈ E , if |J1| < t, ignore the request. Otherwise, record
(Ei,Vote, vi) in φ1; send a notification message (VoteNotify, sid,Ei) to the adversary S. If |Ccor| ≥ t, then
additionally send a message (Leak, sid,Ei,Vote, vi) to the adversary S.

– Upon receiving (Cast, sid, vj , αj) from the voter Vj ∈ V, if |J1| < t, ignore the request. Otherwise, record
(Vj ,Cast, vj , αj) in φ2; send a notification message (CastNotify, sid,Vj , αj) to the adversary S. If |Ccor| ≥ t,
then additionally send a message (Leak, sid,Vj ,Cast, vj) to the adversary S.

Tally:

– Upon receiving (DelCal, sid) from the voting committee Ci ∈ C, set J2 := J2 ∪ {Ci}, and send a notification
message (DelCalNotify, sid,Ci) to the adversary S.

– If |J2 ∪ Chonest|+ |Ccor| ≥ t, send (LeakDel, sid,DelCal(E , φ2)) to S.
– If |J2| ≥ t, set δ ← DelCal(E , φ2).
– Upon receiving (Tally, sid) from the voting committee Ci ∈ C, set J3 := J3 ∪ {Ci}, and send a notification

message (TallyNotify, sid,Ci) to the adversary S.
– If |J3 ∪ Chonest|+ |Ccor| ≥ t, send (LeakTally, sid,TallyAlg(V, E , φ1, φ2, δ)) to S.
– If |J3| ≥ t, set τ ← TallyAlg(V, E , φ1, φ2, δ).
– Upon receiving (ReadTally, sid) from any party, if δ = ∅ ∧ τ = ∅ ignore the request. Otherwise, return

(ReadTallyReturn, sid, (δ, τ)) to the requester.

The ideal functionality F t,kVote

Fig. 3: The ideal functionality F t,kVote
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Voting/Delegation phase. During the voting/delegation phase, the expert Ei ∈ E can vote for his choice

vi by sending (Vote, sid, vi) to the ideal functionality F t,kVote. Note that the voting choice vi is leaked only
when majority of the voting committees are corrupted. The voter Vj ∈ V, who owns αj stake, can either
vote directly for his choice vj or delegate his voting power to an expert Ei ∈ E . Similarly, when all the voting

committees are corrupted, F t,kVote leaks the voters’ ballots to the adversary S.
Tally phase. During tally phase, the voting committee Ci ∈ C sends (DelCal, sid) to the ideal functionality

F t,kVote to calculate and reveal the delegations received by each expert. After that, they then send (Tally, sid)

to the ideal functionality F t,kVote to open the tally. Once all the committees have opened the tally, any party can

read the tally by sending (ReadTally, sid) to F t,kVote. Note that due to the natural of threshold cryptography,
the adversary S can see the voting tally result before all the honest parties. Hence, the adversary can refuse
to open the tally depending on the tally result. The tally algorithm TallyAlg is described in Fig. 5.

The real/hybrid world execution. In the real/hybrid world, the treasury voting scheme utilises a number
of supporting components. Those supporting components are modelled as ideal functionalities. First of all, we
need a blockchain functionality FLedger to model the underlying blockchain infrastructure that the treasury
system is built on. (cf. supplementary material A.2) We then use the threshold homomorphic encryption

functionality F t,kTHVE to abstract the underlying public key crypto system. (cf. supplementary material A.3)
Finally, a global clock functionality GClock is adopted to model the synchronised network environment. (cf.
supplementary material A.4) Let EXECΠ,A,Z denote the output of the environment Z when interacting with
parties running the protocol Π and real-world adversary A. Let EXECF,S,Z denote output of Z when running
protocol φ interacting with the ideal functionality F and the ideal adversary S.

Input: a set of the expert labels E , and a set of ballots φ2

Output: the delegation result δ

Init:

– For i ∈ [1,m], create and initiate Di = 0.

Delegation interpretation:

– For each ballot B ∈ φ2: parse B in form of (Vj ,Cast, vj , αj); if vj = (Delegate,Ei) for some Ei ∈ E ,
then Di := Di + αj .

Output:

– Return δ := {(Ei, Di)}i∈[m].

Algorithm DelCal

Fig. 4: The delegation calculation algorithm DelCal

Definition 1. We say that a protocol Π UC-realizes F if for any adversary A there exists an adversary S
such that for any environment Z that obeys the rules of interaction for UC security we have EXECΠ,A,Z ≈
EXECF,S,Z .

4.2 The voting scheme

Let m be the number of experts and n be the number of voters. Let e
(m)
i ∈ {0, 1}m be the unit vector where its

i-th coordinate is 1 and the rest coordinates are 0. We also abuse the notation to denote e
(`)
0 as an `-vector con-

tains all 0’s. We use Encpk(e
(`)
i ) to denote coordinate-wise encryption of e

(`)
i , i.e. Encpk(e

(`)
i,1), . . . ,Encpk(e

(1)
i,` ),

where e
(`)
i = (e

(`)
i,1 , . . . , e

(`)
i,` ).
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Input: a set of the voters V, a set of the experts E , two sets of ballots φ1, φ2 and the delegation δ.
Output: the tally result τ

Init:

– Create and initiate τyes = 0, τno = 0 and τabstain = 0.
– Parse δ as {(Ei, Di)}i∈[m].

Tally Computation:

– For each ballot B ∈ φ2: parse B in form of (Vj ,Cast, vj , αj); if vj = (Vote, aj) for some
aj ∈ {yes, no, abstain}, then τaj := τaj + αj .

– For each ballot B ∈ φ1: parse B in form of (Ei,Vote, bi) for some bi ∈ {yes, no, abstain}, then
τbi := τbi +Di.

Output:

– Return τ := (τyes, τno, τabstain).

The tally algorithm TallyAlg

Fig. 5: The tally algorithm

Vote encoding In our scheme, we encode the vote into a (unit) vector. Let encodeE and encodeV be
the vote encoding algorithm for the expert and voter, respectively. For an expert, upon receiving input
x ∈ {Yes,No,Abstain}, the encodeE returns 100, 010, 001 for Yes,No,Abstain, respectively. For a voter,
the input is y ∈ {E1, . . . ,Em} ∪ {Yes,No,Abstain}. When y = Ei, i ∈ [m], it means that the voter delegate
his/her delegate his voting power to the expert Ei. When y ∈ {Yes,No,Abstain}, it means that the voter
directly vote to the project. The encodeV returns a unit vector of length (m + 3), denoted as v, such that

v = e
(m+3)
i if y = Ei, for i ∈ [m]; and v is set to e

(m+3)
m+1 , e

(m+3)
m+2 , and e

(m+3)
m+3 if y is Yes,No,Abstain,

respectively.

Since sending data to the blockchain consumes coins, we implicitly assume all the experts E and voters V
have spare coins to pay the transaction fees that occurred during the protocol execution. More specifically,
we let each party prepare {Ini}`1i=1, {Outj}`2j=1 s.t.

`1∑
i=1

Ini.Value ≥
`2∑
j=1

Outj .Value .

Denote the corresponding coins owned by a voter Vi ∈ V and an expert Ej ∈ E as {In(Vi)
i }`1i=1, {Out

(Vi)
j }`2j=1

and {In(Ej)
i }`1i=1, {Out

(Ej)
j }`2j=1, respectively.

As depicted in Fig. 6, the treasury voting protocol consists of preparation phase, voting/delegation phase,
and tally phase. In the preparation phase, the committee members Cj ∈ C jointly generate the voting

public key by sending command (KeyGen, sid) to the functionality F t,kTHVE. In the voting/delegation phase,
the voter Vi ∈ V can either delegate his voting power to an expert, or vote directly. The ballot will be
encoded as a unit vector e(m+3). The voter then encrypts the vector by sending (Encrypt, sid, e(m+3))

to F t,kTHVE, and he receives (Ciphertext, sid,u(m+3)) from F t,kTHVE. After that, the voter Vi posts u(m+3)

together with the claimed stake αi to FLedger using the macro Send-Msg described in Fig. 7. Similarly, the
expert Ej ∈ E can express his opinion vj ∈ {Yes,No,Abstain} by encoding it to a unit vector e3 and
encrypting it as c3. The expert Ej then posts c3 to FLedger using the macro Send-Msg. In the tally phase,
the committee member Ct ∈ C first fetches all the voting transcripts from the FLedger. The voter’s unit
vector are weighted according his stake αi. All the weighted (encrypted) vectors are then entry-wise added
together using additively homomorphic property. The committee first jointly decrypts the delegation part of
the resulting unit vector to calculate the delegation. After that, the experts’ opinions are weighted according
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Denote the corresponding coins owned by a voter Vi ∈ V and an expert Ej ∈ E as {In(Vi)
i }`1i=1, {Out

(Vi)
j }`2j=1 and

{In(Ej)

i }`1i=1, {Out
(Ej)

j }`2j=1, respectively.

Preparation phase:

– Upon receiving (Init, sid) from the environment Z, the committee Cj , j ∈ [k] sends (KeyGen, sid) to F t,kTHVE,

Voting/Delegation phase:

– Upon receiving (Vote, sid, vj) from the environment Z, the expert Ej , j ∈ [m] does the following:
• Send (ReadPK, sid) to F t,kTHVE, and receive (PublicKey, sid, pk) from F t,kTHVE.
• Set the unit vector e(3) ← encodeE(vj). Send (Encrypt, sid, e(3), η) to F t,kTHVE and receive

(Ciphertext, sid, c(3)) from F t,kTHVE.

• Execute macro Send-Msg
(
cj

(3), {In(Ej)

i }`1i=1, {Out
(Ej)

j }`2j=1

)
. (Cf. Fig. 7 )

– Upon receiving (Cast, sid, vi, αj) from the environment Z, the voter Vi, j ∈ [n] does the following:
• Send (ReadPK, sid) to F t,kTHVE, and receive (PublicKey, sid, pk) from F t,kTHVE.
• Set the unit vector e(m+3) ← encodeV(vj). Send (Encrypt, sid, e(m+3)) to F t,kTHVE and receive

(Ciphertext, sid,u(m+3)) from F t,kTHVE.

• Execute macro Send-Msg
(

(uj
(m+3), αj), {In(Vi)

i }`1i=1, {Out
(Vi)
j }`2j=1

)
. (Cf. Fig. 7 )

Tally phase:

– Upon receiving (DelCal, sid) from the environment Z, the committee Ct, t ∈ [k] does:
• Execute macro Read-Msg and obtain data.
• Fetch the ballots {ci

(3)}i∈[m] and {(uj
(m+3), αj)}j∈[n] from data.

• For i ∈ [m], send (Check, sid, ci
(3)) to F t,kTHVE; for j ∈ [n], send (Check, sid,uj

(m+3)) to F t,kTHVE; Remove the
ballots if the F t,kTHVE response is not valid.

• For j ∈ [n], if a valid uj
(m+3) is posted, parse (aj

(m),bj
(3)) := uj

(m+3);
• For j ∈ [n], ` ∈ [0,m− 1], send (Scale, sid, aj,`, αj) to F t,kTHVE and receive (Scale, sid, zi,`) from F t,kTHVE.
• For i ∈ [0,m− 1], send (Add, sid, (z1,i, . . . , zn,i)) to F t,kTHVE and receive (Sum, sid, si) from F t,kTHVE;
• For i ∈ [0,m− 1], send (Decrypt, sid, si) to F t,kTHVE.

– Upon receiving (Tally, sid) from the environment Z, the committee Ct, t ∈ [k] does:
• Send (ReadDec, sid) to F t,kTHVE, and receive (Plaintext, sid, plaintext) from F t,kTHVE.
• Fetch {(si, wi)}i∈[m] from plaintext.

• For i ∈ [0,m− 1], ` ∈ [0, 2], send (Scale, sid, ci,`, wi) to F t,kTHVE and receive (Scale, sid, di,`) from F t,kTHVE.
• For ` ∈ [0, 2], send (Add, sid, (d0,`, . . . , dm−1,`, b1,`, . . . , bn,`)) to F t,kTHVE and receive (Sum, sid, x`) from
F t,kTHVE;

• For ` ∈ [0, 2], send (Decrypt, sid, x`) to F t,kTHVE.
– Upon receiving (ReadTally, sid) from the environment Z, the party P does the following:
• Send (ReadDec, sid) to F t,kTHVE, and receive (Plaintext, sid, plaintext) from F t,kTHVE.
• Fetch {(x`, yi)}i∈[0,2] from plaintext, and return (ReadTallyReturn, sid, (y0, y1, y2)) to the environment
Z.

The voting protocol Πt,k,m,n
Vote

Fig. 6: The voting protocol Πt,k,m,n
Vote in {FLedger,F t,kTHVE}-hybrid model
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to their delegations, and the weighted opinions are aggregated. Finally the committees C jointly decrypt the
final tally. After that, any party can read the tally result on the F t,kTHVE.

Sending/Reading data to/from FLedger. Fig. 7 describes the macro for a party to send and read data
to/from the blockchain FLedger. According the blockchain model proposed by [20], three types of delays need
to be considered. First, we have a bounded network delay, and it is assumed that all messages can be delivered
within ∆1 rounds, which is 2∆1 clock-ticks in [20]. Subsequently, a desynchronised user can get up-to-date
within 2∆1 rounds (i.e. 4∆1 clock-ticks) after registration. The second type of delay is the fact that the
adversary can hold a valid transaction up to certain blocks, but she cannot permanently denial-of-service
such a transaction. This is modeled by the ExtendPolicy in FLedger, where if a transaction is more than ∆2

rounds (i.e. 2∆2 clock-ticks) old, and still valid with respect to the current state, then it will be included
into the state. Finally, we have a so-called windowsize. Namely, the adversary can set state-slackness of all
the honest parties up to the windowsize, which is consistent with the common prefix property in [21]. Hence,
all the honest parties can have a common state of any blocks that have been proposed more than windowsize.
Denote ∆3 rounds (i.e. 2∆3 clock-ticks) as the windowsize.

To send a message x to FLedger, we need to first check if this party has deregistered and desynchronized.
If so, the party needs to first send (Register, sid) to FLedger. Note that the registered but desynchronized
party can still send a transaction before it is fully updated. We simply make a ‘dummy’ transaction whose
input coins and output coins share the same owner (spending condition), and the message x is stored in the
payload of the transaction. To read a message (stored in the payload of some transaction) from FLedger,
analogously a deregistered party needs to first send (Register, sid) to FLedger. After 4δ1 clock-ticks, the
party can get synchronised. In order to receive the latest message, the party needs to wait a maximum of
2(∆2 +∆3) clock-ticks until the transaction that carries the intended message to be included in the state of
the party.

Macro Send-Msg(x, {Ini}`1i=1, {Outj}`2j=1):

– If the party has deregistered and desynchronized:
• Send (Register, sid) to FLedger.

• Send
(
Submit, sid,Tx({Ini}`1i=1; {Outj}`2j=1;x)

)
to FLedger.

• Send (De-Register, sid) to FLedger.
– If the party is already synchronized:

• Send
(
Submit, sid,Tx({Ini}`1i=1; {Outj}`2j=1;x)

)
to FLedger.

Macro Read-Msg:

– If the party has deregistered and desynchronized:
• Send (Register, sid) to FLedger.
• Wait for max{4∆1, 2(∆2 +∆3)} clock-ticks by keeping sending (Tick, sid) to the GClock.
• Send (Read, sid) to FLedger and receive (Read, sid, data) from FLedger.
• Send (De-Register, sid) to FLedger.

– If the party is already synchronized:
• Wait for max{4∆1, 2(∆2 +∆3)} clock-ticks by keeping sending (Tick, sid) to the GClock.
• Send (Read, sid) to FLedger and receive (Read, sid, data) from FLedger.

– Return data.

Sending and reading messages

Fig. 7: Macro for sending and receiving message via FLedger
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5 A new unit vector ZK proof

In this section, we propose a new unit vector zero-knowledge proof/argument with logarithmic size commu-
nication. Before describing our construction, we refer interested reader to supplementary material A.6 for
necessary definitions and primitives.

The proposed unit vector ZK proof/argument. We denote a unit vector of length n as e
(n)
i =

(ei,0, . . . , ei,n−1), where its i-th coordinate is 1 and the rest coordinates are 0. Conventionally, to show a
vector of ElGamal ciphertexts element-wise encrypt a unit vector, Chaum-Pedersen proofs [17] are used to
show each of the ciphertexts encrypts either 0 or 1 (via Sigma OR composition) and the product of all the
ciphertexts encrypts 1. Such kind of proof is used in many well-known voting schemes, e.g., Helios. How-
ever, the proof size is linear in the length of the unit vector, and thus the communication overhead is quite
significant when the unit vector length becomes larger.

In this section, we propose a novel special honest verifier ZK (SHVZK) proof for unit vector that allows

the prover to convince the verifier that a vector of ciphertexts (C0, . . . , Cn−1) encrypts a unit vector e
(n)
i ,

i ∈ [0, n − 1] with O(log n) proof size. Without loss of generality, assume n is a perfect power of 2. If not,
we append Encpk(0; 0) (i.e., trivial ciphertexts) to make the total number of ciphertexts to be the next power
of 2. The proposed SHVZK protocol can also be Fiat-Shamir transformed to a non-interactive ZK (NIZK)
proof in the random oracle model. The basic idea of our construction is inspired by [22], where Groth and
Kohlweiss proposed a Sigma protocol for the prover to show that he knows how to open one out of many
commitments. The key idea behind our construction is that there exists a data-oblivious algorithm that can

take input as i ∈ {0, 1}logn and output the unit vector e
(n)
i . Let i1, . . . , ilogn be the binary representation of

i. The algorithm is depicted in Fig. 8.

Input: index i = (i1, . . . , ilogn) ∈ {0, 1}logn

Output: unit vector e
(n)
i = (ei,0, . . . , ei,n−1) ∈ {0, 1}n

1. For ` ∈ [logn], set b`,0 := 1− i` and b`,1 := i`;
2. For j ∈ [0, n− 1], set ei,j :=

∏logn
`=1 b`,j` , where j1, . . . , jlogn is the binary representation of j;

3. Return e
(n)
i = (ei,0, . . . , ei,n−1);

The algorithm that maps i ∈ [0, n− 1] to e
(n)
i

Fig. 8: The algorithm that maps i ∈ [0, n− 1] to e
(n)
i

Intuitively, we let the prover first bit-wisely commit the binary presentation of i ∈ [0, n− 1] for the unit

vector e
(n)
i . The prover then shows that each of the commitments of (i1, . . . , ilogn) indeed contain 0 or 1,

using the Sigma protocol proposed in Section 2.3 of [22]. Note that in the 3rd move of such a Sigma protocol,
the prover reveals a degree-1 polynomial of the committed message. Denote z`,1 := i`x+β`, ` ∈ [log n] as the
corresponding degree-1 polynomials, where β` are chosen by the prover and x is chosen by the verifier. By
linearity, we can also define z`,0 := x− z`,1 = (1− i`)x−β`, ` ∈ [log n]. According to the algorithm described

in Fig.8, for j ∈ [0, n− 1], let j1, . . . , jlogn be the binary representation of j, and the product
∏logn
`=1 z`,j` can

be viewed as a degree-(log n) polynomial of the form

pj(x) = ei,jx
logn +

logn−1∑
k=0

pj,kx
k

for some pj,k, k ∈ [0, log n− 1]. We then use batch verification to show that each of Cj indeed encrypts ei,j .

More specifically, for a randomly chosen y ← Zp, let Ej := (Cj)
xlog n ·Enc(−pj(x); 0); the prover needs to show

that E :=
∏n−1
j=0 (Ej)

yj ·
∏logn−1
k=0 (Dk)x

k

encrypts 0, where D` := Encpk(
∑n−1
j=0 (pj,` · yj);R`), ` ∈ [0, log n− 1]

with fresh randomness R` ∈ Zp. The construction is depicted in Fig. 9, and it consists of 5 moves. Both the
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prover and the verifier shares a common reference string (CRS), which is a Pedersen commitment key that
can be generated using random oracle. The prover first commits to each bits of the binary representation of
i, and the commitments are denoted as I`, ` ∈ [log n]. Subsequently, it produces B`, A` as the first move of
the Sigma protocol in Sec. 2.3 of [22] showing I` commits to 0 or 1. Jumping ahead, later the prover will
receive a challenge x ← {0, 1}λ, and it then computes the third move of the Sigma protocols by producing

{z`, w`, v`}logn`=1 . To enable batch verification, before that, the prover is given another challenge y ← {0, 1}λ

in the second move. The prover the computes and sends the aforementioned {D`}logn−1`=0 . The verification
consists of two parts. In the first part, the verifier checks the following equations to ensure that I` commits
to 0 or 1.

– (I`)
x ·B` = Comck(z`;w`)

– (I`)
x−z` ·A` = Comck(0; v`)

In the second part, the verifier checks if

n−1∏
j=0

(
(Cj)

xlog n

· Encpk(−
logn∏
`=1

z`,j` ; 0)
)yj · logn−1∏

`=0

(D`)
x`

is encryption of 0 by asking the prover to reveal the randomness.

CRS: the commitment key ck
Statement: the public key pk and the ciphertexts C0 := Encpk(ei,0; r0), . . . , Cn−1 := Encpk(ei,n−1; rn−1)

Witness: the unit vector e
(n)
i ∈ {0, 1}n and the randomness r0, . . . , rn−1 ∈ Zp

Protocol:

– The prover P , for ` = 1, . . . , logn, do:
• Pick random α`, β`, γ`, δ` ← Zp;
• Compute I` := Comck(i`;α`), B` := Comck(β`; γ`) and A` := Comck(i` · β`; δ`);

– P → V : {I`, B`, A`}logn`=1 ;
– V → P : Random y ← {0, 1}λ;
– The prover P for ` = 0, . . . , logn− 1, do:
• Pick random R` ← Zp and compute D` := Encpk

(∑n−1
j=0 (pj,` · yj);R`

)
– P → V : {D`}logn−1

`=0 ;
– V → P : Random x← {0, 1}λ;
– The prover P does the following:
• Compute R :=

∑n−1
j=0 (rj · xlogn · yj) +

∑logn−1
`=0 (R` · x`);

• For ` = 1, . . . , logn, compute z` := i` · x+ β`, w` := α` · x+ γ`, and v` := α`(x− z`) + δ`;
– P → V : R and {z`, w`, v`}logn`=1

Verification:

– Check the followings:
– For ` = 1, . . . , logn, do:
• (I`)

x ·B` = Comck(z`;w`)
• (I`)

x−z` ·A` = Comck(0; v`)

–
∏n−1
j=0

(
(Cj)

xlog n

· Encpk(−
∏logn
`=1 z`,j` ; 0)

)yj ·∏logn−1
`=0 (D`)

x` = Encpk(0;R), where zj,1 = zj and zj,0 = x− zj .

Unit vector ZK argument

Fig. 9: Unit vector ZK argument

Theorem 1. The protocol described in Fig. 9 is a 5-move public coin special honest verifier zero-knowledge

argument of knowledge of e
(n)
i = (ei,0, . . . , ei,n−1) ∈ {0, 1}n and (r0, . . . , rn−1) ∈ (Zp)n such that Cj =

Encpk(ei,j ; rj), j ∈ [0, n− 1].
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Proof. See Supplementary Material A.6.

6 Security

The security of the treasury voting protocol is analysed in the UC framework. We provide Theorem 2 and
its proof can be found in supplementary material A.7.

Theorem 2. Let k, n,m = poly(λ) and t > k/2. Protocol Πt,k,n,m
Vote described in Fig. 6 UC-realizes F t,kVote in

the {FLedger,F t,kTHVE}-hybrid world against static corruption.

7 Implementation and performance

Prototyping. The proposed treasury system was implemented as a fully functional cryptocurrency proto-
type. As an underlying framework we used Scorex 2.0 [23] that provides basic blockchain functionality. It is a
flexible modular framework designed particularly for fast prototyping with a rich set of already implemented
functionalities such as asynchronous peer-to-peer network layer, built-in blockchain support with pluggable
and extendable consensus module, simple transactions layer, JSON API for accessing the running node, etc.
As treasury requires basic blockchain functions, we decided to select TwinsCoin [19] example and extend it
with the proposed treasury system. Treasury integration required modification of the existed transactions
structure and block validation rules, as well as introduction of new modules for keeping treasury state and
managing transactions forging. All cryptographic protocols related to the voting procedure were implemented
in a separate library to simplify code maintanance. It is also possible to reuse it not only in the blockchain
systems but also as a standalone voting system. The implementation uses BouncyCastle library (ver.1.58)
that provides needed elliptic curve math. Some operations in the finite field were implemented with help of
the BigInteger class from the Java Core. Subprotocols of the developed system were implemented exactly as
they are described in the paper without any protocol-level optimizations.

Test network. For testing developed treasury prototype in real environment a local network of 12 full
nodes was launched. It successfully worked for several days with dozens of epochs. The treasury network
had 9 voters with different amount of stake, 3 experts, 12 candidates to the voting committee (10 of them
were selected to participate). The numbers of proposals varied from 1 to 7. Treasury cycle had 780 blocks.
Underlying blockchain with TwinsCoin consensus had block generation time of 10 seconds (or approximately
4.5 hours treasury cycle).

During the tests many abnormal situations were simulated, for instance, a malicious behavior of the
committee members, absence of the voters and expers, refusal to participate in the decryption stage, etc.
With a correctly working majority of the committee members, the voting results were always successfully
obtained and rewards were correctly distributed.

Evaluations. For evaluating performance of the cryptographic protocols a special set of tests were developed
as a part of the cryptographic library. The working station has Intel Core i7-6500U CPU @ 2.50GHz and
16GB RAM.

We benchmarked key generation protocol running time for different number of voting committee members:
from 10 to 100 (high numbers might be required to guarantee honest majority on member random selection
among large amount of members). Shared public key generation was made both for all honest committee
members and in presence of malicious ones (any minority amount, their exact ratio does not have influence
on protocol running time for any honest participant). Results are given in Fig. 10.

Besides it, there is an estimated amount of data needed to be transmitted over a peer-to-peer network to
complete the protocol, in dependence of committee size and malicious members ratio. Results are given in
Fig. 11 (recall that even controlling 50% of the committee, an attacker can break confidentiality of voters’
ballots, but not their integrity or tally result).

Ballot generation is done once by a voter and takes less than 1 second for several hundreds of experts,
so it has very small influence on the voting protocol performance. To get tally results, it is needed to collect
all ballots from participating voters, validate their correctness (via attached NIZK) and then do tally for all
correct ballots. Figure 12 shows the prover’s running time, the verifier’s running time and the size of the unit
vector ZK proof that has been used in the ballot casting.
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Finally, the overall communication cost for all the voting ballots per project during the entire treasury
period is depicted in Fig. 13. In particular, for a treasury period with 5000 voters and 50 experts, the overall
communication is approximately 20 MB per project.

Fig. 10: DKG protocol execution time depending on the number of committee members

8 Related work

The Dash governance system (DGS) [1] also referred to as Dash governance by blockchain (DGBB) is the
pioneer treasury implementation for cryptocurrency development funding on any real-world cryptocurrency.
The DGS allows regular users on the Dash network to participate in the development process of the Dash
cryptocurrency by allowing them submit project proposals (for advancing the cryptocurrency) to the network.
A subset of users known as Masternodes then vote to decide what proposals from the submitted proposals
get funding. Every voting cycle (approximately one month), winning proposals are voted for and funded from
the accrued resources in the blockchain treasury. 10% of all block rewards within each monthly voting period
is contributed towards the blockchain treasury, from which proposals are then funded. Although the DGS
works in practice, however it is affected by a number of security and centralisation issues. For instance, voting
on the DGS is not private, thereby leaving nodes susceptible to coercion.

Beyond voting, the Dash Governance System (DGS) [1,24], is the first self-sustenance/funding mechanism
in any cryptocurrency or blockchain system. However, the DGS does not support delegative voting and ballot
privacy. Amongst other drawbacks, only operators of MasterNodes are allowed to propose projects and vote
and about 73% of all funded proposals have been proposed by two members of the DASH community.

A second system is the Zencash multi-stakeholder governance model. By design, ZenCash adopts a flexible
multi-stakeholder governance model [25]. The core idea is to remove centralisation which entrusts enormous
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Fig. 11: Total size of the DKG protocol messages to be sent over the peer-to-peer network depending on the number
of committee members

Fig. 12: The prover’s running time, verifier’s running time and the size of the unit vector ZK proof.
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Fig. 13: The overall communication for all the voting ballots during an entire treasury period.
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powers with a minority. Participation is voluntary and decision-making powers cuts across all categories of
stakeholders proportional to their resources(stake).

Initially, the ZenCash system has a Core Team (inclusive of founders of Zen) and a DAO (consisting of
industry leaders) that controls 3.5% of block mining rewards and 5% of rewards respectively. The plan is to
evolve, develop and adopt a hybrid voting mechanism that enables all stakeholders to influence decisions and
resource allocations on the blockchain. This evolution would result in a system of DAOs, with competing
DAOs responsible for working on different problems. Collectively, the DAOs will be responsible for activities
(building, maintaining, improving software, legal, marketing, and advertising) that will ensure the long-term
sustainability of Zen.

Community members / stakeholders are allowed to participate in the development of Zen via project
proposals which are obviously funded by the DAOs through the 5% block mining reward allocation they
receive. We remark that proposals are only to be funded subject to successful voting. Although, at launch
(or currently), only one DAO “staffed with respected professionals” exists. The staff strength of each DAO is
between 3− 5 members and could potentially be increased into any number. A dispute resolution mechanism
is to be provided for solving issues between DAO members.

Although Zencash’s attempts to enable multi-stakeholder participation in governance is commendable,
the system/structure has some obvious drawbacks. Unlike DGS, voting is open to all community members,
but is susceptible to Denial of Service attacks. Delegative voting is not supported and the system uses
fixed amount of voting tokens and too many “magic numbers”. Furthermore, veto power is granted to the
core Team comprising only 3 individuals.This can lead to a concept that described as “Tyranny of the
powerful/founders”.

Liquid democracy (also known as delegative democracy [3]) as an hybrid of direct democracy and rep-
resentative democracy provides the benefits of both system (whilst doing away with their drawbacks) by
enabling organisations to take advantage of the experts in a voting process and also gives every member
the opportunity to vote [30]. Although the advantages of liquid democracy has been widely discussed in the
literature [31,32,33,34,35], there are few provably secure construction of liquid democracy voting.

Most real-world implementations of liquid democracy only focus on the functionality aspect of their
schemes. For instance, Google Vote [36] is an internal Google experiment on liquid democracy over the
social media, Google+, which does not consider voter privacy. Similarly, systems such as proxyfor.me [37],
LiquidFeedback [38], Adhocracy [39], GetOpinionated,[40] also offer poor privacy guarantees. It is worth
mentioning that Sovereign [41] is a blockchain-based voting protocol for liquid democracy; therefore, its
privacy is inherited from the underlying blockchain, which provides pseudonymity-based privacy. Wasa2il
[42] is able to achieve End-to-End verifiability because this foils privacy. The best known liquid democracy
and proxy democracy voting schemes are nVotes [43] and Statement Voting [44]. However, those systems
require mix-net as their underlying primitive. This makes them less compatible to the blockchain setting due
to the heavy work load of the mixing servers.

Our work differs from these earlier works because it not only supports liquid democracy whilst preserving
privacy of the voters and delegates, it is also practical in the sense that it factors in real-life concerns (e.g.,
monthly duration of treasury epoch) associated with a treasury system for blockchains. In a worse case
scenario, our privacy guarantees are equivalent to that obtainable in the Dash Governance System.
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A Supplementary material

A.1 Universal Composability

We model our system security under the standard Universal Composability (UC) framework. The protocol
is represented as interactive Turing machines (ITMs), each of which represents the program to be run by a
participant. Adversarial entities are also modeled as ITMs.

We distinguish between ITMs (which represent static objects, or programs) and instances of ITMs (ITIs),
that represent interacting processes in a running system. Specifically, an ITI is an ITM along with an identifier
that distinguishes it from other ITIs in the same system. The identifier consists of two parts: A session-identifier
(SID) which identifies which protocol instance the ITI belongs to, and a party identifier (PID) that distinguishes
among the parties in a protocol instance. Typically the PID is also used to associate ITIs with “parties” that
represent some administrative domains or physical computers.

The model of computation consists of a number of ITIs that can write on each other’s tapes in certain
ways (specified in the model). The pair (SID,PID) is a unique identifier of the ITI in the system. With one
exception (discussed within) we assume that all ITMs are PPT.

We consider the security of the voting system in the UC framework with static corruption in the random
oracle (RO) model. The security is based on the indistinguishability between real/hybrid world executions
and ideal world executions, i.e., for any possible PPT real/hybrid world adversary A we will construct an
ideal world PPT simulator S that can present an indistinguishable view to the environment Z operating the
protocol.

A.2 The blockchain ideal functionality

We adopt the state-of-the-art blockchain ideal functionality proposed by Badertscher et al., [20]. For complete-
ness, we recap the functionality here. As shown, in Fig. 14, the functionality maintains the set of registered
parties P, the (sub-)set of honest partiesH ⊆ P, and the (sub-set) of de-synchronized honest parties PDS ⊂ H.
The set P,PDS ,H are all initially set to ∅. When a new honest party is registered, it is added to all PDS (hence
also to H and P and the current time of registration is also recorded; similarly, when a party is deregistered,
it is removed from both P and PDS . For each party p ∈ P, the functionality maintains a pointer pti (initially
set to 1) and a current state view statei:= ε (initially set to empty). The functionality also keeps track of the
timed honest-input sequence in a vector ITH (initially ITH := ε)

http://eprint.iacr.org/2017/616
http://eprint.iacr.org/2017/616


A Treasury System for Cryptocurrencies 23

It is parametrized by four algorithms Validate,ExtendPolicy,Blockify, and predict-time, along with two parameters:
windowSize,Delay ∈ N. The functionality manages variables state,NxtBC, buffer, τL and τstate.
Initially, state := τstate := NxtBC :=ε, buffer := ∅, τL =1.
The functionality maintains the set of registered parties P, the (sub-)set of honest parties H ⊆ P, and the (sub-set)
of de-synchronized honest parties PDS ⊂ H. The set P,PDS ,H are all initially set to ∅. When a new honest party is
registered, it is added to all PDS (hence also to H and P and the current time of registration is also recorded; sim-
ilarly, when a party is deregistered, it is removed from both P and PDS . For each party p ∈ P, the functionality
maintains a pointer pti (initially set to 1) and a current state view statei:= ε (initially set to empty). The function-
ality also keeps track of the timed honest-input sequence in a vector ITH (initially ITH := ε)

Upon receiving any input I from any party or from the adversary, send (GetTime, sid) to GClock and upon receiv-
ing response (GetTime, sid, τ) set τL := τ and do the following:

– Let P̂ ⊆ PDS denote the set of desynchronized honest parties that were registered at time τ ′ ≤ τL − Delay. Set
PDS := PDS \ P.

– If I was received from an honest party p ∈ P :
• Set ITH := ITH||(I, p, τL);
• Compute N = (N1, . . . ,Nl) := ExtendPolicy(ITH, state,NxtBC, buffer, τstate) and if N 6= ε set

state := state||Blockify((Nl1)|| . . . ,Blockify((Nl)) and τstate := τstate||τ lL, where τ lL = τL||, . . . τL
• For each BTX ∈ buffer: if (Validate,BTX, state, buffer, ) = 0 then delete BTX from buffer. Also reset

NxtBC := ε
• If there exists pj ∈ H such that |state| − ptj > windowSize or ptj < |state|, then set ptk := |state| for all
pk ∈ H \ PDS

– Depending on the above input I and its sender’s ID, FLedger executes the corresponding code from the
following list:
• Submitting a transaction: If I = (Submit, sid, tx) and is received from a party p ∈ P or from A (on behalf

of a corrupted party p) do the following
∗ Choose a unique transaction ID txid and set BTX := (tx, txid, τL, pi)
∗ if Validate(BTX), state, buffer = 1, then buffer := buffer ∪ {BTX}.
∗ Send (Submit,BTX) to A

• Reading the state: If I = (Read, sid) is received from a party p ∈ P then set state|min{pti,|state|} and return

(Read, sid, statei) to the requester. If the requester is A then send (state, buffer, ITH) to A
• Maintaining the ledger state: If I = (Maintain-Ledger, sid,minerID) is received by an honest party p in

P and (after updating ITH as above) predcit-time(ITH) = τ̂ > τL then send (Tick, sid) to GClock. Else, send I
to A.

• The adversary proposing the next block: If I = (Next-Block, hFlag, (txid1, . . . , txidl)) is sent from the
adversary, update NxtBC as follows:
∗ Set listOfTxid← ε
∗ For i = 1, . . . , l do: if there exists BTX := (x, txid,minerID, τL, pi) ∈ buffer with ID txid = txidi then

set lisOfTxid := listOfTxid||txidi
∗ Finally, set NxtBC := NxtBC||(hF lag, listOfTxid) and output (Next-Block, ok) to A

• The adversary setting state-slackness: If I = (Set-Slack, (pi1, ˆpti1), (pil, ˆptil), ) with
{pi1, . . . , pil} ⊆ H \ PDS is received from the adversary A do the following:
∗ If for all j ∈ [l] : |state| − ˆptij ≥ stateij|, setpti := p̂ti for every j ∈ [l] and return (Set-Slack, ok) to A.
∗ Otherwise set ptj := state for all j ∈ [l]

• The adversary setting the state for desynchronised parties: If I = (DEesync-State, (pi1, state′il)) with
{pi1, . . . , pil} ⊆ PDS is received from the adversary A, set stateij := state′ij for each j ∈ [l] and return
(Desync-State, ok) to A.

Functionality FLedger

Fig. 14: Functionality FLedger
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A.3 The threshold homomorphic encryption functionality

The ideal functionality is depicted in Fig. 15. It is parameterized by the additively homomorphic public key
encryption algorithms HE = (KeyGenE,Enc,Add,Scale,Dec). To generate the key, the key holders Ki ∈ K
sends (KeyGen, sid) command to the functionality F t,kTHVE. Upon receiving the key generation requests from

at least t > k/2 key holders, F t,kTHVE generates the key pairs (pk, sk) ← KeyGenE(param). Any party can

read the public key by sending (ReadPK, sid) command to F t,kTHVE. To encrypt a vector, any party can send

(Encrypt, sid,m(`) := (m0, . . . ,m`−1), pk′, η) to F t,kTHVE, where η = 0 if the party does not want to prove
that m(`) is a unit vector; otherwise, η = 1, if the party want to show that m(`) is a unit vector. In the
latter case, the functionality F t,kTHVE checks the validity of m(`) and then put the corresponding ciphertext

in unit-vec. Any party can query F t,kTHVE to check whether c(`)) is a unit vector. If the ciphertext vector is

in unit-vec, F t,kTHVE returns valid; otherwise, it returns unknown. Moreover, the user can run homomorphic
operations Add and Scale on the ciphertexts if they were encrypted under pk. The Decryption function allows
for the decryption of individual ciphertexts (or revealing of shares) provided a certain threshold of ciphertexts
have not earlier been revealed.

The ideal functionality F t,kTHVE can be efficiently realized from threshold Elgamal encryption in practice.
Distributed key generation (DKG) is a fundamental building block of such a protocol. To ensure robustness,
the elected voting committee members invoke the distributed key generation protocol to setup the voting
public key. Ideally, the protocol termination should be guaranteed when up to t = dn2 e−1 out of n committee
members are corrupted. A naive way of achieving threshold distributed key generation is as follows. Each of
the voting committee members Ci first generates a public/private key pair (pki, ski)← KeyGenE(param). Each
Ci then posts pki to the blockchain and use (t + 1, n)-threshold verifiable secret sharing (VSS) to share ski
to all the other committee members. The combined voting public key can then be defined as pk :=

∏n
i=1 pki.

However, this approach is problematic in the sense that the adversary can influence the distribution of the
final voting public key by letting the corrupted committee members abort selectively. Alternatively, we will
adopt the distributed key generation protocol proposed by Gennaro et al. [26]. In a nutshell, the protocol
lets the committee members Ci first posts a “commitment” of pki. After sharing the corresponding ski via
(t + 1, n)-threshold VSS, the committee members Ci then reveals pki. We will use the blockchain to realise
the broadcast channel and peer-to-peer channels.

A.4 The global clock functionality

The global clock functionality GClock interacts with all the parties. To handle offline parties, the parties can
register and deregister themselves to the functionality GClock, and the clock will advance if and only if all
the registered honest parties have sent Tick command to it.

A.5 Supplementary material for Section 3

To generate and commit a random seed, voting committee members C`, ` ∈ [k] needs to invoke a coin
flipping protocol. However, the cost of such a protocol is very small when they already jointly setup a public
key pk. More specifically, each voting committee members C`, ` ∈ [k] will pick a random group element

R` ← G and post the encryption of it, C` ← Encpk(R`) to the blockchain. C :=
∏k
`=1 C` is defined as

the committed/encrypted seed for the next treasury period. Note that C can be jointly decrypted as far as
majority of the voting committee members are honest, and the malicious voting committee members cannot
influence the distribution of the seed.

A.6 Supplementary material for Section 5

Zero-knowledge proofs/arguments. Let L be an NP language and RL is its corresponding polynomial
time decidable binary relation, i.e., L := {x | ∃w : (x,w) ∈ RL}. We say a statement x ∈ L if there is a
witness w such that (x,w) ∈ RL. Let the prover P and the verifier V be two PPT interactive algorithms.
Denote τ ← 〈P (x,w), V (x)〉 as the public transcript produced by P and V . After the protocol, V accepts
the proof if and only if φ(x, τ) = 1, where φ is a public predicate function.
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Ideal Functionality F t,kTHVE

Threshold homomorphic vector encryption. The functionality interacts with a set of key holders K :=
{K1, . . . ,Kk} and a set of users U := {U1, . . . ,Un}, and the adversary A. Let Khonest and Kcor denote the honest
and corrupt sets of key holders, respectively. It is parameterized by the system parameters param← Setup(1λ), a set
of encryption algorithms HE = (KeyGenE,Enc,Add,Scale,Dec) and variables ciphertext, plaintext, and unit-vec.
Initially, ciphertext := ∅, plaintext := ∅ and unit-vec := ∅.

Key Generation:

– Upon receiving input (KeyGen, sid) from Ki ∈ K, send a notification message (KeyGenNotify, sid,Ki) to the
adversary A. If it has collected KeyGen request from at least t key holders Ki, then it generates
(pk, sk)← KeyGenE(param).

– Upon receiving input (ReadPK, sid) from party P ∈ K ∪ U , if pk has been recorded, then return
(PublicKey, sid, pk) to P .

Encryption:

– Upon receiving (Encrypt, sid,m(`) := (m0, . . . ,m`−1), pk′, η) from any party P ∈ K ∪ U :

• If pk 6= pk′, then for i ∈ [0, `− 1], compute ci ← Encpk′(mi), and send (Ciphertext, sid, c0, . . . , cn) to party
P .

• Else if pk = pk′, then for i ∈ [0, `− 1]: compute ci ← Encpk(0); record pair (ci,mi) in ciphertext; init
Jci := ∅. Send (Ciphertext, sid, c(`) := (c0, . . . , c`−1)) to party P . If η = 1 and ∀i ∈ [0, `− 1]: mi ∈ {0, 1}
and

∑`−1
i=0 mi = 1, then add c(`) to unit-vec.

– Upon receiving (Check, sid, c(`)) from any party P ∈ K ∪ U :

• If c(`) is recorded in unit-vec, then return (Checked, sid, c(`), valid) to P .
• Otherwise, return (Checked, sid, c(`), unknown) to P .

Additive Homomorphism:

– Upon receiving (Add, sid, (c1, . . . , c`)) from any party P ∈ K ∪ U :
• If all (c1,m1), . . . , (c`,m`) are recorded in ciphertext, then do
∗ Compute c := Add(c1, . . . , c`) and m =

∑`
j=1mj

∗ Record pair (c,m) in ciphertext; init Jc := ∅; send (Sum, sid, c) to P .
– Upon receiving (Scale, sid, c, v) from any party P ∈ K ∪ U :
• If (c,m) is recorded in ciphertext, then do
∗ Compute c′ := Scale(c, v) and m′ = m ∗ v
∗ Record pair (c′,m′) in ciphertext; init Jc′ := ∅; and send (Scale, sid, c′) to P .

Decryption:

– Upon receiving (Decrypt, sid, c) from Ki ∈ K, send a notification message (DecNotify, sid,Ki) to A.
• If c has been recorded in ciphertext, set Jc := Jc ∪ {Ki}.
• If |Jc ∩Khonest|+ |Kcor| ≥ t, and a pair (c,m) has been recorded in ciphertext, then send (DecLeak, sid, c,m)

to A.
• If |Jc| = t and a pair (c,m) has been recorded in ciphertext, then add (c,m) to plaintext.
• If c is not recorded in ciphertext, set J ′c := J ′c ∪ {Ki} where J ′c is empty initially. If |J ′c ∩ Khonest|+ |Kcor| ≥ t,

then send (DecLeak, sid, 〈c,Decsk(c)〉) to the adversary A.
• If |J ′c| = t, then put (c,Decsk(c)) to plaintext.

– Upon receiving (ReadDec, sid) from any party P ∈ K ∪ U , send (Plaintext, sid, plaintext) to party P .

Threshold homomorphic encryption functionality F t,kTHVE

Fig. 15: Threshold homomorphic encryption functionality F t,kTHVE
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The functionality interacts with a set of parties P, a set of functionalities F, and the adversary A. It is parametrized
with variable τ , P, and F.
Initially, set τ := 0, P := ∅, and F := ∅.

Registration:

– Upon receiving (Register, sid) from party p, set P := P ∪ {p} and create variable Tp := 0.
– Upon receiving (Register, sid) from functionality F , set F := F ∪ {F} and create variable TF := 0.
– Upon receiving (De-Register, sid) from party p, set P := P \ {p} and remove variable Tp.
– Upon receiving (De-Register, sid) from functionality F , set F := F \ {F} and remove variable TF .
– Upon receiving (Get-Reg, sid) from A, return (Get-Reg, sid,P,F) to A.

Synchronization:

– Upon receiving (Tick, sid) from party p ∈ P, set Tp := 1; Invoke procedure Clock-Update and send (Tick, sid, p)
to A.

– Upon receiving (Tick, sid) from functionality F ∈ F, set TF := 1; Invoke procedure Clock-Update and send
(Tick, sid,F) to F .

– Upon receiving (GetTime, sid) from any participant, return (GetTime, sid, τ) to the requester.

Procedure Clock-Update:

– If TF = 1 for all F ∈ F and Tp = 1 for all the honest p ∈ P, then set τ := τ + 1, and reset TF := 0 for all F ∈ F
and Tp := 0 for all p ∈ P.

Functionality GClock

Fig. 16: Functionality GClock

Definition 2. We say (P, V ) is a perfectly complete proof/argument for an NP relation RL if for all non-
uniform PPT interactive adversaries A it satisfies

– Perfect completeness:

Pr

[
(x,w)← A; τ ← 〈P (x,w), V (x)〉 :
(x,w) ∈ RL ∨ φ(x, τ) = 1

]
= 1

– (Computational) soundness:

Pr

[
x← A; τ ← 〈A, V (x)〉 :
x 6∈ L ∧ φ(x, τ) = 1

]
= negl(λ)

Let V (x; r) denote the verifier V is executed on input x with random coin r. A proof/argument (P, V ) is
called public coin if the verifier V picks his challenges randomly and independently of the messages sent by
the prover P .

Definition 3. We say a public coin proof/argument (P, V ) is a perfect special honest verifier zero-knowledge
(SHVZK) for a NP relation RL if there exists a PPT simulator Sim such that

Pr

 (x,w, r)← A;
τ ← 〈P (x,w), V (x; r)〉 :
(x,w) ∈ RL ∧ A(τ) = 1

 ≈ Pr

 (x,w, r)← A;
τ ← Sim(x; r) :
(x,w) ∈ RL ∧ A(τ) = 1


Public coin SHVZK proofs/arguments can be transformed to a non-interactive one (in the random oracle

model [27]) by using Fiat-Shamir heuristic [28] where a cryptographic hash function is used to compute the
challenge instead of having an online verifier.

Schwartz-Zippel lemma. For completeness, we recap a variation of the Schwartz-Zippel lemma [29] that
will be used in proving the soundness of the zero-knowledge protocols.
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Lemma 1 (Schwartz-Zippel). Let f be a non-zero multivariate polynomial of degree d over Zp, then the
probability of f(x1, . . . , xn) = 0 evaluated with random x1, . . . , xn ← Zp is at most d

p .

Therefore, there are two multi-variate polynomials f1, f2. If f1(x1, . . . , xn)−f2(x1, . . . , xn) = 0 for random
x1, . . . , xn ← Zp, then we can assume that f1 = f2. This is because, if f1 6= f2, the probability that the above

equation holds is bounded by max(d1,d2)
p , which is negligible in λ.

Pedersen commitment. In the unit vector zero-knowledge proof, we use Pedersen commitment as a building
block. It is perfectly hiding and computationally binding under the discrete logarithm assumption. More
specifically, it consists of the following 4 PPT algorithms. Note that those algorithms (implicitly) take as
input the same group parameters, param← Gengp(1λ).

– KeyGenC(param): pick s← Z∗q and set ck := h = gs, and output ck.
– Comck(m; r): output c := gmhr and d := (m, r).
– Open(c, d): output d := (m, r).
– Verifyck(c, d): return valid if and only if c = gmhr.

Pedersen commitment is also additively homomorphic, i.e.

Comck(m1; r1) · Comck(m2; r2) = Comck(m1 +m2; r1 + r2) .

Proof of Theorem 1.

Proof. For perfect completeness, we first observe that the verification equations (I`)
x ·B` = Comck(z`;w`) and

(I`)
x−z` · A` = Comck(0; v`) holds. Indeed, by additively homomorphic property of the commitment scheme,

(I`)
x ·B` = Comck(i` · x+ β`;α` · x+ γ`) and (I`)

x−z` ·A` = Comck(i` · (x− z`) + i` · β`;α` · (x− z`) + δ`) =
Comck(i`(1− i`) · x; v`). Since i`(1− i`) = 0 when i` ∈ {0, 1}, we have (I`)

x−z` ·A` = Comck(0; v`). Moreover,

for each j ∈ [0, n− 1],
∏logn
`=1 z`,j` is a polynomial in the form of

pj(x) = ei,jx
logn +

logn−1∑
k=0

pj,kx
k

where x is the verifier’s challenge. Therefore, it is easy to see that

n−1∏
j=0

(
(Cj)

xlog n

· Encpk(−
logn∏
`=1

z`,j` ; 0)
)yj · logn−1∏

`=0

Encpk(
n−1∑
j=0

(pj,` · yj);R`)x
`

= Encpk
( n−1∑
j=0

(
ei,j · xlogn − pj(x) +

logn−1∑
`=0

pj,` · x`
)
· yj ;R

)
= Encpk(0;R) .

For soundness, first of all, the Sigma protocols for commitments of i`, ` ∈ [log n] is specially sound, i.e.,

given two transactions with the same {I`, B`, A`}logn`=1 and two different x and {z`, w`, v`}logn`=1 , there exists a
PPT extractor that can output the corresponding witness i` ∈ {0, 1}.

Moreover,
∏n−1
j=0

(
(Cj)

xlog n · Encpk(−
∏logn
`=1 z`,j` ; 0)

)yj
builds a degree-log n polynomial w.r.t. x in the

plaintext. While,
∏logn−1
`=0 (D`)

x`

encrypts a degree-(log n−1) polynomial w.r.t. x. Since x is randomly sampled

after D` is committed, Schwartz-Zippel lemma,
∏n−1
j=0

(
(Cj)

xlog n · Encpk(−
∏logn
`=1 z`,j` ; 0)

)yj ·∏logn−1
`=0 (D`)

x`

encrypts a zero polynomial w.r.t. x with overwhelming probability if the polynomial evaluation is 0. Therefore,
Q(y) :=

∑n−1
j=0 (ei,j−

∏logn
`=1 i`,j`)·yj = 0 with overwhelming probability. Similarly, by Schwartz-Zippel lemma,

Q(y) is a zero polynomial; hence, we have for j ∈ [0, n− 1], ei,j =
∏logn
`=1 i`,j` with overwhelming probability.

In terms of special honest verifier zero-knowledge, we now construct a simulator Sim that takes input as the
statement (C0, . . . , Cn−1) and the given challenges x, y ∈ {0, 1}λ, and it outputs a simulated transcript whose
distribution is indistinguishable from the real one. More specifically, Sim first randomly picks i` ← {0, 1} and

α`, β`, γ`, δ` ← Zp, ` ∈ [log n]. It then computes {I`, B`, A`}logn`=1 and {z`, w`, v`}logn`=1 according to the protocol
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description. For ` ∈ {1, . . . , log n− 1}, it then picks random U`, R` ← Zp and computes D` := Encpk(U`;R`).
It then randomly picks R← Zp, computes

D0 :=
Encpk(0;R)∏n−1

j=0

(
(Cj)x

log nEncpk(−
∏logn
`=1 z`,j` ; 0)

)yj ·∏logn−1
`=1 (D`)x

`

After that, Sim outputs the simulated transcript as(
{I`, B`, A`}logn`=1 , y, {D`}logn−1`=0 , x, {z`, w`, v`}logn`=1

)
.

This concludes our proof.

A.7 Supplementary material for Section 6

Proof of Theorem 2.

Proof. To prove the theorem, we construct a simulator S such that no non-uniform PPT environment Z
can distinguish between (i) the real execution EXEC

FLedger,Ft,k
THVE

Πt,k,n,m
Vote ,A,Z

where the parties V := {V1, . . . ,Vn}, E :=

{E1, . . . ,Em} and C := {C1, . . . ,Ck} run protocol Πt,k,n,m
Vote in the {FLedger,F t,kTHVE}-hybrid world and the

corrupted parties are controlled by a dummy adversary A who simply forwards messages from/to Z, and

(ii) the ideal execution EXECFt,k
Vote,S,Z

where the parties interact with functionality F t,kVote in the ideal model

and corrupted parties are controlled by the simulator S. Let Vcor ⊆ V, Ecor ⊆ E and Ccor ⊆ C be the set of
corrupted voters, experts and voting committee members, respectively.

Simulator. The simulator S internally runs A, forwarding messages to/from the environment Z. The
simulator S simulates honest voters Vi ∈ V \ Vcor, honest experts Ei ∈ E \ Ecor, trustees Cj ∈ C \ Ccor and

functionalities FLedger,F t,kTHVE. In addition, the simulator S simulates the following interactions with A.

In the preparation phase:

– Upon receiving (InitNotify, sid,Cj) from the external F t,kVote for an honest voting committee Cj ∈ C\Ccor,
the simulator S acts as Cj , following the protocolΠt,k,n,m

Vote as if Cj receives (Init, sid) from the environment
Z.

In the ballot casting phase:

– Upon receiving (VoteNotify, sid,Ei, βi) from the external F t,kVote for an honest expert Ei ∈ E \ Ecor,
the simulator S, for ` ∈ [0, 2]: sends (Encrypt, sid, 0) to F t,kTHVE and receive (Ciphertext, sid, ci,`) from

F t,kTHVE. It then simulates the functionality F t,kTHVE to add ci
(3) := (ci,0, ci,1, ci,2) to the internal unit-vec

of F t,kTHVE. The simulator S then sends (Post, sid, ci
(3), βi) to FLedger.

– Upon receiving (CastNotify, sid,Vj , αj) from the external F t,kVote for an honest expert Vj ∈ V \Vcor, the

simulator S, for ` ∈ [0,m+2]: sends (Encrypt, sid, 0) to F t,kTHVE and receive (Ciphertext, sid, uj,`) from

F t,kTHVE. It then simulates the functionality F t,kTHVE to add uj
(m+3) := (uj,0, . . . , uj,m+2) to the internal

unit-vec of F t,kTHVE. The simulator S then sends (Post, sid,uj
(m+3), αj) to FLedger.

– Once the simulated FLedger receives (Post, sid, ci
(3)) from a corrupted expert Ei ∈ Ecor, the simulator

S checks the internal state of F t,kTHVE for recorded {(ci,`, ei,`)}`∈[0,2] from ciphertext. It then computes

vi ← decode(ei,0, . . . , ei,2) and sends (Vote, sid, vi) to F t,kVote.
– Once the simulated FLedger receives (Post, sid,uj

(m+3), αj) from a corrupted voter Vj ∈ Vcor, the sim-

ulator S checks the internal state of F t,kTHVE for recorded {(uj,`, ej,`)}`∈[0,m+2] from ciphertext. It then

computes vj ← decode(ej,0, . . . , ej,m+2) and sends (Cast, sid, vj , αj) to F t,kVote.

In the tally phase:

– Upon receiving (DelCalNotify, sid,Cj) from the external F t,kVote for an honest trustee Cj ∈ C \Ccor, the

simulator S acts as Cj , following the protocol Πt,k,n,m
Vote as if Cj receives (DelCal, sid) from Z.
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– Upon receiving (TallyNotify, sid,Cj) from the external F t,kVote for an honest trustee Cj ∈ C \ Ccor, the

simulator S acts as Cj , following the protocol Πt,k,n,m
Vote as if Cj receives (Tally, sid) from Z.

– Upon receiving (Leak, sid, τ) from the external F t,kVote, the simulator S parses τ as (τ0, τ1, τ2) and acts as

the simulated F t,kTHVE to send (DecLeak, sid, x`, τ`), ` ∈ [0, 2], where x` are the tally ciphertexts received

by F t,kTHVE for final decryption.

Indistinguishability. The indistinguishability is proven through a series of hybrid worlds H0, . . . ,H2.

Hybrid H0: It is the real protocol execution EXEC
FLedger,Ft,k

THVE

Πt,k,n,m
Vote ,A,Z

.

Hybrid H1: H1 is the same as H0 except the simulator S internally simulates F t,kTHVE. For all the honest
voters and experts, S acts as the party to execute the protocol according to the description as if the voter
receives command (Cast, sid,⊥, αj) or the expert receives (Vote, sid,⊥) from the environment Z, where ⊥
stands for blank ballot, which is represented by a zero vector.

Claim: H1 and H0 are indistinguishable.

Proof. The probability that any adversary AdvDDH
G can distinguish H1 from H0 is bounded by AdvCPAA(1λ).

More specifically, we now show the if there exists an adversary AdvDDH
G who can distinguish H1 from H0, then

we can construction an adversary B that can break the IND-CPA game of the underlying threshold Public
key encryption by reduction. During the IND-CPA game, B receives a public key pk∗ from the challenger.
There must be at least one honest trustee in this case, and with our loss of generality, assume Cx is honest.
During the preparation phase, B posts pk∗ as Cx’s public key together with simulated proof. During the
ballot casting phase, for each honest voter Vi, i ∈ [n], B sends m0 := 0 and m1 := vi to the IND-CPA
challenger, and receives c∗. It posts c∗ as the honest voter’s encrypted ballot. It is easy to see that, when c∗

encrypts m0, the adversary’s view is indistinguishable from H1; when c∗ encrypts m1, the adversary’s view
is indistinguishable from H0. Hence, if AdvDDH

G can distinguish H1 from H0 with non-negligible probability,
then B can break the IND-CPA game with the same probability.

Hybrid H2: H2 is the same as H1 except the following: During the tally phase, the simulator S acts as
F t,kTHVE to answer all the decryption queries such that it is consistent with the output of F t,kVote.

Claim: H2 and H1 are indistinguishable.
The adversary’s view of H2 is identical to the simulated view EXECFt,k

Vote,S,Z
. Therefore, no PPT Z can

distinguish the view of the ideal execution from the view of the real execution with more than negligible
probability.

A.8 Consensus background

The overarching aim of all decision-making mechanisms is to reach the best decision. However, it is usually
unclear what constitutes the best alternative. In other words, in a multi-party decision-making process, it is
difficult to agree on what constitutes the best solution, due to differences in individual preferences,interests,
knowledge, skill, orientation, etc. Therefore, integration of community-wide knowledge, skills and expertise
of members is fundamental for long-term sustainability (especially for blockchain developmental projects).

Consensus building [45] has been identified as a way to deal with complex, strategic and often controversial
planning and decision-making. Sustained innovation and development requires the continued maintenance of
the complex interaction between all stakeholders (with varying expertise, skill sets and values). The goal
is to adopt and implement solutions that offers “mutual” gains among contending stakeholders. Consensus
building or processes are typically time-costly and resource-consuming. However, blockchain infrastructure
and nature of blockchains mitigates against these potential drawbacks. For instance, by design, treasury
system planning supports lengthy discussions and deliberations over the range of treasury epochs available
in any single treasury period. Furthermore, the decentralised nature of blockchain technologies reduces the
monetary costs associated with collaborative decision making.

Critics of collaborative decision-making argue that, perhaps, consensus kills innovation, creativity and
uniqueness. They suggest that individuals that participate in the process tend to abandon their decisions,
so as to align with the rest of the group. However, this is not necessarily true considering the negotiation
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(debates) and interaction that takes place before compromises are made or decisions are reached. Consensus
empowers the individual through social activity and interaction, rather than suppress the individual [46].

One of the goals of collaborative decision-making (community-inclusive participation) is improved com-
munity relations, and research evidence shows that engaged citizenry/community is better than a passive
one [47]. As a result, citizens become willing evaluators of decisions and policies, which results in improved
community-wide support for decisions reached. Thus, making governance, which is particularly important to
blockchain systems, easy.

Agreement, perhaps, is the single most popular criterion for evaluating consensus. Typically in the litera-
ture, consensus is analysed in terms of agreement, and is not Majority Rule. Consensus involves the evaluation
of the agreement among a set of parties on a set of alternative solutions [48] in a multi-party collaborative
decision-making process (e.g., the treasury system decision-making process). Classical definitions of consen-
sus imply absolute agreement among all parties as a condition for consensus. This type of (full) consensus
is quite feasible within small teams or organisations with members having relevant information needed for
decision-making. However, the extremely low possibility of achieving this, makes this definition problematic
and less useful. By extension, this definition would equate the utility of decisions with “almost unanimous”
(i.e., very high but not perfect) agreement to those with complete disagreement - as both not being useful.

Nonetheless, in real-world scenarios multi-party decisions need not be unanimous or in absolute agreement
(full consensus) for decisions to be useful. Therefore, in order to accommodate the spectrum of consensus
between full/unanimous agreement and total disagreement, [48] defined soft agreement as an iterative dynamic
process that evaluates the agreement between all participants, and the agreement between the individual
participant’s preference and the group solution. Typically, two related measures, Consensus measure (measure
of agreement among all participants) and Proximity measure (measure of agreement between individual
solutions and collective solution) [48,45] are used to evaluate consensus.

Regardless of the quality of agreement achieved/reached, the outcome of a flawed process lacks credibility,
is less likely to receive widespread support and would likely result in more tensions among member stake-
holders. Well designed consensus processes that involves every stakeholder, regardless of the amount of stake
they hold, is likely to produce fair outcomes [45] and receive community-wide acceptance.

In line with the aim of collaborative decision-making, we note that our key goal of evaluating consensus
is not to produce “winners and losers”, rather, the goal is to forge, enhance and encourage community-wide
participation and acceptance (sense of responsibility and belonging ) and ownership of the growth, changes
and developments of the underlying blockchain system. Therefore, feedback is a key component of consensus
evaluation. Information obtained from proximity measure is useful for influencing discussion and minimising
disagreement among stakeholders [48].

Evidently, developments or changes with greater consensus are more durable and sustainable because
high consensus implies a higher agreement (support) among the stakeholders of the decision making process.
Furthermore, agreements of this nature tend to be of very high quality because they take into consideration
the knowledge (rather than interest alone) offered by each stakeholder [45].

With the help of an illustrative example of a treasury period, we now present an evaluation of consensus
of the treasury system decision-making process.

A.9 Example treasury consensus evaluation

Typically, consensus is measured through the use of some dissimilarity function e.g., cosine of angles, Eu-
clidean distance, etc. between corresponding individual preferences/solutions (proximity measure) and group
solution, as well as the evaluation of agreement among all participants on the final/group solution (consensus
measure).

For the purpose of consensus measurement in our treasury system decision-making, we propose an adap-
tation of the approach in [49] which is itself is an adaptation of [48] in order to accommodate nuances peculiar
to blockchain systems (or cryptocurrencies), e.g., cryptocurrency stake distribution. Specifically, for treasury
system consensus measurement, we identify the following key elements:

– Proposals (or alternative solutions)
– Stake holders in the system (or participants in the decision-making process)
– Treasury funds (or available resources)



A Treasury System for Cryptocurrencies 31

– The decision-making process (or voting scheme)
– Outcomes of the decision-making process (or solution set)
– Agreement among all participants (or consensus measure)
– Agreement between individual solutions and the treasury outcome/solution (or proximity measure)

Additionally, we highlight the processes for consensus evaluation in the treasury system collaborative
decision-making scheme:

– Preference specification
– Collective solution calculation
– Distance measure
– Distance aggregation
– Consensus measure and
– Proximity measure

We now present each of the various stages involved in the consensus evaluation process.

List of titles of proposals requesting funds

– Proposal 1 : Purchase and Installation of ATMs for the cryptocurrency
– Proposal 2 : Facilitation of listing of cryptocurrency on major cryptocurrency exchanges
– Proposal 3 : Cryptocurrency awareness and advertisement campaigns boost cryptocurrency exchange

rate
– Proposal 4 : Creation of online educational resources such as YouTube videos, and general training for

cryptocurrency trading
– Proposal 5 : Construction of cryptocurrency international headquarters and liaison office on every

continent
– Proposal 6 : Development of third-party software and tools to support cryptocurrency, e.g., establish-

ment of a new peer-to-peer mining pool software
– Proposal 7 : Establishment of a cryptocurrency legal team
– Proposal 8 : Organisation of a cryptocurrency conference
– Proposal 9 : Analysis of cryptocurrency protocol security and proofs
– Proposal 10 : Organisation of an annual dinner party and award night for community members

Participation information
We assume 5 people (2 experts and 3 voters) are involved in the current treasury voting process. For

simplicity, without the loss of generality, we also assume a flat model of stake distribution in this illustrative
treasury period. That is, we assume that all participants (expert/voter) have equal stake in the system (e.g.,
1 cryptocoin).

Preference specification
Each participant respectively specify his preferences based on his assessment of the individual proposals,

using criteria/guidelines such as: usefulness of proposal, timeliness, cost-benefit impact of proposal, profile of
proposer, relevance of project, urgency of proposal, amount of funds requested, duration of project, team in
charge of project, quality of proposal, etc. However, users are free to further evaluate proposals as they deem
fit (or based on their personal judgment).

Particularly, users vote YES, NO, ABSTAIN for proposals either directly or indirectly by delegating their
voting power to experts in that particular area. We encode a YES, NO, or ABSTAIN votes as 1, 0, or ⊥
respectively. We remark that the ballots of users who vote ⊥ for any proposal are treated as being the same
as the treasury outcome for that proposal. Hence, for consensus evaluation, they are considered as being in
agreement with whatever the outcome of the affected proposal is.

Collective solution calculation
For voting on the treasury, the group solution is obtained through the application of the voting rule

(e.g., majority voting, fuzzy threshold voting) on the ballot casted by the experts and voters. Specifically,
for our treasury system, where the voting rule is Fuzzy Threshold Voting, this corresponds to ranking of
the alternative proposals based on the number of votes for minus the number of votes against, and checking
that the remainder is at least 10% of all votes recorded. Thereafter, winning votes are determined as those
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that receive funding from the (ranked) list of all “qualified” proposals. Therefore, proposals that meet the
minimum threshold but do not receive funding because of the limitation of available funds (and their relatively
low overall position in the ranked list) are not considered members of the set of “winning proposals”. The set
of “winning projects ” are those who will receive funding according to the decision reached on the treasury
system (voting result). Table 1 provides information on how participants casted their ballots.

Table 1: User preference

Project 1 Project 2 Project 3 Project 4 Project 5 Project 6 Project 7 Project 8 Project 9 Project 10

User 1 1 B 1 B 1 B A A B ⊥
User 2 ⊥ 1 1 ⊥ 0 1 1 0 ⊥ 1
User 3 / Expert A 1 1 1 0 0 1 0 0 1 0
User 4 / Expert B 1 1 0 1 0 1 0 1 1 0
User 5 0 1 A 1 ⊥ A 1 ⊥ A 1
Total 3 5 4 3 1 5 2 1 4 2

Treasury Decision 0 1 1 0 0 1 0 0 1 0

(Normalised) distance measure
For each participant, we calculate distance measure (DM) of every vote/ballot for each project by com-

paring the participant’s choice with the treasury system funding decision. We apply the dissimilarity function
below:

DMi,j = |PPi,j − TSj |

NDMi,j =
DMi,j

|PS|
where DMi,j (respectively, NDMi,j) is the distance (respectively, normalised distance ) between the ith

participant’s choice for project j and the treasury solution for project j is TSj . PPi,j is the ith participant’s
preference/choice for project j and PS is the preference size of voter’s choice. In the case of our treasury
system PS = 2, for Yes and No, because Abstain is handled differently. As earlier explained, for consensus
evaluation, the choice of voters/experts who vote Abstain i.e. ⊥ are considered as being the same as treasury
funding decision for any particular project. Hence, a distance measure of zero(0) is assigned for a participant
who votes Abstain for any project proposal. The distance measure for the treasury system decision making
is presented in Table 2.

Table 2: Distance specification

Project 1 Project 2 Project 3 Project 4 Project 5 Project 6 Project 7 Project 8 Project 9 Project 10

User 1 1 0 0 1 1 0 0 0 0 0
User 2 0 0 0 0 0 0 1 0 0 1
User 3 / Expert A 1 0 0 0 0 0 0 0 0 0
User 4 / Expert B 1 0 1 1 0 0 0 1 0 0
User 5 0 0 0 1 0 0 1 0 0 1

Distance aggregation and consensus degree on projects
Using the normalised distance measure, NDM, we calculate the degree of consensus among all participants

(voters and experts) on each project as follows:

CDj = 1−
p∑
i=1

NDMi,j

p
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Table 3: Consensus degree

Project 1 Project 2 Project 3 Project 4 Project 5 Project 6 Project 7 Project 8 Project 9 Project 10

User 1 0.5 0 0 0.5 0.5 0 0 0 0 0
User 2 0 0 0 0 0 0 0.5 0 0 0.5
User 3 / Expert A 0.5 0 0 0 0 0 0 0 0 0
User 4 / Expert B 0.5 0 0.5 0.5 0 0 0 0.5 0 0
User 5 0 0 0 0.5 0 0 0.5 0 0 0.5
Total 1.5 0 0.5 1.5 0.5 0 1.0 0.5 0 1.0

Consensus degree 0.7 1.0 0.9 0.7 0.9 1.0 0.8 0.9 1.0 0.8

where CDj is the consensus degree for project j, and p is the size/number of participants.

Table 4: Consensus measure for various values of β

β 0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
CM 0.87 0.881 0.891 0.902 0.912 0.923 0.933 0.944 0.954 0.964 0.975

Table 5: Proximity measure for β = 0.8

Proj. 1 Proj. 2 Proj. 3 Proj. 4 Proj. 5 Proj. 6 Proj. 7 Proj. 8 Proj. 9 Proj. 10 Avg. PMi PMi(β0.8)

User 1 0.5 1 1 0.5 0.5 1 1 1 1 1 0.85 (1− β)0.85 + β 0.97
User 2 1 1 1 1 1 1 0.5 1 1 0.5 0.9 (1− β)0.9 + β 0.98
User 3/Exp. A 0.5 1 1 1 1 1 1 1 1 1 0.95 (1− β)0.95 + β 0.99
User 4/Exp. B 0.5 1 0.5 0.5 1 1 1 0.5 1 1 0.8 (1− β)0.8 + 0.875β 0.86
User 5 1 1 1 0.5 1 1 0.5 1 1 0.5 0.85 (1− β)0.85 + β 0.97

Consensus measure
We now proceed to calculate overall consensus among all participants (for our example treasury period

decision under review) through an aggregation of the consensus degrees, CD. The consensus measure, CM,
is calculated through the aggregation procedure of [50], which utilises Ordered Weighted Average (OWA).
The goal of the aggregation operator is to enable the consensus degrees on the “winning projects” have more
importance or weight [48] in the aggregation procedure. The expression for CM is as follows:

CM = (1− β) ·
n∑
i=1

CDi

n
+ β ·

t∑
s=1

CDWs

t

where CDW is the set of consensus degrees for “winning projects”, t is its cardinality, n is the total number
of projects, and β ∈ [0, 1] is used to control the influence of consensus degree of the winning projects on
the overall consensus measure in the treasury system. Clearly, higher values of β causes consensus degree of
the winning projects to highly influence the overall consensus measure. Typical values of β recommended in
the literature are 0.7, 0.8, and 0.9 [48,49]. We use a β value of 0.8 in our treasury system to emphasize the
importance of consensus degree among the participants on the winning projects. Table 4 shows the consensus
measure for different values of β.

Proximity measure of each participant
Here, we evaluate the proximity measure of each participant’s voting preference to the collective treasury

(funding) decision by aggregating each participant’s distance measure across all the projects. Similar to the
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calculation of the consensus measure, we utilise OWA aggregation operator as follows:

PMi = (1− β)

∑p
j=1(1−NDMi,j)

p
+ β

(
1−

∑t
k=1NDMWi,k

t

)
where NDMi,j is the distance measure between participant i′s preference for project j and the treasury
(collective) decision for project j. For participant i, NDMWi,k is a special normalised distance measure
between the collective decision for project k in the “set of winning projects ” and the corresponding participant
i′s preference for that project. That is, NDMW only considers normalised distance measures for projects that
receive funding a.k.a winning projects.

As earlier explained, we assign a value of 0.8 to β and present the proximity measure between each
participant’s preference and the treasury funding decision in Table 5.

Evidently, participants with high proximity measures contribute positively towards the treasury system
consensus while proximity measures close to zero signify negative contribution towards overall treasury system
consensus. Additionally, it can be observed that User 1 and User 5 both have the same proximity measure
of 0.97, despite having different voting preferences. However, this is so because the two users voted exactly
the same way for projects in the “winning set”, and the “winning set” or collective decision highly influenced
our aggregated measures due to the high value of β used.
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